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Functoriality and K-theory for GLn(R)

Sergio Mendes and Roger Plymen

Abstract. We investigate base change and automorphic induction C/R at the level of K-

theory for the general linear group GLn(R). In the course of this study, we compute in

detail the C∗-algebra K-theory of this disconnected group. This article is the archimedean
companion of our previous article [12].

1. Introduction

In the general theory of automorphic forms, an important role is played
by base change and automorphic induction, two examples of the principle of
functoriality in the Langlands program [3]. Base change and automorphic
induction have a global aspect and a local aspect [1]. In this article, we focus
on the archimedean case of base change and automorphic induction for the
general linear group GLn(R), and we investigate these aspects of functoriality
at the level of K-theory.

For GLn(R) and GLn(C) we have the Langlands classification and the as-
sociated L-parameters [10]. We recall that the domain of an L-parameter of
GLn(F ) over an archimedean field F is the Weil group WF . The Weil groups
are given by

WC = C×

and

WR = 〈j〉C×

where j2 = −1 ∈ C×, jc = cj for all c ∈ C×. Base change is defined by
restriction of L-parameter from WR to WC.

An L-parameter φ is tempered if φ(WF ) is bounded. Base change therefore
determines a map of tempered duals.

Let X,Y be locally compact Hausdorff spaces, let X+, Y + be their one-
point compactifications. A map f : X → Y is continuous at infinity if it is the
restriction of a continuous map from X+ to Y +. The K-theory groups K0 and
K1 are contravariant functors from the category of locally compact Hausdorff
spaces whose morphisms are maps continuous at infinity to the category of
abelian groups, see [13, Prop. 2.6.10]. Now the tempered dual of GLn(F )
with F = R or C is a locally compact Hausdorff space. It seems natural
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to fuse together the Langlands functoriality which occurs in base change and
automorphic induction with the K-theory functoriality. In this article, we
accordingly study base change and automorphic induction at the level of K-
theory.

We outline here the connection with the Baum-Connes correspondence. Let
F denote R or C and let G = G(F ) = GLn(F ). Let C∗r (G) denote the reduced
C∗-algebra of G. The Baum-Connes correspondence is a canonical isomor-
phism [2][6][11]

µF : K
G(F )
∗ (EG(F ))→ K∗C

∗
r (G(F ))

where EG(F ) is a universal example for proper actions of G(F ).
The noncommutative space C∗r (G(F )) is strongly Morita equivalent to the

commutative C∗-algebra C0(Atn(F )) where Atn(F ) denotes the tempered dual
of G(F ), see [15, §1.2][14]. As a consequence of this, we have

K∗C
∗
r (G(F )) ∼= K∗Atn(F ).

This leads to the following formulation of the Baum-Connes correspondence:

K
G(F )
∗ (EG(F )) ∼= K∗Atn(F ).

Base change and automorphic induction C/R determine maps

BCC/R : Atn(R)→ Atn(C)

and
AIC/R : Atn(C)→ At2n(R).

This leads to the following diagrams

K
G(C)
∗ (EG(C))

µC−−−−→ K∗Atn(C))y yBC∗C/R
K
G(R)
∗ (EG(R)) −−−−→

µR
K∗Atn(R).

and
K
G(R)
∗ (EG(R))

µR−−−−→ K∗At2n(R))y yAI∗C/R
K
G(C)
∗ (EG(C)) −−−−→

µC
K∗Atn(C).

where the left-hand vertical maps are the unique maps which make the dia-
grams commutative.

In section 2 we describe the tempered dual Atn(F ) as a locally compact
Hausdorff space.

In section 3 we compute theK-theory for the reduced C∗-algebra of GLn(R).
The real reductive Lie group GLn(R) is not connected. If n is even our formulas
show that we always have non-trivial K0 and K1. We also recall the K-theory
for the reduced C∗-algebra of the complex reductive group GLn(C), see [14]. In
section 4 we recall the Langlands parameters for GLn over archimedean local
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fields, see [10]. In section 5 we compute the base change map BC : Atn(R) →
Atn(C) and prove that BC is a continuous proper map. At the level of K-
theory, base change is the zero map for n > 1 (Theorem 5.5) and is nontrivial
for n = 1 (Theorem 5.7). In section 6, we compute the automorphic induction
map AI : Atn(C)→ At2n(R). Contrary to base change, at the level of K-theory,
automorphic induction is nontrivial for every n (Theorem 6.3). In section 7,
where we study the case n = 1, base change for K1 creates a map

R(U(1)) −→ R(Z/2Z)

where R(U(1)) is the representation ring of the circle group U(1) and R(Z/2Z)
is the representation ring of the group Z/2Z. This map sends the trivial char-
acter of U(1) to 1⊕ ε, where ε is the nontrivial character of Z/2Z, and sends
all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The K-cycle

(C0(R), L2(R), id/dx)

is equivariant with respect to C× and R×, and therefore determines a class

/∂C ∈ KC×
1 (EC×) and a class /∂R ∈ KR×

1 (ER×). On the left-hand-side of the
Baum-Connes correspondence, base change in dimension 1 admits the following
description in terms of Dirac operators:

/∂C 7→ (/∂R, /∂R)

This extends the results of [12] to archimedean fields.

We have, according to the Connes-Kasparov correspondence, the following
isomorphism:

K∗ C
∗
r (GLn(R)) ' K∗O(n)(R

n)

the equivariant K-theory of Rn with respect to the standard action of the
orthogonal group O(n). This isomorphism opens the way to computing the
K-theory of C∗r (GLn(R)) via equivariant K-theory: this program is carried
out in the paper by Echterhoff and Pfante [8]. Our method of computing the
K-theory of C∗r (GLn(R)) is quite different, as we have to keep track of the
Langlands parameters.

After our article was posted on the arXiv, Chao and Wang sent us their
article [7]. Their work and ours was done independently. There is some overlap,
but we would like to describe the main differences. Their account of base
change is different, as they place an emphasis on Galois-fixed points. In the
context of the Connes-Kasparov isomorphism, they succeed in securing base
change on maximal compact subgroups [7, §7.2]. On the other hand, their
work does not include automorphic induction.

We thank Paul Baum for a valuable exchange of emails. We also thank the
referee for providing us with many detailed and constructive comments.
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2. On the tempered dual of GLn

Let F = R. In order to compute the K-theory of the reduced C∗-algebra
of GLn(F ) we need to parametrize the tempered dual Atn(F ) of GLn(F ). Our
key reference for the representation theory of GLn(R) is Knapp [10].

Let M be a standard Levi subgroup of GLn(F ), i.e. a block-diagonal sub-
group. Let 0M be the subgroup of M such that the determinant of each

block-diagonal is ±1. Denote by X(M) = M̂/0M the group of unramified
characters of M , consisting of those characters which are trivial on 0M .

Let W (M) = N(M)/M denote the Weyl group of M . W (M) acts on the
discrete series E2(0M) of 0M by permutations.

Now, choose one element σ ∈ E2(0M) for each W (M)-orbit. The isotropy
subgroup of σ is defined to be

Wσ(M) = {ω ∈W (M) : ω.σ = σ}.

Take one standard Levi subgroup M from each conjugacy class of Levi sub-
groups and one discrete series σ from each W (M)-orbit and form the disjoint
union

(1)
⊔

[M,σ]

X(M)/Wσ(M) =
⊔
[M ]

⊔
[σ]∈E2(0M)

X(M)/Wσ(M).

The disjoint union has the structure of a locally compact, Hausdorff space and
is called the Harish-Chandra parameter space.

Proposition 2.1. There exists a bijection⊔
[M,σ]X(M)/Wσ(M) −→ Atn(R)

χσ 7→ iGLn(R),MN (χσ ⊗ 1),

where χσ(x) := χ(x)σ(x) for all x ∈M .

In view of the above bijection [15, 1.2], we will denote the Harish-Chandra
parameter space by Atn(R).

We will see now the particular features of the archimedean case, starting
with GLn(R). Since the discrete series of GLn(R) is empty for n ≥ 3, we only
need to consider partitions of n into 1’s and 2’s.

This allows us to to decompose n as n = 2q+r, where q is the number of 2’s
and r is the number of 1’s in the partition. To this decomposition we associate
the partition

n = (2, ..., 2︸ ︷︷ ︸
q

, 1, ..., 1︸ ︷︷ ︸
r

),

which corresponds to the Levi subgroup

M ∼= GL2(R)× ...×GL2(R)︸ ︷︷ ︸
q

×GL1(R)× ...×GL1(R)︸ ︷︷ ︸
r

.
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Varying q and r we determine a representative in each equivalence class of
Levi subgroups. The subgroup 0M of M is given by

0M ∼= SL±2 (R)× ...× SL±2 (R)︸ ︷︷ ︸
q

×SL±1 (R)× ...× SL±1 (R)︸ ︷︷ ︸
r

,

where
SL±m(R) = {g ∈ GLm(R) : |det(g)| = 1}.

In particular, SL±1 (R) = {±1} ∼= Z/2Z.
The representations in the discrete series of SL±2 (R), denoted D` for ` ∈ N

(` ≥ 1) are induced from SL2(R) [10, p.399]:

D` = iSL±2 (R),SL2(R)(D
+
` ),

where D+
` acts in the space

{f : H → C|f analytic , ‖f‖2 =

∫ ∫
|f(z)|2y`−1dxdy <∞}.

Here, H denotes the Poincaré upper half plane. The action of g =

(
a b
c d

)
is given by

D+
` (g)(f(z)) = (bz + d)−(`+1)f(

az + c

bz + d
).

More generally, an element σ from the discrete series E2(0M) is given by

(2) σ=D`1 ⊗ ...⊗D`q ⊗ τ1 ⊗ ...⊗ τr,

where D`i (`i ≥ 1) are discrete series representations of SL±2 (R) and τj is a

representation of SL±1 (R) ∼= Z/2Z, i.e. id = (x 7→ x) or sgn = (x 7→ x
|x| ).

Finally we will compute the unramified characters X(M), where M is the
Levi subgroup associated to the partition n = 2q + r.

Let x ∈ GL2(R). Any character of GL2(R) is given by

χ(det(x)) = (sgn(det(x)))ε|det(x)|it

(ε = 0, 1, t ∈ R) and it is unramified provided that

χ(det(g)) = χ(±1) = (±1)ε = 1, for all g ∈ SL±2 (R).

This implies ε = 0 and any unramified character of GL2(R) has the form

(3) χ(x) = |det(x)|it, for some t ∈ R.
Similarly, any unramified character of GL1(R) = R× has the form

(4) ξ(x) = |x|it, for some t ∈ R.
Given a block diagonal matrix diag(g1, ..., gq, ω1, ..., ωr) ∈ M , where gi ∈
GL2(R) and ωj ∈ GL1(R), we conclude from (3) and (4) that any unrami-
fied character χ ∈ X(M) is given by

χ(diag(g1, ..., gq, ω1, ..., ωr)) =

= |det(g1)|it1 · · · |det(gq)|itq · |ω1|itq+1 · · · |ωr|itq+r ,
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for some (t1, ..., tq+r) ∈ Rq+r. We can denote such element χ ∈ X(M) by
χ(t1,...,tq+r). We have the following result.

Proposition 2.2. Let M be a Levi subgroup of GLn(R), associated to the
partition n = 2q + r. Then, there is a bijection

X(M)→ Rq+r , χ(t1,...,tq+r) 7→ (t1, ..., tq+r).

Let us consider now GLn(C). The tempered dual of GLn(C) comprises the
unitary principal series in accordance with Harish-Chandra [9]. The corre-
sponding Levi subgroup is a maximal torus T ∼= (C×)n. Denote by U the
standard unipotent subgroup of GLn(C). The principal series representations
are given by

(5) π`,it = iG,TU (σ ⊗ 1),

where σ=σ1 ⊗ ... ⊗ σn and σj(z) = ( z
|z| )

`j |z|itjC (`j ∈ Z and tj ∈ R), with

|z|C = zz = |z|2 [10, p.405].
An unramified character is given by

χ

 z1
. . .

zn

 = |z1|it1C × ...× |zn|
itn
C

and we can represent χ as χ(t1,...,tn). Therefore, we have the following result.

Proposition 2.3. Denote by T the standard maximal torus in GLn(C). There
is a bijection

X(T )→ Rn , χ(t1,...,tn) 7→ (t1, ..., tn).

The Weyl group W is the symmetric group Sn and acts on Rn by permuting
the components.

3. K-theory for GLn

Using the Harish-Chandra parametrization of the tempered dual of GLn(R)
and GLn(C) (recall that the Harish-Chandra parameter space is a locally com-
pact, Hausdorff topological space) we can compute the K-theory of the reduced
C∗-algebras C∗rGLn(R) and C∗rGLn(C).

3.1. K-theory for GLn(R). We exploit the strong Morita equivalence de-
scribed in [15, §1.2 ]. We note in passing that, in the proof of this strong
Morita equivalence, the following ingredient is crucial: each tempered rep-
resentation of GLn(R), i.e. each unitary representation of GLn(R) which is
unitarily induced via parabolic induction from a discrete series representation
of a Levi subgroup is irreducible, see [10, p.401]. We infer that

(6)

Kj(C
∗
rGLn(R)) = Kj(

⊔
(M,σ)X(M)/Wσ(M))

=
⊕

(M,σ)K
j(X(M)/Wσ(M))

=
⊕

(M,σ)K
j(RnM /Wσ(M)),

Münster Journal of Mathematics Vol. — (—), 999–999



Functoriality and K-theory for GLn(R) 1005

where nM = q + r if M is a representative of the equivalence class of Levi
subgroup associated to the partition n = 2q+ r. Hence the K-theory depends
on n and on each Levi subgroup.

For a given Levi subgroup M and a discrete series σ of 0M , the isotropy
subgroup Wσ is a subgroup of the Weyl group W (M), which is in turn a
subgroup of the symmetric group Sn. The isotropy subgroup has the form
Sn1
× ...× Snk

and acts on Rn by permuting the components. Write

Rn ∼= Rn1 × Rn2 × ...× Rnk × Rn−n1−...−nk .

If n = n1 + ...+ nk then we simply have Rn ∼= Rn1 × ...× Rnk .
The group Sn1 × ...× Snk

acts on Rn as follows.
Sn1

permutes the components of Rn1 leaving the remaining fixed;
Sn2

permutes the components of Rn2 leaving the remaining fixed;
and so on. If n > n1 + ...+ nk the components of Rn−n1−...−nk remain fixed.
This can be interpreted, of course, as the action of the trivial subgroup. As a
consequence, one identifies the orbit spaces

Rn/(Sn1
× ...× Snk

) ∼= Rn1/Sn1
× ...× Rnk/Snk

× Rn−n1−...−nk

To compute the K-theory (6) we have to consider the following orbit spaces:

(i) Rn, in which case Wσ(M) is the trivial subgroup of the Weyl group
W (M);

(ii) Rn/(Sn1
× ... × Snk

), where Wσ(M) = Sn1
× ... × Snk

⊂ W (M) (see
the examples below).

The K-theory for Rn may be summarized as follows

Kj(Rn) =

{
Z if n = j mod 2
0 otherwise .

Lemma 3.2. For n > 1, Kj(Rn/Sn) = 0, j = 0, 1.

Proof. We consider the action of the symmetric group W = Sn on Rn. The
subspace

{t(1, . . . , 1) : t ∈ R}
is fixed by W and the orthogonal subspace

t := {(x1, . . . , xn) : x1 + . . .+ xn = 0}
is W -invariant. It follows that Rn/Sn ' R × t/W . The action of W on t
is precisely the action of W on the Lie algebra t of the standard maximal
torus T of the Lie group SLn(R). The closure C of a chamber C ⊂ t is a
fundamental domain for the action of W , see [5, Ch.5, §3]. The quotient t/W
is homeomeorphic to C. Then we have

Rn/W ' R× C
Now C is a closed simplicial cone with vertex at the origin of Rn. It has the
topological type of a half-space in Euclidean space. Hence the K-theory of C
is trivial. The Lemma follows immediately from the Künneth theorem applied
to R× C. �
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Lemma 3.3. Kj(Rn/(Sn1
× ...×Snk

) = 0, j = 0, 1, where Sn1
× ...×Snk

⊂ Sn,
unless n1 = . . . = nk = 1.

Proof. It suffices to prove for Rn/(Sn1
× Sn2

). The general case follows by
induction on k.

Now, Rn/(Sn1
× Sn2

) ∼= Rn1/Sn1
× Rn−n1/Sn2

. Applying the Künneth
formula and Lemma 3.2, the result follows. �

We give now some examples by computing KjC
∗
rGLn(R) for small n.

Example 3.4. We start with the case of GL1(R). We have:

M = R× , 0M = Z/2Z , W (M) = 1 and X(M) = R.

Hence,

(7) At1(R) ∼=
⊔

σ∈̂(Z/2Z)

R/1 = R t R,

and the K-theory is given by

KjC
∗
rGL1(R) ∼= Kj(At1(R)) = Kj(RtR) = Kj(R)⊕Kj(R) =

{
Z⊕ Z , j = 1

0 , j = 0.

Example 3.5. For GL2(R) we have two partitions of n = 2 and the following
data

Partition M 0M W (M) X(M) σ ∈ E2(0M)

2+0 GL2(R) SL±2 (R) 1 R σ = D+
` , ` ∈ N

1+1 (R×)2 (Z/2Z)2 Z/2Z R2 σ = τ1 ⊗ τ2
with τi ∈ Ẑ/2Z ' {id, sgn}. Then the tempered dual is parametrized as

follows

At2(R) ∼=
⊔

(M,σ)

X(M)/Wσ(M) = (
⊔
`∈N

R) t (R2/S2) t (R2/S2) t R2,

and the K-theory groups are given by

KjC
∗
rGL2(R) ∼= Kj(At2(R)) ∼= (

⊕
`∈N

Kj(R))⊕Kj(R2) =

{ ⊕
`∈N Z , j = 1
Z , j = 0.

The general case of GLn(R) will now be considered. It can be split in two
cases: n even and n odd.

• n = 2m even
Suppose n is even. For every partition n = 2q + r, either Wσ(M) = 1 or
Wσ(M) 6= 1. If Wσ(M) 6= 1 then RnM /Wσ(M) is an orbit space for which
the K-groups K0 and K1 both vanish. This happens precisely when r > 2
because there are exactly two distinct discrete series representations of Z/2Z
and therefore we have only two partitions, corresponding to the choices of r = 0
and r = 2, which contribute to the K-theory with non-zero K-groups

Münster Journal of Mathematics Vol. — (—), 999–999



Functoriality and K-theory for GLn(R) 1007

Partition M 0M W (M)

2m GL2(R)m SL±2 (R)m Sm
2(m− 1) + 2 GL2(R)m−1 × (R×)2 SL±2 (R)m−1 × (Z/2Z)2 Sm−1 × (Z/2Z)

We also have X(M) ∼= Rm for n = 2m, and X(M) ∼= Rm+1, for n =
2(m− 1) + 2.

For the partition n = 2m (r = 0), an element σ ∈ E2(0M) is given by

σ = D`1 ⊗ ...⊗D`m , `1 > ... > `m, `i ∈ Nm.

For the partition n = 2(m− 1) + 2 (r = 2), an element σ ∈ E2(0M) is given
by

σ = D`1 ⊗ ...⊗D`m−1 ⊗ id⊗ sgn , `1 > ... > `m−1, `i ∈ Nm−1.

Therefore, the tempered dual has the following form

Atn(R) = At2m(R) = (
⊔

`1>...>`m

Rm) t (
⊔

`′1>...>`
′
m−1

Rm+1) t C,

with `i, `
′
j ∈ N and where C is a disjoint union of orbit spaces as in section

3. Note that the strictly decreasing condition is required in order to pick only
one discrete series from each Weyl group orbit.

Theorem 3.6. Suppose n = 2m is even. Then the K-groups are

KjC
∗
rGLn(R) ∼=

{ ⊕
`1>...>`m

Z , j ≡ m(mod 2)⊕
`1>...>`m−1

Z , otherwise

with `i ∈ N. If m = 1 then KjC
∗
rGL2(R) ∼= Z.

• n = 2q + 1 odd
If n is odd only one partition contributes to the K-theory of GLn(R) with
non-zero K-groups:

Partition M 0M W (M) X(M)

2q + 1 GL2(R)q+1 × R× SL±2 (R)q × (Z/2Z) Sq Rq+1

An element σ ∈ E2(0M) is given by

σ = D`1 ⊗ ...⊗D`q ⊗ τ , `1 > ... > `q, `i ∈ N, τ ∈ Ẑ/2Z.

And the tempered dual is

Atn(R) = At2q+1(R) = (
⊔

`1>...>`q,ε

Rq+1) t C

with `i ∈ N and ε ∈ Z/2Z. The space C is a disjoint union of orbit spaces as
in section 3.
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Theorem 3.7. Suppose n = 2q + 1 is odd. Then the K-groups are

KjC
∗
rGLn(R) ∼=

{ ⊕
`1>...>`q,ε

Z , j ≡ q + 1(mod2)

0 , otherwise

with `i ∈ N and ε ∈ Z/2Z. Here, we use the following convention: if q = 0
then the direct sum is

⊕
Z/2Z Z ∼= Z⊕ Z.

We conclude that the K-theory of C∗rGLn(R) depends on essentially one
parameter q = bn2 c which gives the maximum number of 2′s in the partitions
of n into 1′s and 2′s.

3.8. K-theory for GLn(C). Let ◦T be the maximal compact subgroup of the
maximal torus T of GLn(C). Let σ be a unitary character of ◦T . We note
that W = W (T ), Wσ = Wσ(T ). If Wσ = 1 then we say that the orbit W · σ
is generic.

Theorem 3.9. The K-theory of C∗rGLn(C) admits the following description.
If n = j mod 2 then Kj is free abelian on countably many generators, one for
each generic W - orbit in the unitary dual of ◦T , and Kj+1 = 0.

Proof. We exploit the strong Morita equivalence described in [14, Prop. 4.1].
We have a homeomorphism of locally compact Hausdorff spaces:

Atn(C) ∼=
⊔
[σ]

X(T )/Wσ(T )

by the Harish-Chandra Plancherel Theorem for complex reductive groups [9],
and the identification of the Jacobson topology on the left-hand-side with the
natural topology on the right-hand-side, as in [14] . The result now follows
from Lemma 3.2. �

Remark 3.10. Note that [σ] = [T, σ] is labeled by `1 ≥ ... ≥ `n, with `i ∈ Z.
Moreover, Wσ(T ) is trivial if and only if `1 > ... > `n.

4. Langlands parameters for GLn

The Weil group of C is simply

WC ∼= C×,
and the Weil group of R can be written as disjoint union

WR ∼= C× t jC×,
where j2 = −1 and jcj−1 = c (c denotes complex conjugation). We shall use
this disjoint union to describe the representation theory of WR.

An L-parameter is a continuous homomorphism

φ : WF → GLn(C)

such that φ(w) is semisimple for all w ∈WF .
L-parameters are also called Langlands parameters. Two L-parameters are

equivalent if they are conjugate under GLn(C). The set of equivalence classes of
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L-parameters is denoted by Gn. The set of equivalence classes of L-parameters
whose image is bounded is denoted by Gtn.

Let F be either R or C. Let An(F ) (resp. Atn(F )) denote the smooth dual
(resp. tempered dual) of GLn(F ). The local Langlands correspondence is a
bijection

Gn(F )→ An(F ).

When we restrict to bounded parameters, we obtain a bijection which we will
denote FLn:

FLn : Gtn(F )→ Atn(F )(8)

L-parameters for WC. A 1-dimensional L-parameter for WC is a character
of C×:

χ`,t(z) := (
z

|z|
)` ⊗ |z|tC

where |z|2 = |z|C = zz, ` ∈ Z and t ∈ C. The unitary characters are therefore
given by

χ`,it(re
iθ) = r2itei`θ

with t ∈ R and ` ∈ Z.

L-parameters for WR. The 1-dimensional L-parameters for WR are as
follows

(+, t)(z) = |z|tR and (+, t)(j) = 1

(−, t)(z) = |z|tR and (+, t)(j) = −1

We may now describe the local Langlands correspondence for GL(1,R):

(+, t) 7→ 1⊗ |.|tR
(−, t) 7→ sgn⊗ |.|tR

The Weil group WR admits 2-dimensional irreducible representations, de-
noted ϕ`,t with ` ∈ Z, ` 6= 0, and t ∈ R. They are defined in [10, (3.3)]:

ϕ`,t(z) =

(
χ`,t(z) 0

0 χ`,t(z)

)
, ϕ`,t(j) =

(
0 (−1)`

1 0

)
.

We will need one crucial property, namely

ϕ`,t|WC = χ`,t ⊕ χ−`,t(9)

and the single equivalence

ϕ`,t ' ϕ−`,t
The L-parameter ϕ`,it corresponds, via the Langlands correspondence, to

the discrete series:

ϕ`,it 7→ D` ⊗ | det(.)|itR , with ` ∈ N, t ∈ R.

according to (3.4) in [10].
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Lemma 4.1. [10] Every finite-dimensional semi-simple representation φ of
WR is fully reducible, and each irreducible representation has dimension one
or two.

5. Base change

We may state the base change problem for archimedean fields in the follow-
ing way. Consider the archimedean base change C/R. We have WC ⊂WR and
there is a natural map

(10) ResWR
WC

: Gn(R) −→ Gn(C)

called restriction. By the local Langlands correspondence for archimedean
fields [3, Theorem 3.1, p.236][10], there is a base change map

(11) BC : An(R) −→ An(C)

such that the following diagram commutes

An(R)
BC // An(C)

Gn(R)
Res

WR
WC

//

RLn

OO

Gn(C)

CLn

OO

Arthur and Clozel’s book [1] gives a full treatment of base change for GLn.
The case of archimedean base change can be captured in an elegant formula
[1, p. 71]. We briefly review these results.

Given a partition n = 2q + r let χi (i = 1, ..., q) be a ramified character
of C× and let ξj (j = 1, ..., r) be a ramified character of R×. Since the χi’s
are ramified, χi(z) 6= χτi (z) = χi(z), where τ is a generator of Gal(C/R). By
Langlands classification [10], each χi defines a discrete series representation
π(χi) of GL2(R), with π(χi) = π(χτi ). Denote by π(χ1, ..., χq, ξ1, ..., ξr) the
generalized principal series representation of GLn(R)

(12) π(χ1, ..., χq, ξ1, ..., ξr) = iGLn(R),MN (π(χ1)⊗ ...⊗π(χq)⊗ξ1⊗ ...⊗ξr⊗1).

The base change map for the generalized principal series representation is given
by induction from the Borel subgroup B(C) [1, p. 71]:

(13) BC(π) = iGLn(C),B(C)(χ1, χ
τ
1 , ..., χq, χ

τ
q , ξ1 ◦N, ..., ξr ◦N),

where N = NC/R : C× −→ R× is the norm map defined by z 7→ zz.
We illustrate the base change map with two simple examples.

Example 5.1. For n = 1, base change is simply composition with the norm
map

BC : At1(R)→ At1(C) , BC(χ) = χ ◦N.

Example 5.2. For n = 2, there are two different kinds of representations, one
for each partition of 2. According to (12), π(χ) corresponds to the partition
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2 = 2 + 0 and π(ξ1, ξ2) corresponds to the partition 2 = 1 + 1. Then the base
change map is given, respectively, by

BC(π(χ)) = iGL2(C),B(C)(χ, χ
τ ),

and

BC(π(ξ1, ξ2)) = iGL2(C),B(C)(ξ1 ◦N, ξ2 ◦N).

5.3. The base change map. Now, we define base change as a map of topolog-
ical spaces and study the inducedK-theory map. A continuous map f : X → Y
between topological spaces is proper if f−1(K) is a compact subset of X for
every compact subset K of Y . If f is a proper map between locally com-
pact Hausdorff spaces then f is continuous at infinity, see [13, Prop. 2.6.4].
So proper maps are morphisms in the category of locally compact Hausdorff
spaces, see [13, Prop. 2.6.6].

Proposition 5.4. The base change map BC : Atn(R)→ Atn(C) is a continuous
proper map.

Proof. First, we consider the case n = 1. As we have seen in Example 5.1,
base change for GL(1) is the map given by BC(χ) = χ ◦ N , for all characters
χ ∈ At1(R), where N : C× → R× is the norm map.

Let z ∈ C×. We have

(14) BC(χ)(z) = χ(|z|2) = |z|2it.

A generic element from At1(C) has the form

(15) µ(z) = (
z

|z|
)`|z|it,

where ` ∈ Z and t ∈ R, as stated before. Viewing the Pontryagin duals
At1(R) and At1(C) as topological spaces by forgetting the group structure, and
comparing (14) and (15), the base change map can be defined as the following
continuous map

ϕ : At1(R) ∼= R× (Z/2Z) −→ At1(C) ∼= R× Z
χ = (t, ε) 7→ (2t, 0)

A compact subset of R×Z in the connected component {`} of Z has the form
K × {`} ⊂ R× Z, where K ⊂ R is compact. We have

ϕ−1(K × {`}) =

{
∅ , if ` 6= 0
1
2K × {ε} , if ` = 0,

where ε ∈ Z/2Z. Therefore ϕ−1(K × {`}) is compact and ϕ is proper.

The Case n > 1. Base change determines a map BC : Atn(R) → Atn(C)
of topological spaces. Let X = X(M)/Wσ(M) be a connected component
of Atn(R). Then, X is mapped under BC into a connected component Y =
Y (T )/Wσ′(T ) of Atn(C). Given a generalized principal series representation

π(χ1, ..., χq, ξ1, ..., ξr)
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where the χi’s are ramified characters of C× and the ξ’s are ramified characters
of R×, then

BC(π) = iG,B(χ1, χ
τ
1 , ..., χq, χ

τ
q , ξ1 ◦N, ..., ξr ◦N).

Here, N = NC/R is the norm map and τ is the generator of Gal(C/R).
We associate to π the usual parameters uniquely defined for each character

χ and ξ. For simplicity, we write the set of parameters as a (q + r)-uple:

(t, t′) = (t1, ..., tq, t
′
1, ..., t

′
r) ∈ Rq+r ∼= X(M).

Now, if π(χ1, ..., χq, ξ1, ..., ξr) lies in the connected component defined by
the fixed parameters (`, ε) ∈ Zq × (Z/2Z)r, then

(t, t′) ∈ X(M) 7→ (t, t, 2t′) ∈ Y (T )

is a continuous proper map.
It follows that

BC : X(M)/Wσ(M)→ Y (T )/Wσ′(T )

is continuous and proper since the orbit spaces are endowed with the quotient
topology. �

Theorem 5.5. The functorial map induced by base change

Kj(C
∗
rGLn(C))

Kj(BC)−→ Kj(C
∗
rGLn(R))

is zero for n > 1.

Proof. We start with the case n > 2. Let n = 2q + r be a partition and M
the associated Levi subgroup of GLn(R). Denote by XR(M) the unramified
characters of M . As we have seen, XR(M) is parametrized by Rq+r. On the
other hand, the only Levi subgroup of GLn(C) for n = 2q + r is the diagonal
subgroup XC(M) = (C×)2q+r.

If q = 0 then r = n and both XR(M) and XC(M) are parametrized by Rn.
But then in the real case an element σ ∈ E2(0M) is given by

σ=iGLn(R),P (χ1 ⊗ ...⊗ χn),

with χi ∈ Ẑ/2Z. Since n ≥ 3 there is always repetition of the χi’s. It follows
that the isotropy subgroups Wσ(M) are all nontrivial and the spaces Rn/Wσ

are orbit spaces for which the K-theory groups vanish, see Lemma 3.3.
If q 6= 0, then XR(M) is parametrized by Rq+r and XC(M) is parametrized

by R2q+r (see Propositions 2.2 and 2.3).
Base change creates a map

Rq+r −→ R2q+r.

Composing with the stereographic projections we obtain a map

Sq+r −→ S2q+r
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between spheres. Any such map is nullhomotopic [4, Proposition 17.9]. There-
fore, the induced K-theory map

Kj(S2q+r) −→ Kj(Sq+r)

is the zero map.

The Case n = 2. For n = 2 there are two Levi subgroups of GL2(R),
M1
∼= GL2(R) and the diagonal subgroup M2

∼= (R×)2. By Proposition 2.2
X(M1) is parametrized by R and X(M2) is parametrized by R2. The maximal
torus T of GL2(C) is the diagonal subgroup (C×)2. From Proposition 2.3 we
have X(T ) ∼= R2.

Since K1(At2(C)) = 0 by Theorem 5.1, we only have to consider the K0

functor. The only contribution to K0(At2(R)) comes from M2
∼= (R×)2 and we

have (see Example 3.5)

K0(At2(R)) ∼= Z.
For the Levi subgroup M2

∼= (R×)2, base change is

BC : At2(R) −→ At2(C)
π(ξ1, ξ2) 7→ iGL2(C),B(C)(ξ1 ◦N, ξ2 ◦N),

Therefore, it maps a class [t1, t2], which lies in the connected component
(ε1, ε2), into the class [2t1, 2t2], which lies in the connect component (0, 0).
In other words, base change maps a generalized principal series π(ξ1, ξ2) into
a component of At2(C) whose discrete factor is a nongeneric orbit. It follows
from Theorem 3.9 that

K0(BC) : K0(At2(R))→ K0(At2(C))

is the zero map. �

5.6. Base change in one dimension. In this section we consider base change
for GL1.

Theorem 5.7. The functorial map induced by base change

K1(C∗rGL1(C))
K1(BC)−→ K1(C∗rGL1(R))

is given by K1(BC) = ∆◦Pr, where Pr is the projection of the zero component
of K1(At1(C)) into Z and ∆ is the diagonal Z→ Z⊕ Z.

Proof. For GL1, base change

χ ∈ At1(R) 7→ χ ◦NC/R ∈ At1(C)

induces a map

K1(BC) : K1(At1(C))→ K1(At1(R)).

Any character χ ∈ At1(R) is uniquely determined by a pair of parameters
(t, ε) ∈ R× Z/2Z. Similarly, any character µ ∈ At1(C) is uniquely determined
by a pair of parameters (t, `) ∈ R × Z. The discrete parameter ε (resp., `)
labels each connected component of At1(R) = R t R (resp., At1(C) =

⊔
Z R).
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Base change maps each component ε of At1(R) into the component 0 of
At1(C), sending t ∈ R to 2t ∈ R. The map t 7→ 2t is homotopic to the identity.
At the level of K1, the base change map is given by K1(BC) = ∆ ◦ Pr, where
Pr is the projection of the zero component of K1(At1(C)) into Z and ∆ is the
diagonal Z→ Z⊕ Z.

�

6. Automorphic induction

We begin this section by describing the action of Gal(C/R) on ŴC = Ĉ×.

Take χ = χ`,t ∈ Ĉ× and let τ denote the nontrivial element of Gal(C/R).

Then, Gal(C/R) acts on Ĉ× as follows:

χτ (z) = χ(z).

Hence,

χτ`,t(z) = (
z

|z|
)`|z|itC = (

z

|z|
)−`|z|itC

and we conclude that

χτ`,t(z) = χ−`,t(z).

In particular,

χτ = χ⇔ ` = 0⇔ χ = |.|itC
i.e, χ is unramified.

Note that WC ⊂ WR, with index [WR : WC] = 2. Therefore, there is a
natural induction map

IndC/R : Gt1(C)→ Gt2(R).

By the local Langlands correspondence for archimedean fields [3, 10], there
exists an automorphic induction map AIC/R such that the following diagram
commutes

At1(C)
AIC/R // At2(R)

Gt1(C)
IndC/R

//

CL1

OO

Gt2(R)

RL2

OO

Proposition 6.1. If ` 6= 0 then we have

IndC/R(χ`,t) ' IndC/R(χ−`,t) ' ϕ`,t

If ` = 0 then we have

IndC/R(χ0,t) = (+, 2t)⊕ (−, 2t)
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Proof. It is enough to use Frobenius reciprocity. We start with ` 6= 0, and
apply (9):

< IndC/R(χ`,t), ϕ`,t > =< χ`,t, ResC/R(ϕ`,t) >

=< χ`,t, χ`,t ⊕ χ−`,t >
= 1

< IndC/R(χ−`,t), ϕ`,t > =< χ−`,t, ResC/R(ϕ`,t) >

=< χ−`,t, χ`,t ⊕ χ−`,t >
= 1

< IndC/R(χ0,t), (+, 2t) > =< χ0,t, ResC/R(+, 2t) >

=< χ0,t, χ0,t >

= 1

< IndC/R(χ0,t), (−, 2t) > =< χ0,t, ResC/R(−, 2t) >
=< χ0,t, χ0,t >

= 1

�

6.2. The automorphic induction map. In the case of GL2n(R) we will
have to consider the discrete series representations

D|`1| ⊗ | det(.)|it1 ⊗ · · · ⊗D|`n| ⊗ | det(.)|itn

on the Levi subgroup M = GL2(R) × · · · × GL2(R) ⊂ GL2n(R). Let P =
MN be the corresponding parabolic subgroup, and, using a classical notation,
denote by

D|`1| ⊗ | det(.)|it1 × · · · ×D|`n| ⊗ | det(.)|itn

the corresponding irreducible tempered representations of GL2n(R) obtained
via parabolic induction.

In the same notation, denote by

χ`1,it1 × · · · × χ`n,itn
the irreducible tempered representation of GLn(C) coming via parabolic in-
duction from the the unitary character χ`1,it1 ⊗ · · · ⊗ χ`n,itn on the standard
maximal torus of GLn(C).

Define π(|`j |, tj) as follows:

π(|`j |, tj) = D|`j | ⊗ | det |itj if `j 6= 0(16)

= 1⊗ | det |2it × sgn⊗ | det |2it if `j = 0(17)

Consider now the locally compact Hausdorff space

E(|`1|, . . . , |`n|) := {π(|`1|, t1)× · · · × π(|`n|, tn) : t1, . . . , tn ∈ R}
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which is a subspace of the tempered dual of GL2n(R), and the locally compact
Hausdorff space

F(`1, . . . , `n) := {χ`1,it1 × · · · × χ`n,itn : t1, . . . , tn ∈ R}

which is a subspace of the tempered dual of GLn(C).
Then the automorphic induction map AIn maps the space F(`1, . . . , `n)

bijectively onto the space E(|`1|, . . . , |`n|) via the natural identification of the
coordinates t1, . . . , tn:

AIn : F(`1, . . . , `n) ' E(|`1|, . . . , |`n|)

We have the functorial K-theory map

Kj(AIn) : Kj(E(|`1|, . . . , |`n|)) ' Kj(F(i1, . . . , in))(18)

whenever i1 = ±`1, . . . , in = ±`n.
Suppose first that the `j are all distinct, with none of them 0. Then

E(|`1|, . . . , |`n|) and F(`1, . . . , `n) are n-dimensional Euclidean spaces. In the
isomorphism (18), a generator for the left-hand-side, denoted δ(`1, . . . , `n), will
correspond to a generator for the right-hand-side, denoted ε(i1, . . . , in).

The image of the generator δ(`1, . . . , `n) under Kj(AIn) has 2n components,
which lie in the K-theory groups Kj(F(i1, . . . , in)) with i1 = ±`1, . . . , in =
±`n. The component in Kj(F(i1, . . . , in)) is ε(i1, . . . , in). This is automorphic
induction at the level of K-theory.

Now we re-consider the space F(`1, . . . , `n). If two or more of the `j are
equal, then F(`1, . . . , `n) is the Cartesian product of locally compact Hausdorff
spaces, each of which is either a symmetric product of real lines, or a Euclidean
space. Then we have Kj(F(`1, . . . , `n) = 0 for j = 0, 1 by Lemma (3.2) and
the Künneth theorem [13, 3.3.15]. So the map in (18) is the zero map.

This leaves one case to be considered, namely when some of the `j are equal
to 0. We start with the case when one of the `j is 0, say `1 = 0. Define

X(0, . . . , |`n|) :

= {1⊗ | det |2is1 × sgn⊗ | det |2it1 × · · · × π(|`n|, tn) : s1, t1, . . . , tn ∈ R}

We then have an injective map

AIn : F(0, . . . , `n)→ X(0, . . . , |`n|)

The dimensions of these two Euclidean spaces are n and n + 1. The parity
difference implies that the induced K-theory map is the zero map.

If several of the `j are equal to 0, say `j = 0 for 1 ≤ j ≤ k, then we will
correspondingly have an injective map

AIn : F(0, . . . , 0, . . . , `n)→ X(0, . . . , 0, . . . , |`n|)

where X(0, . . . , 0, . . . |`n|) denotes a space modelled on X(0, . . . , |`n|) but in-
cluding the term

1⊗ | det |2is1 × sgn⊗ | det |2it1 × · · · × 1⊗ | det |2isk × sgn⊗ | det |2itk
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The space X(0, . . . , 0, . . . , |`n|) will be a Cartesian product of locally compact
Hausdorff spaces, each of which is either a symmetric product of real lines, or
a Euclidean space. Such spaces are trivial in K-theory.

This leads to our final result. Let Kj(AIn) denote the functorial K-theory
map induced by automorphic induction.

Theorem 6.3. Consider the functorial map induced by automorphic induction

Kj(C
∗
rGL2n(R))

Kj(AIn)−→ Kj(C
∗
rGLn(C)).

Suppose that n ≡ j mod 2, and let 0 < `1 < · · · < `n. The Kj-generator
δ(`1, . . . , `n) is determined by the discrete series representations D`1 , . . . , D`n .
The image of this generator under Kj(AIn) has 2n components, which lie
in the K-theory groups Kj(F(i1, . . . , in)) with i1 = ±`1, . . . , in = ±`n. The
component in Kj(F(i1, . . . , in)) is ε(i1, . . . , in).

7. K-cycle

The standard maximal compact subgroup of GL1(C) is the circle group
U(1), and the maximal compact subgroup of GL1(R) is Z/2Z. Base change
for K1 creates a map

R(U(1)) −→ R(Z/2Z)

where R(U(1)) is the representation ring of the circle group U(1) and R(Z/2Z)
is the representation ring of the group Z/2Z. This map sends the trivial char-
acter of U(1) to 1⊕ ε, where ε is the nontrivial character of Z/2Z, and sends
all the other characters of U(1) to zero.

This map has an interpretation in terms of K-cycles. The real line R is a
universal example for the action of C× and R×. The K-cycle

(C0(R), L2(R), id/dx)(19)

is equivariant with respect to C× and R×. The actions are

C× × R→ R, (z, y) 7→ log |z|+ y

R× × R→ R, (x, y) 7→ log |x|+ y

The K-cycle (19) therefore determines a class /∂C ∈ KC×
1 (EC×) and a class

/∂R ∈ KR×
1 (ER×). On the left-hand-side of the Baum-Connes correspondence,

base change in dimension 1 admits the following description in terms of Dirac
operators:

/∂C 7→ (/∂R, /∂R)

It would be interesting to interpret the automorphic induction map at the
level of equivariant K-theory:

AI∗ : K∗O(n)(R
n) −→ K∗U(n)(C

n).
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