The University of Southampton
University of Southampton Institutional Repository

Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2

Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2
Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2
High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77–450 K. At room-temperature, the maximum stimulated emission cross-section is sigma(SE) = 21.4 × 10-20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 µs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ~2.5 × 10-17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ~4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 µm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.
365-372
Loiko, P.
370f8d0f-a875-476f-bf8d-207fc4e42a00
Yoon, S.
fcca92bf-3283-4ba8-85d5-767ca419aa9f
Serres, J.M.
932aa8ff-8609-411a-a1a4-9347842f51d8
Mateos, X.
aea3afaf-9bf6-431f-af37-068ef9f1ddf4
Beecher, S.
b3664adc-d6b5-4a5a-a09a-8e1415c6d3f5
Birch, R.B.
4e8b9907-649a-49de-9644-9fb1da852c89
Savitski, V.G.
a45add66-79b4-4fe0-9e73-435ba7ada163
Kemp, A.J.
653e1dd6-4da9-4bbd-bbae-ef8d9a94cfd3
Yumashev, K.
98895b3b-8691-4466-b4a8-ab7e94031855
Griebner, U.
99206079-3e6b-42da-836f-7dd3b154e303
Petrov, V.
a246b60a-32d4-4038-878c-f449f0d5c04d
Aguiló, M.
61fe554a-22ea-43db-9fd3-8d3209bf99ed
Díaz, F.
babe7378-e970-4195-beab-84f41b1694a4
Mackenzie, J.
1d82c826-fdbf-425b-ac04-be43ccf12008
Loiko, P.
370f8d0f-a875-476f-bf8d-207fc4e42a00
Yoon, S.
fcca92bf-3283-4ba8-85d5-767ca419aa9f
Serres, J.M.
932aa8ff-8609-411a-a1a4-9347842f51d8
Mateos, X.
aea3afaf-9bf6-431f-af37-068ef9f1ddf4
Beecher, S.
b3664adc-d6b5-4a5a-a09a-8e1415c6d3f5
Birch, R.B.
4e8b9907-649a-49de-9644-9fb1da852c89
Savitski, V.G.
a45add66-79b4-4fe0-9e73-435ba7ada163
Kemp, A.J.
653e1dd6-4da9-4bbd-bbae-ef8d9a94cfd3
Yumashev, K.
98895b3b-8691-4466-b4a8-ab7e94031855
Griebner, U.
99206079-3e6b-42da-836f-7dd3b154e303
Petrov, V.
a246b60a-32d4-4038-878c-f449f0d5c04d
Aguiló, M.
61fe554a-22ea-43db-9fd3-8d3209bf99ed
Díaz, F.
babe7378-e970-4195-beab-84f41b1694a4
Mackenzie, J.
1d82c826-fdbf-425b-ac04-be43ccf12008

Loiko, P., Yoon, S., Serres, J.M., Mateos, X., Beecher, S., Birch, R.B., Savitski, V.G., Kemp, A.J., Yumashev, K., Griebner, U., Petrov, V., Aguiló, M., Díaz, F. and Mackenzie, J. (2016) Temperature-dependent spectroscopy and microchip laser operation of Nd:KGd(WO4)2. Optical Materials, 58, 365-372. (doi:10.1016/j.optmat.2016.06.005).

Record type: Article

Abstract

High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77–450 K. At room-temperature, the maximum stimulated emission cross-section is sigma(SE) = 21.4 × 10-20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 µs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ~2.5 × 10-17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ~4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 µm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.

Text
Pavel Opt Mat 2016 V58 p365.pdf - Accepted Manuscript
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 3 June 2016
e-pub ahead of print date: 11 June 2016
Published date: August 2016
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 396827
URI: https://eprints.soton.ac.uk/id/eprint/396827
PURE UUID: e39ba285-8c27-410c-a1a1-be7143c456c4
ORCID for J. Mackenzie: ORCID iD orcid.org/0000-0002-3355-6051

Catalogue record

Date deposited: 13 Jun 2016 15:50
Last modified: 03 Dec 2019 06:40

Export record

Altmetrics

Contributors

Author: P. Loiko
Author: S. Yoon
Author: J.M. Serres
Author: X. Mateos
Author: S. Beecher
Author: R.B. Birch
Author: V.G. Savitski
Author: A.J. Kemp
Author: K. Yumashev
Author: U. Griebner
Author: V. Petrov
Author: M. Aguiló
Author: F. Díaz
Author: J. Mackenzie ORCID iD

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×