All-dielectric Nano-optomechanical Nonlinear Metamaterials

A. Karvounis¹, J. Y. Ou¹, W. Wu¹, K. F. MacDonald¹, and N. I. Zheludev^{1, 2}

¹ Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

² Centre for Disruptive Photonic Technologies and TPI, Nanyang Technological University, Singapore 637371, Singapore

A free-standing all-dielectric metamaterial can act as nonlinear medium at optical telecommunications wavelengths. We show that the resonant nature of localized electromagnetic and mechanical oscillation modes in a nanostructured silicon membrane provide for the realization of extremely large optomechanical nonlinearities, operating at intensities of only a few μ W per unit cell and modulation frequencies in the hundreds of MHz range, thereby offering a path to fast, compact all-optical metadevices.