Appendix A

Database available

A selection of the most relevant data produced for this thesis has been made available for public access at http://dx.doi.org/10.5258/SOTON/397076. The database consist of a number of plain text files containing the mean deflection and pressure and skin friction coefficient corresponding to the cases pressed in chapter 4, as well as a set of binary files containing instantaneous and averaged flow DNS data.

A.1 Data structure

A.1.1 Mean w, C_p and C_f files

The .tar files named mean_w.tar contains a series of text files mean_w_\$case.dat, where the variable \$case changes for each cases according to the case names in table 4.1. The same structure applies to mean_ C_f .tar and mean_ C_p .tar.

Each mean_w_\$case.dat contains the deflection of the membrane at each position along the chord with respect to its original position, averaged in time. The data is stored in two columns, the first column contains the locations along the chord and the second columns is the averaged deflection, with a first line of text indicating the corresponding variable and case parameters.

Each mean_ C_p -\$case.dat contains the lower and upper surface pressure coefficient at each position along the chord. The data is stored in two columns, the first column contains the locations along the chord and the second columns is the averaged C_p . The first half of the data correspond to lower surface of the aerofoil and the second half to the upper surface. The data of both surfaces is separated by a line of text indicating the corresponding variable and case parameters.

The structure of the mean_ C_f -\$case.dat containing the data corresponding to the skin friction coefficient is identical to the mean_ C_p -\$case.dat files.

A.1.2 Flow instantaneous data files

The flow_field.tar file contains a file Subsaces_\$time1_\$time2.tar that comprises a set of binaries files, acoustic_1_var_5_\$time.raw, enclosing instantaneous flow field data from time step \$time1 to \$time2. The flow quantities stored in each file acoustic_1_var_5_\$time.raw are data[ρ , u_1 , u_2 , u_3 , p, $\nabla \cdot \vec{u}$]. Additionally a file acoustic_GRID_1.xyz contains the grid coordinates grid[x, y, z]. The file structure is given in tables A.1 and A.2.

A.1.3 Flow statistics data files

The flow_field.tar file also contains a file STAT_cont_\$time1_\$time2.bin that encloses time averaged flow field data from time step \$time1 to \$time2. The flow quantities stored in this file are data $\left[x, y, z, \overline{\rho}, \widetilde{u_1}, \widetilde{u_2}, \widetilde{T}, \overline{p}, \frac{\overline{\mu}}{\operatorname{Re}_{\infty}}, \sqrt{\overline{\rho'^2}}, \sqrt{\widetilde{T'^2}}, \sqrt{\overline{p'^2}}, \tau_{11}, \tau_{12}, \tau_{22}\right]$

Table A.1: Data structure of the acoustic_GRID_1.xyz files.

Bits	Data type	Quantity
32	integer	N_X
32	integer	N_Y
32	integer	N_Z
32	float	$\operatorname{grid}[nvar, i, j, k]$
		for $nvar = 1, 3$:
		for $k = 1, N_Z$:
		for $j = 1, N_Y$:
		for $i = 1, N_X$:
		$\operatorname{grid}[nvar,i,j,k]$

Table A.2: Data structure of the acoustic_1_var_5_\$time.raw files.

Bits	Data type	Quantity
32	integer	N_X
32	integer	N_Y
32	integer	N_Z
32	float	Mach
32	float	0
32	float	Reynolds
32	float	time
32	float	data[nvar, i, j, k]
		for $nvar = 1, 6$:
		for $k = 1, N_Z$:
		for $j = 1, N_Y$:
		for $i = 1, N_X$:
		data[nvar, i, j, k]

Bits	Data type	Quantity
32	integer	0
32	integer	1
32	integer	1
32	integer	1
32	integer	N_X
32	integer	N_Y
32	integer	N_Z
32	integer	2
32	integer	100
32	integer	3
32	integer	101
32	integer	12 (16)
32	integer	numbers of samples
32	integer	start time step
32	integer	end time step
32	float	time interval
32	float	data[nvar, i, j]
		for $nvar = 1, 15$:
		for $k = 1, N_Y$:
		for $j = 1, N_X$:
		data[nvar, i, j]

Table A.3: Data structure of the STAT_cont_\$time1_\$time2.bin files.

for the two-dimensional cases and additionally $\tau_{33}, \tau_{13}, \tau_{23}, \widetilde{u_3}$ for the three-dimensional cases. The file structure is given in table A.3.