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Abstract. As data provenance becomes a significant metadata in vali-
dating the origin of information and asserting its quality, it is crucial to
hide the sensitive information of provenance data to enable trustworthi-
ness prior to sharing provenance in open environments such as the Web.
In this paper, a graph rewriting system is constructed from the PROV
data model to hide restricted provenance information while preserving
the integrity and connectivity of the provenance graph. The system is
formally established as a template-based framework and formalised us-
ing category theory concepts, such as functors, diagrams, and natural
transformation.
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1 Introduction

Provenance is defined as “a record that describes the people, institutions, en-
tities, and activities involved in producing, influencing, or delivering a piece of
data or a thing” [1]. Data provenance is vital in validating the origin of infor-
mation and asserting its quality. Provenance has been adopted in many signifi-
cant domains for different purposes, for example validating experimental results
in scientific workflow systems [2,3] improving health services in healthcare [4],
trustworthiness of data from sensor networks [5], and managing access control
systems [6].

Sharing provenance may expose confidential information such as the medical
history of a patient, the identity of an agent, and the bank account details of an
individual. Prior to sharing provenance information in open environments such
as the Web, we need an effective approach to deal with such private information.
Regarding the graphical nature of provenance [7], certain parts of provenance
graphs can be removed using algebraic graph transformation rules [8].

However, removing confidential parts from provenance graphs or creating
new graph elements may affect the integrity of provenance graphs by causing
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false independency and false dependency [9]. False independency happens when
deleting items from the graph prevents us from inferring edges and nodes in
the transformed graph that can be inferred from the original graph. While false
dependency occurs if the items created by the graph transformation rules cannot
be justified from the original graph. Preventing both false dependencies and false
independencies have been guaranteed in the PROV graph transformation system
PROV-GTS proposed in [10] based on the PROV data model. However, due to
the complex nature and simultaneous edges of the PROV model graphs [11],
the construction of PROV-GTS results in a large set of graph transformation
rules, which makes validating the integrity of the provenance graph and proving
properties such as termination and parallelism difficult.

In this paper, the new notion of rule templates is used to construct a template-
based PROV-GTS by grouping the rules that consist of similar graph patterns
in templates. This template-based construction enhances the readability of the
rules and facilitates the proofs of various properties. The contributions of this
paper are (i) A graph rewriting system constructed from the PROV data model
to hide restricted provenance information while preserving the graph integrity.
(ii) A template-based framework formalised using category theory concepts such
as functors, diagrams, slice categories, and natural transformation. we adopt the
same construction methodology provided in [10], but by defining simpler edge
deletion rules rather than the complicated node deletion rules. To avoid false
independency, creation rules are defined to preserve relations between the nodes
adjacent to the source and target of the deleted edges.

A running example is provided in Sect. 2. The related work is discussed in
Sect. 3. The PROV data model is presented in Sect. 4. The typed provenance
graph with inheritance is formalized in Sect. 5. The provenance graph transfor-
mation rules are described in Sect. 6. The transformation rules are grouped in
templates in Sect. 7. Sect. 8 provides the proofs of graph integrity. Finally, the
conclusion and future work is presented in Sect. 9.

2 A Running Example

The provenance graph representation, based on the W3C standardized PROV
data model, consists of nodes and edges labelled with identifiers and character-
ized by optional attributes [12]. The PROV model graphs consists of the nodes:

entity , activity , and agent and a set of edges connecting those nodes.
A concrete provenance graph is used as a running example based on the

following scenario: A famous restaurant was targeted by its rivals via publishing
a fake photo of one of the restaurant’s products. The photo went viral via a
post on a social network website and caused an outrage which badly affected
the restaurant’s reputation. The restaurant managers immediately started an
investigation to track down the origin of that photo and prepare a report. They
found that the photo had been fabricated using two different photos and it first
appeared online as part of an article published on a website which mainly used
by rumour-mongers. The corresponding provenance graph that describes that
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situation is illustrated in Figure 1(a). To restore the restaurant’s reputation, the
managers decided to publish the report and use the associated provenance graph
as an evidence. But they do not want to reveal any personal information, for
instance, the entity post 0 has attributes which can be used to expose the identity
of the individual who initially posted the photo on the social network website.
The template-based PROV-GTS is capable of isolating the node post 0 without
affecting the connectivity and integrity of the graph, i.e. no false (in)dependency,
as shown in the transformed graph of Figure 1(b).

reportpost 0article

sharing 0

photo2

photo1 writing

der
genuseder

der
genuse

(a) The Original Graph

reportpost 0article

sharing 0

photo2

photo1 writing

useder
der

gen

info

(b) The Transformed Graph

Fig. 1. A Running Example

3 Related Work

Several graph redaction and sanitization approaches which are capable of ob-
scuring private provenance information by deleting or abstracting sets of nodes
have been proposed in the literature [13]. However, these approaches have not
been fully built based on the fundamental theory of algebraic graph transforma-
tion [14] or adhesive high-level replacement (HLR) systems [15], which makes
it difficult to look at various properties such as confluence and termination of
rewriting systems [16].

The graph grammar proposed in [8] performs edge and node contraction by
replacing two nodes by a new abstract node and eliminating the edge connect-
ing them. It also performs path redaction by replacing the entire path by an
edge between the two end points of the path, however this may result in false
independency since the system may eliminate the edges incident to the deleted
nodes in the path. Abstracting, anonymizing, and hiding nodes by using a new
non-functional node and then maintaining the essential relationships are pre-
sented in [9]. The system managed to avoid false dependency, however, hiding
the non-sensitive nodes that violate integrity policy results in false independency.

A chunk of entities (or activities) containing sensitive information replaced
by one abstract entity (or respectively abstract activity) is an approach sug-
gested by [17]. The algorithm avoids cycles and invalid edges by expanding the
set of abstracting nodes with new nodes. However, new relations may appear in
the transformed graph, as a result of node abstraction, which are not part of the
original graph resulting in false dependency. A graph transformation approach
proposed in [6] restricts access to sensitive provenance information by remov-
ing nodes or replacing them with the new invented abstract nodes and edges.
This approach may cause false dependency between the nodes adjacent to the
abstracted set of nodes.
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4 PROV Data Model and Rule Construction

The type graph of the core PROV model includes three node types, namely
entity, activity, and agent and a set of edges as illustrated in Figure 2(a). In
the proposed system, the sensitive parts of the provenance graph are specified
by a set of restricted nodes, depicted as grey nodes , while the non-restricted
(plain) nodes are illustrated as white nodes . These patterns represent the
confidentiality level of the graph nodes and are illustrated in Figure 2(a) as
data nodes with (dashed) edges from the graph nodes. Instead of using the
confidentiality level nodes, we draw the graph nodes with the corresponding
graph patterns that represent their confidentiality levels.

In addition to these concrete nodes types, an abstract graph node node
and an abstract confidentiality level node any (depicted as dotted pattern )
have been added to the PROV type graph which are essential in constructing the
template-based PROV-GTS. The (node and edge) labels are used for the purpose
of clarification, they are not part of the system’s formal description.

entity activity

node

agent
gen

use

link linklink

linklink

attr

asso

der

info

link

del

(a) PROV type graph

node

activityentity agent

any

restrictedplain

(b) PROV-GTS inheritance graphs

Fig. 2. PROV type graph and PROV-GTS inheritance graphs

Relations between nodes in the PROV data model can be summarized or
expanded using various inference rules. Some of these inference rules have been
used to construct the proposed graph transformation templates. In order to guar-
antee that deleting certain edges will not affect the dependencies between other
nodes in the graph, we construct conditional rules based on a set of properties
prov1, prov2 and prov3 from the PROV data model, as shown in Figure 3. Each
of prov1 and prov2 is constructed from the PROV model inference rules Infer-
ence 5 and Inference 6 respectively [11], while prov3 comes from the fact that
the derivation (der) edge implies the existence of an activity which connects the
generated and used entities [1]. These properties are used to build the required
conditions for the deletion rules and to construct the creation rules. Suppose
Graph is a category of provenance graphs as objects and inclusion morphisms
as arrows.

Definition 1 (PROV property). A PROV property provi is pi : Ci −→ Ei in
Graph for i = 1..3 where Ci and Ei are respectively premise and conclusion of
PROV properties, and pi is the obvious inclusion morphism.

http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference_text
http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference_text
http://www.w3.org/TR/prov-constraints/#generation-use-communication-inference
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A2A1
info A2

E

A1

usegen
info

prov1 ([11, Inference 5]) :
The existence of an entity gener-
ated by an activity and used by
another can be implied from their communication
(info) relation.

A2EA1
usegen

A2EA1
usegen

info prov2 ([11, Inference 6]) :
The communication between two activities can be in-
ferred if there exists an entity generated by one of the
activities and used by the other.

E2E1
der E2

A

E1
der

use gen prov3([1]) :
The derivation (der) edge implies the existence of an
activity which connects the generated and used entities.

Fig. 3. PROV Model Properties

The single-pushout (SPO) approach of algebraic graph transformation defines
transformation rules that consist of the left-hand side (LHS ) and right-hand side
(RHS ). The rule is applied on a graph G by replacing a match of LHS in G
by RHS resulting in a new graph H [18].

Deleting the edges connected to restricted nodes may result in omitting non-
relevant information. In the graph of Figure 4, we show why creating some nodes
and edges is important before deleting the edges connected to restricted nodes.
For example, if we apply the deletion rule in Figure 4(b) before the creation rule
in Figure 4(a), then we will no longer be able to infer the info edge between
the activities writing and sharing 0, i.e. causing false independency. So, it is
important to create nodes and edges as necessary to avoid losing information. But
nodes and edges must be created according to the PROV data model, otherwise
false dependencies may ensue. The LHS and RHS of each creation rule, such as
the one in Figure 4(a), are constructed from one of the properties prov2 or prov3.

LHS:
usegen

RHS:
usegen

info

reportpost 0articleG:

sharing 0 writing

der
genuse genuse

reportpost 0articleH:

sharing 0 writing

der
genuse genuse

info

(a) Creating info Edge

LHS:
gen

RHS:

reportpost 0articleH:

sharing 0 writing

der
genuse genuse

info

reportpost 0articleK:

sharing 0 writing

der
use genuse

info

(b) Deleting gen Edge

Fig. 4. Preserving Relations Before Deleting Edges

http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference_text
http://www.w3.org/TR/prov-constraints/#generation-use-communication-inference
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The PROV model allows simultaneous edges [11], for example, two or more
activities may collaborate to generate an entity ([11, Constraint 39]), or an entity
can be used by more than one activity. The simple transformation rules that
consist only of LHS and RHS are not enough to preserve simultaneous relations.
Regarding our running example, suppose another user shared the same post
on a social media website which resulted in another entity post 1 as shown in
Figure 5. The edge gen between the entity post 0 and the activity sharing 0
can be deleted since the info relation between writing and sharing 0 exists,
but it is also part of another use-gen pattern between the nodes sharing 1,
post 0 and sharing 0. Deleting this gen edge prevents us from inferring the info
edge between sharing 1 and sharing 0 (illustrated by the red dotted line). To
tackle this issue, we need to check this kind of patterns universally rather than
existentially using universal-existential conditions, as described in Sect. 6.

LHS:
gen

RHS:

reportpost 0articleG:

sharing 0 writing

post 1sharing 1

der
genuse genuse

info

der
gen

use

reportpost 0articleH:

sharing 0 writing

post 1sharing 1

der
use genuse

info

der
gen

use

Fig. 5. Transforming a Provenance Graph with Simultaneous Edges

5 Typed PROV Graph with Inheritance

In construction of the conditional rules in template-based PROV-GTS some con-
ditions are required to check frequent graph patterns and others are important
to check non-existence of particular graph patterns, i.e. negative conditions [19].
In both cases, abstract nodes are essential to avoid having many graph patterns
to satisfy a particular condition which allows us to merge similar conditions into
one condition and group the rules with similar patterns in templates. We ex-
pand the type graph of the PROV model to have an abstract graph node and an
abstract confidentiality level node via inheritance as shown in Figure 2(a). The
inheritance graphs of nodes are illustrated in Figure 2(b).

Definition 2 (PROV type graph with abstract nodes). A PROV type
graph is a distinguished graph TG = (NTG, ETG, CTG, BTG, sTG, tTG, cTG, dTG).
The sets NTG and CTG are called the graph nodes and confidentiality level nodes
with abstract nodes respectively, and ETG and BTG are the graph edges and
confidentiality level edges respectively. The functions sTG, tTG : ETG → NTG

assign to graph edges their source and target graph nodes and cTG : BTG → NTG

and dTG : BTG → CTG assign graph nodes and confidentiality level nodes to
confidentiality level edges respectively.

https://www.w3.org/TR/PROV-constraints/#generation-generation-ordering_text
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We adopt the definition of inheritance type graphs in [20]. Combining the
PROV type graph with abstract nodes and the inheritance graphs result in
PROV type graph with inheritance. Each node has an inheritance clan which
represents its subtypes.

Definition 3 (PROV type graph with inheritance). The PROV type graph
with inheritance is ITG = (TG, IN, IC,AN,AC) consists of a PROV type graph
with abstract nodes TG, the inheritance graphs IN and IC with the same set
of graph nodes and confidentiality level nodes as TG, and the sets AN and AC
which represent the abstract graph nodes and abstract confidentiality level nodes
respectively. The inheritance clans are defined by:

– ∀n ∈ NIN : clanIN (n) = {n′ ∈ NIN | ∃ path n
′ ∗−→ n ∈ EIN} ∪ {n}

– ∀c ∈ NIC : clanIC(c) = {c′ ∈ NIC | ∃ path c
′ ∗−→ c ∈ EIC} ∪ {c}

The type graphs with inheritance can be flattened to ordinary graphs, called
closure of type graph with inheritance, by adding normal edges implied by the
subtype edges and removing the subtype edges [20]. In our system, the abstract
graph node node can have an edge to each node in its inheritance clan. Also, each
node in clan(node), except agent, can have an edge to node. In addition, each
graph node has an edge to the abstract confidentiality level node any. The PROV
type graph with abstract nodes TG ( as illustrated in Figure 2(a)) represents the
closure of the PROV type graph with inheritance. So we can define the typed
PROV graph and the corresponding morphism directly with respect to the type
graph TG.

Definition 4 (Typed PROV graph with inheritance). A typed PROV
graph GT = (G, type) over ITG = (TG, IN, IC,AN,AC) is an abstract instance
of TG, i.e. (G, type : G→ TG) consists of four morphisms typeNG

: NG → NTG,
typeEG

: EG → ETG, typeCG
: CG → CTG and typeBG

: BG → BTG such
that typeNG

◦ sG = sTG ◦ typeEG
, typeNG

◦ tG = tTG ◦ typeEG
, typeNG

◦ cG =
cTG ◦ typeBG

and typeCG
◦ dG = dTG ◦ typeBG

.

Definition 5 (Typed PROV graph morphism with inheritance). The
morphism between two typed graphs with inheritance f : G → H consists of
four functions: fN : NG → NH , fE : EG → EH , fC : CG → CH and fB :
BG → BH such that fN ◦ sG = sH ◦ fE, fN ◦ tG = tH ◦ fE, fN ◦ cG = cH ◦ fB,
fC◦dG = dH◦fB, typeNG

⊆ clanIN (typeNH
◦fN ), typeCG

⊆ clanIC(typeCH
◦fC),

typeEG
= typeEH

◦ fE and typeBG
= typeBH

◦ fB. A partial graph morphism
g : G −→ H is a total graph morphism from some sub-graph K of G to H, where
NK ⊆ NG and EK ⊆ EG.

6 Conditional Graph Transformation Rules

The creation rules (e.g. Figure 4(a)) require negative application conditions to
avoid an infinite number of rule applications. Similarly, the deletion rules (e.g.
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Figure 4(b)) need universal-existential conditions to deal with the simultaneous
edges. To this end, the simple rules, which consist of LHS and RHS in the form
of r : L → R, must be extended by additional application conditions [16]. An
application condition is a graph constraint c(u, e) that is represented by a to-
tal morphism (c : u → e) in Graph. Suppose r : L → R is a simple rule and
c : u → e is a graph constraint, then these possible conditions can be defined:
(i) universal-existential ∀∃: if L → u is total and u ↪→ e is inclusion.
(ii) negative application condition NAC: if L → u is total and e is empty.
Now, a simple rule and a set of graph constraints can be combined to construct
a conditional rule.

Definition 6 (Conditional rule). A conditional rule ∇ = (r, C,M) consists
of a simple rule r : L → R, a set of conditions C = {c0, c1 . . . } and a set
of morphisms M = {m0,m1, . . . } where ci : ui → ei and mi : L → ui are
morphisms in Graph for i = 0 . . . |C| − 1.

The conditional rule ∇ = (r : L → R,C,M) is applicable on a PROV graph G
if the match f : L→ G satisfies the set of conditions C.

Definition 7 (Conditional rule satisfaction). Let ∇ = (r : L → R,C,M)
be a conditional rule and G be a PROV graph, then f : L −→ G satisfies C if it
(i) universally satisfies all g : ui −→ G and mi : L −→ ui for each ci : ui → ei
such that f = g ◦mi, and (ii) existentially satisfies at least one h : ei −→ G such
that g = h ◦ ci.

In Figure 6 two rules are illustrated, a deletion rule and a creation rule. In
Figure 6(a) the simple deletion rule shown in Figure 4(b) is extended with two
universal-existential conditions, first to check that for each incoming use to the
restricted entity there exists an info edge (u0, e0) and the second to ensure the
existence of an activity for each incoming der edge (u1, e1). These two conditions
are constructed from the PROV model properties prov2 and prov3, respectively.
Similarly, in Figure 6(b) a negative application condition (u0, e0) is added to the
creation rule in Figure 4(a) to avoid adding the same info edge again and again.

L:
b agen

R:
b a

u0:
b a cusegen

info

e0:
b a c

info

usegen

u1 :
b a d

dergen
e1 :

b a d

e

der

gen
use

gen

(a) A Deletion Rule with ∀∃

L:
b a cusegen

info

R:
b a c

info

usegen

u0:
b a c

info

usegen
e0: -

(b) A Creation Rule with NAC

Fig. 6. Universal-Existential and Negative Application Conditions

7 Grouping the Conditional Rules Using Templates

In this section, we define the notion of rule templates to group together the rules
that have similar graph patterns in left- and right-hand sides, as well as the set of
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conditions. For example, if we consider removing a use edge when the activity is
restricted, we end up with another rule with two universal-existential conditions
to ensure that for each incoming gen edge there exists a der edge and for each
incoming info edge there is an entity, as depicted in Figure 7(a). The constructed
rule has the same graph structure as the gen deletion rule in Figure 6(a) but
with different nodes. We define a template with the same structure of the two
rules by using the abstract node node, as shown in Figure 7(b).

L:
b ause

R:
b a

u0:
b a cgenuse

der

e0:
b a c

der

genuse

u1 :
b a dinfouse

e1 :

b a d

e

info

usegen
use

(a) Concrete Conditional Rule

L:
b a
link R:

b a

u0:
b a c

linklink

link

e0:
b a c

link

linklink

u1 :
b a d

linklink e1 :

b a

d

e

link

link
linklink

(b) Abstract Conditional Rule

Fig. 7. Conditional Rules With Concrete and Abstract Nodes (template6)

The rule templates have the same structure as the conditional rules but
consist only of abstract nodes and each rule template has a set of instance rules
with the same structure. The template is instantiated using the nodes and edges
from one of its rule instances to construct that rule. Regarding the rules with
similar shapes, we define an abstract rule with the same shape but by replacing
each concrete node with the abstract node node.

Definition 8 (Abstract conditional rule). Abstract conditional rule is a
conditional rule ∇A = (rA : LA → RA, CA,M) which is constructed from graphs
that consist only of abstract graph nodes.

Using the same construction methodology above, a set of rule templates, as
shown in Figure 8, is constructed. Each rule template is accompanied by two
tables, where each column in the first table with its corresponding column in the
second table represent respectively the set of nodes and the set of edges of an
instance of that template. Due to the limited space in this paper, we provide a
subset of the actual set of templates and a subset of the rule instances for each
template regarding only restricted entities and restricted activities. But this
subset is sufficient to show the formal description of template-based PROV-GTS.

The rule templates are defined based on categorical constructions such as
functors, natural transformation, co-cones, and pushouts [21,22]. The compo-
nents of each rule template can be mapped to the corresponding components
of the rule instances by a normal functor between the category that represent
the template to the category that represents the rule instances. But also, due
to the monomorphisms between the components of the rule instances, we can
merge those components in a single rule graph and map the template to it by a
constant functor rather than by a normal one.
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template1 (create-activity-out-der):

L:

ab c

R:

a

d

b c

u0:

a

e

b c

e0: -

1
a
b
c
d
e

1
ab der
ca link
db use
ad gen
ae use
eb gen

template2 (create-activity-in-der):

L:

bac

R:

bac

d

u0:

bac

e

e0: -

2
a
b
c
d
e

2
ba der
ac link
bd gen
da use
ea gen
bc use

template3 (create-info):

L:

bac

R:

bac

u0:

bac

e0: -

3
a
b
c

3
ac gen
ba use
bc info

template4 (delete-info-der-out):

L:

ab

c

R:

ab

c
4 5

a
b
c

4 5
ab info der
ac gen use
cb use gen

template5 (delete-info-der-in):

L:

ba

c

R:

ba

c
6 7

a
b
c

6 7
ba info der
ca use gen
bc gen use

template6 (delete-gen-use-out):

L:

b a

R:

b a

u0 :

b a c

e0 :

b a c

u1 :

b a d

e1 :

dab e

8 9
a
b
c
d
e

8 9
ab use gen
ca gen use
cb der info
da info der
de use gen
ea gen use

template7 (delete-gen-use-in):

L:

a b

R:

a b

u0 :

a bc

e0 :

a bc

u1 :

b ad

e1 :

a bd e

10 11
a
b
c
d
e

10 11
ba gen use
ac use gen
bc der info
ad info der
ed gen use
ae use gen

Fig. 8. Set of Rule Templates

Definition 9 (Rule graph). Let ∇ = (r, C,M) be a conditional rule with
r : L → R, C = {ci : ui → ei}, and M = {mi : L → ui} for i = 0 . . . |C| − 1
then the rule graph R is the union of components of ∇.

R = L ∪R ∪ {
|C|−1⋃
i=0

ui} ∪ {
|C|−1⋃
i=0

ei}

Such that the following diagram commutes for each (ui, ei) excluding ei = ∅:

L R

ui ei R

r

mi

ci

Figure 9 shows a graph transformation rule consisting of a left-hand side L,
a right-hand side R, a negative condition u0 (the only instance of template2),
and the rule graph that is constructed from the components of that rule.

Suppose GraphpITG and GraphITG represent the categories of typed graphs
with inheritance with partial and total morphisms, respectively. A diagram of
shape δ in GraphITG is the homomorphism D : δ → GraphITG where δ is a
shape graph of the diagram D [21]. We define a diagram from a shape graph that
represents an abstract conditional rule, to the rule itself and a constant functor
from the shape graph to each rule graph. Then, the template is a set of natural
transformation morphisms from the diagram to the constant functors.
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a bc
derlink

L

a b

c

d

derlink
use gen

R

ab

c

e

der link
genuse

u0

a
b

c

d

e

derlink
use gen

use gen

R

Fig. 9. Rule Graph for an Instance of template1

Definition 10 (Rule template). Given a diagram functor D : δ → GraphITG

on ∇A and a set of constant functors t : δ → GraphITG on R where δ is a
shape graph of the abstract conditional rule ∇A and R is a rule graph, then the
rule template τ is a set of natural transformation morphisms ψ : D → t such
that for each (f : X → Y ) ∈ δ, ψX = ψY ◦D(f) and (R, ψ) is a co-cone on D.

Based on the above definition, D(δ)/R is a slice category which is used in
defining the template satisfaction below.

Definition 11 (Template satisfaction). Given a diagram functor D : δ →
GraphpITG on ∇A = (rA : LA → RA, CA,M), a rule graph R, and a morphism
j : R → V in GraphpITG then V satisfies R if there exists a functor F :
D(δ)/R → D(δ)/V such that for each f : X → Y in D(δ) except rA : LA → RA

the following diagram commutes:

X

R V

Y j ◦ g = k

f

g

h

k

l

j

Suppose the writing activity was not provided in the running example as
illustrated in Figure 10 which shows an example of using a template for finding
a match of a rule graph in a provenance graph. To apply the rule which is
represented by the rule graph R as an instance of a template as defined above,
we use the single-pushout approach but instead of direct modification, the rule
application takes place through the template that represents the rule instance.

Definition 12 (Template application). Let ∇A = (rA : LA → RA, CA,MA)
be an abstract conditional rule, S be a shape graph consisting of only rA : LA →
RA. Given a rule graph R, a diagram functor D : S → GraphpITG on rA and
a constant functor F : S → GraphpITG on R, then there is a natural transfor-
mation η : D → F such that for V,W ∈ GraphpITG, V satisfies R, there exists
two co-cones (V, γ) and (W,µ) and the following diagram is a pushout:
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a bc

L

a b

c

d

u0

e0 = ∅

a
b

c

d

e

derlink
use gen

use gen

R

reportpost 0article
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Fig. 10. An Example on Template Satisfaction using template1 and the Graph V

D(L) D(R) b = c ◦ a co-cone

R γV = a ◦ ηX co-cone

V W µW = b ◦ ηY co-cone

D(f)

ηX ηY
γV µW

a b

c

For the creation templates, the triangle ηX = ηY ◦ D(f) represents a co-
cone as well. An example of using template in transformation rule application is
shown in Figure 11.
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Fig. 11. An Example on Template Application using template2 and the Graph V

The proposed graph transformation system is defined as a set of rule tem-
plates with one or more conditional rule instances for each template defined over
the type graph with inheritance ITG.

Definition 13 (PROV Graph Transformation System). A template-based
PROV graph transformation system PROV-GTS = (ITG, TEMP, INS) consists
of a type graph with inheritance ITG, a set of rule templates TEMP = {τi=1...7}
and a collection of rule instances INS where Ii ∈ INS is a set of conditional
rules belonging to the rule template τi.
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8 Provenance Graph Integrity

The integrity of provenance graphs is guaranteed by constructing the template-
based PROV-GTS based on the PROV data model so that avoiding false depen-
dencies and false independencies and preserving paths. Suppose G is the original
graph and H is the graph transformed by template-based PROV-GTS rules.

Theorem 1 (No False Dependency). The elements in H\G can be justified
by the properties of PROV data model, i.e. there are no false dependencies.

Proof (No False Dependency). The elements created by the creation templates
via their rule instances must be constructed from the PROV data model prop-
erties such that they can be inferred from the original graph G. The creation
templates are template1, template2 and template3. Each creation template has
one rule instance. The LHS and RHS of the instances of template1 and tem-
plate2 are inclusions to respectively premise and conclusion of prov3 while the
rule instance of template3 is inclusion to prov2.

Theorem 2 (No False Independency). Any two plain nodes in G are pre-
served in H along with all the edges between them including the edges that can
be inferred from G.

Proof (No False Independency). Since the creation templates create activity,
use, gen, and info regarding the restricted entities, in the following we examine
each rule instance related to restricted entities and show how they avoid false
independency by providing adequate universal-existential conditions:

– template4, 5: These templates delete der only when there is an activity con-
necting between the two entities.

– template6, 7: The condition (u0, e0) checks the existence of an info for each
incoming use when deleting a gen edge and for each outgoing gen when delet-
ing a use edge. Similarly, the condition (u1, e1) ensures that for each incom-
ing or outgoing der there exists an activity. These two universal-existential
conditions are sufficient to check all possible graph patterns that include the
deleted edge.

Theorem 3 (Path Preservation). Any path between two plain nodes in G is
preserved in H.

Proof (Path Preservation). The proof of Theorem 2 shows that the relation
between the nodes adjacent to restricted entities are preserved before deletion.
Now we examine the situation when the restricted node is an activity.

– template4, 5: These templates delete an info edge when there exists an entity
generated by the informant activity and used by the informed activity.

– template6, 7: The condition (u0, e0) checks the existence of a der edge for
each incoming gen when deleting a use edge and for each outgoing use when
deleting a gen edge and (u1, e1) ensures that for each incoming or outgoing
info there exists an entity.
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To proof the termination of our proposed system, the layered termination
criteria defined in [23] can be used by distributing the seven templates, rather
than the rule instances, over a number of deletion and non-deletion layers. The
details will be provided in the forthcoming full version of this paper.

9 Conclusion

A template-based graph transformation system is proposed capable of isolating
restricted nodes from provenance graphs as long as the integrity of the graph is
not violated. The system consists of a set of graph transformation rule templates
constructed based on the PROV data model. Each template has one or more rule
instances and rule application happens using the template via the rule instance.

Any future development of the system should include processing the edges
connected to the agent nodes as well as the agents that represent entities or
activities in the same graph. In addition, the system can be expanded to maintain
the provenance temporal information by preserving the sequences of operations
such as derivation and generation in provenance graphs. Finally, analysing the
rule applications that represent critical pairs is important to prove parallelism,
local confluence, and confluence of the system. A different line of investigation
is to look at some recent work on generic GTS which might be useful in this
context, for example an alternative to rule templates could be variability-based
graph transformation [24,25].
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