New Materials for Metamaterials: Phase-change Chalcogenides, Topological Insulators, Perovskites, and Memory Alloys

B. Gholipour^{1, 2}, K. F. MacDonald¹, E. Plum¹, C. Soci², M. Tsuruta¹, and N. I. Zheludev^{1, 2}*

¹ Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, Southampton, SO17 1BJ, UK

² Centre for Disruptive Photonic Technologies & The Photonics Institute, Nanyang Technological University, Singapore 637371

* nzheludev@ntu.edu.sg

We introduce a new generation of plasmonic and dielectric materials used for the realization of metasurfaces and metadevices. These include broadband topological insulators with plasmonic response up to optical frequencies, nanostructured hybrid organic-inorganic perovskite metasurfaces with color-tunable absorption and luminescence, and phase-change chalcogenides and memory alloys for actively tunable metamaterials.