
A constant, radial, low-thrust problem including first

order effects of J2
∗

Hodei Urrutxua†

Astronautics Research Group. University of Southampton, SO17 1BJ, UK

Space Dynamics Group. Technical University of Madrid (UPM), 28040 Madrid, Spain

Martin Lara‡

Space Dynamics Group. Technical University of Madrid (UPM), 28040 Madrid, Spain

I. Introduction

Tsien studied continuous low-thrust trajectories for Earth escape from circular orbit, and in particular,

he provided analytic solutions to the constant radial thrust problem, thereafter also known as the Tsien

problem [2]. A comprehensive analysis of the problem was presented by Battin [3], Boltz [4], and latter work

by other authors [5, 6, 7, 8] has provided further insight to the problem. The Tsien problem is integrable and

admits closed-form solutions in terms of standard elliptic integrals: the radial time evolution depends on the

incomplete elliptic integrals of the first and second kinds, and the orbit evolution is known to depend on the

incomplete elliptic integral of the third kind [6]. Many alternative analytical solutions have been proposed,

both exact [9, 10, 11] and approximate [12], as well as many interesting and innovative applications that

build on radial thrust configurations [13, 14].

However, the integrability of the problem does not hold when the Earth’s oblateness perturbation is

included in the dynamics. Since the dynamics of the J2 problem are non-integrable (except for equatorial

motion), the only possible closed-form solutions are obtained by approximating or averaging the full J2

gravitational potential [15]. Among the many possibilities to approximate the J2 problem, the concept

of intermediary orbits is particularly useful. The aim of the intermediary is to capture in an integrable

model the main effects of the dynamics of the original problem. If, besides, integrability is found after

an infinitesimal contact transformation, the solution improves by incorporating the short-period dynamics

into the intermediary. Among these intermediaries, Deprit’s radial intermediary [16] was found particularly
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convenient because it provides a closed-form solution in terms of trigonometric functions, whereas other

intermediaries rely on the evaluation of special functions.

We base on the radial intermediary, and obtain an integrable approximation to the constant, radial thrust

problem which includes the main effects of the earth’s oblateness. The analytical solution is valid as far as

the thrust remains small and is not constrained to planar motion, thus providing notable improvements in

the application of the Tsien problem to the maneuver design of Earth satellite orbits.

The paper starts with a brief review of the Tsien problem within Section 2, and in Section 3 the perturba-

tion effects due to the Earth’s oblateness are incorporated in the constant radial thrust problem. Finally, the

accuracy of the formulation is assessed in Section 4, and the station-keeping of a GPS satellite is presented

as an application example to support the suitability of the proposed method.

II. The Tsien Problem

The Tsien problem [2] is a planar motion with a constant, radial thrust acceleration. A spacecraft, initially

in circular orbit of radius r0 and velocity r0 ω0 (with ω0 = µ/r30 and µ is the gravitational parameter of the

primary) is acted upon by a constant radial acceleration α. This acceleration is defined to be positive when

pointing outwards, and negative when directed inwards. When the following non-dimensional parameter is

defined

ε =
8α

r0 ω2
0

it is found that there is a limit value of α such that when ε = 1, the trajectory leads to an asymptotic

circular orbit. Below that value the trajectory is bounded (ε < 1), whereas higher values (ε > 1) yield

escape trajectories [11].

When the primary is assumed spherical and the radial thrust is the only perturbation acting upon the

spacecraft, the Keplerian potential

V = −µ
r

where r is the orbital radius, is modified by the disturbing potential

U = −α r (1)

Since the problem is conservative it can be approached from the point of view of the Hamiltonian

formalism. Thus,

H = T + V + U

where T is the kinetic energy, T + V corresponds to the Kepler problem and U is the disturbing function of
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the Keplerian motion.

In particular, the orbital motion is naturally described in the canonical set of polar-nodal variables (r, θ,

ν, R, Θ, N), where r has been defined above, θ is the argument of latitude, ν is the right ascension of the

ascending node, R is the radial velocity, Θ is the magnitude of the angular momentum vector, N = Θ cos i

is the projection of the angular momentum vector on the rotation axis of the primary, and i is the orbital

inclination. Then, the Hamiltonian is written as

H =
1

2

(
R2 +

Θ2

r2

)
− µ

r
− α r (2)

Note that θ does not appear in the Hamiltonian so Θ is an integral of the problem. Moreover, ν and

N do not appear in the Hamiltonian either. Thus, Eq. (2) is a radial Hamiltonian H ≡ H(r,−,−, R,Θ,−)

which is also independent of the orbital plane since there is no information on the orbital inclination nor the

line of nodes. Indeed, from Hamilton equations it is immediate that ν, Θ and N remain constant and the

flow is separable. The radial motion is described by the differential equations

dr

dt
=

∂H
∂R

= R (3a)

dR

dt
= −∂H

∂r
=

Θ2

r3
− µ

r2
+ α (3b)

Combining Eq. (3a) with the Hamiltonian in Eq. (2), for each constant manifold h = H(r0,−,−, R0,Θ0,−)

defined from the intitial conditions, the radial problem can be expressed as [9]

t− t0 =
1√
2

∫ r(t)

r0

r dr√
α r3 + h r2 + µ r − 1

2Θ2

and the latter expression can be solved analytically as a function of elliptic integrals of the first and second

kinds [3]. Once r(t) is known, the argument of latitude is computed from the quadrature

dθ

dt
=
∂H
∂Θ

=
Θ

r2(t)
(3c)

which can also be solved by introducing elliptic integrals of the third kind in the orbit solution [6]. Additional

analytical solutions exist for the Tsien problem [9, 10, 11].
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III. Including the Effects of the Oblateness

Let us reformulate the Tsien problem including not only a constant, radial acceleration but also the

oblateness of the primary. Thus, the new disturbing potential becomes

U = −α r +
µ

r

R2
⊕
r2
J2P2 (cosφ) (4)

where R⊕ is the equatorial radius of the primary, J2 is the second degree zonal harmonic coefficient of the

gravitational potential, P2 is the Legendre polynomial of the second degree, and φ is the equatorial latitude.

Using spherical trigonometry the equatorial latitude and the argument of latitude can be related by the

expression

cosφ = sin i sin θ

Note that the problem remains conservative.

When the orbital motion is described in polar-nodal variables, the Hamiltonian is written as

H =
1

2

(
R2 +

Θ2

r2

)
− µ

r
− α r − µ

r
σ
p2

r2

(
1− 3

2
sin2 i+

3

2
sin2 i cos 2θ

)
(5)

where

p =
Θ2

µ

is the conic parameter, also called semilatus rectum, and we introduce the parameter

σ ≡ σ(Θ) =
1

2
J2
R2
⊕
p2

(6)

The corresponding Hamilton equations are

dr

dt
=

∂H
∂R

= R (7a)

dθ

dt
=

∂H
∂Θ

=
Θ

r2

[
1 + 3σ (1 + k) c2 (1− cos 2θ)

]
(7b)

dν

dt
=

∂H
∂N

=
Θ

r2

[
− 3σ (1 + k) c (1− cos 2θ)

]
(7c)

dR

dt
= −∂H

∂r
=

Θ2

r3

[
k

1 + k
− 3σ (1 + k)

(
1− 3

2
s2 (1− cos 2θ)

)]
+ α (7d)

dΘ

dt
= −∂H

∂θ
=

Θ2

r2

[
− 3σ (1 + k) s2 (1− cos 2θ)

]
(7e)

dN

dt
= −∂H

∂ν
= 0 (7f)
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where we abbreviateda

k ≡ k(r,Θ) =
p

r
− 1, q ≡ q(R,Θ) =

pR

Θ

andb

c ≡ c(Θ, N) =
N

Θ
, s ≡ s(Θ, N) =

√
1− N2

Θ2

Note that ν does not appear in the Hamiltonian and, therefore, N is an integral of the problem. However,

as opposed to the Tsien problem, now θ and N (implicitly through the orbital inclination) do appear in the

Hamiltonian. Also, in the following we restrict our analysis to the case of bounded motion around the

primary and low values of the radial acceleration.

The flow derived from Eq. (5) is not expected to be integrable since general solutions to the J2 problem

are not known. However, an integrable approximation to the Hamiltonian (5) can be obtained by means

of a transformation of variables. Particularly, Deprit’s radial intermediary is designed to simplify the J2

problem Hamiltonian by removing non-essential, short-periodic effects [16]. Let T be an infinitesimal contact

transformation

T : (r, θ, ν, R,Θ, N)→ (r′, θ′, ν′, R′,Θ′, N ′)

defined by the corrections [15]

∆r = −σ p
(

1− 3

2
s2 − 1

2
s2 cos 2θ

)
(8a)

∆θ = −σ
{

(1− 6c2) q + (1− 2c2) q cos 2θ −
[

1

4
+ k −

(
7

4
+ 3k

)
c2
]

sin 2θ

}
(8b)

∆ν = −σ c
[
(3 + cos 2θ) q −

(
3

2
+ 2k

)
sin 2θ

]
(8c)

∆R = −σΘ

p
(1 + k)2 s2 sin 2θ (8d)

∆Θ = σΘ s2
[(

3

2
+ 2k

)
cos 2θ + q sin 2θ

]
(8e)

∆N = 0 (8f)

in which the right-hand side of the equations must be evaluated in original variables in the direct transfor-

mation

ξ′ = ξ −∆ξ, ξ ∈ (r, θ, ν, R,Θ, N)

and in prime variables for obtaining the inverse transformation

ξ = ξ′ + ∆ξ′, ξ′ ∈ (r′, θ′, ν′, R′,Θ′, N ′).

aNote that k = e cos f and q = e sin f , where e is the orbital eccentricity and f the true anomaly.
bNote that c = cos i and s = sin i, where i is the orbital inclination.
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If the thrust remains small, say comparable to the oblateness perturbation

α r ∼ µ

r

1

2
J2
R2
⊕
r2

it can be checked that, up to second order effects of J2, the infinitesimal contact transformation T converts

the Hamiltonian in Eq. (5) into

H′ =
1

2

(
R′2 +

Θ′2

r′2

)
− µ

r′
− α r′ − µ

p′
σ′
p′2

r′2

(
1− 3

2
s′2
)

(9)

where the argument of latitude has been removed and hence Θ′ is an integral of the problem. Then, Eq. (9) is

a radial Hamiltonian H′ ≡ H′(r′,−,−, R′,Θ′, N ′) which is, therefore, integrable. For clarity in the notation

primes will be dropped from here on.

Notably, Eq. (9) can be reorganized as follows

H =
1

2

(
R2 +

Θ̃2

r2

)
− µ

r
− α r (10)

where the constant, varied angular momentum Θ̃ ≡ Θ̃(Θ, N) is defined as

Θ̃ = Θ
√

1− σ(2− 3s2) (11)

Hence, up to second order effects Eq. (10) is, in the new (prime) variables, formally equal to the constant,

radial thrust problem of Eq. (2), but with the varied angular momentum Θ̃ instead. Then, the radial motion

for Eq. (10) is described by

dr

dt
=

∂H
∂R

= R (12a)

dR

dt
= −∂H

∂r
=

Θ̃2

r3
− µ

r2
+ α (12b)

which are analogous to Eqs. (3a-3b), and thus the same analytical solutions can be exploited to solve the

radial motion of the problem, just by adjusting the value of the angular momentum.

However, the non-radial part of the Hamiltonian in Eq. (2) does not apply to the Hamiltonian (10) for

two reasons. One is that Θ is the true canonical variable of the Hamiltonian (10), not Θ̃. The other reason

is that the latter Hamiltonian has a hidden dependency with N through the variable Θ̃(Θ, N), whereas in

the Tsien problem there is no such dependency. As a consequence, once r(t) is known, the solution to the

Hamiltonian in Eq. (10) must be completed by solving the following quadratures instead of the argument of
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latitude and the right ascension of the ascending node

dθ

dt
=
∂H
∂Θ

=
Θ

r2(t)

[
1− σ(1− 6c2)

]
(12c)

dν

dt
=
∂H
∂N

= −3
Θ

r2(t)
σ c (12d)

which can be solved analytically as well [9]. Since Θ and N are both first integrals of the Hamiltonian (10),

the problem is closed.

Finally, the simple application of the inverse transformation T −1 recovers the solution in the original

(non-prime) variables up to the truncation order.

IV. Accuracy and Applications to GPS Satellites

The accuracy of the proposed approximate solution degrades as the disturbing function U becomes more

important. If α = 0 and σ = 0 the problem becomes Keplerian, but as the oblateness increases, the

Hamiltonian system deviates from integrable proportionally to σ. If the Hamiltonian in Eq. (5) is made

dimensionless and the characteristic length and time are appropriately chosen, then the Hamiltonian can be

conveniently written such that µ = 1, the initial circular orbit has a radius r0 = 1 and Θ = Θ0 = 1. Note

that in dimensionless form σ becomes, for a given primary, an explicit function of the equatorial radius R⊕,

which is now scaled with the initial orbital radius:

σ ≡ σ(R⊕) =
1

2
J2R

2
⊕

As an immediate conclusion R⊕ 6 1 (see Table 1) and σ(R⊕) has a maximum or threshold value σth = J2/2,

which depends solely on the oblateness of the primary. High altitude orbits decrease the non-dimensional

value of σ, which in turn improves the accuracy. However, an upper bound exists as well, where the third

body perturbations become as relevant as the oblateness (see Figure 1). Therefore, the Medium Earth Orbit

(MEO) region stands out as a promising target where the proposed model should work best in terms of

accuracy. This region is mostly populated by global positioning satellite constellations, such as the GPS,

Glonass or Galileo. In particular, the GPS orbit (r0 = 26 578 km, i0 = 55 deg) will be taken as a benchmark.

Since the intermediary misses second order terms of J2, the more important of which are proportional to

1− 21 cos4 i (cf. Eq. (5) of Ref. 17), an immediate insight is that the accuracy of the intermediary solution

depends on inclination, with better performance for high inclination orbits —say between 55 and 125 degrees.

The degradation of the accuracy can be studied by integrating the exact Hamiltonian (5) from Equations (7),

integrating the approximate Hamiltonian (10) from Equations (12) and comparing both solutions in non-
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Table 1. Values for the dimensionless parameter σ(R⊕) in Earth orbit

Orbital Altitude Dimensionless R⊕ Dimensionless σ(R⊕)

0 km 1.0000 5.4131 · 10−4

400 km 0.9410 4.7931 · 10−4

800 km 0.8886 4.2738 · 10−4

2 000 km 0.7613 3.1372 · 10−4

5 000 km 0.5606 1.7010 · 10−4

10 000 km 0.3894 8.2093 · 10−5

20 000 km 0.2418 3.1648 · 10−5

35 786 km 0.1513 1.2387 · 10−5

Earth J2

Moon

Sun

Earth J5
Earth J3Earth J4

Galileo Orbit
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Figure 1. Dimensionless perturbing acceleration in Earth orbit.

prime variables [1]. A slight variability of the errors must be accepted which depends predominantly on

the initial inclination i0 (and by extension N) as well as the argument of latitude θ0. This dependency is

not surprising as Eqs. (8) of the contact transformation T depend on these variables. Figure 2 displays the

position error after 10 orbital revolutions assuming initially circular orbits in the MEO region, in particular at

the GPS orbital distance. The root mean square (RMS) of the error stays below 22 m, whereas the maximum

peak value is 44 m. When the particular orbit of the GPS constellation (i0 = 55 deg) is mapped to Figure 2,

position errors restrain to an RMS of 3.7 m with peak values of 6.4 m. To put these numbers in context, the

errors one would obtain by neglecting the J2 effects for a GPS satellite would be as high as 97 km with a peak

value of 173 km. This evidences that the effects of the oblateness upon MEO trajectories are substantial

and omitting this source of orbital perturbation might have important consequences. Thus, the proposed

formulation enables a meaningful increase in accuracy while preserving a fully analytical formulation.

To study the accuracy of the approximation when a non-null radial thrust is included, it is useful to

introduce the parameter Λ, defined as the ratio between the two disturbing accelerations:

Λ(R⊕) =
α

σ(R⊕)
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Thus, the initial assumption that the thrust and the oblateness perturbation remain comparable implies

that Λ ∼ 1. Figure 3 quantifies the radial displacements of a GPS spacecraft throughout a single orbit

for different thrust values. Note that, due to the earth oblateness, spacecraft make radial excursions up to

several kilometers even with a null thrust (Λ = 0), and these values may reduce or accentuate depending on

the thrust level and the initial value of θ0.

The magnitude of the thrust grows linearly with Λ, such that for GPS satellites (mass of 1630 kg), Λ = 1

corresponds to 82 mN, which is a reasonable value for onboard electric propulsion systems. This limitation

suggests the low-thrust station-keeping of GPS satellites as a reasonable application example where the

present formulation shows major benefits.
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Figure 3. Differences in the orbital radius of GPS satellites with J2 and radial thrust.

The station-keeping of a constellation often requires to maintain an equally spaced distribution of satellites

within the same orbital plane. Therefore, the relative longitude of the satellites within the orbit may need

to be accordingly adjusted, i.e. spacecraft need to be relocated or repositioned in the same orbit but at an
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angle ∆θ ahead or behind their actual position.
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Figure 4. Orbital precession per orbit as a function of the radial thrust.

For radial thrust problems in the bounded regime (ε < 1) the resulting non-Keplerian orbits exhibit a

precession of the periapse along with a stretching of the orbital period, which can be computed analytically

[11]. The combination of these features suggests that the radial thrust could be employed as a technique

for satellite repositioning within an orbit [12]. Figure 4 shows the orbital precession (per orbit) that can

be achieved for GPS satellites and how it is affected by the oblateness and the radial thrust. Even though

the precession rate is low for the considered thrust levels, when multiplied by the orbital radius it could

yield azimuthal errors on the order of 10 km if the oblateness is not accounted for. As opposed to the latter

example, it can be observed from Figure 5 that using the proposed formulation, the positional error after

one single orbit is at sub-meter level for reasonable values of the radial thrust, and even throughout 10

orbital revolutions the error (either RMS or peak values) does not exceed a 10 m threshold. As a matter

of fact, numerical simulations show that even if Λ � 1 the solution still remains acceptably accurate for

many engineering applications, and undoubtedly far more accurate than the solution one would obtain by

excluding the oblateness effect from the model. Indeed, thrust levels of Λ ∼ 10 (i.e. a thrust magnitude

close to 1 N) would still be reasonably valid for station-keeping or repositioning purposes.

V. Conclusions

A formulation is presented within the Hamiltonian formalism, which describes the constant, radial, low-

thrust problem and incorporates first order effects of the J2 zonal harmonic. The formulation exploits the

radial intermediary of Deprit to yield an approximate problem which remains integrable, yet captures the

essential effects of the oblateness perturbation. The proposed formulation leads to akin expressions as for the

radial thrust problem around spherical bodies, also known as the Tsien problem, so the spectrum of available

analytical solutions to solve the latter problem can be conveniently exploited to solve the approximate
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Figure 5. Errors per orbit in the position of GPS satellites as a function of Λ.

dynamics.

The quality of the approximation decreases linearly with the value of J2 and increases proportionally to

the inverse square of the orbital distance from the primary. Also, even though the thrust level is assumed

to be comparable to the oblateness perturbation, in practice larger radial accelerations pose only a small

penalty to the accuracy. Therefore, this formulation is found to be particularly suitable to study low-thrust

orbital maneuvers and the station-keeping of satellites in the MEO orbital region. The accuracy of the

approximation is also found to depend on the initial conditions of the problem (namely on the initial orbital

inclination and argument of latitude) as well as on the thrust level.

The station-keeping of GPS satellites is proposed as an application example, revealing that the proposed

formulation is accurate up to sub-meter level throughout a single orbit, whereas studying the problem using

analytical solutions to the Tsien problem (which does not incorporate the J2 effects) would have led to errors

on the order of 10 km.
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