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Functoriality and K-theory for GL,(R)

Sergio Mendes and Roger Plymen

Abstract. We investigate base change and automorphic induction C/R at the level of K-
theory for the general linear group GLy,(R). In the course of this study, we compute in
detail the C*-algebra K-theory of this disconnected group. This article is the archimedean
companion of our previous article [12].

1. INTRODUCTION

In the general theory of automorphic forms, an important role is played
by base change and automorphic induction, two examples of the principle of
functoriality in the Langlands program [3]. Base change and automorphic
induction have a global aspect and a local aspect [1]. In this article, we focus
on the archimedean case of base change and automorphic induction for the
general linear group GL,(R), and we investigate these aspects of functoriality
at the level of K-theory.

For GL,(R) and GL,(C) we have the Langlands classification and the as-
sociated L-parameters [10]. We recall that the domain of an L-parameter of
GL,,(F') over an archimedean field F' is the Weil group Wg. The Weil groups
are given by

We =C*
and
Wr = (j)C*
where j2 = —1 € CX, je = ¢j for all ¢ € C*. Base change is defined by

restriction of L-parameter from Wx to We.

An L-parameter ¢ is tempered if $(Wr) is bounded. Base change therefore
determines a map of tempered duals.

Let X,Y be locally compact Hausdorff spaces, let X+, Y™ be their one-
point compactifications. A map f: X — Y is continuous at infinity if it is the
restriction of a continuous map from X+ to Y. The K-theory groups K° and
K1 are contravariant functors from the category of locally compact HausdorfF
spaces whose morphisms are maps continuous at infinity to the category of
abelian groups, see [13, Prop. 2.6.10]. Now the tempered dual of GL, (F)
with FF = R or C is a locally compact Hausdorff space. It seems natural
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to fuse together the Langlands functoriality which occurs in base change and
automorphic induction with the K-theory functoriality. In this article, we
accordingly study base change and automorphic induction at the level of K-
theory.

We outline here the connection with the Baum-Connes correspondence. Let
F denote R or C and let G = G(F) = GL,(F). Let C*(G) denote the reduced
C*-algebra of G. The Baum-Connes correspondence is a canonical isomor-
phism [2][6][11]

pr - KT (EG(F) = K.CHG(F)

where EG(F') is a universal example for proper actions of G(F).

The noncommutative space C*(G(F)) is strongly Morita equivalent to the
commutative C*-algebra Cy( AL (F)) where A! (F) denotes the tempered dual
of G(F), see [15, §1.2][14]. As a consequence of this, we have

K.C(G(F)) = K* AL (F).
This leads to the following formulation of the Baum-Connes correspondence:
KT EG(F)) = K* AL (F).
Base change and automorphic induction C/R determine maps
BCc/r : AL (R) — Af(C)
and
AZcyr + Ay, (C) = A3, (R).
This leads to the following diagrams

EXOBG(C) s K AL(C))

l [

KE®(EGR)) —— K*AL(R).

KR
and
KS®(EGR)) " K*AL,(R))

1 J=.

K¢O(BGC)) —— K*AL(C).
Hc

where the left-hand vertical maps are the unique maps which make the dia-
grams commutative.

In section 2 we describe the tempered dual A% (F) as a locally compact
Hausdorff space.

In section 3 we compute the K-theory for the reduced C*-algebra of GL,,(R).
The real reductive Lie group GL,, (R) is not connected. If n is even our formulas
show that we always have non-trivial K and K'. We also recall the K-theory
for the reduced C*-algebra of the complex reductive group GL,,(C), see [14]. In
section 4 we recall the Langlands parameters for GL,, over archimedean local
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fields, see [10]. In section 5 we compute the base change map BC : A! (R) —
Al (C) and prove that BC is a continuous proper map. At the level of K-
theory, base change is the zero map for n > 1 (Theorem 5.5) and is nontrivial
for n =1 (Theorem 5.7). In section 6, we compute the automorphic induction
map AZ : Af (C) — A%, (R). Contrary to base change, at the level of K-theory,
automorphic induction is nontrivial for every n (Theorem 6.3). In section 7,
where we study the case n = 1, base change for K' creates a map

R(UQ)) — R(Z/2Z)

where R(U(1)) is the representation ring of the circle group U(1) and R(Z/2Z)
is the representation ring of the group Z/27. This map sends the trivial char-
acter of U(1) to 1 ® e, where ¢ is the nontrivial character of Z/27Z, and sends
all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The K-cycle

(CO(R>7 L2 (R)a ’Ld/d.%‘)

is equivariant with respect to C* and R*, and therefore determines a class
Jo € K& (EC*) and a class @z € K} (ER*). On the left-hand-side of the
Baum-Connes correspondence, base change in dimension 1 admits the following
description in terms of Dirac operators:

P = (P, Pr)

This extends the results of [12] to archimedean fields.

We have, according to the Connes-Kasparov correspondence, the following
isomorphism:

K, C}(GLy(R)) = Kb, (R")

the equivariant K-theory of R™ with respect to the standard action of the
orthogonal group O(n). This isomorphism opens the way to computing the
K-theory of C}(GL,(R)) via equivariant K-theory: this program is carried
out in the paper by Echterhoff and Pfante [8]. Our method of computing the
K-theory of C)(GL,(R)) is quite different, as we have to keep track of the
Langlands parameters.

After our article was posted on the arXiv, Chao and Wang sent us their
article [7]. Their work and ours was done independently. There is some overlap,
but we would like to describe the main differences. Their account of base
change is different, as they place an emphasis on Galois-fixed points. In the
context of the Connes-Kasparov isomorphism, they succeed in securing base
change on maximal compact subgroups [7, §7.2]. On the other hand, their
work does not include automorphic induction.

We thank Paul Baum for a valuable exchange of emails. We also thank the
referee for providing us with many detailed and constructive comments.
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2. ON THE TEMPERED DUAL OF GL,

Let FF = R. In order to compute the K-theory of the reduced C*-algebra
of GL,(F) we need to parametrize the tempered dual A% (F) of GL,(F). Our
key reference for the representation theory of GL,,(R) is Knapp [10].

Let M be a standard Levi subgroup of GL, (F), i.e. a block-diagonal sub-
group. Let °M be the subgroup of M such /thit the determinant of each
block-diagonal is +1. Denote by X(M) = M/9M the group of unramified
characters of M, consisting of those characters which are trivial on %M.

Let W(M) = N(M)/M denote the Weyl group of M. W (M) acts on the
discrete series Fy(YM) of °M by permutations.

Now, choose one element o € Ey(YM) for each W (M )-orbit. The isotropy
subgroup of o is defined to be

Wo(M)={weW(M):wo=0c}

Take one standard Levi subgroup M from each conjugacy class of Levi sub-
groups and one discrete series o from each W (M)-orbit and form the disjoint
union

(1) L] x(y/woany =] [ X(1)/Wo ().

[M,0] [M]  [o]eBE2("M)

The disjoint union has the structure of a locally compact, Hausdorff space and
is called the Harish-Chandra parameter space.

Proposition 2.1. There exists a bijection

Upr,o) X (M)/Wo (M)  — AL (R)
X7 = dan,®),Mn (X7 @1),

where x°(x) := x(z)o(x) for all x € M.

In view of the above bijection [15, 1.2], we will denote the Harish-Chandra
parameter space by A% (R).

We will see now the particular features of the archimedean case, starting
with GL, (R). Since the discrete series of GL,,(R) is empty for n > 3, we only
need to consider partitions of n into 1’s and 2’s.

This allows us to to decompose n as n = 2q+r, where ¢ is the number of 2’s
and 7 is the number of 1’s in the partition. To this decomposition we associate
the partition

which corresponds to the Levi subgroup

M = GL3(R) X ... x GLa(R) x GL1(R) x ... x GL;(R).

q T
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Varying ¢ and r we determine a representative in each equivalence class of
Levi subgroups. The subgroup °M of M is given by

OM =2 SLE(R) x ... x SLE(R) x SLE(R) x ... x SLE(R),

q T
where
SL;(R) = {g € GL(R) : |det(g)| = 1}.
In particular, SLli(R) ={+1} 27Z/2Z.
The representations in the discrete series of SL2jE (R), denoted Dy for £ € N
(£ > 1) are induced from SLa(R) [10, p.399):
D¢ = igp# =) sLow) (Pr )

where DZ acts in the space

{f : H — C|f analytic 7||f||2 = //|f(z)\2y£_1dxdy < oo}

[¢
C

QS
N——

Here, H denotes the Poincaré upper half plane. The action of g = <
is given by

DI (G)(J(2)) = (b2 +d) D F(EES),

More generally, an element o from the discrete series Eo(°M) is given by
(2) 0=Dp, ®..0D;, T ® ... ® Ty,
where Dy, (£; > 1) are discrete series representations of SLi (R) and 7; is a

representation of SLE (R) & Z/27Z, i.e. id = (z + x) or sgn = (x — &).

|]
Finally we will compute the unramified characters X (M), where M is the
Levi subgroup associated to the partition n = 2q + r.
Let € GLy(R). Any character of GLy(R) is given by

x(det(x)) = (sgn(det(x)))"|det(z)]"
(e =0,1,t € R) and it is unramified provided that
x(det(g)) = x(£1) = (£1)° =1, for all g € SL¥(R).
This implies € = 0 and any unramified character of GLo(R) has the form

(3) x(x) = |det(x)|™, for some t € R.
Similarly, any unramified character of GL;(R) = R* has the form
(4) £(x) = |z|, for some t € R.

Given a block diagonal matrix diag(gi,...,gq,w1,....,wr) € M, where g; €
GL2(R) and w; € GL1(R), we conclude from (3) and (4) that any unrami-
fied character x € X (M) is given by

X(dlag(glv ey 9q, W1, "'7("')7“)) =

= |det(g0)["" - |det(gq) |  wr [ o[t
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for some (t1,...,t44r) € R7T". We can denote such element x € X (M) by
X(t1,....tg1r)- We have the following result.

Proposition 2.2. Let M be a Levi subgroup of GL,(R), associated to the
partition n = 2q + r. Then, there is a bijection

X(M) — Rq-‘r’" B X(tl-,-~~7tq+r) — (tl, "'7tq+7“)-

Let us consider now GL,,(C). The tempered dual of GL,,(C) comprises the
unitary principal series in accordance with Harish-Chandra [9]. The corre-
sponding Levi subgroup is a maximal torus T' = (C*)™. Denote by U the
standard unipotent subgroup of GL,,(C). The principal series representations
are given by

(5) Te,it = ig,Tu(0 ® 1),

where 0=01 ® ... ® 0, and 0;(z) = (T;I)ngf (¢; € Z and t; € R), with
|zlc = 2z = |2|? [10, p.405].

An unramified character is given by
2z
X = 21|87 X o X |z |8
Zn
and we can represent x as X(i,,....t,)- Lherefore, we have the following result.

Proposition 2.3. Denote by T the standard mazimal torus in GL,(C). There
s a bijection
X(T) — Rn B X(tla'“ytn) — (tl’ "'7t7l)'
The Weyl group W is the symmetric group S, and acts on R™ by permuting
the components.

3. K-THEORY FOR GL,

Using the Harish-Chandra parametrization of the tempered dual of GL,,(R)
and GL, (C) (recall that the Harish-Chandra parameter space is a locally com-
pact, Hausdorff topological space) we can compute the K-theory of the reduced
C*-algebras C*GL,(R) and C}GL,(C).

3.1. K-theory for GL,(R). We exploit the strong Morita equivalence de-
scribed in [15, §1.2 ]. We note in passing that, in the proof of this strong
Morita equivalence, the following ingredient is crucial: each tempered rep-
resentation of GL,(R), i.e. each unitary representation of GL,(R) which is
unitarily induced via parabolic induction from a discrete series representation
of a Levi subgroup is irreducible, see [10, p.401]. We infer that
Kj(CIGLa(R)) = K7 (U(ar,0) X (M)/Wo (M))
(6) = @) K (X (M)W, (M)
= Do) K (R /Wo(M)),
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where nyr = ¢ + r if M is a representative of the equivalence class of Levi
subgroup associated to the partition n = 2¢ + r. Hence the K-theory depends
on n and on each Levi subgroup.

For a given Levi subgroup M and a discrete series o of °M, the isotropy
subgroup W, is a subgroup of the Weyl group W (M), which is in turn a
subgroup of the symmetric group S,. The isotropy subgroup has the form
Sny X ... X Sy, and acts on R™ by permuting the components. Write

R"=R™ x R™ x ... x R™ x R?™™M 77"k,

If n =n1 + ... + n; then we simply have R™ =2 R™ x ... x R",

The group Sy, X ... x Sy, acts on R" as follows.
S, permutes the components of R"! leaving the remaining fixed;
S, permutes the components of R"”? leaving the remaining fixed;
and so on. If n > ny + ... + ng the components of R"~"17 " remain fixed.
This can be interpreted, of course, as the action of the trivial subgroup. As a
consequence, one identifies the orbit spaces

R™/(Sp, X oo X Sy ) ER™/S, x o x R™ /S, x RPNk
To compute the K-theory (6) we have to consider the following orbit spaces:
(i) R™, in which case W, (M) is the trivial subgroup of the Weyl group
W(M);
(if) R™/(Sp, X ... X Sy,.), where W,(M) = Sp, X ... x Sy, C W(M) (see
the examples below).
The K-theory for R™ may be summarized as follows

; Zifn=j mod 2
J(R™) —
K/ (R") = { 0 otherwise .
Lemma 3.2. Forn > 1, K/(R"/S,)=0,j=0,1.

Proof. We consider the action of the symmetric group W = S,, on R". The
subspace
{t(1,...,1): t e R}

is fixed by W and the orthogonal subspace

t:={(x1,...,2n) 21+ ... + 2, =0}
is W-invariant. It follows that R™/S,, ~ R x t/W. The action of W on t
is precisely the action of W on the Lie algebra t of the standard maximal
torus T of the Lie group SL,(R). The closure C' of a chamber C' C t is a
fundamental domain for the action of W, see [5, Ch.5, §3]. The quotient t/W
is homeomeorphic to C. Then we have

R"/W ~R x C
Now C is a closed simplicial cone with vertex at the origin of R™. It has the
topological type of a half-space in Euclidean space. Hence the K-theory of C

is trivial. The Lemma follows immediately from the Kiinneth theorem applied
to R x C. O
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Lemma 3.3. K7(R"/(Sy, X ... X Sp,) = 0,5 = 0,1, where S, X ... X Sp, C Sp,
unless ny = ... =ny = 1.

Proof. Tt suffices to prove for R"/(S,, x Sy,). The general case follows by
induction on k.

Now, R"/(Sn, X Sp,) & R™/S,, x R""™/S, . Applying the Kiinneth
formula and Lemma 3.2, the result follows. ]

We give now some examples by computing K;C*GL,,(R) for small n.
Example 3.4. We start with the case of GL;(R). We have:
M=R* ,"M=27/2Z , W(M)=1and X(M) =R.
Hence,
(7) AlR)= || R/I=RUR,
o€(Z/22)
and the K-theory is given by

K;C:GL(R) = K/ (A (R)) = K/ (RUR) = K/ (R)DK? (R) = { o i=o.

Example 3.5. For GLo(R) we have two partitions of n = 2 and the following
data

Partition M M W(M) | X(M) | o€ Ey("M)
2-+0 GL2(R) | SL; (R) 1 R |o=D/,leN
141 (R*)2 | (2/2Z2)? | Z)2Z R? |o=71®mn

with 7; € Z/ﬁ ~ {id, sgn}. Then the tempered dual is parametrized as
follows

ALR) = | | X (M)W, = (| |R)u(R?/Sz) L (R?/S5) UR?,

(M,o) LeN

and the K-theory groups are given by

O* J( At o~ J 72 — @eeNZ =1
K;CrGLy(R) = K7(AL(R)) = 26621( @K(R)_{ A

The general case of GL,,(R) will now be considered. It can be split in two
cases: n even and n odd.

e n =2m even
Suppose n is even. For every partition n = 2¢ + r, either W, (M) = 1 or
W,(M) # 1. It W, (M) # 1 then R™™ /W, (M) is an orbit space for which
the K-groups K° and K' both vanish. This happens precisely when r > 2
because there are exactly two distinct discrete series representations of Z/2Z
and therefore we have only two partitions, corresponding to the choices of r = 0
and r = 2, which contribute to the K-theory with non-zero K-groups
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Partition M M W (M)
2m GLy(R)™ SL; (R)™ S
2(m —1) 42 | GLy(R)™ 1 x (R*)? | SLE(R)™ ' x (Z/2Z)? | Sp_1 x (Z/2Z)

We also have X(M) = R™ for n = 2m, and X(M) = R™*! for n =
2(m—1)+2.

For the partition n = 2m (r = 0), an element o € Eo(°M) is given by

0=Dy, ®..0Dy,, ,l1>...>ly, {; e N".

For the partition n = 2(m — 1) +2 (r = 2), an element o € E5(°M) is given

by
0=Dy ®..0Dy,, , @idR@sgn,ly>..>ly_1,; € N7
Therefore, the tempered dual has the following form
ALR) = A5, ®R) = (| ] RMuUuC || R™hHue,
0> >l 0>..>0

m—1

with K,»,E;- € N and where C is a disjoint union of orbit spaces as in section
3. Note that the strictly decreasing condition is required in order to pick only
one discrete series from each Weyl group orbit.

Theorem 3.6. Suppose n = 2m is even. Then the K-groups are

EB€1>...>em Z ,7 =m(mod 2)
7 , otherwise

K,;CrGL,(R) = {

01>...>0m 1
with £; € N. If m =1 then K;C;GLy(R) = Z.
en=2¢+ 1 odd

If n is odd only one partition contributes to the K-theory of GL, (R) with
non-zero K-groups:

Partition M M W(M) | X(M)
2¢+1 | GLy(R)TF xR | SLE(R) x (Z)2Z) | S, | ReT!

An element o € FE2(°M) is given by

O':Dgl®...®'D[q®T,€1 >...>fq,fi€N,T€Z/-2\Z.
And the tempered dual is
ALR) = A R) = (| ] RTHue

€1>...>€q,€
with ¢; € N and e € Z/2Z. The space C is a disjoint union of orbit spaces as
in section 3.

Miinster Journal of Mathematics VoL. — (—), 999-999



1008 SERGIO MENDES AND ROGER PLYMEN

Theorem 3.7. Suppose n = 2q+ 1 is odd. Then the K-groups are

@e1>...>zq,a Z ,j=q+ 1(mod2)

KjC:GLn(R) = { 0 otherwise

with £; € N and € € Z/2Z. Here, we use the following convention: if ¢ = 0
then the direct sum is @y /97 2 = L & L.

We conclude that the K-theory of C}GL,(R) depends on essentially one

parameter ¢ = | 5] which gives the maximum number of 2’s in the partitions

of n into 1’s and 2’s.

3.8. K-theory for GL,(C). Let °T be the maximal compact subgroup of the
maximal torus T' of GL,,(C). Let ¢ be a unitary character of °T. We note
that W = W(T), W, = W,(T). If W, = 1 then we say that the orbit W - ¢
is generic.

Theorem 3.9. The K-theory of C*GL,(C) admits the following description.
Ifn =3 mod 2 then Kj is free abelian on countably many generators, one for
each generic W- orbit in the unitary dual of °T, and K;41 = 0.

Proof. We exploit the strong Morita equivalence described in [14, Prop. 4.1].
We have a homeomorphism of locally compact Hausdorff spaces:

AL(C) = | | X(T)/ W, (T)
]

by the Harish-Chandra Plancherel Theorem for complex reductive groups [9],
and the identification of the Jacobson topology on the left-hand-side with the
natural topology on the right-hand-side, as in [14] . The result now follows
from Lemma 3.2. O

Remark 3.10. Note that [o] = [T, 0] is labeled by ¢ > ... > £,,, with ¢; € Z.
Moreover, W, (T) is trivial if and only if ¢; > ... > £,,.

4. LANGLANDS PARAMETERS FOR GL,,

The Weil group of C is simply

We = C*,
and the Weil group of R can be written as disjoint union
Wr = C* U C*,
where j2 = —1 and jcj~! = ¢ (¢ denotes complex conjugation). We shall use

this disjoint union to describe the representation theory of Wx.
An L-parameter is a continuous homomorphism

¢ : Wp — GL,(C)

such that ¢(w) is semisimple for all w € Wg.
L-parameters are also called Langlands parameters. Two L-parameters are
equivalent if they are conjugate under GL,,(C). The set of equivalence classes of
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L-parameters is denoted by G,. The set of equivalence classes of L-parameters
whose image is bounded is denoted by G.

Let F be either R or C. Let A, (F) (resp. AL (F)) denote the smooth dual
(resp. tempered dual) of GL,(F). The local Langlands correspondence is a
bijection

Gn(F) = Ap(F).
When we restrict to bounded parameters, we obtain a bijection which we will
denote pL,:

(8) FLy 2 G (F) = AL(F)

L-parameters for W¢. A 1-dimensional L-parameter for W¢ is a character
of C*:

z
Xe(2) = () @ Jzle
k1

where |2]? = |z|c = 2%, £ € Z and t € C. The unitary characters are therefore
given by

Xe.it (Teia) _ T2itei56
witht € Rand ¢ € Z.

L-parameters for Wk. The 1-dimensional L-parameters for Wy are as
follows

(+,1)(z) = |2k and (+,8)(j) =1

(= t)(2) = |2z and (+,8)(j) = -1
We may now describe the local Langlands correspondence for GL(1,R):

(+t) =10k
(—t) = sgn® ||g

The Weil group Wr admits 2-dimensional irreducible representations, de-
noted @y with £ € Z,¢ # 0, and ¢t € R. They are defined in [10, (3.3)]:

= (47 e ) 0= (1),

We will need one crucial property, namely

9) Potlwe = Xt D X—t
and the single equivalence
Pet =Pt

The L-parameter ¢y, corresponds, via the Langlands correspondence, to
the discrete series:

@rit > D@ |det()|§ , with £€N,t€R.
according to (3.4) in [10].
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Lemma 4.1. [10] Every finite-dimensional semi-simple representation ¢ of
Wr is fully reducible, and each irreducible representation has dimension one
or two.

5. BASE CHANGE

We may state the base change problem for archimedean fields in the follow-
ing way. Consider the archimedean base change C/R. We have W C Wx and
there is a natural map

(10) Resyt : Gu(R) — G, (C)

called restriction. By the local Langlands correspondence for archimedean
fields [3, Theorem 3.1, p.236][10], there is a base change map

(11) BC: A,(R) — A,(C)
such that the following diagram commutes

An(R) 55 4,,(C)

rLn T T(Ccn

Wgr
ResWC

Arthur and Clozel’s book [1] gives a full treatment of base change for GL,,.
The case of archimedean base change can be captured in an elegant formula
[1, p. 71]. We briefly review these results.

Given a partition n = 2¢ + 7 let x; (i = 1,...,¢) be a ramified character
of C* and let &; (j = 1,...,7) be a ramified character of R*. Since the x;’s
are ramified, x;(z) # x7(z) = xi(%Z), where 7 is a generator of Gal(C/R). By
Langlands classification [10], each x; defines a discrete series representation
m(x:) of GLao(R), with m(x;) = m(x]). Denote by m(x1,..., Xq,&1,-.-,&r) the
generalized principal series representation of GL,(R)

(12) 7(X15 s Xqs €15 -+ &r) = L, R),MN (T(X1) ©.. O T (Xq) &1 ©... ®& @ 1).

The base change map for the generalized principal series representation is given
by induction from the Borel subgroup B(C) [1, p. 71]:

(13> BC(T‘—) = iGLn(C),B(C)(Xla X71—7 cos X X7q—>£1 © N> "'767‘ © N)7

where N = Ng/g : C* — R* is the norm map defined by 2z + 2Z.
We illustrate the base change map with two simple examples.

Example 5.1. For n = 1, base change is simply composition with the norm
map

BC: AL (R) — AL (C) , BC(x) = x o N.

Example 5.2. For n = 2, there are two different kinds of representations, one
for each partition of 2. According to (12), w(x) corresponds to the partition
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2 =240 and 7(&, &) corresponds to the partition 2 = 1+ 1. Then the base
change map is given, respectively, by

BC(m(x)) = icL,c),Bc) (X6 XT),
and
BC(m(£1,€2)) = iaLy(c),B(c)(§10 N, & 0 N).

5.3. The base change map. Now, we define base change as a map of topolog-
ical spaces and study the induced K-theory map. A continuousmap f: X — Y
between topological spaces is proper if f~!(K) is a compact subset of X for
every compact subset K of Y. If f is a proper map between locally com-
pact Hausdorff spaces then f is continuous at infinity, see [13, Prop. 2.6.4].
So proper maps are morphisms in the category of locally compact Hausdorff
spaces, see [13, Prop. 2.6.6].

Proposition 5.4. The base change map BC : AL (R) — AL (C) is a continuous
proper map.

Proof. First, we consider the case n = 1. As we have seen in Example 5.1,
base change for GL(1) is the map given by BC(x) = x o N, for all characters
x € AY(R), where N : C* — R* is the norm map.

Let z € C*. We have

(14) BC(x)(2) = x(|2[*) = [2*".
A generic element from A} (C) has the form

< i
(15) p(z) = () 21"

2|
where / € Z and t € R, as stated before. Viewing the Pontryagin duals
Al (R) and A} (C) as topological spaces by forgetting the group structure, and
comparing (14) and (15), the base change map can be defined as the following
continuous map

o AU(R) 2R x (Z/)22) — AU (C)XRXZ
x = (t,¢) — (2t,0)

A compact subset of R x Z in the connected component {¢} of Z has the form
K x {{} C R x Z, where K C R is compact. We have

P (K x {f})Z{ ?KX (e} %ig

where ¢ € Z/2Z. Therefore ¢~ !(K x {(}) is compact and ¢ is proper.

The Case n > 1. Base change determines a map BC : A% (R) — AL (C)
of topological spaces. Let X = X(M)/W,(M) be a connected component
of A!(R). Then, X is mapped under BC into a connected component ¥ =
Y (T) /Wy (T) of AL (C). Given a generalized principal series representation

’/T(le "'7an£17 "'757‘)
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where the x;’s are ramified characters of C* and the &’s are ramified characters
of R*, then

BC(,]T) = iG,B(le XI) e Xgo X‘Iq—agl © Na "'agr o N)

Here, N = Ng/g is the norm map and 7 is the generator of Gal(C/R).
We associate to 7 the usual parameters uniquely defined for each character
x and £. For simplicity, we write the set of parameters as a (g + r)-uple:

(t, ') = (t1, .oy tg, 1, oy ) € RITT 2 X (M),

Now, if m(x1,.-, Xg:&15 -+, &) lies in the connected component defined by
the fixed parameters (¢,¢) € Z% x (Z/2Z)", then

(t,t') € X(M) — (t,t,2t") € Y(T)

is a continuous proper map.
It follows that

BC: X(M)/W,(M) —=Y(T)/Wy (T)
is continuous and proper since the orbit spaces are endowed with the quotient
topology. O

Theorem 5.5. The functorial map induced by base change

K, (C1GL,(0) "5 K, (C1 LA (R))
is zero forn > 1.

Proof. We start with the case n > 2. Let n = 2q 4+ r be a partition and M
the associated Levi subgroup of GL,(R). Denote by Xg(M) the unramified
characters of M. As we have seen, Xg(M) is parametrized by R?t". On the
other hand, the only Levi subgroup of GL,(C) for n = 2q + r is the diagonal
subgroup X¢ (M) = (C*)2a+r,

If ¢ = 0 then » = n and both Xg(M) and X¢(M) are parametrized by R”™.
But then in the real case an element o € Eo(°M) is given by

o=igL, ®),P(X1 ® .. ® Xn),

with y; € Z/Z\Z Since n > 3 there is always repetition of the x;’s. It follows
that the isotropy subgroups W, (M) are all nontrivial and the spaces R™/W,,
are orbit spaces for which the K-theory groups vanish, see Lemma 3.3.

If ¢ # 0, then Xg(M) is parametrized by R9™" and X¢ (M) is parametrized
by R2¢*" (see Propositions 2.2 and 2.3).

Base change creates a map

RITT — R2a+7
Composing with the stereographic projections we obtain a map

SatT , S2q+r
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between spheres. Any such map is nullhomotopic [4, Proposition 17.9]. There-
fore, the induced K-theory map

Kj(52q+r) N Kj(5q+r)

is the zero map.

The Case n = 2. For n = 2 there are two Levi subgroups of GL2(R),
M; = GLy(R) and the diagonal subgroup My = (R*)2. By Proposition 2.2
X (M) is parametrized by R and X (My) is parametrized by R?. The maximal
torus T of GLy(C) is the diagonal subgroup (C*)2. From Proposition 2.3 we
have X (T) = R?.

Since K*(AL(C)) = 0 by Theorem 5.1, we only have to consider the K°
functor. The only contribution to K°(A5(R)) comes from My = (R*)? and we
have (see Example 3.5)

K°(A3(R)) = Z.
For the Levi subgroup M, =2 (R*)?, base change is

BC: ALR) —s AL(C)
m(&1,82) = dan,©),B@) (10N, {0 N),

Therefore, it maps a class [t1,2], which lies in the connected component
(e1,€2), into the class [2¢1,2¢s], which lies in the connect component (0,0).
In other words, base change maps a generalized principal series m(£1, &) into
a component of A%(C) whose discrete factor is a nongeneric orbit. It follows
from Theorem 3.9 that

K°(BC) : K°(A3(R)) — K°(A5(C))
is the zero map. (I

5.6. Base change in one dimension. In this section we consider base change
for GL;.

Theorem 5.7. The functorial map induced by base change

Ky (CrGLy (@) "B K (CraL, (R))

is given by K1(BC) = Ao Pr, where Pr is the projection of the zero component
of K*(AY(C)) into Z and A is the diagonal Z — 7 & Z.

Proof. For GL1, base change
X € A1(R) = x o Ne/g € Af(C)

induces a map

K'(BC) : K'(A7(C)) — K' (AL (R)).
Any character x € A{(R) is uniquely determined by a pair of parameters
(t,e) € R x Z/27. Similarly, any character p € A} (C) is uniquely determined
by a pair of parameters (¢,£) € R x Z. The discrete parameter £ (resp., £)
labels each connected component of A} (R) = RUR (resp., A% (C) = ||, R).
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Base change maps each component ¢ of A!(R) into the component 0 of
Al (C), sending t € R to 2t € R. The map ¢ + 2t is homotopic to the identity.
At the level of K, the base change map is given by K;(BC) = A o Pr, where
Pr is the projection of the zero component of K*(A%(C)) into Z and A is the
diagonal Z — Z @ 7.

O

6. AUTOMORPHIC INDUCTION

We begin this section by describing the action of Gal(C/R) on We = Cx.
Take x = x¢¢ € C* and let 7 denote the nontrivial element of Gal(C/R).
Then, Gal(C/R) acts on C* as follows:

X (2) = x(3).
Hence,
Xia(2) = ()2l = ()42

|2 ||
and we conclude that
Xi,(2) = X—e,t(2).

In particular,

XT:x@€:O@X:|.|g

i.e, x is unramified.

Note that W C Wk, with index [Wg : W] = 2. Therefore, there is a
natural induction map

Indes : G1(C) — GA(R).

By the local Langlands correspondence for archimedean fields [3, 10], there
exists an automorphic induction map AZ¢ /g such that the following diagram
commutes

AL(C) 5 AL(R)

CLIT TK[Q

HO) g m BB

Proposition 6.1. If { # 0 then we have

Indc/r(Xe,t) >~ Inde/r(X—e,t) > et
If £ =0 then we have

Inde /e (x0,0) = (+,2t) ® (=, 2t)
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Proof. 1t is enough to use Frobenius reciprocity. We start with ¢ # 0, and
apply (9):
< Indc/r(Xet), e > =< X, Rescr(pe) >
=< Xt,t, Xe,t D X—t,t >
=1

< Indc/r(X-t.1t), Pe.t > =< Xt Resc/r(pe) >
=< X—t,ts Xt D X—r,t >
=1

< IndC/R(XO,t)v (—|—, 2f) > =< Xo,t, RESC/R(—F, Qt) >

=< Xo,t> X0,t >
=1

< Indg/r(Xo,t), (=, 2t) > =< Xo0,t, Resc/r(—, 2t) >
=< Xo,t, X0,t >
=1
[l

6.2. The automorphic induction map. In the case of GLg,(R) we will
have to consider the discrete series representations

Dy ® | det()|"™ @ -+ @ Dy, | @ | det(.) [

on the Levi subgroup M = GL3(R) x -+ x GLa(R) € GLg,(R). Let P =
M N be the corresponding parabolic subgroup, and, using a classical notation,
denote by

Doy @ | det()]™ x -+ x Dy, | @ | det(.) [

the corresponding irreducible tempered representations of GLg,(R) obtained
via parabolic induction.
In the same notation, denote by

Xe1,ity X 00 X X, ity

the irreducible tempered representation of GL,(C) coming via parabolic in-
duction from the the unitary character x¢, i, ® -+ ® X¢,,.it,, on the standard
maximal torus of GL,,(C).

Define m(|¢;|,t;) as follows:

(16) F(‘fﬂ,tj):D‘Zj‘®|det|itj if fj 750
17 =1® |det|*" x sgn @ | det [** if £, =0
J
Consider now the locally compact Hausdorff space

E(t1], ..., [ln]) == {x(|tr],t1) x - x 7(|lp],tn) : t1,. .., tn € R}
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which is a subspace of the tempered dual of GLs, (R), and the locally compact
Hausdorff space
&(61, . ,fn) = {X€1,it1 X X X0, ity * tl, e 7tn c R}

which is a subspace of the tempered dual of GL,,(C).

Then the automorphic induction map AZ,, maps the space §(¢1,...,%,)
bijectively onto the space €(|¢1],...,|¢,]) via the natural identification of the
coordinates t1,...,ty,:

AT, §(l, ) = E(J0], ... [0n])
We have the functorial K-theory map

(18) K;(AZ,) : K7 (€(Jt1], ..., |ln]) = K7 (F(i1, ... ,in))
whenever i1 = £04,...,4, = x{,.

Suppose first that the ¢; are all distinct, with none of them 0. Then
E(|t1],...,|¢n]) and §(¢y,...,4,) are n-dimensional Euclidean spaces. In the
isomorphism (18), a generator for the left-hand-side, denoted §(¢1, ..., ¢,), will
correspond to a generator for the right-hand-side, denoted (i1, ..., ;).

The image of the generator (€1, ..., ¢, ) under K;(AZ,) has 2" components,
which lie in the K-theory groups K7 (F(i1,...,in)) with iy = 01,... .4, =
+/,,. The component in K7 (F(iy,...,i,)) is (i1, . .., in). This is automorphic
induction at the level of K-theory.

Now we re-consider the space §(¢1,...,¢,). If two or more of the ¢; are
equal, then §(¢1,...,£,) is the Cartesian product of locally compact Hausdorff
spaces, each of which is either a symmetric product of real lines, or a Euclidean
space. Then we have K7 (§(¢y,...,£,) = 0 for j = 0,1 by Lemma (3.2) and
the Kiinneth theorem [13, 3.3.15]. So the map in (18) is the zero map.

This leaves one case to be considered, namely when some of the ¢; are equal
to 0. We start with the case when one of the ¢; is 0, say ¢; = 0. Define

X(00,...,0,]) :
= {1 ®|det |**1 x sgn @ | det |*" x -+« x w(|€n],tn) : S1,t1,...,tn € R}
We then have an injective map
AZ,, : §(0,...,6,) = X(0,...,|¢,])

The dimensions of these two Euclidean spaces are n and n + 1. The parity
difference implies that the induced K-theory map is the zero map.

If several of the ¢; are equal to 0, say £; = 0 for 1 < j < k, then we will
correspondingly have an injective map

AT, 30, .0, .. 0y) = X(0,...,0,.... 1))

where X(0,...,0,...|¢,|) denotes a space modelled on X(0,...,[¢,|) but in-
cluding the term

1@ |det [**1 x sgn @ |det |*™ x --- x 1 ® | det |*** x sgn @ | det [**
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The space X(0,...,0,...,[¢,]) will be a Cartesian product of locally compact
Hausdorff spaces, each of which is either a symmetric product of real lines, or
a Euclidean space. Such spaces are trivial in K-theory.

This leads to our final result. Let K;(.AZ,,) denote the functorial K-theory
map induced by automorphic induction.

Theorem 6.3. Consider the functorial map induced by automorphic induction

K;(C*GLan(R)) 5 k(0 GL,(C)).

Suppose that n = j mod 2, and let 0 < {1 < --- < £,. The KI-generator
0(ly,...,Ly,) is determined by the discrete series representations Dy, ..., Dy, .

n

The image of this generator under K;(AZ,) has 2™ components, which lie
in the K-theory groups K7(g(i1,...,in)) with iy = +ly,... i, = *+£,. The
component in KI(F(iy,...,in)) is €(it, ... in).

7. K-CYCLE

The standard maximal compact subgroup of GL;(C) is the circle group
U(1), and the maximal compact subgroup of GL;(R) is Z/2Z. Base change
for K creates a map

R(U(1)) — R(Z/2Z)
where R(U(1)) is the representation ring of the circle group U(1) and R(Z/27Z)
is the representation ring of the group Z/27. This map sends the trivial char-
acter of U(1) to 1 ® e, where € is the nontrivial character of Z/27Z, and sends
all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The real line R is a
universal example for the action of C* and R*. The K-cycle

(19) (Co(R), L*(R), id/dzx)

is equivariant with respect to C* and R*. The actions are
C*xR—=R, (z,y)—loglz|+y
R*xR—=R, (z,y)+—logl|z|+y

The K-cycle (19) therefore determines a class Jc € KT (EC*) and a class
Jr € K¥*(ER*). On the left-hand-side of the Baum-Connes correspondence,
base change in dimension 1 admits the following description in terms of Dirac
operators:

P = (I, Pr)

It would be interesting to interpret the automorphic induction map at the
level of equivariant K-theory:
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