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ABSTRACT 

Polymersome nanoparticles (PMs) are attractive candidates for spatio-temporal controlled 

delivery of therapeutic agents. Although many studies have addressed cellular uptake of solid 

nanoparticles, there is very little data available on intracellular release of molecules encapsulated 

in membranous carriers, such as polymersomes. Here, we addressed this by developing a 

quantitative assay based on the hydrophilic dye, fluorescein. Fluorescein was encapsulated stably 

in PMs of mean diameter 85 nm, with minimal leakage after sustained dialysis. No fluorescence 

was detectable from fluorescein PMs, indicating quenching. Following incubation of L929 cells 

with fluorescein PMs, there was a gradual increase in intracellular fluorescence, indicating PM 

disruption and cytosolic release of fluorescein. By combining absorbance measurements with 

flow cytometry, we quantified the real-time intracellular release of a fluorescein at a single-cell 

resolution. We found that 173±38 polymersomes released their payload per cell, with significant 

heterogeneity in uptake, despite controlled synchronisation of cell cycle. This novel method for 

quantification of the release of compounds from nanoparticles provides fundamental information 

on cellular uptake of nanoparticle-encapsulated compounds. It also illustrates the stochastic 

nature of population distribution in homogeneous cell populations, a factor that must be taken 

into account in clinical use of this technology. 
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Introduction 

Polymersomes (PMs) are nano-sized artificial vesicles made from synthetic polymers such as 

poly(ε-caprolactone)-block-poly(ethylene glycol), (PEG-b-PCL). PMs formed from amphiphilic 

PEG-b-PCL block copolymers self-assemble in aqueous solution with the hydrophobic PCL 

units forming a spherical membrane surrounded by a hydrophilic PEG corona. PMs can be used 

to carry and deliver a variety of payloads including plasmids,1 low molecular weight compounds2 

and proteins3 into cells. Furthermore, PMs can be readily modified to display surface moieties, 

e.g. short peptide sequences that promote uptake or confer specificity to certain cell types.4 

Modification of the chemical make-up of PMs can lead to alteration of the release kinetics of 

encapsulated compounds. There are numerous examples of PMs that release their payload in 

response to stimuli including alterations in pH,5,6 temperature,7 oxidation8 and light.9,10 This 

responsiveness can be extended by using variable ratios of blends of different copolymers to tune 

PM release kinetics.11 The exquisite control that such technologies can provide has resulted in 

significant interest in the potential of PMs to probe cell behaviour and enable drug delivery. 

There are numerous clinical trials being undertaken, predominantly in oncology, which are 

aiming to achieve better patient outcomes by exploiting the benefits that PM based delivery 

systems offer. 

 

Polymeric nanoparticles are recognised to have considerable translational potential when 

considered holistically as drug delivery systems. This approach to disease targeting considers 

every step of the drug delivery pathway, including reliable scalable PM synthesis, route of 

administration, biodistribution and pharmacokinetics, through to clearance and excretion.12 

Despite this there remains a need for the quantification of PM uptake by cells and consequent 
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intracellular payload release, which are both essential in determining the pharmacokinetics of 

drug-delivery and consequent cellular effects. Such information is also important for 

understanding the concentration of molecules delivered via native carriers, for example, 

exocytosed vesicles.13 There is an extensive literature on methods for qualitatively and 

quantitatively determining the cellular internalisation of nanoparticles. The majority of these 

methods, however, have relied upon nanoparticles that exhibit intrinsic fluorescence, such as 

fluorescently labelled PMs14 or quantum dots.15 These methods have been very successful in 

answering important questions about the kinetics of nanoparticle uptake, but have a number of 

drawbacks, including an inability to distinguish nanoparticles that are internalised from those 

that are associated with the external leaflet of cell membranes. Experimental approaches to 

confirm whether particles are intra-, or peri-cellular have been achieved through the combination 

of post-hoc correction of measurements collected from flow cytometry and confocal fluorescent 

analyses14,16 or by using imaging cytometry.17 While these approaches are useful for determining 

uptake of nanoparticles, they still do not provide a method of quantifying intracellular drug 

release from nanoparticles.  

 

Real-time drug delivery has been investigated previously through the use of fluorescent 

compounds. Latent fluorophores are molecules that become fluorescent after the release of a 

quencher,18–20 or in which the emission and/or excitation wavelength is shifted depending upon 

chemical dissociation,21 a cleavage event22 or a change in pH (SNARFs).23 These fluorescent 

techniques often require complex coupling chemistries, and they are rarely quantitative. In other 

work, Battaglia and colleagues have demonstrated that PMs can be used to deliver encapsulated 

or conjugated dyes to a variety of different cell types with minimal effects on cell viability. 24–26 
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Further development of these methods would be highly advantageous for quantification of 

nanoparticle delivery and payload release, particularly when combined with methods that 

determine whether a delivery molecule is entrapped in a PM or released into the cytosol.  

 

In order to address these challenges, we have exploited some key characteristics of the disodium 

salt of fluorescein, a water soluble weakly membrane-permeable molecule. Fluorescein has a 

high quantum yield and an excitation of λex 496 nm and emission at λem 521 nm. However, when 

fluorescein is highly concentrated in aqueous solution it self-quenches. Self-quenching 

fluorophores have previously been utilised in the liposome drug delivery field.27,28 These 

molecules were instrumental in the discovery that some liposome preparations deliver their cargo 

to cells by endocytosis followed by drug escape from endosomes and early lysosomes, rather 

than by direct plasma membrane fusion.29 We hypothesised that encapsulation of fluorescein in 

the aqueous core of PMs above the quenching concentration would create non-fluorescent 

nanoparticles carrying a cargo which would fluoresce once released. As PM disruption needs to 

occur for the fluorophore to be released, we reasoned that this could be used as a tool to quantify 

the intracellular release of this hydrophilic payload. Fluorescence is observed only when the 

payload is released and dispersed at a lower concentration within the cell (Figure 1). We utilize 

these properties to provide a new method for the quantification of intracellular release of a 

hydrophilic payload in mammalian cells. L929 fibroblasts were co-incubated with quenched 

fluorescein-loaded PMs, the time-course and quantity of loaded PMs releasing the payload 

intracellularly was measured at single cell resolution using flow cytometry and fluorescence 

spectroscopy.  
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(Figure 1.  near here) 

 

Results and discussion 

Polymersomes stably encapsulate and retain fluorescein at high concentrations 

We first tested the hypothesis that PMs are able to carry and stably retain the hydrophilic 

fluorophore, fluorescein, and that its fluorescence emission would be quenched on high 

concentration encapsulation in the PM core. PMs were produced by nanoprecipitation30 in an 

aqueous solution containing a high concentration (0.1 M) of fluorescein. In this situation block 

copolymers self-assemble into vesicular polymersomes, with the aqueous solution retained in 

their cores. 

PMs were formed from 5.8K-19K-NH2 block copolymers. In previous work, we have produced 

PEG-PCL PM with this class of block copolymer, and we demonstrated the functionality of these 

PMs as a payload carrier in vivo31 but as yet we have not examined its cellular uptake by cells, in 

vitro or in vivo. After fluorescein encapsulation, no significant changes were found in 

hydrodynamic radius or polydispersity, which is a measure of the width of the particles size 

distribution and which is considered to be less than 0.2 for homogeneous preparations32  (Figure 

2A), and 5.8K-19K-NH2 PMs were stable over a period of 3 weeks, with no measurable change 

in either of these variables (Figure 2B).  

Nanoparticle tracking analysis (NTA), a technique that enables the visualisation, sizing and 

quantification of nanoparticles in suspension by the use of a highly sensitive video camera,33 

revealed a hydrodynamic diameter value of 85 ± 33.6 nm for 5.8K-19K-NH2 PMs, in close 

agreement with the value obtained by dynamic light scattering (DLS) (hydrodynamic diameter of 



 

8 

86nm and PdI of 0.103). NTA analysis determined the PM concentration to be 5.0 x 1013 

nanoparticles ml-1 (Figure 2C). This type of measurement allows for a precise quantification of 

the final PM concentration, overcoming calculations purely based on assumptions of PM 

physical characteristics (i.e. membrane thickness, area of the molecules and copolymer weight). 

14,24  

(Figure 2. near here) 

Encapsulation of fluorescein (0.1 M), followed by dialysis of the PMs and size exclusion 

chromatography, resulted macroscopically in a PM suspension that was dark orange in colour, 

with none of the characteristic yellow appearance of fluorescein in solution (Figure 3A). 

Confirming this, no detectable fluorescence was found in the PM suspension by fluorescence 

spectroscopy when compared to equivalent concentration of fluorescein, indicating quenching of 

the PM-encapsulated fluorescein and absence of free fluorescein (Figure 3B). The concentration 

of fluorescein in PM preparations was measured using absorbance spectroscopy. A linear 

relationship was found between PM concentration and absorbance at concentrations < 50 µM 

(Figure 3C). Fitting of absorbance measurements of PMs to an absorbance standard curve for 

fluorescein, allowed us to determine a concentration of 273 ± 7.4 µM fluorescein in PMs at a 

concentration of 5 x 1013 PMs ml-1. From this, we calculate a mass of 5.48 x 10-21 moles of 

fluorescein per PM. Note that there is no absorbance interference from the block copolymer at 

this wavelength (no significant difference between absorbance of PM suspension compared to 

PBS background reading at 494 nm). Furthermore, note that the absorbance curve for fluorescein 

is linear between 0 and 50 µM, but becomes non-linear due to complete absorbance at high 

concentrations. All measurements were made in the linear range of absorbance for fluorescein.34 
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The concentration of fluorescein inside the PM aqueous core was stable over the course of a 

week (Figure 3D), indicating that there was no significant loss of internalised fluorescein from 

the PMs, despite the high concentration gradient across the PM shell membrane following 

dialysis and storage in aqueous solvent. Confirming this, only very low concentrations of free 

fluorescein (1 μM ± 0.1 μM) were found in the supernatant of ultracentrifuged polymersome 

preparations (See Supplementary Fig. S1 online). Together these experiments demonstrate that 

PMs trap fluorescein and that its fluorescence is quenched at the concentrations present inside 

the PMs.27,35 The physical characteristics of the PMs are unaffected by the inclusion of 

fluorescein, and the PMs retain fluorescein stably without significant leakage over prolonged 

time periods at room temperature. 

(Figure 3.  near here) 

In previous studies, a similar method was used to incorporate fluorescein and its derivative 

carboxyfluorescein in liposome carriers. In these studies, liposomes were found to be permeable 

to fluorescein, but relatively impermeable to carboxyfluorescein (which differs from fluorescein 

by an extra carboxyl group at the 5- and 6-position, making it more hydrophilic).27,36 PMs are 

known to be less permeable for a variety of molecules compared to liposomes (for example they 

are an order of magnitude less permeable to water than liposomes),37 and the current data 

suggests that this is true for fluorescein, with insignificant leakage even after a period of several 

days. 

Fluorescein-loaded PMs are actively taken up by mammalian cells and subsequently release 

their payload intracellularly  
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To determine whether PMs are taken up and their contents are released in mammalian cells, 

fluorescein-loaded PMs were added in solution to cultures of the mammalian fibroblast cell line, 

L929. Fibroblasts are known to be pivotal in contributing to the progression of several 

malignancies including endometrial cancer,38 and therefore represent a possible target for 

nanoparticle-based therapeutic approaches. Following co-incubation of cell-cycle synchronised 

(serum-starved) L929 cells with fluorescein-loaded PMs, a time-dependent increase in the 

fluorescence of cells from approximately 15 minutes after the start of the incubation was 

observed, as seen in confocal images (Figure 4A). This indicates uptake of PMs and intracellular 

release of fluorescein. Quantification of cellular fluorescence revealed a gradual increase over a 

period of one hour, with evidence of significantly higher intracellular payload release than that 

measured in controls, incubated with free (un-encapsulated) fluorescein, within 15 minutes (p < 

0.05) (Figure 4B) of the start of the experiment. These results indicate that PMs loaded with a 

high concentration of fluorescein release their cargo intracellularly, and that fluorescence of the 

dye molecules is no longer quenched on release. Encapsulated dyes such as rhodamine B and 

propidium iodide, were shown to be released intracellularly from polymersomes following 

uptake.24 The polymersomes studied were fabricated to include a pH-sensitive poly (2-(di-

isopropylamino) ethylmethacrylate) (PDPA) block. On exposure to a pH ~6.5, equivalent to 

lysosomal pH of, the PDPA underwent dissociation of the di-block polymers, leading to release 

of encapsulated agents in short (ms) timeframes. PCL-PEG co-block polymer is less pH 

sensitive, and undergoes hydrolysis and degradation over relatively longer time frames.11,39 It is 

therefore somewhat surprising that we measured dye release under such short time frames 

(minutes). We suggest that, due to the presence of PCL which is a highly hydrolase-sensitive 

polyester,40 the release in our experiments may be facilitated by lysosomal acid hydrolases after 
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initial partitioning of PM in early endosomes and lysosomes. Hydrolysis of polyesters, which 

induces the destabilisation of the vesicle structure is likely leading to the accelerated release of 

fluorescein at physiological temperature (~37°C) compared to the storage temperature of the PM 

preparation (room temperature).41 Further high-resolution imaging studies would enable better 

characterisation of this process. Additionally, it is likely that the observed fluorescence release 

originates from only a proportion of internalised PMs (as the fluorescence of fluorescein in intact 

PMs will remain quenched). Future studies may address this by comparing fluorescence release 

of quenched dyes in, for example, pH sensitive PMs compared to more environmentally robust 

PMs. 

To quantify the rate and magnitude of PM-mediated fluorescein release in cultured cells on a 

cell-by-cell basis, we used flow cytometry. As in the confocal microscopy experiments, time-

dependent increases in fluorescence were detected in populations of cells exposed to PMs. After 

1h, 36 ± 9% of cells showed increases in fluorescence above that of any cell co-incubated with a 

PBS-loaded control, and 95.4 ± 0.6% of cells after 24 hours. This suggests that nearly all cells in 

the treated populations had taken up PMs and undergone intracellular release of PM-

encapsulated fluorescein over this time period (Figure 4C, D; note 4D is data obtained from 3 

separate experiments; data from one experiment is shown in the cytometry plot in 4C).Time 

periods of exposure for longer than 24 hours did not result in any further uptake (Supplementary 

Fig. S2).  Uptake of PMs had no significant effect on cell viability (See Supplementary Fig. S3 

online), in agreement with other published studies on similar PMs.25 Confirming our earlier 

confocal observations, there was also significant heterogeneity in fluorescein release within the 

cell populations, despite the cell cycle being synchronised (note the variability in fluorescence in 
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the cells shown in the images captured by confocal microscopy and in the flow cytometry 

histograms Figure 4A and C respectively).  

Next we tested the hypothesis that PM uptake is an active, energy-dependent process. To achieve 

this, we assayed uptake at low temperature and after treatment with the ATP synthase inhibitor 

sodium azide. The relative increase in intracellular fluorescence of L929 cells incubated for 5 

minutes with fluorescein-loaded PMs was significantly higher at 37 °C compared to cells 

incubated at 4 °C (p < 0.01), or those treated with the mitochondrial energy inhibitor sodium 

azide (p < 0.001) (Figure 4E). Negligible cellular fluorescence was found after incubation of 

L929 cells with fluorescein at a concentration equivalent to that measured as a residual, un-

encapsulated, concentration found in all PM preparations (~ 1 μM, See Supplementary Fig. S4 

online), excluding a potential passive uptake of fluorescein from the culture medium. Together, 

these results illustrate that PEG-PCL PMs are quickly internalised by mammalian cells, in a 

time-dependent manner, do not induce cytotoxicity, and that this process is an active and energy-

dependent process, in agreement with previous reported findings. 14,31,42–45 

 

(Figure 4. near here) 

 

Our experimental setup did not allow for the distinction between the different energy-dependent 

mechanisms of endocytosis (clathrin-mediated endocytosis, macropinocytosis, caveolae-

mediated endocytosis and clathrin and caveolae-independent endocytosis). Nevertheless, our 

results corroborate findings from Xin et al. who demonstrated that PEG-PCL nanoparticles, 

which display a specific receptor-binding motif (Angiopep-2) on their surface are internalised by 

cells via energy dependent mechanisms, in particular caveolae-mediated endocytosis.44 While the 

use of inhibitors of specific pathways of endocytosis (e.g. sodium azide, filipin and cytochalasin 
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D) allow for a more detailed characterisation of the internalisation process, they may also impair 

the physiological cellular response inducing preferential cellular uptake via specific pathways. 

Chernenko et al. demonstrated the compartmentalisation of PEG-PCL nanoparticles in secondary 

endosomes of Hela cells by following the vibrational signature of PCL molecules and their 

released cargo using label-free Raman imaging.46,47 The ability to distinguish specific routes of 

cellular uptake would be beneficial in defining the sub-cellular partitioning of either PMs and 

payload and could be investigated in future experiments, but the quantification of payload 

released intracellularly is equally important. 

Intracellular payload release can be quantified at single-cell resolution, revealing 

heterogeneity in cellular delivery 

In order to determine the amount of fluorescein delivered intracellularly, a defined number of 

cells were pre-incubated with PMs for 24 hours. Cells were washed thoroughly with PBS in 

order to remove excess PMs present in solution but not internalised by cells, and were then lysed 

and the concentration of intracellular fluorescein was measured using a standard curve for 

fluorescence. The quantum yield of fluorescein is known to be affected by its molecular 

nanoenvironment (eg pH, charge, protein binding)34. In order to control for these factors, the 

standard curve was determined by measurement in a solution equivalent to that produced by 

lysed cells (See Supplementary Fig. S5 online). A linear relationship was found between the 

initial concentrations of PMs incubated with cells and the amount of fluorescein recovered from 

within the cells after 24 hours (Figure 5A). In addition, we found no difference in the total 

intensity of aliquots of cells before and after cell lysis (See Supplementary Fig. S6), indicating 

that the quantum yield of fluorescein is relatively unaffected by its molecular microenvironment 

following intracellular release. This is somewhat surprising as it is known that decreasing the pH 
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leads to a decrease in the quantum yield of the fluorophore.48 Since some data suggest the 

partitioning of PMs into endosomes and lysosomes,46 where pH can range from 6.5 for 

endosomes to 5 for lysosome, it may be the case that in this study, fluorescein is largely 

partitioned in early endosomes or in the cytoplasmic space, where the pH is higher. Longer 

periods of incubation (>24 hours), with an associated increase in the lysosomal partitioned cargo 

would be predicted to cause reductions in the measured intracellular quantum yield of 

fluorescein in comparison to post-lysis. Despite this, we cannot rule out the possibility that our 

estimations of intracellular fluorescein may be subject to error. As fluorescein may be in various 

stages of release and therefore at heterogeneous concentrations within the cells, and as our 

methods of cell disruption may not completely disrupt intracellular organelles including 

endosomes and lysosomes, the recovered fluorescence yield may be an underestimation of true 

intracellular fluorescein concentration. Other methods, such as high performance liquid 

chromatography, may be used in the future to provide an additional layer of certainty of the 

absolute intracellular concentration of the dye. Notably, Gottstein et al. used a correction factor 

to normalise the intracellular solid fluorescence of polystyrene nanoparticles to their external 

fluorescence.16 While this is an elegant method for determining the intracellular uptake of 

cohesive, solid fluorescent capsules, it would be more difficult to employ this technique in the 

current study. In Gottstein et al.’s report, the nanoparticles are not subject to changes in the local 

molecular concentration through diffusion and are less subject to intermolecular interactions 

since most of the nanoparticles are labelled with the fluorophores and this is not contained within 

the particles. Future studies may address local changes in the microenvironment in combination 

with measurements of concentration by fluorescence. This may be achieved by, for example, pH 

sensitive dyes, such as SNARFs employed by Semmling et al.23 Or alternatively, time resolved 
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fluorescence could be used to determine the relative concentrations of a fluorophore in one 

molecular microenvironment compared to another. In previous studies, this technique has been 

used to measure the relative amount of fluorophores in mitochondria compared to cytosol.49,50 

At 24 hours, cells incubated with the concentration of PMs used in Figure 4 (5 x 1012 PMs ml-1) 

contained 7.85 x 10-10 nanomoles of fluorescein per cell (Figure 5B). Based on our earlier 

calculations, the mass of fluorescein in a PM is 5.48 x 10-21 moles, enabling the number of 

nanoparticles releasing their cargo in cells to be calculated using the following formula: 

 =                                                 (1) 

 

 

Where Qcell is the average number of PMs releasing their payload per cell, Ncell is the number of 

moles of fluorescein per cell and NPM is the number of moles of fluorescein per nanoparticle. 

Calculations are presented in Figure 5B. At a PM concentration of 5 x 1012 ml-1, this indicates 

that an average number of ~143 ± 12 PMs are internalised and release their contents per cell over 

a period of 24 hours (Figure 5B).  

 

(Figure 5. near here)   

 

Fluorescence spectroscopy only provides an average quantification of fluorescein release from 

PMs, therefore flow cytometry was used to determine cell-specific nanoparticle payload release, 
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and the inherent degree of variability in the cellular population. By normalising fluorescence 

intensity data from flow cytometric analysis to measurements of intracellular PM release 

obtained by fluorescence spectroscopy (above), the PM payload release was calculated for every 

cell in a flow cytometric analysis at 1, 3 and 24 hours post addition of PMs (Figure 6A). As 

expected, we measured an increase in the mean intracellular release with respect to time,14,24 but 

also an increase in the variability of fluorescein load in the cellular population. This was despite 

serum starvation, which synchronises the cell cycle, prevents cell division and reduces intra-

population uptake variability.51 The observed cell-to-cell variability in PM release of fluorescein 

may be attributed to the stochastic nature of cell-PM interactions during the internalisation 

process, resulting from a combination of factors including PM agglomeration and clustering and 

variable cellular surface receptor dynamics.52,53 In addition, our analysis assumes that PMs of all 

sizes have an equal chance of being taken up and releasing their contents per cell, regardless of 

size. This may be an over simplification, as size is known to affect the rate and efficiency of 

uptake24,54 Since the mass of fluorescein that each PM contains is proportional to volume rather 

than diameter, measurements of uptake may be particularly sensitive to variations in the uptake 

of PMs at the large end of the dispersion profile, This observation underlines the need for further 

quantitative analysis of putative drug release at a single-cell resolution. 

Single cell analyses demonstrated a time-dependent increase in the maximum number of PMs 

releasing their contents intracellularly per cell (217 ± 53, 243 ± 68 and 329 ± 35 PMs per cell 

after 1, 3 and 24 hour incubations respectively). This reflects a wider range (Max PMs per cell – 

Min PMs per cell) of PMs internalised after different incubation periods and describes an 

incremental heterogeneity in PM dye release within the cellular population (Figure 6B). 

Furthermore, in the single cell analysis, the estimated median value of PMs per cell after 24 hour 
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incubation (~173 ± 38) is very similar to the values calculated from the fluorescence 

spectroscopy quantification (~143 ± 12) (Figure 5B). Comparing the number of nanoparticles 

internalised per cell quantified in different studies is fraught with difficulty, considering the 

diversity of cells, nanoparticles and cell culture conditions used. Nevertheless, very recently 

Unciti-Broceta et al. estimated the number of nanoparticles needed per cell in order to achieve 

nanoparticle uptake in 50% of a cell population.55 The figure estimated by the authors for 3 

different cell lines are in the same order of magnitude to the number of nanoparticles per cell 

calculated here and similar to previous reports.16,56 In another study, Massignani et al. recently 

used either the encapsulation, or conjugation, of rhodamine B to diblock polymers composed of 

PMPC25–PDPA70 and PEG23–PDPA15 diblock copolymers.24 The authors reported values of 

106-107 PMs internalised/cell, several orders of magnitude higher than our current study. This 

difference is striking, but can be partially explained by the higher concentration of PMs used in 

this study (1016/mL), differences in the PM chemistry and encapsulation efficiency of the dye 

molecules used, and finally differences in the degradability of the PMs used – in our study, we 

quantified only the amount of fluorescein that was released from PMs, and we did not measure 

dye which remained quenched within intact PMs. 

The quantification method described here could be extended to different PM preparations and 

importantly enables single cell analysis to be performed. Another factor that influences the 

kinetics of PM uptake and subsequent intracellular release is potential PM depletion from the 

culture medium, particularly when nanoparticle uptake in a given time period is comparable with 

the number of nanoparticles available per cell17,57. In a recent study using solid PEG-conjugated 

polystyrene nanoparticles however, Unciti-Broceta et al. found that a ratio of 1000-4000 

nanoparticles per cell was saturating, with nanoparticle concentration becoming rate limiting 
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only below 2000 nanoparticles per cell.55 In our experiments we calculate a concentration of > 1 

x 106 PMs/cell, and so it is unlikely that the depletion of nanoparticles from the medium has any 

significant effect on the rate of uptake. 

(Figure 6. near here) 

 

Conclusion 

All drug-delivery systems must undergo extensive characterisation prior to evaluation in clinical 

trials.58 There is evidence from in-vivo studies in animals that delivery using polymeric 

nanoparticle preparations has clear advantages over administration of free drug, with fewer off-

target and toxic effects.59 Studies correlating preclinical findings and data from human trials have 

found that there is good correlation between the biodistribution and clearance of the particles 

between these two study types60 and several polymeric nanoparticle delivery systems, e.g. 

Genexol-PM, are now in phase 2 clinical trials.61 However a current limitation with the use of 

polymersomes (PMs) for controlled drug delivery is the paucity of information regarding the 

number of nanoparticles internalised at a single cell level and therefore the concentration of 

payload released. We exploited the characteristics of sodium fluorescein to demonstrate real-time 

delivery of a hydrophilic compound in a mammalian fibroblast cell line using PMs. To our 

knowledge, this is the first attempt to quantify the intracellular release of a fluorophore from a 

hollow polymeric nanocarrier at a single cell level. When nanoparticles are considered as 

possible delivery vehicles for therapeutic molecules at a cellular and sub-cellular level, the 

heterogeneity of distribution within a population is a critical factor that should be considered. 

The simple methodology proposed here could be extended to quantify the cellular internalisation 
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of PMs formed from different materials, including stimuli responsive PMs. Additionally, this 

method could be used to determine the relative partitioning of a putative drug in populations of 

mixed cell types, as will invariably be the case in in vivo studies, and how drugs partition during 

cell division.17 It provides a methodology with which to better understand how the kinetics of 

cellular uptake might be affected by cell type, nanoparticle polymer chemistry, and the addition 

of nanoparticle surface moieties. We believe that these types of investigations are much needed 

in order to fully exploit the potential of nanoparticles, particularly PMs for clinical applications.  

Material and methods 

PM preparation 

The following methodology was adapted from previously reported work.30 PMs were 

prepared by dissolving α-amino-ω-hydroxy terminated (NH2)-PEG-b-PCL (6.0 mg) (Polymer 

Source, Dorval, Canada) in dimethylformamide (DMF) (0.4 ml). The amphiphilic copolymer 

used had an average molar mass (Mn) of 5.8 x 103 g/mol for the PEG block and 19 x 103  g/mol 

for the PCL block. The solution was then placed in an ultrasonic bath to aid dissolution. A 0.1 M 

sodium fluorescein (Sigma-Aldrich, Poole, UK) solution (10% DMF in 0.1 M phosphate buffer 

(PBS)) in PBS was prepared. The polymer solution was then added drop-wise (~1 drop every 8 

seconds) to the sodium fluorescein (1.60 mL) with rapid stirring. The sample was then dialyzed 

(regenerated cellulose, 10,000 MWCO, Sigma-Aldrich, Poole, UK) against PBS (400 mL), 

replacing the buffer solution 4 times over the course of 48 hours. Fluorescein-loaded PMs were 

then removed from the dialysis tubing and filtered through a size separation column (Sephadex 

G-25, Sigma-Aldrich, Poole, UK) to remove any remaining un-encapsulated fluorescein. 

Dynamic light scattering (DLS) 
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DLS analysis (Zetasizer Nano ZS ZEN3600, Malvern Corp, Worcestershire, UK) was 

performed by diluting PMs (100 µl) in MilliQ PBS (1900 µl). Prior to the analysis, samples were 

filtered into a plastic cuvette through a cellulose acetate syringe filter (0.2 μm) (Minisart, Sigma-

Aldrich, Poole, UK). Measurements were completed at 20 °C with the light detected at a 

scattering angle of 173°. Data was collected 13 times/sample. Acquisition was for 5 seconds and 

each measurement was carried out in triplicate.  

Nanoparticle tracking analysis (NTA) 

  A NanoSight device (LM10, Malvern Corp, Worcestershire, UK) was used to measure 

both PMs hydrodynamic size and concentration. PMs were diluted (1 µl) in MilliQ PBS (100 

ml), filtered and loaded in the detection cell prior to measurement.  

Fluorescence intensity 

  Fluorescein-loaded PMs and solutions of fluorescein of equivalent concentration (274 

μM) were analysed for fluorescence intensity over a range of wavelengths (increment of 1 nm 

from 485 nm to 600 nm) using a FluoroMax-4 (Horiba Scientific, Stanmore, UK). Release of 

fluorescein into supernatant after storage was also measured using a FluoroMax-4 (Horiba 

Scientific, Stanmore, UK).  

Fluorescein encapsulation and release in vitro 

  The concentration of sodium fluorescein was calculated by measuring the UV absorbance 

(Nanodrop 2000c, Thermo Fisher Scientific, Basingstoke, UK) compared to stock solutions. To 

determine the kinetics of sodium fluorescein release, PM samples were kept at room temperature 

(20 °C) under constant dialysis (regenerated cellulose, 10,000 MWCO, Sigma-Aldrich, Poole, 
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UK) against PBS. At various intervals over a total of 7 days PM samples were collected. 1 mL 

aliquots of each sample was then passed through a size separation column, before measurement 

of UV absorbance (Nanodrop 2000c, Thermo Fisher Scientific, Basingstoke, UK). Each 

experiment was performed in triplicate. All of the preparations give a 3 mg/mL solution of PMs. 

For all in vitro experiments PM samples were used immediately and were sterile filtered through 

a 0.2 μm cellulose acetate syringe filter before use. 

Cell culture 

  Mouse L929 Fibroblasts (ATCC) were maintained in Dulbecco’s Modified Eagle 

medium (DMEM) (Thermo Fisher Scientific, Basingstoke, UK) supplemented with 10% (V/V) 

fetal bovine serum (FBS) (Thermo Fisher Scientific, Basingstoke, UK), 100 U/ml of penicillin 

(Thermo Fisher Scientific, Basingstoke, UK) and 100 μg/ml of streptomycin (Thermo Fisher 

Scientific, Basingstoke, UK). The cells were incubated at 37 °C and 5% CO2. For fluorescence 

microscopy and cytofluorimetric analysis, 24 hours before an experiment the medium was 

replaced with DMEM supplemented with low serum (0.5% V/V), 100 U/ml of penicillin 

(Thermo Fisher Scientific, Basingstoke, UK) and 100 μg/ml of streptomycin (Thermo Fisher 

Scientific, Basingstoke, UK).  

Confocal microscopy 

 L929 cells were seeded at a density of 50,000 cells/cm2. The medium was replaced with 

DMEM supplemented with low serum 24 hours before the experimental assay. 2 hours before 

PM addition, the medium was replaced with piperazine-N,N′-bis (2-ethanesulfonic acid) (PIPES) 

buffer supplemented with 0.5% serum. Fluorescein-loaded PMs were added (5 x 1012 PMs ml-1) 

to the cells and images were taken every 60 seconds over 60 minutes using a TCS SP5 laser 
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scanning confocal microscope (Leica, Milton Keynes, UK). Cell nuclei were stained with 

Hoechest 33342 (Thermo Fisher Scientific, Basingstoke, UK). A 63X 1.30 glycerol immersion 

objective was used. Negative controls were, PBS-loaded PMs (5 x 1012 PMs) and a 10 mM 

solution of fluorescein. Image analysis was performed by randomly selecting 20 cells of interest 

and measuring the mean fluorescence intensity at each time point. 

Energy-dependent internalization 

 L929 cells were seeded at a density of 50,000 cells/cm2. The medium was replaced with 

DMEM supplemented with low serum 24 hours before the experimental assay. PMs were added 

to the cells (5 x 1012 PMs ml-1) and incubated for 5 mins, after which the medium was removed 

and replaced with fresh DMEM supplemented with low serum. After 1 hour the cells were 

washed x3 with ice-cold PBS, fixed in 4% paraformaldehyde for 15 minutes and imaged using 

an Axiovert200 inverted microscope (Zeiss, Birmingham, UK). To inhibit energy dependent 

processes, sodium azide (1 mg/ml) was added for 20 minutes prior to adding fluorescein-loaded 

PMs. For experiments at 4 oC, cells were equilibrated by keeping them on ice for 30 minutes 

prior to adding fluorescein-loaded PMs. The medium, PBS and 4% paraformaldehyde were kept 

on ice. Cells were fixed for 20 minutes. Using Image J software line scans of the width of the 

cell were taken from the images to give the mean fluorescence per cell. Relative fluorescence 

was calculated normalizing against the auto-fluorescence of the control. 

Cytofluorimetry 

 L929 cells were seeded in 6 well plates at a density of 1x104 cells/well. The medium was 

replaced with DMEM supplemented with low serum 24 hours before the experimental assay. 

PMs were added to the cells (5 x 1012 PMs ml-1) and incubated for 1, 3 or 24 hours. Medium was 
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removed at the designated time points, cells were washed using PBS, detached using trypsin and 

re-suspended in 500 μl of PBS. For propidium iodide (PI)  (Sigma-Aldrich, Poole, UK) staining, 

a solution of 2 mg/ml (1 μl) was added to each sample just before cytofluorimetric analysis 

(Guava easyCyte, Millipore, Milton, UK).  

Quantification of the number of PMs per cell 

 L929 cells were seeded in a 6 well plate at a density of 100,000 cells/well and incubated 

for 24 hours with increasing concentrations of fluorescein-loaded PMs (from 5 x 1010 to 2 x 1012 

PMs ml-1). Then, cells were washed with PBS twice to remove the excess of PMs that were not 

internalised and lysed using a solution of HEPES (20 mM), NaCl (125 mM) and sodium dodecyl 

sulphate (SDS) (2%). The relative optical density (O.D.) was measured at 521 nm using a 

Varioscan Flash microplate reader (Thermo Fisher Scientific, Basingstoke, UK). A fluorescein 

calibration curve was produced by dilution of a stock solution of fluorescein (100 mM) (Sigma-

Aldrich, Poole, UK) in PBS supplemented with cell lysate. Mass of fluorescein PM-1 was 

calculated as the ratio between the mass of fluorescein present in PMs solution by the 

concentration of PMs ml-1. For quantification at the single cell level, raw data was extracted from 

FCS files using Matlab (Mathworks, Cambridge, UK) and analysed using Microsoft Excel. 

Statistical analysis 

 The data was tested for normal distribution using the D’Agostino-Pearson normality test 

using graph pad prism software (GraphPad Software, La Jolla, USA). Parametric tests were 

carried out for normally distributed data, whereas non-parametric tests were used for skewed 

data. Comparisons between different treatments were made using one-way or two-way ANOVA, 
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followed by either Tukey’s or Dunn’s post hoc test. Statistical significance was defined as *p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 and n.s. p  ≥ 0.05. 
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