
Planning Search and Rescue Missions for UAV Teams

Chris A. B. Baker and Sarvapali Ramchurn and W. T. Luke Teacy

1 and Nicholas R. Jennings

2

Abstract. The coordination of multiple Unmanned Aerial Vehicles
(UAVs) to carry out aerial surveys is a major challenge for emergency
responders. In particular, UAVs have to fly over kilometre-scale areas
while trying to discover casualties as quickly as possible. To aid in
this process, it is desirable to exploit the increasing availability of
data about a disaster from sources such as crowd reports, satellite re-
mote sensing, or manned reconnaissance. In particular, such inform-
ation can be a valuable resource to drive the planning of UAV flight
paths over a space in order to discover people who are in danger.
However challenges of computational tractability remain when plan-
ning over the very large action spaces that result. To overcome these,
we introduce the survivor discovery problem and present as our solu-
tion, the first example of a continuous factored coordinated Monte
Carlo tree search algorithm. Our evaluation against state of the art
benchmarks show that our algorithm, Co-CMCTS, is able to localise
more casualties faster than standard approaches by 7% or more on
simulations with real-world data.

1 Introduction

The increased prevalence of low-cost, robust, commercially available
Unmanned Aerial Vehicles (UAVs) has led to concerted efforts to
utilise these platforms in order to aid first responders with collecting
sensory data without putting human lives at risk [1]. In particular,
work has focused on developing autonomous systems to minimise
the involvement of overstretched first responder personnel, and to
ensure UAVs can take action quickly [22, 24]. Key to this work, is
the idea of enabling coordinated UAVs to explore a disaster space to
discover the spatial location of casualties: a difficult task given the
spatial extent to explore and the continuous action-space represented
by a UAV’s axes of motion.3

To enable this exploration, advances in data collection have cre-
ated new sources of information about disaster scenarios that con-
tribute to increased awareness of the situation on the ground during a
disaster. In particular, data gathered by crowd-sourcing is becoming
more readily available because of the speed with which it can be gen-
erated, and its ability to directly reflect the experiences of the people
on-scene; people who can often give a very accurate report on the
hazards in their vicinity and the number of potential casualties [21].
However, despite these advancements, at present there is little work
that seeks to use information on danger and the spatial locations of
people to inform the paths of UAVs through a disaster space, in order
to maximise the number of observations made of possible casualties.

Currently, the state of the art for UAV path planning algorithms
focus on areas such as target tracking for surveillance [5, 17] which,

1 Agents Interactions and Complexity Group, University of Southampton,
UK, email {cabb1g08, sdr, wtlt}@ecs.soton.ac.uk

2 Department of Computing, Imperial College London, UK, email
n.jennings@imperial.ac.uk

although related to the exploration of a disaster space, are designed to
find a known number of targets that are in motion, rather than an un-
known number of survivors distributed over an area: a very different
problem since algorithms must be able to make predictive estima-
tions of people that might be present in as-yet unvisited locations.
Other developments in path planning focus on trying to reach a set
goal location [9, 19], or working with single autonomous vehicles
[8, 18]; neither of which fulfil the need for algorithms that coordin-
ate multiple vehicles in an explorative traversal of the disaster space,
rather than aiming for a particular final location. Moreover, specific
challenges exist in coordinating multiple vehicles. For example, there
is often no benefit to multiple UAVs providing sensor data of the
same location: there must be coordination between the vehicles to
allow them to find survivors in a disaster, without all attending the
same locations. Additionally, UAVs must be able to coordinate over
actions temporally: visiting the same location at the same time might
be straightforward to avoid, but planning a UAVs current action to
account for the future action of other nearby UAVs is a non-trivial
problem, particularly as the number of UAVs in an environment in-
creases.

Against this background, some work has recently been performed
on planning problems that involve the coordination of multiple
vehicles, including in disaster scenarios [2, 4]. However, as yet both
these approaches require some degree of simplification before plan-
ning can commence by discretising the environment into a number of
cells to be examined. Since locations in the real-world are not discret-
ised in this way, this requires some additional processing of incoming
data before UAVs can begin their exploration. Furthermore, by sim-
plifying data in this way it is inevitable that some information is lost
when a UAV can only be considered as visiting single cells, rather
than being able to plan according to a continuous range of motion.

In this paper we seek to address these shortcomings in planning
UAV searches of disaster areas, specifically with a view to future
applications and field-tests as part of the MOSAIC collaboration4

and ongoing work with Rescue Global.5 In particular we make the
following contributions to the state of the art:
1. We introduce a novel formulation of the survivor discovery prob-

lem; specifically modelled on a likely real-world scenario with the
goal of locating an unknown number of people, over a wide area,
by detection of mobile phone signals and where the diminishing
survivability of the people with time is incorporated into the re-
ward function.

2. We develop a novel decentralised algorithm that allows multiple
UAVs to coordinate to explore a large continuous disaster space

3 Although this work is framed in terms of disaster response, the same co-
ordination algorithms could be applied to other UAV applications: such as
geophysical surveying, security operations, or ecological monitoring.

4 An EPSRC funded collaboration between the University of Southampton
and the University of Sheffield: http : //www.mosaicproject.info

5 Information available at: http : //www.rescueglobal.org

under spatial and temporal constraints. Our approach utilises a
belief map—a term referred to the mapping of spatial locations
onto some function that represents numerical data—to represent
the presence of people and danger in the environment, and to form
the basis of the rewards calculated in the planning algorithm.

3. Furthermore, in order to demonstrate the applicability of our scen-
ario to potential future disasters, we test and evaluate our approach
on real-world data (gathered from the 2010 Haiti earthquake) sim-
ulating a very large action space, showing consistent gains in sur-
vivor discovery of at least 7% compared to benchmarks, with
higher gains of around 20% for scenarios with additional UAVs.

In the following sections we first outline the current state of the
art areas of research in autonomous path-planning and explora-
tion. Next, we introduce the specific formulation of the environment
model and UAV behaviour considered in our simulations, before in-
troducing the continuous form of our coordinated Monte Carlo tree-
search algorithm. Following this, we present empirical evidence to
substantiate the benefits of this approach, before concluding and dis-
cussing future work and applications we will explore.

2 Background

In order to best use UAVs to aid responders in disasters they must be
able to plan paths autonomously, as a group, in a decentralised man-
ner. This is particularly important given the implications of a UAV
failing in the field: any centralised system that relies on a single UAV
(or other central coordinator) will fail entirely if that central point
fails; whereas a decentralised system can—in principle—continue to
function as UAVs are removed. Furthermore, as we have already in-
dicated, it is beneficial to use prior information about the area to in-
form the flight paths of UAVs in order to maximise the likelihood
of discovering survivors. Currently, work on path planning in robot-
ics focusses primarily on reaching goal locations and frequently for-
mulates path planning as a control problem [14]. Conversely, in a
disaster scenario there need not be any final end-point to a UAV’s
path planning; rather the length of the exploration may be constrained
by—for example—battery life, and the number of people to be dis-
covered must be maximised over the length of the path. Alternatively,
much work has also been done to enable the use of vision algorithms
and belief data to track mobile targets or map an area [20]. However,
this area of research often focusses on locating a known number of
targets, or covering a bounded space for the purposes of mapping.
These foci are not relevant in a scenario where an unknown num-
ber of people are distributed over an already-mapped (but very large)
area, as is frequently the case with displaced populations during and
after disasters.

Against this background, we find closer similarities with work on
solving Markov Decision Processes (MDPs); specifically where loc-
ality of UAVs can be used to reduce calculation overheads. In par-
ticular, the generality of MDP formulations suits our construction
of a simulation environment where we are provided with numerical
data used for a belief map; and MDPs in general have a number of
well-explored algorithmic solutions available. Specifically, work by
[2] utilises factored tree-searches for partially observable MDP solu-
tions; exploiting problem structure to allow factorisation in a way
reflective of local state spaces and interactions. In a similar way,
we use factored trees in this paper to represent the available ac-
tions of UAVs in a disaster environment, factoring the value of loc-
ating people between UAVs within spatial proximity of each other.
However, our work deals with a continuous state-space (in this case
representing the continuous range of actions available to a UAV at

any given time); as well as a detailed model of the scenario spe-
cifically geared towards UAV applications. This requires significant
changes to the existing approach in [2] and [4], primarily in applying
sampling of the continuous action-space while still allowing UAVs to
coordinate with one another. Crucially, discrete approaches to MDP
solutions require some form of recognition that a particular set of
actions has been entirely explored: clearly where a continuum of ac-
tions exists this cannot be said to be true, since the number of in-
dividual actions available for selection is infinite. As such we have
had to adapt different approaches usually applied to planners deal-
ing with continuous spaces [11, 25] into the regime of coordinated
exploration.

3 Scenario Model

The overarching aim of disaster response work is to minimise the loss
to human life in the disaster area. Currently, we perceive there to be a
lack of suitable environment models that fully characterise this prob-
lem and express it in terms of sensing technology and UAV behaviour
that already exists. To this end, we introduce a novel formulation for
the exploration of a disaster situation where we require that UAVs fo-
cus on areas of perceived danger, but also where these regions inter-
sect with likely occupation by people. The rationale here, is that data
about a region containing known hazards (for example, high levels
of radiation or presence of fire) is only useful in preserving human
life when it is known or believed that there are likely to be persons in
the vicinity of a hazard; or will be at some future time. We give the
example of radiation as a possible manifestation of danger in a dis-
aster scenario. In principle, we can extend this to any phenomenon
that is present over an extended area and represents some risk to hu-
man life. This general approach could then represent several types
of hazard in a disaster area, such as flooding, chemical spills, or risk
from earthquake-damaged buildings. At this point, we consider the
location of such hazards as static. Such an assumption can be justi-
fied in scenarios with slow-changing conditions (relative to the time
taken by the UAVs to explore).

We will now outline the formulations describing the state of the
environment, and the actions available to the UAVs in our simula-
tions.

3.1 Environment Model

In considering a model for the distribution in space of a number of
civilian casualties, we exploit the ubiquity of mobile phone owner-
ship and assume the use of mobile phone signals as proxies for the
presence of a person. As well as having precedent in previous use
in disaster scenarios [15, 26], this has the specific advantage of al-
lowing identification of individual sources using unique identifiers
associated with each handset. While a priori knowledge of the num-
ber of victims in a given area might be unavailable, first responders
can maintain a belief distribution over unobserved victims while also
attempting to isolate signals that have been observed, in order to re-
duce the uncertainty in the location of victims.

As a result, we explicitly envisage a scenario where UAVs are
equipped with some form of detector capable of providing a (noisy)
estimate of the range of individual unique phone signals. Specific-
ally, we seek to localise the expected position of victims in order to
reduce the time taken by search and rescue teams to find (and sub-
sequently rescue) them. In more detail, we associate the uncertainty
of a person’s location with time taken to search the area for that per-
son. By moving the detectors around the space, the expected location

value can be determined with higher precision; effectively reducing
the area to be covered (and thus the time taken) by rescue services
from a large initial area to a much smaller location.

We consider a search area containing a number of signals s 2 S
indicating the presence of people in some danger (mapped spatially
by a two dimensional scalar function D : R2 7! [0, 1]), correspond-
ing to their expected likelihood of dying within the next time-step t.
The reward we gain R is related to the number of people we hope to
observe, their likelihood of survival, and a discovery time t indicating
how long it would take to rescue any victim:

R =

X

p
i

,d
i

8s
i

2S

pi · (1� di)
t

where di 2 D and pi 2 P represents the expected number of people
for a given signal si 2 S. Each signal si is mutually distinguish-
able from other signals, and the magnitude of each can be sensed
by UAVs within a set radius. In the first instance we assume a re-
latively flat prior belief of victim position, implying a long time to
locate an individual. However, with a set of observations (O) of—for
example—the strength of a mobile phone signal some estimate can
be made of the location of a person; effectively reducing the time to
locate them. We denote this using a time to find parameter tf that
decreases linearly with the estimated area of the location of an indi-
vidual phone signal.

As such, at any given time our reward is then:
X

p
i

,d
i

8s
i

2S

pi · (1� di)
t
f

(O)

whereas projecting reward to any arbitrary time in the future we have
for a series of observations at time t:

Rknown =

X

p
i

,d
i

8s
i

2S

pi · (1� di)
t
f

(O
t

)+t

By collecting information on signal sources we can use a popula-
tion Monte-Carlo (PMC) [7] to model the likely locations of a person,
which increases in precision as more measurements are taken, expli-
citly reducing tf . Thus reward is fundamentally a function related to
the danger at a given location believed to contain a victim, and the
precision with which the location of that person is known. Planning
can be performed by simulating the result of measurements on the
probability distribution for each person and extrapolating the effect
on tf in each instance.

To account for signals we have yet to observe, we include a term
for the expected number of victims outside of the range of obser-
vations. In principle the search area for such victims would be the
entirety of the area over which observations have yet to be recor-
ded, since the positions of the victims are known with no localisation
whatsoever. Thus for a continuous distribution of expected people
(pe):

Runknown =

ˆ
pe(x, y) · (1� d(x, y))tf dxdy

The global reward function at time t then simply becomes the sum
of the two components:

Rtotal = Rknown +Runknown (1)

It is worth noting that since the formulation of reward from the
population Monte-Carlo simulation is essentially separate from the
tree-search function outlined below, the two are (in general cases)
separately applicable.

3.2 UAV Behaviour Formulation

We consider simple UAV flight dynamics—including minimal con-
straints on performance—since the focus of our work is on plan-
ning rather than constraint optimisation, and because restrictions
on UAV behaviour can be included in subsequent iterations of the
model as constraints on the reward function. Thus the set of UAVs
U = {u1, . . . , um} traverse the space in iterations of a fixed distance
� per time-step t (i.e. at fixed speeds and altitudes); with a continu-
ous domain of available angles available to determine the direction of
the next action. The action vectors enabling UAV uk to move at the
next time step is defined as ak = (ak↵, ak� , ak� , . . .) where each
Greek index can be interpreted as an angle between 0

o and 360

o.
In theory the cardinality of ak is infinite, but as detailed below we
use continuous space tree-search methods to restrict our search to fi-
nite subsets. Each UAV selects a sequence of actions to produce its
trajectory Tk = [ak(t = 1), ak(2), . . . , ak(tend)] (for a trajectory
that ends at time tend); which together form the set of all trajectories
T = {T1, . . . , Tm}. Thus the collective goal of the UAVs is to plan
a set of trajectories to satisfy: T⇤

= argmaxR R(T).

4 The Coordinated Continuous Monte Carlo

Tree-Search Algorithm

In choosing Monte-Carlo tree search as the basis for our solution, we
note its ability to sample very quickly from large state spaces (tra-
ditionally used in solving games), and the flexibility with which it
can be applied to general problems [6]. To do this we exploit locality
between UAVs to factor the search space into local joint-action trees.
Furthermore, we allow trees to coordinate over shared factors (that
is, UAVs in multiple trees) using the max-sum algorithm [23] by ex-
changing messages to express the local reward gained by UAVs tak-
ing particular actions at future times. In other words, when selecting
which node in a tree to expand the individual trees are coordinated
over their shared UAVs to select mutually nonconflicting actions that
are maximally beneficial to both trees.

At this stage, we design the algorithm to plan on-line and re-
calculate the optimum action at each time-step. In this way we have
built-in robustness to temporal changes in the map (as well as not
requiring a priori knowledge of future coordination requirements).
We currently run simulations in a centralised fashion—insofar as
they are performed on a single computer—but with allowances for
multiple parallel threads representing the different individual calcula-
tions for each portion of the factored utility. In addition, we note that
the nature of the max-sum coordination is such that UAVs are not
required to have perfect information: it is sufficient that they know
their local utility and are able to share this with local neighbours.

Specifically, we introduce an additional step to the standard MCTS
process of tree growth. This growth is typically summarised: node
selection, expansion, rollout or simulation, and backpropagation [6,
16]. Most significantly, we modify the selection process to determine
which node to expand by coordinating in parallel between trees via
max-sum. We detail our approach in the following subsections.

4.1 Tree Construction

At each timestep in the simulation, the coordinated MCTS (Co-
MCTS) algorithm begins by calculating which UAVs require co-
ordination with their neighbours, leading to the form of the UAV-
based factor graph constructed in the joint-action creation function
J (Line 3), detailed fully in Algorithm 1. This is performed to estab-
lish whether coordination is needed in a given UAV’s locality: where

a UAV is spatially isolated from neighbouring UAVs, a local tree is
grown. The resulting groups of UAVs will form the basis of the factor
graph used in the max-sum calculation (Line 13 in Algorithm 1). The
result of J is represented formally by a set N = {n1, . . . , nf} that
represents the domain of the factor nodes to be coordinated. Specific-
ally, each member of N contains a set of actions corresponding to a
group of UAVs that require coordination. In this case, the correspond-
ing element in N—say ni—would be the set of actions available to
these UAVs: ni = {a1, a2, . . . , ak}. Trees are grown for each ni in
N , each of which in turn represents the factors in the max-sum graph
connected to the variables representing the available actions of the
UAVs. In more detail, trees are grown for each joint-utility between
interacting UAVs, and coordination between trees is performed when
trees share access to a given UAV. Individual nodes in the tree ni will
be indicated as n(k)

i , or from any arbitrary tree by n(k).

Figure 1. An example of four UAVs (u1�4) interacting via a max-sum
factor graph. Trees are grown for n1 and n2.

An example max-sum factor graph is represented in Figure 1.
Here, four UAVs may interact at the next time-step in the following
sub-sets: {u1, u2, u3} and {u3, u4}. As such, the algorithm main-
tains two joint trees for these sets, represented as the utility nodes n1

and n2, which must coordinate over the action of the UAV common
to both: u3. Framing this in terms of the action selected as a result
of the tree-search, the coordination serves to ensure the two trees se-
lect an action for a3 that is both mutually beneficial to both factored
reward functions, and also the same; since a3 can only take a single
action at the next time step, the two trees must “agree” on what this
action is.

4.2 Node Selection and Expansion

Algorithm 1 begins with the creation of the root nodes representative
of each factor seen in Line 6, which are recorded in the set Nr (Line
4). Following this, the creation and growth of branches is performed
� times inside the loop beginning at Line 8. This begins by exploring
down each tree, starting from the root node, to determine which node
to branch on next. Node selection is performed in accordance with
standard progressive widening [11, 25], where we sample randomly
from the action set of a node up to a limit of K actions per node,
with K defined as in [10] to be a parameter of constants C > 0 and
↵ 2 (0, 1) and the time of simulation t: K = Ct↵.

Line 9 introduces the current set of nodes (across all trees) to
be expanded next, Nnext, and Line 10 creates the set of previ-
ously expanded nodes Nprev . At Line 13 the max-sum algorithm
is used to maximise the value of rewards (as per Equation 1) the ac-
tions over each ni, returning a vector of favourable actions a⇤

=

(a⇤
1, a

⇤
2, . . . , a

⇤
m | a⇤

k 2 ak). Since each ni depends on a subset of
actions, the function select(n(k), a⇤

) serves to return only the actions

corresponding to a given n(k). This is then used as the argument to
create the new expansion to a node in Nnext in Line 16.

Algorithm 1 Coordinated MCTS

CoMCTS (U,D, t = 0)
1. for t in [1, . . . , t

end

]
2. //Creation of factor graphs given UAV locations//
3. N J (U)
4. N

r

 ;
5. for n

i

in N

6. append(N
r

) n

(0)
i

7. endfor

8. for eachstep in [1, . . . ,�]
9. N

next

 N

r

10. N

prev

 ;
11. while N

next

6= ;
12. //Max-sum coordination returns best actions for shared factors//
13. a

⇤ maxsum (N,N

next

)

14. for n

(k)
in N

next

15. //Actions relevant to n

(k) selected//
16. n

(k)
new

 expand
⇣
n

(k)
, select

⇣
n

(k)
, a

⇤
⌘⌘

17. if expansions
⇣
n

(k)
⌘
� K

18. remove
⇣
n

(k)
, N

next

⌘

19. append
⇣
n

(k)
, N

prev

⌘

20. endif

21. endfor

22. endwhile

23. for n

(k)
in N

prev

24. //Simulation (rollout) and backpropagation of results//
25. rollout(n(k)

new

)

26. backpropagate(n(k)
new

)
27. endfor

28. endfor

29. for n

i

in N

30. a⇤
i

= (bestactions (n
i

))
31. endfor

32. t t + 1

33. endfor

Although not explicitly tested, we note that this approach ensures
communications between UAVs need not be excessive. We note ex-
isting literature has shown at-length that max-sum in particular is
robust to low bandwidth and irregular message-passing [12, 13, 23].
In practice we envisage that where UAVs share a tree a single UAV
will handle the growth and planning of the joint actions.

4.3 Rollout and Backpropagation

The rollout portion of the MCTS (line 25 in Algorithm 1) is tradi-
tionally a coarse estimate of the affect of future actions as the result
of exploring a particular node in the action space, although some
more recent work has focussed on principled simulations using ex-
isting MCTS techniques [3]. In this example, we base the rollout on
a random-walk through the action space starting at the node just ex-
panded, biased in the direction of the last action taken. This method
has the benefit of showing not just the contribution of any random
series of actions, but of taking more actions similar to the one rep-
resented by the frontier node (for each UAV). Intuitively, a purely
random rollout from one node in a joint action tree will be insigni-
ficantly different from a rollout from any similar node. Conversely,
our rollout policy contributes to the exploration value of a node by
indicating possible future reward through continued tree expansion
with a preference for repetitions of the action itself.

Finally the rewards calculated at the leaf nodes are backpropag-
ated up the tree towards the root by iteratively updating cumulative
average rewards for each upstream node (Line 26). This is unchanged
from classic MCTS.

5 Empirical Evaluation

To verify the performance of our algorithm on data relevant to real-
world disaster scenarios, we used data from the Ushahidi project
[21] produced from crowd-sourced information during the 2010 Haiti
earthquake to generate D and S.6 This dataset was selected as it
represents one of the largest available sources of information about
spatial distributions of people and damage to buildings from any re-
cent natural disaster. Furthermore, with increased interest in simple
systems that allow crowds to provide data using their phones very
quickly after a disaster takes place, the prevalence of such data-
sets will invariably increase in future; further underscoring the im-
portance of testing our algorithm on this type of data. Specifically,
we extracted the level of damage and coordinates of buildings in a
2km square centred on the capital, Port-au-Prince. Damage was rated
based on crowd reports on a scale from 1 to 5, with 5 being most
severe.

Figure 2. Danger D as a function of position, created from Ushahidi
dataset centred over Port-au-Prince. Dimensions of 2km along each side.

We then constructed a decomposed grid world of size 200 ⇥ 200

of 10m ⇥ 10m cells, to form the basis of the danger function D.
Since damaged buildings represent an estimate of the damage in an
area and thus, the danger to the victims on the ground, we formed a
belief map of danger to the populace by summing the total number
of buildings above a threshold level (set to a crowd report of damage
3 and above) in each cell, before multiplying by a common factor to
convert the data into a map representative of expected fatalities (not-
ing the constraint imposed by the domain of D). The environment is
displayed in Figure 2 with a scale showing the value of d in each loc-
ation. In calculating values for use in the reward functions, the value
of danger is based on the mean expected position of the signal based
on the data collected. Where the spatial location is not yet clearly es-
tablished we have found that empirically the change in spatial danger
was smooth enough that nearby values tended to be close to the final
estimated value of di in most cases.

Assuming a UAV speed—typical of quad rotor vehicles—of
10ms�1 amounts to the traversal of one action of moving � = 10m

6 Available from http : //www.ushahidi.com

in one timestep of one second. We typically simulate UAV searches
over time horizons of tend = 1000.

The performance metric used is the percentage reduction in the
time for total cumulative discovery time tf (averaged over the num-
ber of UAVs) since it best reflects the ability of the UAV search to
pinpoint victims for rescue. We benchmark against a similarly co-
ordinated—but discrete—MCTS implementation, where the action
space of the UAVs is restricted to moving between the cells forming
the danger-function environment. This scenario poses similar chal-
lenges of coordination in large action spaces but benefits from exist-
ing work that deals with factored finite-space tree-search [2], and has
already shown its efficacy in planning over the Ushahidi dataset [4].

Figure 3. Result of randomised starting position tests for each of the
continuous coordinated MCTS, discretised (cellular) coordinated MCTS and
a simple lawnmower sweep-search; performed 106 times. Results indicate

reduction in tf averaged over the four UAVs in the scenario.

An initial simulation with four UAVs in randomised start loca-
tions on the map shown in Figure 2 is shown performing against a
discretised coordinated MCTS implementation (as described in [4])
and a simple lawnmower-style sweep search over the area for com-
parison. This shows a gain of around ~7% over a discretised search
space (Figure 3). We note that computation time of tree growth on
the order of hundreds of nodes typically took less than half a second,
demonstrating that computational complexity is not excessive.

Furthermore, we are able to demonstrate the consistency of our ap-
proach on addition of further UAVs to the simulation. Intuitively the
reward gained by each UAV in a well-coordinated algorithm should
suffer fewer diminishing returns when adding more to the scenario.
In detail, this is because any additional UAVs should still localise
close-to the same number of people as other UAVs in the environ-
ment, if they coordinate the exploration task effectively as a group.
If they do not, one would expect additional UAVs would explore the
same regions of the disaster space as those already present: which,
as discussed previously, offers negligible improvements to the global
reward function when compared to localising previously un-seen cas-
ualties. We demonstrate in Figure 4 that additional UAVs results in
a slower decrease in observed reward than in the discretised action
space. Most notably at 5 UAVs the difference in performance per-
vehicle is approximately 18% in favour of the continuous algorithm.
This benefit is due to the continuum of actions available being less
restrictive than in a cellular decomposition of the search area; allow-
ing more effective coordination.

Figure 4. Comparison of continuous and discrete coordinated MCTS in a
tend = 1000 simulation of varying numbers of UAVs. The continuous

space approach is not only better than the discretised approximation, it is
more consistent in its reward per-UAV added to the scenario. Results here

are averaged per-UAV in the simulation.

6 Conclusions

Motivated by increased availability of belief-data about disaster en-
vironments, we have introduced an implementation of a decentral-
ised, factored, coordinated Monte Carlo tree search algorithm for the
purpose of discovering survivors in a simulated UAV path planning
scenario. Tests were carried out on real-world data from the 2010
Haiti earthquake via the Ushahidi platform; an environment with a
continuous action space over a large area. We demonstrated the cap-
ability of our Co-CMCTS algorithm in sampling this space and plan-
ning paths, and demonstrated consistent performance gains over a
discretised algorithm in the number of survivors discovered of up
to 18%. Future work will seek to extend these solutions to differ-
ent densities of survivors, time-varying belief maps, and—as part
of ongoing collaborative efforts—will attempt field-trials of the al-
gorithms proposed above on real-world platforms to further demon-
strate the efficacy and real-world applicability of our contributions.

References

[1] S. M. Adams and C. J. Friedland, ‘A Survey of Unmanned Aerial
Vehicle (UAV) Usage for Imagery Collection in Disaster Research
and Management’, in Proceedings of the Ninth International Workshop
on Remote Sensing for Disaster Response, volume 9, Stanford, MA,
(2012).

[2] C. Amato and F. A. Oliehoek, ‘Scalable Planning and Learning for Mul-
tiagent POMDPs’, in Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, pp. 1995–2002, Austin, Texas, (2015).
AAAI.

[3] H. Baier and M. H. M. Winands, ‘Nested Monte-Carlo Tree Search for
Online Planning in Large MDPs’, in European Conference on Artificial
Intelligence (ECAI), volume 242, pp. 109–114. IOS, (2012).

[4] C. A. B. Baker, S. D. Ramchurn, W. L. Teacy, and N. R. Jennings,
‘Planning Search and Rescue Missions for Unmanned Aerial Vehicle
Teams’, in ICAPS Proceedings of the 4th Workshop on Distributed and
Multi-Agent Planning (DMAP-2016), London, (2016). AAAI.

[5] S. Bernardini, M. Fox, and D. Long, ‘Planning the Behaviour of Low-
Cost Quadcopters for Surveillance Missions’, in Proc. of 24th Int. Con-
ference on Automated Planning and Scheduling, pp. 445–453, Ports-
mouth, NH, (2014). AAAI.

[6] C. B. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, ‘A
Survey of Monte Carlo Tree Search Methods’, Transactions on Com-
putational Intelligence and AI in Games, 4(1), 1–43, (2012).

[7] O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert, ‘Population Monte
Carlo’, Journal of Computational and Graphical Statistics, 13(4), 907–
929, (2004).

[8] M. Cashmore, M. Fox, T. Larkworthy, D. Long, and D. Magazzeni,
‘AUV Mission Control via Temporal Planning’, in 2014 IEEE Interna-
tional Conference on Robotics and Automation, pp. 6535–6541, Hong
Kong, China, (2014). IEEE.

[9] Y.-b. Chen, G.-c. Luo, Y.-s. Mei, J.-q. Yu, and X.-l. Su, ‘UAV path plan-
ning using artificial potential field method updated by optimal control
theory’, International Journal of Systems Science, (October), 1–14, (jun
2014).

[10] A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, and N. Bonnard,
‘Continuous Upper Confidence Trees’, in Proceedings of the 5th In-
ternational Conference on Learning and Intelligent Optimization, ed.,
C. A. Coello-Coello, number 5, pp. 433–445, Rome, Italy, (2011).
Springer.

[11] R. Coulom, ‘Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search’, in 5th International Conference on Computer and Games,
eds., P. Ciancarni and H. J. V. D. Herik, volume 4630, pp. 72–83, Turin,
Italy, (2006).

[12] F. M. Delle Fave, A. Farinelli, A. Rogers, and N. R. Jennings, ‘A Meth-
odology for Deploying the Max-Sum Algorithm and a Case Study on
Unmanned Aerial Vehicles’, in The Twenty-Fourth Innovative Applic-
ations of Artificial Intelligence Conference, pp. 2275–2280, Toronto,
(2012). AAAI.

[13] A. Farinelli, A. Rogers, and N. R. Jennings, ‘Agent-based decentral-
ised coordination for sensor networks using the max-sum algorithm’,
in Autonomous Agents and Multi-Agent Systems, volume 28, pp. 337–
380, (2014).

[14] C. Goerzen, Z. Kong, and B. Mettler, ‘A Survey of Motion Planning Al-
gorithms from the Perspective of Autonomous UAV Guidance’, Journal
of Intelligent and Robotic Systems, 57(1-4), 65–100, (nov 2009).

[15] A. Goetz, S. Zorn, R. Rose, G. Fischer, and R. Weigel, ‘A Time Dif-
ference of Arrival System Architecture for GSM Mobile Phone Loc-
alization in Search and Rescue Scenarios’, in Positioning Navigation
and Communication (WPNC), 2011 8th Workshop on., pp. 1–4. IEEE,
(2011).

[16] L. Kocsis and C. Szepesvari, ‘Bandit based Monte-Carlo Planning’,
Machine Learning: ECML 2006, 4212, 282–293, (2006).

[17] A. Kolling and A. Kleiner, ‘Multi-UAV Motion Planning for Guaran-
teed Search’, in Autonomous Agents and Multiagent Systems, pp. 79–
86, (2013).

[18] M. Kothari and I. Postlethwaite, ‘A Probabilistically Robust Path Plan-
ning Algorithm for UAVs Using Rapidly-Exploring Random Trees’,
Journal of Intelligent and Robotic Systems, 71(2), 231–253, (sep 2012).

[19] M. Kothari, I. Postlethwaite, and D.-W. Gu, ‘Multi-UAV Path Plan-
ning in Obstacle Rich Environments Using Rapidly-exploring Random
Trees’, in Proceedings of the 48th IEEE Conference on Decision and
Control (CDC) held jointly with 2009 28th Chinese Control Confer-
ence, pp. 3069–3074, Shanghai, (dec 2009). IEEE.

[20] Y. C. Liu and Q. H. Dai, ‘A Survey of Computer Vision Applied in
Aerial Robotic Vehicles Yu-chi’, in OPEE 2010 - 2010 International
Conference on Optics, Photonics and Energy Engineering, number 201,
pp. 277–280, Wuhan, China, (2010). IEEE.

[21] N. Morrow, N. Mock, A. Papendieck, and N. Kocmich, ‘Independent
Evaluation of the Ushahidi Haiti Project’, Technical report, Ushahidi,
(2011).

[22] R. R. Murphy, ‘A Decade of Rescue Robots’, in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 5448–5449,
Vilamoura, Portugal, (2012). IEEE.

[23] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings, ‘Bounded
approximate decentralised coordination via the max-sum algorithm’,
Artificial Intelligence, 175(2), 730–759, (2011).

[24] United Nations Foundation, ‘Disaster relief 2.0’, Technical report,
United Nations, (2011).

[25] Y. Wang, J.-Y. Audibert, and R. Munos, ‘Algorithms for Infinitely
Many-Armed Bandits’, in Advances in Neural Information Processing
Systems, eds., D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
1729–1736, NIPS, 21 edn., (2008).

[26] S. Zorn, R. Rose, A. Goetz, and R. Weigel, ‘A Novel Technique for Mo-
bile Phone Localization for Search and Rescue Applications’, in 2010
International Conference on Indoor Positioning and Indoor Naviga-
tion, number September, pp. 15–17, Zurich, Switzerland, (2010). IEEE.

