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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
AERONAUTICS, ASTRONAUTICS AND COMPUTATIONAL ENGINEERING

Doctor of Philosophy
DEVELOPMENT OF A DECISION SUPPORT FRAMEWORK FOR SYSTEMS
ARCHITECTING IN AEROSPACE APPLICATIONS

by Amrith Surendra

The exploration of the architectural solution space tends to be iterative, where multiple
system architectures are explored over several cycles before a final solution is selected.
However the time and cost required to conduct this activity can be significant in the presence
of multiple system architectures. This thesis presents a decision support framework that
assists the system architect in generating, analysing, and identifying optimal system
architectures. The framework achieves this by using a formal modelling approach that
represents the architectural decision-making process as a Constraint Optimisation Problem
(COP), resulting in a graph representation of interconnected architectural decision variables.
The graph-based approach provides computational tools that enables the system architect
to automatically synthesise viable architectures based on the constraints defined, and
calculate high-impact decision variables within the network. This capability is enabled by
synthesising concepts from decision theory, multi-objective optimisation, and centrality
measures from network analysis to provide a visual representation of high-impact decision
variables. In applying this framework to the design of a low-cost Unmanned Aircraft System
(UAS), we identify the choice of design alternatives relating to the implementation of the
payload sensor system to have a high-impact on system properties and network connectivity.
Suggesting that the exploration of the solution space should be focused towards payload

implementation.
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Chapter 1: Introduction

he design of engineering systems can be described as an interdisciplinary approach
that involves not only technical effort, but also non-technical management activities
and processes throughout the systems life-cycle to ensure that the product satisfies
customer needs [1]. The design process, in simplified terms, follows a logical
sequence of activities and decisions that transform the operational needs of a system into a
description of a preferred system configuration [2]. The choice of a solution tends to depend
on the prior experience of the design team, and by the analysis carried out to explore multiple
system architectures. From a systems engineering perspective, a system architecture relates
to the earliest decisions made in the design of a complex system. A system in general is
represented by a decomposition of the system-elements into its associated sub-elements,
and the interrelationships that exists between those sub-elements. This view is represented
by Crawley et al [3] as “an abstract description of the entities of a system and the relationships

between those entities’.

System architecting on the other hand is defined as a process of decision-making. Hazelrigg
[4] defines three key elements in the decision-making process as, identification of options
or choices, development of expectations on the outcomes of each choice, and the formulation
of a system value function for ranking different system architectures. The process of system
architecting, as defined by Rechtin [5] is one that is driven by a customer’s purpose or
purposes, it involves working jointly with the customer to identify value judgements of the
client and a solution definition. The solution definition should not only cover the physical
representation, but other aspects such as cost, performance, human organisation, and other
elements that characterise the system definition. Rechtin, distinguishes system architecting
from systems engineering in its greater use of heuristic reasoning, lesser use of analytics,
closer ties to the customer, and a particular concern with the certification of readiness for
use. This view of architecting is also encompassed as the embodiment stage in classical
engineering design, in which functions are translated into physical entities, which are then

arranged in space such that they can achieve the desired function [5], [6].

A common approach to system architecting follows the process of decomposition, where the
functional intent of a system architecture is decomposed into its associated sub-functions.
System architectures are then defined by allocating several design alternatives to each
function, at a given level of system abstraction. This mapping between functions to elements
of form are represented in two arrangements. One is a representation of the elements of an
architecture in a matrix form, and the other is a representation of the elements as a graph

network. Figure 1.1 provides an illustrative example of the graph and matrix representation,
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Chapter 1: Introduction

in which a set of system functions and their associated design alternatives are represented
in a matrix. This is then translated into a graph representation by transforming the adjacency
matrix 4;; into a series of nodes and edges. In this instance the nodes of the graph represent
functions and the connecting edges represent relationships between those functions. In this

example the relationships are assumed to be bi-directional.

Funectional Design Alternatives

Elements
Function 1 | Design A | Design B | Design C 0 11
Function 2 | Design D | Design E | Design F '4[1 - 01 >
o @

Function 3 | Design G | Design H | Design F

Figure 1.1 Matrix and network representation of the relationship between functions

and elements of form.

This can be mathematically represented by defining system functions as decision variables
X = [x4, Xy, ..., xy], €ach decision variable being assigned a domain of values D; = [v;, vy, ..., v,],
where [v;,v,,..,v,] represents n design alternatives. The adjacency matrix 4;; is used to

quantify the existence of relationships between decision variables x; and x;, where i # j.

The allocation of design alternatives to each decision variable is generally considered to be
the divergent phase of design, as multiple design alternatives are considered for each
decision variable with no predefined solution in mind. The convergent phase of design starts
with ruling out infeasible or sub-optimal design alternatives, based on some pre-defined
criteria, from the architectural solution space. This gives a set of feasible design alternatives
that are carried forward for further analysis. This exploration process is illustrated in Figure
1.2.

Divergent Thinking Convergent Thinking

System Requirements Concept

Functionality and Performance |:> ‘ Solution
concept [

Measures Concept(s)

Concept

Concept
Selection

Concept
Generation

Concept
Integration

Figure 1.2: lllustration of the concept exploration process [7].

This process generally tends to be iterative as the architectural solution space is explored
multiple times before a final system architecture is selected. The drawback in applying this
exploration strategy is that the down selection process is predominantly based on prior
experience alone, which at the start of the program is difficult to judge due to the

uncertainties in requirements and the operating environment. However, if a pure exploration
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strategy is adopted, one in which all design alternatives are taken forward for further analysis
without the initial down selection step, the number of architectural trades will grow rapidly.
Resulting in the work load required to assess multiple system architectures to increase
significantly [8]. Thus, a balance needs to be struck between engineering judgment and
exploration, where exploration of the architectural solution space is carried out only when
the impact of changing design alternatives can have a significant effect on improving system

properties.

This thesis tackles the problem of architectural exploration by encoding the architectural
decision-making process as a Constrain Optimisation Problem (COP). The COP lends itself to
representing the system architecting problem as a graph, with decision variables represented
as nodes, and the connecting edges representing compatibility constraints between different
decision variables. The graph-based model provides a foundation to incorporate domain
independent tools, such as Constraint Satisfaction Problem (CSP) algorithms, and network
centrality measures to aid the architectural exploration process. The performance and cost
benefits of viable system architectures are then quantified by applying Multi-Attribute Utility
Theory (MAUT), which is then fed into a multi-objective optimisation framework to calculate
Pareto optimal solutions of utility and cost. The novelty of the framework presented in this
thesis is in its ability to calculate and visualise high-impact decision variables. High-impact
decision variables are quantified as those that are sensitive to changes in system properties,
due to changes in design alternatives within its domain, and strongly connected to other

decision variables within the network.

Standard techniques from global sensitivity analysis, such as Sobol/Saltelli sensitivity indices
are typically used to explore the parameter space to provide robust sensitivity measures in
the presence of nonlinearity and interactions amongst model parameters. The Sobol’/Saltelli
method provides variance-based sensitivity indices that quantify the relative contribution of
each parameter to the uncertainty in outputs. This requires the parameter set to be
continuous, however the domain of design alternatives within each decision variable are
discrete categorical parameters, and are therefore not appropriate for global sensitivity
analysis. The ADG (Architectural Decision Graph) framework, developed by Simmons [9],
overcomes this by applying a modified version of the main effects analysis to calculate
decision variable sensitivity. However, the ranking of important decision variables within the
ADG framework is qualitative, and can result in rank reversal based on the bias of the decision
maker. This thesis builds on the ADG framework to provide a quantitative measure of high-
impact decision variables, by accounting for both decision variable sensitivity and network
connectivity, by applying PageRank centrality [10]. In doing so, the focus of exploration is
aimed towards decision variables that have a significant impact on the Pareto optimal solution

set that is generated.

1.1 Design Process

Design in engineering systems has attracted a vast amount of research across numerous

aspects of the design process and its applications. According to the source: The Design
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Society [11], the number of books and proceedings published in the field of engineering
design is over 150, and the number of papers published is over 6300. These numbers are
taken from a single source, and is used to quantify the term ‘vast’. However, the true number
of publications are unknown, but for illustrative purposes the former numbers stated will
suffice. Due to the large number of publications within engineering design methods, multiple
definitions of design have emerged over the years, of which the most prominent description
of design being defined as a decision-making process [18-21]. Howe [16] states the role of

decision-making in engineering design as:

“Engineering design is a non-unique iterative process, the aim of which is to reach the best
compromise of a number of conflicting requirements. Whether the need is for a totally new
item or for a development of an existing one, the design procedure commences with an
interpretation of the requirements into a first concept. This is essentially a synthesis process
which involves decision-making. Once the first concept has been derived it can be analysed
in the context of the requirements. The concept is refined by an iterative

synthesis/analysis/decision-making sequence until an acceptable solution is achieved.”

This statement identifies that decision-making is inherently embedded within the design
process, and is core to all design activities. The development and synthesis of a system
architecture generally involves a series of decisions taken by a group of decision makers. The
outcome of these decisions typically define the requirements, targets, and architectural
solutions, based on the knowledge and experience of the decision makers to create an
optimal and robust system solution. However, most of the high level decisions are made early
on in the design process where the information available is limited, and requirements are
highly uncertain. To support the decision-making process multiple methods have been
developed, which all fall under the category of Multi-Criteria Decision Making (MCDM). Sen
and Yang [15] give an overview of MCDM methods that have been most prominently used in
engineering design.

The overall design process can be categorised into a series of phases, starting with
conceptual design, than preliminary design, and detailed design. This simplified overview is
represented in many research papers and design books [5, 23-24]. Conceptual design starts
with the identification of end-user needs, problem definition, collection of information in
regards to the operational use of the system, and the definition of a system architecture [18].
Preliminary design involves the refinement of the selected architecture, which is studied in
enough detail such that the decision maker is confident that the system will meet the
specified requirements. Resources can then be committed to manufacturing and production
of the system. Detailed design produces a complete engineering description of the system
ready for production, where the designed parts are fabricated, and assembled [5, 23]. This

iterative process is typically represented as a design spiral, as seen in Figure 1.3.
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Performance Reliability

Figure 1.3: The design spiral [13].

This thesis primarily focuses on the conceptual design stage. It is in conceptual design that
several high level questions are answered and decisions made, such as configuration
arrangement, size, mass, and aircraft performance. It is also the stage in design where there
is the greatest flexibility to influence system solution by exploring multiple design
alternatives and performing several trade studies. Figure 1.4 provides an illustrative
description of the traditional lifecycle cost curve seen in engineering design. The greatest
opportunity to influence the cost of a system lies in the conceptual design phase, this is
backed up by the fact that if most of the changes are made in the latter stages of design. The
effort required for re-design and the cost of making changes will dramatically increase, due
to design freedom being highly limited. To prevent costly re-designs much knowledge as
possible should be ascertained and be made available at the early stages of design, allowing
changes to be made before the cost is locked in. Thus, supporting the decision-making
process at the conceptual design stage has much wider implications down the design process

in developing an optimal and robust system solution.

Knowledge About Design

0% T T T T==="

Product
Release

Analysis
and Detail
Design

Development

Design

Prototype | Redesign

Preliminary

= Today's Design Process
*= Future Design Process

Figure 1.4: Cost-Knowledge-Freedom Relations [20].
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1.1.1 Design from a Systems Engineering Perspective

There are several definitions of systems engineering. The one that is most noticeable and
most prominent in the world of aerospace engineering is that defined by the National

Aeronautics and Space Administration (NASA):

“Systems engineering is a methodical, disciplined approach for the design, realization,
technical management, operations, and retirement of a system. A “system” is a construct or
collection of different elements that together produce results not obtainable by the elements
alone. The elements, or parts, can include people, hardware, software, facilities, policies, and
documents; that is, all things required to produce system-level results. The results include
system-level qualities, properties, characteristics, functions, behaviour, and performance”

[1].

The key concept of systems engineering is to take consideration of several aspects that
encompasses a collection of activities, processes, and techniques that are beyond the scope
of the technical design challenge. Its purpose is to enable the generation of a system that
provides a design solution that meets the needs and requirements of the system
stakeholders. This is achieved by providing a methodical approach that enables the design
and management of a complex system, where decisions are made based on higher level
system criteria, rather than individual performance attributes [18]'. Therefore, systems
engineering is seen as a means to achieving a design that is capable of meeting requirements
that are often conflicting in nature. The systems engineering process is typically iterative and
is applied more than once during each stage of the development cycle. A brief description of
the process, taken from the Systems Engineering Fundamentals handbook, published by the

Department of Defense (DoD) [2] is depicted in Figure 1.5.

The first step in the process is to analyse inputs, which tend to be requirements and
constraints defined by the system stakeholders. Based on the analysis of inputs, a set of
functional and performance requirements are characterised [18]. These higher level
functional requirements are further decomposed into lower-level functions, and its
associated performance requirements are also decomposed and allocated to lower level
functions. The end result of this analysis is a detailed description of the system, which
explains what the system does and how well it must do it at each level of decomposition. In
performing these steps the designer will gain a deeper understanding of the requirements,
and will often find issues within the original requirements set. This results in the designer to
revisit the requirements analysis stage of the process to redefine some of the requirements
that were deemed unobtainable. This iterative exercise is referred to as the requirements

loop.

I Attributes are defined as parameters of the system under consideration that are used to describe the
system. For example this could be performance or dimensional parameters such as thrust, mass, etc.
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Process Input
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Requirements
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— Environments
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+ Program Decision Requirements
+ Requirements Applied Through
Specifications and Standards

System Analysis
and Control
(Balance)

Requirements Analysis

+ Analyze Missions and Environments

+ Identify Functional Requirements

+ Define/Refine Performance and Design
Constraint Requirements

+ Trade-Off Studies

+ Effectiveness Analyses
+ Risk Management

+ Configuration Management
« Interface Management

+ Data Management

+ Perfromance Measurement
- SEMS
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Requirements Loop

Functional Analysis/Allocation
= Decompose to Lower-Level Functions
« Allocate Performance and Other Limiting Requirements
to All Functional Levels
= Define/Refine Functional Interfaces (Internal/External)
« Define/Refine/Integrate Functional Architecture

Design Loop
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+ Transform Architectures (Functional to Physical)
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« Select Preferred Product and Process Solutions

+ Define/Refine Physical Interfaces (Internal/External)

Related Terms:

Process Output

Customer = Organizations responsible for Primary Functions + Development Level Dependent
Primary Functions = Development, Production/Construction, Verification, — Decision Database
Deployment, Operations, Support, Training, Disposal — System/Configuration ltem
Systems Elements = Hardware, Software, Personnel, Facilities, Data, Material, Architecture
Services, Techniques — Specifications and Baselines

Figure 1.5: Transformation of system requirements to system synthesis [2].

The next step in the process is known as design synthesis, in this stage the physical
architecture of the system is generated. The physical architecture aims to meet all the system
functions, and its associated performance parameters defined in the previous step. The detail
to which the physical architecture is defined is dependent on the phase of the design process.
For example in the early phase of design, the architecture is defined only at a conceptual
level i.e. the system definition is abstract and does not define the detailed implementation
of sub-systems and components. The process of design synthesis is also an iterative process
that allows the designer to revisit the functional and performance requirements in order to
ensure that the physical system can meet the functional and performance criteria. This
process also requires the designers to carry out “technical management’ activities such as
trade-off studies and effectiveness analysis [18]. This ensures that alternative solutions are
considered, and the relationships between multiple aspects of the systems are defined.
Technical management activities also consist of risk management and progress assessment,
these activities must be monitored throughout the process cycle, which may involve

conducting technical reviews on a regular basis.

The output of the process is a wealth of data that describes the system configuration, and
the design processes that are required to develop a system. However, the framework does
not explicitly address the complexities in the decision-making process at each stage of
system development. This has resulted in a recent increase in research interest in the field

of Decision Support Systems (DSS), which are capable of coping with complex decision-
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making problems in engineering design. The aim of DSS is to aid the selection of optimal

system architectures that meet the defined criteria.

1.2 The Decision-Making Process

Decision-making in engineering design is a complex process that involves many
organisations, and generates of vast amounts of information during the design process.
Decision support can therefore be described as assisting the decision maker in making
decisions by providing a rational procedure for arriving at a solution. This is achieved by
identifying an appropriate course of action, among alternative courses, that aims to attain
the organisational goals, or maximise the satisfaction of stakeholder needs. Simon [21]
describes the decision-making process to be categorised into four major phases,
intelligence, design, choice, and implementation. A conceptual picture defining this process
is represented in Figure 1.6. In this process there is a continuous flow of activity from
intelligence to design to choice, with each phase being revisited as more information is

gathered and knowledge ascertained.

Intelligence Design Choice Implementation
Organisational objectives - " g
Formulate amodel Solution to the mode .
Search and scanning procedures | Implement chosen solution
S i Sensitivity analysis ) )
Toriin il o Set criteria for choice Ity Y e
Search for alternatives Selection of best alternative
Problem identification ) .
Predict and measure outcomes Plan for implementation

Problem ownership
Problem classification

Problem statement

Figure 1.6: Simon's four stages of decision-making [21].

The decision-making process starts at the intelligence phase, which aims to identify
problems and opportunities from different data sources. This begins with the identification
of customer/end-user goals, system objectives, and a means of satisfying them. Problems
arise as a result of differences between the defined goals, and the feasibility of the system in
satisfying them. At this phase attempts are made to find the problem symptoms, the

magnitude of its effect, and defined measures of addressing them.

The design phase involves developing models to analyse a set of feasible design alternatives.
Modelling of a system and its outputs (which for example include cost, performance,
reliability, and other system attributes) requires simplifications to be made of the operational
environment and the design itself. However, a fine line should be drawn in the assumptions
made, such that they do not over simplify the scenario and deviate away from reality. The
outputs of these models are used to quantify system performance and cost attributes, which
in-turn enables the decision maker to define courses of action in the implementation of the

system.
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The choice phase is where decisions are made, and where an action plan is drawn to follow
a certain course of system implementation. The boundary between choice and design phase
tend to overlap at times, as they are closely interlinked. Since models and its output
parameters are continuously changing as more information is acquired, the choice activities
frequently revisit the design activities. In this respect, the choice phase is considered to
encompass the search, evaluation, and recommendation of an appropriate solution to the
modelling of the design phase. Finally, in the implementation phase, decisions (but not
necessarily the system) are implemented. Successful implementation leads to problems being

solved, and failure results in returning back to an earlier phase of the process.

Simon [21] suggests that the most central and time-consuming part of the four phases are
the intelligence and design phase, due to their wider impact of influencing the final solution.
The effort required in designing and analysing a feasible set of design alternatives in systems
architecting is time consuming, as it often introduces a search space that is divergent in the
number of possibilities. Due to their importance in facilitating the decision-making process,
this thesis mainly focuses on developing tools and methods to address the intelligence and

design phase.

1.3 Decision Support Systems (DSS)

To handle the four phases of decision-making in engineering design many tools have been
developed, which fall under the category of Decision Support Systems (DSS). DSS can be
described as tools that an organisation uses to support and enhance the decision-making
activity [27-28]. DSS provides a simplified representation of a situation that is
understandable to the decision maker, thus allowing the decision maker to run sensitivity
analyses of inputs, and conduct what-if scenarios to better understand the behaviour a
system. A detailed literature review on the development and use of DSS, and its applications
in industry has been given by Power and Sharda [24]. In the decision support literature five
categories of DSS are recognised, these include: model-driven, communication-driven, data-

driven, document-driven, and knowledge-driven [24].

Model-driven DSS uses computerised systems that account for financial models,
representational models, and/or optimisation models to assist the decision-making process.
The development of quantitative models is a dominant component in the DSS architecture, it
makes use of datasets and parameters provided by the decision-makers to help analyse
situations and aid the decision-making process [24]. Communication-driven DSS provides
its functionality via information technology systems to support shared decision-making.
Data-driven DSS includes management reporting systems, data storage and data analysis
systems, and information systems. The functionality of these systems is provided by gaining
access to and manipulating large datasets to identify trends, or important system parameters
that would influence the view of the decision maker. Document-driven DSS makes use of
document retrieval and analysis capabilities to support the decision-making process. Finally,
knowledge-driven DSS suggests courses of actions, based upon information/data that has

already been stored. This system makes use of sophisticated tools such as artificial
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intelligence, and statistical analysis tools such as case-based reasoning, and Bayesian

networks [25].

In reality a decision problem is addressed by many decision support tools that span across
all these five categories. For example, information systems may include model-driven DSS
and knowledge-driven DSS modules for pre- and post-processing. This thesis focuses on
developing methods in model-driven DSS, though the application may have other decision
support subsystems incorporated within it. Model-driven DSS offers a wide variety of tools
to assess multiple decision problems that span across a wide variety of applications. This is
seen to be especially useful early on in the decision-making process, where data and
information that is available is limited. Model-Driven DSS broadly spans three sub-
categories, decision analysis, optimisation, and simulation. Decision analysis refers to
methods that provide quantified evaluations of possible courses of action. These evaluations
often include the assessment of the decision maker’s value structure to identify the decision

maker’s needs and objectives.

The application of multiple assessment methods in decision-making is described by Multi-
Criteria Decision Making (MCDM). The main focus of this thesis is in identifying an
appropriate assessment method that captures the value of the system stakeholders, and in-
turn aid the architectural exploration process. The following sub-sections provide a brief

introduction to MCDM and systems architecting.

1.4 Systems Architecture and Systems Architecting

There have been numerous definitions over the years in describing system architectures. This
thesis takes the approach presented by Dickerson and Mavris [18], and focuses on the
definition given by the electrical engineering and software engineering community. From:
IEEE Std 610.12-1990:

“ISystem] Architecture is the organization of the system components, their relations to each

other and to the environment, and the principles guiding its design evolution.” [26].

From Miller and Mukerji:

“The architecture of a system is the specification of the parts and connectors of the system

and the rules for the interactions of the parts using the connectors.”[27].

System architectures generally tend to evolve over long periods through the program life, as
technology matures to a point where the system architect feels that the behaviour and
interactions of the system/sub-systems are understood. Crawley [3] identifies the
importance of a systems architecture, in that it provides a means of understanding the
complexity of the system, a means to design systems, and a means to manage systems. The
importance of system architectures is also identified by its influence on the system “ilities”-

flexibility, scalability, maintainability, reliability, and survivability, its influence on functional

10
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behaviour, which can be intended or unintended (emergent behaviour), and its influence on

the complexity of system operations. This is illustrated by Figure 1.7.

Fuctional
Behaviour

"jlities" ®€————>» Architecture €——>» Complexity

Emergent
Behaviour

Figure 1.7: The central role of system architecture on complexity, “ilities”,

functional behaviour, and emergent behaviour [3].

Systems architecting is referred to the process of creating a system architecture [9], which in
general involves identifying system functionality i.e. what the system is supposed to do and
how it will do it. The process starts with an initial set of requirements from the customer/end-
user, describing the system outcomes and constraints imposed by the operational
environment. This provides an initial boundary of the possible design alternatives that are
viable in the implementation of the system. At this stage several system architectures are
evaluated and information relating to system behaviour is obtained. Based on this
information, and from previous experience of the decision maker, decisions are made
regarding the implementation of the system. This in general will result in a reduction of the
design space by removing infeasible system solutions, which in turn will impact the feasible
of other system functions. This process is represented in Figure 1.8. The decision-making
process thus results in the architectural solution space to become constricted, by reducing
the set of design alternatives that are acceptable. The process of decision-making can
therefore be defined through a network representation, where each node defines a system
function and the arrows represent the constraints imposed by the decision maker that results
in the reduction of the architectural solution space. The network representation depicted in
Figure 1.8 shows each point in space as a feasible system architecture, which to some extent
satisfies all of the needs and goals specified. In this space decisions are made to define a set
viable system architectures that are carried forward for further analysis. This can be thought

of as a partition and selection operation in the architectural solution space.
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Figure 1.8: Impact of the system architecting process on the architectural solution
space [9].

1.5 Multi-Criteria-Decision-Making (MCDM)

To develop a successful design various stakeholder needs have to be met, which can include
cost, performance, environmental impact, operational availability, and other metrics of
interest. In order to find the best compromise design solution, the decision maker is required
to balance multiple, and potentially conflicting, objectives and transform these
objectives/needs into a solution. The balancing of objectives/needs requires the use of
MCDM methods. MCDM methods provide a systematic approach that employs decision rules
and algorithms to formulate the design problem and provide support to the decision maker
in reaching a final system solution [19]. In order to solve a MCDM problem some necessary
information needs to be determined prior to applying any method. This includes a well-
defined measurable criteria, preference information on the criteria, alternative system

architectures, and a repeatable and transparent decision-making method.

The gathering of this information beforehand can be achieved by applying qualitative and
quantitative methods, which are broadly grouped into two classes, Multi-Attribute Decision
Making (MADM) and Multi-Objective Decision Making (MODM) [15], [28]. MADM techniques
focuses on ranking and selecting the best solution from a set of design alternatives, based
on a prioritised set of attributes of those alternatives [19], [28]. An example of this is an
airline selecting an aircraft from a competing set of aircraft concepts. MODM methods on the
other hand are more appropriate for design applications, as they focus on multiple objectives
within the continuous design space, and are subject to active constraints. MODM methods
relate to identifying the best design, within the design space, that satisfies a given set of
constraints. This relates to an optimisation problem, where system objectives are maximised
or minimised in order to identify a solution with the best values of those objectives. The
combination of methods used in MODM and MADM form the overall solution for MCDM, as

12
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depicted in Figure 1.9 . Since MCDM focuses on selecting the best solution from a set of
conflicting objectives, it requires trading objectives to identify a set of designs from the
feasible design space that are considered optimal. Identifying a set of design alternatives that
are within the optimal solution set and are worthy of further consideration are formally
referred to as the set of non-inferior or non-dominated solutions. The concept of non-

inferior or non-dominated solutions can best be described via the concept of Pareto

optimality.
System Design
Optimisation Alternative Selection
Multi-Objective L Multi-Attribute
Decision Making Decision Making
(MODM) (MADM)
|
Multi-Criteria
Decision Making
(Mcpm)

Optimal System
Solution

Figure 1.9: Multi-Criteria Decision Making (MCDM) Framework [19].
1.5.1 Pareto Optimality

Pareto optimality can be described by first defining the multi-objective optimisation problem.

The multi-objective problem can be defined mathematically as a set of objectives J = f(x)
[(i(®), ....., i X)], where each objective is a different function of the inputs, x, such that, J, =
fx(®). The optimisation problem can also be subject to a set of equality constraints h;(x),
inequality constraints g;(x), and the design variables x upper and lower bound values. The
aim of the optimisation problem presented in this thesis is to minimise the set of objective
functions that depend on the vector of design variables x, and on a set of constraint functions

[h;(X), g;(X)]: This is represented mathematically as:

Minimise J=1fx) = [(i(X), -, i X)]
Subject to. h;(x) =0, i=12,..,p
g;(x) =0, j=12,....m

xb<x,<x¥, q=12,...n (1.1)
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The solutions obtained from the optimisation problem are said to be Pareto-optimal, in that
they are non-dominated in the objective space. Non-dominated solutions can be defined as
a solution J* for a given set of inputs x* such that no other feasible solution exists for the
same x that is better on all objectives J, i.e. there are no other feasible solutions in the design
space that has the same or better performance than the Pareto optimal solutions, considering
all the objectives [29]. Mathematically dominance can be defined as being strong or weak
dominance. For example, consider output solutions J! and J?, in the case that J! dominates

J? weakly if:
JE< JAvie{1,2,...,k} and J} > j? for at least one i (1.2)
J' dominates J? strongly if and only if:
JE< JEVie{1,2,...,k} (1.3)

Figure 1.10 shows a hypothetical two-dimensional Pareto front, which contains Pareto
optimal solutions for a set of system architectures. A system architecture in this instance is
represented as a combination of design alternatives, which is defined through a feasible value
assignment from the domain of each decision variable i.e. a system architecture X; is defined
as: Xj = [x; = Vg, Xp = Vg, X3 = Uy, ... Xy = V], Where v, is some feasible value assignment within
the domain of each decision variable. System designs on the other hand are variations of a
given system architecture, where each system design is defined by a unique set of values, for
the design variables x. These values are represented by the interior points in the hulls of
[X1,X2,X5,X,4], as shown in Figure 1.10. The global Pareto front of system architectures is
obtained by concatenating the Pareto frontiers of all non-dominated system designs, from
each system architecture. This method was originally presented by Messac and Mattson [26]
and is defined as the set based Pareto frontier (S-Pareto front), which defines the notion of

dominance for concepts i.e. sets of solutions, as opposed to individual solutions.

Objective [,

|Utopia Point

Global Pareto front

v

Objective J;

Figure 1.10: Two-dimensional Pareto frontier and feasible design space [30].

The selection of a solution from the Pareto frontier still requires a judgment to be made in

regards to the relative importance of each objective. These judgments are generally specified
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by the decision maker, which in turn is backed up by market valuations and customer
demands. However, as the number of objectives are increased, and thus the complexity of
the decision-making process increases, the number of non-dominated solutions will also
increase dramatically [36-37]. The allocation of weights to each objective becomes harder to
quantify by the judgement of the decision maker alone. This requires the use of MCDM
methods to aid the identification of optimal system solutions in a complex multi-objective

problem.

MCDM methods have been developed to handle more complex decision problems with
multiple objectives, most of which provide a set process for the decision maker to follow
through to get to the final solution. This generally involves converting a large multi-objective
problem into a smaller multi-objective problem with one or two objectives. This has been
the focus of MADM. On the other hand, MODM focuses on methods to identify the Pareto
frontier. This is typical achieved via the weighted function approach, where a set of weights
are introduced for each objective and the multi-objective problem is transformed into a
single objective problem. The single objective problem is in-turn optimised to find the
optimal solution set for the given weighting function [33]. Repetition of this process with
different weighting functions allows most of the non-dominated solutions to be determined.
To avoid weighting functions designers have turned to population based search schemes to
construct the Pareto front. In such schemes designs are compared with each other to identify
high quality designs. The spacing between competing designs are also compared such that
the search can be tailored to progress towards the Pareto front that is evenly distributed [34].
There are multiple variations to the two methods just described, which aim to provide more

efficient search strategies by speeding up the convergence process.

In recent years, much research has emerged in addressing architectural optimisation and
design space exploration in aerospace systems. Buonanno et al. [9,10] have developed a
multi-criteria interactive genetic algorithm (GA) in application to the design of a supersonic
transport aircraft. In this a GA is used as a coarse search method in exploring the architectural
solution space [11]. Similar approaches have also been taken by Brown and Thomas [35], and
Singh and Dagli [36], in the exploration of Pareto optimal system architectures by making
incremental changes to a starting baseline architecture. Ross [37] presents a review of several
tradespace exploration methods that expand upon the Pareto front analysis to account for
performance and cost, system flexibility, and robustness. However, these approaches require
the architectural tradespace to be fully enumerated prior to search. Thus, the search for
Pareto optimal solutions is dependent on the initial set of system architectures that were

chosen to be enumerated.

In addition to searching the solution space for optimal standalone system architectures,
several decision support tools have been developed to study the evolution of an architecture
through multiple design alternatives. Chapter 3 presents a brief overview of some of the

methods that have emerged over recent years in addressing optimisation problems in
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engineering design. For a more in-depth review of the advancements in different

optimisation methods and its applications the reader is referred to Keane and Nair [13].

1.6 Research Aims and Objectives

The following section outlines the scope of this research, and its objectives to achieve the

proposed research aim. The research aim is as follows:

To develop a decision support framework that is able to aid the system architecting process

to identify optimal system architectures, and identify high-impact decision variables.

The objective of this research is focused towards developing a decision support framework
that captures the knowledge of the decision maker, in combination with quantitative data
from concept analysis. This in-turn is used to identify high-impact decision variables that
have a significant impact on system properties and strongly influence the feasibility of design
alternatives of other decision variables. The framework should be able to capture the
knowledge of the decision maker by first enabling the decision maker to generate a set of
design alternatives that satisfies system functionality, and second identify the compatibility
of different design alternative. The captured knowledge should in-turn facilitate the
understanding of the decision rational, and provide a justification to the exploration of

different system architectures.

The second part of this framework is focused towards knowledge representation, where
optimal system architectures, and high-impact decision variables are readily presented to
the decision maker. This requires the definition of optimality i.e. the choice of an appropriate
objective function, or a set of objective functions that captures the needs of the system
stakeholder. The research objective of this thesis is therefore focused towards defining an
appropriate MADM method that captures the needs of the system stakeholders. This requires
capturing stakeholder needs, which in-turn is used to quantify Pareto optimal architectures

and high-impact decision variables.

1.6.1 Research Question and Hypothesis

Based on the literature review presented in this chapter it has been established that effective
decision-making in engineering design is integral to the successful implementation of the
system within its operational environment. It has also been established that decisions made
based on pure judgement of the decision maker alone does not quantify for rigorous
exploration of the solution space. However, a strategy based on pure exploration, where
every architectural combination is analysed is not feasible. This exploration process is limited
due to the availability of time, and the allocated budget for architectural exploration.

Therefore, the following question is posed:

Is there a middle ground where the exploration of the architectural solution space combines
both the experience and knowledge of the design team, with the quantitative analysis of

multiple system architectures to identify an architectural exploration strategy?
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In order to answer this question, the following hypothesis is made, which is the subject of

this research study:

The needs for the exploration of the architectural solution space can be met by incorporating
methods from systems engineering, decision theory, design of Experiments (DoE), multi-
objective optimisation, and graph theory. The integration of these methods into an
overarching framework will enable a more focused architectural exploration strategy, with

the aim of maximising system utility and minimising LCC.

The hypothesis presented above is motivated through several key concepts, which can be

best introduced through a series of questions. The questions are as follows:

Question 1. How to capture and represent the knowledge of the decision maker?

Question 2. How to encode the captured knowledge of the decision maker to represent
decision variables with a set of design alternatives, a set of constraints between

decision variables, and a means of removing infeasible system architectures?

Question 3. How to capture the needs of system stakeholders, and translate them into

a set of objective functions to allows for system optimisation?

Question 4. How to represent the captured information/data to the decision maker,
such that optimal system solutions, and high-impact decision variables can be readily
identified?

Through the course of this thesis the above question will be answered, which in-turn should
validate the overall research hypothesis. The concluding answers to these questions will be
presented in the final chapter of this thesis.

1.7 Thesis Overview

This section provides a brief overview of the thesis outline. The overview is divided into the

contents of each chapter.

Chapter 2 focuses on identifying an appropriate MADM, or Value-Centric Decision Making
(VCDM) method that captures the value stream of the system stakeholders. This chapter
provides an overview of different MADM and VCDM methods that are already available in
literature. In comparing all the available methods it is found that Multi-Attribute Utility
Theory (MAUT) best meets the needs of value-focused decision. MAUT achieves this by

providing a means of aggregating multiple system attributes to form a single utility value.

Chapter 3 gives an overview of MODM methods, where the focus is split into prior and
posterior articulation of preference information. This thesis makes use of a combination of
methods in prior and posterior articulation. Multi-Attribute Utility Theory (MAUT) is used to

capture the preference information of the system stakeholders prior to optimisation.
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Posterior methods, such as NSGA-Il and surrogate based optimisation are applied to identify
Pareto optimal solutions, with the aim of maximising the utility function and minimising the
life-cycle cost (LCC) function. The chapter concludes by describing the optimisation

framework that will be applied in this thesis to identify Pareto optimal solutions.

Chapter 4 addresses the methods available in literature to construct and aid the architectural
decision-making process. Following a similar structure to Chapters 2 and 3, it provides an
overview of methods that are available in literature to construct the architectural decision
problem. Here, three common metric are introduced to evaluate the validity of different
methods: Construction, Search, and Representation. In applying these three metrics it was
found that a combination of methods were required to address the architectural decision

problem.

Chapter 6 introduces the reader to the decision support framework developed in this thesis,
which combines methods and tools defined in previous Chapters. The framework can be
broken down into three categories: Construction, Search, and Representation. The
Construction and Search phases have already been addressed in Chapter 4. The
Representation phase breaks presentation of data into two formats. One representing Pareto
optimal solutions by plotting data on a utility versus Life-Cycle Cost (LCC) axis, which can be
used to identify the Pareto front. The other format focuses on representing high-impact
decision variables to the decision maker, in order to aid the architectural exploration process.
The combination of all three phases encapsulates the architectural decision problem, which

in turn should aid the decision maker to effectively search the architectural solution space.

Chapter 7 introduces the Unmanned Aircraft System (UAS) case study that is used in
validating the developed decision support framework. This case study is loosely based
around the 2Seas research project conducted by the University of Southampton. The 2Seas
research project is focused towards the development of an UAS for maritime surveillance.
The aim of this chapter is to introduce the reader to the integrated systems approach in
designing an UAS. This not only includes aerodynamics and structure, but includes other
elements such as communications system, payload sensors, and the delivery of electrical
power to on-board avionics and payload systems. This thesis present a modelling
environment that captures all the major system elements within an UAS. However, for
simplicity and to ensure that the simulation environment is within the scope of this thesis,
the methods encoded are low fidelity models that are intended for conceptual analysis. The
simulated results are compared against the real 2Seas UAS system values to validate the
accuracy of the modelling environment. Finally the modelling environment is integrated into

the optimisation framework to identify Pareto optimal solutions.

Chapter 8 applies the decision support framework to the design of a small low-cost
Unmanned Aircraft System (UAS). In applying the decision support framework, multiple
design alternatives pertaining to the propulsion system type, communications systems,

electrical power generation systems, and payload sensor systems where identified. To ensure
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that only viable system architectures are analysed, physical/preferential constraints are
captured using logical constraint statements. This information is then passed onto the Search
phase to generate a set of viable system architectures. The generated system architectures
are modelled using simple semi-empirical and analytical models to identify Pareto optimal
solutions. The concatenation of Pareto fronts from all system architectures results in the
calculation of the global Pareto front. The Pareto front data is also used to capture the
sensitivity of each decision variable to changes in system properties, which is then fed into

the network centrality measure to identify high-impact decision variables.

Finally, Chapter 9 concludes with a list of contributions made to address the questions
defined in Chapter 1. Recommendations for future work in the areas of system architecting

are made to address issues that have not been tackled in this thesis.
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Chapter 2: Value-Centric Decision

Making

esign of an engineering system involves the satisfaction of multiple objectives. It is

often the case that improving one objective will inevitably result in at least another

objective being worst off. Thus, the design of a system generally tends to be a

compromise between multiple objectives. To find the best compromise design
solution decision makers are required to take in account of a variety of system attributes of
interest. In the example of commercial aircraft design, the decision makers will have to
contend with cost, emissions, aircraft performance, and other design factors. Thus, design
may inevitably be formulated as a Multi-Criteria Decision Making (MCDM) problem. To solve
a MCDM problem some necessary factors have to be known beforehand, which include a
well-defined measurable criteria, the preference information of the criteria, design
alternatives, and a repeatable and transparent decision-making method. The chosen criteria
needs to be well defined, such that system objectives can be fully represented. This typically
includes a set of system attributes, or a single attribute that captures the preference structure
of the stakeholders. To aid the decision-making process several decision support tools have
been developed to provide a systematic process to formulate the decision problem, and
provide guidance to the decision maker in reaching a final solution.

This chapter focuses on identifying an appropriate value centric decision-making (VCDM) or
multi-attribute decision-making (MADM) method that identifies and captures the preference
structure of system stakeholders. This will enable optimal system architectures to be
identified that meet the needs and objectives set out at the start of the program. This chapter
starts by defining the term value with respect to the system under consideration, and follows
on to describe different VCDM and MADM methods that are available in literature. Finally, the
chapter concludes by choosing an appropriate method that, 1) meets the stakeholder needs

and objectives, and 2) represents the reality of decision-making in systems architecting.

2.1 What is Value?

The definition of value is dependent on an individuals or organisations perception of how to
quantify value. Stakeholder’s perception of value is driven by policies, politics, user needs,
the operational environment, and other external factors. The perception of value also
changes over time due to changes in the organisation structure, leadership style, and other
exogenous influences. Hence, the definition of value is by no means definitive. However to

gauge the idea of value, with respect to engineering systems, this thesis defines value from
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both an economic and decision theoretic perspective. Ross et al. [38] identify various
definitions of value by referring to Merriam-Webster online dictionary [39], which defines

value as:

e A fair return or equivalent in goods, services, or money for something exchanged.
e The monetary worth of something: Market price.

e Relative worth, utility, or importance, a good value at that price.

The first two definitions are more in-line with the traditional economic definition of value.
From an economic perspective the numerical worth of value is defined as the net worth of a
product or a system, where net worth? is represented in monetary terms. This interoperation
of value has been applied mainly in profit driven ventures, where shareholder satisfaction is
derived from the creation of monetary value. The assessment of net worth requires defining
the creation of resources to be assessed in terms of monetary value, and the value of
alternative options to be assessed in terms of the monetary value added by these options
[38]. In the aerospace industry this view of value has mainly been adopted by the civil airline

sector, who are driven to maximise the net worth of their company [40].

From a decision theoretic perspective value is not only derived in monetary terms, but from
multiple other sources. The source of value is dependent on the context that the system is
operating under. For example, in military aircraft systems this could be the value in the
aircrafts ability to capture information in reconnaissance operations. The third definition of
value from Merriam-Webster online dictionary is more in-line with the decision theoretic
view. Utility is defined as a non-dimensional measure of the satisfaction of an individual or
entity in-exchange of a service, or the acquisition of goods. Since utility is non-dimensional
it can be applied to any attribute within the system, hence the creation of value from a

decision theoretic point of view is achieved by maximising the utility of the system [29].

2.2 Why use Value-Centric Decision-Making?

The decision-making element of design, by means of maximising system value, is defined in
literature as Value-Centric Design (VCD) [43-44]. VCD combines the methodologies
developed in Value-Driven Design (VDD), with systems engineering to provide a means of
assessing the value of different system architectures. The assessment of value in essence is
achieved by combining analytical/physics based models with cost models. Collopy et al [43]
describes the VDD framework as one where no requirements are applied to extensive
attributes such as reliability, maintainability, performance attributes, and all aspects of cost.
In the VDD framework engineering teams rather follow an objective function, which is a
combination of all system attributes aggregated together to provides a scalar value that

indicates the ‘goodness’ of the overall system design. Design teams can therefore use this

2 Net worth in economic terms is defined as the amount by which assets exceeds liability i.e. the total assets
that an individual or business has minus the total liabilities of that individual or business.
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scalar value to identify the best solution, which is achieved by designing a system that

provides the highest value score.

In comparing the classical systems engineering approach to VCD, the systems engineering
process is highly driven by requirements where the satisfaction of requirements guides the
functionality of the product. Consider the case where requirements are provided for the
design of an aircraft, normally this includes the range of an aircraft, payload mass, take-off
distance, and other performance/design implementation requirements. These requirements
are used to fix certain aspects of the aircraft, such as wing-loading (W/S) and thrust-to-
weight ratio (T/W). The decision process now mainly focuses on the selection of aircraft sub-
systems that best meets the requirements. These decisions are made based on prior
experience and knowledge of the design team. The decisions made on these high level
parameters causes the value of the system to be almost fixed, and restricted in improving it
any further. By the time detailed aerodynamic and structural analysis are carried out the
constraints are already fixed and there is little movement in the design space [44]. The
resulting effect of this is that the program could require extensive redesign if certain
requirements are not met, or if the requirements itself have changed. All of which can result

in cost overruns and scheduling problems.

“The integration of VCDM methods into the conceptual design stage allows the design team
to capture the complex interactions between each sub-system as design changes are made’.
To get a better understanding of this statement let’s consider what the value metric defines.
The aim of a value metric is to provide a score that indicates the ‘goodness’ of a given design
(i.e. the higher the score the better the design). This is achieved by combining different
disciplines of the design process i.e. economics, optimisation, and systems engineering [45].
So each design team bases its decision on maximising the score provided by the value model
(objective function), and are not driven by satisfying specific requirements in isolation of
other system attributes.

2.3 Value-Centric and Multi-Attribute Decision Making

The fundamental ideas behind VCDM and MADM are inherently the same, as both methods
strive to find the best solution, from a set of alternatives, based on the evaluation of system
attributes and their preference structure. The inherent difference between the two methods
is evident when comparing the choice of the objective function. The VCDM method promotes
the use of a single scalar objective function to capture the stakeholder preference structure,
which can be monetary or have non-dimensional units. In comparison to MADM, which
requires system attributes to be aggregated into a non-dimensional objective function. But
no implicit method is defined that captures the stakeholder’s preference structure, this is
rather left to the system modeller. The following sub-sections provide a review of some of
the widely used VCDM and MADM methods applied in engineering design.

MADM methods focus on defining a rank order for a set of design alternatives. The data

required to rank designs can be defined as qualitative or quantitative. However, in reality
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MADM problems may involve the use of both data types[15]. Qualitative evaluations can be
defined as a MADM problem where each alternative is not numerically measured over a set
of attributes, but is relatively evaluated by judgments of the decision maker. Quantitative
evaluations use analytical or physics based models to calculate attribute values of design
alternatives, the attribute values are then used to rank different design alternatives. Sen and
Yang [15] have classified different MADM methods based on the required input evaluation

data, and how designer’s preferences are captured. This is shown in Figure 2.1.
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Figure 2.1: Classification of Multi-Attribute Decision Making methods [15].

Before presenting different MADM and VCDM methods, it is worth to first define a set of
desirable properties that are required for a design alternative selection method. This in turn
can be used as an evaluation criteria to assess different methods. The thesis examines
different methods based on Arrow’s general possibility theorem, and from an economic

perspective. The core of Arrow’s general possibility theorem is formed by three properties
[46].
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1. Unrestricted domain: States that the values that can be taken up by the criterion and
the decision function should be unrestricted, implying that alternatives should not

be excluded based upon irrelevant constraints [46].

2. Pareto Optimality: Pareto optimality defines a state in which it is impossible to make

one attribute better without making at least one other attributes worse off.

3. Independence of Irrelevant Alternative (llA): States that the rank order of a given
alternative should not depend on the alternative set i.e. if 4 is ranked before B from
the alternative set {4, B} then 4 should still be ranked before B when a new alternative
is introduced to the set {4,B,C}. Dependence of rank order on the alternative set

implies that different outcomes are possible by varying the alternative set.

The design of an engineering system should also be considered from an economic
perspective. Typically decisions made in regards to the acquisition of a system, allocation of
resources, and manufacturing of components. These factors are strongly influenced by the

economic worth of a system.

2.3.1 Analytical Hierarchy Process (AHP)

AHP was originally developed by Saaty [47] as a means of assisting the decision maker in
aggregating multiple system objectives. AHP uses the judgment of the decision maker to
decompose the problem into hierarchies of desirable system objectives that are assigned a
set of weights by pairwise comparisons. These comparisons can be taken to reflect the
relative strength of the preferences of the decision maker, which in turn are used as a means
of ranking different system architectures. The modelling of a decision problem using AHP

can be decomposed into four steps, as follows:

Step 1. Define the decision problem and state the goals or objectives.
Step 2. Define the criteria or factors that influence the objectives.

Step 3. Construct a pairwise comparison matrix, where each element in the upper level
is compared against the elements in the level immediately below. The calculation of
the weight scales are based on simple matrix algebra. The relative weight scale for

each criterion derived from the pairwise comparison matrix is calculated by solving:
Wy
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where A is the comparison matrix, w is a vector of pairwise comparisons, and n is the

dimension of the matrix i.e. the total number of criteria being assessed.
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This is a formulation of an eigenvector problem. The calculated weights are exact for a
consistent matrix, and since the principal eigenvector is normalised (also called priority
vector) the sum of weights exactly equals 1.

Xwi =1 2.2)

Step 4. Rank the design alternative set based the relative weights vector obtained from
the previous step. The design alternative with the highest value is the most

favourable.

AHP has attracted much interest in industry and academia, mainly due to its simple
mathematical properties and the fact that relatively few inputs are required to construct the
model. As a decision support tool AHP offers a multi-level hierarchical structure of objectives,
criteria, sub-criteria, and alternatives, resembling that of a decision tree. This allows the

formulation of a decision-making problem at multiple system levels [48].

However, the application of AHP as a value model is limited due to the drawbacks present in
the formulation and construction of the AHP model. One of the most crucial steps in AHP is
pairwise comparisons, which can be described as a one-to-one mapping of the decision
criteria. The mapping technique assumes that the decision criteria are independent of each
other, and hence does not capture the decision makers view of the interactions between
multiple decision criteria i.e. many-to-many mapping. The method also suffers from rank
reversal of alternatives, depending on the number of alternatives being assessed. This

implies that the rank order is dependent on the alternative set, violating Arrow’s IlA property.

The output of the AHP process is a set of weights that identifies the decision maker
preference to each decision criteria. Since preferences of the decision maker were captured
using binary preference scales (the Saaty scale), the resulting output is also binary.
Suggesting that the preferences of the decision maker to the decision criteria are linear.
However, literature in the field of decision theory has identified that preferences of an
individual or a group is generally non-linear [27, 39, 50]. For a more in-depth description on
the limitations of using AHP in engineering applications the reader is referred to
Traintaphyllou and Mann [48].

2.3.2 Technique for Ordered Preference by Similarity to
the Ideal Solution (TOPSIS)

TOPSIS is a useful technique for ranking a set of alternatives and selecting the best solution
by using distance measures. Hwang and Yoon [51] proposed that the ranking of alternatives
is based on the shortest Euclidean distance from the positive ideal solution, and the farthest
from the negative ideal solution. The chosen solution should thus be close to the positive
ideal solution as possible, and as far from the negative ideal solution as possible. The
procedure for TOPSIS can be described as follows.
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Step 1. Calculate the normalised decision matrix.

A decision matrix of m alternatives and n criteria is formulated first, and then the normalised

value r;; is calculated.

T; _—fij
u (2.3)
VB
Where f;; is the value of the i** criterion function for the alternative 4; (j=1,....,m),(i =

1,...,n).
Step 2. Calculate the weighted normalised decision matrix.

The weighted normalised value v;; is calculated as:

Vi = Wny; (2.4)
w; are the weights of the it* criterion and should sum to unity.
Step 3. Determine the positive ideal and negative ideal solutions.
The positive ideal A* and the negative ideal solutions A~ will be:
A =i, ....,v} = {(maxjvij|i € I’), (minjvl—j|i € I”)}
A™ ={vr, ..., vy} = {(minjv;|i € I'), (maxjv;|i € 1)} (2.5)

Where I’ refers to the ‘benefit’ criteria and I"” refers to the ‘cost’ criteria.
Step 4. Calculate the separation distance.

The separation of each alternative from the ideal solution, using the Euclidian distance, is

given as:

(2.6)

The D/ and D terms represent the distance from the positive ideal and negative ideal

solutions.
Step 5. The relative closeness to the ideal solution is calculated.

. Dy

/(D + D)) 2.7)
This metric is used to rank the alternative set and the highest ranking alternative is selected.
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TOPSIS offers a simple process that can be easily implemented for consistent decision-
making, and has been applied in various engineering design problems [52]. In fact, TOPSIS
is a utility based method, in that it provides an aggregate measure of benefits derived from
a set of outputs. However, unlike MAUT, TOPSIS assumes mutual additive (preferential)
independence, which limits its capability in capturing human decision-making [38]. TOPSIS,
like AHP, applies a simple linear weight assignment to each attribute and does not capture
the non-linearity of the decision makers preference structure. Furthermore, TOPSIS does not
offer a weight allocation method, nor a consistency checking process for judgments like AHP
does. But unlike AHP, TOPSIS alleviates the requirement of pairwise comparisons, allowing it
to be applied to cases where a large number of attributes are used, and cases where
qguantitative data is given [52]. However, both methods suffer from rank reversal based on
the alternative set, hence violating Arrow’s IlIA property. In addition TOPSIS assumes a direct
and unlimited compensation among all attributes in its distance measure [15]. Such
compensations ignore important features of design with respect to their attributes, resulting
in a solution that is dominated by another design with better average features with regards

to all attributes [15]. This violates Arrow’s Pareto optimality property.

2.3.3 Quality Function Deployment (QFD)

Although not mentioned in Figure 2.1, QFD is a well-established approach in systems
engineering for requirements prioritisation and relating stakeholder needs to technical
requirements. The process involves transforming the customer requirements ("What’s”) into
product attributes (“How’s”). This transformation can be further extended and applied at
multiple levels of system decomposition [18]. The use and application of QFD has been
explored and reviewed extensively and has gained much popularity in its application in
industry over the years [53-55]. The elements involved in the enumeration of information in

the QFD house of quality matrix are depicted in Figure 2.2.

The process starts with the identification of customer requirements at a given level of system
decomposition, which are placed in the left-hand corner of the house of quality matrix. Next,
similar to AHP, weighting are assigned to each customer requirement based on their relative
importance (/mportance Ranking) with respect to each other. Top-level system attributes are
listed on the top of the matrix. The direction of improvement of each attribute is quantified
by using an upward arrow, downward arrow, and zero, which denotes maximise, minimise,
and a target value to be met. Another correlation concerning the interaction between different
system attributes is captured at the top of the house of quality matrix. This correlation
indicates weather an increase in the value of a system attribute will cause an increase,
decrease, or no effect on another system attribute. A similar correlation matrix is also built

for system requirements.
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Figure 2.2: Main elements of the QFD house of quality matrix.

The central box in the house of quality matrix indicates the importance of each attribute in
relation to meeting different system requirements. This is captured using a discrete scale
that indicates the strength of the relationship. The values inputted in the central relationship
matrix are used to calculate the technical importance of each attribute, which are estimated
by summing all the customer requirement relationship values for that attribute. These are
presented at the bottom of the house of quality matrix. The technical difficulty matrix for
each system attribute is assessed using a binary scale and also documented at the bottom of
the matrix. The combination of technical difficulty and technical improvement provides a
measure of technical risk, which in-turn identifies the key design drivers that may require

close attention [18].

The process just described requires substantial subject matter judgments to be made by the
decision maker, making the enumeration of data tedious if a large number of customer
requirements or system attributes are to be incorporated [53]. Also, the process of assigning
weightings and correlation strengths between attributes and requirements in general cannot
be assessed by precise values, as the information available to make precise judgments at the
conceptual design stage is limited. This introduces vagueness in the weightings and
correlations assigned. The presence of vagueness has been addressed by fuzzy set theory
[53], and second-order polynomial models to quantify the functional relationship between
the customer requirements and system attributes [56]. Vanegas and Labib [57] presented a
fuzzy multi-criteria decision-making procedure to find optimal target values for system
attributes, whilst accounting for system constraints. However, the fuzzy logic method
provides a limited gain in accuracy when used to evaluate design concepts [58]. Methods
such as neural networks have been applied to tune the fuzzy relationship function in order
to provide a more realistic attribute-requirement relationship. But, similar to the fuzzy set
approach, the neural network requires large data samples for it to be applied effectively,

which is not always available at the conceptual design stage [59].
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The requirement for the enumeration of large qualitative data from the decision maker and
the uncertainty present in these judgments makes the QFD approach not suitable for
engineering optimisation and trade-off studies [55]. Assessing QFD based on Arrow’s
properties indicates that QFD suffers a similar problem to that of AHP and TOPSIS, in that the

rank order is dependent on the alternative set [46]. This again violates Arrow’s IIA property.

2.3.4 Concept Design Analysis (CODA) Method

The CODA method offers an enhancement to the standard QFD approach by providing a more
sophisticated mapping between system requirements and design attributes [60]. The CODA
method ranks different design alternatives using a dimensionless merit factor, which is
generated from translating a set of design attributes into a set of non-dimensional value
functions. The value functions are assessed over a range of system attribute values, and the
shape of the value function is dependent on the decision maker’s preference relationship in
regards to maximising value. The preference relationships can be categorised into three
types, maximisation, minimisation, and optimisation. This is based on Taguchi’s quality loss
function [61], nominal-the-best, smaller-the-better, and larger-the-better [60]. These

representative value functions are presented in Figure 2.3.
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Figure 2.3:: Representative value functions for various design attributes [55].

The shape of the maximisation and minimisation functions are defined by identifying a
neutral point of the design parameter, which is defined as the point at which the decision
maker is 50% satisfied (a value of 0.5) [55]. The optimisation function on the other hand
requires two inputs, the optimum value and a tolerance value from the optimum. To account
for the relative importance of different customer requirements/needs, weights are applied
by using a binary weighting model. Similar to QFD, the CODA method also defines the
strength of the relationship between design attributes and customer needs. These
correlations can be described as being strong, medium, or weak. The overall design merit

can be calculated using the following equations:
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N;
CS; = S CFiZMVU.CF”
Jj=1
M
ODM = Z CS; (2.8)

where MV;; = F;;(p;) is the value function of each design attribute, CF; is the correlation
matrix between design attributes and customer needs, SCF; is sum of correlation factors for
each customer need, CS; is the satisfaction level of each customer need, and ODM is the

overall design merit.

The CODA methodology has been applied in a variety of applications, ranging from the design
of medical devices (Woolley et al [60]) to civil aerospace applications (Eres et al [55]). It has
provided an improvement to the standard QFD method, by reducing the number of
judgments required by the decision maker and the representation of non-linear preference
relationships. However, the CODA method still suffers from some of the problems present in
QFD. The allocation of importance weights to customer needs is based on pairwise
comparisons. This suggests that customer needs are assumed to have mutual additive
(preferential) independence, which limits its capability in capturing human interactions
between customer needs. Also, since the CODA method uses value functions to quantify
customer preferences, it does not capture the attitude of the decision maker towards risk

and uncertainty during the decision-making process.

Value functions capture the elicitation of customer preferences to the outcome of a situation,
which is known with certainty. However, in engineering design attribute performance levels
are often uncertain due to various sources, such as incomplete information, modelling errors,
and engineering assumptions. Thus, the use of value functions in engineering design does
not characterise behavioural decision-making under uncertainty [38]. This implies that the
outcome of a situation, that depends on a level of uncertainty having a certain probability
distribution, cannot be characterised by a value function, or by any of the previous methods
described. Even though there aren’t any distinct violations of Arrow’s general possibility
theorem by the CODA method, its limitation to account for uncertainty puts it at a

disadvantage.

2.3.5 Multi-Attribute Utility Theory (MAUT)

In economic theory, utility is defined as a numerical measure of a preference relationship.
Relating this to engineering systems, utility measures a benefit that a system attribute
provides to a preference relationship of the stakeholder. An example of a system attribute is
the mass of a system, and the preference relationship of the stakeholder could be to minimise
mass. In Particular, utility theory quantifies decisions made under uncertainty, comparing
this to value-functions, where decisions are made with certainty. Hence, utility functions
represent the preference relationship of the stakeholder based on the uncertainty of

outcomes.
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To quantify uncertainty utility functions are mapped by presenting the stakeholder with a set
of probabilistic lottery scenarios based on variations in system attributes. A lottery is
characterised by a set of possible outcomes of a system attribute a;, which will occur with
probability P;. This is written in a more compact notation (a,, P; ; a,, P,;,,,), which represents
a sequence of pairs of outcomes and associated probabilities. The order in which these pairs
are presented to the decision maker has no particular significance. The output of this lottery
scenario is a probability value, which is defined as the value at which the stakeholder feels

indifferent to the outcome of the lottery scenario, known as the indifference probability value.

This indifference probability value is used to define a utility curve that denotes the
preferences of the stakeholder based on the uncertainty of an outcome. The scale on the
utility curve can be established by fixing a set of outcomes. Typically the scales are fixed
based on the best possible outcome as U(S) = u; =1, and the worst possible outcome as
U(S) = u, = 0 (this is referred to as the normalised utility scale). Therefore, maximising utility

signifies maximising system value.

The derivation of the MAUT equation depends on the condition of independence assumed
during its derivation. These assumptions refer to the way a person values the interaction
between attributes. If the assumptions are acceptable during its derivation, then there exists
a means of obtaining a multi-attribute utility function, whilst still accounting for the
interaction between attributes. There are four main independence conditions relating to the
issue of multiple objectives, these are preferential, weak-difference, utility, and additive
independence. In this thesis we address two of the four assumptions, utility and additive

independence, as these two conditions are important in relation to addressing uncertainty.

Utility independence defines the indifference between a lottery scenario and a certainty
equivalent, and doesn’t depend on the level of other attributes. This makes it possible to
measure the changes in utility over one attribute independently of all other attributes.

Mathematically this is defined as:
If, (ai|aj)~(a;la,P;a}'la))
Implies, (ai|aj)~(aila}, P; a'|a)) (2.9)

Where a;|a; indicates conditionality (which is to be read as “a; exists when condition q;

prevails”), and a; and q; represent two different attributes, where i # j.

Additive Independence for a set of attributes {a,, .....,ay} can be assumed if the preference
order of lotteries do not depend on the joint probability distribution of these lotteries, but
only on their marginal probability distribution [62]. This is represented mathematically as
follows:

(aila;, P = 0.5; aj|a))~(a;|a}, P = 0.5; a{|a;) (2.10)
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Note that both lotteries have an equal chance (P = 0.5) at either a; or a; occurring, and also
have an equal chance of a; and aj occurring. If the above condition holds then the marginal
probability distribution on each attribute a; and a; are the same in both lotteries, thus

adhering to the additive independence condition.

Based on the conformance of the independence condition, an additive or multiplicative form
of the utility function may be derived. A multiplicative form of the utility function is derived
if the set of attributes conform to the utility independence condition. The multiplicative form

of the utility function is defined as:

n
K-U+1= H(K-ki-U(ai)+1) where K = —1+1_[(K~ki+1) @2.11)
i=1
where, U represents the overall utility of satisfying multiple objectives, U(a;) represents the
utility of system attribute q;, k; is the Individual scaling factor or weighting factor for the it"
system attribute, and K is the normalising parameter that insures consistency between the
definitions of U and U(q,).

If the additive condition holds between the attribute set, then } k; = 1 and utility function is

reduced to an additive form.

N
U =ZkiU(ai) 2.12)
i=1

The main advantage offered by MAUT is its capability to capture uncertainty and risk during
the decision-making process. More recently MAUT has been applied in an optimisation
framework in the design of space systems [63]. Ross and Rhodes [64] have adopted the MAUT
method to develop a dynamic tradespace exploration approach that can be used to help
quantify utility/value robustness. The approach explores the changes in expectation of value
over the system life cycle, which is further decomposed in to a series of contexts with fixed

value expectations known as Epochs [66-67].

However, the MAUT approach presents its own limitations. One limitation that has been
previously identified, and widely debated, is the validity of the independence axiom [4], [43].
The independence axiom does not accurately conform to the observed behaviour of human
decision-making under uncertainty, where the axioms of rational behaviour are not
necessarily obeyed in a ‘real’ decision-making scenario. The independence axiom leads to
the assertion that a person’s preference should vary linearly with the probability of its
occurrence. The controversy about this axiom arises because repeated experiments have
demonstrated that people often act as if their preferences are nonlinear in probability [67].
A famous example of this behaviour, illustrating nonlinearity, is the Allais “paradox”. This
classic example is explained by presenting a situation where a person is asked to make a
choice between a definite (or certain) fortune or gamble for a greater amount, but with a

small probability of getting nothing. Kahneman and Tversky [68] showed that in this example
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most people violated the independence axiom, and exhibited nonlinear probability

valuations, especially towards the certainty option.

The second notable limitation of the MAUT method is associated with the operationalisation
of the model, which requires judgments to be made by the decision maker on the assignment
of the scaling factors, k;. The argument relating to the allocation of values to the scaling
factors is that the alternatives provided in the lottery assessment are hypothetical.
Experimental evidence suggests that individuals first find it hard to comprehend lottery
scenarios, and second a behaviour mismatch is noted between real and hypothetical
situations [46]. Another limitation of MAUT, is its inability to aggregate the preferences of a
group of individuals to an average representative individual. This is best described in Arrow’s

General Possibility theory, which defines the nonexistence of a social welfare function [69].

2.3.6 Net-Present Value (NPV)

The methods that have been described thus far have mainly focused on aggregating multiple
objectives and attributes into a single non-dimensional cardinal scale that can be used to
rank alternatives. However, these aggregation methods pose some common problems, one
being that of weighting attributes and system objectives based on their relative importance.
The weighting process is biased by the operating environment, the organisational structure
at the time of weight allocation, and personal and political interests [46]. The weights defined
are therefore biased towards a particular group and may not be representative of the true
value of the system. Another problem that is identified is associated with presenting system
value in a non-dimensional scale. The non-dimensional scale does not provide any
descriptive insight into the benefits offered by the system architectures i.e. value is not
represented as an absolute number, rather is represented in relativistic terms, which can only
be used as a comparative tool. A more intuitive scale such as monetary value can provide a
much clearer representation of value added to the system, as the benefits offered by the
system are clearly quantifiable. The use of single criteria alternative selection methods, such
as NPV (Net-Present Value) and CBA (Cost-Benefit Analysis) removes the need for weight
allocation and aggregation of attributes, and presents value in a monetary scale that is more

intuitive to the decision maker.

NPV is a measure of the profitability of an investment in monetary terms. NPV is employed
as a measure to assess the value added to the firm (or the stakeholders), resulting from an
investment in an asset (or an engineering system). NPV achieves this by accounting for the
present value of all future cash flows generated by an asset over time, more specifically it
represents the present value of all cash inflows minus all cash outflows [70], [71]. The present
value of future cash flows is determined by defining a discount rate, which is defined by how
much future cash flows are discounted in order to make it correspond to an equivalent
amount today. Hence, the choice of a discount rate is a key factor in assessing the

performance of an asset over time. Mathematically NPV can be defined as follows:
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_ “ D@ D(t) & D)
NPV = D, + (1+ (t))t ~D, +Z(1+ D) ~D, + A m (2.13)

where D, represents the initial investment before time t; , D, is the net cash flow, which is
revenue minus cost, at time t, and r(t) is the discount rate (i.e. the rate of return on future

investments) at time t.

The most inherent assumption in the use of NPV is that stakeholders perceive value only in
monetary terms. For some engineering systems, especially commercial aerospace systems,
this assumption holds true. Castagne et al [72] and Chung et al [45] have applied NPV as an
objective function in the design of commercial aerospace systems. These studies have clearly
identified that stakeholders of a commercial aerospace system perceive value in monetary
terms, and have demonstrated the use of NPV in improving overall system design. However,
in the presence of non-commercial aerospace systems, the perception of value is not so
clear-cut. Consider the following case study by DARPA (Defense Advanced Research Projects
Agency). The DARPA F6 program is a study of the feasibility of fractionated spacecraft’s that
are wirelessly linked [41]. The study invited industry led teams represented by Boeing,
Lockheed Martin, Northrop Grumman, and Orbital Sciences, to create value models to identify
the best system design from a set of system architectures. The value models defined by each
team however differed, as each team perceived stakeholder value differently. Boeing defined
value as being a ratio of performance over cost. Lockheed Martin defined value more in an
economic context, where a price was assigned to operating time, then subtracted with cost
to yield profit. Northrop defined value by capturing customer preferences by applying utility
theory, and compared the gain in customer preferences (or utility) to the cost of the system.
Orbital sciences developed a sophisticated model for pricing of data, based on market
dynamics, to calculate the NPV of the system. The outcome of this study suggests that non-
monetary value of a system cannot be captured by NPV or other monetary measures alone

and requires other methods to define non-monetary value [41].

Other limitations of in the use of NPV is also found when considering the derivation of the
NPV metric. The NPV calculation assumes that cash-flow, discount rate, and inflation rates
can be appropriately and accurately predicted for a give system [38]. However, in reality there
are high levels of uncertainty in predicting cash flows, as they are prone to fluctuations due
to market uncertainties. Ross et al [38] identify that the calculation of a discount rate and
cash flow require detailed market predictions to be made in a potentially volatile business

environment, making it highly uncertain.

However, uncertainties in the market are to some extent addressed by applying Real Options
Analysis (ROA). ROA accounts for changes in system value due to uncertainty over the life of
the system by using stochastic processes to calculate the value of options. Options are used
as a means to consider only the outcomes that are favourable to system value (i.e. options

that maximise the NPV). In other words, ROA recognises that decision makers react to
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changes in the business environment or market uncertainties, and direct the system (i.e.
make changes to the system - options) to maximise system value. Justin et al [73] make use
of ROA (more specifically, the study makes use of the Black-Scholes equation to price
options?) to evaluate and optimise commercial aircraft development strategies over time. In
this study several market uncertainties such as fuel prices and emission costs are introduced
into the simulation. However, the use of ROA still does not address uncertainty in the
calculation of cash flow over time, which has a detrimental effect in the evaluation of system

value.

2.3.7 Cost-Benefit Analysis (CBA)

Cost-Benefit Analysis (CBA) is performed to determine the advantage of one alternative over
another in terms of the net benefits offered (benefits minus cost) by the system. CBA has
been widely used in government decision-making as a tool to evaluate the net aggregate
benefits (or value) achieved from the output of the project, in comparison to the net
aggregate cost of the project. The output of CBA is a monetary value that characterises the
net aggregate benefits offered by the project or system under consideration. This is achieved
by representing benefits* in monetary terms, and adjusting it for the time value of money.
The assessment of benefits and costs in monetary terms draws on a verity of economic
theories - welfare economics, public finance, resource economics, etc. It tries to combine
these elements to form a coherent economic model. As CBA make use of the discounted cash
flow methods, it suffers from similar limitations as NPV. However, CBA differs from NPV as it
monetises attributes of the system regardless of their contribution to the revenue stream.
For a more in-depth review of CBA the reader is referred to Cost-Benefit Analysis: Concepts

and Practice [74].

The derivation of the CBA formula follows a similar procedure to that of NPV. The net benefits
of a system are described as the sum of net benefits minus cost, where the sum is discounted
at a specified discount rate (similar to the NPV calculation). The difference lies in the transfer
functions that transform the benefits into a monetary value. The transfer function depends
on the system under consideration and other external factors. The derivation of the transfer
function is specific to a given scenario and is therefore not addressed in the current

discussion. The general form of the CBA formula is defined as follows:

S EBE) - TCO)
NB=(ZBO—ZCO)+ L e LGy (2.14)

3 Black-Scholes model is a mathematical model that gives a theoretical estimate of the price of options. For
further detail the reader is referred to Black-Scholes and Beyond: Option Pricing Models [147].

4 The definition of costs in CBA not only includes actual monetary value (i.e. manufacturing costs, operating
cost, etc.), but also the costs due to negative social impacts of the project (i.e. cost of emissions, cost of
deteriorating human/animal health, etc.).
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where B, and C, are the initial benefits and cost of the system, r is the discount rate (i.e. the
rate of return on future investments), B, and C, are the benefits and cost of the system
estimated at discrete points in time, and ¢; and t, represent the time intervals over which the

cost-benefits are quantified.

CBA suffers from the same limitations that are present in NPV, which are associated with the
choice of the discount rate, and in the inaccuracies present in calculating cash-flows over a
long period of time. However, unlike NPV, CBA allows the aggregation of multiple system
attributes in monetary terms. CBA can therefore be thought of as filling in the gaps between
NPV and MAUT, in that CBA uses an economic approach to evaluate system value by
aggregating non-monetary benefits into a monetary value. However, the major short-coming
of this evaluation method lies in the transfer function that transforms non-monetary benefits
into a monetary value. For example, Ferraro et al [75] make use of the CBA method to assess
the overall system value in the design of a small low cost search and rescue Unmanned
Aircraft System (UAS). The assessment captures system benefits by identifying the number
of lives saved due to the actions of the UAS, and monetises this benefit by prescribing a
monetary value to human life - defined as the statistical value of life. This value is used by
government agencies to assess health and safety influences of a project. In conclusion, the
monetisation of benefits requires several assumptions to be made that are not always clear

and might be considered controversial [76].

2.4 Choosing an Appropriate Value Model

To identify an appropriate value model it is important to define the environment that the
system is operating under, and the assumptions made on the perception of value. Once these
are represented, the next step in the process is to define the assumptions and limitations of
the value models that are being considered for system valuation. The underlying assumptions
of the value models can be correlated against the system operating environment and the
stakeholder’s perception of value. This allows the decision maker to more readily identify the
applicability of different value models. This methodology was adopted from Ross et al [38],
where the selection of the best value model is based on minimising the number of
assumption that do not correlate to the system under consideration. The table presented in
Appendix A assumes that both NPV and CBA are calculated deterministically. If non-
deterministic dynamic models are used, certain limitations regarding Calculating Value,

Stakeholder Perceptions, and Market Predications can be ignored to some extent.

This thesis adheres to the assumptions made by Ross et al [38] when identifying an
appropriate value model i.e. all value models are derived deterministically, where uncertainty
in market predications and cash flow are not accounted for, and the perception of value does

not change over time.
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2.4.1 Perception of Value

The perception of value in this thesis is seen through the eyes of the engineering firm. Here
the perception of value is defined as the capability to deliver a system that meets all the
expectations and needs of the end-user, and the value of maximising the net worth of the
engineering firm through the sale and operational use of the system. The above statement

identifies two different value streams:

1. End-User value - where value is perceived as the ability of the system to meet key
objectives/needs outlined by the end-user. These are commonly a combination of
non-monetary and monetary benefits.

2. Engineering firm value - where value is perceived as the capability of the system to

generate profit through the sale and operational use of the system.

Due to the complexities in predicating the revenue stream of a large engineering firm, this
thesis limits its study to capture the value of the end-user alone. Typically, end-user value
is quantified by mission success rate, where sophisticated operational simulation models are
used to simulate the performance of the system in an operational environment. The measure
of mission success rate is identified by the successful completion of mission objectives.
However, this requires detailed information regarding the operational environment and the
overall system performance, which are highly uncertain at the early conceptual design stage.
For example, assessment of military systems typically requires the analysis of sortie rate,
survivability, effectiveness of weapon systems, and other operational factors. Such detailed
understanding of the mission environment is highly uncertain, and the time required to

construct a representative modelling environment would be a significant effort.

2.4.2 Choosing an Appropriate MADM Method

Most of the multi-attribute ranking methods, such as AHP, TOPSIS, and QFD violate Arrow’s
IIA property, and failed to address uncertainty during the decision-making process. MAUT
offers a solution to this problem by capturing the decision makers risk attitude towards
uncertain outcomes, which in-turn can be used to evaluate uncertainty. However, the
assumptions of independence in the derivation of the MAU model means that uncertainty in
human decision-making is not accurately captured. Also, the allocation of values to scaling

constants k; makes the operationalisation of the method time consuming.

To avoid aggregating multiple attributes and allocating weighting factors or scaling
constants, single criteria valuation methods are used to capture stakeholder value. These
include methods such as NPV and CBA. However, the fundamental drawback with using single
criteria valuation methods, such as CBA and NPV, is that value is presumed to be perceived
only in monetary terms. The evaluation of different value methods are based on the validity
of assumptions used to derive the value model, in comparison to the assumptions of
stakeholder perceived value. The choice of the most appropriate MADM method should be

the one that least violates the perceived value assumptions of the stakeholders. The
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assumptions made can have a direct impact on the accuracy of value assessments, and its

conformance to stakeholder-perceived value [38].

This thesis focuses on the design of a non-commercial aerospace system, where the use of
the system by the customer does not result in the generation of revenue, but rather provides
a service that enables the customer to benefit in other means. For example, the military
acquisition of an aerospace system is representative of a non-commercial aerospace system.
Since it has been established that value is not perceived in monetary terms, both NPV and
CBA can be neglected. The next criterion focuses on the decision-making behaviour of the
stakeholders in the design of a system. It is assumed that the design of an engineering system
is made in an uncertain environment at the early conceptual design stage. Thus, capturing
uncertainty of system attributes and the operating environment is vital in designing a robust
system solution. Accounting for both these criteria leads to the selection of MAUT, as it least

violates stakeholder assumptions.
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Chapter 3: Multi-Objective Decision
Making and Optimisation

ulti-Objective Decision Making (MODM) encapsulate methods that have been

developed to handle Multi-Criteria Decision Making (MCDM) problems, where the

“best” design is selected from a large set of alternatives within the design space.

The means of selecting a “best” design follows the process of optimisation, where
the aim is to maximise and/or minimise a set of desired criteria. Thus, MODM techniques are
more appropriate for design applications within a continuous solution space, where the
design envelope is subject to active constraints. In aerospace design the continuous solution
space generally relates to geometric design variables (such as wing area, aspect ratio, engine
bypass ratio, etc.), and the desired criteria generally relates to system performance and cost
attributes (such as life-cycle cost (LCC), gross take-off mass (GTOM), and specific fuel
consumption (SFC)). In general, these desired criteria, or objectives, tend to be conflicting in
nature and the selection of an optimal design solution requires a compromise that best
satisfies all the objectives. The definition of an optimal solution in this case is not intuitive
and requires specifying some form of weighting or preference function that ranks competing
designs.

Sen and Yang [15] define a classification for different MODM methods based on the type of
preference information, and the stage at which preference information is elicited. This is
represented in Figure 3.1. The focus of this thesis is mainly on prior and posterior articulation

of preference information.

Prior articulation is applied to capture the preference structure of system stakeholders, such
that an aggregate function consisting of multiple system objectives can be created to define
an overall ‘goodness’ value. This ‘goodness’ value represents a scalar value that can be
optimised to find the “best” solution to the multi-objective problem.

Posterior articulation methods require no preference or goal information from the system
stakeholders prior to optimisation. Instead, posterior methods seek to identify solutions that

are candidates of the Pareto optimal set.

Cardinal data refers to data associated with quantitative information, but not necessarily a
preferential order. Data retrieved from engineering analysis generally relates to cardinal data,
in that they are quantitative and represent physical aspects of the system. However, some

information relating to the system may be ordinal in nature where alternatives are ranked
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based on subjective views or opinions on the ‘goodness ‘of the system. For example, ‘ease

of use’ might be qualitatively measured as being low, medium, or high - with ‘high’

Chapter 3: Multi-Objective Decision Making and

representing very easy to use. The use of ordinal data is far less common in engineering

analysis, and for this reason this chapter only elaborates upon some of the cardinal methods

represented in Figure 3.1. For a more complete description of these methods the reader is

referred to Sen and Yang [15].
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This chapter also introduces the reader to different optimisation algorithms that have been
widely used in engineering design to search for optimal solutions that are possible candidates
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3.1 Prior Articulation

3.1.1 Weighted-Sum Approach

This method employs a weighted sum of the objectives to derive a single objective function;
where the resulting single objective problem can then be solved to obtain Pareto optimal

solutions. The objective function for a problem with N objectives is given by:

Min  f(x) =YXN_, w;fi(x)

s.t. XeQ W=[w,wy, ..., wy] (3.1)

where W is the weight vector representing the relative importance of objectives, and f;(x) is
the i*" objective function. In practice each i** objective function is often normalised such that

the weights w; are more directly related to the decision-makers preferences.

Though the weighted sum approach offers a simple and easy method to implement and
understand the multi-objective problem, the method is not well suited for rigorous decision-
making. The drawbacks of this method are as follows, an even distribution of the weights
among objective functions does not always result in an even distribution of solutions on the
Pareto front. The method also fails to identify solutions on the non-convex regions of the
Pareto front, and will instead only choose the extremes [77]. Figure 3.2 represents the
applicability of the method for a convex and non-convex objective space. Optimal solutions
on the Pareto front are represented by points that lie on the hyperplane L=
{FOOIXN_, wif;(x) = ¢}, which is tangential to the feasible space A, and the slope of L=
—w, /w,. It can be noted that for a non-convex region, the Pareto optimal solutions between

A and B are not identified by this method, regardless of the weighting vector values.

H H

J2 J2

L 4

.
-

J1 J1

(a) (b)

Figure 3.2: Additive weighted sum method for (a) convex region, (b) non-convex

region [78].
3.1.2 Goal Programming

In certain circumstances it is preferred to search for a specific improvement, by specifying

the required objective function value, rather than searching for an unknown optimum. Goal
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programming is a problem formulation method that seeks to find an optimal compromise

solution by minimising the deviation from the defined goals.

In most cases of goal programming the defined objectives are not “hard” constraints that the
search algorithm has to meet; rather the defined goals may have some ambiguity. In this case
goals are treated as “soft” constraints, which allow the search algorithm to violate the
condition of meeting a specified objective value. Rather, the “best” solution can be defined
to have the minimum weighted deviation from the ideal solution, where all the goals meet
the originally specified value. This method also allows the decision maker to add bias to the
search algorithm, in-terms of the importance of meeting certain specified objective values in
comparison to others. In this case all deviations are multiplied by weights, which reflect their
relative importance, and summed together to form a single objective function. The method

can be formulated as follows:

Min {[i(wf'df' + Wj_dj_)p El
\b=1 )

s.t. Xy € Q,

O —df+di=f j=1,..k
Q,=1df-di =0 x,=[x"dfdf,..,dy d;] (3.2)

df,d; >0 x€Q

where d:- and d; are the deviation variables form the specified goal value. The variables w;-

and w;" are the relative weights for the corresponding deviation variable, and f] is the goal of

the j-th objective.

A very common form of this problem formulation follows the lexicographic goal
programming approach [79]. The distinguishing feature of this approach is the existence of

the number of priority levels to be specified. This leads to the following formulation:

Min  a; = ph,(D*¥,D7)
s.t Xp € 'Q‘b' l= 1,2, ,L (3-3)

where Dt = [df,d%, ..., d{1T, D~ =[d{,d;, ...,d;]T, and p, represents the priority weights, and L

is the number of priority levels.

The algorithm solves the above equation by first minimising a, to obtain a;, then a, is
minimised such that a, < aj. This process is repeated until a, is minimised such that the
compromised design of the MODM problem X* can be obtain. If the criteria are linear
functions of x, a modified Simplex algorithm can be used to solve this problem. Any single
objective nonlinear optimisation technique can be utilised iteratively to solve the problem

with nonlinear objectives.
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However, the application of goal programming does present disadvantages. It is often
difficult for the decision maker to set goals for all the objectives when information available
is limited, and there is large ambiguity in the choice of the objective value. Other
disadvantages relate to the derivation of the method itself, where it has been found that goal
programming is not efficient in finding designs for non-convex problems [15]. For a more

in-depth discussion on goal programming the reader is referred to Jones and Tamiz [79].

3.1.3 Utility Theory and Physical Programming

As discussed in the previous chapter, utility theory offers a powerful method to address the
formulation of MODM problems. The method seeks to create a set of non-linear utility
functions that completely expresses the decision makers preference structure. In addition,
utility theory offers the capability to capture uncertainties in the decision-making process,
which offers a probabilistic assessment of the impact of uncertainties on the value of designs.
However, the formulation of non-linear utility functions is not trivial and can be error prone,
as the assessment of preference information is subjective and requires a significant body of

knowledge of the system operating environment to make accurate judgements.

Physical programming is closely related to goal programming; in that it can be used to create
utility functions through the use of a set of class functions to represent the decision makers
physical preferences. The objectives are classified in an intuitive manner from ‘highly
desirable’ to ‘unacceptable’. This allows the decision maker to quickly create single attribute
utility functions, which are then additively aggregated to form a scalar objective function.

The method is formulated by the following equation:
- 1 Nsc 3
Min  logso |- FIiG0]
i=1

s.t. Q (3.4)

where Q represents the design space, and ng is the number of soft constraints.

However, physical programming also represents drawbacks in its application. In the problem
formulation phase the decision maker is still required to specify weightings to each of the
class functions. Secondly, physical programming is a deterministic design method that does

not capture the uncertainties in the decision-making process.

3.2 Posterior Articulation

The methods defined in posterior articulation aim to determine non-dominated solutions, of
which the most desirable is selected based on some defined criteria that reflects the
judgements of the decision maker. This means that trade-off information is used after the
non-dominated solutions have been found. Hence, these techniques do not require any
assumptions or information regarding the preference structure prior to optimisation, which

can be advantageous. A typical method of identifying the Pareto optimal set is by applying
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successive optimisation runs using one of the prior aggregation methods, and different
weight vectors. This technique works by varying the values of the weight vector, resulting in
each optimisation run to converge to a different point on the Pareto front. However, the
problem posed with this approach results in the need for multiple optimisation runs, which
can cause the computational expense of the problem to grow out of control. Another issue
to this approach is related to the distribution of solutions along the Pareto front, where it can
be mathematically proven that a well distributed set of weight vectors does not necessarily

result in a good distribution of point along the Pareto front.

3.2.1 Normal Boundary Intersection (NBI) and Normal
Constraint (NC) Method

Das and Dennis [80] proposed the NBI method to find a uniform spread of solutions on the
Pareto front, resulting in an even distributed set of points on the Pareto set, given an evenly
distributed set of weights. The idea behind this approach is defined by the following
observations, the intersection point between the normal emanating from any point on the
convex hull of individual minima® and the boundary of the objective space is probably a
Pareto optimal point i.e. the point of intersection closest to the utopia point is a Pareto
minimal point, while the one furthest is a Pareto maximal point. This approach is formulated

as follows:
Min 1x€eX A
s.t. ®w + An = F(x) — F° (3.5)

where @ is a k x k pay-off matrix in which the ith column is made up of the vector F(x}) — F?,
in which F(x}) is the vector of the objective functions evaluated at the minimum of the ith
objective function and F° represents the utopia point. The diagonal elements of ® are zeros,
w is a vector of scalars such that ¥¥ , w; = 1. n = —®e, where e € R¥ is a column vector of ones
in the objective space, and n is called the quasi-normal vector. Given a convex weighting w,
®w represents a point in the convex hull of individual minima, and ®w + An represents the
set of points on that normal. The points of intersection between the normal and the objective
boundary closest to the utopia point is represented by the solutions of equation (3.5). As w
is modified systematically, the solutions obtained yields an even distribution of Pareto
optimal points. However, the method may also yield non-Pareto optimal points, but Das and
Dennis describe this as not necessarily being a disadvantage, as it results in a smoother

approximation of the Pareto boundary [80].

5> Convex hull of individual minima: Let x* be the representative of the optimum variable for the global
minimum of f;(x),i = 1,.., k. Let F; = F/(x}),i = 1, ..., k. Then the set of points in R¥ that are convex
combinations of F;" is referred to as the convex hull of individual minima.
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fy

Figure 3.3: Representation of solution obtained using the NBI method.

The normal constraint (NC) method provides an alternative to the NBI method with some
improvements [81]. In this method the utopia line/plane is first found and its components
are used to normalise the objectives. A sample of evenly distributed points are generated on
the utopia plane by projecting each sample point onto the Pareto optimal surface by solving
a constrained optimisation problem for each of these points. However, similar to NBI, the
method described thus far may generate dominated solution points. To mitigate this, a Pareto
filter is applied to search for and delete any dominated solutions, which is done by comparing

each solution point with other solution points and all dominated points are discarded [81].

3.2.2 Multi-Objective Genetic Algorithms

The methods presented thus far have involved unique formulations that are solved using
standard single-objective optimisation methods. Approaches such as genetic algorithms (GA)
can be tailored to solve a multi-objective problem directly. GA is a type of evolutionary
algorithm (EA) that mimics the evolutionary process in nature for optimisation. The algorithm
can be defined by using the following operators, representation, fitness assignment,
selection, crossover, and mutation. A GA achieves this by first generating a set of randomly
generated states called the population, where each state is represented using a binary string
of zeros and ones. The generated states of the population are assigned a fitness value based
on the objective function value at that point. The fitness values of the states are used by the
selection operator to select candidates for mating in order to generate the next generation
of states. The goal of the selection operator is to create more copies of designs with relatively
high fitness, while diminishing the number of weak candidates. New candidate solutions are
generated by applying the crossover operator. The goal of the crossover operator is to create
new candidate solutions (child solutions) from members of the mating pool. The crossover
operator picks two candidate states at random from the mating pool, and a crossover point
is chosen randomly (which is based on the crossover probability) from the positions in the

binary string i.e. the binary string of each pair to be mated are exchanged to generate a new
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state or child. Finally, each location of the binary string in the child state is subject to
mutation, which is dependent on the mutation probability. For a binary coded GA the
mutation operator flips a bit in the string at a random position i.e. the mutation operator,
with a given mutation probability, changes an arbitrary bit in the genetic sequence from its
original state. The mutation operator, similar to the crossover operator but not to the same

extent, aims to maintain genetic diversity from one generation of a population to the next.

By applying the three operators, selection, crossover, and mutation, at each generation of
the optimisation process the GA increases the number of optimal solutions i.e. solutions with
higher fitness values. The crossover and mutation operators combine features of the high
fitness solutions of the previous generation in the hope of creating better solutions in the
next generation. The application of this process over multiple generations will in theory lead

to better solutions and converge towards the Pareto optimal set.

This evolutionary optimisation approach can be extended to a multi-objective optimisation
problem. Of the many evolutionary algorithms proposed for multi-objective optimisation,
the most popular and widely used is the modified non-dominated sorting genetic algorithm
(NSGA-II) [32]. The following sub-section provides a brief over of NSGA-II. For a more
complete survey of other multi-objective evolutionary algorithms, the reader is referred to
the text by Deb [32].

3.2.2.1 Non-dominated sorting genetic algorithm

The application and development of EAs for multi-objective optimisation problems have been
vast, of the many proposed EAs the most popular are the non-dominated sorting genetic
algorithm (NSGA) and the improved strength Pareto evolutionary algorithm (SPEA). Goldberg
[82] describes the development of a new method of multi-objective fitness assignment
known as non-dominated sorting. The procedure of fitness assignment, as illustrated in
Figure 3.4, calculates the rank of each individual according to the number of other fronts

that dominate the front that it is a member of.

Objective 2 — higher is better

v

Objective 1 — higher is better

Figure 3.4: Principle of non-dominated sorting. Solutions belonging to dominated

fronts are assigned successively inferior fitness values.
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For a more comprehensive review of the applicability of these methods the reader is referred
to Steuer [32]. This thesis mainly focuses on the NSGA procedure, which will be described

here after.

The NSGA algorithm is similar to the standard GA apart from the way the selection operator
works. The non-dominated individuals are first identified from the current population and
assigned a large dummy fitness value. In order to maintain diversity in the population, these
dummy fitness values are then degraded through the use of sharing [83], where the fitness
value is degraded by dividing the dummy value by a quantity o,,,. proportional to the
number of individuals around it. The non-dominated solutions are temporarily ignored and
the procedure is repeated for the remaining individuals, using a smaller assigned dummy
fitness value at each step. This process is continued until the entire population is classified
into several fronts [83]. The algorithm proceeds in the same fashion as the GA, with the
selection operator applied, where selection preference is given to individuals with large

dummy fitness values.

However, several criticisms of the NSGA algorithm emerged, the most prominent of which
were its computational complexity, lack of elitism, and for choosing the optimal parameter
value for the sharing parameter og,,,.. This led to the development of a modified version of
the algorithm, NSGA-II proposed by Deb et al. [84], which is an improvement of the earlier
proposed NSGA algorithm. NSGA-II incorporates elitism, better sorting algorithm, and

requires no sharing parameter to be chosen.

NSGA- 11 works by first classifying the population into non-dominated sets. The first set
contains all the non-dominated solutions of the population, and the second front being
dominated by the individuals of the first front and so on. In this way the entire population
(which includes the parent and child population) is classified into different Pareto sets by
assigning a non-dominated rank (fitness), where a rank of 1 is assigned to all members of
the first non-dominated set, rank of 2 for the second, and so on. In addition to fitness values,
a new parameter called crowding distance is calculated for each individual, which measures
how close an individual is to its neighbours. A larger crowding distance will result in a more
diverse population. The algorithm continues to select parents from the population by using
binary tournament selection, based on the rank and crowding distance of individuals. Here,
individuals are selected if the rank is lesser than the other, or if the crowding distance is
greater than the other (note, crowding distance is only compared if the rank for both

individuals are the same).
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Figure 3.5: Schematic of the NSGA-II procedure [32].

The outline of the NSGA- II algorithm is represented in following steps:

Step 1. Create a parent and offspring population and combine both to generate R, = P, U
Q;. Then, perform a non-dominated sorting of R, and identify different fronts F, i =
1,2,..,etc.

Step 2. Perform archive update to generate P, ,of size N i.e. until |P. |+ |F|< N,
perform P,,, =P,,;UF,and i =i + 1.

Step 3. Perform crowding-sort procedure to include only the most widely spread
solutions using the crowding distance values in the sorted F; to P,,,.

Step 4. Perform selection on P,,,, binary tournament selection with replacement to fill
the mating pool by using the crowding distance.

Step 5. Apply crossover and mutation operators to the mating pool from the previous

step to generate Q..

3.2.3 Surrogate Assisted Optimisation

The idea behind surrogate assisted optimisation is to use approximation techniques to speed
up the design optimisation procedure, by accelerating the search procedure of a variety of
optimisation methods, including gradient-based and EAs. This was first studied by Schmit,
Farshi, and Miura [85], [86], which focused on structural optimisation using mathematical
programming techniques. Surrogate assisted methods can be described as a technique that
allows complex and computationally expensive optimisation problems to be transformed into
simpler, less time intensive, functions that can be adapted into an optimisation framework.
The surrogated assisted methods can in essence be described as a curve fitting technique
that allow the ‘real’ objective or constraint function to be replaced with an approximation of
that function. The central theme behind such techniques is to identify an appropriate
approximation function y = f(x,a), where a is a vector of unknown parameters that are
determined either by a black-box based approach or a physics based approach [13]. The

physics-based approach aims to exploit the governing equations (either the continuous or
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discrete form of the governing equations) in order to determine the functional form § =
f(x ). In contrast, the black-box approach involves running the analysis code at a number
of preselected input points x = [x“),x(z),...,x("‘”]T, where the sample plan is generated by
applying techniques developed in design of experiments (DoE). The analysis code is then run

at these points to generate a set of outputsy = [y®,y®, ...,y("‘l)]T, resulting in the generation
of a set of input-output data. This data set is in-turn used to tune the model parameters to

fit a surrogate model f to create a mapping of the objective function.

This thesis primarily focuses with the black-box approach, which offers the practical
advantage of not modifying the analysis code to determine the a parameters. The overall
back-box approach follows an iterative procedure involving the following steps: (1) data
generation, (2) model-structure selection, (3) parameter estimation, and (4) model validation.
The application of this approach results in the construction of a surrogate model for each
objective function. The constructed surrogates are in-turn used in a search scheme, such as
a genetic algorithm (GA), to construct the Pareto set. This thesis adopts the framework
developed by Voutchachkov et al. [87], where the surrogate based approach is combined with
NSGA-II, and an update strategy. The update strategy allows the identification of infill points
in regions of interest, such that the model parameters of the surrogate model can be re-

tuned in order to effectively identify the Pareto set.

The following subsection provides an overview of the Gaussian Process or Krig predictor
surrogate model, as it forms the basis for the optimisation and update point selection method
applied in this thesis. However, the topic of surrogate model construction and parameter
estimation is vast. For a more complete review of the methods available, the reader is referred
to MacKay [88], Box and Draper [89], and Keane and Nair [13].

3.2.3.1 Gaussian Process Surrogate Model

Gaussian Process (GP) modelling originates from the work by Krig [90], who developed the
method to predict mineral concentrations, in the area of geostatistics. The use of GP models
allows the user to control the amount of regression, and also provides a statistical framework
for assessing the accuracy of the model predictor. This in-turn can be used in assessing

where to place any future update points to the surrogate model.

In the GP model the function outputs y(x) is treated as a random variable, in the sense that
the model output in unknown until the model is run at that particular point. In essence the
model outputs are assumed to be realisations of the Gaussian random field with mean g and

covariance I'. The model structure can thus be represented as:

Yx)=B+2Z(x) (3.6)

where Z(x) is a Gaussian stochastic process with zero mean and covariance given by:
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Cov (Z(x,x") =T(x,x') = 62R(x,Xx") 3.7)

Here o2 represents the process variance and R(x,x') is a parameterised correlation function

that can be tuned to the training data set. A common choice of the correlation function is:

R(x,x") = exp —291‘|x1‘ -x[" (3.8)
=1

where 6, >0 and 0<m; <2 are the undermined hyperparameters. From this an nxn

correlation matrix of the observed data set can represented as:

[Rx®D,x®)  RxW,x@) ... RE®,x™)]

| |

_Rx®,x®) Rx®,x®@) .. Rx®,x™)
R_| : : : | (3.9)

lR(x("),x(l)) R(x™,x®y R(x("),x("))J

Figure 3.6 represents different correlations due to variations in m and 6. Here m represents
the ‘smoothness’ parameter. Setting m; = 2 results in the correlation to be ‘smooth’ and

continuous, and infinitely differentiable. Reducing the value of m; increases the rate at which
correlation drops as |xj(i) — xj| increases. The hyperparameter 6; controls the influence of the
sample point as |x].(i) —xj| increases. Forrester et al. [34] describe 6; as being a measure of
how ‘active’ the function we are approximating is due to variations in x; i.e. a high value of

6; indicates that all points have a high correlation, while a low value of 6, indicates a

significant difference between the Y(x;)’s 6;.

9=0.1
—— = =1
== ==10

)

it

exp (-|x;

1

Figure 3.6: Correlations with varying (a) m and (b) 6.

Since the observed outputs y = [y®,y@, ...,y(")]T are assumed to be reflections of the
Gaussian random field, the joint distribution of the set of data is also a joint normal
distribution. Consequently the likelihood of the observed data being generated by the

parameterised Gaussian random field (represented as a log of the likelihood function) is:
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1 1
In(L(8,B,02)) = 2 |nln(27‘[) +nlno? + In|R| + ;(y —18)"R Y (y — 18) (3.10)

where 0 is a vector of the 8,,i = 1,..n, hyperparameters, R € R™" is the correlation matrix,
and 1 represents a matrix of ones - [1,1,...,1]T€eR™ . In order to estimate the
hyperparameters 0,5, and o2 the likelihood function is maximised, which is equivalent to
minimising the negative log of the likelihood function. By taking derivatives of the above

equation and setting them to zero, the hyperparameters g and ¢? can be estimated as follows:

1TR—1y
B =TTR11 (3.11)
— 1B R-1(v —
o2 = -18)'R*(y—1p) 3.12)

n

These estimates of the hyperparameters can be substituted back into equation (3.10) and the

constant terms removed to give the concentrated In-likelihood function:

In(L) ~ —gln(azz) —%lanl (3.13)
The value of this function is dependent on the hyperparmeter. However, unlike g and o2,
differentiating equation (3.10) with respect to 8 does not yield an analytical solution for the
estimate of 8. Instead, some form of numerical optimisation method is employed to calculate
the values of 6. Typically a GA or simulated annealing is employed as an optimisation

algorithm to generate the best result [34].

Having determined the hyperparameters that maximise the likelihood function, new function
values can be predicted at unobserved data points & A new prediction § is augmented with

the observed data to form a joint normal distribution, which can be written as follows:

r  y®
7 ~N (11008, |V®T rE.5)

) (3.14)

where y(®) = [02R(& xD), 02R(& x®),..,02R(X, x™)]T. The prediction of § can now be
determined by taking the conditional distribution of § given the data set y i.e. the posterior

probability distribution, which is given as:

Iy~N(B +y®T (¥ - 18),y®T'y(®) (3.15)

Given the above, the posterior mean and posterior covariance can be written as:

&) =B+ 1Ry —1p) (3.16)

where 7(x) = [R(x,xP), R(x,x@), ..., R(x,x™)], which represents the correlation of new points.

The mean of the posterior distribution is seen as the prediction of the output at the new

53



Chapter 3: Multi-Objective Decision Making and
Optimisation

unobserved point &, and the variance of the output at this point is seen as the uncertainty in

the prediction of the output.

a?(x)=02 (1 —t(x)TR11(x)) (3.17)

3.2.3.2 Multi-Objective Expected Improvement
Having constructed an initial surrogate model using the sampled data points, x=

[x®,x@, ...,x("‘l)]T, it is worth considering adding further infill points to enhance the accuracy
of the model in predicting the true objective function f. The GP model allows the calculation
of mean-square error $2(x) of the model prediction, which in-turn allows it to estimate the
uncertainty of the prediction and thus define an infill strategy. The infill points are located
where the mean-square error is maximum. However, a pure error based infill strategy leads
to filling the gaps in the design space and not exploring to find any minima’s within the
objective space. A balanced exploration-exploitation aims to minimise §(x) and at the same
time minimise mean-square error $%(x) of the model prediction. This can be achieved via the
incorporation of statistical improvement criteria, which attempts to balance exploration and
exploitation. This section provides details of the probability of improvement and expected
improvement criteria. For a more in-depth review of other alternatives the reader is referred

to Keane and Nair [13]. The probability of any infill point representing an improvement over
the current best point £™"(x) = min (fe(l)(x(“),fe(z)(x(z)),~~,fe(N°)(x(N0))) is given as P[I]=
P[y (x("’0+1) sﬁ,"‘i"(x))]. In a multi-objective sense this can be considered as the probability

that the new design point will dominate a single member of the existing Pareto set, this
conceptis illustrated in Figure 3.7. Here, the solid line represents the Pareto front, the shaded
region represents the region in which the new point will extend the Pareto set, and the

hatched region represents the region in which at least one set member [34].

f2(x)
F

=

%

Figure 3.7: A Pareto set illustration for a problem with two objectives [34].
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For a two-dimensional problem with two objectives f;(x) and f,(x), and x consisting of only
one design variable. The initial Pareto set can be constructed from the DoE runs, which are

represented as:

fia = (A2 GO A2 GO [P @), 52 @), o[£ 00, £ o) ||} 3.18)

The superscript * indicates that the designs are non-dominated. Here it is assumed the GP

models built for the two objective are independent, where the mean j,(x) and 9,(x) and
variance 3;(x) and $,(x) are used to construct a joint Gaussian probability density function.

The probability that a new design point at x will dominate a single member of the existing

Pareto set is given to be P [Yl(x) < y;‘(i) NnY,(x) < y;m], which is given by integrating over the

hatched area in Figure 3.7.
Pne) <3 n e < y3°)

L)

Y1 o
- f f Vib(¥y, Vo) dY,dY,
1 L(+1) LD

Y1 yz(
o | netmavay,

m—
i=1 N

(3.19)
+

L(m)
sl V2
+ f } )f Yip(Yy, Y,)dY,dY;
yi™ e

where ¢(.) represents the joint Gaussian probability density function. However, the defined
criteria does not explicitly define the degree of improvement being achieved and thus does
not necessarily encourage exploration when used as an infill criterion. This is addressed by
the expected improvement criterion. The derivation of the expected improvement criterion

is taken from Forrester et al. [34].

The expected improvement E[I(x)] is the first moment of the integral over the area below
and to the left of the front, and taken about the Pareto front. P[I(x)] represents the integral
over the probability density function, with limits below and to the left of the Pareto front
where the improvement can occur. The calculation of the centroidal distance of the expected
improvement integral from the Pareto front (¥, ;) is determined by E[I(x)] (which is the
integration with respect to its origin) divided by P[I(x)]. The expected improvement criterion,
based on any location on the front, can now be calculated by measuring the Euclidian distance
from the centroidal location (¥, ¥,) to the closest set member of the Pareto front from the

centroid (y;(x),y;(x)) and multiplying it by P[I(x)].

E[I(®x)] = PIX)IV T () — ¥ ()2 + (LK) — y; ()2, (3.20)

where
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(1)
Y, (x) = f f Y16 (Y1, Yz)dY,dY;

|

-1 L(i+1) LD
1
i=1 yI

Y. Y2
o | netmavay (.21

«(m)
s o] mewaaray, el
yi -

and ¥,(x) is defined similarly. The expected improvement criterion encourages a more evenly
spread Pareto front distribution, as the centroidal positions lying near a large gap between
the points forming the Pareto front will get a proportionally higher value of E[I(x)] since the
Euclidian distance to the nearest point will be greater. In addition, the E[I(x)] criterion also
encourages a more wide spread exploration if the data points used to construct the GP model
are widely spaced. This results in the error terms to be large, which tends to further increases

exploration.

3.3 Optimisation Framework

Design Variables
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Figure 3.8: Optimisation Framework.

This thesis adopts the framework developed by Voutchachkov et al. [87], where the surrogate
based approach is combined with the NSGA-II multi-objective optimisation algorithm, and
an update strategy to identify infill points in regions of interest. This allows the model
parameters of the surrogate model to be re-tuned to effectively identify the Pareto optimal
set. This study uses a Gaussian Process (or Kriging) response surface model to fit the sample

data set. The expected improvement criterion is used to define the update strategy, as it
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provides a balanced exploitation and exploration strategy of the objective space [34] i.e. it
provides a balance between optimality and design space uncertainty. The optimisation
framework also applies a local nonlinear constraint optimiser to effectively act as a constraint
satisfier. This is used to scale the wing area, engine power-to-weight ratio, and wing aspect
ratio to meet a defined set of constraints, and with the aim of minimising GTOM (Gross Take-

off Mass). The overall optimisation framework is depicted in Figure 3.8.

3.3.1 Constrained Optimisation

Before defining the optimisation procedure it is worth describing the optimisation problem
being addressed. Here, the optimisation problem concerns two objectives, one being the
maximisation of the utility function, and the other being the minimisation of the Life-Cycle
Cost (LCC) function. The optimisation problem is also subject to inequality constraints
g:),i =1,---,n (but not equality constraints). The details describing the constraint functions
and design variables x used in this optimisation problem will be described in later chapters.

However, in a general form the optimisation problem can be defined as follows:

Minimise f(x)=[-Ux),LCC(x)]
Subject to g:(x) <0. i=1,-,n

L U
Xg S Xq S Xq

q=1,,z (3.22)
In the above formulation a negative sign is added to the utility function in order to convert it
to a minimisation problem, which is equivalent to maximising the positive utility function.
The inequality constraint represents the constraint boundaries that must be satisfied. In
addition each design variable x, € x can also be subject to upper and lower bound constraints,
defined as x} < x, < xJ. The satisfaction of these constraint functions are addressed by a local

nonlinear constraint optimiser, which aims to solve the following sub-problem:

Minimise fx)
Subject to g:(x) <0. i=1,-,n

L U
ququxq

q=1,,z (3.23)

In the above formulation a single objective function f(x) is defined, which is not the same as
the multi-objective formulation in equation (3.22). This single objective function can be

representative of the systems performance i.e. mass, total efficiency, platform signature, etc.

The above single objective constraint problem can be written as an unconstrained

minimisation problem by defining the Lagrangian function (£):
L&M= FOO+ ) 2,9,() (3.24)
j=1
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Or

LX) =fx) +ATgx) (3.25)

where L(x,1) is the Lagrangian function, and 4; is the j* Lagrange multiplier, and the vector
A=[A,2,,..,1,]7 are vectors of the Lagrange multipliers for the inequality constraints. The
addition of Lagrange multipliers combines the constraints to yield an unconstrained
optimisation problem. The above formulation also requires the optimisation algorithm to
differentiate between active and inactive constraints, where a constraint g;(x) is said to be
active at a point x* if the point falls on the constraint surface i.e. g;(x*) = 0, else the constraint
is defined to be inactive. Based this information, the first-order optimality condition, known
as the Karush-Kuhn-Tucker (KKT) conditions, for a point x* to be a local minimum of

equation (3.24) can be defined as follows:

If x*is a local solution to equation (3.23), the function f(x) and g;(x)are continuously
differentiable, and the set of active constraints at the pointx* are linearly independent, then

there exists Lagrange multiplier vector A such that the following conditions are satisfied:

V.L(x"A) =0

g;(x) <0. j=1,-,n

A gix)=0 j=1,-,n

2 =0 j=1,-,n (3.26)

Where V,L(x",4) = Vf(x) + ¥4;Vg;(x). The above conditions implies that either 1; is equal to
zero, or the constraint g;(x) is active - defined by 4, g;(x) = 0. Several non-linear constrained
optimisation algorithms are available to solve for the Lagrangian function and satisfy the first
order optimality conditions i.e. the KKT conditions. These algorithms can generally be
grouped into: quadratic programming, penalty and augmented Lagrangian method,
linearized search techniques, cutting plane method, feasible direction method, and
sequential quadratic programming (SQP) method. The SQP methods are one of the most
effective methods in solving the non-linear constrained optimisation problem, and will be
discussed in further detail in this section. For an overview of the other methods the reader is
referred to Bonnas et al. [91].

The Lagrangian function is solved by applying the sequential quadratic programming (SQP)
method, which solves a quadratic sub-problem in each iteration. A quadratic sub-problem
of equation (3.23), at the current point x, has the following form:

Minimise ~dFBdy + Vf (x,)7d

Subject to Vg(x,) dy + g(x,) < 0 (3.27)
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where dy = x — x,, and B =1 (identity matrix) initially, which is then updated to approximate
the Hessian matrix H. This sub-problem can now be solved using a quadratic programming
(QP) algorithm. The methods to solve QP problems can be divided into three groups: active-
set, gradient projection, and interior-point methods. In the presence of inequality constraints
the SQP method solves a sequence of quadratic sub-problems iteratively, where the objective
function is quadratic in form and the constraints are linear. This however is not appropriate
when the constraint functions are non-linear. To account for non-linearity of the constraints,
while using the linearized form in the quadratic sub-problem, the SQP method chooses a
quadratic form of the Lagrangian as the objective function, hence Vf(x,) = V,L(x,, A;)- Active
set methods work by maintaining the estimate of the inequality constraints that are active in
each iteration, where the active inequality constraints can be posed as equality constraints,
resulting in quadratic sub-problem. However, in the active set method the active constraints
change in each iteration, requiring a large number of iterations to reach convergence. The
gradient projection method on the other hand allows the active constraint set, otherwise
known as the active set, to change rapidly from iteration to iteration. Each iteration of the
gradient projection algorithm consists of two stages. In the first stage the algorithm searches
along the steepest descent direction. If a constraint boundary is encountered the search
direction is ‘bent’ to remain in the feasible region. Thus, the search is made along the
piecewise linear path to locate the first local minimiser, called the Cauchy Point. In the second
stage the active set is updated to the inequality constraints that are active at the Cauchy
point. The QP sub-problem is solved with this new working set at the Cauchy point to obtain

the next iterate [91].

Interior point method aims to solve a sequence of approximate minimisation problems. This
method converts the inequality conditions to equality conditions by introducing slack
variables. In addition, logarithmic terms called barrier functions are added to the objective

function, which results in the following problem definition:

Minimise %XTGx+pr—uZ}("=1logsk
Subject to a/x =b; j=12,..,1
CiX — dy =5 =0 k=12,..,m. (3.28)

where s, are the slack variables corresponding to the inequality constraints, and yu is a barrier
parameter. As u approaches zero, the solution of the above problem approaches the solution

of the QP problem, as specified in equation (3.27).

The solution to the quadratic sub-problem, from any one of the methods defined thus far, is

used to form the following new iteration:

Xp+1 = Xg + O(kdk (3.29)
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where a,, is the step length parameter, which is determined in order to produce a sufficient
decrease in a merit function ¢(x). In this method the objective function and constraint
functions are combined together in each iteration of the algorithm to form an unconstrained
optimisation problem. The merit function used by Han [92] and Powell [93] are of the

following form, which is widely used in many SQP implementations:

m l
ox) = f(x)+ ZTL‘ g (%) + Z 7; » max[0, g;(x)] (3.30)
i=1

i=m+1

Powell recommends setting the penalty parameter ; as:

it
L} i=1,..,m (3.31)

7y = (Te41); = max {/11' 2

This allows positive contributions from constraints that are inactive in the QP solution, but

were recently active.

The iterative scheme also requires updating the Hessian matrix, or an approximation of the
Hessian matrix, after each iteration. The Hessian matrix is typically updated by applying the
BFGS method [91]. The BFGS updating method, named after Broyden, Fletcher, Goldfarb, and

Shanno, constructs the Hessian at each major iteration as follows:

QkCIl: _ HkSkSJEH;t

Hy,, =H, + Tse oTH,s, (3.32)
where
Sk = Xg+1 — Xg
qk = Va1 LK1, 2) (3.33)

Based on the information provided thus far, the overall SQP method can be defined as a series

of steps:

Step 1. Start with an approximation of (x4,4,) and B,. Set k = 0 and define the merit
function ¢(x).

Step 2. Formulate the quadratic programming sub-problem, as defined in equation
(3.27), at the current iteration x,. Solve the quadratic programming sub-problem to

obtain d, from the solution.

Step 3. Choose the step length a;, by solving the unconstrained optimisation problem of

minimising the merit function along dy i.e. ¢(x; + dy).
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Step 4. Calculate the new iterate by using equation (3.29).
Step 5. If the solution is converged, stop.

Step 6. Update B, using the BFGS algorithm to obtain By, ;.
Step 7. Increment k = k+ 1 and go to Step 2.

The SQP algorithm in this thesis is applied as a constraint satisfier, and a local single objective

optimiser for minimising system mass in Chapter 7.

3.3.2 Multi-Objective Optimisation Procedure

Having presented an overview of both surrogate modelling and nonlinear constrained
optimisation algorithms in this chapter, the overall optimisation framework, as defined in
Figure 3.8, is outlined. The overall optimisation process can be broken down in the following
steps:

Step 1. Define a sampling plan to generate a set of points, X = {x®,x®,x®, . xM}

within the design space where simulation program will be run.

Step 2. Run the simulation at each specified point from step 1 to calculate the output
response y = {y®,y®, ...,Y(")}T. This generates an input-output relationship, which is

stored in a dataset: D° = {x®,y®}, i = 1,...,n. Set the update counter k = 0.

Step 3. Construct the GP surrogate model using the dataset D° and tune the

hyperparameters.
Step 4. Search the GP surrogate model of the utility function U(x) and LCC function
LCC(x), using the expected improvement criterion in order to identify update points

xt.

Step 5. Select designs that are best in terms of ranking and space filling properties. See
Section 3.2.2.1.

Step 6. Evaluate the selected designs and add to the data set D* = {[x®, x*], [y®,y*]}.

Step 7. Produce Pareto front and compare with previous. If two or three consecutive
Pareto fronts are identical then stop, otherwise continue.

Step 8. Repeat step 3 and re-tune the hyperparameters with the updated data set D¥.
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Chapter 4: Architectural Exploration

his chapter builds on the concept of systems architecting, as described in Chapter 1,

and identifies the need for architectural decision-making in engineering design.

Hazelrigg [4] defines three key elements in the decision-making process as
identification of options or choices, development of expectations on the outcomes of each
choice, and formulation of system values for ranking different system architectures. This is
best illustrated through Figure 4.1, which shows the mapping of stakeholder objectives to
functional intent of the system, describing what the system has to do in order to satisfy the
objectives. This is then mapped to the physical architecture of the system, defined by system
elements. The mapping between system elements can be representative of many forms, such
as information flow, physical interface (mechanical or electrical), compatibility relationships,
etc. This thesis represents the mapping between system elements as compatibility

constraints, which is representative of the viability of system architectures.

Objective 1  rf----4 Functionl |-----cotommmmmmmee Element 1

.
.‘<‘

Objective2 | 4 Function2  |.__ v Element3
1 ‘-"_'.-f:‘ Tl ,’r

L n

Stakeholder Y .

objectives Objective3 |----4 Function3 |~ K

v
Vo
-

Element 2

L]
1

i
L
’

‘ o= Element N
CET, S I

Elicitation of stakeholder objectives Functional Intent Engineering System

Figure 4.1: Functional view of the system architecting process.

The assessment of stakeholder objectives has already been addressed in previous chapters,
where value assessment was discussed in great detail. This chapter addresses the translation
of functional intent into a physical system architecture, which encompasses the decision-
making process of defining a set of viable design alternatives that are candidate solutions
for the system under consideration. The decision-making process in systems architecting
can be defined as identifying a set of viable design alternatives, based on knowledge and
experience of the design team, and down-select a design to generate a final system
architecture. This chapter provides a literature review of methods that are available to assist

the architectural exploration and down-selection process. Based on the literature review a
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set of architectural exploration methods are selected that best meet the needs of

architectural decision-making.

4.1 Architectural Decision-Making

System architecting can be viewed as a decision-making process, pertaining to Simon’s four
stages of decision-making: /ntelligence, Design, Choice, and I/mplementation. Thus, to
address the decision problem, the decision maker needs effective methods for each of the
four stages. According to Simon [16, 26] the most central and time-consuming part in the
architecting process is the Design phase. Even if /ntelligence, Choice, and /Implementation
activities have perfect solutions, the Design activity is still potentially the most difficult and
time-consuming phase of the decision-making process. As the number of system
architectures increase the design effort required to explore the architectural tradespace
space increases significantly. Therefore, the thesis focuses on addressing the needs of the

Design phase, as it is considered to be the most resource intensive of all the four phases.

In order to evaluate the use of different methods and tools within the Design phase, three
common metrics are used as a means of evaluation - construction, search, and
representation. These aspects were identified through a survey of decision support literature
[14, 27].

1. Construction - Allows the decision maker and system modeller to construct the
design problem that is human understandable, and can also be encoded into a

programmable environment.

2. Search - Allows the capability for reasoning about the structure of the decision
problem itself. This includes the capability to effectively search the architectural

tradespace space, based on the constraints imposed by the decision maker.

3. Representation - Provides a means of representing the outputs of the model such
that the behaviour and benefits of the system are clearly highlighted to the decision

maker. This can be thought of as knowledge representation.

The following section outlines some of the methods used to aid the system architecting

process in the design phase.

4.2 Table and Matrix based Methods

4.2.1 Morphological Matrix

Morphological Analysis was originally developed by an American astrophysicists Zwicky [23].
It is used to facilitate the rigorous investigation of large multidimensional spaces by
enumerating the possible alternatives for each decision variable, which is represented in a
matrix format known as the morphological matrix. An extension of the morphological matrix

is Functional Means Analysis (FMA) [5], which flows the logic of function to element of form
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in order to create a system architecture. Burge [5] describes FMA as a being a highly
structured approach in generating, selecting, and documenting system design concepts. For
example, in the design of a civil airliner some of the system functions are defined as, Deliver
electrical power, Generate lift for steady flight, Provide necessary thrust, and, Maintain
stability and control. Each function is then allocated a set of design alternatives within its

domain.

However, the inclusion of many alternatives into the matrix can result in a large number of
system configurations, which can become unmanageable for the system modeller to evaluate,
given the limited availability in time to explore the solution space, and the budgetary
constraints imposed on the exploration process at the conceptual design stage. The
morphological matrix, as described by Mavris [18], is an inherently a static document and
does not lend itself very well in its basic formulation for electronic design reviews, where
decisions are dynamically challenged and rectified on site [18]. Engler et al [94] have made
use of the morphological matrix and addressed its shortfalls to develop a process known as
Interactive Reconfigurable Matrix of Alternatives (IRMA). IRMA is used to instantiate
architectural solutions in an interactive form by allowing it to be dynamically reconfigured

during the concept selection process [18].
4.2.2 Decision Support Matrix

The Design Structure Matrix (DSM) provides a means of mapping one element of a system to
another. The mapping of system elements can be physical connections, information flow
(input-output) connections, or constraint connections between two or more elements. The
DSM is represented by an n x n matrix, where the matrix representation generally tends to
be symmetric. DSM has been widely used in systems engineering to identify interfaces
between different sub-systems or components. In this way DSM can support the top-down

identification of interfaces at each system level.

Function 1 F1 - F2 F1->F3 F1 - F4 F1 > F5
(F1)
F2 5 F1 Aol 2 F2 > F3 F2 - F4 F2 > F5
(F2)
F3 - F1 F3 > F2 PG F3 > F4 F3 > F5
(F3)
F4a > F1 F4 - F2 F4 - F3 Function 4 F4 - F5
(F4)
F5 - F1 F5 > F2 FS5 - F3 FS - F4 F“"(C;;‘)’" =

Figure 4.2: A representative example of a DSM matrix.

In systems architecting DSM is used to capture the interrelationship between system
elements. These interrelationships are used to identify the compatibility of solutions between

one decision variable to another, by defining the compatibility or constraint rules between
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decision variables. This results in a reduction in the number of possible combinations of
system architectures. The design effort required to explore the architectural tradespace
space is now more manageable [18]. However, DSM matrix on its own fails to meet the
construction and search criteria, as it does not allow the decision maker to construct the
design problem and identify different design alternatives that are available. DSM is therefore
only considered as a representation tool to identify the interconnectivity between decision
variables. Using structural reasoning algorithms, the matrix representation can be sorted to
show sets of elements that are tightly interconnected. This in-turn can also be used to
identify clusters of closely interconnected elements, and separate them from other clusters

in order to create sub-problems that can be solved independently of each other.
4.3 Taxonomies and Classification Hierarchies

4.3.1 Ontologies

A taxonomy defines a hierarchical classification or categorisation of systems, in reference to
a means of organising concepts of knowledge. In a broader sense this comes under the field
of knowledge organisation, which represents all schemes for organising information content
and knowledge management. The term knowledge organisation encompasses classification
schemes that organise material at a general level, headings that provide more detailed access
to sublevels, and control variant versions of key information content. This includes schemes,
such as semantic networks and ontologies. An ontology is defined as a general description
of each concept (or class), where the properties associated with each concept describes
various features and attributes of that concept (properties that belong to a class), and the
restrictions associated on those properties. An ontology, together with a set of individual
instances of classes, can be regarded as a knowledge base [95]. For example, an ontology of
the system architecting process can be created by defining decision variables as classes.
These classes are then arranged in a hierarchical taxonomy (subclass - superclass). The
design alternatives belonging to each decision variable (or classes) are defined through
properties. The relationships between different decision variables (or different instances of
classes) are defined by describing allowed values for properties of each class. In recent years
new tools and languages have emerged for the purpose of providing the capability in
supporting the development of ontologies, and provide technical support for knowledge-
driven systems. Ontology toolkits such as Protégé [95] have allowed the exploration of
different ontology languages, such as XML, RDF and OWL. For a more in-depth review of

these different ontology languages the reader is referred to Allemang and Hendler [96].

The complexity of designing and manufacturing engineering systems often requires the
understanding of technological advancements, design constraints, best practice knowledge,
customer requirements, and cost management [97]. This requires knowledge from multiple
domains to be brought together to support the decision-making process. Ahmed et al. [98]
have developed an methodology to support the creation of ontologies for the purpose of

searching, indexing, and retrieving engineering design knowledge. The developed

66



Chapter 4: Architectural Exploration

methodology has allowed researchers and industry practitioners to create ontologies to aid
engineering decision-making [99, 100]. Van Ruijven [99] has also presented an ontology for
systems engineering by describing a set of information models. An illustration of this is
represented in Figure 4.3. This developed ontology represents an interpretation of the
systems engineering process, which in-turn can be used build or configure information

systems to support the systems engineering process [99].

Is derived from

Objective
Is qualified by
System Is realised by
requirement
Process Is a specification for Stakeholder
2
Is a specification for requirement
Requires 5
9 3 rocess Is a specification for
Object iti B
Is a feature of T Is realised by
rocess Is a specification for
ystem 4 .
10 [ b

Is performed by

| ey |7
act
Is described in
Is a specification for
Procedure 8

Figure 4.3: lllustration of an information model of the breakdown of the systems

design process [99].

However, the development of ontologies in engineering systems thus far have been domain
specific. But to address the system architecting process it is required that ontologies be
modular, such that concepts can be generalised into separate ontologies [97]. This should
allow for better flexibility, modularity, and maintainability of the knowledge content [97]. The
adoption of ontologies in engineering design is also limited due to limited availability of
approaches or standard protocols to follow for ontology development, and no practical
methods for supporting engineering decision-making [100], [101]. Even in the case where a
generic and modular ontology framework is available, the effort required by system
modellers to enumerate and maintain the ontology is significant, especially for system
architectures consisting of large hierarchical structures [97]. For this reason the adoption of

an ontology framework to facilitate the engineering design process has been limited.
4.4 Directed Graph-Based Decision Support

4.4.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a sequential decision problem, in which a systems utility
depends on the sequence of decisions taken over a period of time. A MDP can thus be defined

as a sequential decision-making problem for a fully observable, stochastic environment with
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a Markovian transition model, and an additive reward function. A MDP consists of a set of
states s, a set of actions in each state A(s), a transition model P(S,,; =s'|S; =s,a), and a
reward function R(s). A Markovian transition model can be defined as process whereby the
future state S,,, depends only on a finite fixed number of pervious states S,... The simplest
form of the Markovian transition model is the first-order Markov process, in which the future
state depends only the current state, and not on the entire state history. This is

mathematically defined as follows:

P(St11 = 5'|Sg.t =) = P(S¢41 = 8'|S; = 5) (4.1)

A MDP can thus be formally written as a 4-tuple, (S,4,P,,R,), where S is a state space, 4, is a
set of actions possible at state s, P,(s,s’) is the probability of transitioning from state s to
state s’, and R,(s) is the reward at sate s when action a is taken. Figure 4.4 gives a
representative illustration of a hidden Markov model, where S represents states, y represents
observations, a represents actions, and b represents output probabilities [9]. MDPs are
generally solved using dynamic programming techniques, such as value iteration and policy
iteration. Policy is defined as what the agent should do for any state that the agent might
reach.

Figure 4.4: Representation of a Markov Decision Process (MDP).

The value iteration algorithm solves a MDP by iteratively stepping through the Bellman
equation, which is defined as:

U(s) =R(s) + yarél;;a()g)z P(s'|s,a)U(s") 4.2)

where U(s) is the utility function for the current state, and y is a discount factor which
describes the preference of an agent for current rewards over future rewards. In the value
iteration algorithm the Bellman equation is solved iteratively by defining initial values for the
utilities, and then updating the utilities of each state from the utilities of its neighbours. This

iteration step is defined as follows:
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Uisa(s) < R(s) + Varg%z P(s'ls,)U;(s") (4.3)

where U;(s) is the utility value for state s at the ith iteration.

Policy iteration offers a simpler algorithm for solving MDPs, in comparison to value iteration.
Policy iteration begins with some initial policy 7, to calculate the utility of each state, if «;
were to be executed i.e. calculate U; = U™. At the ith iteration, policy r; states the action to
be carried out in state s. The algorithm calculates a new maximum expected utility policy m;,,
using one-step look-ahead based on U;. The algorithm terminates when the policy
improvement step yields no improvement in utility. Because the action in each state is
predefined by the policy m;, and there are only a finite number of policies for a finite state
space, policy iteration must terminate with finding the optimal policy within in a finite time
frame. The implementation of the policy improvement step is easy, in comparison to the
standard Bellman equation [102], as the action in each state is fixed. This results in a
simplified version of the Bellman equation relating to the utility of s, under r;, to the utilities

of its neighbours.

Uis) = R(s)+7 ) P(s'ls m()Ui(s") @.4)

It can be noted that the ‘max’ operator has been removed, making the equations linear. For
n states we have n linear equations with n unknowns, which can be solved exactly using
standard linear algebra methods [102]. For a more in-depth review of value iteration and

policy iteration the reader is referred to Russell and Norvig [102].

Fulcoly et al. [103] make use of MDP, in combination with the epoch-era framework, to
analysis potential system change mechanisms that alter a systems behaviour over time in
response to epoch shifts. Here an epoch is defined as a static snapshot of contexts with
accompanying stakeholder needs over a fixed period of time [103], which can change over
the lifecycle of the system. An ‘era’ is defined as the time-ordered sequence of epochs [66].
The developed framework, known as epoch syncopation framework (ESF), was applied to the
design of an orbital transfer vehicle that can be used for a variety of on-orbit servicing
missions. In this study several design variables, in combination with three change strategies
were considered, such as the manipulator size, propulsion system type, and fuel mass. A
change strategy determines when change mechanisms will be executed, which change
mechanism will be executed, and what design will be transitioned to form a system

architecture.

Frameworks similar to the MDP approach have been applied in many engineering decision-
making problems. They are best suited for structured decision-making problems where the
possible set of states, actions, and transition probabilities can be derived before the
computation can proceed. However, for an unstructured decision problem, where prior
information in regards to scenarios, transition probabilities, and actions are unknown, an

MDP model fails to explicitly represent the decision-making problem. In addition the Markov
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transition model fails to account for previous state history, which can prove to be detrimental
in systems architecting, where future decisions are dependent on multiple past decisions.

Thus, the Markov assumption does not hold.

4.4.2 Time-Expanded Decision Network (TDN)

The Time-Expanded Decision Network (TDN) framework, developed by Silver and De Weck
[104], avoids the limitations of the Markov assumption by including the state history. This
allows the TDN framework to run quantitative scenario planning analysis for system
architectures, in which system responses are programmed through the time-expanded
network [104]. This is achieved by capturing the cost of operating and switching system
configurations through time, whilst seeking the least-cost path through the network in a
changing operating environment. To frame the evolution of a system through its life-cycle
as a dynamic flow problem, the TDN framework first represents a set of system
configurations, and the costs associated with developing, operating, and switching between
system configurations as a static network. This is illustrated in Figure 4.5, where S is the
source and Z is the sink. In this example three system configurations are considered, A, B,
and C, which are represented as nodes. The operating cost of each system configuration are
split as nonrecurring engineering and facilities costs C,, fixed recurring costs Cr, and variable

recurring costs C,. The switching costs between system configurations are represented as
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Figure 4.5: An example of a static network, representing switching costs, staying

costs, and development costs [104].

The TDN can now be created with the addition of a time element to each link, resulting in the
reformulation of a dynamic network into a time-expanded static network. The problem now
is in finding the minimum cost flow from source S to a sink Z in a directed network, where
each arc in the network is associated with a traversal time t, and a traversal cost ¢, and each
node in the network is duplicated at each time period. In addition, the network decouples

operating costs and switching costs by splitting each time period with chance nodes (circles)
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and decision nodes (squares). This avoids the problem of the min-cost flow algorithm to
selectively avoid ‘operating arcs’ and only choose ‘switching arcs’ in time periods where the
demand is high. In reality existing systems will continue to operate to meet existing demands

whilst a new system configuration is being developed [104].
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Figure 4.6: An example of Time-Expanded decision Network (TDN). Operating and

switching costs over time are modelled for three concepts [104].

The representation of a decision problem using the Time-Expanded Network allows the
introduction of operational demand scenarios over time. This lead to the ultimate goal of
finding sets of design configurations that minimise LCC, which is achieved by finding the
least-cost path through the network. Since the defined network is acyclic, the nodes can be
arranged topologically in terms of their distance from the source, allowing the use of a simple
reaching algorithm to find the shortest path. The output of the TDN framework can thus be
used as a representational tool to generate optimal strategies for switching between system
architectures, depending on the demand scenario. The framework also provides a means to

qguantify the value of real options in terms of the effect in reducing switching costs [9].

Although the TDN framework mitigates the Markov assumption problem, it still faces the
same issues as a MDP. The TDN framework is unable to represent an unstructured decision
problem, where prior information about the initial set of system architectures, switching
costs, and operating demand scenarios are unknown. In addition, this thesis assumes that
the initial set of system configurations are not available at the outset, and focuses on the
design-activity stage of decision-making to identify an optimal set of initial system

configurations that should be considered by the decision maker.

4.5 Constraint Graph Based Methods

4.5.1 Constraint-Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a mathematical representation of a constraint
problem, which is characterised by a set of decision variables, each with a finite domain of

possible assignments [102].These decision variable are interconnected by constraints that

71



Chapter 4: Architectural Exploration

represent the compatibility of possible assignments for each decision variable. CSPs thus
offer a natural representation for a wide variety of problems, and can be used to search the
solutions space with multiple constraints imposed on the feasibility of solutions. To identify
feasible solutions, the CSP search algorithm makes use general-purpose heuristics to
eliminate large portions of the search space all at once by identifying variable-value
combinations that violate the constraints [102]. Thus, the CSP search algorithm goes hand-
in-hand with the specified search property of the evaluation criteria. The constraints imposed
by the decision maker on the compatibility of different design alternatives can be propagated

through the architectural solution space to remove infeasible system architectures.

A CSP can be expressed as triple (X, Dy, Cx), where X is a set of decision variables x; € X that
ranges over a finite domain D,, € Dy, Cx defines a set of constraints relating to the set of
decision variables X. Solutions to a CSP is found when all constraint functions are satisfied
i.e. when Cx = true, where the vector true = [true,, true,, trues, ..., truey_], and N, represents

the total number of constraints.

4.5.1.1 CSP Formalism

A CSP can be formulated based on the types of constraint being imposed on the decision
space. The simplest type is a binary constraint, which relates to the restriction placed on the
value of two variables e.g. v; # v,. This can be extended to describe higher-order constraints
that relate to more than two decision variables. Other common constraints are linear
constraints on integer values, in which each variable appears in linear from e.g. v, + t; < v,,

where (v, v,) are values associated to domains (D,, D,).

A CSP can also be formalised based on the domain size D of a decision variable. The simplest
kind is that of a discrete finite domain, where variables can be thought of as discrete values
that have limited ranges. However, CSPs in real world applications generally tend to have
continuous domains, where the variable v in domain D can have any real value in the range
of aand b - v =(a,b) = {ve R |a < v < b}. This thesis however only focuses on discrete, finite
domain variables, as design alternatives generally pertain to configurationally changes that

are discrete and finite.

The constraints that have been described thus far have been absolute constraints, where the
violation of a constraint will result in the ruling out that particular solution. However,
constraints can also be setup based on preferences - preference constraints indicate
solutions that are preferred by the decision maker i.e. soft constraints. These constraints are
generally encoded as cost functions on an individual variable assignment. A Preference
constraint set C, = {F,, ......., F,} contains a set of m constraints, which are made up of cost
functions F;. The means of identifying the most preferred solution is by minimising the cost

function, which is generally solved with an optimisation algorithm.

An extension of CSPs are Constrain Optimisation Problems (COPs), which can be defined as

(CSP,g) or (X, Dy, Cx,g8), where g is a set of objective functions. Several studies have
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represented the system architecting process as a multi-objective COP [105]. Ehrogott and
Gandibleux [106] provide a detailed survey on the development of COP methods in solving
real world decision problems. Rayside and Estler [107] describe the development of a user
interface that enables the system architect to define a multi-objective COP, and provides a
means to solve the COP. The developed interface is however aimed towards solving COPs
with discrete variable domains with many constraints, and is not intended for deign variables
that are continuous. Work by Lin [105] also represents the system architecting process as a
multi-objective COP, where a generalised Conflict-directed A" search is used to find Pareto
optimal solutions. This developed framework was applied to Apollo mission mode case study

to find the optimal mission mode [105].

4.5.1.2 Methods of Solving CSPs

To illustrate the methods used in solving a CSP the following map colouring example is used.
The map colouring problem is a classic example that has been used in many literatures
regarding CSPs [102]. Here the task is to colour each region of the map in such a way that no

neighbouring regions have the same colour.

Western

Australia

Tasmania U “ @

(a) (b)

Figure 4.7: An example of a map colouring constraint satisfaction problem. (a) The
states and territories of Australia that need to coloured using red, green and blue.

(b) The constraint map of the map-colouring problem [102].

Using the map-colouring example in Figure 4.7 the decision variables can be defined as X =
{WA,NT,Q,NSW,V,SA, T}, and the domain for each decision variable is given as Dy =
{red, green, blue}. The constraints imposed on the decision variables can be described as
binary constraints (i.e. no neighbouring regions can have the same colour), which can be

mathematically represented as follows:

Cx = {SA # WA,SA # NT,SA # Q,SA = NSW,WA # NT,NT % Q, Q

# NSW,NSW =+ V} (4.5)

The aim here is to present a series of methods that can be used to obtain a solution to an

arbitrary constraint problem. Hence, the focus is not in finding the most efficient method for
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solving the map-colouring problem, rather the following sections outline some general
purpose methods in solving CSPs, and illustrate its use by using the map-colouring problem

as an example.

4.5.1.3 Constraint Propagation

Before the search begins in finding a feasible set of solutions it would be useful to remove
as many infeasible values from the solution space. This will reduce the search time, as the
search space would consist mostly of viable solutions. The removal of infeasible solutions
prior to search is achieved by the application of a domain specific of inference function, called
constraint propagation. The idea in constraint propagation is to achieve local consistency.
Local consistency is achieved by treating each variable as a node in a graph and each
constraint as an arc. Consistency is enforced across each part of the graph until all
inconsistent values have been removed. There are different degrees to which local
consistency may be imposed, some of which are, node-consistency, arc-consistency, and k-
consistency. Node-consistency is enforced by ensuring all constraints are satisfied in the
domain of a single decision variable. Arc consistency extends this idea and ensures that all
constraints are satisfied across a constraint arc connecting two decision variables. k-
consistency is a general form approach to constraint propagation and is the strongest form
of constraint propagation, where the k represents all the nodes/decision variables in a
constraint graph. k- consistency is achieved by ensuring that constraints of the decision
variables domains are satisfied across all arcs and nodes in the graph. A CSP is said to be
strongly k- consistent if constraints are satisfied across all k,k— 1,k —2,........, all the way
down to a single decision variable. However the time and memory required to achieve k-
consistency is exponential in k. Therefore in practice arc-consistency or less commonly path-
consistency (or 3-consistency) is adopted. However, it should be noted that full consistency
is only achieved if k-consistency is applied. Applying the more commonly used arc-
consistency does not remove all the inconsistent solutions from the domain of each decision
variable. For a more in-depth definition of constraint propagation the reader is referred to
Russell and Norvig [102].

4.5.1.4 Search

It has been established that inference alone does not find all viable solutions, unless k-
consistency is applied. Therefore, there comes a time when it is required to search the
decision space in order to find viable solutions. Seen as we are interested in finding all the
viable solutions that are available, a depth-first search strategy is adopted to achieve this.
Depth-first search is a graph-based search strategy where the graph is first represented as
an acyclic directed network, or a tree network where the root node is at the top of the network
and a branching structure traverses down. The search expands the deepest node of the
network where the node has no successors, when the deepest node of a branch has been
explored the search ‘backs-up’ the tree to the next node that has unexplored successors

[102]. An example of a depth-first search is given in Figure 4.8.
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G
®©o6m O 0

Figure 4.8: Depth-first search strategy applied to a tree network.

The search strategy described thus far has not addressed removing infeasible solutions from
the decision space. To address this issue a variant of depth-first search called backtracking
search is adopted. Backtracking search chooses values from the domain of each decision
variable and assess if there is a viable solution at each successor node. If none exists it
backtracks and tries different value assignments until a viable solution has been found i.e.
one that does not violate any constraints. To illustrate the process the map-colouring

problem is used as an example, here we assign values to decision variables in the order
,(WA,NT, Q).

WA = green

WA = blue

WA = red WA = red
NT =green NT = blue
WA = red WA = red
NT = green NT =green
Q=red Q= blue

Figure 4.9: Backtracking search of part of the map-colouring example [102].

The disadvantage with using backtracking search is that only one successor is generated at
a time rather than all of the successors. This can result in a large computational time,
especially when the network is densely branched and complex constraint functions are
imposed on the decision space. To addresses the issue of performance there have been
several methods that have been developed over the years that improve the backtracking

search strategy. Although the details of these methods are not presented here, as they are
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beyond the scope of this thesis, the functions of the search problem that they address are

presented as follows:

e In what order should the tree network be organised and in what order should the
values in the domain of the decision variable/node be tried.

e Can inferences be integrated into each step of the search (such as constraint
propagation) in order to remove infeasible values of successor decision
nodes/variables.

e Can the search process avoid repeating failures where there are constraint violations.

As stated there are numerous methods available to address these functions, and the choice
of the method to be used is entirely dependent on the search problem at hand. For more
information, in regards to improving the performance of the search, the reader is referred to
Russell and Norvig [102].

4.6 Meta-Language Based Methods

4.6.1 Object-Process Network (OPN)

The OPN framework provides a methodology to formulate a complex problem by expressing
it in a computational meta-language® that is customised for the decision problem being
considered. The OPN framework was developed by Koo [108] and was originally applied to
create a moon-mars exploration architecture generator. The use of a meta-language is useful
in system architecting, as it provides a decision maker with a means to describe all parts of
the system and their interactions. OPN makes use of a bipartite graph representation to
define a network of objects and processes to represent the design alternative space. An
Object in OPN stores the intermediary states of the executing OPN model, and a process in
OPN stores the transformation rules that change the state of an executable model. The
interconnecting edges in the network represent the relationships that depict pre- and post-
conditions for the execution of a model. Figure 4.10 represents an annotated diagram
showing the syntax of OPN. The processes are represented as ellipses, and objects are
represented as rectangles. The tokenis an abstract data structure that records the execution
path and reflects the sequence of events required to generate that token. The token in OPN

is also used to carry data through the network as the model is executed.

6 A meta-language is a language or system of symbols used to discuss another language or system. The prefix
“meta” means “origin” or “one level of description higher”, and “language” is used as a system of signs,
symbols, or rules that are used for communication[108].
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token

Process 2a

pre-condition post-condition
Object 1 Object 2
pre-condition post-condition

Figure 4.10: A simple OPN representation in a graphical format [108].

From a system architecting sense, the different paths through the network represent different
possible architectures. The pre-condition for a process will prevent a token from proceeding
down a specified path, resulting in the infeasible system architecture to be pruned from the
network. This allows the OPN model to be executed through each path of the diagram to
generate all the viable system architectures. Each of these processes can contain a
programmable code that is capable of constructing equations or calculating metrics of
interest [108]. The OPN framework has been validated by applying it to several case studies,
such as the human moon-mars exploration program. In addition the OPN framework was
also applied to model the mission-mode decision problem [109], the cargo launch vehicle

configuration problem[110], and NASA’s stakeholder policy problem [111].

The OPN framework meets the needs of architectural decision-making by enabling the
construction of individual instances of architectural models, and automating the
computational tasks of design space exploration. However, according to Simmons [9], the
application of the OPN framework in practice was found to be conceptually difficult for system
modellers. Also, the OPN model does not enable algorithms for structural reasoning, and
thus does not manipulate the structure of the decision problem to increase computational
efficiency, or provide information about the connectivity or the sensitivity of decision
variables subject to architectural changes. Besides these limitations, the OPN framework is
still powerful tools that provides numerical and symbolic solvers, in addition to providing

viewing tools that generate plots of feasible system architectures.

4.6.2 Algebra of Systems (AoS)

The AoS framework is an extension of the OPN framework. The AoS methodology represents
system models as algebraic entities, and formulates model transformation activities as
algebraic operators to describe and evaluate the design space for a wide range of engineering
systems. In AoS the knowledge of the design space is encoded in a triple (P, B, C). Each domain
is made up sub-algebraic domains, which correspond to the domains operands and
operators. Table 4.1 gives the domains, and their respective operands and operators that are

used in AoS.
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Table 4.1: AoS algebraic domains[112].

Domain ‘ Operands ‘ Operators
Algebra of Systems Domain, (P,B,C) {encd,enum,eval}
AoS.
Properties Domain, P {(key, value)*} {merge, substitute, interp,
delete}
Boolean Domain, B {TRUE,FALSE} {and, or, negate, interp}
Composition Domain, C ({0bj},{Proc},{pre}, {post}) {union, subtract}

The properties domain P denotes the quantitative and qualitative properties of a system by
representing it in a formal data structure {(key, value)*}.The property domain also provides a

set of operators to manipulate the data structure {merge, substitute, interp,delete}, which
allows new information content to be created. The Boolean domain B denotes the Boolean

value status that defines whether or not an AoS model satisfies certain constraints. These
constraints are defined using the operators provided within the Boolean domain
{and, or,negate, interp}, which are applied to the information content in the properties
domain. The composition domain ¢ denotes the compositional structure of a system by using
the OPN framework. The system is encoded as a collection objects, processes, and connecting
relationships. The connecting arcs are associated with a Boolean expression that defines the
constraint between the object and process. The operators {union, subtract}are used to

combine and divide the information content of the graphs.

Finally, the AoS can be defined as: AoS = ({P, B, C},{encd, enum, eval}), the three operators
{encd, enum,eval} - {encode, enumerate, evaluate} computationally derive elements of
knowledge about the design solution space. This is similar to source-code compilation
process, where knowledge about the system composition is processed in several stages. This
process can be thought of as a knowledge compilation process, where the process converts
Available Knowledge elements and Enumerable Model elements into Generated Sub-models
and back into Available Knowledge [112]. This process is depicted in Figure 4.11. The design
cycle ends when the Available Knowledge domain has sufficient information to implement a

design.

Similar to OPN, the AOS framework meets the needs of architectural decision-making, and
its principles are applied in various applications. For example, the ADG framework developed
by Simmons makes use of the OPN and AoS principles to develop a decision support
framework to study the configuration of human lunar outpost architectures [9]. The AoS
framework satisfies the construction and search criteria, but does not address the
representation of information, as defined by the representation criteria. Though the
framework provides the capability to extract information and represent it in any format
possible, it does not define a particular viewing method that best represents the information
to the decision maker.
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Figure 4.11: Algebra of System (AoS) knowledge compilation process [112].

4.7 Summary

This chapter presented a series of approaches that are used as a means of enabling the
decision maker to create and search for viable system architectures. In order to evaluate the
applicability of these different modelling approaches three evaluation criteria were
established, construction, search, and representation. These criteria are aimed at capturing

the needs of the decision maker in creating a system architecture.

Table 4.2: Comparison of different system architecting methods.

Approaches Construction Search Representation
Morphological Matrix v
DSM v
Markov Decision Process (MDP) v
v

Time-Expanded Decision
Network (TDN)

Constraint-Satisfaction Problem 4 v
Object Process Network ~v ~v ~v
Algebra of Systems v 4 ~

Based on the comparisons made in Table 4.2, three methods are found to be of particular
interest, CSP, OPN, and AoS. The CSP method provides the ability to encode a decision
problem with alternatives, and logical constraints in a graph representation. In addition, the
CSP method provides structural reasoning features to manipulate the decision problem and
effectively search the solution space for viable system architectures. However, the CSP
method does not provide any capability to represent data to the decision maker in a

meaningful manor.
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The OPN framework uses a meta-language to represent an architectural decision problem.
The meta-language provides sufficient syntax and semantics to create a customised model
of an architectural solution space. The OPN framework has been effectively applied in several
architecting problems. However, applying OPN has also shown that it is conceptually difficult
for a system modeller to define a decision problem using this approach. The OPN framework
also lacks structural reasoning capabilities to effectively search the alternative space. In terms
of representation the OPN approach does provide some capability provide a graphical view
of the decision network made up of objects, processes, and connecting relationships.
However, the OPN framework does not explicitly identify a set of representational approaches
that would best translate the information content to the decision maker, such that optimal

architectures are identified.

The AoS approach is an extension of the OPN framework. In AoS the knowledge of the design
space is encoded in a triple (P,B,C), where P denotes the quantitative and qualitative
properties, B denotes the Boolean value status, and C denotes the compositional structure of
a system [112]. The AoS framework goes further by offering the capability to encode,
enumerate, and evaluate system solutions by generating sub-models to capture new
available knowledge. However, similar to OPN, the drawback in applying the AoS framework
is that it can be conceptually difficult for system architects to represent decision problem
using a formal meta-language [9]. Also, the AoS approach does not offer any explicit
knowledge representational views that best translates valuable information to the decision
maker. This is rather left to the system modeller to encode such capability into the

framework.

Both OPN and AoS offer powerful simulation features which can generate a set of viable
system architectures, and calculate numerical properties via its processing capabilities. Also,
both approaches have been developed to encode engineering design problems into a
programming environment by the use of a formal meta-language. Although, these
approaches have presented themselves to be ideal candidates for addressing the
architectural decision-making problem, this study focuses on the CSP approach to address
the construction and search phase. This is because, in order to create a formal modelling
approach that encodes all the capabilities required to address architectural decision-making
into one simulation environment would be time-consuming, and is beyond the scope of this
thesis. This is not to say that the CSP approach offers any less of a capability in terms of
modelling an architectural decision-making problem. The CSP approach is a more generic
tool that addresses many constraint problems and is not specifically restricted to
architectural decision-making. Thus, the development of computational tools to model CSP

has been vast, and is widely available for use by many open-source programming packages.
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Networks

n integral aspect of this research is in the identification of high-impact decision

variables that aid the architectural exploration of design alternatives. To define the

importance of each decision variable within a network, this thesis adopts methods

from graph theory and from the network analysis literature. A network can be
defined as a pattern of connections in a system, which can be represented by a series of
nodes and edges. Each element of a system is represented by nodes within a network, and
the edges between nodes represent relationships between system elements. The structure of
such networks, in particular the pattern of interactions, can have a big impact on system
behaviour [113].

Mathematically networks can be represented in a number of different ways. Take an
undirected network with n nodes, where each node is labelled with integer values ranging
from 1,....,n, and the edges between the nodes i and j can be denoted as (i,j). This allows
the complete network to be defined by giving a value of the node n, and a list of all edges
for each node. For example, take the network represented in Figure 5.1, here if we take n = 4
the corresponding edge list would be [(1,2), (1,3)], as it is connected to nodes 2 and 3. Another
way to represent networks, and arguably a more efficient representation, is in a matrix form,

known as the adjacency matrix. The adjacency matrix of a network 4;; is defined as follows:

o {1 If there is an edge between vertices i and j.
Y 10 Otherwise. (5.1)

This chapter provides a review of the fundamentals of network analysis and centrality
measures. The chapter starts with an overview of different representations of networks that
are available, and the implications of choosing a network type to represent the system
architecting process, as described in Chapter 1. The chapter follows onto define different
measures of centrality, more specifically this chapter focuses on degree, eigenvector, Katz,
and PageRank centrality. As they are closely related to measuring the influence of a node
within a network. Though, it should be pointed out that other centrality measures, such as,
closeness centrality, betweenness centrality, hubs and authorities’ centrality, and other
centrality measures are also available for use. However, these centrality measures are not
necessarily focused towards capturing the influence of a node within a network. For example,
closeness centrality measures the mean geodesic distance from node i to j, averaged over all

nodes j in the network. Nodes with low closeness centrality measures show that they are
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separated from others by only a short geodesic distance on average. Conceptually such nodes
might be thought of as having better access to information from other nodes, or more direct
influence on other nodes [113]. For a more in-depth review of centrality measures and

network analysis the reader is referred to Newman [113].

5.1 Types of Networks

The existence of different types of networks is defined by the connection of edges between
different nodes. This thesis mainly focuses on networks which are undirected with no self-
edges and no multi-edges. To elaborate on this point the following sub-sections provide a

brief overview of different network representations.

5.1.1 Multi-Edge and Self-Edge Networks

These networks allow more than one edge between a pair of nodes- multi-edges, or have
edges that connect nodes to themselves- se/f-edge, which is illustrated in Figure 5.1. Multi-
edges are represented by setting the corresponding matrix elements in the adjacency matrix
to the multiplicity of the edge. For example, a double edge between nodes i and j is
represented by 4;; = A; = 2. Self-edges from node i to itself is represented by setting the
corresponding diagonal element 4;; = 2. In this instance a value of two is assigned as self-

edges have two ends, both of which are connected to node i.

Multi-edge

€——— Self-edge

Figure 5.1: lllustration of a multi-edge & self-edge network.

Self-edges and multi-edges are very rare in systems architecting or decision networks, as it
goes against the assumptions made about the architecting process in this thesis. The
representation of compatibility constraints within the network are assumed to exist between
a set of nodes, rather than to a node itself i.e. no self-relationships exist. But, it is useful to
recognise that such networks exist and can be modelled using a simple matrix representation
[113].

5.1.2 Acyclic Directed Network

An Acyclic directed network has no closed loops of edges and does not contain any self-

edges or multi-edges. A closed loop in a network is defined as the arrows on each of the

82



Chapter 5: Centrality Measure in Networks

edges pointing in the same direction around the loop. Thus, a network with no cycles is called
an acyclic network. An interesting feature to note in an acyclic directed network is that if the
nodes are ordered sequentially, as in Figure 5.2, then there can only be an edge from node j
to node i if j > i. Translating this feature to the construction of the adjacency matrix will
results in all non-zero elements to be above the matrix diagonal i.e. all non-zero elements
are present in the upper triangular of the matrix. The adjacency matrix for an acyclic network
also presents the property that all of its eigenvalues are zero, which acts as an indicator to

prove that a given network in acyclic.

Figure 5.2: lllustration of an acyclic directed network.

Acyclic directed networks can therefore be used to represent sequential decision-making
problems, where all edges in the directed network point forward in time. This is represented
graphically in Figure 5.2. However, as described in Chapter 1, the system architecting process
is assumed to be represented by an undirected network, as the compatibility relationships
do not signify a direction between the connecting nodes. Therefore, an acyclic directed

network would not be an appropriate representation of the system architecting process.

5.1.3 Bipartite Network

In a bipartite network there are two different node representations, one representing the
original node and the other representing the group to which it belongs to [113]. For example,
from a system architecting perspective the group nodes can be represented as decision
variables, and the design alternatives can be represented as nodes connected to the group
node that they belong to. Thus, the bipartite network can be thought of as a network
representation of the morphological matrix. An example of a bipartite network is shown in
Figure 5.3.

The representation of a bipartite network in a matrix form differs slightly from the traditional

adjacency matrix, where the matrix represented is no longer a square n x n matrix. If there
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are n original nodes and g group nodes the matrix can represented by a g x n matrix, having

B;; elements such that:

B = {1 If vertex j belongs to group i .
Y10 Otherwise.

A B A B C D
1 2 3 4 5 6 7

Figure 5.3: A two-mode projection of a bipartite network, where the open circles

(5.2)

represent four groups, with edges connected to each node to represent the group
it belongs to [113].

Although the bipartite network may give a complete representation of a network, it is more
convenient to represent the constraint relationships between decision variables using direct
connections between nodes. This is more efficieny rather than forming a bipartite network
consisting of decision variables and a set of design alternatives that belong to those decision
variables. For example, taking the bipartite network illustrated in Figure 5.3, links between
node sets (4,B,C,D) and sets (1,2,3,4,5,6,7) can be infered by creating a one-mode projection
from a two-mode bipartite network, as shown in the left and right hand portions of Figure
5.3. However, the one-mode projection does not accuratly represent the system architecting
process, as there is no differentiation between edges that represent constraint relationships
between decision variables and edges that represent design alternatives that belong to a
given decision variable. Thus, representing the system architecting process as a bipartite

network will result in a loss of information.

5.2 Centrality Measure

The representation of networks is only part of the solution. In order to extract information
about the network structure, several analysis methods have been developed over the years,
and it has been an area of active research in the fields of computer science and applied
mathematics. This thesis presents some of the basic network analysis methods that can be
used to extract information about the system architecting network, and in turn aid the
decision-making process. Centrality is defined as a measure of a nodes importance in a
network i.e. the most central node in the network. Depending on the network structure a
variety of useful quantities or measures can be calculated that captures particular features of
the network topology. There are multiple methods of measuring centrality that are available
in literature [113]. The following sub-sections provide a review of some of these methods in
measuring the importance of decision variables in a system architecting network. To aid the

understanding of each method a notional network is created, which will hereafter be used to
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illustrate the concepts behind different centrality measures. This notional network is

represented in the figure below.

o = O O

S O ©O O O

o O O O = O

O O O O = O O
O O O O O +» O ¥
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O B O O O O OO O O o
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Figure 5.4: The adjacency matrix and a pictorial representation of the notional

network used to illustrate the concepts behind different centrality measures.

The above network is an undirected network with no self-edges and multi-edges, and is
illustrative of a typical system architecting network. The interrelationships between the nodes
are assumed to be undirected and relationships only exist between a set of nodes with a
minimum of at least two nodes i.e. no self-edges. In this network each node is also given a
relative importance value that is based on a non-network factor, which is representative of
the decision variables impact on system properties such as value and cost. These relative
importance values are defined in the table below, where the range in the importance scales

symbolise a value of 0 being not important and a value of 1 being very important.

Table 5.1: Relative importance of nodes based on non-network factors

Nodes 0 1 2 3 4 5 6 7 8 9 10

Importance | 0.3 | 0.6 | 0.1 | 0.4 | 0.8 | 0.32|0.65|0.11 | 0.05| 0.55| 0.6

5.2.1 Degree Centrality

Degree centrality is the simplest measure of centrality in a network. The degree of a node in
a network is defined by the number of edges connected to that node. For an undirected

network the degree x; of node i can be calculated in terms of the adjacency matrix as:

n
X :ZAU (5.3)
=1

For a directed graph however there exists two degree metrics, the in-degree and out-degree.

In-degree x/™ represents the number of incoming edges to node i and the out-degree x

represents the number of outgoing edges from node j.
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The measure of a nodes degree in a system architecting network can be of importance, as it
represents the degree to which a decision variable is influenced by other nodes (x;,) and the
degree to which a given decision variable is influencing other nodes (x,,.). Using the network
defined in Section 5.2, degree centrality identifies the most connected node and therefore
the most central node in the network as being node 2, the least important being node 4. This
is illustrated in Figure 5.5, where the size of the node in the network represents the nodes

importance in the network i.e. the bigger the node the more important it is.

Figure 5.5: Degree centrality of the network.

Although degree centrality is a useful measure, it does not account for the importance of
neighbouring nodes themselves, nor does it account for non-network factors that influence
centrality. In many circumstances a nodes importance in a network is increased by having

connections to other nodes that are themselves important.

5.2.2 Eigenvector Centrality

Eigenvector centrality addresses the limitations of degree centrality by scoring nodes
proportional to the sum of the scores of its neighbours. That is, eigenvector centrality defines
a nodes importance in a network to be increased by having connections to other nodes that

are themselves important. This is defined mathematically as:

X = kl_leijxj (5.5)
J

Where, x; is the neighbouring node of x;, and k; are the eigenvalues of the adjacency matrix
A;; and k, is the largest of them. Eigenvector centrality can be applied to both directed and
un-directed networks. However, problems arise when measuring centrality of directed
networks. If a node in a network has only outgoing edges or no connecting edges, then the
centrality of that node will be zero. This conceptually might not seem to be a problem as a
node that no one points to could be considered to have centrality zero. However, consider
the case of a node that may be pointed by many others that they themselves are pointed to

by many more, and so through the generations, but if the progression ends up at a node that
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has zero in-degree then the final value of centrality will still be zero. This property is defined
in mathematical terms as: only nodes that are in a strongly connected component of two or
more nodes, or the out-component of such a component, can have non-zero eigenvector
centrality [113].

The eigenvector centrality measure of the notional network is calculated and represented in
Figure 5.6. It can be noted that the rank order of the nodes differs from degree centrality.
For example node 8 is no longer ranked second and is pushed further down the order. It
should also be noted that the centrality of node 4 is still zero, even though the relative
importance of this node is high, as defined in Table 5.1. This is the inherent limitation of
both degree and eigenvector centrality, where the non-network impotence factor of a node
is not accounted in the centrality calculation.

2 10 3 7 0 8 1 6 5 9

Figure 5.6: Eigenvector centrality of the network.
5.2.3 Katz Centrality

Katz centrality provides a solution to the problem of zero centrality measure by introducing
a small amount of centrality for each node, regardless of its position in the network or the

centrality of its neighbours. Katz centrality is defined mathematically as:

xX; = aZAijxj + B; (5.6)
J

where «a is a positive constant. The second term in the equation allows nodes with zero in-
degree to have a centrality of B. This allows non-network importance measures to be
included into the centrality measure. Hence, any node that is pointed to by many other will
have a high centrality, and those that are pointed to by others with high centrality themselves

will still do better. In a matrix form this can be written as:

x=(1-aA) 1B (5.7)

The choice of the a value governs the balance between the eigenvector term and the constant
term. Letting a » 0 would mean that only the constant term g would survive and centrality

would only be measured by the g values. Increasing the a term from zero would increase the
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centrality and eventually there comes a point at which it diverges. This happens at the point
where (I — aA)™! diverges i.e. when the det(I — aA) = 0. As a increases, the determinant first
crosses zero when a = 1/k, i.e. the inverse of the largest eigenvalue of the adjacency matrix.

Thus, the value of a should be less than this if the centrality measure is to converge.

The use of Katz centrality however still has its limitations. If a node with high Katz centrality
has edges pointing to many other nodes then these nodes also inherit high centrality. This
feature is not always desirable as the centrality gained by virtue of receiving an edge from a
highly important node is diluted by being shared with so many other nodes [113]. The
concept of Katz centrality can be illustrated by measuring the centrality of the notional
network, which is depicted in Figure 5.7. From the centrality measure it can be instantly noted
that node 4 no longer has a centrality measure of zero, instead the non-network importance
values seem to dominate the centrality measure, thus placing node 4 on the top of the rank
order list even though node 4 is not connected to any other nodes. Katz centrality also
indicates nodes 0, 2, and 5 gaining centrality by being connected to node 1, which in itself
is relatively important. However, node 2 is placed relatively low in the rank order even though

it has a high degree of connectivity.
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Figure 5.7: Katz centrality of the network.
5.2.4 PageRank Centrality

PageRank centrality was originally developed by Page et al [10] and is used as a central part
of Google’s web ranking technology. PageRank is an extension to Katz centrality, in that the
nodes that point to many other nodes pass only a small amount of centrality on to each of
the other nodes even if their own centrality is high. To get a better compromise between
connectivity and non-network importance factors, PageRank divides the centrality of the

neighbouring nodes by their out-degree. This is represented mathematically as:

Xj
xi:“ZAuW+ﬁi (5.8)
j ]

This however introduces a problem when the out-degree k/** = 0, which makes the solution
indeterminate. The problem is fixed by artificially setting k?** = 1 for such nodes. In a matrix

form this can be written as:
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x = aAD 'x + B (5.9)

with D being the diagonal matrix with elements D;; = max(k{*, 1), k"t being the out-degree
of the neighbouring node x;, and B being the personalised vector (similar to that defined in
Katz centrality), which defines the personalised ranking value for each node. The above

equation can be rearranged to give:

x=D(D - aA)"'B (5.10)

Similar to Katz centrality, the value of the constant term «a is determined by the inverse of the
maximum eigenvalue of the matrix. In this case a should be less than the inverse of the
largest eigenvalue of AD!. For an undirected network it can be shown that the largest
eigenvalue is equal to 1 and the corresponding eigenvector is (ky, k;, k3, ...), where k; is the
degree of the ith node [113]. Thus, the value of a should be chosen to be less than 1. It
should be noted that the calculation of the largest eigenvalue and its corresponding engine
vector is done iteratively by using the power iteration method, which is described in Appendix

B. The power iteration method is also applied to in the calculation of Katz centrality.

PageRank is very useful in cases where having edges connecting a node from other important
nodes elsewhere in the network is a good indication that the connected node is also
important. However, PageRank also ensures that a high centrality node pointing to a large
number of other nodes does not pass on large centrality scores to those other nodes, which
is ensured by dividing the neighbouring node by its out-degree. This is illustrated by using
the notional network that was defined at the beginning of section 5.2, the results of which
are defined in Figure 5.8. Node 4 is no longer at the top of the rank order, even though its
non-network importance factor is very high. This is because node 4 is not connected to any
of the other nodes in the network, and therefore its influence on the network is non-existent.
For this reason its rank order in the network is reduced. It can also be noted that node 10
has the highest centrality in the network but it does not pass all of its centrality onto other

connected nodes, such as nodes 0, 2, 3, and 5.
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Figure 5.8: PageRank centrality of the network.
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5.3 Summary

Representing the system architecting process as a network is a very effective means of
visualising the relationships between different decision variables, and the imbedded
knowledge of the design team during the decision-making process. The graph-based
methods described in this chapter allow the decision maker to easily represent the
architectural decision problem as a network. This is achieved by defining the adjacency
matrix of the network, which in turn can be easily translated into a programming
environment. In addition, the network analysis methods described in the previous section
allow the decision maker to gain information about the network structure and understand
the behaviour of the network, in terms of identifying important decision variables within the

network that have a strong influence on system properties.

In representing the architectural decision-making process as a network several assumptions
have been made. The network is assumed to be un-directed, where the connected nodes
influence each other equally, it is also assumed that there are no self-edges i.e. a node cannot

add a relationship to itself or multi-edges between nodes.

Once the representation of the system architectural network is satisfied, the next step
requires identifying an appropriate means of measuring the relative importance of each node.
The previous section made a comparison of several commonly used centrality measures,
degree, eigenvector, Katz, and PageRank centrality. By comparison it was established that
both degree and eigenvector centrality do not offer a suitable match to measure the relative
importance of each node from a system architecting perspective. As they do not account for
non-network related importance factors such as the influence of a decision variable on
system properties like value and cost. This leaves us with Katz and PageRank centrality, both
of which account for non-network factors. However, Katz centrality poses one fundamental
flaw in measuring the relative importance of each node from an architectural decision-
making perspective. In Katz centrality the non-network centrality measure of a node seems
to dominate the overall centrality measure, which in-turn is passed onto other nodes to which
it is connected to. This artificially boosts the centrality of those connected nodes, even if they
are unimportant, for the reason of being connected to an important node. PageRank centrality
over comes this by dividing the connected nodes centrality by their out-degree, such that
nodes that point to many others only receive a small amount of centrality. This allows a much
better balance between non-network centrality measure and network related centrality

measure, such its degree of connectivity.
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Framework

he aim of this chapter is to present the reader with the decision support framework.

The developed framework first captures the overall system value, and second

provides a means of ranking high-impact decision variables based on their influence

on system properties, and their influence on other decision variables within the
network. The process of constructing the framework makes use of methods and tools
described in previous chapters. Chapter 2: identified two value streams, one capturing end-
user value and the other capturing the value of the engineering-firm. This thesis will only
address end-user value, as capturing the revenue stream of a complex engineering firm is
beyond the scope of this thesis. End-user value is captured by applying Multi-Attribute-
Utility-Theory (MAUT).

Chapter 4 defined the decision-making process in system architecting, where the needs of
the decision maker were identified to fit the following three criteria, construction, search,
and representation. These criteria were used as a means of comparing different modelling
approaches to aid the architectural decision-making process. Out of these approaches three
stood out, Constraint Satisfaction Problems (CSP), Object Process Network (OPN), and Algebra
of Systems (AoS). This thesis makes use of methods derived from the CSP approach (for
reasons described in Chapter 4:) to identify feasible system architectures. The framework
also integrates other approaches, such as morphological matrix and DSM to aid the

construction of the decision problem.

6.1 Assumptions Made

To simplify the construction of the decision support framework several assumptions are
made, in regards to the systems architecting process. This chapter first presents the
underlying assumptions made in the construction of the decision support framework, and

then follows on to describe the details of the framework.

Assumption 1. The end-user of the system perceives value in terms of non-
monetary benefits. The system is assumed to operate in a non-commercial
environment where the benefits ascertained by the system to the end-user are not
through the revenue generated by the system. For example, this could be

representative of a military acquisition of a combat aircraft.
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Assumption 2. The value model is constructed by adopting MAUT. The MAUT
approach assumes that the end-user makes decisions in an uncertain environment,
where the outcome of the system is not known with certainty. The MAUT approach
captures the preference relationships of the customer to uncertainties in the

outcomes of the system attributes.

Assumption 3. The decision-making process in systems architecting is simplified
into three phases, intelligence, design, and choice, as defined by Simon [21]. Chapter
4: identified the design phase of the process to be the most central, and also the
most time consuming part of the decision-making process. The information
ascertained at the design phase is used to capture system performance attributes,
which in-turn is used to aid the decision-making process. For this reason, this thesis

mainly focuses on addressing the design activity of the decision-making process.

Assumption 4. To model the architectural down selection process it is assumed that
decisions are made as a means of down-selecting designs from a set of design
alternatives in order to create a feasible system solution. The decisions made can
therefore be regarded as an architectural refinement process, where the architectural
design space is reduced to a set of possible candidates [9]. This allows the
architectural decision-making process to be modelled as a network, where the nodes
of the network represent a set of decision variables {X, ........., Xy}, each with a finite
domain of design alternatives {v,,..... ,7,}. The connecting edges represent the
constraints imposed by the decision maker, in regards to the feasibility of different

design alternatives.

Assumption 5. To simplify the modelling of the architectural decision-making
process, the decision support framework assumes that all design alternatives are
discrete variables with a finite set of alternatives. This allows the propagation of
constraints over a discrete domain space, and thereby narrowing the feasible solution
space using simple constraint satisfaction algorithms. It should be noted that the aim
of the decision support framework is not to provide one single optimal solution, but
to present a narrowed down set of feasible Pareto optimal solutions to the decision
maker. This allows an informed choice can be made in regards to the system

architecture.

Assumption 6. The decision support framework assumes that the system
architecting process is not a sequential decision-making process. This is because the
compatibility relationships between a set of decision variables generally tend to be
bi-directional. From a logical constraint standpoint it doesn’t matter which design
alternative is selected first, as the order will not change the feasible domain of
alternatives. However, many decision support frameworks, such as MDP, decision

trees, and influence diagrams, assume that decisions are made in a sequential order,
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which requires the decision makers to specify the order of evaluating decision
variables. Such problems generally tend to represent planning actions over time, in

which case a sequential representation is more appropriate.
6.2 Decision Support Framework

Much of the literature presented thus far has focused on tradespace exploration, by starting
with a baseline architecture and making incremental changes, from a set of available
candidate design alternatives, to find the global optimum. Other architectural exploration
methods have focused on analysing the problem of evolving or extending an architecture,
from a set of candidate design alternatives, in the presence of exogenous changes to the
system. This thesis assumes that a set of candidate design alternatives are not fully defined,
rather the developed framework aims to generate, and further explore the set of candidate

architectures that are Pareto optimal in performance and cost.

In the context of system architecting, the decision support framework presented in this thesis

has the following characteristics:

1. The ability to computationally capture the relationships between decision variables,
and assess potential cost/performance tradeoffs between different system
architectures.

2. The uses of Multi-Attribute Utility Theory (MAUT) to aggregate system performance
contributions.

3. A novel approach to quantitatively calculate high-impact decision variables in order
to steer the focus of the system architect towards decision variable that have a strong
impact on the Pareto optimal solution set.

4. Provide a visual representation of high-impact decision variables within the network.

Before the framework is presented, the mathematical formulation of the system architecting
process is defined to allow the reader to get an insight into the rationale behind each step of

the framework.

6.2.1 Mathematical Formulation

The framework adopts a constrain-graph-based methodology to define the system
architecting process as a COP. The COP approach offers a set generic tool sets that addresses
many constraint satisfaction and optimisation problems, and is not restricted to systems
architecting. Thus, the development of computational tools to model and solve COPs have
been vast and are widely available for use by many open-source programming packages. The
COP approach for the system architecting process can be formulated, as shown in equation
(6.1).
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Objectives, minimise =X =[(ix), L(X)]
Decision Variables X = [Xq, X, e e e, Xy]
Domain of value assignments Dy, = v, v, ..., v i=12,...,N
Metric Constraints hx)=0 j=12,..,p
gx) <0 k=12,....,m
Xg < X4 <X¢, q=12,...,z
Assignment Constraint C, = (scope,rel), l=12,...,N, (6.1)

The objectives f(x) = [fi(x), f(X)] is a vector of the two objective functions, one represents
the Multi-Attribute Utility (MAU) function, and the other represents the Life-Cycle Cost (LCC)
function. Ross et al [38] provide a summary of the applicability of MAUT in aerospace systems
optimisation. The derivation of the MAU function depends on the conformance of system
attributes to the independence conditions. A multiplicative form of the utility function is
derived if the utility independence condition is upheld, else an additive form of the MAU
function is derived if the additive independence condition is upheld. Utility independence is
assumed if the decision maker is indifferent between a lottery scenario and a certainty
equivalent, and is not dependent on the level of other attributes [62]. This allows the

multiplicative form of the MAU function to be defined as:

n
K- U+1= H(K-ki-U(ai)+1) where K=—1+1_[(1<-k,-+1) 6.2)
i=1
U represents the overall utility of satisfying multiple objectives, U(a;) represents the utility of
system attribute a; € A, k; is the individual scaling factor or weighting factor for the i*" system
attribute, and K is the normalising parameter that insures consistency between the
definitions of U and U(a;). The additive condition is assumed if the preference order for
lotteries does not depend on the joint probability distribution of these lotteries, but only on

their marginal probability distribution [62]. The additive MAU function is defined as:

U=

A

k;U(a;) where Yk; =1 (6.3)

N
=1

The constraints associated to the system architecting problem are sub-categorised into
metric constraints and assignment constraints, which follows the definitions presented by
Rayside and Estler [107].

e Assignment constraints as defined the assignment of a certain value, which

influences the assignment of other decision variables.

94



Chapter 6: Decision Support Framework

e Metric constraints are defined as constraints that ensure that a solution respects
certain metric properties. For example, overall performance of a solution must be

greater than a valuey.

Assignment constraints represent logical constraint statements that define the compatibility
of design alternatives within the domains of different decision variables. Equation (6.1)
defines these constraints as a pair (scope,rel), where scope is a set of decision variables that
participate in the constraint relation, and rel is the relation that defines the domain values
that the decision variables can take on [102]. Assignment constraints can essentially be
treated as a CSP (X, Dy, Cx), where X is a set of decision variables x; € X that ranges over a
finite domain D, € Dy. Cx defines a set of constraint relationships, relating to the set of
decision variables X. Solutions to a CSP are found when all constraint functions are satisfied
i.e. when Cx = true, where the vector true = [true,, true,, trues, ..., truey ], and N, represents
the total number of constraints. The optimisation of the objective functions and the
satisfaction of the metric constraints are accounted for in the optimisation loop. The
optimisation loop uses multi-objective optimisation algorithms to parametrically vary the
design variables x, € x , which provide a parametric representation of a system architecture
within the continuous domain. The use of optimisation algorithms also enables the
satisfaction of equality constraints h;(x) = 0, inequality constraints g,(x) < 0, and the upper
and lower bound constraints xj; < x, <xJ, to find Pareto optimal solutions for each system
architecture. The concatenation of the Pareto fronts from all feasible system architectures

into a global Pareto front will result in a set of Pareto optimal architectural solutions.

6.2.2 Framework Representation
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I 1. Functional Means 2.Design Structure Matrix| 3. Logic_al 4. Multi-Attribute ‘
Analysis (FMA), | ™ (DSM). - Constraint »| Utility (MAU) Model.
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Figure 6.1: Decision support framework workflow.
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Figure 6.1 represents a flow diagram of the developed framework, which can be categorised
into three phases, Construction, Search, and Representation. The novelty of calculating high-
impact decision-variables and visualising them is presented within the Representation phase.
The Construction and Search phases are required to derive information that is needed to
calculation high-impact decision variables. This is achieved by capturing the knowledge of
the decision-maker, and calculating Pareto optimal solutions of different system
architectures.

The Construction phase effectively acts as an enabler to defining the system architecting
process as a COP. This is achieved by applying FMA and DSM to define a set of decision
variables X of interest, domains of design alternatives D, for each decision variable, a set of
logical constraint functions between different decision variables Cx, and a utility model to
measure system performance. The Search phase uses logical constraint statements to define
assignment constraints between decision variables, in order to find viable system
architectures. This is achieved by employing the backtracking constraint-satisfaction
algorithm to remove infeasible system architectures. Once a set of viable system
architectures are identified, we continue to define a parametric representation of each system
architecture. This in-turn enables the multi-objective optimisation algorithm to
parametrically change each design variable x to calculate the Pareto fronts for each system

architecture.

Once this is accomplished, data accumulated from multi-objective optimisation and DSM are
used to represent information that is deemed vital to the decision maker in selecting a set of
candidate design alternatives. Pareto optimal solutions are visualised using the Fuzzy Pareto
front representation .[114]), and high-impact decision variables are visually represented
using a network diagram of decision variables. The following sub-sections will provide details
of the methods that are deemed vital in enabling the calculation of high-impact decision
variables. This includes the back-tracking search algorithm that is used in the Search phase,
the fuzzy Pareto front representation, and the calculation of PageRank centrality to measure

high-impact decision variables.

The following sections provide a detailed description of the methods and tools used in each
of the three phases, and a step-by-step process of constructing a decision support

framework.

6.2.3 Construction

Before describing the Construction phase it is worth describing the use of the term ‘system
abstraction’, in relation to physical and functional decomposition of a system. A system, in
its most basic form, can be described as a collection of elements, where certain combinations
of elements in a system can be viewed as a system in itself, which are regarded as subsystems
of a larger system [18]. This suggests that there is a hierarchical relationship between a

system and its elements, leading to the concept of a hierarchical structure. Within a
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hierarchical structure a system exists at a certain level of abstraction, and its associated
elements exist at a lower level of abstraction. This is referred to as system levels [18]. Thus,
a system described in terms of its elements can be defined by the process of decomposition,
where the system is decomposed into its lower level elements until the lowest element (or
leaf element) of the hierarchy is reached. For example, consider an aircraft, which can be
decomposed into a number of elements such as the wing, fuselage, and engine. These
elements can in itself be considered as a system, and be decomposed into its own grouping
of elements. Taking the jet engine for example, this can be further decomposed into inlet,
compressor, combustor, turbine, and exhaust. A notional illustration of the hierarchical

structure of an aircraft system is presented in Figure 6.2.

Aircraft
Airframe Engine
) Landing
Wings Empennage [~ Gear Fuselage
: Control
Skin Surfaces Fuel Tanks
Ailerons Flaps | Slats

Figure 6.2: Notional physical decomposition of an aircraft [18].

The discussion thus far has been focused towards the physical decomposition of a system.
However, the same principals of hierarchical structure and decomposition can also be applied
to functional decomposition. The functional decomposition of a system is achieved via
requirements analysis, the process works by categorising the requirements based on their
needs or wants to the stakeholder.

The categorisation in general results in two groups of requirements, functional and non-
functional (or performance) requirements. A functional requirement is defined as what the
system must do in order to meet its operational requirement. A non-functional requirement
states to what extent the system needs to perform, or be implemented to meet the
expectations of the stakeholders. Non-functional requirements tend to represent constraints
placed on the design space in which the system must evolve, and are generally represented
in terms of quality, quantity, scope, and availability [18].

Functional hierarchy establishes what the system has to do at each level of abstraction, and
how well it must do it at each level. The root nodes of the functional hierarchy represent top-
level functional requirements that describe the fundamental needs that the system must
meet. Traversing down the hierarchy tree are lower level functional elements that describe

the functional purpose of subsystems. Following on from this, non-functional requirements
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associated with top level-functions are allocated to lower level functions. This process of
decomposition is used to define the functional architecture at a greater level of detail through
each level of the system. A notional example of a functional decomposition of an UAS, and

its associated performance requirements have been represented in Figure 6.3.

SEP at top of climb Accuracy £ 1 km in
of 600 ft/min 4000 km

. Deliver . Deliver electrical
Generate Lift . Navigate
propulsive power| power
recision standar I I ]
Lift for take- ] deviation < 1km Deliver electrical Deliver electrical
off/landing Sustain Load power to power to flight
payload systems critical systems

1.5 load factor at
MTOM

Non-functional
performance
Requirements

Functional
Requirements

Take-off distance <
2,500 ft

Figure 6.3: Notional functional decomposition of an UAS [18].

Now that the concepts of functional and physical decomposition have been established, this
section follows on to define design synthesis. The process of synthesis aims to generate a
physical architecture of a system that performs all the functions established in the functional
hierarchy. Design synthesis is achieved by linking the physical elements and the functional
elements at the same level in the hierarchy structure. This thesis mainly focuses on the
conceptual design stage, where the level of abstraction is limited to the top level of the

hierarchy.

Though the design synthesis task is intrinsically functional, the decision maker may in reality
carry through assumptions about the expected physical architecture and then perform
functional decomposition with the notion of what subsystems will enable system level

functionality [18].

The aim of the Construction phase is to apply the FMA approach to identify top-level system
functions, and in-turn define a set of design alternatives that are linked to satisfying each
function. The level of decomposition (at a given level of system abstraction) typically flows
down to either one or two levels of the hierarchy until design alternatives can be defined.
However, when performing functional decomposition the aim should be to reduce the
number of levels in the hierarchy in order to minimise branching in the hierarchy tree. For
example, consider the functional decomposition of the launch and recover systems, as shown
in Figure 6.4. The launch and recover system is first decomposed into launch system and
recovery system, and then further decomposed into convention and unconventional launch
and recovery systems. This allows the physical architecture to be decoupled into different

domains of design alternatives.
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Figure 6.4: Functional decomposition hierarchy.

The decision support framework presented in this thesis formulates decision variables by
taking only the leaf nodes of the functional decomposition hierarchy. Therefore, design
alternatives may only be prescribed to the leaf nodes of the hierarchy, and only the leaf nodes
of the hierarchy are carried forward into the COP representation of the system architecting

process.

6.2.3.1 Decision Support Matrix

The reduction of the architectural solution space in the FMA table can exhibit
interrelationships between different decision variables i.e. certain design alternatives might
have been removed in one decision variable due to the decision made in selecting a particular
design alternative in another decision variable - representative of Assignment constraints.
The DSM is used as a first pass approach in capturing these interrelationships, which requires
the decision maker to specify the existence of connections between decision variables when
the solution space is reduced. To simplify the input of data, the DSM is assumed to be
symmetrical. For example, if function A; has an alternative that is incompatible with an
alternative in function A4, then the alternative in function 4, is also incompatible with the
alternative in function 4, i.e. the interrelationship is assumed to be undirected. This matrix
representation can be directly translated into a graph representation of an undirected

network.

6.2.3.2 Logical Constraints

Given a set of design alternatives, an overall system architecture can be generated by
selecting one design alternative from each decision variable. However, certain combinations
of design alternatives might be undesirable or technically infeasible, thus need to be removed
from the solution space. These compatibility relationships can be represented as logical
constraints, which are defined as a statement describing the relationship between a set of
decision variables. Logical constraints provide a means of transforming a constraint
statement defined by the decision maker into a programming environment, which can then
be translated into the Search phase of the framework to remove infeasible system
architectures. The logical constraints are constructed using simple logical operators and

statements such as: /f/ else/ elself.
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Table 6.1: A list of logical operators used to construct logical constraints.

Symbol | Definition | Symbol | Definition
== Equals to > Greater than
[ OR statement < Less than
&& AND statement >= Greater than or equal to
~= Not Equals to <= Less than or equal to

A set of viable system architectures can only be derived if none of the specified constraints
are violated in the solution space. For example, if a compatibility constraint exists between
decision variable 4, and A4, where if alternative 1 or 2 is selected in function 4, then alternative
3 is not feasible in function A,. This is represented in a mathematical form as, (func 4; ==
Alt1||Alt2) then {func A, ~ = Alt3}.

6.2.3.3 Multi-Attribute Utility Model

The construction of the MAU model makes use of methods available in literature from
systems engineering and decision theory, most of which stems from the work of Keeney and
Raiffa [102]. Zhang et al.[115] provide a detailed overview in developing a MAU model at
different levels of system decomposition, where three kinds of value models are prescribed,
customer value model, system value model, and component value model. This thesis largely
focuses on the development of a customer value model that identifies the impact of an overall
system architecture rather than component and sub-system level designs. The decision
support framework adopts the multiplicative form of the utility function as the utility
independence assumption is a less restrictive independence assumption compared to
additive independence. The attraction with using a multiplicative model as opposed to an
additive one is that the additive model cannot express the value of any interactions between
different attributes. Also, the multiplicative model allows the inclusion of proxy attributes’

and many-to-one mappings between the objective and the attribute set.

6.2.3.3.1 Constructing Utility Functions

Utility function describes the decision makers preference relationship to a set of system
objectives {0,,........,0;}, due to changes in its associated system attributes {a,..........,ay}.
The shape of the utility curve is determined by the preference relationship of the attribute
towards the objective i.e. maximise, minimise, or optimise, and the decision makers attitude
towards risk. The assessment of risk attitude is based on the decision maker’s preference to
an uncertain outcome. Uncertainty is captured by defining a set of lottery scenarios to the

decision maker, and determining the indifference probability value between the two lottery

7 A proxy attribute is the level of an attribute is valued only for their perceived relationship to the satisfaction
of a fundamental objective.
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scenarios. The indifference probability is the probability value at which the decision maker is

indifferent to the outcomes of the defined lottery scenario.

However if the attribute set is large, the process of determining the indifference probability
values can become tedious, and not practically applicable in a decision-making context. To
simplify the construction of utility relationships, general functional forms are assumed to
represent different risk and preferential attitudes of the decision maker. These preference
relationships are captured by three different functional forms, maximise, minimise, and
optimise. In the case of maximise and minimise function, the risk attitude of the decision
maker is represented by three different functional forms, risk averse (concave), risk neutral
(linear), and risk prone (convex). This is illustrated in Figure 6.5. A* and A, represent lower
upper and lower bounds of an attribute. The indifference probability is determined based on

the decision makers choice of risk attitude.

e Risk Prone - P, =0.2
e Risk Neutral - P, =0.25

e Risk Averse - P, =0.36

Risk Averse

Risk Averse

Risk Neutral

|
|
|
|
|
Risk Prone |
|
| Risk Prone
|
|

X, Maximizing Function x o Minimizing Function x

Figure 6.5: Representation of the maximising and minimising preferential utility

functions with different risk attitudes.

The indifference probability value is translated to a utility value by multiplying the
indifference probability by two. This utility value corresponds to the average of the upper
and lower bound values of the attribute.

*

a+t+a

Uzz.pﬁu( ):z-pe (6.4)

As a first order approximation these three points are used to define the utility function.
Previous studies have applied exponential or linear functions to characterise the utility curve
[116].However, the use of exponential functions results in a set of non-linear equations that
requires an iterative procedure to find a solution. To reduce the complexity, whilst at the
same time maintaining accuracy of the utility function, it was decided to interpolate between

the three points.
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The optimal utility function is represented by means of a normal distribution, with the mean
and standard deviation known. The choice of a normal distribution as a utility function
implies that the decision maker feels that some value of an attribute is optimal, which is
represented by the mean of the normal distribution. The standard deviation of the normal
distribution represents the tolerance of the decision maker to a deviation of the value from
the optimal point. Since two thirds of the area of the normal curve lies within one standard
deviation of the mean, the decision maker should specify a range about the optimal point
such that the decision maker is willing to tolerate knowing that there is a two-thirds chance
that the value will lie within this interval i.e. the decision maker should estimate the value of
the standard deviation such that they would be willing to tolerate the attribute value falling
within the interval a,, + 0, with odds of two out of three. The optimal utility function is

represented as follows:

1
y=f(a|ll,0)=0m —m (6.5)

6.2.3.3.2 Scaling Constants

Referring back to the MAU equation, the scaling constants are defined as k;. These are
individual scaling factors for each dimension of the attribute set {a,.........,ay} . They
indicate the value trade-off between various pairs of attributes. In the assessment of scaling
constants a set of equations are constructed with k —parameters as unknowns. These
parameters are then calculated by solving a set of simultaneous equations. However, to solve
these equations a pair of lottery scenarios are required, which define the indifference
probability of the decision maker. Keeney [62] suggests that in practice it is best to fix the

values of N — 2 attributes and vary two attributes at a time.

This process is illustrated using the following example. Suppose we have three attributes a,,
a,, and as, the aims is to calculate the three scaling constants k, k,, and ks. First, value trade-
offs between attributes a, and a, are assessed by changing the values of these attributes and
keeping a; fixed. This is achieved by defining the following indifference scenario, the decision
maker is asked to identify the value of attribute a;, call it aj, such that (ai,a,,, as,) is

indifferent to (ay,, a;, as,)- This leads to the following equation.
kUi (ay) =k, (6.6)

Similarly, another indifference scenario is setup between attributes a, and a;, where the
decision maker is asked for a value of attribute a,, call it af, such that (af,a,,, as,) is

indifferent to (a,,, az,,a3) . This leads to the following equation.

ke Ui (a) = ks 6.7)

If the MAU model is additive, then the sum of the scaling constants must equal one.

ki +k,+hks=1 (6.8)
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Using the equations (6.6-6.8) the scaling constants can be calculated. However, if the MAU
model is multiplicative the sum of the scaling constants is no longer equal to one, and an
additional parameter needs to be assessed, which is the normalising parameter K. This
results in four unknowns k;, k,, k3, and K. In order to identify a closed-form solution to this

problem another equation is required, which is defined as follows:
K+1=(Kk,+1)(Kk, +1)(Kk; +1) 6.9)

The solution to the above equation requires qualitative information from the decision maker,
which is ascertained by presenting the decision maker with another lottery scenario. Using a
probabilistic scale, the decision maker is asked to identify a probability value P, such that
(ai, a5, a3,) is indifferent to [(a;, a3, a3) , P;; (af, a3, al)]. The answer to which will result in the

following equation:
k,=P (6.10)

However, the calculation of the normalising parameter K using equation (6.10) is not straight
forward, as the equation is non-linear and requires an iterative scheme to obtain the solution.
The convergence to a solution is facilitated by the fact that the normalising parameter is

bounded by the sum of the scaling factors.
Yk; < 1.0 Implies K>0
Y k; > 1.0 Implies —-1<K <0 (6.11)

(K+1)—H(K-ki+l)

Mormalising Parameter, K Mormalising Parameter, K

Figure 6.6: lllustration of the (n-1) dimensional polynomial equation of the

normalising parameter - n = 3.

The method for solving the normalising parameter, K, by iterative means depends on the
number of scaling factors, as the shape of the polynomial changes with the number of scaling
factors (i.e. (n — 1)- dimensional polynomial). This thesis adopts an iterative scheme based
on Brent’s method, which is a root finding algorithm that makes use of root bracketing,

bisection, and inverse quadratic interpolation [117]. A brief overview of Brent’s methods is
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provided in Appendix C, for a detailed derivation of Brent’s method the reader is referred to
Brent [118].

The calculation of the scaling constants can be tedious, and is not always intuitive when
presented to the decision maker. This is the major drawback in applying MAUT and care must
be taken when assessing the scaling constants. To simplify the assessment process it is
better to first identify the rank order of the scaling constants qualitatively based on
discussions with the decision maker. Then, the process of calculating scaling constants can

be carried out to verify that the rank order still holds.

6.2.4 Search

The Search phase aims to address Assignment constraints by representing the problem as a
CSP (X, Dy, Cx). The aim of the CSP methodology is not to optimise the system architecture,
but to remove infeasible system architectures that do not satisfy the logical constraint
relationship. To solve a CSP we need to define a state space and the notion of a solution.
Each state in a CSP is defined by an assignment of values to some or all of the variables {x; =
v, X = v;,...} [102]. To ensure that all infeasible solutions are removed, a recursive
backtracking algorithm is applied to search the solution space. Backtracking is a form of
depth-first search that chooses one variable at a time and backtracks if no feasible solution
is found [102]. A conceptual representation of the backtracking search algorithm is

represented in Figure 6.7.

Algorithm: Backtracking algorithm for CSP.

function BACKTRACKING SEARCH (CSP) returns solution set, or failure

1 return BACKTRACK ({},CSP)

function BACKTRACK (assignment, CSP) returns a solution, or failure

2 if assignment is complete then return assignment

3 var < HEURSTIC (CSP)

4 for each valuein ORDER-DOMAIN-VALUES (var, assignment, CSP) do
5 if value is consistent with assignment then

6 add {var = value} to assignment

7 inference < INFERENCE (CSP,var,value)

8 if inference # failure then

9 add inference to assignment

10 result « BACKTRACK (assignment, CSP)
11 if result # failure then

12 return result

13 remove{var = value} and inference from assignment
14 return failure

Figure 6.7: Backtracking algorithm for CSP, with general purpose heuristics and

inference functions [102].

Backtracking search as a concept is simple and easy to implement, however problems arise

when multiple constraint functions are added, and time and memory requirements are
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limited. In order to improve the performance of backtracking search some simple heuristics
are added to the search algorithm- var « HEURSTIC (CSP). The aim of the heuristic function
is to answer the following question: Which variable should be assigned next (var < HEURSTIC
(CSP)), and in which order should its values be tried (ORDER-DOMAIN-VALUES) ? [102]. The
simplest heuristic strategy to address decision variable assignment is the Select Unassigned
Variable (SUV) heuristic, which chooses the next unassigned decision variable in an ordered
list {x;,%,,..,xy}. An extension of SUV is the Minimum Remaining Values (MRV) heuristic,
which picks a decision variable that is most likely to cause a failure soon, and thereby pruning
the search tree [102]. The algorithm applied in this study uses the MRV heuristic as a means

for decision variable assignment.

Once the decision variable has been assigned, the algorithm must choose the order in which
the domain of values will be examined. However, in our case the aim is to find all the solutions
to the constraint problem, and not just the first one, thus the ordering of the domain of
values does not matter. In this instance the ordering is assigned randomly within the domain

of each decision variable.

To improve the efficiency of the search process an inference function inference «
INFERENCE (CSP, var, value) is added to the search procedure. This thesis adopts the forward-
checking inference function to reduce the domain of values of neighbouring decision
variables, such that backtracking search has less chance of failure. Forward-checking works
by establishing arc-consistency® for the assigned decision variable x;, which works by taking
each of the unassigned decision variables x; that are connected to x; by a constraint, and
deleting from x;’s domain any value that is inconsistent with the value chosen for x;. For a
more complete discussion on CSPs, and the methods used to solve them the reader is referred

to Russell and Norvig [102].

In the above definition of a CSP, each decision variable should have one solution assigned to
it after the constraints have been applied. If the application of constraints results in one or
more of the decision variables to have no solution, then the backtracking algorithm fails and
the CSP is unresolved. However, in some cases of the system architecting process, this is
exactly what is required. For example, in some instances the decision maker might prefer to
dynamically remove an entire domain of alternatives D; belonging to a particular decision
variable X;. This can be achieved with the inclusion of a dummy value null into the domain of
alternatives D;. The null value states that no solution exists for the function node X;, however

as far as the backtracking algorithm is concerned the null value is seen as a solution.

To illustrate this concept consider the following notional example. The design of an

Unmanned Aircraft System (UAS) introduces flexibility as to how an UAS can be launched and

& A decision variable x; is arc-consistent with respect to another decision variable x; if for every value in the

domain D; there is some value in the domain D; that satisfies the constraints on the arc (x;, x;) [102].
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recovered. This can range from a conventional launch and recovery system to unconventional
launch and recovery, or a combination of both conventional and unconventional launch and
recovery mechanisms. The functional decomposition of the launch and recovery system is

represented in Figure 6.8.

1. Provide Launch and
recovery.

|
v v
| 1.1. Launch System ‘ 1.2. Recovery System
1.1.1 Conventional 1.1.2 Unconventional 1.2.1 Conventional 1.2.2 Unconventional
launch launch recovery FECOVETY

Figure 6.8: Notional functional decomposition for a launch and recovery system.

As previously defined, only the leaf nodes of the hierarchy are taken forward to the design
synthesis phase, where design alternatives are allocated to each decision variable. This is
illustrated with the following example, shown in Table 6.2.

Table 6.2: Notional functional-means analysis for a launch and recovery system.

1.1.1 Quadricycle Bicycle Tricycle null
Conventional launch
Unconventional . Tensioned Line [Ground-vehicle
1.1.2 launch Rail launch Launch launch null
1.2.1 Conventional Con\(entlonal il
recovery landing
Unconventional Skid and belly Cable-assisted
1.2.2 recovery recovery Net recovery recovery null

The removal of an entire domain of values in a decision variable, based on the choice of
solution in another decision variable is achieved by defining the constraint function, such
that it points to the null value in the domain to be removed. This is illustrated by applying

the following constraint functions for the launch and recovery system:

e If a solution from Unconventional Launch domain is selected then the solution set for
Conventional recovery domain should be removed. This is achieved by defining the

constraint function as:
if {Conventional launch == null} then {Unconventional recovery~ = null}

e The same logic as above is also applied if a solution from Conventional recovery
domain is selected, resulting in the solution for the Unconventional recovery domain

to have a null value.

if {Conventional recovery ~ = null} then {Unconventional recovery == null}
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e The difficulty comes in defining a means of combining solutions from Conventional
launch and Unconventional launch, and a solution from Unconventional recovery.
Let’s assume that only the following combination is required: tricycle with tension
line launch for the launch mechanism, and cable assisted recovery for the recovery
mechanism. Let’s also assume that the cable assisted recovery solution can only be
selected if tricycle and tension line launch are selected. The implementation of these
constraints is achieved by defining the following constraint functions:
if { Conventional launch ==' Tricycle'} then {Unconventional launch

==' Tensionline launch'| | null}
if { Conventional launch ~ =' Tricycle'} then {Unconventional launch == null}

if { Unconventional launch ==' Tension line launch'} then {Unconventional recovery

==' Cable assisted recovery'}

if {Unconvntional recovery

==' Cableassisted recovery'} then {Unconventional launch ~ =' Rail launch'|| 'Ground vel

if {Conventional launch ==' Quadricycle'| | 'Bicycle'} then {Conventional recovery
==' Conventionallanding'}
The last constraint in the above list is implemented to ensure that only the tricycle
configuration is able to combine with a value from the Unconventional recovery domain.
Applying the backtracking algorithm with the defined constraint functions, results in 8

feasible system solutions to be identified, these are represented in the table below:

Table 6.3: Architectural solutions for the notional launch and recovery system.

Function 1.1.1 Function 1.1.2 Function 1.2.1 Function 1.2.2
1 null Rail Launch null Net recovery
2 null Rail launch null Skid and belly recovery
3 null Ground vehicle launch null Net recovery
4 null Cround vehicle launch null Skid and belly recovery
5| Quadricycle null Conventional landing null
6 Bicycle null Conventional landing null
7 Tricycle null Conventional landing null
8 Tricycle Tension line launch null Cable assisted recovery

6.2.5 Representation

The final phase of the decision support framework, the Representation phase, is the most
demanding as it encapsulates both the simulation and the data analysis aspect of the decision
support framework. The output of the Search phase is a set of feasible system architectures,
which need to be evaluated in order to calculate the utility and LCC objective function values

of the design, and ensure that the Metric constraints are satisfied. This requires the
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development of analytical/ semi-empirical models which are used to calculate system level
performance attributes and evaluate the objective functions. The utility and LCC objective

functions of the design are in-turn fed into an optimisation framework to calculate Pareto-

optimal solutions.

6.2.5.1 Pareto Front Representation

Non-dominated architectural solutions are represented by a Pareto plot of utility vs. Life-
Cycle Cost (LCC). However, rather than eliminating all dominated solutions Smalling and De
Weck [114] suggest to retain some of the solutions close to the Pareto front, as they might
be more robust to implement or could provide other advantages that are not yet identified
at the early conceptual design stage. This is represented by a fuzzy Pareto filter, where a
relaxation factor K; is introduced to retain solutions close to the global Pareto front. This

thesis makes use of the fuzzy Pareto front representation to retain solutions close to the s-
Pareto front that could indicate potential solutions for further analysis in order to identify

their cost-utility benefits. The fuzzy Pareto front is represented as follows, x! dominates x?
fuzzily if:
Ji&Y) + K (" — ) < Ji(xP) Vi€ (1,2, ..., k),
and J;(x) + K (J/"* — J™in) < J;(x?) for at least one i with K; € [0,1]. (6.12)
Setting the value of K; to 0 would represent the weakly dominated Pareto front and setting
the value of K; to 1 would represent all the solutions in the objective space. If the value of K

is in-between 0 and 1, solutions within the K;(j®* — J™™) hyper-rectangle offset from the s-

Pareto front would be selected. This is graphically illustrated in Figure 6.9.
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Figure 6.9: lllustration of the fuzzy Pareto front [119].

Thus, the choice for the value for K; has a direct impact on the solutions captured by the
fuzzy Pareto filter. Guidelines for selecting a value for K, is given by Smaling [119], where it
is shown that increasing the value of K, beyond the 0.4-0.6 range does not significantly

improve design diversity. These values are chosen based on the design diversity metric
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developed by Smaling [119], which consist of three parameters, design space envelop,
number of designs contained in the design space envelope, and the dispersion of the designs
within the design space envelope. However, the design diversity metric does not penalise
solutions for being dominated solutions and far from the Pareto front, rather design diversity
is the driving factor. To account for diversity and optimality the following set of metrics are
proposed as a means of evaluating an appropriate choice of value for the relaxation factor
K;. These metrics are based on traditional hypervolume metrics and distance metrics [120].
The choice of an appropriate value for the relaxation factor K, can be established by

considering the following criteria:

1. Max dispersion of the filtered design space, MD,,: This criterion is used as means of
measuring the dispersion of solutions within the design space. It is represented as
the average minimum distance between all points in the filtered data set, within in
the design space. MD,, is a summation over the Euclidian distance of each point i to
its nearest neighboring point k. The nearest neighboring point k is found by taking
the minimum of the Euclidian distance of all points j = 1....F — 1 from point i. Where

F is defined as the total number of points in the filtered data set, and i # k.

— 1 yF-1
MDps = - %is1 Exi-

Xjmax—Xjmin

xO_x® \?
where Ey; = min j_q p_q |27, <#> (6.13)

Where E, represents the Euclidian distance between points within the design space,

and i and j can take values from 1 up to the size of the fuzzy Pareto optimal set F.

2. Max distance of the filtered data from the Pareto front, MD,: This criterion aims to
measure the Euclidian distance of furthest data point of the filtered data set to the
unfiltered Pareto front (i.e. when K, = 0). This is achieved by first measuring the
Euclidian distance between a point in the filtered data set f(x)’ to all the points that
lie on the Pareto front f(xpr)¥. The nearest member to f(x)! is then determined by
taking the minimum Euclidian distance value d; between the two points. This is
repeated for all the points in the filtered data set, resulting in a matrix of Euclidian
distance values between the filtered data set and its nearest neighbour on the Pareto

front d; e d where i =1, ..., F.

MD = max (d), where d=[d; d,, ....., dF fiitereal

2

andd d; = mink=1,|PF|\/Z;4:1 (f(xj)i - f(xPF,j)k) (6.14)

where d; ed and i = 1,...,F, with F being the total number of points in the filtered
data set. k = 1, .....,K, with K being the the total number of points that lie on the
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Pareto front. M is the total number of objective functions, which in this case is

equal to two.

6.2.5.2 High-Impact Decision variables

System architects at the conceptual design stage often face a challenge of selecting from a
portfolio of potentially competing design alternatives, or technologies to create an overall
system architecture. The choice of a system architecture has a significant impact on
performance and cost attributes. This leads to the idea of measuring the impact of candidate

architectures on the Pareto front.

To address the issue of architecture selection Mavris et al [121] proposed a method that is
useful for sorting through a large set of candidate technologies to be infused in an aircraft
system. The proposed methodology, known as Technology Identification, Evaluation and
Selection (TIES), uses a GA to create a set of technology combinations. These combinations
are compared with each other to identify superior and inferior solutions, the superior
solutions are kept within the set while the inferior solutions are removed. The surviving
solutions are used as parents in the next generation of system combinations. This is applied
several times over many generations until the pollution converges to an optimal set of
technology combinations. The TIES methodology is useful in identifying an optimal set of
architectural combinations, but does not identify the impact of architectural changes on the
objective values. De Weck and Chang [30] address the impact of architectural changes on the
objective space by defining four metrics: (1) minimum utopia distance §,,;,,, (2) average utopia
distance u, (3) utopia point shift v, and (4) the number of Pareto crossings y. This is illustrated

in Figure 6.10.

4 Utopia Point Shift 4  Minimum Distance
N N
s @ ud ;
N : ~
ﬁhfff'x\‘. o | [ “‘x\‘.
Global Utopia Point Global Utopia Point
Iz fa
4  Average Distance 4  Number of Crossovers
o .
I
« < (‘/
-
9 A
Global Utopia Point Global Utopia Point
fa fa

Figure 6.10: Pareto impact metrics [30].
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The choice of an appropriate metric is dependent on the ‘impact’ characteristic that is of
interest in capturing. From a systems architecting perspective important decision variables

are defined as:

1. Decision variables that strongly influence system properties, such as utility value and
LCC.

2. Decision variables that strongly influence the feasibility of other decision variables

i.e. the connectivity of decision variables.

The ‘impact’ metric, from a systems architecting perspective, can be characterised by
considering the three potential cases. First being the Pareto front of the system architecture
X; recedes from the global Pareto front. This suggests that the proposed architectural change
has an adverse impact on the system under consideration. Second, if the entire Pareto front
of concept X; is moved towards the global utopia point, then the proposed architectural
change shows promise. The third case is considered to be the most common [30], where
there is crossover between Pareto fronts of multiple system architectures, resulting in the
global Pareto set to be made up of solutions from multiple system architectures. Thus, in this
case the proposed architectural change is optimal in certain regions of the objective space,

and diminish in performance in other regions of the objective space.

Since we are interested in capturing the impact of architectural changes to the shift of the
Pareto front, in relation to the global Pareto front, this thesis adopts one of the metrics
presented by De Weck and Chang [30]. The influence of architectural changes on system
properties, such as value and cost, is identified by measuring the shift in the utopia point of
the Pareto front of architecture X; from the global utopia point. This captures the ability of
architectures to extend the solutions close to the global Pareto front. The shift in the utopia
point is numerically measured by calculating the Euclidian distance of the utopia point from

the global utopia point.

The Euclidian distance of the utopia point shift 6y, for a given system architecture C; is

defined as:

8; ,shift =

withje{1,....,k}and i€ {1,...,N} (6.15)

Where §; i represents the utopia point shift of the Pareto front of architecture i, j represents
the number of objectives, uj- represents the utopia point value of objective j of the Pareto
front of architecture i, and u} represents the global utopia point value of objective j of the

global Pareto front.

111



Chapter 6: Decision Support Framework

The impact of each function node on the utopia point shift can now be calculated by
determining the sensitivity to the change in the utopia point shift due to architectural changes
within the decision variables domain. This is measured by using a modified version of the
main effects analysis, from the design of experiments (DOE) literature. This method was
originally presented by Simmons [9] in the ADG framework. The main effect is a measure of
the average change in a property caused by changing an independent variable at a specified
level of another independent variable, or in this case by changing to a design alternative
within the domain of the decision variable. However, the traditional main effects analysis is
limited in its application from a system architecting perspective. The main effects analysis
assumes that there is a baseline design and the decision variables are modified one at a time,
and the modification of the decision variable is limited to two levels of assignment. To allow
for more than two levels of assignment to each decision variable and not including a baseline
design in the assessment, a modification to the traditional main-effects calculation is
required. This modified version is represented by the Decision variable Sensitivity (DVS)
equation, which is calculated over a feasible set of system architectures and their associated

system properties by using the following equation:

_ Zayenp |EGsnir) — E(Sspire i = dii)| (6.16)
DVS‘sshift'xk - |5k|

where x, is the decision variable k. D, € D, is the set of value assignments for x, that exists
as a feasible value assignment after the constraints have been applied to the decision variable
xi. di; is one of the alternatives in the decision variable x, .The expression d,; € D, indicates
that d,; is a member of the set D;. E(8gir) is the mean of system property &g, over all the
feasible system combinations. E(8gig|xx = dy;) is the mean of all the feasible combinations
with the decision variable assignment x,, = d, ;. Finally, |D,| is the number of elements of the
set D,. The DVS is a measure of the average magnitude of change in the utopia point shift
that occurs when changing the assignment of a decision variable. Here decision variables
whom domain contains only one design alternative will have DVSs_ .. =0, as the assignment

within its domain is fixed

An integral aspect of this framework is in its ability to quantify high-impact decision
variables. To define the importance of each decision variable within a network, this thesis
adopts centrality measures [113], which is defined as the measure of a node’s importance
within a network i.e. the most central node in the network. Depending on the network
structure a variety of useful quantities or measures can be calculated that captures certain
features of the network topology. This thesis proposes the application of PageRank centrality
[10] to calculate high-impact decision variables. The method combines results from DVS and
the adjacency matrix A;; from the DSM to provide a quantitative measure of high-impact

decision variables. The overall centrality measure is represented mathematically as follows:
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@

shift Xk’

Xk = aZ]Ak]%'i‘ﬁDVSé‘
J

where x, is the centrality measure of node k. The terms a and B are positive constants, where

a + B = 1. The centrality measure is effectively a weighted sum of the non-network factor
DVSs

<hire iy and the network factor AU%. The term 4;; is the adjacency matrix of the
j

network, where x; are the neighboring nodes of node x,, and k™ is the out degree of the
neighboring nodes. It should be noted that both the non-network factor and the network
factor are normalised, such that the values range from 0 to 1 before the summation takes
place. This ensures that there are no scaling effects when the two terms are summed
together. The centrality measure presented in this thesis is used as a relative measure of
importance between decision variables in the network, and is used as a guide to identify the

ordering of high-impact decision variables within the network.
6.3 Conclusion

The decision-making process in engineering design is considered to be challenging since
decisions are generally non-routine, highly interconnected, and are significantly
consequential on system properties. In identifying the shortfalls and gaps in the methods
available in literature to aid the decision-making process this thesis has developed a coherent
framework that supports the system architecting process. The framework brings together
multi-objective optimisation methodologies, in combination with centrality measures from
graph theory, and a modified version of the main effects analysis from the Design of
Experiments (DoE) literature to identify an architectural exploration strategy with the aim of

improving upon the solutions within the Pareto set.

The framework is split into three phases, Construction, Search, and Representation. The
Construction phase facilitates the generation of system architectures and captures the
relationships governing their choice by capturing the knowledge of the decision maker. One
of the central aspects of this framework is in representing the architectural decision problem
as a constraint optimisation problem. The problem is further sub-divided into a constraint
satisfaction problem (CSP) to handle discrete logical constraints defining the feasibility of
domain values of different decision variables. However, care should be taken when defining
the constraint functions, as over constraining or under constraining the architectural solution
space may result in too few or too many system architectures for the framework to be of any
use in aiding the decision-making process. The framework also presents novel methods in
visualising data generated from the analysis of system architectures. The representation of
data is categorised into two parts, one representing the Pareto-optimal solutions on a cost-
utility scale, and the other representing high-impact decision variables in the constraint
network. High-impact decision variables are calculated by adopting a modified version of
main effects analysis, where the sensitivity to the shift in the utopia point of the Pareto front

from the global utopia point due to changes in design alternatives within its domain is
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calculated. The decision variable sensitivity (DVS) data is then inputted into the network

centrality measure, more specifically PageRank centrality, to classify high-impact decision

variables.
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Chapter 7: Case Study: Unmanned

Aircraft Systems

he use of Unmanned Aircraft Systems (UASs) has many applications, covering a range
of mission operations and system types [122]. This could represent military
applications, such as the Predator, a medium-altitude long-endurance (MALE) UAS,
to civil commercial applications such as the Zephyr, a lightweight solar-powered UAS.
The attraction of using UASs mainly stems from the fact that there is no flight crew on-board
the aircraft, which enables it to carry out missions that are otherwise seen as being “dull,

dirty, and dangerous ” [123].

Figure 7.1: Examples of different Unmanned Aircraft System (UAS) applications.

Left image showing the Predator, and right image showing Zephyr.

Dull: These missions generally are long-duration with a low workload, and are considered to
be repetitive in task that they perform. Such missions may include target coverage,

communications relay, and air sampling [122].

Dirty: These missions would generally be considered dangerous for human crew, which
might involve flying through contaminated air, high radiation environment, presence of

biological agents, etc.

Dangerous: This mission types are generally focused towards military applications, where if
flown with a manned aircraft it could potentially put a human life at risk. These missions
include suppression of enemy air defence (SEAD), surveillance in enemy-controlled airspace,

aerial targeting, etc.

The term ‘system’ in UAS suggests that there are multiple elements (which may include
airborne and ground elements) that make-up an UAS. Typically, an UAS is made up of several

key system elements, such as the aircraft itself, payload, communications systems, ground
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control stations, launch and recovery systems, and other support equipment. Thus, the
design and optimisation of an UAS depends on how these key system elements interact with

each other, and the means by which they are integrated together.

7.1 Unmanned Combat Aircraft System Case Study

This case study focuses on the development of new propulsion system technologies for the
future combat air system (FCAS) project. The development of future propulsion system
architectures for the FCAS project was used as a case study to validate, and improve parts of
the decision support framework presented in this thesis. The FCAS project is part of a
research and concept development program undertaken by Rolls Royce plc, in conjunction
with BAE systems, Dassault, Safran, Selex ES, Thales, and other industry partners. The FCAS
project focuses on the development of an unmanned combat aircraft system (UCAS), in
collaboration between the British and French governments. The development of future UCAS
capabilities follows along the lines of Taranis and Neuron (see Figure 7.2), where the focus
was on developing a stealth aircraft that is capable of supporting ISATR (Intelligence
Surveillance Target Acquisition and Reconnaissance) capabilities [124]. The key attributes of
this platform include, the ability to undertake long range missions, and to provide high levels
of persistence and survivability in contested air space consisting of advanced air and ground

threat systems [125].

BAE Systems - Taranis Dassault - Neuron
Figure 7.2: Examples of different Unmanned Combat Air Systems (UCAS).

The propulsion system developed for this UCAS is required to not only provide propulsive
power, but is also required to deliver electrical power to other flight systems on-board the
aircraft, in addition to meeting the stealth requirements of the aircraft. Thus, the design
problem posed for such a system is multi-objective in nature, requiring the design to satisfy
several system objectives, such as maximise range, minimise infra-red signature, minimise
radio frequency (RF) signature, minimise propulsion system volume, etc. The developed
decision support framework in this thesis was used to define a utility function that combined
all of the system objectives into a utility metric, which in-turn was compared against a cost
metric the define the cost-utility benefits. In addition, a UCAS sizing and optimisation code
was also developed that allowed several propulsion system architectures to be readily
evaluated at a perform level. However, due to the sensitive nature of this work, the results

obtained for this case study will not be presented or discussed in this thesis. For this reason,
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another case study was chosen to illustrate the concepts of the developed decision support
framework. The case study presented in this thesis is an illustrative example of the 2Seas
project, in which the University of Southampton developed a small UAS for the purpose of
maritime surveillance. The details of this case study are presented in the following sections

of this chapter.

7.2 Overview

The case study presented in this chapter focuses on the design and development of a low-
cost UAS to be used by civilian law enforcement authorities for maritime surveillance
operations. Typically, many law enforcement authorities make use of manned helicopters to
carry out search and rescue operations. However, the cost of operating a helicopter is
significant, especially when law enforcement departments are constrained by budgets. UASs
offer a low-cost, close-range surveillance capability that allows the system to operate without
being detected by the target in comparison to manned helicopters. Thus, the use of UASs has
gained much interest in recent years and have already been applied in various fields of law
enforcement [122]. This case study is an illustrative example based around the European
Union 2Seas research project (www.2Seas-UAS.com), which is carried out by the University
of Southampton, Delft University, and other project partners from Holland, France, Belgium
and the UK [126].

This chapter provides an overview of the modelling methods that are applied to capture the
behaviour of some of the key system elements that describe an UAS. The UAS under
consideration for this case study is known to be carrying an electro-optic (EO) camera system
that provides high-definition motion imagery back to the ground control station. For the
purpose of monitoring offshore activities in real-time and for long durations. The
development of such a system requires a multidisciplinary approach that accounts for
aerodynamics, structures, propulsion, avionics, payload integration, communication, etc.
Thus, the development of an overall system architecture requires integration of several
subsystems that are interlinked with each other to allow for effective system operations. The
integration and development of subsystems also introduces multiple design alternatives to
meet several system functionalities. Before defining the modelling methods applied, a brief
overview of the UAS regulatory requirements are defined. The aim here is to present the

reader with the operational constraints that regulate the application of UASs.

7.3 UAS Classification

Based on the Joint Doctrine Note (JDN) 3/10 [124], categorisation of UASs begins with the
classification of mass, and the operational altitude of the UAS. Class | is defined to be less
than 50 kg (which is further sub-divided based on operating altitude), Class Il ranges in mass
from 150 kg to 600 kg, and Class Ill is more than 600 kg (further sub-divided based on

operating altitude). This classification guide is represented in Table 7.1.
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Table 7.1: UAS classification guide [124]°.

Class Category Normal operating Civil category (UK
altitude CAA)

Micro < 2kg Up to 200 ft AGL Small Unmanned

o Aircraft (<20 kg)
Class | < 150 kg Mini 2-20 kg Up to 3000 ft AGL
Small 20-150 kg Up to 5000 ft AGL Light Unmanned
Aircraft (20-150 kg)
Class Il 150-600 kg |Tactical Up to 10,000 ft AGL

Medium Altitude Long|Up to 45,000 ft AGL Weight cateqory arou
Endurance (MALE) 9 gory group

Class Ill > 600 kg 3 (> 150 kg)
High  Altitude Long|Up to 65,000 ft AGL

Endurance (HALE)

This thesis will focus on the Small category class of UAS (20 -150 kg), thus only Class |
operational requirements will be discussed hereafter. As defined by the Unmanned Aircraft
System Operations in UK Airspace - Guidance (CAP 722) report [127], UASs in the sub 20 kg
and 20-150 kg class are restricted to operate within visual line of sight (VLOS). This is defined
to be an altitude of 400 ft, and a flight radius of 500 m. Operations beyond 500 m or 400 ft
is possible by complying with collision avoidance responsibilities. But collision avoidance is
still required to be achieved through visual observations. Beyond visual line of sight (BVLOS)
flight is defined as the distance where the remote pilot is no longer able to respond to or
avoid other airspace users by visual means. UASs that intend to operate BVLOS require
approved methods of aerial separation and collision avoidance. Advancements in the area
collision avoidance for autonomous systems is an active area of research, and will not be

addressed in this thesis (see Vahidi and Eskandarian [128] for more information).

Though there are restriction in altitude and range of flight, the design of a platform still
needs to meet the operational requirements that will eventually enable the platform to be
mature enough to overcome these restrictions. This may require the platform to be designed
to fly at a higher altitude and longer range to meet the demands of the end user. For the
current case study of maritime surveillance, the platform will be designed for altitudes and

ranges greater than 400ft and 500m in order to meet the operational demands.

7.4 Mission Definition

This section defines the UAS mission profile, depicted in Figure 7.3. The cruise-out, and the
cruise-back, phase are limited in distance by the maximum line-of-sight (LOS)
communication range, as it is assumed that beyond line-of-sight (BLOS) capability via
SATCOM (Satellite Communication) or by other relay nodes is not feasible. The cruise-out
distance is set to be 90% of the maximum communication range to allow for some additional

travel distance during loiter. During the loiter/search phase of the mission the optical camera

° AGL — Above Ground Level
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system is turned on and data of the high definition digital motion imagery is transmitted
back to the ground station. It is also assumed that data is transmitted to the ground station
in real time, with no data storage on-board the UAS. Once the search phase of the mission
is complete the UAS returns back to the ground control station, which is defined by the last

two phases of the mission profile (6 and 7).

A detailed overview of the mission profile is provided in the table below. It can be noted that
some of the mission variables are provided over a range. These act as design variables in the
multi-objective optimisation framework, as the change in these mission variables can have a
significant impact on the capabilities offered by the system, and the cost of implementing
the system. It should also be noted that some of the fields in Table 7.2 are blank, as these
values are an output of the model and are dependent on other design variable values, such

as wing loading, engine thrust-to-weight ratio, and wing aspect ratio.

Table 7.2: Maritime surveillance mission profile definition.

| Segment | Time | Distance | Speed | Altitude | Thrust Setting

1 Take-off - 100 m - Sea-level Max continuous
2 Climb 5 min — - 150-400 m | Max continuous
3 Cruise- - 90% of max LOS | 30 m/s 150-400 m —

out range
4 Loiter 1-3 hrs - 20- 150-400 m —

28m/s

5 Cruise- - 90% of max LOS | 35m/s 150-400 m -

back range
6 Descent - - - Sea-level Idle
7 Land - 100 m - Sea-level Idle

SLF at top of
climb of 3.6g 5. Cruise-Back o 4. Loiter

e TR —_—
SEP at top of climb I _ : 3. Cruise-Out
of 800 ft/min e : S —

ROA = 0.9 x 4.12VAltitude

Min fuel to climb

schedule 2. Climb

&

6. Descent
1. Take-off
&

7. Land

Runway length of
100 m.

Figure 7.3: Maritime surveillance mission profile.
7.4.1 Communication Line-of-Sight Range

The line of sight (LOS) communication range is limited by the distance that the ground control

station antenna can have a direct link with the on-board aircraft antenna. Beyond line-of-
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sight communication (BLOS) occurs when the transmitter and receiver are no longer able to
communicate with direct line-of-sight, and must use relay nodes to retransmit the signal.
This case study assumes that the UAS operates under LOS communication, as BLOS requires
the use of SATCOM or other relay mechanisms, which are deemed too expensive for data

transmission [122].

For the theoretical calculation of LOS range, assuming a smooth Earth’s surface with no
terrain features, the range is assumed to be governed by the four-thirds Earth model. The
presence of Earth’s atmosphere causes the propagation of electromagnetic waves to refract.
If the refractivity index is large enough it causes the electromagnetic wave to bend around
the Earth’s curvature, causing the range to the horizon to extend. A simple method to model
this behaviour, for altitudes less than 3 km, is to replace the actual Earth with an imaginary
Earth whose effective radius is calculated to be four-thirds of the Earth’s radius (the value of
four-thirds is valid under normal weather conditions). Using the four-thirds Earth model

definition, the LOS range can be calculated from simple trigonometric relationships.

R =412(VH +vh) (7.1)

From the above equation it can be noted that the LOS range is defined as a function of cruise
altitude [122], thus by increasing cruise altitude the LOS range is also increased. It should
also be noted that the represented LOS range is a very simplified view intended for conceptual
analysis, where several parameters have not been accounted for. In reality, the LOS range can
depend on terrain features, obstacles such as buildings, and variation in atmospheric
refraction (due to variation in atmospheric pressure) as a function of altitude. For a more in-
depth review of wave-propagation effects the reader is referred to Blake [129]. Other affects
such as frequency, atmospheric attenuation as a function of frequency will be discussed later

on in this chapter.

Unmanned

aircraft
Earth’s Surface

Ground antenna

Figure 7.4: Line-of-sight geometry.

7.4.2 Power Requirements

In addition to the flight mission profile, the electrical power demand profile should also be
taken into consideration. As meeting the power demand can have a significant impact on
architecture selection and flight performance of the aircraft. Figure 7.5 shows an illustrative
example of the average power demand profile (normalised power demand) during the course

of the mission. Although the peak power demand would be greater, and is prone to
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fluctuations during the mission, it is assumed that peak power demand is only required for
short time periods. Thus, the power source is sized to meet the average power demand

profile.

Mormalised Power Demand

2 3 4 5 & T
Fhase of Flight

Figure 7.5: lllustrative electrical load profile of the UAS.

Phase 0: Start and Warmup of systems - This phase of the mission in the initial start-up of

the aircraft, which requires main engine start-up, and system checks to be performed.

Phase 1, 2, and 3: Take-off, Climb, and Cruise-out - At this point the aircraft is operating
autonomously. The aircraft demands power from control surface actuators, flight

instrumentation, on-board sensors, and the antenna transmitter/receiver power.

Phase 4: Search - Also referred to as the loiter phase. This is the most demanding phase in
terms of power demand. At this point the electro-optical camera system is turned on, and
data generated from the high-definition camera is transmitted back to the ground station at

a continuous rate.

Phase 5, 6, and 7: Cruise-back, Descent, and Land - Once the search phase is complete
the payload system is turned-off and the aircraft returns back to base. During the return

segment the UAS operates at a similar power level to phases 1, 2, and 3.

The power loads for the actuators, sensors, and flight instruments can be assumed to be
approximately constant throughout the mission, and are thus grouped together into the
avionics group as a constant power load. Changes in the power demand are mainly caused
due the operational use of the payload sensor system during the search phase, and due to
the transmission of data back to the ground control station. The following equation describe

the overall power demand of an UAS at different phases of flight.

Poverall = Pavionics + PComms flt crit data

Withv Pavionics = Pactuators + Psensors + Pflt instruments (72)
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Equation (7.2) is applied to mission phases 1, 2, 3, 5, 6, and 7, when the payload system is
turned off. Here, P, i nics refers to the constant power demand from aircraft avionics?®®, and
Peomms fit crit data Y€fErs to the communications system power required to transmit flight critical
data back to the ground control station. It is assumed that the rate of data transmitted back

is constant and continuous throughout the mission.

During the search phase (phase 4), additional terms are added to account for the payload
module power demand and the transmission of high definition motion imagery back to the

ground station, as follows:

Poverall = Pavionics + PEO payload + PComms flt crit+HD data (73)

where Pgj ,ay100a efers to the power demand of the electro-optical camera payload, and
Peomms fit crit+np data Y€f€TS COmMmunications system power required to transmit flight critical
data and high-definition imagery back to the ground control station. It is again assumed that
the rate of data transmitted is constant and continuous during the search phase i.e. a
continuous stream of high definition imagery and flight critical data is sent to the ground

control station.

7.5 Modelling Approach

The analysis of several system architectures requires a modelling environment that integrates
multiple models to capture the design attributes required for the MAU model. At the
conceptual design stage the use of analytical and semi-empirical methods offers a set of
simple parametric models that can be applied to gain visibility into the design space and

better understand the characteristics of system solutions.

Typical legacy tools for conceptual design are generally developed to analyse a specific class
or sub-class of aircraft configuration. These generally consist of modelling assumptions and
correlations based on empirical data that relate to a particular class of aircraft. Thus, in order
to model different system configurations, this study has developed its own modelling
environment, which is focused towards a particular set of UAS classes and its sub-systems.
The models developed in this research are simplified analysis methods that makes use of
semi-empirical relationships to predict the system performance. It should be noted that the
intent of this research is not to develop a novel aircraft modelling framework, but rather
make use of standard textbook methods to predict system performance. For a more detailed
description of the analytical/semi-empirical methods used the reader is referred to Raymer
[17] and Gundlach [122].

The interaction between different analyses disciplines are represented in Figure 7.6. Here,

the implementation of different analysis codes, and the communication between these

10 Avionics refers to any electrical devices used on the UAS with the exception of the electrical power system,
payloads, and communications system.
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modules is executed in MATLAB, which offers an easy-to-implement programming

environment.

Geometry:
Parametric Models I . .

Aerodynamics:
Semi-empirical .
relationships &

Lifting line theory

Propulsion system:
Actuator disc theory I .

Communications

system: 9 9

Link-budget analysis

Mass Estimation:
Parametric mass 9 9
estimating relationships

L 4

| Mission Analysi |—$
GTOM | Sizing of aircraft

Iteration for the mission

Payload Sensor
Performance:
Johnson's criteria

v
Life-Cycle Cost
Estimation:
Parametric cost
estimating relationships

Figure 7.6: Schematic block diagram of the modelling environment.

7.5.1 Geometry

The representation of geometry is an important consideration in conceptual design, as there
is always a trade-off between fidelity and the effort required to parametrically describe
geometry. Commercial CAD packages offer great flexibility in generating a geometry with
varying levels of fidelity. But the problem incurred in many CAD packages is the
parameterisation of geometry can require substantial effort with a large number of

parameters to describe the geometry [130].

At a conceptual design level much simpler representations of the geometry are required with
a minimal number of parameters to parametrically represent the geometry under
consideration. Vehicle Sketch Pad (VSP) offers this capability by providing a predefined
aircraft geometry that is already parameterised. This allows the user to more readily represent

the geometry with minimal effort in parameterisation [131].

(@)

Figure 7.7: A geometric representation of the UAS using (a) CAD package and (b)
Vehicle Sketch Pad (VSP).
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Though VSP offers a user-friendly programmable environment to represent an aircraft
geometry. For the current case study simple equations are used to represent the aircraft, as
the geometry can be represented using simple shapes that can be modelled using simple
equation, and in-turn calculate the wetted areas of components. VSP is only used for
visualisation purposes and is not used in the optimisation framework to parametrically vary
the geometry.

7.5.2 Aerodynamic Predictions

The aerodynamic drag characteristics of an aircraft can have a significant impact on fuel burn,
which in-turn drives the take-off mass and the operating cost of the aircraft. Thus, much
research has gone into developing computational methods to accurately predict the drag
characteristics of an aircraft, and the means of reducing its impact. However, the requirement
to evaluate several design configurations, and reduce the number of input arguments
required for modelling, meant that sophisticated Euler or Navier-Stokes methods were not
considered for aerodynamic evaluation. Instead, the aerodynamic calculations for this study
rely upon semi-empirical and analytical modelling approaches.

The overall drag model can be represented as follows:

Cp = Cpo + Cp; (7.4)

where Cp, is the zero-lift drag, which consists of friction drag and pressure drag. Friction
drag is caused by the shear forces acting on the flow boundary layer, normal to the surface.
Pressure drag is associated with wake formation caused to airflow interacting with the aircraft
geometry. It is calculated by integrating the pressure differentials normal to the flight path.
Cp; represents induced drag, which is caused due to vortex formation at the wing tip. The
induced flow of the vortices decreases the effective angle of attack of the wing, which varies
from wing tip to root. This generates a downstream-facing component of aerodynamic force

of the wing, known as induced drag.

The zero lift-drag coefficient can be predicated by applying the following semi-empirical

equation:

1
Cpo = Ech,seg “Fleg* Qseg " Swet (7.5)

where C; ., is the flat plate skin-friction coefficient, FF,, is the shape form factor, Q,., is the
interference factor, and S, is the wetted area of the body or the aerodynamic surface. The
overall zero-lift drag value is the summation of all the individual components that makeup
the UAS.

The calculation of the induced drag coefficient is achieved by incorporating a simple panel
method. This study adopts the Prandtl lifting-line theory (LLT) method to predict the lift
distribution along the wing span. Anderson [132] provides a more in-depth derivation of this

method, and also provides a numerical lifting line theory that can address nonlinear lift curve
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slopes for wings near or beyond the stall region. However, this study applies the matrix form
of the Prandtl lifting-line theory, which is suitable for subsonic applications and linear
regions of the life-curve slope (i.e. un-stalled regions). The matrix form of the LLT method
is easy to implement, and offers a rapid calculation of the model. However, the LLT method
is limited in modelling only one wing at a time, thus the downwash effects on the tail are not
accounted, resulting in the tail effectiveness to be over-predicted, and the tail contribution
to induced drag to be under-predicted. But, for the purpose of conceptual analysis, the LLT

method will be implemented.

The LLT method predicts the lift distribution through a Fourier sine series. The method allows
for variable chord geometry, camber, and twist distributions along the wing span. But the
flowing limits are also placed on the wing geometry and flow conditions, such as quarter-
chord sweep must be less than 10 degrees, the wing must have no dihedral, wing aspect
ratio must greater than 5, and the flow must be incompressible. In meeting this criteria, the

LLT method can be formulated as:

- c(6)
2-b,

[+ e (8) — @, (O)]sin6 = Y A, sin(nd) [T

n=1,0odd

+ sin 9] (7.6)

Where A,is the influence coefficient, b,, is the wing span, c¢ is the chord, « is the angle of
attack, a,,;s: is the washout angle, and «,; is the zero-lift angle of attack of the airfoil. The

angle @ is a function of the semi-span ratio at a distance y from the wing root.

6 = cos~t <_2W y) (7.7)

The value y is divided up into N segments between 0 and 7/2 radians, and n assumes odd
integer values from 1 to 2N — 1. Here the chord at a given angle ¢(8) is found through linear
interpolation across the semi-span. Using the above parameterisation, the following matrix

formula is solved for:

Ax=b
where AG,)) = sinln() - 0] - {FL 4 sin[0 (D]}, i,j = 1,...,N
b = T [+ e ) — o D] sinlO@], i =1,..,N 7.8)

where n(j) = 2+j — 1. The values of x are determined by applying the following operation x =

A~1b. The total lift, and thus the induced drag can now be calculated as follows:

C,=AR-m-x(1)

¢t

and Cp; = ——
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with etneo = 1/1+ Ej_on(j) - [x())/x(D]? (7.9)

where e, is the theoretical Oswald efficiency. In reality the Oswald efficiency factor will not
be as big as the value predicted from the above equation. As viscous effects caused due to
skin friction and flow separation can impact the Oswald efficiency factor. In addition, the
presence of the fuselage, nacelles, and other aircraft components are not accounted for when
calculating the lift distribution. To account for the impact of these components the following

correction factors are added:

€ = €theo * ke,F ) ke,DO (7.10)

where k. is the fuselage impact factor, and k., is viscous impact factor. We assume that
the impact of viscous effects on Oswald efficiency is negligible, and is therefore ignored in
the calculation. The impact of the fuselage is calculated by apply the following semi-empirical
formula :

Kyp=1-2 (Z—:)Z 7.11)
where, d; is the max fuselage diameter. The application of the LLT method to an arbitrary
wing, at different aspect ratios is presented in the figure below. The plot indicates that an
increase in wing aspect ratio results in the reduction in induced drag coefficient, at a given
lift coefficient, and the Oswald efficiency decreases with aspect ratio. These trends are in

alignment with the trends predicted from theoretical and empirical data [17], [132].
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Figure 7.8: The application of the LLT method to an arbitrary wing.

7.5.3 Propulsion System

Majority of the UASs in Class | (<150 kg) are propeller driven [122]. It should be noted that
propellers are only an element of the propulsion system. The shaft power required to drive
the propellers must come from another device, such as a turboshaft engine, reciprocating
engine, or electric motors. The choice of a power source to drive the propeller is dependent

on various factors that influence the performance, cost, mass, and reliability of the aircraft,
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and thus is an important architectural decision to be made. The choice of a power source in

this case study is addressed in the next chapter of this thesis.

As the propeller is a common element within the propulsion system under consideration, a
brief overview of the propeller model is described here. The propeller is modelled by applying
the actuator disc theory to determine the shaft power required to generate thrust, at a given
flight condition. The shaft power required to generate a given amount of thrust is defined as

follows:

T 1
Pshareprop = % ) (V + 2’ AV)

where AV = [VZ24+—-V
pAp

2V 1

and Npideal = VooV AV/2V +1

(7.12)

Where T is the thrust required by the UAS, 1, = 1, ideai * Mpnonidear 1S the propeller efficiency (a
nominal value for the non-ideal efficiency 7, nonigear is chosen to be 90% ), V is the velocity of
the aircraft, AV is the velocity difference between the exit velocity and inlet velocity, and A4,

is the propeller disc area.

Stream tube

Figure 7.9: Propeller actuator disc model.

Once the required shaft power is obtained, it is compared against the available shaft power
from the energy source, which could be a reciprocating engine, electric motor, turbofan, etc.
It should be noted that in cases where the electrical power load of an aircraft is provided by
an engine generator, the required shaft power will be the propeller shaft power plus

generator load.

Pelec load
Pshaft,Req = Fshaft,prop T (7.13)

where P, 0qaq iS the required electrical power by sub-systems on-board the UAS and 7 is an
efficiency factor to account for losses in the delivery of the electrical power to the required
sub-systems.
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7.5.4 Communication Systems

The analysis of the communication link is an important aspect of the UAS’s operational
performance. It provides a means of calculating the reliability of a communications link in
transmitting and receiving data to and from the UAS, and the ground control station.
Communication systems are typically composed of many elements, each of which can be
arranged into many configurations. To give a simplified overview of some of the main
elements, a simplex one-way digital data link is shown in Figure 7.10. Here, the function of
the modem is to modulate the input signal onto a carrier wave of higher frequency prior to
transmission. Similarly, the modem at the receiver end, demodulates the signal to recover
the original baseband signal. The modulation of a digital signal can in general be grouped
into three categories, amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-
shift keying (PSK). The choice of a modulation type is dependent on the application under
consideration, and also on the required energy-per bit to noise-power-spectral-density ratio
Eb/N,. The transmitter takes the modulated signal from the modem and outputs a radio-
frequency (RF) wave form. In consensus, the receiver takes the RF waveform from the antenna
and outputs the modulated signal. Prior to transmitting the signal the amplifier increases the
power of the RF waveform for long distance transmission. For a more in-depth review of the
components involved in the communication link the reader is referred to Fortescue, et al
[133].

+— 4{ Amplifiar ‘0—{ Transmitter ‘<—| Modem |-I—Data Input

.‘ ‘—'| Receiver |—>< Modem }—D Data output

Figure 7.10: Simplified simplex one-way digital data link [122].

At a conceptual design level, the link budget analysis methodology is applied as a preliminary
tool to determine the transmission power required to transmit data from the UAS to the
ground control station. For more advanced analysis methods, high fidelity finite element
computational electromagnetic analysis codes are applied. These codes discretise the
geometry of the aircraft, where the grid size is dependent on the frequency. Hence, high-
frequency modelling of a large aircraft can be computationally intensive due to the fine grid
size that is required. The ultimate aim of such tools is to aid the performance prediction and
antenna integration trades [122]. However, the application of such tools is beyond the scope
of this research. This study is focused at a conceptual level, hence in order to simplify the

computation the link budget analysis is applied to predict the transmission power required.
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In applying the link budget analysis, the performance of an antenna system is defined by the
signal-to-noise ratio (SNR). This defines the strength of a signal at the receiver, in
comparison to the noise generated by the receiver itself. A reliable communication link can
only be achieved if the SNR is greater than some threshold value. This requires calculating
the available SNR, which is typically represented in decibel form in order to make the

calculations easier. The decibel form of the available SNR is defined as:

SNR(dB) = Py(dBm) + Gp(dBi) + Ly(dB) + Gg(dBi) + Lg(dB)
201 A ) 101 1000k -T (dBm
+ 20logy, (m — 10log0( ) W)

— 10log,,(BW)(dbHz) — NF(dB)

(7.14)

where, P; is the transmission power, G; is the transmitter antenna gain. L; is the signal loss
through the transmitter antenna. L, is the absorptive propagation loss. G is the receiver
antenna gain. Ly is the receiver signal loss from receiver antenna through the amplifier. 1 is
the wavelength of the carrier signal, in this case study the carrier signal is transmitted at a
frequency of 2 GHz - within the L band as it is deemed to be within an efficient bandwidth
for digital video transmission [122]. R is the distance between the transmitter and receiver,
k is the Boltzmann’s constant, T is the ambient absolute temperature, BW is the effective

noise bandwidth of the receiving process, and F is the noise factor.

The above equation provides a means of calculating the available SNR at the receiver end of
the communications system. It can be noted that the calculation of the SNR is dependent on
several variables, such as the distance the UAS is from the ground control station R, the
propagation losses associated with the RF signal travelling through the earth’s atmosphere
Lp, signal losses associated with the transmitter and receiver L, and Lp, and losses due to the
presence of ‘noise’ in the electrical systems kTB - which defines the total noise power in
bandwidth B. Table A.2 in Appendix D provides a list of values applied to each of these losses
for the current case study. For a more in-depth description of the losses associated with the
communications system, and the propagation of RF signals through the atmosphere, the

reader is referred to Gundlach [122].

In calculating the available SNR, the link margin required to transmit data reliably to the
receiver can be determined. The link margin is defined as the difference between the available
SNR and the required SNR to transmit data to the receiver. A 10-dB link margin is
recommended i.e. Link Margine (10 dB) = SNRyyqi; (dB) — SNRg.q(dB), which is primarily to
combat multipath effects and blockages at the extent of the communications range [122]. In
knowing the required link margin, the transmission power P, required by the communications
system, on-board the UAS, to transmit data to the ground control station can be calculated.
The required transmission power of the communications system is one of the crucial
parameter influencing the choice of the power generation system on-board the UAS, and is
secondary in its influence on the performance of the aircraft. The architectural choice of the

on-board power generation system will be addressed in the next chapter of this thesis.
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7.5.4.1 Required SNR

The required SNR is mainly driven by the type of modulation applied to the carrier waveform,
and by the impact of system noise on error rates. In the case of digital signals, the mechanism
by which system noise affects the output of the communications link is different in
comparison to analogue signals. In this case, the demodulator at the receiver end contains
threshold detectors, which allocates one of the permitted values to each received symbols*!
[133]. However, in the presence of noise i.e. if the noise voltage is large enough, the receiver
output may lie on the wrong side of the threshold, resulting in an error in the interpreted
signal. This can be defined by the bit error rate (BER - the probability of error in any one bit),
which is a function of the ratio of energy per bit to noise power spectral density, E,/N,, and
is dependent on the type of modulation applied on the carrier wave. Figure 7.11 shows the
theoretical relationship between BER and E,/N, for three different modulation types,
quadrature phase shift keying (QPSK), differential binary phase shift keying (DBPSK), and
frequency shift keying (FSK). For a more in-depth description of these modulation techniques

and the relationship between BER and E, /N, the reader is referred to Fortescue et al [133].

The required BER is a function of the type of data being transmitted, BERs of interest may
range from 10~* to 1078. For the current case study is assumed that the required BER for
digital motion imaginary is in the order of 107%. The QPSK modulation is chosen as it provide
a low E, /N, for a given BER in comparison to other modulation types, as illustrated in the

figure below.
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Figure 7.11: Bit Error rates for different modulation types.

The relationship between the required E,/N, and BER for QPSK modulated signal is

represented in the equation below. The function erfc() represents complementary error

1 The symbols are used as a means of encoding the signal prior to transmission, such that the receiver may
determine the bit information and signal levels in order to interpret the transmitted signal.
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function. This relationship is applied to calculate the required energy-per bit to noise-power-

spectral-density ratio.

BER =1/2-erfc(\JEb/No) (7.15)

The required SNR can now be determined by relating it to E,/N,, using the following linear
relationship (in decibel form):
Data

R
SNRgeq = Eb/No(dB) + 10 - log; (—B ) (7.16)

where, B is the bandwidth, and R,,, is the data rate. The ratio of R,,.,/B is dependent on
the modulation type. For QPSK modulation the ratio of R,,./B is assumed to be

approximately one [122].

7.5.5 Mass Estimation

The calculation of structural mass of various aircraft components is a very difficult task at
the conceptual design stage, as information regarding the structural arrangement of the
aircraft, or detailed CAD designs are not available. However, recent developments in
modelling approaches make use of finite element methods, in combination with semi-
empirical and analytical methods, to predict structural mass in conceptual design [134]. But
the effort in constructing these models, and the number of input parameters that are required
to run the model makes it infeasible to simulate multiple architectural configurations at a
conceptual level. This leads us to adopt statistical-based approaches for structural mass
estimation, usually relating to various parameters known to affect the structural mass i.e.
GTOM, span, maximum load factor, etc. The application of such methods may provide
unrealistic values where knowledge is not sufficiently available. This is especially true for
small UASs, where the data available is relatively limited and configurations adopted have
been unconventional in comparison to manned aircrafts. Thus, mass estimation based on
statistical analysis may have serious disadvantages as extrapolation of the curve beyond its

data range may provide misleading results.

Though the use of statistical approaches presents inherent disadvantages, this thesis adopts
such methods to calculate the structural mass of the UAS [17], [122]. The reason being that
statistical methods provide the benefit of carrying out mass predictions near instantaneously,
with modifications (factoring of results) included to account of small UAS airframes, as
presented by Raymer [17] and Gundlach [122]. But, it is recognised that a more detailed
structural and mass analysis assessment will need be to be carried out prior to preliminary

design.

7.5.6 Mission Analysis & Sizing

The mission analysis module take a given mission profile and calculates the fuel required to

complete that mission. The predicted fuel burn for each phase of the mission segment is
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calculated by using simple mission analysis calculations, such as the Breguet range equation.

The output of the analysis is the required fuel mass and the GTOM of the UAS.

The calculated GTOM is however only a prediction, as the structural mass of the aircraft is
calculated using statistical methods, which takes GTOM as an input. Thus, in order to solve
for GTOM an iterative scheme is required, which starts with a predicted estimate of GTOM
and iterates to a converged solution. The GTOM outputted from the mission analysis module
is compared against the estimated GTOM at the previous iteration. If the error is substantial
a new value of GTOM is predicted based on the size of the error. The new GTOM is fed back
into the mission analysis module and the process is iterated until the error is within the

tolerance limits. The GTOM iteration is defined using a simple equation, as follows:

GTOMneW = GTOMactual - 0.7 GTOMestimated (7 17)

7.5.7 Aerial Remote Sensing

The main operational requirement of this UAS is to gather intelligence by capturing video
imagery and relaying it back to the ground control station for further analysis. This is
achieved by providing the optical sensor system an adequate field of view to be placed on
the target, or scene of interest. Hence, the design of the UAS and its operational requirements
are highly influenced by the payload sensor parameters. Therefore, it is imperative to
accurately capture payload sensor performance, and its influence on UAS design, at the

conceptual design stage in order to develop a well-balanced system.

Digital imaging cameras use a collection of individual detectors to form an image. These are
arranged in rectangular arrays, known as the focal plan arrays (FPA). Each detector element
generates an electrical signal based on the electromagnetic energy that reaches it [122]. The
field of view (FOV) at the FPA can be described as an angular view of the focal plane. The field
of regard (FOR) on the other hand is described as the maximum angular coverage that the
sensor system is capable of achieving. In general, the FOV and FOR are identical for fixed
optics with no zoom i.e. the FOR for fixed optics with no zoom capability is the widest FOV.
For a more in-depth review of detector physics and design, the reader is referred to

Leachtenauer and Driggers [135].
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Detector array

GSD

Figure 7.12: Ground sampling distance definition [135].

The measurement of image resolution, and thus the performance of the camera module is
defined by the ground sampling distance (GSD). This parameter is used as a means of
measuring the resolution limitations due to sampling, and thus the achievable image quality.
The GSD is a function of the camera focal plane array, optics, and collection geometry.
Although, other parameters are required to fully characterise the image resolution, GSD can
be easily calculated based upon available engineering parameters. The GSD can be defined
as the distance between the pixels projected on the ground at a slant range R, using easily

understood engineering parameters the GSD can be calculated as:

FOVy )

=2X
65Dy =2 <2x1ﬁxH

(7.18)

where GSD, is the horizontal GSD, FOVy is the horizontal FOV, Pix, are the number of
horizontal sensor pixels in the FPA, and R is the slant range. Similarly the vertical GSD is

given as:

2 X tan(0.5 X FOV,, X Pix
( v H)XR

GSD, =
v cos(B100k) (7.19)

where 6,,,, is the look angle. It should be noted that parameters look angle and slant angle

are both dependent of the UAS operational mission parameters- altitude and velocity.

The look angle 6,,,, and the slant range 6R, can be determined by considering the geometry
of the UAS capturing imagery of an object. This is represented in Figure 7.13. The slant range

between the aircraft and the object is defined as:

R =h2 + GR?

(7.20)

where h is the aircrafts altitude and GR is the ground range from the UAS to the target.
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Object of Interest

Figure 7.13: UAS remote-sensing geometry [122].

The focus of the discussion thus far has been on the use of GSD as a measure of resolution.
However, GSD fails to explicitly state the quality of an image and its usefulness to the end
user. Image quality prediction is arbitrary and is based on empirical approaches. The
modelling approach defined in this thesis makes use of the Johnson criterion [135]. This
method defines three levels of object discrimination for useful imagery as being detection,
recognition, and identification. Detection can be defined as the probability that an imagery
feature is recognised to be part of a general group (i.e. vehicle, ship, aircraft, etc.).
Recognition is defined as the discrimination of a class of object (i.e. car, SUV, truck, etc.).
Identification is the discrimination of the object type (i.e. if car then whether it is a BMW,

Mercedes, Honda, etc.).

Determining the probability of detection, recognition, and identification for imagery is based
on the sensors resolution. Here the object is replaced by black and white lines, each line
constitutes a cycle. These groups of cycles are known as bar targets, which are commonly

used for optical tests [122].

Figure 7.14: Four-cycle representation of an image.

The number of cycles across an object of interest is calculated by the target characteristic
dimension divided by twice the averaged GSD. The characteristic dimension of an object is
defined as:
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de = \[Wege  Hege (7.21)

where W,,, and H,, are the object width and height (as viewed by the camera). The number

of cycles across the object is given by:

dc

N=————
2 X GSDypg (7.22)

Hence, the final probability of achieving the discrimination task for a given number of cycles

is:

(N/NSO) (2.7+0.7-(N /Nsg)

P(N) = 1 + (N/NSO) (2.740.7:(N/Nsq) (723)

where N, is the 50% probability of successfully performing the detection task. The N, values

for detection, recognition and identification are given as 0.75, 3.0, and 6.0 respectively.

7.5.8 Life-Cycle Cost

The estimation of life-cycle cost (LCC) is an important activity to be carried out, as it provides
a means of evaluating the program viability, and its impact on budgeting and allocation of
resources. The measurement of LCC provides an insight into near, mid, and long term
technology, design, and operational investment needs. From an aerospace systems
perspective, the LCC of a system consists of development cost, manufacturing and
production cost, operating cost, and disposal cost. These contributions to the LCC are shown
in Figure 7.15, where the relative magnitudes of the cost per phase shown in the figure are
illustrative. For the current study disposal cost is ignored, as it only forms a small portion of
the LCC, and the means of estimating disposal cost at a conceptual design stage is limited
due to a lack of available knowledge.

Operations

Manufacturing

Relative Cost

Development

Disposal

Time

Figure 7.15: Life-cycle cost phases [136].

The estimation of cost at the conceptual design stage is largely statistical, where cost
estimates are directly related to a set of system parameters known within the conceptual
design framework, such as structural mass, engine thrust, or sortie rate, etc. These
parametric approaches are largely based on trends derived from historic data that relate cost

to some cost-driving variables in a mathematical form, via regression analysis. The implicit
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assumption made in these models is that the same forces that affected cost in the past will
affect cost in the future. The representation of such trends can be illustrated by NASA’s
estimate of software development cost as a function of software complexity, which is shown

to have a linear trend.

Cost T * + @

4 g |
T T T T T 1

Software Complexity

Figure 7.16: NASA data, relationship of cost versus software complexity [136].

However, applying statistical methods to estimate the cost of future system architectures
may prove to be erroneous when the data used to derive the curve-fits are either from older
programs, or systems that have had a drastically different development and operational
program strategies, compared to the current system under consideration. This could result
in different cost estimates for systems that belong to the same class. In addition, the
prediction of cost for an UAS is further complication due to a lack of credible data this is

available to develop a valid statistical model.

A more detailed approach to cost estimation takes a ‘bottoms-up’ approach, where individual
estimates for each element is fed into the overall estimate. This methodology starts with a
program definition, which requires the development of system requirements, concept of
operations (CONOPs), a baseline system configuration, and a development time-line. Once
the program is adequately defined the bottoms-up approach can proceed, which involves
computing the cost at the lowest level of detail. Often the labour requirements are estimated
separately from material requirements. Initial-bottoms-up cost estimates generally tend to
be wrong, as these estimates are based on a best-case scenario with insufficient margins to
account for uncertainties [122]. To compensate, a realism factor is applied, which accounts
for all uncertainties within the program. This includes inflation, vendor price increase,
requirement changes, budget cuts, etc. For a more in-depth discussion on the different
phases involved in the bottoms-up cost estimation methodology the reader is referred to the
NASA cost estimating handbook [136].

Though the parametric cost-estimation relationships (CERs) present several drawback in
accurately predicting cost, this study adopts CERs as a means of estimating LCC. The reason
being that CERs offer an estimate that can be predicated quickly, and can be easily replicated.
Secondly, the information required to populate the CERs are minimal in comparison to the
bottoms-up approach, where substantial detail regarding the system architecture and

manufacturing methods, in combination with program operational details are required. This
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information is however limited at the conceptual design stage, which makes the bottoms-up
approach inapplicable at this stage of design. The CERs adopted for this study were derived
by the RAND Corporation [137] and from Raymer and Gundlach [17], [122], which consists

of data from both manned and unmanned aircrafts.

However, a problem still persists in that the data used in these CERs are mainly derived from
large UAS and manned aircraft programmes that have a program life-cycles of decades. But,
as previously stated, the focus of this study is on small UAS’s, which generally have a program
life of 5-10 years. To compensate for this Raymer and Gundlach [17], [122] suggest applying
downward cost adjustment factors to the CERs in order to get the cost values approximately
in line with small UAS programs. These are subjective adjustments based on expert opinion,
which may compromise the validity of the cost estimates as there is no data, or a lack of it,
to back-up the rational of the adjustment factors applied. Though the accuracy of the cost
estimates may be compromised in applying these CERs to estimate the cost of a small UAS,
this study is mainly interested in the general trends rather than the absolute values of cost,
for the purpose of optimisation. For this reason, CERs are still deemed to be a useful

methodology in calculating cost at the conceptual design stage.

The LCC for each system configuration can be estimated by decomposing LCC into,
nonrecurring costs, fixed recurring costs, and variable recurring costs. Nonrecurring costs
includes initial development, which consists of research, development, test and evaluation
(RDT&E). Fixed recurring costs Cr;, which are incurred at every time period regardless of
demand or changes to the operating environment, including labour, facilities, and overhead.
Variable recurring costs Cy;, is dependent on the demand of system operation over a given
time period, this includes the operating cost, material cost, variable labour cost, maintenance
cost, fuel cost etc. In combining these three cost elements the LCC of a system configuration,
for a number of time periods T, and a given demand in each time period D;, can be predicted

as follows:

T

Crcci(D,T,1) = Cpprg,; + Z

j=1

Cri + Cui(D))
1+r) (7.24)

In the above equation a discount factor r is included to represent the time value of money.
The choice of a discount factor is dependent on the impact of future expenditures on the
lifecycle cost relative to the initial expenditures. For the current study a discount rate of 10%

is applied.

The estimation of the traditional cost elements such as RDT&E cost, manufacturing and
production cost, labour cost, and material cost are predicted by applying CERs presented in

several aerospace design text books*?. For more details in regards to the development of

2 The CERs applied in this study all contain a factor k, which scales the cost down to an appropriate level,
such that it is in line with the small UAS class.
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these CERs the reader is referred to Raymer and Gundlach [17], [122]. However, it should be
noted that the cost associated with RDT&E of avionics, software, ground control station,
payload sensors, and launch and recovery equipment, are not accounted for in this study. It
is assumed that these subsystems are purchased off the shelf from external vendors, who
will incur these cost elements. Only the cost of production of these sub-systems will be
included in the final unit cost of the system, which are estimated by CERs developed by
Technomics [138].

The following sub-section outline the assumptions made in defining the demand profile and

maintenance schedule, such that the operating cost can be estimated.

7.5.8.1 Operating Cost

The cost of operating an UAS is dependent on the assumptions made as to how the UAS will
be operated during the course of its program life. A major contribution to operating cost
comes from fuel, labour, and maintenance. In reality other drivers, such as spares, storage,
indirect labour, and support services can have a significant contribution to operating cost.
But for the purpose of conceptual analysis these cost drivers are ignored due to a lack of
available knowledge of the system operating environment. Before describing the cost
elements involved, it is worth addressing the assumptions made in defining the demand
profile during the program life of an UAS, and the assumptions made in the maintenance
schedule of the UAS. The operational assumptions defined hereafter are partly notional and

are partly based on operational data acquired from Schumann et al. [126].

For the current study the overall program life is assumed to be eight years, where the first
two years are allocated for development and production of the UASs, and the next six years
are allocated to the operational life of the UAS fleet. During the course of its operational life,
it is assumed that the UAS’s are utilised 5 months per year in operations, and it is also
assumed that each UAS flies 10 training missions per year. This defines the demand profile

of an UAS as a function of time.

The fleet size required to meet operational demands is dependent on the required
surveillance time on the target area, the aircrafts time on station (TOS) or loiter time, and the
operational availability of the UAS, 4,. The number of UAS’s required to meet the operational

demand can be defined as follows:

_ TSurveillance

N, =
A7 TOS - Ay (7.25)

Here the required surveillance time T, peinance @t the target area is assumed to be 12 hours
per day continuous. By determining the fleet size and the utilisation rate of the UAS per year,
the number of missions flown per year can be calculated. Since the fuel mass per mission is

known from the mission analysis module, the fuel cost per year can also be calculated.
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The cost of maintenance is calculated by assuming a maintenance schedule for each of the
major sub-systems of the UAS, which includes the airframe, power/propulsion,
communications system, payload, and avionics. The scheduling assumptions are mainly
driven by the reliability of system and sub-system components. The OSD (Office of the
Secretary of Defense) reliability study [139] found that the major drivers in system failure
were attributed to power and propulsion, followed by flight controls and ground control, and
human interfaces. A breakdown of the finding of the report is presented in the figure below.

1Al UAS US MILITARY UAS

Groundfhuman,

Misc, 7%
Ground/human 4 17%

,22%

Misc, 9%

Power/Propulsion,
32%
Power/Propulsion,
37%

Flight controls,

Flight cnnt-l'-c_nl_s,_ ul
o
28% 26%

Figure 7.17: Average sources of system failures, data from 2002 [139].

The maintenance schedule is defined by the mean time between maintenance (MTBM) of the
sub-systems, which in-turn is dictated by the mean time between failure (MTBF) values for
each sub-system. At the conceptual design stage, it is difficult to predict the MTBF value of
a component with no pre-existing data. Thus, an estimate of the MTBF value is made based
on the MTBF values of similar components with pre-existing data. But, it is recognised that
a more detailed assessment of failure modes will need to be carried out prior to preliminary
design.

For the time being a set of baseline MTBF values are selected for different UAS sub-systems,
which are representative of the sub-systems presented in Figure 7.17. These baseline values
are factored to account for changes in the system configurations. The baseline MTBF values
were taken from the data presented in the OSD report and by Gundlach [122], [139], which
are defined in Table 7.3.

Table 7.3: Baseline MTBF values of critical UAS sub-systems.

Component MTBEF, hrs Notes

Flight-critical avionics 5000 Includes autopilot, on-board processors, measurement
sensors, etc.

Engine 1000 Non-aerospace engines

Communications System 5000

Flight controls 300 Includes servos for control surfaces, linkage arms,
wiring, etc.
Airframe 1000 Includes structural failure of the airframe.
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The MTBM values for each sub-system is established by setting the maintenance to begin
when the components reliability reaches a value of 0.55 i.e. the probability of failure is 0.45.

This is defined as follows:

MTBF (7.26)

As an example consider the flight controls sub-system, which has a MTBF value of 300 hrs.
Using the equation above the MTBM value is calculated by setting the relaibility value, R, to
0.55 and calculating for time, t. For flight contols the MTBM is calculated to be 180 hrs, which
is graphically llustrated in Figure 7.18.
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Figure 7.18: Flight controls reliability and system failure probability.

The reliability of a system can also be improved by adding redundancy into the system. Using
the previous example, the flight control reliability can be improved by adding a duplex system
with two strings, rather than using the simplex system. This in-turn will push the value of
MTBM to be higher, and therefore the maintenance interval is less frequent. However, the
addition of redundancy does have an adverse effect in terms of added complexity, mass,
volume, power consumption, and cost. Thus, the choice of system architecture, in terms of
redundancy, can impact the overall utility of the system. This architectural trade is addressed

in more detail in the next chapter.

The maintenance cost can now be calculated by making assumptions in regards to the
maintenance down time (MDT) for each major sub-system, the number of maintenance
personal required for each sub-system, maintenance personal cost rate (£/hrs), and the
consumable material cost during maintenance for each sub-system. In this simple model it
is assumed that there are an infinite number of spares, and the spares availability is not
considered in this modelling approach. The ‘UAS checks’ relates to system checks,
replenishment of fuel, and reconfiguration of systems prior to launch. It should be noted that
the data presented in Table 7.4 is illustrative, and is based on the authors’ conversation with
the 2Seas design team, and is not based on any previous program data (as the availability of

data for maintenance is very limited for the class of UAS under consideration).
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Table 7.4: Sub-system maintenance data.

Sub-System MDT, Maintenance Man hour Consumable material
hrs Personal rate (£/hrs) rate (£/man-hour)

UAS checks 0.6 2 30 20

Engine 1.5 2 30 50

Airframe 3.0 2 30 20

Flight controls 0.8 1 30 30

Communications 1.5 1 30 100
system

Flight-critical 2.0 2 30 30
avionics

Now that the entire maintenance schedule has been established, the availability of a system
at a given moment in time can now be determined. This is fully captured by operational
availability, which is defined as the probability that a system operating under defined
conditions will operate satisfactorily when called upon. Operational availability, 4, is defined

mathematically as:

MTBM

=" 7.27
Ao MTBM + MDT ( )

Although reliability is typically associated with factors internal to the system, there are
equally influential external factors that impact system reliability. These generally tend to be
environmental influences. Though, some of these influences, such as precipitation, icing, and
wind can be predicated to some extent, and be designed for. There are many unforeseen
mishaps which lead to the loss of the UAS. The data from the OSD report [139] indicates that
the UAS’s with lower reliability are also those that are smaller, yet fly at higher profiles
traditionally served by larger aircrafts. As a secondary effect to mishap rate, it was found that

cruise Reynolds number is correlated to mishap rate of various manned and unmanned

aircrafts.
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Figure 7.19: UAS mishap rate versus Reynolds number [139].
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Base on this data, the accident rate per 100,000 flight hours LR, 4. is calculated to be in
the range of 5-10, depending on the system architecture under consideration. In the event

of losing an UAS, the system is replaced, with the cost of replacement being defined as:

CReplace = NAC,Loss : CPUAS,unit

Where, Nacoss = LRaccigent * Fltyours (7.28)

where CPy s i IS the unit cost of the system.

7.6 Model Validation

The accuracy of the simulation model is validated by comparing data from a UAS
configuration, which is similar in configuration to that of the 2Seas UAS, developed by the
University of Southampton (shown in Figure 7.20). The validation compares the structural

mass and the operating mass of the system, at a fixed bassline mission profile.

Figure 7.20: The 2Seas UAS, developed by the University of Southampton.

The mass of a system is chosen as a metric for validation, as it is one of the most influential
parameters on the vehicles performance and cost, and is therefore important to ensure that

the mass estimates are approximately in-line with the real system.

Before proceeding to model the UAS configuration, it is important to ensure that the UAS
being modelled satisfies the constraints defined within the operating environment. The
design of an UAS typically introduces numerous constraints, mainly derived from the
limitations prescribed by the operating environment, and also by the system stakeholders.
The constraints generated for the whole system can be vast, involving limitation on the
voltage supply for different electrical systems, placement of electrical equipment,
environmental protection systems, size limitations of payload systems, etc. Though all these
constraints need to be taken into account to design a viable system architecture, this study
limits the constraints relating to flight envelop performance, and geometric limitations of the
UAS. This limits the scope of this study to a manageable size for conceptual analysis. The
upper and lower values of the design and constraint variables used in this study are
represented in Table 7.5.
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Table 7.5: Design and constraint variable values.

Design Variable Lower
Upper bound bound
N H 2
Wing Loading (kg/m?) 40 20
Thrust-to-weight ratio 0.22 0.05
Wing aspect ratio 12 8

Constraint Variable Constraint Values

Take-off distance (m)

< 100
Specific Excess Power (ft/min). > 900
Sustained Load Factor
> 3.5
Wing Span (m) <32
Wing quarter chord sweep
(deg) <5

The satisfaction of these constraints is achieved via a non-liner constraint optimiser, which
effectively acts as a constraint satisfier. The optimiser is used to scale the wing loading W /S,
the engine power-to-weight ratio P/W, and the wing aspect ratio AR in order for the UAS to
meet the defined set of constraints. The study adopts the sequential quadratic programming
(SQP) method to solve the nonlinear constrained optimisation problem. The SQP method
works by creating a quadratic approximation to the Lagrangian, and creating linear
approximations of the constraints to reduce the problem into a quadratic programming (QP)
sub-problem. A more detailed description of the nonlinear constraint optimiser can be found

in section 3.3.

The output of the simulation model is represented in Figure 7.21. In comparing the data,
significant differences in the structural mass of system components can be noticed. This is
especially true when comparing the masses of the wing assembly and under carriage, where
the calculated data over predicts the mass by a significant amount. However, when comparing
the masses of the empennage, nacelles, and avionics, the calculated mass is under predicted
by an amount that is significant enough to offset the over predictions. This has resulted in
the predicted empty mass to be relatively close to the actual empty mass of the 2Seas UAS,
with a percentage difference of 2.6%. The overall predicted GTOM of the system however
diverges by 10.6% from the actual, due to an overestimate of the required fuel mass. This is
attributed to the differences in aerodynamic drag predictions. A more detailed mass

breakdown of the system, with percentage differences can be found in Appendix E.
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Figure 7.21: Comparison of (a) structural mass elements and (b) operating mass
elements, of the calculated UAS data.

Though the predicted masses of the structural components are far from the actual, the overall
empty mass and the GTOM of the system are within satisfactory bounds i.e. the masses are
is in line with the class of UAS being modelled. For this reason it is believed that the modelling
environment provides a good approximation to estimate the general trends in masses, due

to changes in the design variables.

7.7 Multi-Objective Optimisation

Using the optimisation framework defined in section 3.3, the aim of this study is to find non-
dominated Pareto optimal solutions for a given system architecture by varying a set of design

variables. This optimisation problem can be defined as follows:
Min J =f(x) = [/i(%), f2(x)]

s.t. g(x) = [1(%), 9:(%), g3(%), g4 (X)] < 0

x<x<xY (7.29)

Where f(x) = [f; (%), (X)] is a vector of the two objective functions - MAU function, and the
LCC function. The definition of the utility function, in relation to the design of the UAS, will
be addressed in greater detail in the next chapter of this thesis. The four inequality
constraints g(x) = [g;(X), g,(X), g5(X), g.(x)] < 0 are related to geometric and flight envelope
constraints, which were defined in the previous section. The design variable vector x contains

a set of four design variables, which are time on station, built in payload mass allowance,
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cruise and loiter altitude, and loiter velocity. The choice of these design variables will again
be addressed in the next chapter of the thesis. The upper and lower bound values for the

design variables are presented in Table 7.6.

Table 7.6: Design variable upper and lower bound values.

Design Variable Lower Bound Upper Bound Baseline Values
Time on station 1 hrs 3 hrs 2 hrs
Altitude 150 m 400 m 250 m
Payload mass allowance 0 kg 4 kg 0 kg
Loiter Velocity 24 m/s 30 m/s 26 m/s

This section discusses the results acquired from the optimisation framework. The
optimisation framework follows a surrogate based approach, where a surrogate model is
used to model the response of each of the two objectives. The process starts with a sampling
plan, which in this case generates 40 infill sample points. The choice of 40 points is based
on the general rule of sampling 10 times the number of design variables. The simulation

model is run at each of these sample points, and the corresponding objectives of utility and
LCC are extracted. Based on this input-output data set, X = [X®,X@, ...,X("‘1)]T and y=

[y®,y®, ...,y("‘l)]T, a Gaussian Process (GP) model or Krig model is constructed for each one

of the objectives.

7.7.1 Validation of Surrogate Model

To assess the validity of the surrogate models the leave-one-out cross-validation method is
adopted. This method works by constructing the GP model by leaving one point out at a time,
and then calculating the prediction value at the left-out point®. If a linear trend exists
between the actual and predicted values, then this suggests that the GP model has captured
the output response of the model accurately. Another method of assessing the validity of the
GP model is via the evaluation of standardised cross validation residual (SCVR) values in the
leave-one-out process, as proposed by Jones et al. [140]. The basic idea of SCVR is that it
defines the number of standard errors by which the predicted and the actual values differ.
Since the GP model is approximately 99.7% confident that the values lie within the mean
prediction plus or minus three standard errors, an appropriate model validation test would
be to see if the SCVR values lie in the interval [+3, -3]. If the values lie within this interval
than the GP model is valid [140]. SCVR is defined as:

y® —9.,xD)

SCVR; = :
‘ s, (x®) (7.30)

13 When making cross-validation predictions, in theory one should re-estimate all the parameters of the GP
model. However, dropping out a single observation in practice has a negligible effect on the maximum
likelihood estimates. Therefore in practice the parameters are kept the same, but the correlation matrix R is
recomputed using only n — 1 points [140].
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where y® is the observed value at the i** point that was left-out in creating the GP model,
$_; is the prediction at the left-out point, and s_; is the cross-validated standard error of

prediction.

Figure 7.22 shows the actual response plotted against the cross-validated prediction, and
the corresponding SCVR values, for both the utility and normalised LCC outputs. These plots
suggest that the GP model more accurately captures the response of the utility function, in
comparison to the LCC function. This is indicated by the R? values on the plots, and also due
to the fact that majority of the point for the utility function lie on the 45 degree line (as
indicated by the red line). Figure 7.22 also plots the SCVR value for each point, it can noted
that the majority of the points, with the exception of a few, are within the [+3, -3] interval.

Hence, the surrogate models for both the objectives are deemed valid.
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Figure 7.22: Surrogate model validation of the utility and LCC functions.
7.7.2 Update Points

The surrogate models constructed using 40 infill sample point are only approximates of the
true functions that we wish to optimise. Thus, to improve the accuracy of the surrogate model
in regions of interest, further infill points are required. Now, the question remains, where to
choose the update point in order to improve the accuracy of the surrogate model. One may
wish to select update points in the region of the predicted optimum by the surrogate to
obtain an accurate optimal value quickly, which could be the local optimum- local
exploitation. In other instances, one may wish to improve the accuracy of the surrogate more
globally by placing update points where the mean squared error in the GP model is at its

maximum - global exploration. This study adopts a balanced exploitation/exploration
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approach by using the maximum expected improvement criterion E[I(x)] (as defined in
section 3.2.3.2). For a more complete description of multi-objective optimisation with
surrogate models, and the mathematical formulation of the GP model and E[I(x)], the reader

is referred to Keane et al [13], and Forrester et al [34].

Figure 7.23 shows the progress of the search for five iterations. At each iteration contour
plots of expected improvement E[I(x)] for both the objective functions are plotted, in addition
to the plot of the calculated Pareto front of utility and normalised LCC. The plots only show
two out of the four design variables, time on station (TOS) and altitude. As these two variables
have been shown to have a significant influence on the variation of E[I(x)], with the other two
variables having little to no influence. This is illustrated in Figure A.2 in Appendix F. From
inspection it can also be noted that a majority of the update points are defined through the

LCC function, with the utility function having minimal impact on E[I(x)].
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Figure 7.23

using maximum E[I(x)] strategy.
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In this study three update points are selected at each iteration, where the location of the
update point is based on maximising E[I(x)], and in the diversification of the design variable
space. This ensures that a well distributed Pareto front is obtained. The location of the update
points in Figure 7.23 are represented by up-side down triangles. At the end of each iteration
the GP model is re-tuned, with the inclusion of the update points, and the process of finding
three new update points starts again. However, before progressing to a new iteration the
solutions to the Pareto front are checked against a convergence criteria. This study defines
the convergence criteria as being one where if the Pareto front is unchanged (unchanged is
defined as less than two new points on the Pareto front) consecutively for two iterations, than
the convergence is triggered. This is illustrated in iteration 3 and 4 in Figure 7.23, where only

one new point is added to the front, thus terminating the optimisation at iteration 5.

7.7.3 Fuzzy Pareto Front Relaxation Factor Study

The fuzzy Pareto front representation requires the definition of a relaxation factor K; value.
This is achieved by applying the max dispersion of design space MD,; metric, and max
distance from the Pareto front MD, metric. Figure 7.24 represents the changes in MD,z and
MDpg, due to variations in the relaxation factor. The aim is to find a value that maximizes the

value of MDpg, whilst at the same time minimises MDp;.
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MMax Dispersion of Design Space
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Max Distance from the Pareto Front
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Relaxation Factor, Kf

Figure 7.24: Impact of varying relaxation factor K.

The ideal choice for K, with max MD,; and min MD,., will lead to K; = 0 i.e. the global Pareto
front. However the aim here is to introduce points close to the global Pareto front, which
requires a compromised solution that sacrifices both MD,; and MD,;. A value between 0.05
and 0.09 would provide a good compromise, where the value of MD,; remains effectively
constant, and MDp; is in the decay region before reaching a steady state value. Thus, this

study chooses a value for K; of 0.05.

7.7.4 Optimisation Results

The final Pareto optimal solutions of the optimisation process is illustrated at the bottom

right hand corner of Figure 7.23, where the solid red line indicates the Pareto front, and the
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dotted blue points represent dominated solutions. The results of the Pareto optimal solution
set are represented in Table 7.7. The data indicates that the maximum utility point is defined
by the upper bounds of all four design variables. In comparison to the minimum LCC point,

where the altitude and loiter velocity are at their lower bound values.

Table 7.7: Pareto-optimal solutions.

Utility | Normalised | Time on Station Alt, m Payload Loiter
LCC (TOS), hrs allowance, kg Velocity, m/s
0.78 1.00 3.00 400.00 4.00 28.00
0.77 0.90 3.00 400.00 3.00 28.00
0.71 0.80 2.95 398.33 1.84 24.12
0.70 0.41 2.28 400.00 3.24 28.00
0.69 0.36 2.22 400.00 2.69 28.00
0.65 0.24 2.03 390.04 1.88 27.78
0.63 0.20 2.19 294.92 1.92 28.00
0.59 0.12 2.00 272.28 1.92 24.38
0.55 0.01 2.06 162.64 1.88 27.67
0.52 0.00 2.07 150.00 1.90 21.00

To get a better understand of the impact of each design variable on the objective function,
contour plots of the objective functions versus two of the four variables are plotted in Figure
7.25, with the remaining two variables held at their baseline value (the baseline values are
defined in Table 7.6). First, in comparing the utility function plots, interactions between
multiple design variables can be noticed. However in comparison, the normalised LCC
function plots shown little interaction between the design variables. The variation in LCC is

mainly dominated by TOS, and partly by altitude.

To be more numerate in measuring the impact of each design variable on the objective
function, a simple main effects analysis was carried (see Box [141] for a more in-depth review
of main-effects and interaction effects). The main effects, and corresponding interaction
terms, of each design variable are calculated by running a two level full factorial design,
generating a total of 2* = 16 different sample runs. The range of variation of the design
variables in the full factorial design is set to be +10% around the baseline values. The
evaluation of the output response at each of these points is carried out using the GP predictor
model. In evaluating the output response, the main effects and the interaction terms are
calculated, the results of which are represented in Table 7.8. To make the results more
comparable between the two objective functions, the output responses were normalised such
that they lie in the interval [0 1]. The results indicate that the main effects for the utility
function are mainly spread across three variables, TOS, altitude, and loiter velocity, with
altitude dominating the other two by a small amount. This is also true for the interaction
effects, where the impact of the interacting variable on the utility function are mainly derived
from TOS, altitude, and loiter velocity. The main effects of the LCC function on the other hand

shows the TOS variable to have a dominate effect on the output response, relative to the

149



Chapter 7: Case Study: Unmanned Aircraft Systems

other variables. In terms of the interaction effects, only TOS and altitude show some
interactive impact. There is little interaction effects with the other design variables, which is

signified by the plots in Figure 7.25.

Utility Function

l
0.65
3 0.55
" 0.5
0.45

TOS, hrs Alt, m Payload, kg

Alt, m

Payload, kg

Vel, m/s

Normalised Life-Cycle Cost Function
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Contour

Alt, m

Payload, kg
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TOS, hrs Alt, m Payload, kg

Figure 7.25: Contour plots of the LCC and utility of the Krig predictor function.

Table 7.8: Main-effects analysis and interaction effects.

Utility LCC
TOS X1 0.152 -0.439

Alt X2 0.162 0.054
Payload allowance X3 0.043 0.006
Loiter Velocity X4 0.142 0.000
X1:X2 0.027 -0.042
X1:X3 0.000 -0.001

Interaction Terms X1-X4 0.030 0.000
X2:X3 0.000 0.000

X2:X4 0.030 0.000

X3:X4 0.000 0.000
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7.8 Conclusion

This chapter introduced the UAS design case study, providing a brief overview of the potential
applications of UAS’s, and its restrictions within the operating environment. In particular, this
case study is an illustrative example based around the European Union 2Seas research
project, in which University of Southampton have been involved in developing an UAS in
application for maritime surveillance. As a means of modelling the system capabilities, in
terms of its performance and cost elements, this chapter has provided a detailed breakdown
of the modelling environment. The methods applied in modelling system performance, and
its associated cost elements are predominantly based on low fidelity models, such that
multiple system architectures can be evaluated rapidly. To validate the accuracy of the
modelling environment, the results of the predicted masses were compared against the actual
sub-system masses of the 2Seas UAS. The results indicated that the sub-system masses were
off by a significant amount, which is not surprising as the predicted masses were calculated
based on simple parametric relationships. However, the overall empty mass and the gross-
take-off mass of the system were predicted with reasonable accuracy, thus validating the

modelling environment to be reasonably accurate in predicting the overall system mass.

As a means of validating the optimisation framework, defined in section 3.3, the multi-
objective problem of maximising utility, and minimising LCC was solved to obtain Pareto
optimal solutions. This multi-objective problem was constrained to a single system
configuration, where the system under consideration is the same as that used in the model
validation section i.e. this system configuration is a replicate of the 2Seas UAS. The derivation
of the utility function, and the choice of the design variables in the optimisation will be
addressed in further detail in the next chapter of this thesis. The optimisation framework
adopts a surrogate based approach to identify Pareto optimal solutions. Starting with 40-
infill points, a Gaussian process (GP) model was constructed for both the objectives based on
the output response of the modelling environment at those 40 points. The GP model was
validated by calculating the errors in the actual and predicted values. To further explore the
surrogate model in regions of interest, update points are identified based on maximising the
expected improvement criteria E[I(x)]. Further update points were added to the surrogate
model until the convergence criteria was met. This iterative process is depicted in Figure
7.23. The output of the optimisation framework is a set of Pareto optimal solution for the
system under consideration, which has been the main focus of this chapter, and a precursor

to the evaluation of high-impact decision variables in the next chapter.
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Chapter 8: Implementation of the

Decision Support Framework

his chapter expands upon the case study presented in the previous chapter to
describe the study of architectural exploration of an Unmanned Aircraft System (UAS),
for use in maritime surveillance. The exploration of the solution space considers
multiple feasible system architectures that meet system functionality, whereby the
process of exploration follows the decision support framework presented in Chapter 6: . The
objective of this chapter is to generate and evaluate viable system architectures in order to
identify the global Pareto front, and high-impact decision variables that have a strong impact
on architectural decision-making. By identifying important decision variables the decision

maker is able to identify the influence of each decision variable on system properties.

A notional set of system requirements are generated, which aim to be representative of the
requirements that would be generated by the customer and other system stakeholders in a
large aerospace design project. The availability of requirements allows the decision maker to
begin the process of functionally decomposition, at a given level of system abstraction.
Following the allocation of design alternatives to satisfy system functionality the decision
support framework is applied: construction, search, and representation. The chapter
concludes with quantifying the data generated by the decision support framework to make
recommendations of decision variables that should be explored in future iterations of the
exploration process in order to improve upon the Pareto optimal solution set that was
generated from the first iteration.

8.1 Construction

8.1.1 Functional-Means Analysis

The task of functional decomposition may be performed by implicitly carrying through
assumptions about the expected physical architecture in mind, with the notion of what
subsystems are likely to enable system and subsystem level requirements. In this case study
the decomposition of system functionality is performed at the whole system level, and not at
a sub-system level. The functional hierarchy tree generated via the decomposition process
is represented in Figure A.3 in Appendix G. Here, only the leaf nodes of the hierarchy are

carried forward for the enumeration of design alternatives to each decision variable.
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Table A.4 in Appendix H represents the alternatives generated from FMA. A whole system
architecture is generated by selecting one alternative from each function. However, not all
design alternatives are carried forward for further analysis, as they are deemed to be sub-
optimal or not mature enough to be implemented into the system. This is representative of
the decision maker’s knowledge of the solution space. The design alternatives in the grey
boxes in Table A.4 represent solutions that have been removed from the solution space.
Inspecting Table A.4 it can be noted that solutions to certain decision variables have already
been fixed. For example the decision variable Deliver propulsive power, the decision is fixed
to implement twin 4-stroke piston engines. This is typical of many engineering design
projects, where certain decisions are taken early on in the project, which in-turn act as an
enabler to other system level decisions. Again, taking the example of Deliver propulsive
power, the selection of a 4-stroke piston engine has enabled the selection of an engine

generator for the decision variable Deliver electrical power for flight critical systems.

Once the design space has been reduced to a set of viable design alternatives, the interest
lies in exploring multiple system architectures. The impact of these design alternatives on
system objectives, such as value and cost, will influence the decision-making process.
However, the inclusion of many design alternative will result in the total number of system
architectures to grow to a number that might be unmanageable to evaluate in a limited time
period and under budgetary constraints. To manage the size of the solution space additional
constraints are added, which can represent physical or preferential constraints that define

the viable combinations of design alternatives according to the compatibility rules specified.

8.1.1.1 Architectural Trades

This section defines the architectural trades that are carried forward from FMA. These trades

relate to decision variables x;, whose domain D; contains more than one design alternative

T

Deliver electrical power to payload:. The first alternative considers the generation of

electrical power from the engine drive shaft via a generator. Thus, the total shaft power

available to the propeller is defined as:

PGen

Psnagtprop = Psnape — (8.1)

Gen

where Py, is the shaft power generated by the piston engine, P, is generator load which
is equal to the aircrafts power demand during operational use, and 7., is the generator

efficiency, which for the current case study is assumed to be 70%.

However, as power demand is increased during the search phase of the mission i.e. when the
optical camera system is turned on, the available propulsive power is reduced. This raises
concern of drawing too much power from the engine, which can lead to performance
degradations of the aircraft. To mitigate this issue, a separate battery source is considered

which will provide electrical power to the payload system and the communications system
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during the course of the search phase. However power to flight critical avionics will still be
provided by the engine generator. The battery is sized to meet the power demand during the
search phase, which is defined as follows:

Eneryyay 8.2)

Mgare = E oo f_
spec NBatt stable

Where Mg, is the mass of the battery which is dependent on energy demand of the UAS
Eneryyay(W-hrs). Eg,.. is the battery specific-energy (W-hrs/kg). ng,. is the battery efficiency
which is assumed to be 100%, even though not practically possible it gives a theoretical value
for the battery mass. The fj,.,. factor accounts for the battery pack depth of discharge,
which is assumed to be 85%. Specific energy values of different battery types are represented
in Table 8.1- this data is taken from Gundlach [122].

For the current case study a lithium-ion-polymer (Li-Po) battery is chosen, as lithium ion (Li-
lon) and lithium-ion-polymer batteries have been used widely in small UAS propulsion
systems [122]. Though lithium sulphur (LiS) has the highest theoretical and practical specific
energy values, the current cells have limited charge/discharge cycles. This limits its use to a

small number of flights, in comparison to Li-Po and Li-lon [122].

Table 8.1: Characteristics of battery chemistries [122].

Theoretical
Specific Energy, Practical Specific Specific Cell
Battery Type W-hr/kg Energy, W-hr/kg | Power, W/kg | Voltage, V
Lead acid (Pb/acid) 170 30-50 180 1.2
Nickel cadmium
(NiCd) 240 60 150 1.2
Nickel metal hydride
(NiMH) 470 23-85 200-400 0.94-1.2
Lithium ion (Li-lon) 700 100-135 250-340 3.6
Lithium polymer (Li-
Po) 735 50.7-220 200-1900 3.7
Lithium sulphur 2550 350 600-700 2.5

Conventional and Unconventional launch and recovery systems: The demand for the UAS

to take-off and land over a fixed runway length generally tends to dictate the engines thrust-
to-weight ratio T/W and the aircrafts wing area. This in-turn can have a significant impact
on the mass and size of the UAS. In order to minimise the size and mass, a tension-line
launch and cable assisted recovery is considered to assist the UAS during take-off and
landing. The idea here is to reducing the demand on the engines such that the mass and size
of UAS can be reduced significantly. However, the use of external launch mechanisms results
in the UAS to experiences greater inertial loads, caused due to faster rates of acceleration
and deceleration from tension-line launch and recovery. This in-turn increases the structural
mass of the UAS.

155



Chapter 8: Implementation of the Decision Support Framework

The take-off ground roll distance can be quantified by the Take-off Parameter (TOP) as

follows:

w/s

5 oC,,,BHP/W (8.3)

ground roll — & TOP =«

Where, a is a positive constant, W/S is the aircraft wing-loading, o is the ratio of air density
at take-off altitude to the air density at sea-level, C,,, is the average lift coefficient at take-

off, assumed to be 0.8, and BHP/W is the engine horse power-to-weight ratio.

The difference in ground roll distance between the two launch mechanisms considered are
accounted for by simply changing the a parameter. For conventional launch « is set to 6.92,

and for a tension-line launch « is set to 5.7.

Transmit and receive data: Communications systems are primarily used on-board the UAS

to transmit and receive data to and from the ground control station. Thus, it is considered to
be a vital sub-system for the effective operational use of an UAS. Figure 8.1 represents three

different antenna systems considered in this architectural trade study.

=

Omni-directional, Vertical Bladed Omni-directional, vertical Omni-directional, circular
Polarisation.2dBi Gain polarisation, 2dBi Gain polarisation, 3dBi Gain

Figure 8.1: UAS antenna systems.

Different antenna systems are conceptually assessed by considering the link budget analysis.
The performance of an antenna system is defined by its signal-to-noise ratio (SNR), which
defines the signal strength at the receiver in comparison to the receiver’s noise. One of the
main components in the loss of the receiver signal strength Ly is polarisation loss, which is
caused due to polarisation mismatch between the transmitter and receiver antenna. When a
vertically polarised antenna is used to transmit the signal, maximum signal power is achieved
if the receiving antenna is also vertically polarised. However, polarisation mismatch may
occur when the aircraft banks, causing a drop in the signal strength at the receiver. To
counter this, a circular polarised antenna is considered. The circular polarised antenna allows
the link budget to be maintained irrespective of the position of the aircraft. However circular
polarised antennas have a large diameter, which in-turn can increase the aerodynamic drag
of the antenna, and impact the integration of the communications system in terms of mass

and size.
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The impact of antenna integration on aerodynamic drag can be predicted by assuming that
the antenna is a circular cylinder of diameter d and length [. It is also assumed that the
operating Reynolds number of the flow across the antenna will be less than 3 x 10%, which
gives an approximate drag coefficient of 1.2. Using this information the antenna drag can be

predicted as:
Duntenna = 1.2-(1/2-p- VZ) l-d (8.4)

In order minimise the drag of the antenna, a bladed antenna is considered. Here it is assumed

that the antenna is contained within a symmetric aerofoil shape fairing. Given the thickness-

to-chord ratio t/c of the aerofoil, the drag for a bladed antenna can be predicted as:
Dantenna = Cp(t/c,Re)-(1/2-p-V?)-1-d (8.5)

Here C,(t/c,Re) is the drag coefficient of the aerofoil, which is a function of thickness-to-

chord ratio and the flow Reynolds number.

Capture imagery over the target area: This function mainly focuses on the optical payload

system. The intent of the optical payload system is to deliver high definition video imagery
to the ground control station. The focus of this architectural trade is in the variation of the
number of detector elements in the focal plane array, which has a direct impact on the field
of view (FOV) of the optical system and the ground sampling distance. This governs the

achievable image quality.

Fov, )_R

GSD :2-<
" 2 Hpiy

2-tan(FOVy, /2 - Vpiy)

Cos(eLook)

GSDyeometric mean = v/ GSDy - GSDy (8.6)

Where, GSD, and GSD, are the vertical and horizontal ground sampling distances and

GSD,

GSD, =

cometricmean 1S the geometric mean value, R is the slant range from the target to the

sensor, 6,,,, is look angle between the sensor and the target, Hy;, and V,;, are the number

detector elements in the horizontal and vertical direction.

For a given slant range and look angle the image resolution can be increased by increasing
the number of detector elements. However, the increase in the number of detector elements
also results in a higher data rate that is required to be transmitted back to the ground control
station. This in-turn results in a higher transmission power by the communications system
to maintain the link margin. The raw data rate generated by the digital video stream is defined
as:

Bits
Ratepgiq = Hpixels ) Vpixels Pixel *Ratep,gme FCompression (8.7)
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Where, Bits/Pixel is the pixel depth, which is dependent on the image standard. It is assumed
that the pixel depth is 30 bits/pixel. Rateg,.m. iS the frequency of image generation, for a
typical video stream the image frequency is 24Hz. Fiyppression iS the image compression

factor, a 2:1compression with low loss is applied.

Protect system from overheating: The aim here is to keep system components within its

defined temperature limits. This is achieved via the implementation of an environmental
control system (ECS). Major sources of heat come from the control surface actuation
mechanisms, and more dominantly from the piston engine. Providing no ECS control
provisions has been considered as it simplifies the system architecture, however the trade-
off comes with the cost incurred in terms of poor reliability. To improve reliability, specifically
of the engine components, ram air cooling has been considered. Ram air cooling works by
allowing air to enter through openings in the airframe and passes over the hot components
before being exhausted. The cooling process of components is achieved through conduction
and then convection of heat. However, the process of cooling results in an increase in drag
through friction and separation. This cooling drag is modelled as a power loss to the engine.
For conceptual design purposes Torenbeek [142] recommends the following cooling drag

relationship for reciprocating engines:

Dcoot _ . PShaft ' Tazmb
q Cool gV (88)

Where the empirical constant Cgy,, = 4.9 X 1077 ft?/1b-°R2.

Protect system from component failures.Avionics architectures typically have 1 to 3 strings

- simplex, duplex, and triplex. Components that form a string are air data systems, autopilot,
control surface actuator set, and the UA management system. The failure of flight critical
components in a simplex string will result in the loss of the aircraft. Duplex and triplex strings
improves reliability by offering redundancy. For a triplex system, in the event of one string
failing command is handed over to another string by the use of a voting scheme, which
requires implementing a voting algorithm. However, rather than applying a voting scheme a
much simpler approach is considered, where two sets of control surfaces are made available
for each function (i.e. two elevators, and two rudders). But this does come at a disadvantage,
in terms of an increase in control surface actuation mass and a rise in power demand due to

the doubling in the number of actuation systems.

The trade considered here focuses on reliability versus increase in mass, power, and cost.
The trade focuses on the reliability of a low-cost duplex control surface actuation mechanism
versus high-end single string actuation mechanism. For the high-end simplex actuation
mechanism the MTBF is assumed to be 700 hours, in comparison to the low cost actuation
mechanism which is assumed to have a MTBF of 300 hours. But the duplex system offers

additional redundancy, which increases its reliability.
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8.1.2 Design Structure Matrix

The reduction of the architectural solution space can exhibit interrelationships between
different decision variables. The DSM is used as a first pass approach in capturing these
interrelationships, which requires the decision-maker to specify the existence of constraint
relationships between decision variables. The output of the DSM is an adjacency matrix 4;;,
which describes the connectivity between elements i and j. Figure 8.2 shows an n x n DSM,
which is representative of the adjacency matrix. The adjacency matrix 4;; from the DSM can

be visualised as a network diagram, as shown in Figure 8.3.

Table 8.2: Leaf nodes of the functional decomposition used to represent decision

variables.
System Functions

1. Package and store payload and other system )

7.1.2. Unconventional launch
components.
2. Generate lift for steady level flight. 7.2.1 Conventional recovery
3. Deliver propulsive power. 7.2.2.Unconventional recovery
4. Integration of propulsion system. 8.1. Transmit and receive data
5.1. Deliver electrical power to flight critical 8.2. Communication system integration.
systems. On-board the UAS.
5.2. Deliver electrical power to payload. 9.1. Capture imagery over the target area.
6.1. Provide longitudinal stability. 9.2. Integration of sensors.
6.2. Provide lateral stability. 10.1. Protect system from overheating.

] 10.2 Protect system from component

7.1.1. Conventional launch .

failures.

The nodes of the network are categorised into three sections. The nodes in green represent
decision variables that contain more than one design alternative within its domain. The nodes
in yellow represent decision variables that contain only one design alternative within its
domain i.e. the solution is fixed, but are connected to other decision variables. Finally, nodes
in red represent decision variables that contain only one design alternative within its domain,
and are not connected to other decision variables i.e. they do not influence the feasibility of

solutions of other decision variables.

The degree centrality measure represented in Figure 8.3 defines the degree of connectivity
between each decision variable. The results indicate that decision variable 5.2 - Delivery of
electrical power to payload is the most strongly connected within the network. This suggests
that the decision variable Delivery of electrical power to payload has a significant impact on
the feasibility of solutions of other decision variables within the network. The following sub-

section provides a description of the connectivity of each node.
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Figure 8.2: DSM matrix of the interrelationships between decision variables.
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Figure 8.3: Network diagram of the interrelationships between decision variables.
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8.1.2.1 Network Connectivity

Decision variable 1.0 to 6.1 and 6.2: The selection of a fuselage configuration to package

payload and other system components has a direct impact on the design of the empennage.
In this case, the choice of a detachable pod to package the payload and other system
components provides modularity for different payload systems to be integrated into the UAS.
However, the moment-arm required to maintain aircraft stability would be too small for the
empennage to be directly attached to the detachable pod structure. Thus, to extend the
moment arm, whilst at the same time aiming to minimise the structural mass of the aircraft,

a boom configuration is considered.

Decision variable 3 to 4: The selection of a propulsion system to be used has a direct impact

on the integration of the propulsion system onto the airframe. For example, the selection of
solar cells can dictate the design of the wing to accommodate for the solar panels to be
placed on the wing surface. The type of propulsion system, and its location can also impact
the transmission of power to the propellers. For the current design a twin four stroke piston
is selected. The integration of two engines on the airframe narrows down the available

options for propulsion system integration. In this case a wing tractor configuration is chosen.

Decision variable 3 to 5.1 and 5.2: The delivery of electrical power to avionics, payload

system, communications system, and other system components is a major driver in UAS
design. For example, the use of solar power and fuel cells as a propulsion system would
require a battery pack to store energy, which is than dissipated to other system components
as required. However, the use of a reciprocating engine allows power to be taken directly
from the engine drive shaft via a generator, which can be more efficient. But the performance
of an aircraft can be affected if the power demand is too high. For the current case study it
was decided that power to flight critical system components will be delivered by the engine
generator, and power to the payload and communications system is left open to either a

separate battery source, or via the engine generator.

Decision variable 4 to 6.2: The selection of a twin engine configuration can impact the

design of the vertical stabilisers. In the case of a single engine failure the vertical stabiliser
should be able to provide enough yaw authority to keep the aircraft in level flight. This
requires the control surfaces to be sized to meet the single engine failure condition, and have

a large enough moment-arm to provide the required yaw moment.

Decision variable 4 to 10.1 and 10.1 to 10.2: The reciprocating engine and on-board

avionics are major sources of heat generation. Heat load generated by these components
needs to be dissipated in order to improve component reliability and prevent system failure.
The integration of the engine onto the airframe can have a major impact on the requirements
to cool and dissipate engine heat. For example, installing the engine in an enclosed nacelle
will require extra provisions to dissipate heat from the enclosed area to the surroundings,
this is also true for enclosed avionics components. Thus, the integration of the propulsion

system and avionics can impact the choice of design for the thermal management systems.
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Decision variable 5.2 to 8.1and 9.1: The use of high resolution optical sensors can generate

vast amounts of data, which can either be transmitted directly back to the ground control
station, or stored and processed on-board the UAS. For the current design problem it was
assumed that data would be directly transmitted back to the ground control station with no
on-board data storage. The transmission of high resolution video imagery over long
distances can require a relatively large signal transmission power from the communications
system, which is delivered by an on-board power generation system. Combining this power
demand with the power demand from other avionics components can produce a large
electrical power load. This can impact the aircrafts performance if power is taken directly
from the engine. To counter this effect a separate power source in the form of a battery is

considered to deliver electrical power directly to the payload and communications system.

Decision variable 7.1.1, 7.1.2, 7.2.1, 7.2.2: The choice in implementing a launch and

recovery system is highly interlinked. In most cases a conventional landing gear design will
provide both the launch and recovery functionality. However, as the runway length/space is
constrained to smaller distances, more unconventional approaches are required to launch
and recover the system safely. The use of unconventional launch systems, such rail launch
can significantly reduce the take-off distance. But with no landing gear other means of
recovery need to be considered. This could range from a simple skid belly recovery to net

and parachute recovery.

Decision variable 8.1 to 9.1: The selection of the communications system design can

influence, or be influenced by the rate of data to be transmitted to and from the ground
control station. For low resolution payload sensors the transmitted data rate can be relatively
small, in which case a low gain antenna that can be implemented. These antennas have a
small integration footprint on the airframe. However, as high resolution payload sensors are
used the required transmission data rates increase significantly, which require high gain
antennas to be implemented in order to maintain the link margin. The use of high gain
antennas with low losses, such as the high gain circular polarised antenna, can have a

relatively larger footprint on airframe integration.

8.1.3 Logical Constraints

The majority of the compatibility relationships applied in this case study were described in
the previous section. The problem now relates to translating these compatibility relationships
into a set of logical constraint statements. This enable the constraint logic to be encoded
into a programming environment, and enable the search algorithm to remove infeasible

system architectures.

Table 8.3 defines a set of compatibility constraints imposed on the architectural solution
space. These constrains represents a combination of physical and preferential constraints

imposed by the decision maker on the solution space.
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Table 8.3: Compatibility constraints imposed on the architectural design space.

Constraint
Description scope rel
Delivery of 4.2, 8.1 if(8.1 =="1280 x 720, FOV =2, FOR =20"' && 9.2 ==
Electrical Power 9 '2)’ B "Duplex with two sets of control surface") then {4.2 ==
Constraint ) "Separate battery source'} else {4.2 == "Engine Generator'}
Launch and (7.1.2 if (7.1.2 == "Tensioned Line Launch") then {7.2.2 ==
Recovery 7 2 '2)’ "Cable-assisted recovery'} else If {7.1.2 == "nu/l'} then
Constraint o {7.2.2 =="null”}
Environmental (4.2, 9.2 if (4.2 == "Separate battery source" && 9.2 == "Duplex
Control System 10‘ 2’) e with two sets of control surfaces") then {9.1 == "Ram air
Constraint ) cooling't else {9.1=="No ECS"’}
If (8.1 =="1280x 720, FOV =2, FOR =20"' && 9.2 ==
N "Duplex with two sets of control surface") then {7.1 ==
gggnmnuanlcatlons (8.1, 9.1, "Omni- circular polarisation, Gain 3dB/'} else {7.1=="
Constraint 10.2) Omni-Dipole, vertically polarisation, Gain 2dB/" || 7.1==
“Bladed Antenna, Omni-dipole, vertical polarisation, Gain
2dBI}

Deliver electrical power constraint: This constraint focuses on the worst case power

demand scenario. To minimise the impact of power demand on the engine generator, the
electrical load is shared between the engine generator and a separate battery source. The
battery pack is used to power the payload and communications system, whilst the engine

generator will provide power to flight critical avionics.

Launch and recovery constraint: This represents a physical constraint on the launch and

recovery systems. The choice of a conventional landing gear system provides both launch
and recovery functionality. For an unconventional launch and recovery system, tension-/ine
launch and cable-assisted recovery are integrated with the T7ricycle landing gear
configuration to minimise the launch and recovery distance. However, in the case where
unconventional launch and recovery functionality is not required, the null variable is chosen

to artificially remove the decision variable from the solution space.

Environmental control system constraint: This describes a preferential constraint, which

focuses on the worst case scenario in terms of heat generation. The heat loads generated by
the engines, battery pack, and the redundant actuation servos can be relatively large. This
heat load needs to be dissipated for safe operational use of the UAS. In this scenario ram air
cooling is used to dissipate heat to the surrounding environment. The cooling of components
simply relies upon openings in the airframe to allow for air to pass through and cool the
components. This approach is not very effective in managing the dissipation of heat and can
reduce the reliability of components. But the complexity of designing and integrating an

environmental control system is avoided.

Communications antenna constraint: This describes a preferential constraint, which again

focuses on the worst case power demand scenario, with the aim of reducing power demand

from the communications system. The high resolution optical camera system can produce a
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relatively large data rate that is required to be transmitted back to the ground control station.
The transmission power required to maintain the link margin between the platform and the
ground control station for this condition can have a significant impact on the power demand.
Thus, to minimise the transmission power a high gain antenna with lower polarisation losses
is selected i.e. Omni-directional, circular polarisation, with a 3dBi gain. However, as
previously mentioned the high gain circular polarised antenna can have a larger integration
footprint on the airframe and can significantly contribute to the drag of the aircraft. For this

reason, the high gain antenna is only selected for the worst case scenario.

8.1.4 MAU Model

The structuring of objectives is typically an iterative process, where the defined objectives
need to be verified and agreed by the stakeholders before proceeding to the next stage. In
structuring the objectives in a hierarchy, the fundamental objectives of the system can be
identified. Fundamental objective can be described as objectives that qualitatively state all
that is of concern in the decision context; they provide guidance for action by the decision
maker, and foundations for any quantitative modelling and analysis that will follow i.e. these
objectives describe the essential reason for being interested in the decision situation [62].
The objective hierarchy defined for this case study has identified five fundamental objectives,

which are defined as follows:

1. Maximise system reach: This relates to the UAS travelling as far as possible to

identify targets of interest.

2. Maximise target coverage area: This objective relates to the capability of the
platform and the optical sensor system to cover a large area during the search phase

of the mission.

3. Maximise operational availability: This relates to the system being able to operate
satisfactorily when called upon i.e. it defines the probability that the system in the

operational environment will operate effectively when called upon.

4. Maximise the capability of the system to detect objects of interest: This objective
focuses on the payload system capabilities. Since the mission is focused towards
surveillance, it is important that valuable and accurate information is available to the
end-user. To achieve this objective the optical sensors needs to provide high

resolution imagery to identify objects of interest.

The degree to which an objective is satisfied is measured by an attribute, which should clearly
describe the objective under consideration. However, the measurement of an objective by an
attribute is not always straight forward, as in some instances a direct relationship between

an objective and an attribute doesn’t exist. In such situations either a constructed or proxy
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attribute is required to describe, at some level, the objective under the considered decision

context. For the current case study the following attributes were identified for each objective:

Maximise system reach: A natural attribute to this objective is aircraft range. This attribute
is dictated by the communications range of the aircraft, as defined in Section 7.4.1, and also
by the aircrafts range, which is defined by the Breguet range equation. The Breguet range
equation combines several aircraft characteristics, such as aerodynamics, engine
performance, and available fuel mass, to determine aircraft range. This equation can be found
in many aircraft design text books, and is not defined in this thesis. The reader is referred to

Raymer [17] for more information on its derivation.

Maximise target coverage area: A natural attribute for this objective is coverage area. This

measures the capability of the UAS to remain in the search area as long as possible, and the
capability of the payload sensor to search large areas. Coverage area can be defined as

follows:
The ground swath D covered by the sensor is defined as:
D = h-[tan(B,50x + 1/2 - FOR) — tan(B,00, — 1/2 - FOR)] (8.9)

Where, 6,,,, is the look angle of sensor and FOR is the field of regard or the maximum field

of view of the sensor. The ground coverage rate Ag,;, of the sensor is defined as:
Apate =D - Vyus (8.10)

Where, V5 is the velocity of the UAS during the search phase. Finally, the coverage area A

can now be defined as:

A = Agate " Teottect (8.11)

In this case Tgy e iS the collection time, or more appropriately it defines the loiter time of an

aircraft during the search phase.

Maximise operational availability: A natural attribute relating to this objective is operational

availability. The calculation of operational availability to a certain level of accuracy at the
conceptual design stage is very difficult to achieve, unless data relating to component
reliability, maintenance schedules, and logistics operations are already made available, which
in many cases are not. Typically several assumptions are made to simplify the modelling
process. For this case study assumption of MTBM of sub-systems, such as power and
propulsion, flight controls, communications, avionics, and airframe, are made based on
previous UAS and manned aircraft designs. The MDT is calculated by assuming repair and

replacement times for each sub-system.

Maximise the capability of the system to detect objects of interest: This fundamental

objective aims to captures the payloads performance capabilities. The measurement of

payload effectiveness can be defined by the sensors capability to identify targets of interest.
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The measure should also include the capability of the UAS to integrate multiple, and
potentially interchangeable, payload sensor systems onto the platform. Without the
allowance for integrating different payload systems on-board the UAS, unforeseen future
payloads with greater capability may be precluded. This is captured by measuring the
additional payload mass allowance that is built into the UAS. The capture of a sensors
capability to identify targets of interest is quantified by using the Johnson criteria [122]. The
Johnson criteria is used as a means of determining the probability of the sensor system to

detect, recognise, and identify a target based on the sensors resolution.

The assessment of the utility function is typically achieved by presenting the decision maker
with a set of lottery scenarios to identify their risk attitudes to changes in the level of an
attribute. However, this process can become cumbersome for a large set of system attributes.
To avoid the lottery assessment process a predefined set of utility functions (risk seeking,
risk neutral, and risk averse) have been made available to the decision maker to choose from.
Though this process does not accurately capture the decision maker’s risk attitude, it
represents a general trend, which at the conceptual level is sufficient to identify value trade-
offs.

The final step of this process requires combining all the utility functions, defined in Figure
8.4. The choice of this utility function depends on the verification of the independence
assumptions. To examine the validity of any independence condition, several lottery
scenarios are presented to the decision maker to identify if the independence condition is
upheld. The verification of different independence conditions are defined in Section 2.3.5,

where the focus was on the verification of additive and utility independence.

Maximize the capability Maximize operational Maximize system reach Maximize target
of the system to detect availability coverage area

objects of interest

1 T T T T 1 - - 1

Maximize payload Maximize
capacity identification

probability
- 0 H 0 H i H
50 50 70 80 90 40 R 2‘0 act BOk 100 0 20 40 602 80
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Payload Mass kg Identification Probability

Figure 8.4: Measurement of fundamental objectives by means of measurable
system attributes.

For the current case study, the set of attributes identified contain proxy attributes. The
presence of proxy attributes makes the additive independence condition harder to validate,

as the combined effect of the proxy attributes impact the decision maker’s preference order.
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For example, the decision maker’s preference order is dependent on the combined effect of
identification probability and coverage area. Thus, the additive independence condition does
not hold, and the utility function cannot be determined by simply summing the utility
functions of individual attributes. In such circumstances a less restrictive form of the
independence condition, known as utility independence, can be applied to derive a
multiplicative form of the utility function. The current case study makes use of the
multiplicative form of the utility function to capture the overall system value. The derived
scaling constants for the multiplicative model are presented in Table 8.4. For the purpose of
illustrating the application of this framework, the derivation of the scaling constants and the
utility functions were based on the author’s judgements alone, but were later verified by the

design team at the University of Southampton.

Table 8.4: Scaling constants for the multiplicative utility model.

Value trade-off of Attribute Scaling Constant Value
Coverage Area ky 0.35
Identification Probability k, 0.3
Payload mass capacity ks 0.1
Operational availability ky 0.25
Radius of action ks 0.17
8.2 Search

The Search phase aims to address assignment constraints by representing the problem as a
CSP (X, Dy, Cx); which allows the search algorithm (such as the recursive backtracking
algorithm) to find feasible system architectures. This study makes use of a constraint
programming package developed in Python'*. The implementation of the Python package to
solve this CSP is represented in Figure A.4 in Appendix I. In applying the search algorithm 22
different feasible system architectures were generated, all of which satisfy the specified
constraints. The 22 different system architectures are defined in Table A.5 in Appendix I. If
no constraints are added the number of system solutions quickly grows to 288, making the

architectural exploration process unmanageable due to effort required to:

1. Parameterise each system architecture, such that system designs can be scaled up or
down from its baseline design in order to satisfy metric constraints. The
parameterisation of designs may vary from one system architecture to the next,

requiring additional effort to parameterise each system architecture.

2. Define analytical or semi-empirical methods used to calculate the performance

metrics for each system architecture. In the conceptual analysis of aircraft systems

14 python constraint solver package: http://labix.org/python-constraint
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different analytical and semi-empirical methods are required to evaluate the

aerodynamic and stability characteristics of different aircraft configurations.

3. Optimise each system architecture individually. The optimisation algorithm varies the
values of design variables x, in order to find an optimum solution that satisfies all
the metric constraints. This optimisation loop is applied to each system architecture

in order to find Pareto optimal solutions for each system architecture.

8.3 Representation

The data generated from the simulation of each system architecture can now be represented
to the decision maker in manor that identifies Pareto optimal solutions and high-impact
decision variables. This is achieved by presenting the data in two separate formats, (1) the
fuzzy Pareto front of design solutions, and (2) the PageRank centrality measure of the
architectural decision network, which identifies high-impact decision variables based on their
impact on the shift of the utopia point due to changes in design alternatives within the

domain of that decision variable.

The Pareto front of each individual system architecture is calculated and is represented on a
utility versus cost plot. Here, dominated solutions are neglected as they are deemed to be
sub-optimal and only non-dominated solutions on the Pareto front are taken forward for
further analysis. The non-dominated solutions for all 22 system architectures are calculated
and plotted on a utility-cost scale, as shown in Figure 8.5. The figure indicates overlaps
between Pareto fronts of different concepts, which suggests that the performance of some
system architectures are better in certain regions of the objective space than other concepts,
but diminish in performance in other regions of the objective space. This overlap indicates
that the global Pareto front will consist of a number of different system architectures and not

just defined by one architecture.
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Figure 8.5: Pareto optimal solutions of all 22 system architectures (a) Pareto front,

(b) occurrence of each concept on the Pareto front.

The global Pareto front is determined by concatenating the Pareto fronts of individual system

architectures. But, rather than eliminating all dominated solutions some of the solutions close
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to the global Pareto front are retained, as defined by the fuzzy Pareto front. A fuzzy Pareto
front represent of the system architectures is provided in Figure 8.6.
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Figure 8.6: Fuzzy Pareto front: (a) fuzzy Pareto front, (b) occurrence of each

concept on the fuzzy Pareto front.

In comparing the number of occurrences of different system architectures on the fuzzy Pareto
front it can be noted that system architectures 7, 11, and 12 dominate the fuzzy Pareto front.
The output of the three concepts can be compared by capturing the system attributes used
to measure the utility value at a given design point. This comparison is represented by a
radar chart in Figure 8.7. In comparing the architectural layout of the three concepts, three
architectural trades are identified: (1) antenna type, (2) optical sensor resolution, and (3)

avionics architecture of the actuation servo mechanism.
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Figure 8.7: Radar chart of system architectures: (a) concept 7, (b) concept 11, and
(c) concept 12.

In comparing the architectural layout of the three concepts, three architectural trades are
identified: (1) antenna type, (2) optical sensor resolution, and (3) avionics architecture of the
actuation servo mechanism. The bladed antenna in architectures 7 and 11 is replaced with a
conventional Omni-direction dipole antenna in concept 12. The impact of antenna
integration on the UAS platform can be established by considering its aerodynamic impact.
The aerodynamic drag can be predicted by assuming that the antenna is a circular cylinder

of diameter d and length [. It is also assumed that the operating Reynolds number of the flow
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across the antenna will be less than 3 x 105, which gives an approximate drag coefficient of

1.2. Using this information the antenna drag can be predicted as:

Dpntenna = 1.2 (1/2-p-V?) -1+ dgpt, (8.12)

In order to minimise the drag of the antenna, a bladed antenna is considered. It is assumed
that the antenna is contained within a symmetric airfoil shape fairing, with a given thickness-

to-chord ratio. Based on this, the drag for a bladed antenna can be predicted as:

Dantenna = Cp(t/c,Re) - (1/2-p- VZ) "L danes (813)

The drag coefficient of the airfoil is a function of the thickness-to-chord ratio and the flow
Reynolds number. However, the impact of the aerodynamic faring on total aircraft drag, and
thus the fuel mass, is minimal. This can be noted by comparing the LCC values for concepts
11 and 12.

The optical sensor resolution of the camera in concept 7 is lower in comparison to concepts
11 and 12, resulting in the identification probability of concept 7 to be lower compared to
concepts 11 and 12. The variation in the number of detector elements in the focal plane array
can have a direct impact on the ground sampling distance of the optical sensor system. For
a given slant range and look angle, the image resolution can be improved by increasing the
number of detector elements. However, the increase in the number of detector elements also
results in a higher data rate that is required to be transmitted back to the ground control
station. The increase in data rate transmitted back to the ground control station results in a
higher transmission power that is required to maintain the link margin, resulting in a higher
power off-take from the engine to meet the power demands. The increase in power off-take
directly impacts the performance of the engine and thus the performance of the UAS, leading
to higher fuel burn to complete the mission profile. This increase in fuel mass results in a
heavier aircraft, which in-turn results in an increase in operating cost and unit cost for

concepts 11 and 12.

The avionics architecture for the actuation servo mechanism is changed from a high-end
single string simplex configuration in system architectures 11 and 12, to a low-end servo
actuator in a duplex configuration with two sets of control surfaces in architecture 7. This
architectural trade focuses on reliability versus the increase in mass, power, and cost. For the
high-end simplex actuation mechanism the Mean Time Between Failure (MTBF) is assumed
to be 700 hours, in comparison to the low cost actuation mechanism, which is assumed to
have a MTBF of 300 hours. But the duplex system offers additional redundancy, which
increases its reliability. Though the actuation servo architecture does not significantly impact
the utility value, it does impact the LCC of the system. The selection of the high-end
configuration leads to a higher purchase cost, resulting in a higher unit cost for concepts 11
and 12.
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Based on these architectural trades it is recommended that system architectures 7, 11, and
12 be taken forward into the next phase of the design process, with concept 12 requiring

further exploration to identify the potential benefits offered by this concept.

8.3.1 High-Impact Decision Variables

Given the availability of the Pareto optimal data set and the adjacency matrix 4;; from the
DSM, centrality measure of each decision variable can be calculated. The process starts by
identifying the shift in the utopia point of each individual Pareto front, of each system
architecture, from the global utopia point. This is done by measuring the Euclidian distance
between the two points. Before measuring Euclidian distance, it is important to first normalise
the data such that it ranges from 0 to 1. Not normalising the data can result in scaling issues
when measuring the Euclidian distance. The results of the utopia point shift are presented in
Table 8.5.

The sensitivity to the shift in the utopia point of each decision variable can be calculated by
adopting a modified version of the main effects calculation, as specified in section 6.2.5.2.
Table 8.6 represents decision variable sensitivity due to changes in design alternatives within
its domain. The combined effect of connectivity and sensitivity can now be measured by using
PageRank centrality. These results are presented in Figure 8.8, where the size of the nodes
in the network represent the relative importance of the decision variable i.e. the bigger the
size the higher its impact factor. The choice of weights for the terms a and g in the PageRank
centrality equation can impact the ordering of high-impact decision variables. In the UAS
case study an equal weighting is applied to the network and non-network factors, wher a =
0.5 and B = 0.5. However, further investigations are required to identify the impact of the

weighting factors on the centrality results.
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Table 8.5: Utopia point shift of each system architecture from the global utopia

point.

System architectures Euclidian Distance
Architecture 0 0.153
Architecture 1 0.348
Architecture 2 0.348
Architecture 3 0.128
Architecture 4 0.139
Architecture 5 0.134
Architecture 6 0.137
Architecture 7 0.133
Architecture 8 0.136
Architecture 9 0.136
Architecture 10 0.136
Architecture 11 0.105
Architecture 12 0.110
Architecture 13 0.357
Architecture 14 0.359
Architecture 15 0.353
Architecture 16 0.354
Architecture 17 0.162
Architecture 18 0.168
Architecture 19 0.155
Architecture 20 0.349
Architecture 21 0.350

Table 8.6: Decision variable sensitivity

Decision variable Decision variable Sensitivity (DVS)
Node 5.2 0.0439
Node 7.1.2 0.0036
Node 7.2.2 0.0036
Node 8.1 0.032
Node 9.1 0.0984
Node 10.1 0.0439
Node 10.2 0.0151
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9.2 PageRank Centrality
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Figure 8.8: PageRank Centrality measure of decision variables.

The results indicate decision variable 9.1 to have the highest centrality measure, followed by
decision variable 5.2 and 10.2. Decision variable 9.1 relates to the payload sensor system
used to provide surveillance over the target area. The choice of a design alternatives relating
to decision variable 9.1 has a significant impact on system properties, and also influences
the compatibility of solutions of other decision variables. Thus, to improve upon the Pareto
optimal solution set, it is suggested that architectural exploration of design alternatives be
focused towards the payload sensor system. However, the choice of the payload sensor
system can also directly impact the electrical power demand required to transmit data back
to the ground control station. This interaction has been captured by decision variable 5.2,
which relates to the delivery of electrical power to the payload and the communications
antenna system. Thus, the exploration strategy should also be focused towards alternate
means of delivering electrical power to the payload, or better management of data generated
by the payload, such that only critical data is transmitted back (i.e. on-board data processing
ng and storage), and the use of a high gain antenna to transmit data back to the ground
control station. The representation of the avionics architecture by decision variable 10.2
mainly impacts the operational availability and maintenance cost of the system. Based on the
results from PageRank centrality it would be recommended that the exploration of the
architectural solution space be focused towards different means of improving system
reliability. This may include a combination of both high-end (high MTBM value) and low-end
(low MTBM value) system components, or a triplex avionics architecture to improve reliability
with three levels of redundancy.
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Work

he decision-making process in engineering design is considered to be challenging
since decisions are generally non-routine, highly interconnected, and are
significantly consequential on system properties. In identifying the shortfalls and
gaps in the methods available in literature to aid the decision-making process, this
thesis has developed a coherent framework that supports the system architecting process.
The framework brings together multi-objective optimisation methodologies, in combination
with centrality measures from graph theory, and a modified version of the main effects
analysis from the Design of Experiments (DoE) literature to identify high-impact decision

variables.

The framework is split into three phases, Construction, Search, and Representation. The
Construction phase facilitates the generation of system architectures and captures the
relationships governing their choice by capturing the knowledge of the decision maker. One
of the central aspects of this framework is in representing the architectural decision problem
as a constraint optimisation problem. The problem is further sub-divided into a constraint
satisfaction problem (CSP) to handle discrete logical constraints defining the feasibility of
domain values of different decision variables. However, care should be taken when defining
the constraint functions, as over constraining or under constraining the architectural solution
space may result in too few or too many system architectures for the framework to be of any
use in aiding the decision-making process. The framework also presents novel methods in
visualising data generated from the analysis of system architectures. The representation of
data is categorised into two parts, one representing the Pareto-optimal solutions on a cost-
utility scale, and the other representing high-impact decision variables in the constraint
network. High-impact decision variables are calculated by adopting a modified version of
main effects analysis, where the sensitivity to the shift in the utopia point of the Pareto front
from the global utopia point due to changes in design alternatives within its domain is
calculated. The decision variable sensitivity (DVS) data is then inputted into PageRank

centrality to classify high-impact decision variables.

9.1 Research Questions

The objective of this research was to develop a decision support framework, specifically
focused towards aiding the system architecting process by identifying the need to move from

single objective decision-making towards the integration of multi-criteria decision-making
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methods in aerospace systems design. This was achieved by developing methods to identify
Pareto optimal system solutions and high-impact decision variables. In Chapter 1: a number
of research questions and hypotheses were introduced. The answers to the research

questions and the satisfaction of these hypotheses are addressed as follows:

Question 1. How to capture and represent the knowledge of the decision maker?

This thesis captured the knowledge of the decision maker using various representational
methods. The enumeration of the architectural design space was captured using functional
means analysis (FMA), which is a modification of the original morphological matrix. The
interaction of constraints, specified by the decision maker, between different decision
variables is captured and represented using the Design Structure Matrix (DSM). This
information is then translated into a network representation via the adjacency matrix.
However, the DSM does not state the explicit nature of the constraint between a set of
decision variables. This is addressed by defining logical constraint statements that specify

the exact nature of the constraint relationship.

Question 2. How to encode the captured knowledge of the decision maker to represent
decision variables with a set of design alternatives, a set of constraints between

decision variables, and a means of removing infeasible system architectures?

The answer to this question follows on from the previous question, in terms of capturing
knowledge. The logical constraint statements described by the decision maker can be
encoded into a programming environment by defining the system architecting process as a
constraint satisfaction problem (CSP). CSP’s offer a framework to convert a constraint
problem, such as the system architecting problem, by defining a tuple of three elements, a
set of variables (l.e. decision variables) {x,, .....,x,}, a set of domains- one for each variable
(i.e. a set of design alternatives within each decision variable) {D,,.....,D,}, and a set of
constraints C;. This constraint problem is solved using a simple backtracking algorithm, with

general purpose heuristics (see Figure 6.7).

Question 3. How to capture the needs of system stakeholders, and translate them into

a set of objective functions to allows for system optimisation?

The value of a system is captured, prior to optimisation, using multi-attribute utility theory
(MAUT). The validity of several multi-attribute decision-making (MADM) methods and value
centric decision-making (VCDM) methods were described in Chapter 2: . The aim of the value
model is to provide an accurate representation of stakeholder objectives in a non-commercial
operating environment i.e. the operational use of the system does not result in the direct
generation of revenue to the end-user. This resulted in ruling out all value models based on
monetary value, such as net present value (NPV) and cost-benefit analysis (CBA). Out of the
remaining, MAUT was chosen as it least violated the assumptions defined in Table A.1, and

also for its ability to capture uncertainty in the decision-making process.
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Question 4. How to represent the captured information/data to the decision maker,
such that optimal system solutions, and high-impact decision variables can be readily
identified?

The representation of data to the decision maker is visualised in two forms. One, representing
the global Pareto (or s-Pareto front) front of system architectures on a cost-utility scale. The
other representing the centrality measures of decision variables within the network, which is
visualised in a graph form. Decision variables that have high centrality measure advocate for

further exploration or resource allocation within its domain.

9.2 Research Contributions

The most significant contributions made by this thesis to the field of systems architecting

and multi-criteria decision-making are defined as follows:

1. Representation of the system architecting process: The decision support
framework represents the architectural decision-making process as a constraint
Optimisation Problem (COP), which can be defined as (CSP,g) or (X, Dy, Cx, 8), Where g
is a set of objective functions. The result of solving this problem is a Pareto front of

all the non-dominated solutions.

2. Translating the system architecting problem into a constraint satisfaction
problem: This allows the decision support framework to address assignment
constraints that relate to different decision variables. The CSP representation of the
system architecting process allows the logical constraints imposed on the
architectural space to be encoded into a programming environment, such that

infeasible system architectures can be removed.

3. Identifying High-Impact decision variables: The focus of much of the research in
literature has been on identifying Pareto optimal solutions from a set of system
architectures. But less attention is paid towards identifying the next step in the
exploration of system architectures. The decision support framework developed in
this thesis proposes an exploration strategy, where the exploration of system
architectures should only be carried out in domains of decision variables that have a
high-impact on system properties. This is achieved by adopting centrality measures
from the network analysis literature, and a modified version of the main effects
analysis from the DoE literature. This thesis adopts PageRank centrality to identify
high-impact decision variables that are strongly connected to other decision

variables, and also have a significant impact on the shift of the utopia point.

9.3 Lessons from Implementation

In applying this framework to the UAS design case study several drawbacks were identified
that need to be addressed in future work. In applying the Construction phase it was found

that identifying the compatibility relationships between different decision variables using the
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DSM was not intuitive, and required several iterations before the relationships were fully
defined. This process can become time-consuming in the presence of a large number of
decision variables. Thus, it can be argued that the value added in identifying the connectivity
between all the decision variables is minimal, in relation to the effort required in identifying
them in the first place. Therefore, the architectural network can be represented by
considering only those decision variables that are involved in the architectural trade studies.
The connectivity between these decision variables can be established from the logical
constraint statements specified by the decision maker. This would result in ignoring the
decision variables in which the decision, in regards to the choice of the design alternative, is
fixed.

Other problems relate to the construction of the MAU model. The construction of the MAU
model is subjective and requires a significant body of knowledge of the system operating
environment. Thus, several iterations may again be required before the fundamental
objectives and measurable system attributes defining the MAU model are agreed upon.
However, the MAU model offers the capability to capture the decision makers risk attitude
towards uncertainty in the outcomes of the system attributes, and thus capturing the
uncertainty of the decision-making process. This makes the application of the MAU model
very worthwhile. However, the framework does not explicitly address uncertainties in the
architectural exploration process. Future work needs to account for how uncertainties in the
development of a system architecture can impact the Pareto front, and thus the architectural

exploration strategy.

9.4 Problems in Validation

The development of decision support tools have been vast in recent years. The most
prominent of these tools include QFD, Pugh’s selection method, scoring and weighting
methods, AHP, MAUT, Taguchi Loss Function, and Suh’s Axiomatic design. The ultimate goal
of these tools, including the framework presented in this thesis, is to lead the decision maker
to select the ‘best’ design. However, each method has a unique way of defining ‘best’ and
the means by which to get there. The validation of these proposed frameworks is limited, as
there is no agreed criteria available in literature by which to judge the proposed decision
support tools to yield the correct decision. This issue is addressed in detail by Olewnik and
Lewis [143], and Allen et al [144]. The problem in validation stems from the fact that
guantitative analysis alone cannot validate prescriptive models [143], which tries to predict
the performance or courses of action to be taken based on available information, risks,
objectives, and axioms of rational behaviour [143]. The validation of such models include
qualitative analysis since there are subjective elements involved, and the solutions
ascertained from these methodologies do not yield a single right or wrong answer. Thus,
decision support frameworks relate to relativist validation, which argues that knowledge
cannot be validated in an objective way, and that subjective preferences and rules of

behaviour must be considered a part of the validation process [144].
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This thesis follows the validation process defined by Olewnik and Lewis [143], which defines

of three elements, logical, meaningful and reliable information, and not bias designer .[143].

9.4.1 Logical

Testing the logic of a framework can be accomplished by using test cases for which the
results are intuitive, and checking if the model results agree with intuition. This is illustrated
by applying the framework to the UAS case study presented in Chapter 7. The case study
presented is an illustrative example based on a real engineering design study undertaken by
the University of Southampton in developing a maritime search and rescue UAS [126]. The
results of the framework indicate that the exploration of the architectural solution space to
be focused towards the payload sensor system, delivery of electrical power, and the avionics
architecture. These results have been verified subjectively as being logical by the 2Seas

design team at the University of Southampton.

However the following question still remains, what kinds of test cases provides valid evidence
of effectiveness for an intended use?The choice of the test case should be representative of
a real engineering decision problem of a large complex system. This requires modelling of
all the complex interactions between multiple system elements that are present in a real
system. ldeally a benchmark test case with a predefined solution that has been subject to
several previously developed design frameworks would be a preferred choice for validation.
But, the existence of such a test case is not available in decision-based design literature.
Previous studies have resorted to test cases that are specific to the domain of interest of the
author, or the funding body of research. This thesis is in no exception to this, the UAS case
study presented in this thesis is a simplification of the real 2Seas UAS design problem, with
simplifications made by the author to allow for the case study to be within scope of this

thesis.

9.4.2 Meaningful and Reliable Information

The information that is incorporated into the model should be meaningful, in the sense that
it provides insight into interdependencies among design variables, and reliable in the sense
that information comes from appropriate sources [143]. The information incorporated into
the framework developed in this thesis has been shown to be meaningful, as it provides
insight into the interdependencies between multiple decision variables. This is achieved
through the representation of the system architecting process as a constraint optimisation
problem (COP). The information relating to the interdependencies is further expressed via
logical constraint statements, which in-turn allows the decision maker to more openly
interrogate the validity of the interdependencies.

Majority of the information incorporated into the UAS case study is reliable, in the sense that
information used to enumerate the models are derived from widely recognised publications
within the aerospace design domain (i.e. majority of the information was ascertained from

Raymer Gundlach [17], [122]). However, information relating to the construction of the
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decision problem i.e. the FMA table, and the DSM, are mainly based on the authors own
knowledge of the design problem, and is only illustrative of the real 2Seas design problem.
This is not to say that the information used is not reliable, however it does not paint a full
picture of all the interdependencies and component level decisions that were made in the
real design problem. This makes the construction of the decision problem hard to validate,
and is a problem faced in many academic based research on decision support frameworks.
Test cases that are applied in academic research are generally a simplification of a real design
problem to illustrate the applicability of the developed framework, and to ensure that the
test cases are within scope of the research project - the following references illustrate this
point [63], [73], [104], [108], [130].

9.4.3 Not Bias Designer

Forcing a preference structure on the designer will influence the processes used in decision-
making, which in-turn will influence the outcome. To avoid bias, the application of the
method is required to be conducted in some blinded fashioned manner, such that no external
factors, nor the framework itself, influence the outcome of the decision. However, in reality
this is hard to achieve in engineering decision-making. Decision are not taken by an
individual, but by a group of individuals in the design team, which inevitably will lead to other
members of the team influencing each other’s decision. Decisions are also influenced by
previous experience of designing similar systems. In addition to influences from external
factors, it is challenging for any decision support framework not to impose any rules and
restrictions on the actions taken by the designer during the decision-making process. For
example, the framework presented in this thesis imposes the use of MAUT to define the
objective function. This however may not be valid in other circumstances where the preferred
objective function may be NPV. Another example of this is axiomatic design, where the
designer is pushed to take decisions in a manner that is in accordance with the two axioms

of design, thus influencing the outcome of the process.

The not bias criteria is by no means met by the developed framework, or the applied case
study in this thesis. The means to satisfy this criteria is not clearly defined in any literature
known to the author. The validation of the no bias criteria remains at the time of writing an

open ended research question in the field of validating decision support tools [145].

9.5 Recommendations for Future Work

Although several aspects of the decision-making process have been addressed in this thesis,
research within this areas is in its infancy and several aspects of the system architecting

process have not been addressed in this thesis. These are sub-categorised into:
1. Improvements in knowledge capture and reuse.
2. Incorporation of a domain specific meta-language.

3. Uncertainty in architectural decision-making.

180



Chapter 9: Conclusion and Future Work

4. Framework Validation.

9.5.1 Knowledge Capture and Reuse

The construction of the decision problem can be further improved by developing a user
interface for the decision support framework. By developing a user interface the speed and
effectiveness of encoding the decision support framework can be improved. At present, the
entry of data into the decision support framework is based on spreadsheets and input files
in MATLAB and Python. The development of a user interface should allow data to be inputted
and stored in a relational database. This will allow the user to query the decision variables
and check for consistency. In addition, outputs of the simulations models can be stored in a
database format to allow the decision maker to query subsets of data, and allow for a more

flexible representation of data.

A means of developing such a user interfaces can be achieved through the development of
an ontology. Ontologies define a common vocabulary to share information in a domain, such
that domain knowledge can be reused, assumptions are explicit, and knowledge can be
shared, analysed, and interpreted using a common syntax. Providing this capability in turn
will allow the decision support framework to widely expand the decision network into a large
number of nodes and connections, and can be shared easily between several users. This
should allow design knowledge from various design teams to be captured and queried. For
an introduction to ontology development, and its applicability in sharing and reusing

knowledge, the reader is referred to Noy et al. [95].

9.5.2 Meta-Language

The use of a common meta-language to construct the decision network, and identify
interrelationships between decision variables will aid the efficiency and transparency of
constructing the decision support framework. Two such meta-languages, AoS and OPN, were
discussed in section 4.6. At present the enumeration of network components, such as
connectivity, domain of alternatives, and logical constraints are achieved through a series of
systems engineering methods. The inclusion of all such methods into one common
methodology will offer a great benefit in the ease of defining the network structure. It is
recommended that future work be focused towards integrating a formal meta-language, such
as AOS or OPN, into the developed decision support framework. Having a common meta-
language will allow the constructs of the network to be understood, and its validity

questioned by multiple users.

9.5.3 Uncertainty

At present the developed framework does not explicitly address uncertainty in architectural
decision-making. Though the backbone to address this issue has already been incorporated

in the framework via the use of MAUT. From a systems architecting point of view Crawley et
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al. [3] defines uncertainty from the view of system flexibility. Flexibility defines the capability
of the system to interface with future system elements that are not yet present in the original
version. The need for flexibility requires the architecting process to model future usage of
the system, uncertainties in the operating environment, regulations, and future end user
needs [3]. Previous studies such as TDN and epoch-era analysis [64], [104] have adapted the
Markovian Decision Process (MDP) to develop frameworks that account for operational
uncertainties and technology development uncertainties. These uncertainties are addressed
by making changes to a system architecture in the future, such that the system remains
adaptable. However, frameworks such as TDN and epoch-era analysis lack the means of
generating an initial set of candidate system architectures and candidate design alternatives
that should be taken forward for further consideration. The decision support framework
developed in this thesis could be used as a front end for TDN and epoch-era analysis in order

to identify a set of viable system architectures.

9.5.4 Validation

The problems associated with validating a decision support tool has already been addressed
in Section 9.4. It is recommended that future work focus on defining a validation framework
prior to, or during the course of developing the decision support framework. Special attention
should also be paid to the test cases used to validate the framework, as this plays a critical
role in increasing confidence of the decision maker in applying the framework to address real

design problems.
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Appendix A Value Model Assumptions

Table A.1: Value model assumptions to guide the selection of an appropriate

value model [39].

Net Present Value (NPV)

Cost-Benefit Analysis (CBA)

Multi-Attribute Utility Theory (MAUT)

perfect foresight into all
present and future events
pertaining to the value of
system attributes.

foresight into all present and future
events pertaining to the value of
system attributes.

Definition Value is discounted cash flow | Value is discounted cash flow of net | Value is an aggregation of a set of
of value (monetised). benefits (monetised). benefits relative to their net cost (non-
monetised).
Source of | Value is not derived from any | Value is derived from multiple | Value is derived from multiple benefits
Value source other than revenue. benefits and costs. and costs.
Cash flow and discount rate. Cash flow and discount rate.
Extensive and quantitative | Extensive and quantitative
predications can be made | predicationscan be made about the
about the systems future | systems future financial markets,
financial markets, revenue | revenue and pricing structure,
and pricing structure, demand | demand functions, etc. and also
functions, etc. about the derivation of the
monetary value of system benefits.
Mutual additive (preferential) | Mutual additive  (preferential) | Mutual utility  independence -
independence - stakeholder(s) | independence - stakeholder(s) | stakeholder(s) relative preference
absolute preference for a | absolute preference for a given | between two values for a given attribute
given attribute is independent | attribute is independent of the | is independent of the respective values
of the respective values of all | respective values of all other | of all other attributes; absolute
other system attributes. system attributes. preference for one attribute is
dependent on the respective values of
all other attributes.
Stationary  assumption - | Stationary assumption - | Stationary assumption - stakeholder
stakeholder preferences do | stakeholder preferences do not | preferences do not change over time.
not change over time. change over time
Stakeholders make decisions | Stakeholders make decisions under | Stakeholders make decisions under
Market . R .
Prediction under certainty - they have | certainty - they have perfect | uncertainty - they do not have perfect

foresight into all present and future
events pertaining to the value of system
attributes.

Multiple stakeholder preferences
cannot be aggregated -
nonexistence of a social welfare
function.

Multiple  stakeholder  preferences
cannot be aggregated - nonexistence of
a social welfare function.

Cash flow and/or discount rate
are discrete in time and also
potentially held as constants.

Monetised benefits, costs, and/or
discount rate are discrete in time
and also potentially held as
constants.

Monetisation of benefits.

Truncation of information
regarding distribution of costs
(monetised).

Truncation of distribution of costs
and benefits (monetised).

Truncation of distribution benefits into a
single metric.

Value is cardinal metric.

Value is cardinal metric.

Ordered comparison of benefit (non-
ratio cardinal) and cost is assumed a
proxy value.
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Appendix B Power Iteration Method

The power iteration method is a simple procedure for computing approximate values of the
eigenvalue of an n x n matrix A that is largest in absolute value i.e. the dominant eigenvalue.

A dominant eigenvalue can be defined as follows:

Let A, A,,...,4, be the eigenvalues of an n x n matrix A. 1, is called the dominant eigenvalue
of A if

A >4l i=2,..,n (A.1)
The eigenvector corresponding to A, are called the dominant eigenvector of A.
Now based on the assumption that the matrix A has a dominant eigenvalue, the power
method works by initially making an approximation of the eigenvector x,(# 0) with n
components and iteratively solving for the dominant eigenvector until the iteration
converges. This procedure can be defined as follows:

X, = AX,
X, = AX1 = A(AXO) = AZXO

X3 = AXZ = A(AZXO) = A3XO

X, = Ax,_; = A(A*¥1x, = A¥x, (A.2)

For large powers of k and by scaling the vector at each step of the sequence of the iteration
(i.e. divide the vector x its absolute largest component, ensuring that the components of the
vector have absolute values less than or equal to 1), we can obtain a good approximation of

the dominant eigenvector of A.

Given the eigenvector, the corresponding eigenvalue can now be calculated by applying the
Rayleigh quotient:
xT Ax

Ay = (A.3)

7 xTx

The error in the predicted dominant eigenvalue can be computed by setting 1, = 2 — €, where

€ is the error of 1,. This given to be:

T
le] <6 = /(Ax)iAx_lz (A.4)
- xTx a

This method can be modified to approximate other eigenvalues through the use of the
deflation procedure. For a more in-depth review of the power iteration method and other
iterative schemes of calculating eigenvalues and their corresponding eigenvectors, the reader
is referred to Kreyszig [146].
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Appendix C A Brief Overview of Brent’s Method

Brent’s method is considered to be a hybrid method, which makes use of the bisection
method in combination with inverse quadratic interpolation to find roots of univariate
functions. The application of the inverse quadratic interpolation is similar to the secant
method, where a linear interpolation is used to approximate the function. Instead of linear
interpolation, here we apply a higher order interpolation using estimates for the zero and
find the zero of the interpolating polynomial to get the next approximation. However, rather
than solving for the roots of the interpolating polynomial, an inverse quadratic interpolant is
applied i.e. we can interpolate x as a function of y = f(x), the inverse of which can be defined

as x = g(y). The new update estimate of the root can be found by setting g(0).

Brent’s method uses the Lagrange interpolating polynomial of degree 2 to generate an
approximate of the function f. Given three points x;, x,, and x; and their function values f(x,),

f(x3), and f(x3), an approximation of f can be computed using the following interpolation

formula:
_ [y - f(x1)][y - f(xz)]xs " [y - f(xz)][y - f(x3)]x1
[f Ce3) = FOeDIIf Ces) = FOe)]  [f (en) = FOeIIf (1) — f(x3)]
[y — FGe)Ily — £ ()], (A.5)

TG = F )l () — F Q)]

Setting the value of y to zero will give the update estimate of the root:

x=x2+

5;
where P =S[T(R—T)(x3 —x3) — (1 —R)(x; — x;)
Q=T-DR-1D(E -1

— f(x1)
T flxs)

(A.6)
This process is repeated with x, replaced by the new approximation, x; is replaced with the
old x,, and x; is replaced with the old x;. Similar to the Newton Raphson method, the inverse
guadratic method may run the risk of diverging away from the root. Brent’s method counters
this risk by maintaining brackets on the root and checks where the next update value is
going. If the update goes outside the brackets, then Brent’s methods switches to bisection
method.
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Appendix D Link Budget Table

Table A.2: Link budget Table.

Value
Component line 0SS, L7 1ine -1.0 dB
Pointing 10sS, Lt point 0 dB
Transmitter
Radome 10S$, Lt radome 0to -0.5 dB
Transmitter Power, Pp -
Free space loss, 20 log,q(1/47R) -
Propagation |Atmospheric absorption, Lp aim -0.01 dB/km
Precipitation absorption, Lp precip -0.006 dB/km
Peak antenna gain, Gy 20 dBi
Polarisation 10ss, Lg poiar 0to -0.5 dB
Receiver Pointing loss, Lg point 0 dB
Component line losses, L 1ine -1.0 dB
Spreading implementation 10sS, Lg spreaa 0 dB
Thermal noise density, kT -174.0 dB/Hz
Noise Noise bandwidth, BW -
Noise figure, NF -5 dB

The values chosen for the losses and gains in the table above are representative of the
information ascertained from Gundlach [122] and from the authors own assumptions. Thus,
the communication system represented is only illustrative and is not representative of any
specific real world system. For more information in regards to the signal losses and system
noise, the reader is referred to Gundlach [122]. It can be noted that some of the values in the
above table are left blank, as they are dependent variables that change in value based on
other variables (e.g. the distance travelled by the RF signal, R). It can also be noted that the
values for radome 10sS, Ly raaome, @nd polarisation 10ss, Ly poiar, are provided over a range as they
are depended on the choice of antenna architecture. For example, if the antenna has no
aerodynamic fairing covering it, than the polarisation loss will be 0 dB. The polarisation loss, in
the case of linear polarisation, is proportional to the square of the cosine of the misalignment

angle 84i4n, Which is given as:
Ly proar = 201logqo [Cos(eAlign)] (A.7)

The atmospheric and precipitation propagation losses are dependent on the frequency of the
RF signal and the atmosphere itself. Higher fidelity analysis would require detailed

atmospheric models to predict the absorption and attenuation of the signal. For simplicity, it
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is assumed that the signal losses are linear in distance, at a given frequency. For the case
study presented in this thesis, the transmitting frequency band is assumed to be L-band,

with a frequency range of 1-2 GHz.
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Appendix E Model Validation

Table A.3: UAS mass analysis comparison.

‘ 2Seas UAS, kg ‘ Calculated data, kg % Difference
Wing assembly 3.59 4.72 31.6
Empennage 1.82 1.06 _41.5
Tail booms 0.56 0.60 7.8
Under carriage 2.15 3.11 44.5
Inner wing assembly 1.87 2.53 35.3
Avionics 4.48 3.79 _15.4
Propulsion System (x2) 5.35 5.5 3.5
Nacelles 2.6 1.65 -36.5
Payload 5 5.7 14
Fuel 6 8.25 37.5
Empty mass 22.418 23.00 2.6
Dry mass 27.418 28.70 4.7
GTOM 33.418 36.95 10.6

2Seas UAS H Wing assembly

B Empenage
Tail booms

W Under carriage

M Inner wing assembly
Avionics

M Propulsion System (x2)

W Nacalles

M Payload

H Fuel

Simulation Data B Wing assembly

B Empenage
Tail booms

B Under carriage

M Inner wing assembly
Avionics

M Propulsion System (x2)

M Nacalles

M Payload

W Fuel

Figure A.1: UAS mass breakdown.
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Appendix F Expected Improvement Plots

Life-Cycle Cost Function
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0.015

0.005

-0
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Payload, kg
Allowance
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Utility Function

0.025
Expected Improvement
Contour - lteration 1 0.02
0.5
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Payload, kg Alt, m

Vel, mis
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Figure A.2: Expected Improvement contour plots of the LCC and utility function.
Each tile shows a contour of E[I(x)] versus two of the four variables, with the

remaining two held at baseline values.
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Appendix G Functional Decomposition
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Appendix H Functional Means Analysis

Table A.4: Functional means analysis tables for the UAS case study.

Function

Means

Alternatives

other system components.

1. Package and store payload and

Fuselage Arrangement

Conventional tube shape

Blended wing body
(BWB)

Detachable pod

2. Generate lift for steady level
flight.

Fixed Wing

High wing

Mid Wing

Low wing

Variable sweep geometry.

3. Deliver propulsive power.

Reciprocating engines

Twin 2 stroke engines

Twin 4 stroke engines

Fuel cells

Solid-oxide fuel cells

Regenerative fuel cells

Solar power

Multi-crystalline silicon
cell

Mono-crystalline
gallium arsenide cell

Thin film silicon cell

4. Integration of propulsion
system.

Propeller arrangement

Fuselage pusher

Fuselage tractor

Wing pusher

Wing tractor

5.1. Deliver electrical power to
flight critical systems.

On-board power
generation systems.

Engine Generator

Separate battery
source

Engine Generator + external
propeller driven generator

Engine Generator + Fuel cells

5.2. Deliver electrical power to

On-board power

Engine generator

Separate battery

Engine Generator + external

Engine Generator + Fuel cells

payload. generation systems. source propeller driven generator

6.1. Provide longitudinal stability. Horizontal stabilisers. Conventional T-tail V-tail Canard Joined-wing
Single

6.2. Provide lateral stability. Vertical stabilisers. Winglets Twin vertical surfaces V-tail Joined wing vertical
surface.

7.1.1. Conventional launch Tail-dragger Quadricycle Bicycle Tricycle
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7.1.2. Unconventional launch Rail launch Tensioned Line Launch | Ground-vehicle launch Air tow null
7.2.1 Conventional recovery Tail-dragger Quadricycle Bicycle Tricycle
7.2.2.Unconventional recovery Skid and belly recovery Net recovery Cable-assisted recovery Parachute null

8.1. Transmit and receive data

On-board antenna

Omni-Dipole, vertically
polarisation., Gain 2dBi

Omni- circular
polarisation, Gain 3dBi

Bladed Antenna, Omni -Dipole,
vertical polarisation, Gain 2dBi

8.2. Communication system

integration. On-board the UAS.

Antenna location

Lower fuselage / wing
surface

Upper surface, ahead
or behind the wing

Winglet/wingtip integrated

Antenna can be separated
from the upper fuselage by a
faired post.

9.1. Capture imagery over the
target area.

Optical Camera
system

Resolution: 1080 by
1080.

Resolution 640 by
480.

Resolution: 1280 by 720.

9.2. Integration of sensors.

EO/IR ball

EO/IR ball pan tilt

Mounted rigidly on
airframe

EO/IR ball pan tilt roll

EO/IR ball roll tilt gimbals

10.1. Protect system from
overheating.

Environmental control
systems (ECS).

No ECS systems

Ram air cooling of
engine components

Fans

10.2 Protect system from
component failures.

Avionics architecture

Simplex

Duplex with two sets
of control surfaces

Triplex
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Appendix | Viable System Architectures

import os

os.chdir('C:\python-constraint-1.2")

import constraint as con

# Define architectural functional data in dictionary format
funcbData = {'0.0":[11],

1.0 [1],
2.0 [1],
"3.0':[1],
40 [1],
5.0 [1,21,
6.0 [1],
7.0 1],
8.0 [1],
"9.0":[1,21,
"10.0":[11,

"11.0':[1,21,
"12.0':[1,2,31,

113.0':[11,
"14.0':[1,2,31,
"15.0':[11,
"16.0':[1,21,
117.0":[1,2]

}

# Locations of

# Add variables into the CSP problem

functions = funcData.keys()# Extract function keys from dictionary
problem = con.Problem()# Constraint Problem

for i in range(len(functions)):
problem.addVariable (functions[i], funcData[functions[i]])

# Define constraint functions
def electricalPower(a,b,c):
if (a==3 and b==2):
return c '=1
else:
return c!=2

def launchandrecovery(a,b):
if (a==1):
return b!=2
elif (a==2):
return b!=1

def ECS(a,b,c):
if (a==2 and b==2):
return c !'=1
else:
return c!=2

def comms(a,b,c):
if (a==3 and b==2):
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return c '=1 and c !'=3
else:
return c!=2
# ————- Add constraint functions to the constraint problem------—-——--
# Deliver electrical power constraint
problem.addConstraint (electricalPower,['14.0","17.0','5.0"'])
# Launch and Recovery constraint
problem.addConstraint (launchandrecovery,['9.0","11.0"])
# Environmental control system constraint
problem.addConstraint (ECS,['5.0','17.0","16.0"])
# Communication antennta constraint
problem.addConstraint (comms,['14.0','17.0","12.0"])

# Solve CSP
print len(problem.getSolutions())

Figure A.4: Python implementation of the CSP algorithm for the UAS case study.

The numbers in the rows indicate the order in which design alternatives appear in the rows

of Table A.4 (excluding the greyed out design alternatives).

Table A.5: Architectural solutions generated from the constraint-satisfaction
search algorithm.

System FUNCTION FUNCTION | FUNCTION FUNCTION | FUNCTION: | FUNCTION FUNCTION
Architectures 5.2 7.1.2 7.2.2 8.1 9.1 10.1 10.2

ARCHITECTURE O

ARCHITECTURE 1

ARCHITECTURE 2

ARCHITECTURE 3

ARCHITECTURE 4

ARCHITECTURE 5

ARCHITECTURE 6

ARCHITECTURE 7

ARCHITECTURE 8

ARCHITECTURE 9

ARCHITECTURE 10

ARCHITECTURE 11

ARCHITECTURE 12

ARCHITECTURE 13

ARCHITECTURE 14

ARCHITECTURE 15

ARCHITECTURE 16

ARCHITECTURE 17

ARCHITECTURE 18

ARCHITECTURE 19

ARCHITECTURE 20

e e B e e e e e e e B B e B e e B e B e e B e e
R NN N R R NN R R N R R R NN R NN N e
[EEY ESY I ST N1 ) ey payiry B O3 S ==Y RSy [y ) Sy puyiiey [ayiey Y S1 I S} IrSrY By ST N1 B N
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ARCHITECTURE 21

196



Appendix |

Objective Hierarchy

Appendix J
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