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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF CIVIL ENGINEERING AND THE ENVIRONMENT

Transportation
Thesis for the degree of Doctor of Philosophy

FREIGHT TRANSPORT, ROUTING SOFTWARE AND TIME-DEPENDENT VEHICLE
ROUTING MODELS

By Nicolas Rincon-Garcia

Routing and scheduling software is part of the Information and Technology systems available to
support the transport industry, and uses complex algorithms along with geographical
representations of the road network to allow better planning of daily collection and delivery
schedules. This research reviews the evolution of routing and scheduling software, the algorithms
used along with reported barriers to wider take-up and potential industry driven improvements
that could be made. A survey of transport companies in the United Kingdom was conducted in
order to validate and prioritize the software capabilities that require the most development
according to the new challenges that the industry is facing. Responses suggested that companies
required improved route optimization to tackle congestion based on time-dependent data and
models, and greater accuracy in the representation of the road network. Not considering
congestion leads to the underestimation of travel times and the production of inaccurate
schedules. Literature shows that operational research techniques are available to solve problems
that represent real world conditions, but research into the relative merits of using time-dependent
models needs to be undertaken.

Although exact methods have been developed to solve the Vehicle Routing Problem, they
cannot cope with large instances and rich variants that are required by the industry. Therefore,
metaheuristic algorithms are usually implemented in routing software. A reported barrier in
metaheuristic algorithms is the lack of accuracy (the difference between optimal or best-known
values and the result of the proposed algorithm). In this research an algorithm was developed
using elements of Large Neighbourhood Search that is capable to substantially improve the state
of the art for the time-dependent Vehicle Routing Problem. Comparison of results with available
testinstances shows that the proposed algorithm is capable of obtaining a reduction in the number
of vehicles (4.15%), travel distance (10.88%) and travel time (12.00%) compared to previous
implementations in reasonable time. A variant that considers the Rules on Drivers’ hours required
in the scheduling of vehicles over 3.5 tons in the European Union and the UK is also introduced.
Analysis of results show result improvements in number of vehicles (19.0%), travel distance

(17.7%) and route duration (4.4%) compared to previous implementations.
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Chapter 1

Introduction

1.1. Motivation

Logistics and transportation are considered key activities that contribute to business success
and environmental mitigation, where both technology and innovation are vital to obtain better
use of the network (European Commission, 2011). Companies must design and manage freight
transport operations, taking into consideration the specific characteristics of their Supply Chain,
the provision of available infrastructure, and regulations, where supply chain is defined by the
relation between sources, logistic provisions and customer (Allen et al., 2000, Chopra and
Meindl, 2007).

Congestion and new transport policies have brought new challenges to the freight industry, as
companies are being affected by travel time variability and low speed due to congestion (Golob
and Regan, 2001). Travel time variations during a time of day may result from congested roads
and other circumstances related to accidents, road maintenance, weather, etc., however
recurrent delays due to congestion are responsible for up to 80% of total delays in peak hours
(Skabardonis et al., 2003). Not including time variation on routing decisions might lead to
overtime and missed deliveries (Haghani and Jung, 2005, Kok et al., 2012). Additionally,
measures imposed by authorities to tackle the negative impacts of transport, such as access
restriction and rules pertaining to drivers’ hours, impose additional costs on the industry.
Nevertheless, customers expect continuously improving and reasonably priced service, rather
than a deteriorating service; this requires a higher level of scheduling reliability (Ehmke et al.,
2012). The importance of providing effective and efficient solutions to the industry is paramount,

bearing in mind that the profit margin in the sector is a mere 3% (FTA, 2015).

Decision support systems that aid planners in providing vehicle schedules are available, called
computerized vehicle routing software (CVRS). The benefits of implementation not only consist
of reducing transportation costs—savings are estimated to be in the area of 5% to 20% (Toth
and Vigo, 2001)—but also of ameliorating human calculations and providing a graphical
interface of the routes, which takes into consideration the road representation (Tarantilis and
Kiranoudis, 2002). With the previously mentioned challenges that the industry is facing, new
technologies in communication and data processing have emerged and been implemented in
CVRS, along with models to support vehicle scheduling in order to provide solutions to the

industry.



1.2. Information and technology systems in the freight transport industry

Affordable technologies that are present in everyday devices, such as mobiles, are being used
in the transport industry to provide information to planners and drivers. In fact, the most
frequently used information and technology system in the freight transport industry is the
satellite and navigation system (Sat-Nav) (DFT, 2010). By using the Global Positioning System
(GPS), drivers can obtain their current location on a digital map of the road network (DFT,
2010).

Due to recent technological breakthroughs, decision support systems for vehicle scheduling
have evolved from stand-alone applications to more sophisticated tools that involve the
utilization of a range of technologies such as computers and telecommunication devices,
portable or not, to store, retrieve, transmit and manipulate data. Nowadays, planners can obtain
the current location of vehicles and communicate in real time with drivers to make changes in
the routes, e.g. new collections. Additionally, drivers can get information about road conditions
even in real time from intelligent transportation systems (ITS), e.g. predicted congestion, current

congestion, accidents or road closures.

Although a lot of new data and devices that provide solutions to the industry are available, and
vendors offer a range of capabilities in their software, the shortcomings of these technologies
are still not quite clear. It is in the interest of the industry and researchers to understand the

barriers of these technologies in order to provide improved solutions to the industry.

1.3. Models to support vehicle scheduling

Among the main components of CVRS are the mathematical models and different solution
technigues to solve the Vehicle Routing Problem (VRP) (Drexl, 2012). The VRP is the set of
models that look for the optimal series of routes to be followed by a fleet of vehicles to serve a
number of locations (Toth & Vigo, 2001).

Different VRP variants have been proposed in the literature to represent the different logistic
configurations found in the industry, such as: a Vehicle Routing Problem with time windows
(VRPTW), where each customer has a demand, a time window to be served and each visit has
duration; a capacity constrained problem for heterogeneous vehicle fleets (HVRP), where
different vehicle types with different costs and characteristics are available (Taillard, 1999); a
pickup and delivery Vehicle Routing Problem (PDVRP), where goods are picked up at one
location and delivered to other location (Parragh et al, 2008); a multi-depot Vehicle Routing
Problem (MDVRP), where multiple depots are allowed (Pisinger & Ropke, 2007); a site-
dependent Vehicle Routing Problem (SDVRP), where certain customers can only be served by
certain vehicles and vehicles do not need to have the same capacity; an open Vehicle Routing
Problem (OVRP), where vehicles do not need to return to the depot at the end of the delivery
day (Pisinger & Ropke, 2007); and a periodic Vehicle Routing Problem (PVRP), where the
planning period is extended to several days (Yu & Yang, 2011).



The VRP is a hard combinatorial problem (a non-deterministic polynomial-time hard problem)
and some VRP variants such as the VRPTW have been studied thoroughly by the scientific
community and efficient solutions techniques have been achieved. Although exact algorithms
that guarantee optimality are computationally too demanding to be used for the industry,
metaheuristic algorithms have been developed to execute “intelligent” searches and provide
results near optimality with little computational effort, where algorithm analysis, comparison and
improvement have been performed with available benchmark instances (an instance is a
concrete set of input data necessary to solve a problem) (Braysy & Gendreau, 2005a; Braysy &
Gendreau, 2005b; Cordeau et al, 2002; Drexl, 2012). Nevertheless, some variants that might be
required by the industry have received less attention; such is the case of time-dependent VRP
variants (TDVRP), where travel time varies according to departure time due to congested roads
during different periods of the day (Kok et al, 2012).

The development of algorithms for VRP variants with more complex restrictions is a challenging
task as is the case, for example, with the Vehicle Routing Problem with time windows and
driving time regulations in the European Union (the set of rules that dictate the maximum
number of driving hours in a weekly planning horizon, resting periods, and the maximum driving
time without a break in a working day). After its first formal formulation, along with benchmarking
instances and a solution method based on a large neighbourhood search metaheuristic (LNS)
by Goel (2009), results with a different LNS tailoring proposed by Prescott-Gagnon et al (2010)
obtained highly improved results, namely a reduced number of vehicles (31.7%) and travel
distance (17.2%).

A number of critiques of the research on algorithms have been mentioned in the literature, as
the most current efficient methods for VRP variants are intricate and difficult to reproduce (Vidal
et al, 2013). Furthermore, some metaheuristic implementations have been tailored to work well
in specific test instances by tuning parameters so specifically to consider the best random seed
that provides high accuracy (Sorensen, 2015). There is a need for general and simple
algorithms, applicable to practical settings required by the industry (Vidal et al, 2013), and
capable of producing good results independently of the instance.

There is a gap between VRP research and industry requirements, where VRP models that take
into consideration the multiple restrictions that companies face are called rich models (Hartl et
al, 2006). The present research aims to understand the requirements of the industry and

provide knowledge regarding VRP models that are capable of coping with industry necessities.



1.4. Research justification

The situation of the freight industry is shifting due to innovation (new technologies that provide
data and devices), the evolution of customer expectations (e-commerce and home delivery),
and changes in road conditions (regulation, congestion, etc.). Although the VRP has been the
subject of intensive research due to the challenge that finding optimal solutions presents and
due to the possible benefits that it might bring to the transport industry. In the industry, a
number of efficient techniques have been developed to solve some variants; however,
algorithms for some richer variants that consider the new situation have received less attention

from the scientific community and research with adequate evaluation accuracy remains scarce.

As was previously mentioned, exact algorithms are not viable in real operations and
implementations of metaheuristic approaches which might provide solutions that are far from
optimal, if not adequately tailored. Consequently, CVRS might provide poor quality schedules. A
test carried out by an academic group using different providers of software for vehicle routing
showed a significant difference in the quality of solutions, up to 10% between the best vs. the
worst schedule in instances of only 100 customers, where a higher difference was found in
larger problems (Hallamaki et al., 2007; Braysy & Hasle, 2014). Therefore, an understanding of
available technology along with its shortcomings via a literature review, the necessities of the
industry through direct discussion with companies that operate vehicles making use of CVRS,
and understanding the capabilities that offer the current theories in solutions techniques to

provide high accurate solution for the VRP variants that are required by the industry.

As an example congestion data. By using ITS, it is possible to estimate the different travel times
between locations on highways or urban roads according to the departure time (peak hours
present longer travel times). If congestion is not considered, vehicle schedules will be
inaccurate and may lead to the violation of the expected delivery time to customers.
Additionally, a lack of attention to the rules pertaining to drivers’ hours, may give schedules that

do not comply with the regulations.

Therefore, it is important to understand the necessities of the industry and to focus research
efforts on developing algorithms capable of providing near optimal solutions that mitigate the
impact of new conditions in a market that every day demands more efficiencies with tighter

restraints.



1.5. Objectives

To understand the needs of the industry regarding vehicle routing models and

Computerized Vehicle Routing Software.

To better understand theory about models and solution techniques for vehicle routing

and to understand if the algorithms are capable to solve the necessities of the industry.

To explore new approaches to better satisfy the industry needs.

1.6. Results and products of the thesis

The results presented in this thesis are the following:

Identification of Computerized Vehicle Routing Software capabilities that require
improvements according to freight companies.

Presentation of a literature review of algorithms to solve Vehicle Routing Problems and
technological advances that have been incorporated in Computerized Vehicle Routing
Software.

Design of an algorithm for the Time-dependent Vehicle Routing Problem with Time
Windows capable of obtaining a reduction in the number of vehicles (4.15%), travel
distance (10.88%) and travel time (12.00%) compared to previous implementations.
Design of an algorithm for the Time-dependent Vehicle Routing Problem with Time
Windows and Rules on Drivers’ hours (European Union Regulation) capable of obtaining
a reduction in the number of vehicles (19.0%), travel distance (17.7%) and route duration
(4.4%) compared to previous implementations.

Design of an algorithm for the Time-dependent Vehicle Routing Problem with Time
Windows and Rules on Drivers’ hours (European Union Regulation and The Road
Transport (Working Time) Regulation 2005 in the UK).

Application of the designed algorithms in a set of instances that resemble a home delivery
case. Results show the effects on costs and emissions of different levels of congestion,

densities of customers and lengths of time windows.

The list of research products that have been produced in this research are listed below as

follows:

Published

Conference papers:

Rincon-Garcia Nicolas, Waterson Ben and Cherrett Tom (2013) When academic theory
meets industry reality: The case of Vehicle Routing Problems. In, 18th Annual Logistics

Research Network Conference. Birmingham, GB, 04 - 06 Sep 2013.



e Rincon-Garcia Nicolas, Velazquez-Abad Anthony, Waterson Ben and Cherrett Tom
(2015). Improved Algorithms For Routing Urban Delivery Vehicles. In, 20th Annual
Logistics Research Network Conference. Derby, GB, 9-11 Sep 2015.

Submitted for review

Papers in refereed journals:

¢ Rincon-Garcia Nicolas, Waterson Ben and Cherrett Tom (2016) Requirements from
Vehicle Routing Software: Perspectives from literature, developers and the freight

industry. Journal: Transport Reviews

e Rincon-Garcia, Nicolas, Waterson, Ben and Cherrett, Tom (2016) A hybrid
metaheuristic for the Time-Dependent Vehicle Routing Problem with Hard Time

Windows. Journal: International Journal of Industrial Engineering Computations.



Chapter 2

Vehicle scheduling, software and industry
requirements

“Time conscious customers demand flexible and reliable deliveries and these
demands can be costly if driver’s routes and schedules are not optimised...

For delivery drivers, it is frustrating to be within a mile of a delivery point and to then

take another 10 minutes to get to the final destination because they are not familiar

with the local road network ...”

- DFT (2010) -

Vehicle scheduling is a complex activity that requires human expertise, in fact only a few cases
of full scheduling automation are found in the industry, namely taxi scheduling solutions
(Cegarra et al., 2012). However, a number of IT systems are available to support drivers and
planners, among these are Computerized Vehicle Routing and Scheduling Systems (CVRS)
(DFT, 2010). Rochat and Semet (1994) illustrate the benefits of supporting schedules with
CVRS in a Swiss company producing pet food and flour, by using software it was possible to
produce routes, in a matter of minutes, that comply with Rules on Drivers’ hours, weight
restrictions, access restriction and reduction of travelled distance, something that is time

consuming and difficult to achieve manually.

Despite the many benefits reported either by the industry and the scientific literature, adoption
rate of CVRS in the industry is rather low, a survey conducted in 335 companies in 2010 by the
Department for Transport in the UK found that adoption rate in companies with less than 10
vehicles is 11% and for companies with more than 10 vehicles is 17% (DFT, 2010). The
reasons to reject IT systems are: not suitable (49%), too expensive (33%), pointless (9%) and

too complex (2%).

In this chapter it is intended to understand the evolution of CVRS, the new reported benefits
obtained by the implementation of new technologies and the barriers that have to be overcome
to provide better IT systems to support vehicle scheduling. In order to do so, it is necessary to
review current routing practices and routing characterization as long as to review CVRS
architecture. Additionally, a survey conducted in companies in the UK to identify the reasons to
implement CVRS and the software components that require improvement is presented.
Literature dealing with IT systems for the freight transport industry usually is focused on
adoption rates (e.g., research presented by Davies et al. (2007) and Golob and Regan (2003))
or vendors perspective (e.g., research presented by Drexl (2012) and OR/MS-Today (2014)).
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This chapter focuses on CVRS and the components that require further development according
to industry users. A relevant CVRS component is the routing model (Drexl, 2012), VRP variants
have been subject of considerable interest among researchers since its first formulation in 1959
(Dantzig and Ramser, 1959), with over one thousand papers found in a recent overview of
scientific databases dealing with its variations, solution techniques and reported
implementations (Eksioglu et al., 2009). Unfortunately, despite the immense attempt to provide
high-efficient solutions for theoretical models, there remains (at least anecdotally) a feeling that
theoretical models cannot be used in reality as they do not reflect the real constraints imposed
by real life logistics and legislation. Routing characterization in this chapter follows the
taxonomy proposed for VRP variants in order to identify relevant VRP variants that are of
special interest to the industry.

2.1. Routing decisions in practice and new challenges in the road freight industry
Although all logistics operations (both in-house and third-party) face the same basic problem of
using the available fleet of vehicles to serve the demand, the diversity of fleet sizes and
compositions, and the diversity of demand constraints and predictability have led to a diverse

range of scheduling approaches within the industry.

For example, (Golob and Regan, 2003) surveyed 712 transport companies in California and
categorized route methods in manual routing (63%), followed by software supported (23%) and
fixed schedules (15%). A more recent survey of 312 companies in Washington about route
construction and prioritization of factors (Rowell, 2012) found that majority of companies either
have daily-dynamic routes or fixed schedules, where 65% of companies had 10 vehicles or less,
prioritization of factors is shown in Figure 1. Similar results have been found in the European
Union (ECORYS, 2006) with the main priority of carrier operators still being to satisfy customer
requirements at the minimum possible cost, where the three main transportation costs are:

labour, fuel and depreciation.
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Figure 1. Prioritization of routing factors according to percentage of companies that ranked the
factor with the highest grade in the state of Washington, 312 freight carriers.
Source: Rowell (2012)

A common practice in the industry is to plan drivers and vehicles that will deliver to specific
customers and allow drivers to decide the final sequence, the function of the planners is to find
feasible plans that minimise operational costs (DFT, 2011c). Planners face complex decisions
involving multiple constraints such as: personal (e.g., driver’s experience and knowledge of the
route, language), environmental (e.g., weather, congestion, traveling time) and infrastructure
(e.g., tolls, parking, access restrictions). Planners are vital to the operation in order to prioritize
and relax constraints according to extensive knowledge in order to provide efficient solutions.
Although full automation in vehicle scheduling is found in certain operation such as taxis, it is

highly uncommon to find goods routing with full automation (Cegarra et al., 2012).

The reported attributes in the literature review to describe transport operations and its relation

with routing requirements are summarized in Table 1.
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Table 1. Attributes to describe transport operations and reported routing requirements.

. Vehicle si . - .
Attribute enicie m_N.m Length of journey Type of visit Fleet Size Type oﬂ
and regulation ownership
e « Light goods vehicles ’ C&m: ’ Qoonm « Less than 10 vehicles | ._.S:m._uo;
Classification « Heaw qoods vehicles * Regional » Senvices « 10 or more vehicles provider
K * Long-Haul * Others * Private fleet

Technical
requirements

Driving regulation

Access Restrictions

Time windows
Multiple periods

Time-dependent models
Drivers assignment

Time windows

Road representation
Heterogeneous fleet
Detailed geographical data

Time Windows
Urban:
Congestion Data
Time-dependent models
Rerouting (Communication)
Long Haul: No necessarily use of
Less-Than-Load
(multi-drop deliveries) models
Detailed geographical data

Time Windows

Heterogeneous fleet

Senvices: Requirement to
provide useful information to
derive useful probability
distributions

Models to deal with optional or
complex request in extended
planning horizons

Reported
benefits

Decrease impact of
driving regulation costs.

Decrease impact of access
restrictions

Accurate road information
to planners and drivers

Improve reliability
Information of fuel and parking for long-haul
operators

Routing under uncertainty
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Policy and Regulation in the UK and the European Union has enforced different measures
according to vehicle size such as speed limitations, Rules on Drivers’ hours and access
restriction. Goods vehicles over 3.5 tonnes are defined as Heavy Goods Vehicles (HGV), since
2002 speed limitation for HGV is recommended to 90 km/h (European-Commission, 2007),
driving time regulation and access restriction depend on the characteristics of the vehicle,

therefore imposing new challenges in route planning.

Rules on Drivers’ hours

Rules on Drivers’ hours are the set of rules that dictate maximum number of driving hours in a
weekly planning horizon, resting periods (uninterrupted period where a driver may freely
dispose of his time “at the end of the working day”), and maximum number of driving time or
working time without breaks (periods “within the working day” which is used exclusively for
recuperation) in a working day. Limiting driving times improves road safety by reducing drivers’
fatigue and drowsiness (Jensen and Dahl, 2009). Regulation 561/2006 (EC) applies to driving
and working hours of road haulage vehicles over 3.5 tons in members of the European Union
(European Union, 2006), with supplementary regulations sometimes found in particular
countries (e.g. in the UK, The Road Transport (Working Time) Regulation 2005 imposes
additional restrictions to drivers such as the introduction of mandatory breaks after six hours of
working time even in situations where only a small portion of that time has actually been driving
(DFT, 2005)).

Drivers of Light Goods Vehicles under 3.5 Ton (LGV) in the UK have to comply with GB
domestic Rules on Drivers’ hours (VOSA, 2011). By 2008 driving time regulation for LGV
seemed to be not clear to operators, where only 13% declared full knowledge, see Table 2
(DFT, 2009).

Table 2. Understanding and knowledge of drivers’ hours regulations.

None 24%
A little 22%
Some 31%
Extensive 13%
Not specified 9%

Source: DFT (2009)

The sets of Rules on Drivers’ hours according to the type of vehicle in the UK are shown in
Table 3.
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Table 3. Sets of Rules on Drivers’ hours according to the type of vehicle in the UK.

Vehicle Type

Regulation 561/2006 (EC) (European Union, 2006)

over 3.5 Ton

* Daily driving period shall not exceed 9 hours, with an exemption of twice a
week when it can be extended to 10 hours.

* Total weekly driving time may not exceed 56 hours and the total fortnightly
driving time may not exceed 90 hours.

« Daily rest period shall be at least 11 hours, with an exception of going down
to 9 hours maximum three times a week. Daily rest can be split into 3 hours
rest followed by 9 hour rest to make a total of 12 hours daily rest.

* Weekly rest is 45 continuous hours, which can be reduced every second week
to 24 hours. Compensation arrangements apply for reduced weekly rest
period. Weekly rest is to be taken after six days of working, except for coach
drivers engaged in a single occasional service of international transport of
passengers who may postpone their weekly rest period after 12 days in order
to facilitate coach holidays.

* Breaks of at least 45 minutes (separable into 15 minutes followed by 30
minutes) should be taken after 4 %2 hours at the latest.

The Road Transport (Working Time) Regulation 2005 (VOSA, 2011)

* Mobile workers must not work more than 6 consecutive hours without taking

a break.

 If working hours total between 6 and 9 hours, working time should be
interrupted by a break or breaks totalling at least 30 minutes.

« If working hours total more than 9 hours, working time should be interrupted
by a break or breaks totalling at least 45 minutes.

* Breaks should be of at least 15 minutes’ duration.

» Weekly working time must not exceed an average of 48 hours per week over
the reference period. A maximum working time of 60 hours can be performed
in any single week providing the average 48-hour limit is not exceeded.

* Night work: if night work is performed, working time must not exceed 10 hours
in any 24-hour period. Night time is the period between 00.00 and 04.00 for
goods vehicles and between 01.00 and 05.00 for passenger vehicles. The 10-
hour limit may be exceeded if this is permitted under a collective or workforce
agreement.

Working time definition (GB, 2005): time during which the mobile worker
cannot dispose freely of his time and is required to be at his workstation, ready
to take up normal work, with certain tasks associated with being on duty, in
particular during periods awaiting loading or unloading where their foreseeable
duration is not known in advance.

Provisions under the Working Time Regulations 1998 (VOSA, 2011)

* An entitlement to 4.8 weeks’ paid annual leave (increased to 5.6 weeks from
1 April 2009).
» Health checks for night workers.

under 3.5
Ton

GB Domestic Drivers Hours (VOSA, 2011)

* Maximum driving limit is 10 hours per day in any 24 hour period.
* Maximum duty is 11 hour maximum in a 24 hour period beginning at the start
of the duty time.

Duty definition (VOSA, 2011): In the case of an employee driver it includes all
periods of work and driving, but does not include rest or breaks.

Provisions under the Working Time Regulations 1998 (VOSA, 2011)

* Weekly working time, which must not exceed an average of 48 hours per week
over the reference period (although individuals can ‘opt out’ of this requirement
if they want to).

* An entitlement to 4.8 weeks’ paid annual leave (increased to 5.6 weeks from
1 April 2009).

* Health checks for night workers.

* An entitlement to adequate rest.
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Driving time regulation constraints in the VRP have obtained recent attention in order to mitigate
its economic cost in transport operations (Goel et al., 2012, Kok et al., 2010a, Kok et al., 2010c,
Xu et al., 2003), time windows and driver schedules must be considered where modelling the
complete set of restrictions into solution algorithms has imposed new challenges to modellers
(Kok et al., 2010c). Kok et al. (2010c) show major improvements in the required numbers of
vehicles and travelled distance if the planning horizon considers multiple days and the full set of

regulations is modelled when scheduling long-haul operations.

Access Restrictions

Access restriction to certain zones and roads has changed due to congestion and noise;
additionally, specific regulations must be considered. In the case of Paris city centre restriction
is based on the area of the vehicle rather than on weight (Browne et al., 2007). Access
restriction includes time restrictions, which has impacted transport operations, a clear example
is the London Lorry Control Scheme enforced to protect Londoners at nights and weekends
from noise where HGV over 18 tons can only access certain roads, imposing an estimated extra
cost to the industry of 30 million (FTA, 2002).

Modelling these kinds of restrictions require detailed road representation, time windows and
considering multiple characteristics of different types of vehicles (heterogeneous fleet models).
In order to handle in an effective way all the geographical data, Geographical Information
Systems (GIS) are recommended. However, the majority of research has considered separately
operational research models for the VRP and GIS data manipulation, leaving a gap of
knowledge to analyse if routing decisions can be improved when data processing is integrated

into solution algorithms (Keenan, 2008).

Detailed geographical information for freight transport is an issue identified by transport
operators worldwide, navigational systems have been focused on the car segment; therefore,
lorries were directed to unsuitable roads and travel speed was based on car specification rather
than in freight vehicles, it might lead to inaccurate travel time estimations and other issues
(DFT, 2010, Rowell, 2012).

Length of journey
Golob and Regan (2003) and Rowell (2012) present length characterizations; however both

can be summarized in the second approach:

. Urban
. Regional (Up to 480 km)
. Long-Haul (Over 480 Km)
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Urban companies are more likely to miss schedules and reroute due to congestion (Golob and
Regan, 2003). The concept of city logistics addresses the technical requirements to routing in
congested urban environments where time-dependent models with time windows might improve
service level and reduce costs; developments in communications allow rerouting to reduce
impact of non-predictive congestion (Ehmke et al., 2012). Shorter length journeys seem to affect
vehicle size, Light Goods Vehicles account for 42 per cent of urban deliveries in the south of the
UK (Cherrett et al., 2012).

Drivers in urban operations are expected to expend less time driving than other drivers, a
characterization of urban deliveries performed by (Allen et al., 2000) shows possible impacts of

parking restriction and delivery procedures in urban operations, Table 4.

Table 4. Delivery activities and proportion of time in city centres.

Activity Percentage
e Driving 12%
e Parked at the roadside with driver 1%
present
e Parked at roadside without driver 87%
present
e Total 100%

Source: Allen et al. (2000)

It seems that regional companies are less demanding in terms of routing, they are less likely to
use routing software and to reroute due to congestion, the number of missed schedules in
regional companies is higher than in long-haul companies but lower than in urban companies
(Golob and Regan, 2003).

Long-haul companies seem to have heavier vehicles and require equally all the routing factors
to support the routing decision. Rules on Drivers’ hours, overnight parking and petrol stations
might be considered; therefore, detailed geographical information is required, maximizing
loading factor is an important issue to reduce costs. Software for this kind of companies not
necessarily provides Less-than-truck-load (multi-drop deliveries) solutions (Rowell, 2012), multi-
drop is the term in the industry when vehicles perform a number of deliveries before returning to

the depot e.g, parcels, mail, home delivery.

Type of visit
Allen et al. (2000) presented the following characterization for urban deliveries that can be

applied to different type of journeys:

. Goods
. Services

. Others (e.g.: post, waste, ancillary)
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Multiple requirements in goods and services are found in the literature (e.g., time windows,
heterogeneous fleets). However, stochastic functionalities in routing software for service
operations are reported to be the subject of possible improvement, they have not been fully
implemented in commercial applications (Drex|, 2012). At the moment, gathering sufficient data
to derive useful probability distributions in real operations is considered a difficult task, offering a
research gap to improve this situation (Drexl, 2012). Additionally, literature dealing with optional

or complex requests in extended planning horizons is rather scarce (Drexl, 2012).

Fleet Size

A frequent classification of fleet size is the division between less-than or more-than 10 vehicles.
A characteristic of the freight UK market is that a large number of companies have few vehicles
and a reduced number of companies have a large number of vehicles, reaching up to
thousands of vehicles. Therefore, 93% of small firms (less than 10 vehicles) have 46% of the
total vehicle fleet and 7% of large firms have 54% of the total vehicle fleet (Davies et al., 2007).
Studies of Information and Communication Technologies (ICT) adoption in freight road
providers and studies dealing specifically with routing software including companies with private
fleets consistently find a positive relation between fleet size and adoption ratio (Davies et al.,
2007, Golob and Regan, 2003).

Type of ownership
. Transport provider

. Private fleet.

Transport providers have played a major role in the transport industry, in the case of the UK
traditionally more goods have been transported by transport providers than by private fleets
(DFT, 2011a). Performance indicators of transport providers and private fleets vary in some
aspects, vehicles of transport providers present higher utilisation and travel longer distances;
however, lading factor and empty running indicators are similar for both type of operations
(DFT, 2011b). Although Golob and Regan (2003) suggest that transport service providers are
more like to utilise routing software, no differences regarding software requirements are

identified in the literature review.

2.2. Evolution of Computerized Vehicle Routing and Scheduling Systems

“Decision Support Systems (DSS) are computer technologies that can be used to support
complex decision making and problem solving” (Shim et al., 2002). Since the 1970’s, major
technological breakthroughs have offered innovative solutions for vehicle planners and more
recently for drivers. In this section, a review of CVRS capabilities and the respective

technological components that support them are presented.
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The three main components of DSS are a database, a model and a user interface. Since the
early 1970’s, the evolution of DSS has been influenced by data processing, the microcomputer
and network communication developments (Shim et al., 2002). Supporting the routing decision
might require an additional element to represent the road network, Geographical Information
Systems (GIS) allow the manipulation and visualization of geographical data (road
characteristics) such as streets, roads, intersections, velocities, congestion times, street names,
length, and address ranges (Bozkaya et al., 2010, loannou et al., 2002, Sadeghi-Niaraki et al.,
2011, Weigel and Cao, 1999). Among the reported benefits in the implementations of CVRS are
(Tarantilis and Kiranoudis, 2002):

. Transport cost reduction

. Reduction in fuel consumption and environmental impact
. Improved customer service

. Effective strategic planning

. Less reliance on individual skills

. Tighter control of distribution

Although CVRS has advanced considerably since its first inception, manual intervention in route
and schedule design is still vital to the operation in order to prioritize or relax certain constraints
using the real-world knowledge of the logistics planner to provide the most efficient solutions
(Cegarra et al., 2012). Despite this, many technologies have aided the development of CVRS
tools particularly GIS for enabling detailed road characterisation and mobile technologies to
allow the tracking of vehicles in real-time and the transfer of routing information emanating from

CVRS systems to the driver, see Figure 2 (Jung et al., 2006).
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Figure 2. Flowchart of the planning/delivering process with re-routing.

Source: Jung et al. (2006)

The evolution of CVRS is presented in Figure 3. Initial schedules were based on obtaining a

minimum distance/time route that satisfied all the customer service requests. In this way,

Dantzig and Ramser (1959) proposed a theoretical model for determining the minimum distance

routes for petrol tankers travelling between customers, so that each site was only visited once

while satisfying all demands and not exceeding the vehicles capacities.

GIS Sat-Nav
Vehicle monitoring In cab communication
Reports
Dataset:
— 3 e— -
On-line delivery status
and vehicle location
Software
capability:
Scheduling Complex restrains: Dynamic scheduling
Regulation, suitable roads, (re-routing during delivery)
Creation of reports etc. e.g. new requests
(e.g. KPI)

Management tracking
Customer delivery tracking

Turn-by-turn directions

o,

I

Routing with variable speed
(predicted traffic)

Dynamic scheduling
(re-routing during delivery
for unpredicted traffic)

Figure 3. Development of CVRS



18

The development and adoption of GIS by businesses and government in the late 90s (Keenan,
1998), allowed the inclusion of detailed road characteristics into commercial CVRS. In a survey
conducted in 2010 to CVRS providers, 86% reported GIS capabilities e.g., displaying routes and
maps, editable routes, address geocoding, turn-by-turn directions (where routes between
locations are described by presenting the road segments and the turns) (OR/MS-Today, 2010).
Road characterization offers the possibility to include into the model legal restrictions.
Additionally, calculation of shortest paths between customers taking under consideration the
road network geometry and restrictions becomes an automatized task with the adequate
algorithm (Jung et al., 2006).

Mobile technologies, defined as portable devices that encompass hardware, software and
communications (Jarvenpaa and Lang, 2005), that utilise GIS concepts and Global Positioning
Systems (GPS) with real time communication have brought a range of products to the transport
industry. Satellite navigation systems offer drivers turn-by-turn directions when negotiating
unfamiliar roads and 44% of companies with more than 10 vehicles in their fleet reported using
it (DFT, 2010). In-cab communications and GPS provide vehicle tracking and status of
deliveries in real time in order to re-route vehicles if necessary (e.g., courier pick-ups and
deliveries, food distribution) (Montemanni et al., 2005). Additionally, it provides control over the
operation with customers able to access the system and get information in real time about the

status of the delivery and the location of the vehicle.

The technologies previously mentioned have made possible the collection and communication
of data depicting the status of the road network; concepts like Intelligent Transportation
Systems (ITS) and Advanced Traveller Information (ATIS) are based on obtaining, processing
and communicating information in order to make a better use of transportation resources
(Crainic et al., 2009, Khattak et al., 2004). Changing road conditions such as speed due to
congestion is an issue for transport companies where schedules become unreliable if
congestion is not considered when planning (Haghani and Jung, 2005, Kok et al., 2012). In a
survey of transport managers in California, more than 80% considered congestion “serious” or
“critically serious” due to unreliable travel times, increased costs and driver frustration (Golob
and Regan, 2001), CVRS providers report the utilisation of traffic information for routing
(OR/MS-Today, 2014), which provides more reliable schedules, not considering congestion
might lead to the underestimation of travel time and missed deliveries (Haghani and Jung, 2005,
Kok et al., 2012). Although congestion can be predicted to a certain extent, recurrent delays due
to congestion are responsible for up to 80% of the total delays in peak hours (Skabardonis et
al., 2003), mobile technologies can allow drivers to receive road information in real time in order

to avoid unpredicted congestion (Cohn, 2009).
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An important element in CVRS is the ability to provide control over the operation, where
creation of reports with a statistical module is a common capability (Drexl, 2012). A new
challenge in the industry involving data storage is the driving time regulation. The Tachograph is
used to record the activities of drivers, and can be paired to CVRS in order to provide driving

times and smooth out driver workloads (Paragon, 2009).

In the UK, the main CVRS providers are: DiPS, LogiX, Optrak, Paragon, Roadnet, Descartes,
Truckstops (DFT, 2005) and 5 out of the 7 are participants of the software survey conducted by
OR/MS-Today (2014). Software characteristics (routing functions, features and type of fleet) are
shown in Table 5. Most of the vendors provide capabilities to utilise historical traffic by road
segments (OR/MS-Today, 2014), turn-by-turn directions is supported by the 5 vendors along
with capabilities for handling driving time regulations and re-routing during delivery (messaging
to driver and real time vehicle tracking). Vendors offer support to different types of fleets, each
type might have special requirements, e.g., long haul requires information about driving time
regulation with restrictions for the week, overnight parking and resting, petrol stations, cost of

petrol, tolls, etc. (Rowell, 2012), Descartes is the only vendor that supports bus routing.

Table 5. Software characteristics of main CVRS vendors in the UK.
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Source: OR/MS-Today (2014)

Although it seems that from the vendor perspective, there are a range of capabilities to support
the transport industry, there remain questions about the components that require further
improvements from a user perspective. The following section introduces a survey conducted to
companies with freight operations that made use of CVRS in order to understand the

requirements of the industry.
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2.3. Survey

The survey was designed to be answered by planners and transport managers in companies in
the UK with freight transport operations that have implemented CVRS using an on-line
structured questionnaire (see Appendix A). Companies were identified by business social
networks, business directories and the database for HGV operators. Nine hundred companies
were contacted initially by phone in order to request information regarding characteristics of
transport operation and willingness of being part of the study. In many cases it was stated that
as a company policy, no information could be provided to researchers. It is important to highlight
that only companies with CVRS could participate in the survey and the adoption rate in the
industry is low (11% in companies with less than 10 vehicles and 17% in companies with more
than 10 vehicles). In total 19 responses were gathered, 10 companies are 3PL and 9 support
private operations where the core business is other than freight services. Characteristics of

transport operations in surveyed companies are presented in Figure 4.

Type of journey Fleet size
100% 45%
90% 40% +——
80% 35% 4
70% 30%
60%
25%
50%
20%
40% +
30% 1%
20% + = 10%
10% + 5% 1
0 T 0% + | ?
Urban Regional Long Haul 10-100 100-500 500+
(480 km) (Over 480 km)
Number of vehicles

Figure 4. Characteristics of transport operations in surveyed companies (n=19)

Among the main reasons to adopt CVRS are: improvement of service level, reduction of
scheduler’s time, balance routes and control costs, see Figure 5. Surveyed companies
reported that the financial impact of congestion and service level have been higher than the
impact of driving time regulation, where more drivers are required to comply with driving time
legislation when compared to schedules prior to the implementation of the regulation, see

Figure 6.
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Marking scale:
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(See appendix A, question 13)
Figure 5. Reasons to adopt CVRS (n=19)
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Figure 6. Impact of new challenges in the industry (n=19)

The reported capabilities that require the most improvement, according to interviewed users are
optimisation of routes minimising impact of congestion and accuracy of information regarding
vehicle restriction to certain zones and times. Accuracy of road representation obtained an
average marking, where capabilities to provide support to driving time directives is marked
above average, support to different vehicle characteristics obtained the highest marking, a

capability reported as a must have in CVRS according to Drex| (2012), see Figure 7.
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Figure 7. Evaluation of CVRS capabilities according to users (n=18)
Although main vendors report capabilities for routing with historical travel time and to some
extent with real-time traffic information, surveyed companies state the necessity of improving
related capabilities. The elements of information systems to provide capabilities are data,

software and hardware. In the following section the reported issues on technologies that support
CVRS are introduced.

2.4. Issues and considerations in technologies that support CVRS capabilities

Data

The two capabilities that require the most development are optimisation of routes minimising
impact of congestion, where patterns of traffic are needed, and accuracy of information
regarding vehicle restriction to certain zones and times, additional capabilities related to data

are re-routing, where real-time congestion might be required, and accuracy of road
representation.
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Within road characterization, it is reported in the literature the lack of accurate, detailed road
information for freight transport, leading software to provide incorrect solutions, e.g., inefficient
planning and vehicles on unsuitable roads (DFT, 2010). Furthermore, maps become out-of-date
rather quickly. Gathering, processing and distributing data requires policy and resources, much
of the information required by CVRS is obtained by local authorities and some initiatives have
been put in place in order to openly share datasets in order to promote app development for
transport users (Shrestha et al., 2014), for example, the city of Reading shares the links of the
road network and estimation in real-time of road conditions based on loop detectors in selected
links®. However, the freight industry requires a number of road characteristics such as: allowed
height, allowed weight, allowed width, road gradient, allowed turns according to vehicle
characteristics, tolls and petrol stations (Rowell, 2012). This level of detail is expensive to
achieve and responsibility is not clear, available datasets are in different stakeholders, road
information and characterization might be argued that relies on councils and government, but by
2008 approximately 58% of total road length was unclassified in the UK (DFT, 2010). Road
classification consists of identification of roads that are best suited for traffic where unclassified
roads are intended for local traffic, but still there is not a clear standard and it relies on local

government characterization (DFT, 2012).

Different mapping strategies and products have come up in the market. In the car segment,
traditional Sat-Nav providers have decreased sales due to nearly free mobile apps, such is the
case of TomTom. The strategy of Waze, map-navigation app provider, is to rely on users to
update maps, at the moment there are 140.000 volunteer map editors (Gibbs, 2014). The freight
industry requires highly detailed information and Waze is an example of how to use and

communicate driver’s knowledge.

Regarding traffic patterns, currently some applications provide travel time estimations even
considering real-time conditions, such as TomTom in some European Countries (Switzerland,
UK and The Netherlands) (Cohn, 2009) and Google Traffic, some of the initiatives to obtain

traffic information are the following:

i) Obtaining road congestion data from users: It makes use of mobile technologies
and GPS to get information of multiple drivers in order to estimate network
conditions (Marfia et al., 2013). Marfia et al. (2013) named Google Traffic as an
example of this initiative and suggest that data should be used carefully due to lack
of information about accuracy (Marfia et al., 2013). Privacy issues are also
mentioned in the literature regarding user consent, data security and anonymization
(Laurila et al., 2012).

! http://opendata.reading-travelinfo.co.uk/
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i) Automatic Vehicle Identification: Plate video recognition systems are used to
identify vehicles by their plates and estimate travel time between locations when the
same vehicle is identified in two different locations in a period of time (Dion and
Rakha, 2006).

iii) Spot speed measurement systems: Speed detectors measure the speed of the
vehicles at the location of the sensor (e.g., loop detectors, radar and infrared
technologies) (Dion and Rakha, 2006). However, travel time estimations might be
inaccurate due to the complexities involved in calculations based on speed on
location of the sensor and not considering traffic dynamics and queue evolution in
the studied stretch (Soriguera and Robusté, 2011).

Traffic information is used to predict travel times on congested roads, it requires continuous
data collection across the day in order to tailor the speed model (Kok et al., 2012), gathering
traffic information on minor roads and all the links on urban networks is a difficult task due to
prohibitive investment cost in the case of loop detectors and cameras, where road congestion
data from users is emerging due to the fact that it leverages mobile network infrastructure

providing a cost-effective way to collect traffic data (Herrera et al., 2010).

Nevertheless, data managing is an expensive task that still is a matter of controversy regarding
who should be responsible for it, local councils, map providers, public agencies, etc. (DFT,
2010). There are no definitive standards governing how road database information should be
collected, updated or distributed (DFT, 2010, DFT, 2008). Recommendations to improve these
issues are: joined-up working between authorities, mapping providers, and software vendors;
resolve compatibility issues between telematics, Sat-Nav and any other IT freight solutions; and
standardisation and collaboration (DFT, 2010). Cooperation and standardisation between
stakeholders is required in order to provide accurate data. Still, there is the concern about
price, should this information be free and government subsidise it or it should come at a price.
Nevertheless, government has started to address these issues due to the possible benefits in

users of transport systems (Shrestha et al., 2014).

Software

Computer programmes on CVRS usually have 5 components: i) interface to a database or
enterprise resource centre (ERP) (system that support cross-functional processes in
companies) (Mabert et al., 2003) ii) GIS tools for geocoding addresses, calculating shortest
paths in road networks (distance and travel time between locations), geolocation, etc. iii) a
planning module to support automated/manual interactive planning (the core analytic tool), iv) a
telematics module that allows data exchange between dispatchers and vehicles, v) statistic

module to provide KPIs and reports (Drex|, 2012).
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According to Drexl (2012) the most challenging component is the automated planning module
that makes use of VRP models to find close to optimal schedules. It is important to highlight that
finding the shortest route between locations could be also a non-deterministic polynomial-time
hard (NP-Hard) problem, but different applications in network transport optimisation can be
solved in polynomial times such as the Time-dependent quickest path problem in FIFO
networks and the Time-dependent least consumption path problem (minimisation of fuel

consumption and driver wage) (Gendreau et al., 2015).

The VRP has been subject to extensive research, where a large number of variants that
consider different logistic configurations have been proposed (Eksioglu et al., 2009). However a
number of critiques have been addressed to VRP research. In many cases results cannot be
replicated, proposed algorithms make use of highly tailored parameters and focus on improving
best-known results, the industry requires parameter-free algorithms capable to consistently
solve real-life problems. According to Drexl (2012) “The last 0.1 % in solution quality to be
gained from an additional complex algorithmic device are insignificant, since the data available
in practice are never 100 % accurate”.

Despite the large number of publications in the topic, recent literature reviews on VRP
algorithms highlight the importance of providing solutions for dynamic problems (where some of
the information is revealed during the execution of the route), stochastic models (where a level
of uncertainty in the data is present and probabilistic distribution is known) (Hoff et al., 2010,
Laporte, 2009, Pillac et al., 2013), more complex instances to account for realistic situations
with richer models (Hoff et al., 2010) and integrated and synchronized models to account for
multi-modal transport and a range of operations where routes depend on each other (Drexl,
2012).

Regarding the necessities stated by the surveyed companies in this research for route
optimisation minimising the impact of congestion, Gendreau et al. (2015) conducted the most
recent literature review in time-dependent routing problems. Some of the mentioned problems
are the “time-dependent point-to-point route planning” (which is obtaining the optimal path
between two locations in a road network) and the “time-dependent vehicle routing” (time-
dependent VRP variants). The challenge in the point-to-point route planning relies on providing
efficient algorithms on-line for the next-generation web-based travel information systems that
require results in milliseconds or microseconds. Although, it is required to use this problem to
establish time-dependent travel times in the TDVRPTW, shortest paths might be determined in
a pre-processing phase (Kok et al., 2012) prior to the execution of solving the actual schedule
due to the fact that forecasted travel-times are used and there is no need of on-line applications
when designing the routes for the following planning period. Gendreau et al. (2015) highlight the
requirement of additional contributions of the Operational Research community in time-
dependent routing problems, where techniques for constant-speed classic network optimisation

problems exist but it is required research for their time-dependent counterparts.
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Hardware

CVRS might receive information from and make use of different ITS technologies, where there
are potential benefits from device interconnectivity such as retrieving actual driving times from
the Tachograph in order to provide schedules for next day accommodating driving time
regulation, telematics and analysis of driver behaviour, downloading detailed turn-by-turn
schedule into the Sat-Nav for driver knowledge, etc. However, standardization and collaboration

are required to improve device connectivity (DFT, 2010).

An additional barrier mentioned in ITS related to routing and driving is accuracy of vehicle
location, where there is signal loss of GPS due to the “city canyon” effect; tall building in city
environments, trees and hills might bounce radio signals from satellites and derive inaccurate
GPS location (Gong et al., 2012). Although it is a key issue in systems that require high
accuracy, e.g., driverless car, different solutions have been created for the freight industry such
as the integration of road characteristics to estimate the position of the vehicle when no signal is
received (DFT, 2010, Gong et al., 2012).

2.5. Discussion of the chapter

The concept of business logistics is more frequently recognized as a core capability that
enables companies to gain and maintain competitive advantage based on offering better
customer value, defined as the relation between perceived benefits and customer’s costs,
where effective planning and operation in logistics is able to improve both elements and create
value to customers (Christopher, 2010). When routing, it seems that companies maintain these
objectives, in the prioritisation of key routing factors reported by Rowell (2012), meeting
customers’ requirements and the minimisation of total cost (travel time and travel distance)
appear among the most important factors. Something according to the prioritisation of reasons
to adopt CVRS reported by companies in this research, additional reasons are reduction of
scheduler’s time and balancing workloads. Available processor capacity allows the creation of
feasible optimised routes that take under consideration a range of restrictions in a fraction of the
time that is required by manual schedules. Still, it is reported in the literature that human
interaction is required to verify and modify routes, Erdodan et al. (2013) exemplify it in a charity
organization that adopted a prototype VRP model for bank charity collection and shop delivery,
transport manager yet has to modify routes in order to minimise the risk of time window
violations due to heavy traffic, balancing workloads, clustering, inclusion of urgent requests,
forced or delayed collections and unavailability of vehicles or staff. When additional restrictions
not supported in the model have to be considered or a relaxed schedule is required, manual
route modifications should be easily performed and evaluated with an adequate CVRS interface

design based on GIS (Cegarra et al., 2012).
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The freight transport industry has some special characteristics, low margin profits (up to 3%)
(FTA, 2015), a large number of operators with very few vehicles and a small number of
companies with a large number of vehicles (7% of operators control 54% of the total goods
vehicles in the UK) (Davies et al., 2007), and a large range of logistic configurations to support
different business models. Therefore the low CVRS adoption rate, in many companies it does
not support the specific type of operation or bring enough benefits to compensate the
investment of its implementation. Nevertheless, big players are implementing and improving
computerized routing such as UPS and its ORION project (On-Road Integrated Optimisation
and Navigation), it saves more than 1.5 million gallons of fuel, reduces the environmental
impact of the operation and has shown in preliminary tests the possibility to save millions of
dollars. It will enable the next generation of software capabilities by allowing customers to see
on-line their incoming deliveries and actively choose drop preferences and reroute shipment if
necessary (UPS, 2015), it is an example of how ITS has transformed the industry and will

continue to do so.

There is the necessity to provide improved solutions to the industry, companies have stated that
optimisation under congestion and accuracy of road characteristics are capabilities that require
the most improvement. The impact of congestion has increased over the last 30 years, with the
101 largest US cities reporting that travel delay had increased from 1.1 billion hours in 1982 to
4.8 billion hours in 2011 (Chang et al., 2015). The key impact congestion has on vehicle
planning is that travel times between locations vary as a function of the changing traffic
patterns. Failure to account for this in routing decisions leads to drivers running out of hours,
additional overtime payments and missed deliveries (Haghani and Jung, 2005, Kok et al.,
2012). Although traffic data is available to a certain extent and some vendors claim that the
routing under congestion capability is implemented on software, a recent literature review
(Gendreau et al., 2015) shows that the theory to provide algorithms for time-dependent VRP
variants is still scarce.

Many initiatives have been put in place to provide and maintain relevant data for public, private
and freight transport, where policy and cooperation are key drivers. Although many questions
remain regarding security and costs, technologies to gather travel time data are available.
Additionally, there is a clear statement from policy makers to promote the use of open data, it is
recognized as the “raw material” for developments in information products and services that
can yield great economic and social benefits. The roadmap in policy is based on adapting the
legal framework, mobilizing financing instruments and facilitating coordination and experience

(European-Commission, 2011).
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To sum up

CVRS is used in the transport industry to improve service level by supporting planners in the
complex activity of vehicle scheduling. The literature review shows that a range of technological
breakthroughs has been implemented in this type of systems in order to provide representation
of road characteristics, on-line delivery status and vehicle location, and traffic information in
order to support software capabilities required by the industry. However, it is important to
understand the barriers found in real life when compared to technological or theoretical
concepts, which is intended in this research in order to provide knowledge to software
developers, researchers and stakeholders in order to identify the most relevant issues to

contribute to the transport industry.

Congestion is reported as a major concern and sampled companies report that it affects the
operation in terms of cost increment and deteriorating service. Furthermore, companies
identified route optimisation under congestion as one of the two capabilities that require the
most development. The technological elements to improve planning under congestion are traffic
patterns and time-dependent models in order to provide reliable schedules and both elements
are reported as barriers; gathering information in all the links of the road network is a difficult
task where some initiatives have been introduced to provide traffic data and although the VRP
has received much attention from researchers, recent literature reviews mention that some

variants require further research, including time-dependent variants.

Providing algorithms for routing vehicles is reported as a complex research area that might
improve the freight industry by creating routes that minimise the impact of some of the current
challenges that the industry is facing (e.g., congestion and regulation). The next chapter
introduces a literature review in VRP models and solution algorithms in order to understand the

benefits and limits of current theory to solve VRP variants.
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Chapter 3

A review of VRP variants and heuristic
solution procedures

The Vehicle Routing Problem (VRP) is a generic name for a large set of variants involving the
optimisation of routes for a fleet of vehicles to serve a set of customers with a number of
constraints that represent the restrictions that are present in logistic operations (Baldacci et al.,
2012). It is considered an NP-Hard problem due to the complexity of obtaining optimal solutions,
meaning that no algorithm has been developed to solve it by proving optimality in a reasonable

time for large instances.

The simplest algorithm that one could propose would be the enumeration and evaluation of
each possible solution of visiting all customers (n! possible solutions in the worst case scenario
with one vehicle). With current computers, for a problem of 25 delivery points, it would take
thousands of years of computational time. Therefore, this problem has been of special interest
to workers across a number of disciplines (e.g. mathematics, computer science, engineering,
etc.). Although algorithms that guarantee optimality have been developed to solve up to 200
customers for some VRP variants (Baldacci et al., 2012), metaheuristic algorithms (based on
“intelligent” search strategies rather than mathematical approaches that cannot provide results
for large instances in reasonable time) might provide fast and reliable solutions for problems of

considerable size.

However, when using metaheuristics, researchers should be careful regarding the accuracy of
the results, since metaheuristics do not guarantee optimality, and algorithms should be tested in
order to understand their capabilities of solving the studied variant (Toth and Vigo, 2001, Vidal
et al., 2013, Cordeau et al., 2002). In the previous chapter it was identified that the industry
requires time-dependent VRP models that account for congestion. This chapter examines what
the (academic) state of the art actually is, and offers a review of the evolution of heuristic and

metaheuristic solution methods for VRP variants.
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The capacitated Vehicle Routing Problem and the Vehicle Routing Problem with time windows
are NP-hard problems that nonetheless have good solutions using metaheuristics due to
research in algorithms based on adequate evaluation with available instances (Toth and Vigo,
2001). The first and second sections of this chapter present a review of Operational Research
techniques that have been developed and tested with these variants. The following sections
deal with richer variants and proposed instances in the literature, along with algorithm research
that presents algorithm evaluation in order to identify variants that require additional research,

due to a lack of analysis of the accuracy in solution methods.

3.1. The Vehicle Routing Problem and the Capacitated Vehicle Routing Problem

The first formal definition for the VRP was presented by Dantzig and Ramser (1959) for routing
a fleet of petrol delivery lorries, where each customer is represented as a point. Every pair of
points, also called arcs, is linked by a distance; every point has a demand and all lorries must
depart and finish at a central depot; all lorries have the same characteristics. The objective is to
find the set of routes with minimum travelled distance or routing time, satisfying that every
customer be served once and the capacities of lorries are not exceeded. It was presented as a
generalisation of the Travelling Salesman Problem (TSP: where the shortest route through a set
of points has to be found). This basic formulation is called capacitated Vehicle Routing Problem
(CVRP) (Toth and Vigo, 2001).

The CVRP is NP-Hard (Toth and Vigo, 2001); no exact algorithm has been developed to
provide consistently optimal values for instances in the range of 200 customers, even some
instances of 100 customers have not been solved for the CVRP (Baldacci et al., 2011). In
practice, heuristic and metaheuristic procedures have been developed to procure relatively fast

solutions.

Heuristics are algorithms designed specifically for a given problem and explore a limited search
space (Toth and Vigo, 2001), while metaheuristic algorithms are search strategies that allow a
robust exploration by local search and specially designed procedures, avoiding local optima,
forcing the search to new unexplored regions. These strategies have been used for many
combinatorial problems (Glover and Kochenberger, 2003). Although heuristics are generally

faster than metaheuristic algorithms for the VRP, the solutions are poorer.
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Cordeau et al. (2002) presented an evaluation of heuristics and metaheuristic algorithms for the

CVRP in terms of accuracy and speed. Accuracy is the difference between the obtained results

of the procedure and the optimal value or the best-known value for a certain instance, while

speed is the time required to obtain the reported solution. These values can be found in the

literature or web pages. Simplicity (i.e. the grade of the algorithm to be replicated obtaining

reported solutions) and flexibility (i.e. the grade of the algorithm to accommodate different

constraints without decreasing solution accuracy) are attributes introduced in the evaluation.

Cordeau et al. (2002) reported that several procedures are not implemented in the routing

software due to their complexity and lack of information provided in the literature.
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Figure 8. Evaluation for CVRP procedures, 14 instances between 50 and 199 customers.

Source: Cordeau et al. (2002)

A comparison of results of different procedures reported in the literature for the CVRP is shown

in Figure 8 based on 14 instances, between 50 and 199 customers, where the parameters of

evaluation are the sum of travel distance (accuracy) and computational time to obtain the

solution (speed). Although accuracy is a very straightforward comparison, speed is more

complex due to the fact that hardware (processor, RAM), compiling software and code

efficiency have an impact on it (Figliozzi, 2012). Dongarra (2007) presented detailed

information to compare relative computer power. Nevertheless, Figure 8 is an example of

solution technique evolution for the CVRP due to research in search strategies and

computational processor capacity increment.

Metaheuristic algorithms are capable of obtaining greater accuracy than heuristics, for example

the Clarke and Wright (1964) heuristic, also called the savings algorithm, is a very well-known

algorithm that yields results of 6% average from the best-known values in seconds (Cordeau et

al., 2002). The Granular Tabu Search metaheuristic algorithm proposed by Toth and Vigo

(1998) is capable of obtaining results within 1% from best-known values.
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The savings algorithm is based on the concept of merging routes that offers the highest saving,

the pseudo code of the parallel version of the algorithm is presented as follows:

Algorithm 1: Clark and Wright heuristic for the CVRP

Input Data: Let G= (V, A) be a graph where vertex V = ( vy, vy, ..., 1,) being v, the depot
and vy, ..., v, the set of customers, and dij distances between customers
Start
1. Calculate savings for each pair of customers: §; «d,; + d;, - d;;

2. Create nroutes (vehicles): R, = {vy, vy, vy }

3. Sort S in descending order

4. Repeat

5. Select highest Saving S;;

6. Check feasibility of merging routes that contains customers v; and v
//only routes with edges v; and v; may be merged//

7. If (merge is feasible) then

8. merge routes

9. EndIf

10. Disregard selected S;;
11. Until all §; are disregarded
End

Although other heuristics have been developed, metaheuristic algorithms have offered greater
accuracy for the CVRP, where some implementations based on Tabu Search (TS) have
achieved results on average within one per cent from best-known solutions (Cordeau et al.,
2002). Unified Tabu Search (Cordeau et al., 1997), Taburoute (Gendreau et al., 1994) and
Granular Tabu Search (Toth and Vigo, 1998) are implementations of TS with high accuracy

where researchers have provided execution time to compare algorithms (Cordeau et al., 2002).

TS is based on the concept of exploring the search space by hill climbing and allowing non-
improvement movements to avoid local optima. Cycles are forbidden with a Tabu list that
impedes visiting an explored neighbourhood (Glover, 1989). The basic elements of TS are

presented below; for a detailed description see Gendreau (2003).

e Search Space and Neighbourhood Structure: Search Space is the definition of all
possible solutions that can be visited; Neighbourhood Structure is the local
transformation of the actual solution to construct the neighbourhood at each iteration or

move.

e Tabu List: This is a list containing information to avoid cycles; although it might contain
a full description of the visited solutions, it is rarely implemented due to the required
computational effort. Instead, actions in recent transformations or characteristics of

visited solutions are recorded.

e Agspiration Criteria: Tabu List can impede certain movements that could achieve better
values; therefore, evaluation to allow movements that are considered Tabu might be

implemented.
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e Termination Criteria: Because TS do not guarantee optimality, there is not a
finalisation per se. Usually, three criteria can be implemented: i) stop at a certain
number of iterations or CPU time, ii) stop after a number of iterations without

improvement, and iii) stop after achieving a certain estimated value.

e Intensification: The concept relies on exploring more thoroughly some promising
portions of the Search Space, which might take place by modifying the neighbourhood

structure or forcing the utilisation of some values in the solution.

o Diversification: This is a procedure to force the search into unexplored areas of the
Search Space.

Unified Tabu Search, Taburoute and Granular Tabu Search start with fast heuristics such as the
savings algorithm to produce initial solutions and use well-known neighbourhood structures as
search space; see Figure 9. The search space may include non-feasible solutions that are
penalised in the objective function. A key element to improving the speed is to reduce the
neighbourhood size by selecting arcs with a higher likelihood of producing a better move
(Cordeau et al., 2002). An example is presented by Toth and Vigo (1998) by not considering in
the search process arcs with small “likelihood” of producing a good solution. “Likelihood” is
evaluated with the following function, 9 = B x €, where B is a sparsification parameter and ¢ is
the average cost of the arcs in the initial solution generated with the savings algorithm. With 8
values between 1-2.5, approximately 10—-20% of arcs are used in the neighbourhood

construction; intensification and diversification are achieved by modifying the parameter 3.
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2-Opt Operator 2-Opt* Operator

Replacing two edges by other two edges Combining two routes so the last customers of
within the same route, the orientation of the a route are inserted after the first customers of
route is partially modified. other route, the orientation of the routes are

never modified.

Exchange Operator Relocate operator
Swapping two customers in different routes. Relocating a chain of consecutive customers

in a different route.

CROSS-Exchange Operator

Tetial

Swapping two sequences of customers in
different routes, the orientation of the routes [ Depot ® Customer
are never modified.

Figure 9. Common neighbourhood structures for the VRP search space.
Source: Braysy and Gendreau (2005a)

Although the CVRP is an NP-Hard problem, the solution methods have evolved to provide

highly accurate solutions for large instances due to increment in computational capacity and the

development of search strategies that take advantage of heuristics and well-known

neighbourhood structures. In this section, the evolution of algorithm research for a VRP variant

has been shown. Although TS is recognised as one of the available solutions, many different
concepts might be employed in state-of-the-art algorithms to solve the CVRP and richer

variants; the following sections will show some of these search strategies.
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3.2. The Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with time windows (VRPTW) is a VRP variant where each
customer has a demand, a time window to be served and each visit has duration. In the hard
VRPTW, the service has to start strictly in the time window interval; if the vehicle arrives early it
has to wait until the time window allows the service and no customer can be served after the
time window is closed, whereas in the soft version, a penalty is associated with every violation
of the time window restriction. Commonly the VRPTW has two objectives: first, minimisation of
number of vehicles; secondly minimisation of travel distance (Braysy and Gendreau, 2005a,
Braysy and Gendreau, 2005b, Toth and Vigo, 2003).

The VRPTW is more complex than the CVRP: due to the time window restriction, finding
feasible solutions is computationally expensive and minimising the number of vehicles requires
additional modifications in the search process (Braysy and Gendreau, 2005a, Braysy and
Gendreau, 2005b, Vidal et al., 2013). The VRPTW has been the subject of intense research
(Braysy and Gendreau, 2005a, Braysy and Gendreau, 2005b, Toth and Vigo, 2001, Vidal et al.,
2013), and evaluation of procedures is commonly performed with 56 instances of 100
customers created by Solomon (1987); instances of up to 1000 customers were introduced by
Gehring and Homberger (1999) following Solomon’s methodology. See Table 6 for the
description of Solomon’s instances. A range of heuristics and metaheuristic algorithms has
been developed to solve the VRPTW. Figure 10 shows the evolution in solution accuracy and

speed due to research in search strategies and increment in computational processing capacity.

Table 6. Description of Solomon’s instances — 100 customers.

Description Best-known values
Problem  Number of Time Window ~ Cumulative o . . o
class problems  Customer location /planning Number of ;
. - Distance
horizon Vehicles
R1 12 Random Tight 143 14,524.08
R2 11 Random Lax 30 10,461.33
C1 9 Cluster Tight 90 7,455.42
c2 8 Cluster Lax 24 4,718.88
RC1 8 Random-Cluster Tight 92 11,073.28
RC2 8 Random-Cluster Lax 26 8,953.92
Total 405 57,186.91

Tight: Short time windows that allows a few number of customer per vehicle and short planning horizon
Lax: Long time window that allows a large number of customers per vehicle and long planning horizon

Source: Solomon (1987) and Vidal et al. (2013)
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Figure 10. Evaluation for VRPTW procedures, Solomon’s 56 instances of 100 customers
Source: Braysy and Gendreau (2005a), Braysy and Gendreau (2005b) and Vidal et al. (2013).

A very well-known heuristic is the insertion heuristic 11 proposed by Solomon (1987). With
results around 11% from best-known values of number of vehicles and 28% for travel distance,
it is considered a fast procedure, easy to implement, but with low accuracy. However, the
concept of sorting customers into routes according to time savings by reducing the waiting time
is applied in a number of procedures to provide initial solutions for further improvement (Braysy
and Gendreau, 2005b). The pseudo-code is presented as follows; for a full description, see
Solomon (1987):

Algorithm 2: Solomon’s heuristic I1 for the VRPTW

Input Data: Let G= (V, A) be a graph where vertex V = ( vy, vy, ..., 1,) being v, the depot
and vy, ..., v, the set of customers, and d;; distances between customers
W, a, A : parameters to control weight of distance
ay: parameter to control weight of time insertion
o1 + oz =1; a1=0; az=0; A =0;

Start
1. Repeat
2. Select customer seed v,,; //method 1: The farthest unrouted customer
method 2: The unrouted customer with the earliest deadline//
3. Create route { Vg , Vseeqs Vo }
4. Repeat
5. Ciagiu)y « A + dyj- (n*dy)
6. Ci2(iuj) < b — by // b; is the starting time of service for customer v;
by, is the new starting time of service at v; if v, is inserted//
7. Ciginy < 0 * Crigay + 02* Crogu,)y
8. Cotijy <N * doy -1 * Cyy
9. Until all unrouted customers have been evaluated at all positions in current route
10. Select v, with lower C(;, ;) and insert in current route between v; and v

//Note that only feasible insertions are allowed//
11. Until all customer are in solution
End
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State-of-the-art exact methods for the VRPTW are capable of solving instances in the range of
100 customers based on set partitioning formulation and branch-and-price or branch-and-cut
algorithms (Baldacci et al., 2012). However, computational time is considerably higher than
metaheuristic approaches and some instances still are difficult to solve, e.g. problems with 100
customers can take up to 7.9 hours to solve when a solution can be obtained. Table 7 shows
computational time for three exact algorithm approaches using Solomon'’s instances for 100

customers.

Table 7. Benchmark for exact algorithms for the VRPTW — Solomon'’s instances 100 customers.

Problem Number of unsolved Average computational time per problem
class problems (sec)
Approach 1 2 3 1 2 3

R1 0 0 0 251 27,412 2,327
R2 1 7 3 28,680 35,292 63,068
C1 0 0 0 25 468 18
C2 0 1 0 40 2,795 2,093

RC1 0 0 0 276 11,004 2,150

RC2 0 3 2 3,767 3,204 15,394

1: Baldacci et al. (2011) Intel Xeon X7350 2.93 GHz 16 GB RAM 2: Jepsen et al. (2008) Pentium IV 3.0 GHz
3: Desaulniers et al. (2008) Dual Core AMD Opteron 2.6 GHz
Source: Baldacci et al. (2011)

Different metaheuristic algorithms have been developed for combinatorial problems and have
been tested with the VRPTW, where high accuracy in reasonable time has been achieved with
different search strategies (Vidal et al., 2013). However, they commonly share elements; some
of the concepts are listed below with examples of implementations of search strategies that
make use of them:

e Creation of initial solution with fast heuristics: Different metaheuristic algorithms create
an initial solution with a fast heuristic and then try to improve the initial solution e.g.
Tabu Search (Braysy and Gendreau, 2005b), Variable Neighbourhood Search, and
Large Neighbourhood Search (Ropke and Pisinger, 2006).

¢ Evolutionary algorithms: Genetic algorithms and evolution strategies use simulated
evolution based on selection, recombination and mutation in order to solve complex
problems, where stochastic elements are commonly present at some stage (Whitley,
2001), state-of-the-art evolutionary algorithms for the VRPTW are Vidal et al. (2013)
and Nagata et al. (2010).

e Local search operators: Neighbourhood structures based on arc-and-node exchange
are used to explore the search space, see Figure 3, e.g. Tabu Search (Braysy and
Gendreau, 2005b, Cordeau and Maischberger, 2012), Variable Neighbourhood Search
and Evolutionary algorithms (Nagata et al., 2010, Vidal et al., 2013).
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e Ruin and recreate / Large Neighbourhood Search (LNS): The basic element of these
search strategies is the iterative partial destruction of solutions (i.e. the removal of
customers from the original routes) and rebuilding them by fast heuristics (insertion of
removed customers in the current solution in a smart way: Schrimpf et al., 2000), e.g.
Tabu Search (Cordeau and Maischberger, 2012) and Large Neighbourhood Search
(Ropke and Pisinger, 2006).

e Guidance and memories: It operates by penalising particular solution features that are
considered not to be in “good solutions”, such as long arcs. The algorithm might
remember how many times each penalised feature appears in the search process and
update the value of the penalty, e.g. Evolutionary algorithms (Mester and Braysy, 2005,
Vidal et al., 2013).

e Ejection chains: Changes in selected elements cause other elements to be ejected from
their initial state or position, in the VRP consist of removing a customer from its initial
route and trying to insert it in another route by “making room” through consecutive
iterations of insertions and removals (Braysy and Gendreau, 2005a, Glover, 1992) e.g.

Tabu Search (Rego, 2001) and Evolutionary algorithms (Nagata et al., 2010).

e Parallel computing: The presence of multiple cores in computers has given workers the
opportunity to work with multiple threads in order to speed up the search process (Le
Bouthillier et al., 2005), e.g. Tabu Search (Cordeau and Maischberger, 2012) and
Evolutionary algorithms (Gehring and Homberger, 2002).

e Mathematical programing hybrids: Although exact algorithms are computationally
expensive. the search process can be sped up by its integration with metaheuristic e.g.
Branch-and-Price and Large Neighbourhood Search (Prescott-Gagnon et al., 2009) and

Evolutionary algorithms and set partitioning formulation (Alvarenga et al., 2007).

In order to speed up execution time, some strategies have been proposed to reduce the search
space (Braysy and Gendreau, 2005b). In the case of local search operators, two acceptance
strategies are common: best-accept and first-accept. The best-accept strategy examines the
complete neighbourhood and selects the best solution, whereas the first-accept strategy selects
the first neighbour that provides an improvement (Braysy and Gendreau, 2005b). Additional
strategies are available, such as allowing only moves between close-distance customers
(Garcia et al., 1994) and identifying “promising candidates” in terms of distance, time proximity
and asymmetry issues (Vidal et al., 2013). An example is provided by Vidal et al. (2013), where
it is proposed to evaluate neighbourhood movements only between the most correlated pair of

customers, defined by Ywyo)) » which is defined as the weighted sum of distance, the minimum

waiting time and the minimum penalty between any pair of customers v; and v;.
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Y(Ui,lij) = dU + YWT maX{e]' + 8i + tij - lL', 0} + YTW max{ei + gi + tij - l] 0}

where d;; is the distance between customers v; and v, t;; is the travel time, e; is the lower time
window of customer v;, 1; upper time window,g; service duration, y"7 and y™ are parameters
that balance the role of geometrical and temporal parameters and have to be calibrated
according to spatial characteristics, distribution and tightness of time windows of the problem at
hand. Another technique to speed up the search process is the use of “macronodes”, where a
sequence of customers is treated as a node in order to evaluate neighbourhoods (Braysy and
Gendreau, 2005a, Cordone and Wolfler-Calvo, 1997).

A number of techniques have been developed to deal with the different decisions and issues
that come up in the implementation of algorithms to solve the VRPTW, perhaps one of the most
complete literature reviews that deals with this topic is presented by Braysy and Gendreau
(20054, 2005b). An important factor in the increased complexity of the VRPTW versus the
CVRP is minimising the number of vehicles in the presence of time windows, where a number of
approaches have been implemented; see Braysy and Gendreau (2005a, 2005b). Two-stage
algorithms that focus the search firstly by reducing routes and secondly by minimising travel
time are more likely to obtain the optimal minimum number of vehicles (Bent and Van

Hentenryck, 2004), therefore requiring specific tailoring for each stage.

A successful example of explicit strategies for route minimisation is introduced by Bent and Van
Hentenryck (2004). They make use of the metaheuristic algorithm Simulated Annealing for
minimisation of vehicles and LNS for distance minimisation due to the fact that initial testing of
LNS vyielded low accuracy in Solomon instances with lax time windows (i.e. instances with a
large number of vehicles per route). In the first stage, routes with a large number of customers
and a low number of customers are maintained throughout the search process with the
implementation of an objective function that maximises the sum of the squares of route sizes in
order to try to insert customers from small routes into large routes, where simulated annealing is
used to guide the search. The result of this implementation achieved the best-known values for

the number of vehicles (improving the best-known values at the time of publication).

Research on metaheuristics has provided highly efficient algorithms to deal with the VRPTW.
Table 8 shows some approaches capable of coping with instances of up to 1000 customers with
a high accuracy in a reasonable time, such as the mathematical programming hybrid branch-
and-cut and the LNS proposed by Prescott-Gagnon et al. (2009) and evolutionary algorithms
(Nagata et al., 2010, Repoussis et al., 2009, Vidal et al., 2013).



Table 8. Benchmark for metaheuristic algorithms for the VRPTW.
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Approach kr?c?v?ltr; 1 2 3 4 5

values
Number of runs 5 3 1 5 5

Number of customers

CNV 405 405 405 405 405 405
100 CTD 57187 51240 57216 57205 57187 57196
Time (min) 5x30 3x17.9 3.2 5x5.0 5x2.68
CNV 694 694 694 694 694 694
200 CTD 168067 168556 169163 168143 168067 168092
Time (min) 5x53 90 4.7 5x4.1 5x8.4
CNV 1381 1381 1381 1381 1381 1382
400 CTD 388013 389011 395936 388548 388466 388697
Time (min) 5x89 180 34 5x16.2 34.1
CNV 2066 2071 2066 2067 2067 2068
600 CTD 816326 800797 816326 789420 789592 786373
Time (min) 5x105 270 80.4 5x25.3 5x99.4
CNV 2738 2745 2739 2739 2738 2739
800 CTD 1357695 1391344 1424321 1352478 1357695 1334963
Time (min) 5x129 360 126.8 5x27.6 5x215
CNV 3420 3432 3428 3424 3424 3420
1000 CTD 2036700 2096823 2144830 2040661 2045720 2036700
Time (min) 5x162 450 186.4 5x35.3 5x349
Processor P4-2.8G Opt-2.3 P4-3 Opt -2.4 Xe-2.93

1. Branch-and-Price and Large Neighbourhood Search Prescott - Gagnon et al. (2009) 2. Evolutionary
Algorithm Repoussis et al. (2009) 3. — 4. Evolutionary Algorithm Nagata et al. (2010) 5. Evolutionary

Algorithm Vidal et al. (2013) Evolutionary Algorithm.
Best known results are in bold CNV: Cumulative number of vehicles CTD: Cumulative travel distance

3.3. Rich models

The CVRP and the VRPTW are frequently not applicable in logistic operations and therefore

over the years many variations have been proposed, including, for example, Vehicle Routing

Problems with heterogeneous fleets, pickup and delivery, multiple depots, etc. Although

algorithms have been developed to provide high accuracy for some theoretical VRP variants,

richer variants may require additional algorithm tailoring. In this subsection the literature review

is focused on research that performs adequate algorithm evaluation (using benchmark

instances) for relevant VRP variants in the industry such as heterogeneous fleets (a must-have

feature in CVRS according to Drexl (2012)) or time-dependent Vehicle Routing Problems (in

order to provide reliable schedules when congestion is present). It is in the interest of the

industry and researchers to understand the capabilities of state-of-the-art algorithms reported in

the literature to provide highly accurate solutions in a reasonable time for variants that consider

the necessities of the freight industry.
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3.3.1. Fleets with heterogeneous vehicles and the Vehicle Routing Problem

Vehicle fleets in real life are rarely homogeneous; fleets are acquired over long periods of time
and vehicles will have different characteristics due to technological developments and market
conditions, where versatility is a desired fleet characteristic in order to cope with operational
constraints (urban environment, access restriction, economies of scale, etc.); vehicles may differ
in dimensions, weight, capacity, speed, equipment, fuel consumption and cost structure (Braysy
et al., 2008; Hoff et al., 2010). The heterogeneous fleet VRP (HVRP) and the fleet size and mix
VRP (FSM) are sets of variants of the VRP that consider vehicles with different characteristics
e.g., capacities, travel costs, capital costs, etc. (Baldacci et al., 2008). In the HVRP the number
of vehicles available per each type of vehicle is restricted, e.g. there are limited vehicles available
at the depot, whereas in the FSM there is an unlimited number of vehicles, e.g. a decision is

needed about what types of vehicles are required.

The first formal formulation for a heterogeneous fleet was presented by Golden et al. (1984) as
the fleet size and mix Vehicle Routing Problem. Over the years, theoretical variants have been
proposed, but the notation in the literature is not consistent (Baldacci et al., 2008;
Paraskevopoulos et al., 2008). The notation introduced by Baldacci et al. (2008) for the
capacitated HVRP and FSM will be used and extended for variants with time windows as follows:
HVRP (Heterogeneous VRP), FSM (Fleet Size and Mix VRP), F (Dependent Fixed Costs), D
(Dependent Running costs) and TW (Time Windows); see Table 9.

Table 9. Variants for Heterogeneous Fleets.

Problem Unlimited  Dependent Dependent
Name! Fleet Size Fixed Cost Running Costs
HVRP-F-TW v
HVRP-D-TW v
HVRP-FD-TW
FSM-F-TW v v
FSM-D-TW v v
FSM-FD-TW v v v

! Notation: HVRP Heterogeneous VRP FSM Fleet Size and Mix
VRP F Dependent Fixed Cost D Dependent Routing Cost TW Time
Windows
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Table 10. Publications for VRP models with Heterogeneous Vehicles and Time Windows

= 2 m -
Author T o & E E o Method Benchmark instances Observations
E & E s Ss
z £ = £ £ B
Liu and Shen 1999 Introduction of benchmark for the
Jiang 2014 X X TS Introduction of instances HVRPFDTW based on costs and
for the HYRPFDTW dependent returning time to the depot
Hybrid
Kog 2014 X X Evolutionary Liu and Shen 1999
algorithm
Repoussis 2010 X TS Liu and Shen 1999
Braysy 2008 X Deterministic Liu and Shen 1999

annealing

Liu and Shen 1999
Paraskevopoulos 2008 X X VNS Introduction of instances
for the HVRPFTW

Dell'Amico 2007 X Ruin and Liu and Shen 1999
recreate
Dullaert 2002 X Heuristics Liu and Shen 1999 Discussion about dependent
cost by distance and time in real life
Liu and Shen 1999 X Heuristics Introduction of instances

for the FSMFTW
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VRP variants with heterogeneous vehicles with time windows have been studied far less by the
scientific community than their counterparts the VRPTW (Kog et al., 2014a) or simpler VRP
variants with heterogeneous vehicles without time windows (Hoff et al., 2010). The review of
literature in this research will focus on variants with time windows. For a review of simpler
variants, refer to Baldacci et al. (2008). Table 10 shows some of the publications focused on
heterogeneous vehicles and time windows, the fleet size and mix VRP with dependent fixed
costs. FSM-F-TW, where fixed costs include vehicle excise duty (VED), insurance and
depreciation of vehicle value, has received the most attention from the theoretical perspective,
commonly using instances proposed by Liu and Shen (1999a), based on Solomon's (1987)
instances for algorithm performance analysis. For the heterogeneous VRP with dependent fixed
costs (HVRP-F-TW), Paraskevopoulos et al. (2008) introduced an extension of instances of Liu
and Shen. The available number of vehicles is the best number of vehicles obtained by Liu and
Shen (1999b) for FSM-F-TW instances. Recently, instances for the heterogeneous VRP with
dependent fixed costs and dependent routing costs (HVRP-FD-TW) were proposed by Jiang et
al. (2014). Solution analysis with formally proposed instances was not found in the literature
review for the heterogeneous VRP with dependent running costs and time windows (HVRP-D-
TW), fleet size and mix VRP with dependent running costs and time windows (FSM-D-TW), or
fleet size and mix VRP with fixed costs dependent running costs and time windows (FSMF-DT-
TW).

Liu and Shen (1999a) solved the FSM-F-TW with a number of heuristics and an improvement
phase based on perturbation and local search, with the objective of minimising the sum of the
fixed costs and travel time. The proposed instances are an extension of Solomon’s instances,
and three different sets of vehicle costs are considered for each of Solomon’s problems (for a
total of 168 problems) with dependent capacities and fixed costs for each type of vehicle (see
Table 11).



Table 11. Benchmark instances for the FSMFTW (100 customers) - Liu and Shen (1999a)
Fixed cost per vehicle

Vehicle

Problem Capacity

type a b C

A 30 50 10 5

B 50 80 16 8

R1 C 80 140 28 14
D 120 250 50 25

E 200 500 100 50

A 300 450 90 45

R2 B 400 700 140 70
C 600 1200 240 120

D 1000 2500 500 250

A 100 300 60 30

c1 B 200 800 160 80
C 300 1350 270 135

A 400 1000 200 100

o B 500 1400 280 140
C 600 2000 400 200

D 700 2700 540 270

A 40 60 12 6

RC1 B 80 150 30 15
C 150 300 60 30

D 200 450 90 45

a, b, ¢ are different cost structures
Source: Liu and Shen (1999a)
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Dell’Amico et al. (2007) proposed a Ruin and Recreate metaheuristic approach for the FSM-F-

TW, and their solution took advantage of the similarity to the bin-packing problem, where
objects of different volumes must be packed into bins, in order to propose new movements.

Selected routes are targeted to be served by a smaller vehicle if a number of customers are

removed, and a parallel recreate heuristic tries to recreate a new feasible solution. Evaluation of

the algorithm’s performance showed improved results (6%) when compared to Liu and Shen

(1999a). Figure 11 shows the performance of the algorithm when more execution time is

allowed.
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Figure 11. Performance of the Ruin and Recreate algorithm proposed by Dell’Amico et al.
(2007) for the fleet size and mix VRP with dependent fixed costs at different execution times.
Source: Dell'Amico et al. (2007)

Paraskevopoulos et al. (2008) present a Variable Neighbourhood Search metaheuristic (VNS)
using Tabu search for local search for the FSM-F-TW and the heterogeneous VRP with
dependent fixed costs with time windows (HVRP-F-TW), proposing benchmark instances,
where an algorithm with two stages is tailored: i) the method for construction of an initial solution
and minimisation of the number of vehicles describes a construction heuristic with multiple
metrics specially designed for heterogeneous fleets and subsequently ejection chains are used
to reduce the number of vehicles required where an infeasible search space is temporarily
allowed; ii) a Tabu search embedded in a VNS makes use of local search neighbourhoods to
improve the solutions. The algorithm improved the resulting values for the FSM-F-TW by an
additional 2% when compared to Dell'’Amico et al. (2007).

Braysy et al. (2008) studied the FSM-F-TW with the objective function proposed by Liu and
Shen (1999a), and an additional objective function based on route duration. The proposed
solution method is based on the construction of an initial solution, minimisation of routes by
selecting a complete route for elimination and attempts to insert its customers in the remaining
routes, with simple insertion heuristics trying to improve the total cost reduction, and local
search with a deterministic annealing framework to guide the search. The algorithm obtained an
additional 1.6% reduction when compared to Paraskevopoulos et al. (2008). Braysy et al.
(2009) introduced new instances based on Gehring and Homberger (1999) for instances up to
1000 customers, and their search procedure made use of a threshold acceptance value (where
solution deterioration is accepted until a certain threshold value in order to escape from local
optima) and guided local search (introduction of penalisation in the objective function of certain
solution features that are not considered in near-optimal solutions).
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Kog et al. (2014a) studied the FSM-F-TW and the heterogeneous VRP with dependent fixed
costs with time windows (HVRP-F-TW), making use of a hybrid evolutionary algorithm and
finding improved results of 0.34% over the work of Paraskevopoulos et al. (2008) for the HVRP-
F-TW. Jiang et al. (2014) presented a Tabu search for the FSM-F-TW and introduced instances
for the HYRP-FD-TW based on Solomon’s instances (dependent capacity, dependent fixed
cost, dependent variable cost and dependent returning time to the depot) (see Table 12). The

objective function is based on costs and distance.

Table 12. Benchmark instances for the HVRP-FD-TW (100 customers) - Jiang et al. (2014).
Vehicle characteristics

Proble Vehicl  Availabl

m e e Capacit
class type vehicles vy Fixed Cost Variable cost Last Returning time
A 10 50 80 1.0 180
R1 B 15 80 140 1.2 200
C 10 120 250 1.4 230
R2 A 10 300 45 1.0 800
B 5 400 70 1.2 1000
c1 A 20 100 30 1.0 1000
B 5 200 80 1.2 1236
o A 20 400 100 1.0 3000
B 5 500 140 1.2 3390
A 10 40 60 1.0 200
RC1 B 20 80 150 1.2 220
C 10 150 300 1.4 240
RCY A 10 100 150 1.0 900
B 5 200 350 1.2 960

Source: Jiang et al. (2014)

Dullaert et al. (2002) presented a set of sequential heuristics for the FSM-F-TW and introduced
a discussion about variable running costs in the industry. According to the authors, distance and
time should be considered with their corresponding cost coefficients when scheduling vehicles
in the freight industry in order to calculate the routing costs rather than using an objective

function distance as in the theoretical VRPTW (see Table 13).
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Table 13. Representative routing costs in the industry, values in Euros for 1999.

Fixed Hour Kilometre
Vehicle type cost coefficient coefficient
Van 0.5t 144.27 0.27 0.1
Lorry 5t 154.26 0.29 0.15
Lorry 8 t 162.54 0.3 0.17
Lorry 20 t 187.92 0.35 0.21
Truck and trailer 28t  195.75 0.36 0.24

Source: Dullaert et al. (2002)

Recently, Kog et al. (2014b) proposed the fleet size and mix pollution-routing problem with time
windows, where a number of vehicle types are available and the main objective is the reduction
of vehicle fixed costs (depreciation, repair and maintenance, tyres, etc.) and routing cost based
on travel time (wages) and fuel cost (distance, optimisation of speed across the links and CO:
emissions). Fuel consumption is estimated with the model of Barth et al. (2005) and Barth and
Boriboonsomsin (2009), vehicle dependent parameters are shown in Table 14, and vehicle
constant parameters are shown in Table 15. The instances are an extension of the instances
proposed by Demir et al. (2012) for the homogeneous mix polluting problem with time windows
for up to 200 nodes. The solution procedure is a hybrid heuristic with the principles of an
evolutionary algorithm (Kog et al., 2014a), adaptive large neighbourhood search, the Split
algorithm for heterogeneous VRP (Prins, 2009) and a Speed Optimisation Algorithm (SOA)
(Hvattum et al., 2013; Norstad et al., 2011).

Table 14. Dependent parameters according to vehicle type for estimation of fuel consumption
and other costs.

Notation  Description Light duty (L) Medium duty (M) Heavy duty (H)
wh Curb weight (kg) 3500 55000 14000
Qh Maximum payload (kg) 4000 12500 26000
Jike Vehicle fixed cost (E/day) 42 60 95
Kh Engine friction factor (kj/rev/liter) 0.25 0.2 0.15
NP Engine speed (rev/s) 38.34 36.67 30
Vh Engine displacement (liter) 4.5 6.9 10.5
CQ Coefficient of aerodynamics drag 0.6 0.7 0.9
AN Frontal surface area (m?) 7 8 10

Source: Kog et al. (2014b)
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Table 15. Fixed parameters for estimation of fuel consumption and other costs.

Notation Description Typical values
& Fuel-to-air mass ratio 1
g Gravitational constant (m/s?) 9.81
o Air density (kg/m?3) 1.2041
C, Coefficient of rolling resistance 0.01
n Efficiency parameter for diesel engines 0.45
fz Fuel and CO2 emissions cost (£/liter) 1.4
fa Driver wage (£/s) 0.0022
K Heating value of a typical diesel fuel (kj/g) 44
P Conversion factor (g/s to L/s) 737
Nys Vehicle drive train efficiency 0.45
v Lower speed limit (m/s) 5.5 (or 20 km/h)
v Upper speed limit (m/s) 27.8 (or 100 km/h)
e Road angle 0 0
T Acceleration (m/s?) 0 0
" Refers to the relative fuel-air ratio of fuel and air that enter into the engine (FARgoichiometric)
FAR o chiomersse = fuel to oxidizer ratio _ Mpyer/Mox
StolCiometrie - fuel to oxidizer ratioseichiometric (Mpyer/Mox) stoichiometric

n = number of moles

See El-Mahallawy & Habik (2002)

Source: Kog et al. (2014b)

The conclusions drawn by Kog et al. (2014b) from analysing the results for 100 nodes
suggested that the main reduction might be achieved with vehicle type selection by finding the
most appropriate fleet composition. By selecting only light duty vehicles the average cost in the
test instances increased by 19.88% on average, and 24.9% when only heavy duty vehicles
were used. Regarding the optimisation of the vehicle travel speed, by allowing vehicles to travel
at maximum speed (100 km/h), there is a small cost increment when compared to optimising the
travel speed in each arc, and the authors concluded that in real life operations it might be easier
to allow vehicles to travel at the maximum speed due to the small benefit of travel speed
optimisation. Figure 12 shows the relation between fuel consumption and average speed using
a simplified model to estimate fuel consumption provided by the UK Department of Transport

(DFT, 2014), which uses as parameters the type of vehicle and average travel speed.
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Figure 12. Typical Fuel consumption for a Diesel LGV vs. average speed with constant weight.
Source: DFT (2014)

An industry application for VRP variants with heterogeneous fleets and time windows with only
dependent physical characteristics (capacity, weigh, access restriction) is presented by Rochat
and Semet (1994) and Brand&o and Mercer (1997), where the analysis of the solution is based
on comparison of manual schedules versus the results of the proposed algorithm. Although the
new solutions do not always represent a reduction in the required number of vehicles or costs,
which may be up to 24% in certain scenarios, the software is capable of dealing with multiple
restrictions in a better way than manual scheduling by offering solutions that comply with weight

restrictions, access restrictions and rules on drivers’ hours.

Routing vehicles with multiple restrictions is a complex activity that can be improved by
software. Companies commonly have heterogeneous fleets to cope with multiple restrictions in
real life so VRP models for fleets with heterogeneous vehicles with time windows have attracted
attention recently from researchers. Although the metaheuristics are available, it is required to
propose more research with adequate benchmark instances for richer instances that consider

the multiple restraints found in logistic operations (Hoff et al., 2010).

3.3.2. Rules on Drivers’ hours

New restrictions dealing with Rules on Drivers’ hours in the VRP have attracted attention in
order to mitigate their economic cost in transport operations (Kok et al., 2010a; Kok et al.,
2010c; Xu et al., 2003). Driver schedules must be considered and modelling the complete set of
restrictions into solution algorithms has imposed new challenges for modellers (Kok et al.,
2010c).



50

Goel (2009) proposed an algorithm to accommodate regulation (EC) 561/2006 (Rules on
Drivers’ hours for member states of the European Union for vehicles over 3.5 ton) that
considers a sub-set of rules that are strict enough to ensure the feasibility of the routes when all
regulations are taken into account in long-haul operations (Prescott-Gagnon et al., 2010). A set
of benchmarking instances based on Solomon (1987) were introduced. The primary objective is
the minimisation of vehicles and the secondary objective is the minimisation of travel distance.
The algorithm is based on LNS with a ruin procedure based on random removals and an
auction method (Antes and Derigs, 1995) for recreation that involves random elements in the

insertion procedure.

Kok et al. (2010c) designed an algorithm for the VRP variant proposed by Goel (2009), and the
solution algorithm was based on a restricted Dynamic Programming (DP) algorithm (Gromicho
et al., 2008) with a giant tour representation. DP provided improved results (17% fewer vehicles
and a travel distance reduction of 5%). Prescott-Gagnon et al. (2010) also studied this variant
and obtained a further improvement (an additional reduction in the number of vehicles by 17%
and travel distance by 12%) with an LNS tailoring that made use of a column generation
heuristic for neighbourhood exploration. The work of Goel and Vidal (2014) has showed
promising results by providing a hybrid genetic search capable of coping with driving time
regulation for different countries (e.g., United States, Canada, the European Union and

Australia) and outperform previous implementations for constant-speed VRP variants.

Although urban and regional freight operations should also comply with regulation (EC)
561/2006, accommodating the restrictions specially designed for long-haul operation such as
daily and weekly rest periods may be easily introduced in the planning horizons of one day
(routing for the next day), as opposed to long-haul operations, where overnight parking and
journeys of more than one day may be considered. However, urban environments are subject to
congestion (speed varies according to the time of the day), and providing reliable schedules that
comply with the regulations is in the interest of the industry in order to accommodate the
regulations at the minimum possible cost. Therefore Kok et al. (2010b) proposed a rich VRP
variant that considers time-dependent travel times and a sub-set of rules of the regulation (EC)
561/2006 applicable in urban or regional operations. No other research was found in the

literature studying this variant.

3.3.3. Time-Dependent travel times in the Vehicle Routing Problem

VRP variants have assumed constant speed throughout the day; the time-dependent Vehicle
Routing Problem (TDVRP) addresses travel time variations during periods of delivery in order to
represent congestion (Kok et al., 2012; Malandraki and Daskin, 1992). Congestion is present
due to the growing amount of traffic and limited capacity of the road infrastructure, and delays
have impacted the logistic sector, so that models that avoid traffic have a large potential to
mitigate the impact of congestion (Kok et al., 2012). Analysis of VRP models with time-

dependent travel times versus models with constant speed depicts the impact of not considering
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congestion on routing decisions when speed varies during deliveries. Solution of constant
speed models might underestimate the actual travel time, provide infeasible solutions and fail to
comply with delivery times (Donati et al., 2008; Fleischmann et al., 2004; Ichoua et al., 2003).
The instances proposed by Solomon (1987) are commonly used to evaluate solution algorithms
for the VRPTW and a vast range of approaches is available with results near to optimality in
little computational time (Braysy and Gendreau, 2005a; Braysy and Gendreau, 2005b; Toth and
Vigo, 2001; Vidal et al., 2013). Although Donati et al. (2008) and Fleischmann et al. (2004) used
variations of this set of instances to evaluate algorithms for the TDVRPTW, only Figliozzi (2012)
provides the complete information to fully reproduce instances when speed variation is present.
These instances consist of an extension of Solomon’s instances with 12 different congestion
patterns. Figliozzi (2012) proposed an insertion heuristic to construct an initial feasible solution
and a Ruin and Recreate heuristic algorithm to improve the results. Benchmarking for accuracy
is performed with the available best-known values for the VRPTW and executing the proposed
algorithm for the TDVRP with constant speed data. The VRPTW commonly has two objective
functions: firstly the number of vehicles is minimised, secondly the distance is reduced. The
results of Figliozzi’s (2012) approach provide 4.2% more vehicles and an 8.61% greater
distance than the best-known values. Additional speed profiles are provided in order to analyse
the impact of congestion patterns on the results. Evaluation of Figliozzi’s (2012) approach with
constant speed shows that there is still room for improvement and an algorithm capable of
improving this special case of the TDVRPTW might provide better solutions in all the proposed
instances. Kok et al. (2010b) introduced a variant with time-dependent travel times and a subset
of the European driving time regulation applicable in urban or regional operations that might
consider planning only one day ahead, where the proposed benchmark instances are an

extension of Figliozzi (2008).

The relations between time-dependent travel times, fuel consumption and CO2 emissions have
recently been of interest to researchers. Maden et al. (2010) compared the scheduling of
vehicles with and without considering time-dependent travel times for a sample fleet in the south
of the UK, obtaining a reduction of 7% of CO2 emissions by considering travel time dependency.
Jabali et al. (2012) considered the fuel consumption, driver and CO: costs as well as CO:2
emissions for modified theoretical instances for the VRP without time windows in different
scenarios. Speed was restricted in order to save fuel for lorries of 32-42 tons, and it was found
that restraining the speed in free flow from 90 to 85 km/h might reduce the fuel consumption

without significantly compromising the driver cost.
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Franceschetti et al. (2013) proposed the time-dependent pollution-routing problem with time
windows with an integer programming solution method. Fuel consumption is estimated with the
model of Barth et al. (2005) and Barth and Boriboonsomsin (2009). In this variant, the departure
times from the depot and from customers are optimised as well as speeds across the arcs that
make-up the route. The test instances are an extension of the instances proposed by Demir et
al. (2012) in the cases of 10, 15 and 20 nodes, where the speed intervals are restricted to two
periods (congested and free flow). The authors identify a number of conditions in which it is
optimal to wait at the end of the service according to different driver wage policies: (i) the driver
of each vehicle is paid from the beginning of the time horizon until returning to the depot, or (ii)
the driver is paid only for the time spent away from the depot, excluding waiting times at
customers (either en-route or performing the delivery). Although the proposed method
outperforms previous mathematical solutions, this research only considers two time intervals
and further research is required to handle larger problems with more time intervals, due to the

restrictions of the proposed mathematical solution approach.

A comprehensive recent review of VRP variants that consider fuel optimisations with constant
and variable speeds is presented by Eglese and Bektas (2014). The work of Qian (2012) is
mentioned, where a time-dependent VRP variant aims to minimise fuel consumption by
optimising speeds in each segment of fixed sequences that conform the schedules but the
proposed algorithm (dynamic programming algorithm and heuristics solutions) establish the
route between customers. Results in a data set of Bristol suggest that average emissions

savings might be 6-7% but at the expense of increasing trip time by 9-10%.

The model reliability might be improved if time dependency is included when congestion is
present (Kok et al., 2010b). It is worth mentioning the work of Maden et al. (2010), in which an
algorithm was designed for a distribution system of electronic goods that considered time-
dependent travel times, a sub-set of Rules on Drivers’ hours, and time windows (though the
company did not offer time windows). Analysis of routing strategies revealed that planning
without considering congestion led to an additional 57 min per vehicle when evaluating the initial
constant-speed schedules in a congested environment, and model restrictions were violated. A
managerial solution to tackle congestion could be to reduce by 20% the speed when planning
the routes in order to produce routes that do not violate restrictions. However, by using the
proposed algorithm with the available traffic data, vehicle schedules had 6% less route duration
and 7% less COz than when routing with a reduced constant speed.



53

3.3.4. Unified algorithms

Unified algorithms to solve multiple VRP variants have been proposed (Pisinger and Ropke,
2007, Vidal et al., 2014), and a successful approach is shown by Pisinger and Ropke (2007) for
the capacitated VRP, VRP with time windows, multi-depot VRP, site-dependent VRP and open
VRP. Each variation is transformed into a rich pickup and delivery model with time windows and
the solution algorithm applies an Adaptive Large Neighbourhood Search heuristic (ALNS). The
authors reported improved results for some variants when compared to best-known values
provided by state-of-the-art algorithms, see Table 16.

ALNS is an extension of the Large Neighbourhood Search, where the procedures used to
remove and reconstruct solutions in the search process are chosen from an adaptive
mechanism that evaluates performance procedures and favours those that have achieved
higher improvements (Ropke and Pisinger, 2006). Heuristics based on LNS have shown
outstanding results in solving a number of transportation and scheduling problems of a tightly
constrained nature (such as the problem imposed by the use of time windows) (Pisinger and
Ropke, 2010). Additionally, LNS stands out in terms of simplicity and wider applicability for
complex VRP variants (Vidal et al., 2013).

A very promising approach to solve a number of VRP variants for a large range of logistic
configurations is shown by Vidal et al. (2014). In 1045 out of 1099 tested instances the best-
known value was retrieved or improved, with a hybrid genetic search addressing attributes by
means of assignment (e.g., customers to depots or days), sequencing (neighbourhood

structures) and route-evaluation (e.g., time-dependent travel times, driving time regulation).
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Table 16. Benchmark of results for a unified LNS algorithm to solve multiple VRP variants (Pisinger and Ropke, 2007)

Primary Secondary Primary Secondary
Variant Instance (Customers) Objective Objective Objective A Objective A
Solomon 1987 (100) 405 57,187 405 0.00% 57,192 0.01%
VRP with Time Windows Gehring and Homberger 1999 (400) Number of Vehicles: 1,389 Travel Distance: 390,386 1,385 -0.29% 393,210 0.72%
Gehring and Homberger 1999 (1000) 3,446 2,078,110 3,438 -0.23% 2,110,925 1.58%
Multi-depot VRP Cordeau 1997 (48-288) Cost 80,394 80,448 0.07%
Site-dependent VRP Cordeau and Laporte 2001 (48-1008) Cost 90,274 88,810 -1.62%
Open Vehicle Routing Problem  Used by Brandao 2004 (50-199) Cost 156 10,340 156  0.00% 10,194 -1.41%
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3.4. Discussion of the chapter

Research in metaheuristic algorithms has proved to offer efficient solutions for some VRP
variants, and state-of-the-art algorithms make use of different approaches to provide high
accuracy in a reasonable time. However, although replicability is considered a requirement in
scientific literature, much of the research conducted in VRP variants lacks enough replicability
and adequate solution evaluation with the available instances in order to provide solutions for
the industry (Cordeau et al., 2002; Drexl, 2012; Figliozzi, 2012).

New elements may be considered if truly innovative solutions need to be designed for the
industry. Analysis of vehicle scheduling that considers fleets with heterogeneous vehicles
shows some of these new elements, such as Rules on Drivers’ hours (vehicles over 3.5 ton
have to consider the regulation) and fuel consumption according to the type of vehicle and
speed on the road. This last item not only affects the cost structure but also has an
environmental impact. Vehicle planning may mitigate the financial cost of accommodating the
regulation and the environmental repercussions of the freight transport. Additionally, when
working in congested environments (e.g., cities), not considering congestion leads to inaccurate
schedules due to underestimation of the travel time, and consequently vehicles will require
more time than planned. All the effort to optimise the problem may be lost and solutions may not
comply with the promise of service (time windows), regulation and other specific restraints of the

business model (e.g., drivers’ working day, latest time to return to the depot, etc.).

An example of the importance of adequate algorithm research based on the analysis of results
with the available test instances is the VRP variant that considers Rules on Drivers’ hours. After
its first formal formulation along with benchmark instances, improved algorithms in the following
year obtained reductions in the number of vehicles of 34% and reduction in travel distance of
17%. Some implementations may be highly inaccurate when dealing with rich variants,
therefore two issues must be considered: i) tailoring solution methods for VRP variants is a
complex activity that may yield low accuracy when using non-exact algorithms (heuristics and
metaheuristics); ii) research in algorithms that do not provide benchmark instances or make use
of them to test results cannot guarantee accuracy and the industry must be careful about their

implementation.
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From the review on industry needs and the state-of-the-art in solution techniques, it is clear that
improvements in current algorithms are needed to account for (1) time-dependent travel times
to provide accurate schedules in congested environments and (2) Rules on Drivers’ hours to
provide vehicle schedules that comply with the regulation (most goods vehicles over 3.5 ton in
the European Union are subject to this regulation). In the case of the TDVRPTW, Figliozzi
(2012) proposed the first set of replicable instances; however, its solution approach still leaves
room for improvement when comparing best-known values versus the reported solution in the
constant speed case. Furthermore, research in time-dependent travel time and Rules on
Drivers’ hours in the planning horizons of one day (e.g., the urban case) with benchmark
instances has been proposed by Kok et al. (2010b), but the accuracy of the solution has not
been analysed. Research on this topic may help the industry to mitigate the impact of

congestion and regulation.

There is a range of solution methods from the Operational Research discipline, where some
concepts have been identified as promising due to their simplicity and capability to
accommodate multiple restraints such as Large Neighbourhood Search. In the following
chapters some of these methods will be tailored and tested with the available benchmark
instances for some of the most relevant variants identified in this research. The remaining parts
of this research will therefore develop improved algorithms for rich models based on industry
requirements for i) the TDVRPTW, and ii) the TDVRPTW and Rules on Drivers’ hours.

To sum up

Although the main CVRS vendors offer the capability of routing that considers congestion, the
surveyed companies stated that further development was required. The literature review shows
that exact algorithms for VRP variants are not viable in rich industry applications and
metaheuristic algorithms are capable of providing solutions for the industry. However,
metaheuristics do not guarantee the optimality and accuracy of new algorithms that deal with
rich variants and therefore have to be tested with the available benchmark instances. Only
recently have benchmark instances been proposed for the Vehicle Routing Problem with time
windows and time-dependent travel times, and a more complex variant that also considers

Rules on Drivers’ hours.

A reported issue in metaheuristic implementations is the flexibility of the algorithm (the grade of
the algorithm to accommodate different constraints without decreasing solution accuracy).
Although in chapter 2 surveyed companies stated that transportation costs have increased at a
certain extent due to regulation, and to a lesser extent due to Rules on Drivers’ hours (see
figure 6), there is the need of providing reliable schedules that consider travel time variability
originated by congestion along with complying with regulation. Available algorithms might
decrease accuracy and produce poor solutions when considering these restrictions; therefore,
the importance of understanding the capability of current theory to solve the related variants and

to provide efficient algorithms if necessary.
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Although there is a range of innovative approaches such as variants that reduce emissions to
make transport operations more environmentally friendly, the industry is interested in accurate
models that consider time-dependent travel times, comply with regulation and are capable to
reduce transport costs. The literature review shows that literature that provides high accuracy
for time-dependent variants is still scarce; therefore this research will focus in these issues,

where future research might incorporate additional complexities.
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Chapter 4

A metaheuristic approach for the Time-
Dependent Vehicle Routing Problem with
Time Windows

The time-dependent Vehicle Routing Problem with hard time windows (TDVRPTW) is the
variant where travel time between locations depends on the time of the day with a strict (hon-
negotiable) time window for the delivery being initially established by the customer (Figliozzi,
2012, Malandraki and Daskin, 1992). The primary objective is to reduce the number of vehicles
required to complete the schedule whilst minimising travel distance and travel time (Figliozzi,
2012).

Variants of the Vehicle Routing Problem (VRP) are NP-Hard and metaheuristic algorithms have
been developed to solve the problem with trials suggesting significant improvement in
performance over current schedules. Some implementations have achieved high accuracy
(difference between best-known values and results of the particular algorithm for available test
instances) with execution times that allow logistics planners to realistically use the approach as

part of their everyday operations (Cordeau et al., 2002, Drexl, 2012).

In an industry where the profit margin can be as low as 3% (FTA, 2015), logistics companies
have recognized the importance of utilising time-dependent VRP variants to support planning
and there is a need to further investigate the capabilities of current time-dependent algorithms

to deliver improved performance across a variety of operational and traffic settings.

Time-dependent models create new complexities for algorithm design related to tailoring
existing search strategies designed specifically for constant-speed models. Common local
search procedures require significant modification as alterations within a route as part of the
search process could potentially affect the feasibility of the rest of the route. This might alter the
departure times of subsequent visits to customers and consequently modify travel times. Route
evaluation is considerably more computationally expensive with time-dependent travel times
(Harwood et al, 2013) and accommodating hard time constraints for time windows also requires
more computational resources than soft constraints where solutions with violations of time
windows are allowed (Figliozzi, 2012). Recent work has been done to reduce the computational
processing cost of the evaluation of the well-known operator 2 opt for a variation of the Time-

dependent travelling salesman problem with no time windows (a schedule with one vehicle). By
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producing quick estimations of movement evaluation, computational time was reduced up to
80%. However, it requires further development to cope with the large number of search

procedures that require the optimization of a TDVRPTW (Harwood et al, 2013).

Large Neighborhood Search (LNS) is a search strategy that stands out in the range of concepts
among state-of-the-art algorithms to solve vehicle routing models due to its simplicity and wider
applicability and it has been extended to successfully address various variants (Vidal et al.,
2013). In this chapter, a LNS algorithm is tailored to solve the complexities involved in the
TDVRPTW with results compared against available test instances in order to understand its

capabilities.

4.1. Previous work

Recent research in time-dependent VRP variants including introduction of benchmark instances
is mentioned in the previous chapter. However, in this subsection solution techniques and
issues regarding modelling traffic patterns are reviewed.

The first formal formulation of the Time-Dependent VRP was presented by Malandraki (1989)
and Malandraki and Daskin (1992), a fleet of vehicles with limited capacity has to visit a number
of customers with fixed demands and total travelled time has to be minimised, travel time
between customers depends on distance and time of day, a single depot exists, vehicles must
depart and return to the depot after finishing the delivery tour, no split deliveries are allowed and
service time windows might be present. Two different solution approaches were proposed for
instances up to 25 customers generated randomly without time windows, a set of greedy
heuristic algorithms and a cutting-plane algorithm. Although the cutting-plane algorithm was
more expensive computationally and was able to solve to optimality only small instances, it
showed incumbent solutions with lower travelled time in 2/3 of the tested problems with 10 or

more customers than the heuristic approach.

The TDVRP formulation of Malandraki and Daskin (1992) was based on a travel time step
function where each period of time has a specific travel time between nodes, which leads to an
unrealistic assumption, a vehicle with a later departure time might arrive earlier than a vehicle
with an earlier departure time across the same link, as it is point out by Ichoua et al. (2003).
Later work on the TDVRP has implemented travel time functions that respect the FIFO property
“first-in-first-out” based on a continuous function (Figliozzi, 2012, Donati et al., 2008,
Fleischmann et al., 2004). Figure 13 shows the difference between Malandraki’s step travel time
function and Figliozzi’s continuous travel time function for 5 periods of time in a day (Figliozzi,
2012).
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a. Step function b. Continuous function
Travel Time function Travel Speed Travel Time function
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g & — g
= =
Time of day Time of day Departure Time

a. (Malandraki and Daskin, 1992)
b. (Figliozzi, 2012)
Figure 13. Different Travel Time functions for constant distance with variable speed.

Work on different TDVRP models has been carried out, Ichoua et al. (2003) studied the TDVRP
with soft time windows, where violation of the required service time was permitted but with a
resulting penalty in the objective function. The number of routes was fixed and vehicle capacity
was not taken into consideration. The objective function was to minimise travel time and
penalties incurred due to service time window violations. The solution approach was based on a
Tabu Search metaheuristic algorithm, when the schedules created with constant-speed models
are analysed under an scenario with time-dependent travel times (variable speed due to
congestion), actual travel times are greater than planned travel times and it generates violation
of time windows. Fleischmann et al. (2004) presented the TDVRP with and without time
windows using scenarios based on real congestion patterns from a traffic information system in
Berlin. The solution approach used different heuristic algorithms and local search techniques
with the results suggesting that using constant-speed models might generate underestimates of

travel time of 10%.

Donati et al. (2008) implemented an ant colony metaheuristic algorithm for TDVRP variants on
two sets of instances, the first set is the time-dependent Vehicle Routing Problem with time
windows (TDVRPTW) with Solomon’s instances using two different speed profiles: a) constant
speed in order to compare the special case of the TDVRPTW that is equal to the VRPTW b)
speeds assigned randomly. A second set of instances for the TDVRP without time windows
using the road network of Padua with data from a traffic information system is used in order to
compare the results of using constant speed models in congested roads, travel time

underestimation ranges from 5.23% up to 11.98%.

An exact algorithm for the TDVRPTW is presented by (Dabia et al., 2013) using a modified set
of the commonly known instances of Solomon (1987) for the VRPTW for up to 100 customers,
links between nodes get different speed profiles which were assigned randomly, solution
approach is based on a pricing algorithm with column generation and a labelling algorithm,

63% of the 25 customer instances were solved, 38% of the 50 customer and 15% of the 100
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customer. However, details about the categorization of links are not provided in order to be able

to reproduce the instances.

For the TDVRPTW Figliozzi (2012) proposed an insertion heuristic (IRCI) to construct an initial
feasible solution and a ‘ruin-and-recreate’ heuristic algorithm to improve the results (IRCI-R&R).
Benchmarking for accuracy was performed with available best-known values for the VRPTW
and executing the proposed algorithm for the TDVRPTW with constant-speed profiles. The
VRPTW commonly has 2 objective functions, to minimise the number of vehicles and their travel
distance. Results of Figliozzi (2012) approach suggested a 4.2% increase in vehicles required
leading to an 8.6% increase in overall travel distance compared to the best-known values
returned by the constant-speed case. Additional speed profiles are provided in order to analyse

the impact of congestion patterns in results.

In some of the time-dependent variants the number of vehicles are fixed and optimisation is only
based on travel time reduction across the fleet. However, finding the minimum number of
vehicles required in the presence of hard time windows is in itself a complex problem, more
computationally expensive with time-dependent travel times. Additionally, most current efficient
methods for the VRP variants are intricate and difficult to reproduce (Vidal et al., 2013).
Furthermore, some metaheuristic implementations have been tailored to work well in specific
test instances by tuning parameters so specifically as considering the best random seed that

provides high accuracy (Sorensen, 2015).

There is clearly therefore a need for general and simple methods applicable to practical
applications required by the industry (Vidal et al., 2013), such as effective algorithms that
consider congestion and provide reliable schedules. However, the capability of current
algorithms to provide high accurate solutions for time-dependent VRP variants is still not well
understood due to the lack of adequate algorithm evaluation with previously proposed

instances.

4.2. Problem definition

e Deliveries are requested by n customers

e let G=(V, A) be a graph where vertex V = (v,, vy, ..., v,), Vg is the depot and vy, ..., v, the
set of customers. Each element of VV has an associated demand q; = 0 (which must be
fulfilled), a service time g; = 0 and a service time window [e;, [;]. Note that 0 = g, = g,

e Anundetermined number of identical vehicles each with maximum capacity g,,,,, are
available and stationed at v,. Vehicles must depart from and return to the depot v, at the
end of the delivery tour and their maximum capacities cannot be exceeded

e The departure time of any given vehicle from v; is denoted b;, its arrival time q;

e Arrival time to customer v; must be before [;. If arrival time is before e;, the vehicle has to

wait until e;. Each customer can only be visited once
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e Let A be the set of arcs between elements of V, having constant distance d;; between v;
and v;
e For each arc (i,j) € A there exists a travel time t;;(b;) 2 0 a function of departure time b;,

(e.g. of a form as proposed by Ichoua, Gendreau and Potvin (Ichoua et al., 2003) see
Algorithm 3).

The primary objective is to minimise the number of vehicles and the second objective might be
either minimisation of travel distance or travel time. In the research proposed by Figliozzi (2012)

the second objective is the sum of travel distance and travel time.

Travel time function ¢;;(b;) proposed by Ichoua et al. (2003) to account for FIFO restriction,

using notation of Figliozzi (2012), is presented as follows, note that travel time depends of

departure time from customer v; :

Algorithm 3: Travel time function

InputData: b, ; T=T,, T,,..., T, where each period T, has an associated constant travel speed s,
an initial time t,, and a final time ti
Start
1. ifa; <e; then
b —e; +g;
else
b —a; +g
endif
find k where t, < b; <t
a; < b;+d;; /sy,
d «— dU , t — bi
9. while g; >t do
10. d—d—(tg —t) s

O N AW

11. t «—tg
12. a —t+dgjlsg
13. k—k+1
14. end while
Return: a;
End

v; :customeri  @;: arrival time at v;  b;: departure time from v; dij: distance between v; and v;
e;: greatest lower bound of the time window for v; gi: service time (length of the requested service) for v;
Sy associated constant travel speed of T}, ty: greatest lower bound of T},  tg: lowest upper bound of T},

4.3. Solution procedure

As previously mentioned in the literature review, there is a range of available operators for
neighbourhood exploration and techniques to speed up the search process when solving VRP
variants. However, for time-dependent VRP variants, little research is available and analysis of
different approaches has not been yet properly addressed. In this research, different techniques

were tested to reduce the required number of vehicles and travelled distance/time.
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The first approach was to work always in a feasible search space and try to reduce the number
of vehicles with ejection chains; however high accuracy was obtained in several minutes. Another
approach was to employ elements of genetic algorithms to create a set of parents; this approach
was too demanding in terms of computational processing time in order to reconstruct feasible
solutions. Additionally, genes that were feasible in certain periods of time became infeasible when

inserted in a different time slot due to the characteristics of time-dependent models.

After initial testing, it was decided to use an algorithm that started with a feasible solution created
by a fast heuristic that offered some degree of accuracy and employ a metaheuristic approach to
improve the solution. The major breakthrough was to use neighbourhood structures present in
LNS. Although Figliozzi (2012) proposed an algorithm based on the Ruin and Recreate concept
(similar to LNS), exploration is based on a fast heuristic called IRCI, rather than the procedures
proposed by Schrimpf et al. (2000) Ropke and Pisinger (2006), Pisinger and Ropke (2007),
Mattos Ribeiro and Laporte (2012) to solve constant speed VRP variants with LNS.

Further algorithm tailoring to LNS movements was required in order to produce schedules with
reduced number of vehicles in reasonable time. The search space is extended to manage
violation of time windows where the proposed tailoring identifies particularly difficult customers to
accommodate in schedules with reduced number of vehicles, and guide the neighbourhood

exploration towards new regions that are able to accommodate those customers.

Additionally, an analysis of neighbourhood structures is presented at the end of this chapter in
order to understand the capabilities of LNS versus well-known movements (such as 2-opt and 2-

opt*) when exploring the search space in time-dependent VRP variants.

4.3.1. Algorithm Background

Large Neighbourhood Search

LNS is an algorithm for neighbourhood exploration introduced by Shaw (1997) utilising a very
similar concept to the ‘ruin-and-recreate’ algorithm introduced by Schrimpf et al. (2000) (Ropke
and Pisinger, 2006, Shaw, 1998). A number of partial-destruction procedures are used to remove
customers from the solution and a different set of reconstruction procedures are used to create a

new solution by inserting removed customers in a smart way, see Figure 14.
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Figure 14. Large Neighbourhood Search movement.

Schrimpf et al. (2000) proposed some basic procedures for the VRPTW that were extended by
Ropke and Pisinger (2006), Pisinger and Ropke (2007), and Mattos Ribeiro and Laporte (2012)

for VRP variants, some are presented below:

Destruction procedures

¢ Random-Ruin: Randomly select and remove w customers from all customers in the
solution.

e Radial-Ruin: Randomly select a customer v;. Remove v; and w -1 closest customers to
v;.

e Sequential-Ruin: Select a random route k (vehicle k) and select a random customer v;
in k. Remove a chain of consecutive customers of length w in k starting with v;.

e Worst-removal: Remove the customers that have the most negative impact according to

a function removal-cost(v;).

Recreation procedure
e Basic-greedy heuristic: Given the list of removed customers U, calculate an insertion-
cost(v;, k, p) for all v;€ U in all possible routes and positions when v; is inserted in route
k in position p, and insert v; with the lowest insertion-cost(v;, k, p) in the solution.

Repeat the procedure until all v;€ U are inserted or no feasible insertion exists.
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One characteristic of the LNS for VRP variants is that the request bank is an entity that allows
the search process for the exploration of infeasible solutions (Ropke and Pisinger, 2006) without
directly calculating the violation of restrictions. In the case of the TDVRPTW, any solution with
unscheduled customers is infeasible. Additionally, insertion procedures are quite myopic, in
order to avoid stagnating search processes, where destruction and recreation procedures keep
performing the same madification to a solution, providing diversification in different levels of the

search process might improve accuracy of solutions (Mattos Ribeiro and Laporte, 2012).

Previous LNS implementations have made use of other metaheuristic algorithms at the master
level to guide the search to new regions and accept improved solutions such as Simulated
Annealing (Mattos Ribeiro and Laporte, 2012, Ropke and Pisinger, 2006). In the neighbourhood
exploration, applying noise in recreation procedures also avoids stagnation e.g., by using
randomisation in the insertion evaluation function in recreation procedures (Ropke and
Pisinger, 2006), or tailoring recreation procedures to ensure diversification (Mattos Ribeiro and
Laporte, 2012).

Variable Neighbourhood Search

VNS is a metaheuristic algorithm introduced by Mladenovi¢ and Hansen (1997) and Hansen
and Mladenovi¢ (2001). VNS has been previously implemented in a range of combinatorial
problems (Hansen et al., 2010) including VRP models (Braysy, 2003, Kytojoki et al., 2007) and
the TDVRP with soft time windows (Kritzinger et al., 2011). VNS uses local search
neighbourhoods and avoids local optima with specially designed procedures called “Shaking”
which usually have random elements (Hansen and Mladenovi¢, 2001, Hansen et al., 2010). An
additional element of VNS is the concept that a local optima in a neighbourhood is not
necessarily a local optima for other neighbourhoods, therefore changing neighbourhoods might
avoid local optima. The pseudo code that illustrates the basic concept of VNS is presented as

follows:

Algorithm 4: Basic concepts of Variable Neighbourhood Search

S

-
-+

Initialization by selecting H neighbourhood structures H = {hy,..., hyqy }
Initialize Incumbent solution
Current solution < Incumbent solution
he1
Repeat

Current solution < Shaking with hth neighbourhood (Incumbent solution)

Current solution « Local search (Current solution)

If (Current solution < Incumbent solution) then
Incumbent solution « Current solution

10. he1
11. Else
12. h < h+1
13. EndIf
14. Until h = h,,,,

N N
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A characteristic of the presented basic VNS concept is that it works on an ‘only-descendent’
approach. It changes the search space region when an improvement has been found, (lines 8 to
10). However, it may be easily transformed to a ‘descendent—ascent’ approach by introducing
some selection criteria to allow exploration of regions with a deteriorated solution, e.g.,
randomness (Hansen and Mladenovi¢, 2001) or a threshold acceptance value (Kritzinger et al.,
2011).

An additional characteristic of VNS is that it does not follow a trajectory, but it explores
increasingly distant regions, the set of procedures for “Shaking” is at the core of VNS and
provides a balance between obtaining a sufficiently large perturbation of the incumbent solution
while still making sure desired attributes of “good” solutions are maintained. In order to guide
the search, a metric in the “Shaking” procedure is introduced (Hansen and Mladenovié, 2001),
(lines 1 and 6). Local search, line 7, is a set of procedures that allow the exploration of the local

search space.

An example of VNS for the multi-depot VRPTW is presented by Polacek et al. (2004), as
initialization of an incumbent solution with a cheap heuristic and fast running times was
proposed. The set of procedures for “Shaking” is based on the CROSS-exchange operator
where orientation of routes is preserved and the iCROSS-exchange operator where orientation
of routes is reversed. Figure 9 (page 34) shows some well-known neighbourhood exploration

procedures.

The “Shaking” metric between solutions was established as the number of depots used to
generate the new solution and the maximum length of the removed sequence in the
neighbourhood construction. Local search was the 3-opt operator neighbourhood with reverse
of route orientation not allowed and the length of the sequences to be exchanged bounded by
an upper limit of three. Decision about moving the search to a new region follows the

descendent—ascent approach with a threshold acceptance value.

Analysis of results in terms of accuracy and speed showed that the proposed VNS was
competitive to other metaheuristic algorithms and it was capable to improve some of the best-
known results at that moment. A very similar VNS approach for the TDVRP with soft time

windows was proposed by Kritzinger et al. (2011).

4.3.2. A hybrid metaheuristic for the TDVRPTW

Search procedures for the TDVRPTW are computationally expensive, with the proposed
algorithm designed to guide the search to highly accurate solutions in a reasonable time. The
search process is divided into two stages, the first is where an initial incumbent solution is
created using a fast construction heuristic to undertake a reduction of vehicles. In the second
stage the objective is the minimisation of the sum of travel distance and travel time in order to

compare results with the work of Figliozzi (2012).
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Stage la: Construction of Initial Solution

IRCI heuristic is an algorithm that constructs routes sequentially, designed initially for the
VRPTW (Figliozzi, 2008, Figliozzi, 2010) it can also solve the TDVRPTW (Figliozzi, 2012). Its
main components are a generalized-cost-function that estimates the minimum cost of
appending unrouted customers into an existing route (vehicle) or adding a new route and a
“looking ahead” evaluation that assess the impact of the current insertion versus other possible
insertions. The generalized-IRIC-cost-function adapted to handle only hard windows and time-
dependent travel times depends on travel time ¢;;(b;) between customers v; and v;, the service
starting time at v; in route k denoted y} which is the max(a;, e;), the remaining capacity on
vehicle k after serving v; denoted gF, and a set A of parameters, A = { 8, 8;, 8, 85, 8,4}
where §, is the cost of adding a new vehicle, §, takes into account travel time between
customers, §, accounts for the “slack” between departure time from v; and service starting
time at v;, 63 accounts for the “urgency” of servicing v; and &, takes into consideration the
spare capacity of vehicle k after servicing v;. The modified generalized-IRCI-cost-function
(Circr) proposed in this research for inserting unrouted customer v; after visiting v; in vehicle k

is presented as follows:
Ciret (Vi v k) = 81t5i(b) + 8,00 = 0 + 90) + 85 — (¥ + g+ t; (¥ + 31)) + 84(al — a;)

If adding v; in vehicle k is infeasible, the generalized-IRCI-cost-function of adding a new vehicle
is:

CIRCI(UO'Vj) = 8p+81t0(by) + 52(}’}( —eo) + 83(f —t,;(e,) + 84(Qmax - Qj)

The pseudo code of IRCI is presented as follows:

Algorithm 5: IRCI

Start
1. Repeat
2 For each unrouted customer in best sequence calculate generalized-IRIC-cost-function
3 Sort in decreasing order customers according to generalized-IRIC-cost-function
4 Select z best customers v; with less generalized-IRIC-cost-function, V'={v,, ...v,}
5. Repeat for each v; € V' (Creation of z sequences, S = {sy, ..., s,})
6. Repeat
7 For each unrouted customer in s; calculate generalized-IRIC-cost-function
8 Select customer with lowest generalized IRCI cost
9

Insert customer in S;

10. Until all customers are in s;

11. Until z sequences are created

12. Select sequence s; with best evaluation that insert best customer v;
13. Insert best customer v; in best sequence

14. Until all customers are in best sequence
15. Return: best sequence
End
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IRCI evaluates at each insertion in best sequence the customer v; with less generalized cost
(line 2) that offers the best solution in the overall route that is represented in a sequence (lines 5
to 11), the evaluation of the best sequence (line 12) is considered on terms of minimum number
of vehicles or distance/travelled time and requires the insertion of all customers in order to
assess the best route that can be achieved by inserting the evaluated customer v; in best
sequence (line 13). The number of sequences evaluated in each insertion z in best sequence is
the “width” of the search (line 4). A special characteristic of IRCI is that it produces feasible
routes. Additionally IRCI can be repeated with different sets of parameters A in order to obtain a
more thorough search space. However, in this research parameters were fixed for all the tested
instances, 9§, is a value sufficiently large to force IRCI to generate as few vehicles in each
sequence as possible, §; + 6, + 83 =1 and §, is bounded by 0 and the ratio of the median
distance between customers and the median customer demand (Figliozzi, 2012). Values used
in this research are ( 6, = 200, §; =0, §, = 0.8, 65 = 0.2, §, = 0.02).

Stage 1b: Route Reduction Procedure

In previous implementations of the LNS for constant-speed models, minimising the required
number of vehicles relied on removing routes from an incumbent solution and placing
customers in the request bank until a solution was found without unscheduled customers (some
customers still in the request bank) (Pisinger and Ropke, 2007, Ropke and Pisinger, 2006). In
the initial test of this approach for the TDVRPTW, lengthy computational time was required in
order to get high accuracy due to the complexity in movement evaluation originated by time-

dependent travel times.

In order to speed up the search process, a strategy to quickly guide the search towards higher
accuracy was designed. Solutions which violated time windows were allowed, and the objective
function was minimising the sum of violations of time windows (penalty). Due to the myopic
behaviour of LNS, the search quickly reached stagnation. Small time window violations were
generated by frequent pairs of customers. In order to avoid stagnation, a tabu list of forbidden

pairs of customers was introduced to force the recreation procedure to unexplored trajectories.

At the extent of the knowledge of the authors, this is the first implementation of LNS with
allowed time window violations that exploits the destruction and recreation procedures and
introduces a tabu list of forbidden pairs of customers for VRP variants with time windows. This
strategy allows sequences of customers to be identified that are particularly difficult to
accommodate in a solution with a reduced number of vehicles, and allows the algorithm to focus
on scheduling these customers without incurring time window violations while avoiding
stagnation. The local search consists of a modified Worst-removal procedure to remove
customers that generate penalties along with other destruction procedures before executing a
modified Basic-greedy heuristic for minimisation of time window penalties (LNS-Penalty
Procedure). The pseudo code of Number of vehicles minimisation procedure is presented as

follows:
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Algorithm 6: Number of vehicles minimisation procedure

Start
1. Incumbent solution « Construction of Initial Solution with IRCI
2. Incumbent-penalty solution « Remove one route (Incumbent solution)
3. Tabulist={@}
4, he1
5. Repeat
6. Repeat
7. Current solution « Shaking-Route Reduction Procedure (h, Tabu List, Incumbent-penalty solution)
8. Current solution « LNS Penalty Reduction Procedure (Current solution, Tabu List)
9. If penalty(Current solution) > 0
10. Tabu List < Tabu List U Elements-Generate-Penalty(Current solution)
11. If penalty(Current solution) < penalty (Incumbent-penalty solution)
12. he1
13. Incumbent-penalty solution « Current solution
14. else
15. he—h+1
16. EndIf
17. Until h=h,, or penalty (Currentsolution) =0
18. If penalty (Current solution) =0
19. Incumbent solution « Current solution
20. Incumbent-penalty solution < Remove one route (Incumbent solution)
21. Current solution « Incumbent-penalty solution
22. Tabu List={ @}
23. he1
24, Else
25. Incumbent-penalty solution « Current solution
26. he 1
27. End if
28. Until stop criteria met

Return Incumbent solution
End

The main steps of Number of vehicles minimisation are the following:

i)
i)

ii)

Creation of an initial incumbent solution with IRCI heuristic (line 1).
Remove one route: The vehicle with the minimum number of customers is removed and
its customers are allocated to the request bank in order to be inserted in the other routes
that conform the schedule (line 2) with Basic-greedy heuristic with the insertion-cost'™ that
is presented in step iii. A penalty might be generated, which is calculated as the sum of
the time violations of the upper time windows. Each time that the search process reaches
a solution with the penalty equal to 0 (line 18), a feasible schedule, the solution is stored
(line 19) and another vehicle is removed (line 20).
Minimisation of penalty with LNS Penalty Reduction Procedure (line 8): The local search
consists of minimising the penalty with LNS procedures: Random-Ruin, Radial-Ruin,
Sequential-Ruin, Worst-removal and Basic-greedy heuristic with the following insertion-
cost'™.

insertion-cost'™(v;, k,p) = A Penalty
or in case there is no penalty in the insertion

insertion-cost'"(v;, k,p) = A Travel time + A Travel distance + A Waiting time
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where customers that generate penalty are firstly inserted and secondly customers that
do not generate penalty are inserted.

In order to avoid stagnation, each time that LNS procedures reach a local optima, the
schedule is modified with IRCI in order to diversify the search. All customers in a number
of vehicles are removed from the solution and assigned to these vehicles with IRCI
without violation of the time windows. Customers that could not be inserted in these
vehicles are inserted in other vehicles using the Basic-greedy heuristic. Subsequently
LNS procedures are used again to try to reduce the penalty.

A tabu list is introduced in order to avoid stagnation, each time that the search reaches a
local optima the pairs of customers that generate the penalty are recorded, when they
appear a third time they are introduced into the tabu list (line 10). Basic-greedy heuristic
and IRCI make use of the tabu list to avoid creating schedules that contain sequences
with the pair of customers that are in the tabu list. Each time that the search reduces one
vehicle, the tabu list is emptied (line 22).

Diversification with Shaking-Route Reduction Procedure (line 7): The exchange operator
is used to modify the position in the schedule of h customers in order to create new

solutions. Customers to be exchanged are preferably those that generate penalty.

Stage 2: Travel time and travel distance minimisation

This procedure relies on the identification of promising search regions. In each iteration, a new

region is visited and explored with a fast algorithm. It is established if the region is promising for

intensification with a fast exploration and an evaluation with a threshold value. Intensification is

based on LNS and VNS. The objective function value in the search is the sum of travel time

and tr

Trave

avel distance in order to compare results with the work of Figliozzi (2012). The proposed

I timed and travel distance minimisation procedure is presented below as follows:

Algorithm 7: Travel time and travel distance minimisation procedure

Sta

1.

9
1
1
1
En

2
3
4
5.
6
7
8

rt
Incumbent solution « Number of vehicles minimisation procedure
Current solution < Incumbent solution
Repeat
Current solution < Shaking procedure (Current solution)
Current solution « Educate procedure (Current solution)
If objective (Current solution) < Threshold value
Current solution < LNS-VNS Intensification procedure (current solution)
If objective (Current solution) < objective (Incumbent solution)
. Incumbent solution < Current solution
0. EndIf
1. EndIf
2. Until stop criteria met
d

The main steps of Travel time and travel distance minimisation procedure are the following:

i)

Modification of current solution in order to identify a new region with the Shaking
procedure (line 4): Firstly, a random vehicle,, is selected and all v; in vehicle, are

inserted in the remaining vehicles when insertions are feasible (no violation of time
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windows are allowed). Secondly, vehicles are randomly sorted, S’ = { vehicley, ...,
vehicley, ... , vehicle,,}. Thirdly, each v; in vehicle, is exchanged, with the exchange
operator, in the first feasible insertion in the subsequent vehicles. The third part of the
procedure is repeated in all vehicle, € S',k # m and only feasible solutions are allowed.

i) ldentification of a promising regions with the Educate procedure (line 5): The procedure
consists of 2-opt operator, 2-opt* operator and relocate operator with the length of the
sequences to be exchanged bounded by an upper limit of three. These operators conduct
a systematic search by modifying the position of customers within the same route and
between routes. Although computationally expensive for a large number of iterations,
they are used to identify search regions where a fast reduction in the objective function
can be achieved. Educate procedure consists of a limited number of iterations. Identified
regions that achieve certain objective function value are selected for intensification (line
6).

iii) Search intensification with LNS-VNS Intensification procedure (line 7): This procedure
consists of minimisation of the objective value with LNS procedures (e.g., Random-Ruin,
Radial-Ruin, Sequential-Ruin and Basic-greedy heuristic set to minimise travel time +
travel distance) in an iterative way by using a “Shaking” procedure. When the search
reaches a local optima, the exchange operator and relocate operator are used to modify
the position in the schedule of h customers in order to create new solutions in a similar

way than in Number of vehicles minimisation procedure.

4.4. Benchmark instances

Due to the fact that the TDVRPTW is an extension of the VRPTW, Figliozzi (2012) proposed a
modification to the well-known instances for the VRPTW of Solomon (1987) to account for
congestion by adding speed profiles. Solomon instances consist of 56 problems with 100
customers and a single depot. Problems are divided in six classes namely: R1, R2, C1, C2,
RC1 and RC2. R accounts for random locations, C for clustered locations and RC for a mix of
random and clustered locations. Type 1 consist of schedules with tight time windows that allow
fewer customers per vehicle than type 2.

Figliozzi (2012) proposed 4 types of speed profiles, with 3 cases for each type, for a total of 12
speed cases. The depot working time [eo,lo] is divided into five periods of equal duration. An
additional instance with constant speed of 1 is also introduced in order to compare the
performance of the proposed solution for the TDVRPTW with available best-known values for

the largely studied VRPTW. Speed profiles are as following:
CASES TYPE a (Fast periods between depot opening and closing times)
TDla =[1.00, 1.60, 1.05, 1.60, 1.00]

TD2a =[1.00, 2.00, 1.50, 2.00, 1.00]
TD3a =[1.00, 2.50, 1.75, 2.50, 1.00]


http://en.wikipedia.org/wiki/Not_equals_sign
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CASES TYPE b (Higher travel times at the extremes of the working day)

TD1b =[1.60, 1.00, 1.05, 1.00, 1.60]
TD2b =[2.00, 1.00, 1.50, 1.00, 2.00]
TD3b =[2.50, 1.00, 1.75, 1.00, 2.50]

CASES TYPE c (Higher travel speeds are found at the beginning of the working day)

TD1c =[1.60, 1.60, 1.05, 1.00, 1.00]
TD2c =[2.00, 2.00, 1.50, 1.00, 1.00]
TD3c =[2.50, 2.50, 1.75, 1.00, 1.00]

CASES TYPE d (Higher travel speeds at the end of the working day)

TD1d =[1.00, 1.00, 1.05, 1.60, 1.60]

TD2d =[1.00, 1.00, 1.50, 2.00, 2.00]

TD3d =[1.00, 1.00, 1.75, 2.50, 2.50]
4.5. Implementation and Experimental Results
Algorithm benchmarking is commonly evaluated in terms of accuracy and speed (Braysy and
Gendreau, 2005a, Braysy and Gendreau, 2005b, Toth and Vigo, 2001). Accuracy can be easily
evaluated when data sets are available. However, different factors have an impact on speed
such as hardware (processor, ram), code efficiency and compiler (Figliozzi, 2012). Additionally,
it is mentioned in the literature that better results might be obtained by tailoring algorithms
accordingly to the test instance. This practice is impractical in industry applications that require
fast and reliable solution procedures capable to consistently provide high accurate results
(Cordeau et al., 2002, Drexl, 2012, Figliozzi, 2012, Golden et al., 1998).

The proposed LNS approach was coded in Java Eclipse version Juno. It has random elements
and results might vary in each run, where multi-core processors offer the possibility to execute
multiple threads simultaneously. In this research a computer with processor Intel core i7-2600
3.40GHz and 16 GB of ram was used, three independent threads were run simultaneously and
the best result of the three was chosen. The algorithm was run with two different sets of
parameters according to termination criteria, which consist of maximum number of iterations,
maximum running time, and allowed running time without improvement. The first set of
parameters (named F) was set to produce a fast algorithm whereas the second one (named L)
produces a more thorough search by allowing a larger number or iterations and/or execution

time before terminating the procedures.

Donati et al. (2008) and Figliozzi (2012) have presented results for metaheuristic approaches
for the TDVRPTW using Solomon instances with constant speed in order to compare results
with best-known values for the VRPTW, Table 17. Best-known values for the minimum number
of vehicles for the 56 problems was 405. The result for the proposed algorithm, with set of
parameter L, is 408 and best-known values can be achieved by extending running time.

However, parameter tuning was set to deal with 672 problems (56 problems x 12 speed cases).
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Running the proposed algorithm with sets of parameters F (set to a short execution time with

fewer number of iterations) and L (set to long execution time with a higher number of iterations)

provide higher accuracy than previous implementations for the TDVRPTW in the primary

objective (average number of vehicles) for instances R1, RC1 and RC2 (see tables 18-21).

Analysis of the secondary objective (distance) shows that the proposed LNS obtained higher

accuracy than IRCI-R&R (Figliozzi, 2012) in all instances, results within 1% of best-known

values can be achieved by increasing running time. Ant colony approach (Donati et al., 2008)

obtained higher accuracy in the secondary objective. However, reduced distances might be

achieved easily when more vehicles are used, e.g.: problem type R1, reduction of 0.93% from

best-known values is achieved with 5.88% more vehicles.

Table 17. VRPTW results for Solomon’s 56 problems with 100 customers — Constant speed

Method R1 A R2 A Ci A c2 A RC1 A RC2 A
Average NV
(1) Best known value 11.9 2.7 10.0 3.0 11.5 3.3
(2) IRCI - R&R 12.6 5.88% 3.0 11.11% 10.0  0.00% 3.0 0.00% 121 5.22% 3.4  4.62%
(3) Ant Colony 12.6 5.88% 3.1 14.81% 10.0  0.00% 3.0 0.00% 121 5.22% 3.8 16.92%
(4) VNS F Best 3 runs 12.2  2.52% 3.0 11.11% 10.0  0.00% 3.0 0.00% 11.6 1.09% 3.3 0.00%
(5) VNS L Best 3 runs 12.0 0.84% 2.8 4.38% 10.0  0.00% 3.0 0.00% 11.6 1.09% 3.3 0.00%
Average Distance
(1) Best known value 1210.3 954.0 828.4 589.9 1384.8 1119.2
(2) IRCI - R&R 1248.0 3.11% 11240 17.82%  841.0 1.52%  626.0 6.12% 1466.0 5.86% 1308.0 16.87%
(3) Ant Colony 1199.0 -0.93% 967.0 1.36%  828.0 -0.05%  590.0 0.02% 1374.0 -0.78% 1156.0 3.29%
(4) VNS FBest3runs  1222.3 0.99%  961.7 0.81%  834.0 0.68% 590.3 0.07% 1405.9 1.52% 1170.0 4.54%
(5) VNS L Best3runs  1232.2 1.81% 969.6 1.64%  828.6 0.02%  590.3 0.07% 1404.1 1.39% 1160.0 3.65%

(1) Nagata et al. (2010) CPU Time 25 min (5x5 min), processor Opt-2.4 GHz. (2) Figliozzi (2012) CPU Time 19 min,
processor Intel Core Duo 1.2 GHz. (3) Donati et al. (2008) CPU Time 168 min, Pentium IV 2.66 GHz. (4) VNS F (3 threads
of 26 min) Intel Core i7 3.4 GHz. (5) VNS L (3 threads of 62 min) Intel Core i7 3.4 GHz.

In the TDVRPTW the proposed primary objective is the minimisation of the number of vehicles,

secondary objective might be minimisation of travel distance, travel time or both. Figliozzi (2012)

proposed the sum of distance and travel time as secondary objective. Tables 18 to 21 show
benchmarking of IRCI-R&R and the proposed LNS.

The proposed algorithm is capable of obtaining a reduction in vehicles required of up to 12.96%

(cases type b, set of parameter L, instance R2, Table 19) and secondary reduction objective up

to 19.60% in travelled time and distance with fewer vehicles (cases type a, set of parameter L,

instance RC2, Table 18) in a reasonable computational time. Each instance of 100 customers

can be solved on average in 26.78 seconds using 3 threads with set of parameter F and 65.35

seconds with set L. Table 22 shows the overall sum of number of vehicles, total travelled

distance and total travelled time required to solve the 56 problems in each speed profile.
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Method RL A R2 A c1 A c2 A RC1 A RC2 A
(1) Figliozzy IRCI-R&R
NV 10.8 2.5 10.0 3.0 10.6 3.0
Distance 1263.3 1243.0 874.3 669.3 1387.3 1444.0
Travel Time 923.3 875.0 660.3 514.3 1004.3 1012.3
Second objective 2197.4 2120.5 1544.7 1186.7 2402.3 2459.3
(2 VNS F
NV 10.4 -3.53% 25 -1.83% 10.0  0.00% 3.0 0.00% 10.2  -4.02% 2.9 -2.03%
Distance 1164.4 -7.83% 1007.4 -18.95%  841.6 -3.74%  589.9 -11.87% 1309.9 -5.58% 1168.6 -19.07%
Travel Time 833.2 -9.76% 6742 -22.95% 6259 -5.21% = 447.6 -12.97%  924.8 -7.92%  789.2 -22.04%
Second objective 1997.6 -9.09% 1681.7 -20.69% 1467.5 -5.00% 1037.5 -12.57% 2234.7 -6.98% 1957.7 -20.40%
(3) VNS L
NV 10.3 -4.66% 2.4 -7.19% 10.0  0.00% 3.0 0.00% 10.0 -5.90% 2.8 -7.09%
Distance 1165.6 -7.74% 1013.9 -18.43%  834.7 -453%  589.4 -11.94% 1313.0 -5.36% 1178.7 -18.37%
Travel Time 832.6 -9.82% 6859 -21.61%  619.6 -6.16%  447.2 -13.05% 9225 -8.14%  795.9 -21.38%
Second objective 20085 -8.60% 1702.2 -19.73% 1464.3 -5.20% 1039.7 -12.39% 22456 -6.52% _ 1977.3 -19.60%

(1) Figliozzi (2012) CPU Time 54.1 min, processor Intel Core Duo 1.2 GHz. (2) VNS F (3 threads of 78 min) processor

Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 183 min) processor Intel Core i7 3.4 GHz.

Table 19. TDVRPTW average results for 3 instances in Case Type (b) 100 customers.

Method RL A R2 A c1 A c2 A RC1 A RC2 A
(1) Figliozzy IRCI-R&R
NV 11.8 2.8 10.0 3.0 115 3.2
Distance 1277.7 1225.0 880.3 683.7 1441.7 1439.7
Travel Time 925.7 917.0 655.3 486.0 1035.3 1078.0
Second objective 2215.1 2144.8 1545.7 1172.7 2488.5 2520.9
(2) VNS F
NV 11.2  -4.92% 27 -4.26% 10.0 0.00% 3.0 0.00% 10.9 -4.89% 3.0 -6.54%
Distance 1197.7 -6.26% 1004.7 -17.98%  847.3 -3.75%  590.0 -13.70% 1633.2 13.29% 1202.7 -16.46%
Travel Time 853.9 -7.75%  730.6 -20.33%  602.3 -8.09%  432.0 -11.11%  966.4 -6.66%  896.7 -16.82%
Second objective 2051.6 -7.38% 17353 -19.09% 1449.6 -6.22% 1022.0 -12.85% 2332.6 -6.26% 2099.4 -16.72%
(3) VNS L
NV 11.1 -5.68% 2.5 -12.96% 10.0 0.00% 3.0 0.00% 10.8 -6.20% 2.9 -9.14%
Distance 12045 -5.72% 1027.8 -16.10%  837.8 -4.83%  589.9 -13.72% 1373.9 -470% 1213.1 -15.74%
Travel Time 859.5 -7.15%  752.6 -17.93%  599.3 -8.54%  432.0 -11.11%  968.1 -6.50%  903.7 -16.17%
Second objective 2075.2 -6.32% 1782.9 -16.88% 1447.2 -6.37% 1024.9 -12.60% 23527 -5.46% 2119.7 -15.91%

(1) Figliozzi (2012) CPU Time 57.4 min, processor Intel Core Duo 1.2 GHz. (2) VNS F (3 threads of 75 min) processor

Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 186 min) processor Intel Core i7 3.4 GHz.
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Method RL A R2 A Cl A c2 A RC1 A RC2 A
(1) Figliozzy IRCI-R&R
NV 10.9 2.5 10.0 3.0 10.8 2.9
Distance 1280.0 1242.0 863.3 668.7 1419.0 1439.0
Travel Time 916.0 868.7 626.7 502.3 1034.0 1020.0
Second objective 2206.9 2113.2 1500.0 1174.0 2463.8 2461.9
(2 VNS F
NV 10.4 -4.50% 25 -1.83% 10.0  0.00% 3.0 0.00% 10.3 -4.57% 2.8 -4.00%
Distance 1171.6 -8.47% 1142.0 -8.05% 836.8 -3.07% 589.3 -11.87% 1335.3 -5.90% 1197.2 -16.80%
Travel Time 826.2 -9.80% 800.0 -7.90% 605.1 -3.44% 445.3 -11.35% 960.9 -7.07% 857.2 -15.96%
Second objective 19979 -9.47% 1942.0 -8.10% 14419 -3.87% 1034.6 -11.87% 2296.2 -6.80% 2054.3 -16.56%
(3) VNS L
NV 10.3 -5.37% 2.3 -9.57% 10.0  0.00% 3.0 0.00% 10.1 -6.19% 2.7 -7.14%
Distance 1172.7 -8.39% 1022.4 -17.68%  829.7 -3.90%  589.3 -11.86% 1322.6 -6.79% 1196.3 -16.87%
Travel Time 828.7 -9.53% 710.6 -18.19% 601.2 -4.06% 445.3 -11.35% 954.6 -7.68% 855.9 -16.09%
Second objective 2011.6 -8.85% 1735.3 -17.88% 1440.9 -3.94% 1037.6 -11.61% 2287.3 -7.16% 2054.9 -16.53%

(1) Figliozzi (2012) CPU Time 55.9 min, processor Intel Core Duo 1.2 GHz. (2) VNS F (3 threads of 72 min) processor

Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 174 min) processor Intel Core i7 3.4 GHz.

Table 21. TDVRPTW average results for 3 instances in Case Type (d) 100 customers.

Method RL A R2 A c1 A c2 A RC1 A RC2 A
(1) Figliozzy IRCI-R&R
NV 11.6 2.8 10.0 3.0 11.3 33
Distance 1292.0 1216.3 865.0 678.3 1421.7 1410.0
Travel Time 976.0 935.3 665.0 502.3 1063.7 1073.3
Second objective 2279.6 2154.5 1540.0 1183.7 2496.7 2486.6
(2 VNS F
NV 11.3 -3.32% 2.7 -3.23% 10.0  0.00% 3.0 0.00% 10.7 -5.51% 31 5.87%
Distance 1195.1 -7.50% 10265 -15.61%  833.5 -3.64%  590.1 -13.01% 1373.0 -3.42% 1178.2 -16.44%
Travel Time 901.3 -7.65%  782.6 -16.33%  642.9 -3.32%  437.7 -12.87% 1020.8 -4.03%  890.4 -17.04%
Second objective 2096.3 -8.04% 1809.1 -16.03% 1476.4 -4.13% 1030.0 -12.98% 2393.8 -4.12% 2068.6 -16.81%
(3) VNS L
NV 11.3 -3.32% 2.6 -6.59% 10.0  0.00% 3.0 0.00% 10.7 -5.51% 3.0 -7.64%
Distance 1184.2 -8.34% 10052 -17.36%  831.3 -3.90%  591.4 -12.82% 1367.3 -3.83% 1169.6 -17.05%
Travel Time 894.2 -8.38%  764.1 -18.31% 6415 -3.53%  438.6 -12.68% 1013.0 -4.76%  883.9 -17.65%
Second objective 2089.6 -8.34% 1771.9 -17.76% 1482.8 -3.71% 1033.1 -12.72% 2391.0 -4.23% 2056.5 -17.30%

(1) Figliozzi (2012) CPU Time 56.8 min, processor Intel Core Duo 1.2 GHz. (2) VNS F (3 threads of 81 min) processor

Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 189 min) processor Intel Core i7 3.4 GHz.



Table 22. Total Number of vehicles, distance and travelled time in all 56 problems (100
customers) in each of the 12 speed profiles (case types)

Case Type (1) Figliozzy IRCI-R&R (2) VNS L

NV Distance Travel Time NV Distance Travel Time

TDla 402 64875.0 53643.0 387 57439.0 46703.4
TD2a 378 64580.0 45847.0 361 57105.5 39505.4
TD3a 360 64667.0 41198.0 348 57358.7 35105.3
TD1b 420 65044.0 54053.0 403 57950.2 47892.0
TD2b 398 64925.0 46773.0 378 59178.5 41878.0
TD3b 393 65781.0 42837.0 370 59018.2 37480.2
TD1c 402 65304.0 53346.0 387 57842.2 47051.2
TD2c 380 64921.0 45583.0 360 57794.1 40599.2
TD3c 365 64791.0 40985.0 350 57317.0 36004.6
TD1d 417 64858.0 54930.0 401 57639.0 48841.1
TD2d 399 64304.0 47905.0 387 57317.9 42465.6
TD3d 388 65084.0 44466.0 375 58368.9 39472.9
TOTAL 4702 779134.0 571566.0 4507 694329.1 502998.9
A -4.15% -10.88% -12.00%

(1) Figliozzi (2012) (2) VNS L

4.6. Analysis of results

The proposed algorithm consistently provided improved results for the TDVRPTW. As

previously mentioned, route evaluation in the search process is computationally expensive in
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TDVRP variants. Therefore, selection of neighborhood structures and its adequate tailoring is at

the most importance in algorithm design.

Analysis of the computational complexity of different neighborhood structures and performance

shows the capability of the proposed LNS tailoring to quickly achieve high accuracy over other

procedures. Well-known neighborhood structures involve the deletion of (up to) x arcs of the

current solution and the generation of x new arcs to create the subsequent solution, the

complexity of neighborhood exploration is 0(n*) (Zachariadis and Kiranoudis, 2010). 2-opt and

2-opt* operators are commonly used in VRP variants with time windows (Braysy and Gendreau,

2005a), the first one relocates customers within the same vehicle and the second one relocates

customers in different vehicles and their complexity of exhaustively examining all possible

solutions “naive exploration” is 0(n?), more complex operators with more arc removals are

consequently more computationally complex (Zachariadis and Kiranoudis, 2010).

The computational complexity of a LNS procedure that makes use of Basic-greedy heuristic for

recreation depends on the number of elements in the request bank, the number of routes
(vehicles) and the number of customers in the modified route in current solution. After the first
insertion, the subsequent customer insertions are only evaluated in the previously modified

route with insertion-cost. Therefore, computational complexity largely varies according to the

number of routes in current solution, being the worst case a solution with one route and quickly

reducing computational complexity with more routes.
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It is important to highlight that the concept of LNS relies on designing a neighborhood
exploration using a group of LNS procedures, that might make use of random elements to
diversify the search process, and effectively exploration of neighborhood is wider than well-

known neighbourhood structures.

In order to understand the computational complexity of the proposed LNS tailoring and its
benefits, a simplified algorithm for travel time minimisation is introduced where different
neighborhood structures are used for local search, namely LNS procedures and 2-opt along

with 2-opt* procedures. The pseudo code is presented as follows:

Algorithm 8: Travel time minimisation procedure 2

Start
1. Incumbent solution « Construction heuristic
2. Current solution < Incumbent solution
3. Repeat
4 Current solution « Local Search procedure (Current solution)
5 If objective (Current solution) < objective (Incumbent solution)
6. Incumbent solution « Current solution
7 EndIf
8 Current solution <« Diversification procedure (Current solution)
9. Until stop criteria met
End

The tested instances are R101 and R201 with speed case TD1la (Solomon (1987) instances,
see Table 6 page 35). The termination criterion is allowed execution time and it was executed
50 times in a single thread for different execution times in order to illustrate the impact of
parameter variation. Note that 2-opt* is restricted, the “naive exploration” only performs a
fraction of iterations obtaining deteriorated results in solutions with few routes, such as R201.
The behaviour of different local search procedures in Travel time minimisation procedure 2 is
shown in Figure 15. The numbers of routes as a result of Construction heuristic are respectively
21in R101 and 5 in R201 (See Table 6 in page 35).
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Figure 15. Behaviour of LNS movements vs. 2-opt and 2-opt* in the presence of time-
dependent travel times. Solomon instances R101 and R102 (100 customers) — Figliozzi (2012)
speed case TD1la.

Results in execution time of 0.5 seconds illustrate the computational complexity and the
accuracy of the proposed LNS, see Table 23. 2-opt and 2-opt* were executed a few hundred
times whereas LNS complete removals and insertions were executed on average 7,544 times in
R101 and 4073 in R102. LNS in instance R101 obtained an average travel time reduction of
22.0% and minimum value reduction of 16.16% over 2-opt and 2opt* local search, in the case of
R102 reductions respectively are 7.5% and 5.3%. LNS clearly provides a more accurate local

search.

Table 23. Results of executing travel time minimisation procedure with different local search
procedures at execution time 0.5 s.

Local Search

Instance 2-opt & 2-opt* LNS A
Best average travel time 1,608.3 1,348.4 16.2%
R101 Average travel time 1,781.0 1,389.0 22.0%
Worst travel time 1,893.5 1,460.0 22.9%
Average lterations 2-opt 178.9 7,544.2
2-opt* 192.7
Best average travel time 1,059.9 1,003.5 5.3%
R201 Average travel time 1,132.0 1,046.5 7.5%
Worst travel time 1,265.3 1,131.2 10.6%
Average lterations 2-opt 239.9 4,073.1
2-opt* 229.1

Solomon instances (100 customers) — Figliozzi (2012) speed case TD1a.
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Although Figliozzi (2012) implementation for the TDVRPTW was based on the ‘ruin-and-
recreate’ concept, alternative destruction and recreation procedures were proposed rather than
LNS procedures. The route improvement procedure consisted of iteratively removing all the
customers in selected vehicles in order to rearrange them with a fast heuristic introduced by the
author. The criteria to select the vehicles were: a) geographical proximity (distance between any

two routes’ centre of gravity), b) number of customers in vehicles.

Donati et al. (2008) made use of well-known neighbourhood operators and algorithm tailoring
was based on restricting movements taking under consideration customer proximity and the
introduction of a variable called “slack time” for each delivery in order to evaluate how long the
delivery could be delayed so subsequent visits in the route will not violate time windows in the

search process in the presence of time-dependent travel times.

This research consistently provides improved results for the TDVRPTW when compared with
previous implementations. It is based on the capabilities of LNS movements to provide a fast
and wide exploration of the search space that can quickly reach highly accurate results in the
presence of time-dependent travel times and time windows. Furthermore, taking advantage of
the capabilities of LNS, additionally tailoring of destruction and recreation procedures also
achieved high accuracy in the minimisation of the required number of vehicles.

4.7. Discussion of the chapter

It is clear from the literature that time-dependent algorithms are necessary to substantially
improve vehicle planning and scheduling in congested environments, with existing approaches
that do not take congestion into consideration leading to extra time and missed deliveries.
However, the added complexities of including time-dependent functions in models requires
increased computational process capacity to provide as near optimal results as constant-speed
models.

Tailoring algorithms to effectively and efficiently solve VRP variants is proven to be a
challenging task. In this research, it is shown how two different strategies are used to solve
different elements of the time-dependent Vehicle Routing Problem with hard time windows.

For the minimisation of vehicles it was necessary to have a very specific approach of
minimisation of time window violations in order to focus the search in scheduling customers that
are particularly difficult to accommodate. Large Neighbourhood Search procedures guided with
Variable Neighbourhood Search achieved high accuracy with the proposed algorithm tailoring.
It provided a reduction of 4.15% vehicles than previous implementations in the 672 test

instances.
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Travel time or travel distance minimisation strategy was based on the search of distant regions
in order to obtain a robust exploration of the search space. When compared to previous
implementations, the algorithm was capable to obtain reductions in some test problems up to
19.60% in travel time and distance with fewer vehicles. It consistently provided improved

solutions in the 672 test instances.

Although the proposed algorithm makes use of random elements to escape from local optima
and can therefore be run on a single processor core if required, parallel computing is also
demonstrated here to take advantage of current processor architecture to execute multiple
threads and explore different regions of the search space simultaneously without increasing the
overall time of the search.

Large Neighborhood Search is a strategy that stands out in Vehicle Routing Problem solution
algorithms due to its simplicity and wider applicability to solve different variants. The proposed
approach shows its capacity to provide planners and drivers with accurate and reliable
schedules when congestion is present using current computer architecture in a reasonable time

with adequate algorithm tailoring.

To sum up

From the literature review in Operational Research techniques to solve VRP variants it is clear
that metaheuristic algorithms do not guarantee optimality and it is necessary to test their
accuracy when studying new variants. This chapter introduces an algorithm based on LNS
movements for the time-dependent Vehicle Routing Problem with hard time windows that
improves previous implementations, reduction of number of vehicles (4.5%), travel distance
(10.8%) and travel time (12%).

In an industry with a low profit margin, these figures are quite relevant to accurately plan
vehicles schedules that consider congestion, a required feature identified by companies, where
scarce literature is found time-dependent variants. Therefore, in the next chapter the capability
of the proposed algorithm will be studied to accommodate a richer VRP variant that considers
Rules on Drivers’ hours in order to provide algorithms capable to mitigate the impact of
congestion and regulation.
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Chapter 5

A metaheuristic approach for the time-
dependent Vehicle Routing Problem with
Rules on Drivers’ hours.

Planners have to consider different restrictions when producing vehicles schedules such as
congestion and regulation. Congestion is unlikely to diminish in the near future and stiffer
regulations designed to mitigate the negative externalities of freight transport are unavoidable.
Among imposed regulation there are the rules on Drivers’ hours, which are restrictions that limit
driving time and working time according to the vehicle type (VOSA, 2011).

In the case of members of the European Union the regulation (EC) 561/2006 applies to vehicles
over 3.5 tons (European Union, 2006) regarding rest periods and breaks for driving time, along
with local regulations. In the case of the UK, The Road Transport (Working Time) Regulation
2005 imposes additional restrictions to drivers such as the introduction of mandatory breaks
after certain working time (VOSA, 2011). Although regulation for vehicles under 3.5 tons also
has been introduced in the UK, it is much less difficult to accommodate (see Table 3 in chapter

2 for the detailed set of restrictions according to vehicle type).

However, the set of regulations for vehicles over 3.5 tons that impose rest periods and
maximum working time per week or fortnight can be easily accommodated in logistic operations
dedicated to urban or regional distribution in everyday planning, as opposed to long haul
operations that should consider resting places and resting times and consequently longer
planning horizons. The benefits of solving a relaxed problem that do not consider all the set of
restrictions but only a sub set when relaxed constraints are not active is that problem complexity
is reduced, algorithm tailoring is less demanding, and highly accurate solutions in reasonable
time are more likely to be obtained. In order to cope with time-dependent travel times and
driving time regulation for multi-drop operations (schedules with up to 100 deliveries) with
restrictions that only consider one planning day, Kok et al. (2010a) formally introduced a VRP
variant, the time-dependent Vehicle Routing Problem with time windows and European
regulation on driving and working hours (TDVRP-EC), along with benchmarking instances and

reported results of a restricted dynamic programing algorithm.
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In this chapter an algorithm for the TDVRP-EC is tailored based on the LNS algorithm
introduced in chapter 4 and results are compared with the algorithm proposed by Kok et al.
(2010a). Additionally, the algorithm is tailored to cope with The Road Transport (Working Time)
Regulation 2005 required in the UK and results are reported. At the extent of the knowledge of
the author this is the first research that studies the time-dependent Vehicle Routing Problem
with time windows and European regulation on driving time and UK working hours (TDVRP-EC-

UW) reported in the literature.

A desired attribute that is not considered in the traditional VRPTW is the construction of
compact schedules that minimise the time that drivers expend on the street. In the VRPTW
resulting routes might impose long waiting times to drivers because the secondary objective is
minimising travel distance or travel time. Although waiting time in customer locations might be
considered as break time, some companies pay for breaks and therefore it has an economic
impact e.qg. truck driver hiring costs (Kok et al., 2010a). In the case where companies have the
policy of not paying breaks, one can infer that drivers would prefer compact routes where break
times are only imposed to comply with regulation or because no other feasible sequence of
visits is found with shorter waiting time. In order to produce compact routes it is necessary to
specifically tailor the algorithm (Kok et al., 2010a). The TDVRP-EC proposed by Kok et al.
(2010a) and the TDVRP-EC-UW consider travel distance or route duration as second objective.

Additionally, Kok et al. (2010a) highlighted the importance of considering congestion and
consequently time-dependent travel times in vehicle planning in order to schedule breaks

adequately and comply with the rules on Drivers’ hours.

The cost structure of transportation depends on different elements such as fixed costs of
vehicles, running costs associated to travel distance and duration of route and labour costs per
hour (Dell’Amico et al., 2007). In this chapter an analysis of impact on transportation costs

according to the accuracy of the algorithm is also introduced.
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5.1. Previous work on Rules on Drivers’ hours

Kok et al. (2010a) introduced a new VRP variant with time-dependent times, time windows, and
a sub-set of rules for regulation (EC) 561/2006 (TDVRP-EC). The sub-set of rules apply for
regional or urban environments when schedules only consider daily planning horizons, the
decisions supported by the model are: i) assigning customers to vehicles, ii) sequencing
customer visits for each vehicle, and iii) selecting departing times for each vehicle from the
depot and also at each customer to account for the sub-set of Rules on Drivers’ hours where
breaks are considered to be taken only at customer locations. Additionally, instances are
proposed based on Solomon (1987) and Figliozzi (2008). The algorithm is an extension of Kok
et al. (2010c) for regulation (EC) 561/2006 that takes under consideration the insertion of
breaks in a Dynamic Programming heuristic. A characteristic of the algorithm is that route
duration minimisation as second objective leads to substantial reduction of route duration, but
more vehicles and longer travel distance is required (Kok et al., 2010a). In the literature review

no other work was found dealing with Rules on Drivers’ hours and time-dependent travel times.

5.2. Problem definition

Both the TDVRP-EC and the TDVRP-EC-UW are extensions of the TDVRPTW, therefore the
problem description presented in section 4.2. is still applicable for these variants, where the
primary objective is minimisation of the number of vehicles but the second objective is either
minimisation of travel distance or route duration. Rules on Drivers’ hours applicable to vehicles
over 3.5 ton in the UK are subject to regulation (EC) 561/2006 and The Road Transport
(Working Time) Regulation 2005, therefore common definitions are required to introduce these

constraints into the model, the following are proposed:

Route Duration: Period of time between the vehicle leaves the depot before the

first request and the vehicle returns to the depot after servicing the last request.

Accumulated Working Time: Accumulated time during which the driver cannot
dispose freely of his free time (driving, loading or unloading, other work). It
includes awaiting to service a customer where their foreseeable duration is not

known.

Accumulated Driving Time: Accumulated time during which the driver has been

driving between a valid break of 45 min, see RD1.

Total Accumulated Driving Time: Accumulated time during which the driver has

been driving in the working day.

Accumulated Break EC: Accumulated break that accounts for (EC) 561/2006

following restriction RD1.
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Accumulated break UW: Accumulated break that accounts for The Road

Transport (Working Time) Regulation 2005.

The additional sets of constraints applicable for planning horizons of one day to account for the

Rules on Drivers’ hours are as follows:

Relaxed driving time constraints following regulation (EC) 561/2006 as proposed by Kok et
al. (2010a)

RD1. A period between two breaks of at least 45 min is called a driving period. The
accumulated driving time in a driving period may not exceed 4.5 h. The break that
ends a driving period may be reduced to 30 min if an additional break of at least 15
min is taken anywhere during that driving period. The driving hours regulations do not
allow service times at customers to be considered as break time.

RD2. The total accumulated driving time may not exceed 9 h for any individual driver.

RD3. The route duration may not exceed 13 h for any individual driver.

The Road Transport (Working Time) Regulation 2005 (VOSA, 2011)

RD4. Mobile workers must not work more than 6 consecutive hours without taking a
break.

RD5. If the Accumulated Working Time total between 6 and 9 hours, working time should
be interrupted by a break or breaks totalling at least 30 minutes.

RD6. If the Accumulated Working Time total more than 9 hours, working time should be
interrupted by a break or breaks totalling at least 45 minutes.

RD7. Breaks should be of at least 15 minutes’ duration.

Constraint RD3 is proposed by Kok et al. (2010a) in order to comply with the part of regulation
EC (561/2006) that dictates that daily rest period shall be at least 11 hours. Although the
original restriction in regulation EC (561/2006) could be handled in different ways, it is
considered in this research as proposed by Kok et al. (2010a) in order to be able to compare

results of the proposed algorithm.

An example of a valid schedule for regulation (EC) 561/2006 in a single work day for one
vehicle (driver) is shown in Figure 16. RD1 is satisfied by taking 2 breaks of total duration of 45
min after an Accumulated Driving Time of 4.5 h, the first break of 15 min and the second one of
30 min.
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Break Break
ivi . h k2.5h . ivi . ivi
Driving 2.5 h Other work 2.5 15 min Driving 2 h 30 min Driving 4 h
| Driving period 1 | b Driving period 2 —
f Route Duration Time 11.75 h -

Total Accumulated Driving time 8.5 h

I Accumulated Working Time 1 |

Figure 16. Valid schedule for deliveries with regulation (EC) 561/2006.

However, the schedule presented in Figure 16. is invalid when applying The Road Transport
(Working Time) Regulation 2005 because there is only a 15 min break in Accumulated Working
Time 1 (7 hours), it should be an Accumulated Break UW of 30 min in an Accumulated Working

Time with a duration between 6 and 9 hours, as shown in Figure 17.

. Break .. Break .
Driving 2.5 h Other work 2.5 h 30 min Driving 2 h 30 min Driving 4 h
| Driving period 1 | - Driving period 2
f Route Duration Time 12 h 1

Total Accumulated Driving time 8.5 h

I Accumulated Working Time 1 |

Figure 17. Valid schedule for deliveries with regulation (EC) 561/2006 and The Road Transport
(Working Time) Regulation 2005.

5.3. Algorithm description

Inclusion of Rules on Drivers’ hours requires a more complicated model that the TDVRPTW, it
is necessary to account for accumulated driving time, accumulated working time and designing
model constraints that assure the insertion of breaks that satisfy regulation. Due to the fact that
LNS movements quickly reached highly accurate solutions in the TDVRPTW, the algorithm is
based on the LNS tailoring introduced in chapter 4, initial testing with other Operational
Research techniques required long execution time to reach high accuracy (i.e. genetic
algorithms and ejection chains). However, the proposed tailoring makes use of fewer elements
due to the complexity of accommodating Rules on Drivers’ hours in implementation, e.g., a
much simpler construction algorithm is introduced based on Basic-greedy heuristic instead of
IRCI; removing the use of well-known neighbourhood structures (which might require longer
computational time than LNS movements); and using a much simpler diversification strategy

based on Tabu search instead of Variable Neighbourhood Search.

The aim with this algorithm tailoring is to produce a solution with the characteristics proposed
by Cordeau et al. (2002) for implementations that can be used in the industry (i.e. accurate, fast,
simple and flexible). The proposed algorithm firstly constructs a feasible route, then minimises
the number of vehicles in a search space that allows violations of time windows and finally

minimises the second objective (distance or route duration).
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The centre of the tailoring is the design of an algorithm called “Scheduler”, that accounts for
Rules on Drivers’ hours based on object programming in its implementation. Scheduler object
is called across the algorithms that create LNS movements. As proposed by Kok et al. (2010a)

breaks are only taken at customer locations.

Scheduler for Drivers’ hours Rules

The purpose of Scheduler is to determine where to insert breaks in the current LNS movement
(removing or inserting customers in a solution) by calculating the driving time required by the
movement and subsequently calculating the Accumulated Driving Time and Accumulated
Working Time and establishing if a break is required. In the case of an insertion, it starts in the
customer prior to the position of the insertion and determines if in order to make possible the
insertion, the insertion of a break is required. It later calculates break requirements in the

following customers that are in the route, see Figure 18.

Partial destruction O ...........................
Possible insertion

Movement evaluation §, ---------------------------------- E
[>o—e-O-0—>] '

.....................................

Scheduler determines if break is required by possible insertion

List of removed customers
(request bank)

] Depot 8 Customers

Figure 18. Description of the evaluation performed by Scheduler to establish if insertion or break
are required.

The time windows in the model might impose drivers to wait at a customer location when the
arrival time at a customer is earlier than the lower time of the time window. Waiting time at a
customer might be valid as a break or part of a break, the conditions that trigger the scheduling

of a break and possibly requiring more time at a customer location are the following:

e By visiting the next customer accumulated driving time is over 4.5 h without a 45 min
valid Accumulated Brake EC (Constraint R1).

e By visiting and conducting the service at the next customer accumulated working time is
over 6 h and under 9 h and accumulated break UW is under 30 min.

e By visiting and conducting the service at the next customer Accumulated Working Time

is over 9 h and Accumulated Break UW is under 45 min.
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Additionally, when customer time windows impose waiting time due to early arrival, breaks that
count for Rules on Drivers’ hours could be taken even if no trigger from Rules on Drivers’ hours
is activated (not requiring additional time at customer location), therefore taking advantage of

waiting times, a model characteristic not implemented by Kok et al. (2010a).

(The conditions implemented in Scheduler to comply with the Drivers’ hours rules are presented

in a textual description in order to make easier the comparison with the problem definition)

e If waiting time is equal or longer than 15 min and shorter than 30 min, a break of 15 min
is inserted that accounts for Accumulated Break UW. It might account for Accumulated

Brake EC if Accumulated Break EC is equal to 0 min.

e If waiting time is equal or longer than 30 min and shorter than 45 min, a break of 30 min
is inserted that accounts for Accumulated Break UW. It might account for Accumulated
Break EC in the case that the previous value of Accumulated Break EC is equal to 15
min (insertion of a 30 min break) or in the case that the previous value of Accumulated

Break EC is equal to 0 min (insertion of a 15 min break).

e If waiting time is equal or larger than 45 min, a break of 45 min is inserted that accounts

for Accumulated Break UW and Accumulated Break EC.

Note that each time that Accumulated Break EC reaches 45 min a new driving period is inserted

(Accumulated Break EC takes the value of 0 min).

Note that breaks required by regulation (EC) 561/2006 also count for The Road Transport
(Working Time) Regulation 2005.

The conditions to establish if additional time is required at a customer location to satisfy breaks

for Rules on Drivers’ hours are the following:

e If waiting time is longer than the required break, no extra time at customer location is

inserted.

e If waiting time plus the length of the time window is equal or longer than the required
break, an additional time at customer location is inserted of duration of the required
break minus the waiting time (break start as soon as the vehicle arrives at the customer

and service does not start until the break is finished).

o If waiting time plus the length of the time window is shorter than the required break,
service starts at the first feasible time and time at customer location is inserted of

duration of the required break (break starts after the service).
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In order to determine break insertions and additional time at customer locations it is required to
calculate different characteristics of the route. Therefore, additional return values of scheduler
that do not impose extra computational burden are also calculated, returns values of scheduler

are the following:

e Customer where breaks are scheduled

e Duration of breaks

e Duration of insertion of time at customer

e Sum of time window violations

e Total distance

e Total travel time (driving time)

e Total waiting time

e Route duration

e Feasibility of route or penalty (violation of time windows when service start after the
upper time of the time window)

e A random value if insertion is feasible

Different return values of scheduler are used according to the objective value in the optimisation

stage.

The last item is used to diversify the search process of LNS and avoid stagnation in recreation
procedures by using a random order to reinsert customers; this is a new characteristic from the

algorithm presented in chapter 4.

Construction procedure
The proposed construction procedure is rather simple and makes use of random elements to
generate different solutions that have the characteristic of being feasible, it is presented as

follows.
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Algorithm 9: Construction procedure

Start
1. Creation-of-route « true
2. Inserted-Customers « 0
3. k<O
4. Repeat
5. If (Creation-of-route =true) then
6. Randomly select customer v;’
7. Create route {vy — v;" — v}
8. Creation-of-route « false
9. Inserted-Customers « Inserted-Customers + 1
10. End If
11. If (Creation-of-route = false) then
12. Repeat
13. For each unrouted customer calculate insertion-cost® (v;, k, p)
14. Select customer with lowest insertion-cost®™
15. Insert customer in route k position p
16. Inserted-Customers « Inserted-Customers + 1
17. Until no feasible insertion in route k

18. End if

19. k<k+1

20. Until Inserted-Customers = Number of customers to schedule
End

The insertion-cost® (line 14) is the following function:

insertion-cost®(v;, k,p) = 8;" A Total Travel Time + 87 A Total Waiting Time

where A Total Travel Time is the variation in total travel time by inserting customer v; in route k
in position p, A Total Waiting Time is the variation in total waiting time by inserting customer v;
in route k in position p, §; and §, are parameters to weight the impact of travel time and waiting

time, 87 + 87 = 1; 877 and &3 might vary randomly.

This procedure can be repeated a number of times where the solution with minimum number of

vehicles is chosen as the initial solution for minimising the number of vehicles.

Minimisation of the number of vehicles procedure

This procedure is very similar to the LNS algorithm for the TDVRPTW presented in chapter 4 for
minimisation of number of vehicles, the route (vehicle) with minimum number of customers is
removed and customers are reinserted in the solution creating violations of the upper limit of the
time windows. The procedure reduces the penalties by using LNS movements, it is presented

as follows:
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Algorithm 10: Minimisation of number of vehicles procedure

Start
1. Incumbent solution < Construction of Initial Solution
2. Current solution « Remove one route (Incumbent solution)
3. Repeat
4. Current solution « Diversification Penalty Procedure (Current solution)
5. Current solution < LNS Penalty Reduction Procedure (Current solution)
6 If penalty(Current solution) = 0
7 Incumbent solution « Current solution
8. Current solution < Remove one route (Incumbent solution)
9. End if

10. Until stop criteria met
Return Incumbent solution
End

The main steps of Minimisation of number of vehicles procedure are the following:

i)

The LNS Penalty Reduction Procedure (line 5) makes use of ruin procedures (Random-
Ruin, Radial-Ruin, Worst-removal) and Basic-greedy heuristic with the following insertion-
cost®:
insertion-cost®(v;, k,p) = A Penalty

or in case there is no penalty in the insertion (in order to avoid stagnation) two insertion-
cost® might be used.

insertion-cost®(v;, k,p) = A travel time + A waiting time

or

insertion-cost®(v;, k,p) = Random value
where customers that generate penalty are firstly inserted and secondly customers that
do not generate penalty are inserted.
The Diversification Penalty Procedure (line 4) is based on selecting a random number of
customers that generate penalty (Worst-removal) along with Random-Ruin and inserting
them in a different route (vehicle) in the solution with Basic-greedy heuristic with the

previously mentioned insertion-cost®.

Minimising second objective

This procedure can minimise travel distance or route duration by using LNS movements. The

search strategy at master level is a simple tabu search that prevents the search to explore

previously visited regions instead of the Variable Neighbourhood Search implemented for the
TDVRPTW.
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Algorithm 11: Minimisation of travel distance/route duration procedure

Start
1. Incumbent solution < Construction of Initial Solution
2. Current solution « Minimisation of number of vehicles procedure (Incumbent solution)
3. Repeat
4. Current solution « Diversification Second Objective (Current solution)
5. Current solution « LNS Multi-objective (Current solution)
6 If Objective(Current solution) < Objective(Incumbent solution)
7 Incumbent solution « Current solution
8. End if
9. Until stop criteria met

10. Current solution « Optimisation Departure Time procedure (Current solution)
Return Incumbent solution
End

The main steps of Minimisation of travel distance/route duration procedure are the following:

i)

LNS Multi-objective (line 5): It makes use of ruin procedures (Random-Ruin, Radial-Ruin
and Sequential-Ruin) and Basic-greedy heuristic for recreation, where insertion-cost™®
makes use of different returns values of scheduler to avoid stagnation.

insertion-cost'™ = 8 ATotal Travel Time + 8,7 A Total Waiting Time + 857 A Total Distance

where
8P + 8P + 857 =1; 87 ,85Pand 657 might vary randomly

or

insertion-cost™ = A Route duration
or

insertion-cost'? = Random value
Diversification Second Objective procedure (line 4): It is based on removing two
sequences of customers of random length calling Sequential-Ruin and inserting them in
the solution with Basic-greedy heuristic with insertion-cost™ set as a random number
when insertion is feasible. A Tabu search maintains records of explored solutions to force
the search to new regions, the recorded tabu solution characteristic is the value of the

objective function.

In the case of route minimisation as second objective, evaluation to store an improved solution

(line 6) makes use of Optimisation Departure Time procedure to obtain the minimum possible

route duration of the current solution.

Optimisation Departure Time procedure is an algorithm that moves forward the departure time

from the depot in an iterative way until the route becomes infeasible and modifies the route if it

finds a departure time that reduces the route duration.

Although the proposed tailoring can minimise travel distance or route duration, an optimisation

of departure times is always executed in order to minimise route duration when the search is
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terminated (line 10). In the case of minimisation of travel distance, it doesn’t affect the obtained

distance and provides solutions with compact routing times.

5.4. Test instances

The well-known test instances for the VRPTW proposed by Solomon (1987) consist of 56
problems of 100 customers. Figliozzi (2008) modified them by adding speed profiles in order to
account for congestion. The depot opening time [e,, [,] is divided into 5 periods of equal
duration, with 3 speed profiles (TD1-TD3). An additional profile (TDO) with constant speed of 1
is also considered in order to offer result comparison for best-known values with constant speed

models, the speed profiles are as follows:

TDO = [1.00, 1.00, 1.00, 1.00, 1.00]
TD1 = [1.00, 1.60, 1.05, 1.60, 1.00]
TD2 = [1.00, 2.00, 1.50, 2.00, 1.00]
TD3 = [1.00, 2.50, 1.75, 2.50, 1.00]

Solomon instances present different depot opening times where units of distance and time are
equal. For ease of comparison therefore Kok et al. (2010) introduced an additional modification,
where required breaks of regulation (EC) 561/2006 are scaled to a working day of 12 hours
(from 7 AM until 7 PM) based on the different opening times of the depot in Solomon instances
(the length of the break and the maximum time of Accumulated Driving Time without break are
scaled). These scaled instances with the Figliozzi (2008) speed profiles collectively provide

(56x4=) 224 test instances that are used as the basis of the results in this chapter.

5.5. Experimental results

Rules on Drivers’ hours

Analysis of additional logistic resources required to accommodate the Rules on Drivers’ hours
along with algorithm accuracy is possible by comparing the results of different algorithms when
tested with similar VRP variants, namely the VRPTW (no regulation or congestion are
considered), EC (European regulation on driving and working hours) and EC-UW (European
regulation on driving and working hours and The Road Transport (Working Time) Regulation
2005 required in the UK). The VRPTW has been largely studied and highly accurate result
values are available with primary objective minimisation of vehicles and secondary objective
minimisation of travel distance (Toth and Vigo, 2001). Table 24 shows the minimum number of
required vehicles and travel distance when algorithms are set to minimise travel distance as
secondary objective and no congestion is considered for the mentioned variants. While the DP
algorithm of Kok et al. (2010a) requires 26.9% more vehicles and 26.7% more travel distance to
accommodate regulation (EC) 561/2006 when compared to best-known values for the VRPTW,
the algorithm proposed in this research requires only 6.9% more vehicles and 4.7% travel
distance. Results also show that in order to accommodate regulation EC-UW it is required

11.6% more vehicles and 6.6% travel distance when compared to the VRPTW.
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Table 24. Impact of Rules on Drivers’ hours with no congestion (TDO0), minimising travel
distance as secondary objective, Solomon instances (100 customers).

Variant and algorithm NV A Distance A
VRPTW (1) 405 57187

EC DP (2) 514 26.9% 72464 26.7%
EC LNS (3) 433 6.9% 59862 4.7%
EC-UW LNS (4) 452 11.6% 60995 6.7%

(1) Best-known values, see Vidal et al. (2013) (2) Kok et al. (2010a) Running time 138 min
(Core 2 Quad 2.88 GHz, 4 GB Ram) (3-4) Running Time 112 min (Core i7 3.4 GHz, 16 Ram)

European regulation on driving and working hours and time-dependent travel times.

The DP algorithm (Kok et al., 2010a) and the proposed LNS can schedule vehicles with time-
dependent travel times, regulation (EC) 561/2006 and minimisation of route duration as
secondary objective. LNS provides improved solutions with 19.0% less vehicles, reduction of
4.4% in route duration along with routes with 17.7% travel distance, results are shown in Table
25. A characteristic of the DP algorithm is that in order to deal with time-dependent travel times
it requires additional execution time Kok et al. (2010a), whereas the proposed LNS was set to
maintain the same execution time as that in the constant speed case. Although speed
comparison of algorithms is a complex activity due to difference in CPU capacity and language
compiler, it is important to highlight that the proposed LNS obtained a large reduction in number

of vehicles and travel distance in a fraction of the execution time.

Table 25. Results for regulation (EC) 561/2006 on driving hours in urban or regional
environments and different levels of congestion, minimising route duration as second objective,
instances based on Solomon (100 customers).

DP (1) LNS (2)
Speed profile NV Distance Route Duration NV Distance Route Duration
TDO 523 73584 272160 433 60183 259603
TD1 494 73808 254240 401 60461 236927
TD2 458 74256 243712 374 61200 235946
TD3 458 74480 236768 358 61826 230304
Total 1933 296128 1006880 1566 243671 962780
A 19.0% 17.7% 4.4%

(1) Kok et al. (2010a) Running time 1138 min (Core 2 Quad 2.88 GHz, 4 GB Ram)
(2) Running time 448 min (Core i7 3.4 GHz, 16 Ram)

European regulation on driving and working hours, The Road Transport (Working Time)
Regulation 2005 and time-dependent travel times.

In this research results for the VRP variant with time windows, Regulation (EC) 561/2006 on
driving and working hours and The Road Transport (Working Time) Regulation 2005 in the UK

with time-dependent travel times are introduced, see Table 26.
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Table 26. Results for regulation (EC) 561/2006 on driving hours and The Road Transport
(Working Time) Regulation 2005 in urban or regional environments and different levels of
congestion, minimising route duration as second objective, instances based on Solomon (100
customers).

Speed profile NV Distance  Route Duration

TDO 452 62137 275348
D1 422 62816 262902
TD2 398 63147 252541
TD3 383 63203 246971
Total 1655 251302 1037762

Running time 448 min (Core i7 3.4 GHz, 16 Ram)

Cost Implications in vehicle scheduling of Drivers’ hours Rules

Minimising total cost rather than travel distance is actually the core objective of logistics
scheduling in reality (Dullaert et al., 2002). It is therefore important to analyse results in relation
to overall cost implications rather than mere theoretical objective values. A variation of the
instances proposed by Kok et al. (2010a) is introduced to account for logistic costs when the
different set of rules of Drivers’ hours are introduced in a scenario that does not consider
congestion, namely: i) consideration of the industry logistic costs, ii) escalation of distances and
break times to represent deliveries in a working day in an urban environment and iii) the use of
a speed that represents the conditions of urban roads.

Based on a survey of UK logistics operators conducted by FTA (2014) fixed costs (including
vehicle excise duty (VED), insurance and depreciation of vehicle value), variable costs
(including fuel consumption, tyre wear and maintenance) and time related costs (including driver
wages and National Insurance contributions) can be estimated (a Lorry of 7.5 ton is used as the
example here). The following cost coefficients are proposed: Fixed cost per vehicle per day
£17.8, coefficient per km £ 0.25 and coefficient per hour £ 9.91.

In instances proposed by Kok et al. (2010a) the parameters to establish breaks (maximum
driving time of 4.5 hours, required break 45 min, etc.) are scaled accordingly to the opening time
of the depot in Solomon instances, which vary to represent different time windows
characteristics, see Table 6 page 35. In the instance variation proposed in this research,
distances, time windows and depot opening times are scaled to a working day of 12 hours (7:00
AM — 7:00 PM), while maintaining a maximum driving time without break of 4.5 hours and

required break of 45 min.

Additionally, it is necessary to further scale the travel distances in the Solomon instances to be
realistic based on a feasible speed (in the original Solomon instances the units of distance and
travel time are equal). Therefore travel distance is calculated by multiplying the travel time
(which is the same travel distance in the theoretical instances of Solomon) by the average

speed in free flow condition in urban areas of 48 km/h.
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The economic impact of considering Rules on Drivers’ hours in urban conditions is shown in
Table 27. With the proposed algorithm in this research, in the theoretical instances, the cost of
regulation (EC) 561/2006 is 3.0% and the cost of the full set of rules is 6.9%. An estimation of
the cost of regulation (EC) 561/2006 using the DP algorithm is feasible by extrapolating the
additional number of vehicles, route duration and travel distance provided by the algorithm
when compared to the results of LNS (19.0%, 4.4%, 17.7% respectively). The estimated
solution provided by the DP algorithm is £ 94,535, 8.9% more expensive than the results

obtained by the proposed LNS.

Table 27. Cost implications of Rules on Drivers’ hours.

Route Duration Distance Cost

VRP Variant NV (Hours) (Km) ) A
VRPTW 416 4053 81261 83994
EC 433 4226 81882 86862 3.0%
EC-UW 452 4399 82795 89818 6.9%

5.6. Discussion of the chapter

The industry requires models and algorithms capable to cope with a range of restraints found in
real life operations that impose extra costs and affect operation, such as Rules on Drivers’
hours and time-dependent travel times. Although rich VRP variants are a challenge to
researchers and software developers, state-of-the-art search strategies can produce highly
accurate solutions that ameliorate the logistic resources required to accommodate new
conditions. A characteristic of a previously reported algorithm, which accounted for regulation
(EC) 561/2006, was that compact routes were obtained at the expense of providing schedules
with higher number of vehicles and longer travel distance. The LNS tailoring presented in this
research obtained solutions with shorter route duration (4%), with fewer required vehicles
(19%), and less travel distance (17%) in reasonable time when tested with previous

implementations reported in the literature when time-dependent travel times are considered.

Although the proposed LNS algorithm makes use of fewer elements than the LNS proposed in
chapter 4, analysis of results when comparing best-known results for the VRPTW in terms of
number of vehicles and travel distance, shows that the LNS for regulation (EC) 561/2006
presented in this chapter provides schedules with only 6.9% more vehicles and 4.7% longer
travel distance than best-known values for the largely studied variant, note that LNS
accommodate regulation (EC) 561/2006.

Furthermore, an economic analysis of the impact of the regulation and algorithm accuracy is
also introduced. According to the analysis of theoretical instances, in the case of only

considering regulation (EC) 561/2006, by using a previously reported algorithm, the estimated
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extra cost for providing solutions that comply with regulation is 12.45% whereas the LNS
algorithm provides solutions with a mere 3.0% of extra cost with an execution time of 2 minutes
per instance (100 customers). Accommodating Regulation (EC) 561/2006 and the Road
Transport (Working Time) Regulation 2005 required in the UK have a cost of 6.9%

Regarding algorithm tailoring, LNS is considered a simple search strategy capable to provide
highly accurate solutions for rich problems, this research is an example of it. As reported in
chapter 4, LNS offers a quick and thorough search for the time-dependent VRP with time
windows, and it can be tailored to accommodate complex restraints and still offer highly

accurate solutions for richer time-dependent VRP variants.

Nevertheless, the tested instances are theoretical and analysis of results has to be taken
carefully. There is a range of logistic configurations with different complexities, e.g. length of
journey, time window service promise, economies of scale, level of congestion, etc. Analysis of
the outcome of the proposed algorithm should consider the complexities involved in the studied

logistic operation.

To sum up

This chapter introduces an implementation of LNS capable to deal with a rich VRP variant that
considers time-dependent travel times and Rules on Drivers’ Hours. A characteristic of the
proposed algorithm is that it introduces a modification to LNS movements to quickly reduce the
number of vehicles, achieving solutions with 19% less vehicles when accounting for Regulation

(EC) 561/2006 than previous implementations.

Furthermore, a cost analysis is introduced based on the current structure of the freight industry.
Results show the importance of adequate algorithm design and evaluation to mitigate the
impact of the challenges that the industry is facing, the proposed algorithm provides routes that
accounts for regulation (EC) 561/2006 with a reduced cost (8.9%) when compared to previous
algorithms reported in the literature. Additionally, benchmark values are introduced for a VRP
variant that considers regulation (EC) 561/2006 and the Road Transport (Working Time)
Regulation 2005 required in the UK.
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Chapter 6

Application of a rich time-dependent VRP
variant in home delivery and the last-mile
problem

New challenges have arisen in the transport industry, such as road congestion and regulation
imposed by authorities to tackle the negative impacts of transport. This coupled to the ever
demanding customer and the move to same-day delivery has meant that logistics providers
have had to continually improve their level of service (Ehmke et al., 2012). The continuous
growth of e-commerce in the last 16 years and home delivery imposes new conditions on the
industry (Visser et al., 2014). In the case of required customer presence or signature, more
accurate schedules are needed, and dispatchers and drivers often complain about their
inaccuracy due to underestimation of travel times (Eglese et al., 2006, Ehmke et al., 2012).
Current retail trends show that online sales represent 14% of all UK brick-and-mortar stores and
e-commerce and this is expected to rise up to 35% by 2020 (Javelin-Group, 2011; Visser et al.,
2014), where it is estimated that 12% of first deliveries fail (Visser et al., 2014). This situation
has drawn attention to certain issues in the final part of the supply chain when the product is
delivered to the customer, which is referred to in the literature as the ‘last-mile problem’
(Gevaers et al., 2011),

The last mile is considered as one of the more expensive, less efficient and polluting sections of
the entire logistic chain (Gevaers et al., 2011). Some of the issues involved are the security
aspects regarding a safe place to leave the packages, the not-at-home problem when the
customer may have to sign, and a lack of critical mass to achieve economies of scale that make
the operation profitable (Boyer et al., 2009, Gevaers et al., 2011). Although some successful
business examples with delivery to customers are Ocado (groceries delivery), Office Depot
(office supply) and package logistic providers such as UPS, there are catastrophic examples,
such as Webvan, the online grocery business that was initially valued at over US$ 5 billion and
eventually made losses of hundreds of millions until it went bankrupt (Boyer et al., 2009, Ring
and Tigert, 2001). Webvan service’s promise of time windows of 30 minutes proved to be a
huge logistical challenge (Boyer et al., 2009), where some of the biggest mistakes were to not
understand customers’ expectations, poor marketing, and aiming at a large geographic area,
which proved to be too costly (Lunce et al., 2006). Companies need to face the trade-off
between satisfying customer expectations to improve sales and the related logistic costs (Yang
et al, 2014).



100

Last-mile costs may account for 13% to 75% of logistic costs (Gevaers et al., 2011; Onghena,
2008), with one of the most substantial issues occurring when delivery requires the presence of
the customer. If no specific window of delivery is arranged, the failure rate will be inevitably high
and consequently additional visits will be necessary. Failed delivery rates may be reduced by
allowing customers to choose the delivery time, but at the expense of increasing logistics costs.
Tight time windows require more mileage for the same number of deliveries, a phenomenon
referred to as the ‘ping-pong effect’ due to the graphic visualization of the schedule where
vehicles have to revisit geographically close locations at different times to accommodate time

windows (Gevaers et al., 2011).

Although in some business models time windows are allowed in the service e.g. online
groceries such as Ocado (1-hour time window) and Tesco (2-hours time window?) (Boyer et al.,
2009), currently most home delivery services do not provide a time window for the delivery
(Visser et al., 2014). The identified issues from the customer perspective in home delivery are: i)
not on time, not at home, not delivered,; ii) delivery charges are too high, delivery time too long;

and iii) forced to stay at home (about 50% stay at home (Visser et al., 2014)).

A number of technologies and initiatives are available to support planners in order to satisfy
customers’ expectations. Such has been the scientific interest in improving logistics operations
in cities, the concept of city logistics is defined as ‘the process for totally optimising the logistics
and transport activities by private companies in urban areas while considering the traffic
environment, the traffic congestion and energy consumption within the framework of a market
economy’ (Taniguchi et al., 2001), where ITS and models are crucial in the optimisation of

urban freight systems (Taniguchi & Thompson, 2002).

The importance of improving freight transport in cities relies on the fact that 85% of the EU’s
GDP is generated in urban areas where 72% of the European population lives (Cattaruzza et
al., 2015; European-Commission, 2009). Some of the special characteristics of route planning in
urban areas are: congestion and reliability of schedules, high density, accidents, regulation and
access restriction (especially in old European cities where streets are narrow, with restricted

parking) (Cattaruzza et al., 2015).

2 http://www.tesco.com/groceries/help/default.aspx?rel=help#my_delivery. Accessed on 04-09-2015.
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Boyer et al. (2009) studied the impact of customer density and length of the promise of time
windows, taking into consideration logistic conditions in the US for grocery delivery, but without
accounting for congestion, finding that costs increased in low-density areas and tight time
windows, e.g. by comparing a delivery with no time windows with a service promise of a 3-hour
time window, delivery costs increased by 45%. Boyer et al.'s (2009) methodology was based on
using commercial software to provide results, with no discussion regarding the accuracy of the

algorithm.

The impact of urban congestion has increased over the last 30 years, with the 101 largest US
cities reporting that travel delay had increased from 1.1 billion hours in 1982 to 4.8 billion hours
in 2011 (Chang et al., 2015). Rising levels of traffic congestion mean that logistics providers
face the challenge of maintaining time-critical service levels whilst at the same time minimising
the extra costs that congestion and delays impose. However, the research by Boyer et al.

(2009) does not consider the impact of congestion.

The algorithm proposed in chapter 5 is capable of coping with time-dependent travel times and
Rules on Drivers’ hours with high accuracy. Therefore, in this chapter the algorithm is used in
instances that account for urban conditions in order to provide knowledge to researchers and
the industry regarding the last-mile challenge and to show the implications of using the

proposed algorithm in the analysis of the supply chain.

6.1. Previous work

The research presented by Boyer et al. (2009) was based on randomly generating a set of
instances in an unmentioned metropolitan area of 5,120 km?, where the impact of the length of
time window and density of customers in vehicle schedules were studied. Addresses of
students were used as customer locations and service time was established as 10 min. Each
experiment was replicated between 5 and 10 times and solved in a server with the routing
software Descartes; small instances (500 customers) required from 1 to 2 hours whereas large

instances (4000 customers) required over 24 hours.

One of the main contributions of the paper is proposing a methodology to estimate delivery
costs for multi-drop operations, where the independent variables are length of the time window
and density of customers, see Table 28. Giving a transport cost structure with vehicle
depreciation per year of US$ 8,000, running costs of US$ 0.375 per kilometre, labour costs of
US$ 20 per hour and assuming average route duration of 8 hours and that vehicles work 250

days per year, the cost per delivery in US$ is estimated as follows:
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Cost per delivery = Fixed cost + Variable cost + Time related cost ; where

1

Fixed cost = 8000
rxea cos * 250 = Stops per route

) Kilometres per route
Variable cost = 0.375 =

Stops per route

8

Time related cost = 20 ¥ ———
Stops per route

Table 28. Cost per delivery according to customer density and length of time window.

Customer 0.097 0.39 0.78
Density (500 customers) (2000 customers) (4000 customers)
Area 5120 Km2 Stops per Kilometres Cost per A Stops per Kilometres per Cost per A Stops per Kilometres Cost per A
route perdelivery delivery route delivery delivery route perdelivery delivery
Time Windows
No TW 223 49.5 9.1 30.9 44.3 7.6 32.8 39.7 7.0
2hr 15.0 56.2 13.7 50% 22.1 58.5 11.3 48% 24.0 57.1 10.3 47%
1hr 13.4 54.8 153  67% 18.9 60.5 13.3 75% 211 59.4 11.8 69%

Source: Boyer et al. (2009)

Results obtained by Boyer et al. (2009) show the impact of tight time windows: providing a 2-
hour time window presents an average transport cost increment of 48%, and a 1-hour time
window an increment of 70%. However, transportation costs per delivery decrease in the
presence of high customer density. The costliest scenario is low customer density (500
customers) with a time window of 1 hour (US$ 15.3 per delivery), whereas the least expensive
scenario is in conditions with high customer density (4000 customers) with no time window
(US$ 15.3 per delivery). This shows the impact of market penetration and service promise — in

the studied scenarios it may mean a cost overrun of up to 118%.

Low customer density might be the result of low market penetration or actually few people living
in the area. However, it is important to consider the density of deliveries in a territory (Boyer et
al., 2009). An example is presented by a UPS representative statement: ‘It's an important
determination because it costs a little less to ship to a commercial address. That's because it's
less expensive to deliver to densely clustered commercial addresses than to residences often

scattered throughout sprawling suburban neighbourhoods.”?

Economies of scale are vital to obtain low logistics costs (Chopra & Meindl, 2007). In the
research by Boyer et al. (2009), customers’ locations are randomly chosen from a list of
students. However, the density pattern that might be found in an actual grocery delivery
operation is not addressed nor the consequent road speeds or congestion present in the city or
suburban areas. A metropolitan area consists of a densely populated urban area (city) and its

less-populated surrounding territories. Take for example New York and its metro area: the

3 UPS http://compass.ups.com/article.aspx?id=2147483832 Accessed 05-09-2015.
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population of the city is over 8 million people in a land area of 784.76 km?, the population of the
total metropolitan area is over 18 million in a land area of 17,319 km?2.# A higher density of
customers may be expected in the city than in the rest of the metropolitan area. Additionally,
other circumstances that affect the operation may vary in urban or semi-urban areas, such as

congestion and speed limits.

Logistics configuration and business strategies also impose different logistic conditions. In the
instances proposed by Boyer et al. (2009) for an online grocery company, the depot serviced an
area of 5120 km? with a maximum of 4000 customers, with a service time of 10 minutes and
vehicles with a capacity of up to 33 deliveries. The case of Sainsbury, the giant supermarket in
the UK, shows a different logistic configuration, Sainsbury’s online operates from almost 200
sites across the UK with a fleet of approximately 1300 vans (specially designed to maximize
volume and controlled temperature). It is available to 90 per cent of UK households, with a 6
minutes service time and a total of 120,000 deliveries per week (Commercial-Vehicle-Engineer,
2012).

In order to understand the practical implications of the algorithm introduced in this research a
number of scenarios are designed to account for the restraints found in urban environments
(congestion, density of population) and service conditions of home delivery (length of the time

window).

6.2. Scenarios

One of the different logistic conditions in the UK that differs from the United States is that the
UK is more densely populated with a reduced area of territory. The proposed scenarios are
based on an area of the UK densely populated, 400 km? in size (the distance between the depot
and the furthest customers is 10 km) and the nhumber of deliveries are 100 and 400 customers.
Length of time window varies between no time window to a tight time window of 1 hour. The

depot opening time is between 9 a.m. and 7 p.m.

Additionally, different levels of congestion are introduced in the analysis. The average US
pattern of congestion in urban environments according to the time of day is presented in Figure
19. Commonly there are two peaks of congestion, morning and evening. TomTom (2015) has
introduced the congestion level traffic index (see Table 29 for the level of congestion in selected
cities). The congestion level of cities is measured by the calculated increment in overall travel
times when compared to a free-flow situation. For example, a congestion level of 20%
corresponds to 20% longer travel times compared to free-flow conditions. The indicator weights
the number of measurements, therefore busier and more important roads have more influence

than quieter roads. Table 29 shows the TomTom traffic index for selected cities.

4 United States Census Bureau https://www.census.gov/dataviz/visualizations/026/508.php (2010)
Accessed 05-09-2015.
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Figure 19. Variation in Congestion by time-of-day.
Table 29. TomTom Traffic index for selected cities.
Congestion Morning peak Evening Peak
World rank City 8 &P &
level (1) (2)
1 Istanbul (Turkey) 58% 76% 109%
10 Los Angeles (US) 39% 60% 80%
16 London (UK) 37% 65% 67%
90 Birmingham (UK) 24% 46% 50%

Southampton (UK) 24%

(1) The busiest one-hour-long period in the morning
(2) The busiest one-hour-long period in the evening
Source: TomTom (2015).

56% 51%

Congestion is introduced in the scenarios following the same pattern presented in figure 19. The
four congestion levels are as follow: i) (SO) No congestion (constant speed of 48 km/h); ii) (S1)
the evening peak speed is reduced by a factor of 1.4 compared to a free-flow state (a very
similar pattern to that presented in Figure 19); iii) (S2) the evening peak speed is reduced by a
factor of 1.7 compared to the free-flow state; and the rest of the speeds in each 15 minutes
interval are scaled accordingly, based on the pattern shown in Figure 19). Note that free-flow
conditions are not present in the analysed period (9:00 AM to 7 PM), iv) (S3) the evening-peak

speed is reduced by a factor of 2.0 compared to the free-flow state, and the rest of the speeds
are scaled accordingly, a similar condition to that in Turkey. See figure 20.
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Figure 20. Speeds according to congestion level.

Due to the fact that the aim of this chapter is to show the impact of congestion, regulation and
customer density, a simplified experiment is designed where the distances between the nodes
are represented as the Cartesian distances between the points. Locations of customers follow
the patterns introduced by Solomon (1987) for 100 customers and extended to 400 customers
by Gehring and Homberger (1999), namely: random, cluster and random-cluster. Coordinates
are scaled to an area of 400 kmZ. Figure 21 shows the location of the customers in the different
scenarios. Although in the real world many roads are quicker to traverse at some times of day
than at others and the algorithm is capable to consider this data (e.g., obtaining data from
Google traffic), in the proposed instances congestion varies in an uniform way in all the links of
the instances according to the four congestion levels presented in figure 20. Parameters are set
to a 3.5 ton diesel van with the following cost coefficients (estimations based on FTA (2014)):
fixed cost per vehicle per day £12.51, coefficient per km £ 0.17 and coefficient per hour £ 9.91.
Fuel consumption is calculated according to DFT (2014) (see Figure 12 page 49) and emissions
according to CarbonTrust (1 Litre of diesel = 2.6676 KgCO2e).
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Figure 21. 6 scenarios of customer location (area: 400 km?).

6.3. Experimental results

Instances were executed in a Corei7 with 16 GB of ram in a single thread with the algorithm
introduced in chapter 5; the primary objective was the minimisation of the number of vehicles
and the second objective was set to minimize total cost rather than the minimisation of route

duration. Execution time for instances of 100 customers was set to 2 minutes and for 400

customers 5 minutes.

Impact of length of time windows and customer density

Routing results of executing three instances (clustered, clustered-randomly, randomly) with 100
customers and 400 customers for different lengths of time windows are shown in Table 30.
Tight time windows are more expensive and present a considerable environmental impact (up
to 74% more cost and 196% more emissions by comparing No time window vs. 1-Hour time
window in instances of 100 customers). However, the impact in cost and emissions can be
reduced with higher density (see instances with 400 customers). The studied instances show
the importance of promise of service in logistic operations. A 1-Hour time window with low

customer density is 111% more expensive than a No time window with high density, where

emissions increase by 444%.
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Table 30. Analysis of delivery costs with different length of time windows and customer density
for a diesel van at a constant speed of 48 km/h (No regulation)

No Time Window AM or PM 2 Hour Time Window 1 Hour Time Window
3 Instances of 100 Customers A A A
NV 6 6 6 9
Total Route Duration (Hr) 37.1 40.7 49.2 59.6
Total Distance (Km) 341.3 487.8 759.5 1,012.7
Total KgCO,e 63.0 90.1 140.2 187.0
Total Cost (£) 500.8 561.4 691.8 875.4
KgCO,e per delivery 0.2 0.3 42.9% 0.5 122.5% 0.6 196.7%
Cost per delivery (£) 1.7 1.9 12.1% 2.3 38.1% 2.9 74.8%
3 Instances of 400 Customers
NV 15.0 15.0 A 18.0 A 22.0 A
Total Route Duration (Hr) 1355 139.0 160.0 193.3
Total Distance (Km) 743.8 910.4 1,723.0 2,313.0
Total KgCO,e 137.3 168.1 318.2 427.1
Total Cost (£) 1,657.0 1,720.0 2,103.8 2,584.1
KgCO,e per delivery 0.1 0.1 22.4% 0.3 131.6% 0.4 211.0%
Cost per delivery (£) 1.4 1.4 3.8% 1.8 27.0% 2.2 56.0%

Impact of congestion and regulation

Total costs and performance indicators for delivering in the six test instances with different

levels of congestion and set of regulations are shown in Table 31. As expected, with higher

congestion levels there are increments in costs and fuel consumption (emissions) in any case of

regulation (up to 9% cost increment at congestion level S3 in EC-Regulation and up to 6.3%

increment in emissions at No regulation). Enforcing the full set of regulations in the UK has an

average extra cost of 5.7% at different levels of congestion.

Table 31. Delivery costs with different levels of congestion for a diesel van.

NV Route Duration  Travel Time Distance KgCO,e Delivery Cost
(Hr) (Hr) (Km) A (£) A A

s SO 97 814.2 172.7 8,291.6 1,531.0 10,692.3
2 Sl 97 829.2 191.6 8,663.3 1,6099 5.1% 10,904.1 2.0%
E" S2 99 838.8 198.5 8,495.6 1,593.8 4.1% 10,995.8 2.8%
o S3 103 855.2 218.5 8,456.2 1,6279 6.3% 11,201.7 4.8%
z Sum delivery cost (£) 43,793.8
s S0 100 838.1 178.6 8,574.7 11,5833 11,014.8
® S1 100 850.5 188.9 8,542.7 1,587.4 0.3% 11,132.2 1.1%
gn S2 101 860.1 195.8 8,381.6 1,572.4 -0.7% 11,212.5 1.8%
S S3 108 930.2 218.0 8,438.9 1,6244  2.6% 12,004.5 9.0%
w Sum delivery cost (£) 45,364.1 3.6%
-§ SO 100 862.9 177.0 8,498.3 1,569.2 11,247.6
r_n% S1 101 880.8 189.7 8,439.0 1,572.1 0.2% 11,427.4 1.6%
2 S2 103 900.1 199.4 8,537.4 1,601.6 2.1% 11,660.4 3.7%
E S3 109 921.6 222.6 8,627.9 1,660.1 5.8% 11,964.0 6.4%

Sum delivery cost (£)

46,299.4 5.7%
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6.4. Discussion of the chapter

This chapter introduces a practical application of using a rich VRP variant to study the last-mile
problem found in home delivery. Although extensive analysis could be proposed regarding the
impact of decisions related to routing in the supply chain, the aim in this research is to show the
possible benefits obtained with algorithm research based on the necessities of the industry. The
presented analysis shows the impact of length of time windows at different levels of density of
deliveries in a territory of 400 kmZ2 in terms of delivery costs and emissions (by introducing the
estimation of fuel consumption according to average speed and vehicle type proposed by the
DFT (2014)), e.g. the cost of imposing a time window of 1 hour with 100 customers is a cost
increment of 74% and 196% more CO2 emissions when compared to a service with no time

windows, etc.

A straight comparison of results with the research of Boyer et al. (2009) is difficult due to the
fact that cost structure is different in each country as is the size of the studied territories, in
Boyer et al. (2009) the studied area is more than 12 times the territory in this research, a
characteristic of US when compared to the UK in logistic challenges. Nevertheless, the cost
trend of imposing tighter time windows is similar: the tighter the time window the higher the cost.
The solution method proposed by Boyer et al. (2009) was based on commercial software, which
required execution time of 1 to 2 hours in instances of 500 customers and congestion was not
considered. The algorithm proposed in this research requires 2 minutes to produce solutions
that improved best-known solutions for time-dependent problems with 100 customers.

Execution time for instances with 400 customers was set to 5 minutes.

The impact of congestion in the studied logistic configurations show the relation between the
level of congestion and logistic costs: a congestion level of 2 (where speed in the evening peak
is reduced by a factor of 1.4 compared to a free-flow state) imposes an extra cost of 9%.
Further analysis of results shows the impact of service time on this type of operation. In the
proposed scenarios, service time was set at 6 min based on the case of Sainsbury’s
(Commercial-Vehicle-Engineer, 2012), where the driver would expend a large portion of their
day in the doorway of customers, around 75% in the scenario with 400 customers, where the
average number of deliveries per vehicle per day is 69 (the total time per route expended in
service time is 6.8 hours out of around 9 hours of route duration per vehicle). This shows the
importance of the training and experience of drivers to reduce the service time per delivery in

multi-drop operations, such as parcel delivery or online groceries.
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Continuing with the case of online groceries, in recent years it has been stated in the media that
these types of operations are unviable, with logistic costs per delivery of £205 where brick-and-
mortar customers subsidize online shoppers. However, the analysis of results in this chapter
shows the importance of the length of time window and density of deliveries, where costs can
be as low of £1.4 with no time window or £1.8 with a 2-hour time window or as high as £2.9
with a 1-hour time window in territories with low customer density. These values are not
intended to be representative to the industry, but they are an example of how to use algorithms
to calculate delivery costs. The use of rich algorithms with high accuracy may help the industry
to support logistics operations and the design of the supply chain to provide better solutions

according to the specific characteristics of the business model.

As previously mentioned, additional analysis could be proposed to study other issues in delivery
operations with the algorithm introduced in chapter 5, such as: i) delivery cost structure and the
relation between length of time windows, congestion and location of customers; ii) impact of the
location of the depot, where the fast execution time of the algorithm may be used to run
simulations; iii) impact of vehicle selection, etc. However, these analyses are out of the scope of

this research and it was only intended to show the relevance of developing such algorithm.

5> Daily Mail http://www.dailymail.co.uk/news/article-2707071/Supermarket-giants-lose-100million-
year-online-delivery-services-Cost-delivery-means-effectively-paying-customers-shop-them.html.
Accessed on 04-09-2015.
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Chapter 7

Contributions and conclusions

This research takes new approaches, or at least some that are not common in the literature,
regarding the Vehicle Routing Problem. It is not only based on taking a variant and improving
best-known solutions for a set of instances or showing an industry implementation without
algorithm evaluation, but it considers the requirements of the industry and the available data
sets brought by ITS development (presenting a literature review of its barriers), where the
importance of the variants chosen for study are validated by a literature review and surveying of
companies. Algorithms are specifically tailored and their accuracy is evaluated with available
benchmark instances. The proposed algorithms in this research consistently improve theoretical
results of state-of-the-art implementations to solve the studied variants, and the managerial
implications of such algorithms are demonstrated in scenarios that consider the restraints found

in real operations.

The literature review shows that not using time-dependent models and congestion data when
planning vehicle routes might lead to inaccurate schedules that underestimate actual travel
times and violate time windows of deliveries expected by customers, where all the effort of
providing optimised routes is lost in congested environments by not using an adequate model
and data set. The freight industry is responsible for transporting goods through traditional
logistic configurations along with satisfying new customer expectations. Current retail trends
show that customer preferences are shifting towards e-commerce and consequently home
delivery. The last mile problem is considered one of the major challenges in distribution, where
urban conditions have to be considered, congestion has continuously increased and its patterns

are available thanks to ITS implementations to a certain extent.

Although main CVRS companies claim that models that consider congestion are implemented,
the surveyed companies recognised that the software capabilities that required the most
development are: i) route optimisation minimising the impact of congestion, and ii) accuracy of
information regarding vehicle restriction to certain zones and times. Gathering, processing and
distributing the data required to provide accurate maps and data that satisfy the requirements of
the freight industry requires policy and resources to involve a range of stakeholders, where a
number of initiatives have been put in place. The scope of this research is restricted to reporting
on current technologies and data sets mentioned in the literature along with their barriers, and
providing knowledge regarding the core analytic tool, the VRP variants that optimise freight
operations and are capable of mitigating the impact of new conditions such as congestion and

regulation.
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The literature review of techniques to solve the VRP shows that exact algorithms are not viable
for rich models, where in some instances in the range of hundreds of customers for the basic
VRP with time windows have eluded achieving optimality and metaheuristic algorithms are
capable of providing high accuracy in execution times that are sufficient to support the industry
with an adequate algorithm design. Issues that must be considered in algorithm design include:
i) metaheuristics do not guarantee optimality and their accuracy should be evaluated with
benchmark instances. Poor accuracy has been reported in some implementations and a
characteristic of the freight industry is low profit margin, therefore solutions should be as
effective as possible to reduce costs and mitigate the impact of the operation; ii) although the
Operational Research community is interested in developing complicated approaches with high
theoretical value, the industry requires easy-to-implement algorithms capable of producing high

accuracy bearing in mind the restrictions found in real operations in reasonable time.

Although VRP variants that consider congestion have been previously proposed, research with
adequate algorithm evaluations is still scarce. For the time-dependent VRP with time windows
(TDVRPTW) a set of instances were previously introduced; the primary goal is the minimisation
of the required number of vehicles and the secondary objective is travel time and/or distance
minimisation. In this research an algorithm to solve time-dependent VRP variants is tailored
using the concept of neighbourhood exploration based on LNS along with algorithm
modifications in order to speed up the search process in the presence of time-dependent travel
times by allowing penalties for time windows violation in the stage of vehicle minimisation and
focusing the search on allocating customers particularly difficult to insert in a reduced number of
routes. Previous LNS approaches used different strategies in this stage (utilisation of a request

bank to temporarily “store” unrouted customers and try to insert them in a feasible solution).

In the stage of travel time minimisation, neighbourhood exploration only allows feasible
solutions. LNS movements prove to be more efficient than well-known neighbourhood
structures for providing highly accurate solutions in both stages using the proposed tailoring; the
algorithm is capable of obtaining reductions in some test instances for the TDVRPTW of up to
18% in distance with 19% less travel time and 7% fewer vehicles. It consistently provided
improved solutions in the 672 test instances (average reduction in number of vehicles of 4.15%
and travel time of 12.0%).
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A richer time-dependent variant that considers Drivers’ hour rules in urban or interurban
environments Regulation 561/2006 (EC) (European Union, 2006) and time windows was also
previously introduced. In this variant the primary objective is the minimisation of the number of
vehicles, while the second objective is the minimisation of route duration. In this research, LNS
is also adapted to cope with driving time regulation following a similar approach designed for the
TDVRPTW. The LNS tailoring is capable of obtaining an average reduction in the number of
vehicles of 19% and route duration of 4.4% whilst also reducing travel distance by 17.7%.
Additionally, an extended variant is introduced to also comply with the Road Transport (Working
Time) Regulation 2005 (VOSA, 2011) in UK freight regulation.

The economic analysis of results according to the cost structure of the industry is a clear
example of the benefits of tailoring algorithms to accommodate the new restrictions that the
logistic sector is facing. By using the proposed algorithm in this thesis, routing solutions that
comply with Regulation 561/2006 (EC) and time-dependent travel times for vehicles over 3.5
tons are 8.9% less expensive than using a previous implementation reported in the literature for

this variant.

From the theoretical perspective, in algorithm design, minimising the number of vehicles in
richer variants has been a challenge. Proof of that is the TDVRPTW along with the VRP with
time windows and Rules on Drivers’ hours (Prescott-Gagnon et al., 2010). The proposed
modification of LNS to intensify the search in customers that generate penalties in solutions with
a reduced number of vehicles was capable of reducing the number of vehicles in the studied
variants. The proposed algorithms are capable of obtaining high accuracy in a matter of a few
minutes even in variants as computationally demanding as time-dependent travel times with
Rules on Drivers’ hours, where it is also required to decide the departure times that minimise
the objective. Fast execution times are a desirable characteristic in everyday operations or
when analysing different decisions within the configuration of the logistic configuration in its
design or planning. With regard to the issues in algorithm design previously mentioned, LNS is
considered an easy-to-implement metaheuristic and this research proves its capacity to achieve
high accuracy where algorithm modification is proposed and described in order to provide

accurate solutions for relevant variants that are important to the industry.

The benefits of using fast and accurate algorithms that consider congestion and regulation are
demonstrated in this research by studying the last mile problem. The concept of city logistics
relies on optimising transport activities in urban areas while considering the following elements:
congestion, energy consumption and the market economy. The algorithms developed in this
research take these elements into consideration and provide an example of their utilisation by
analysing the impact of length of time window (e.g. the shorter the time window, the more CO:
emissions per delivery) and different levels of congestion (e.g. with more congestion, more

vehicles might be required).
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Congestion is present in urban areas and has been consistently increasing. Additionally, the
market is shifting towards new trends involving home delivery in congested environments with
higher customer expectations. Logistic companies might make use of the algorithms proposed
in this research to understand the capabilities of their current infrastructure, identify the impact
of changes within their supply chain and plan accurate schedules that account for congestion
and Rules on Drivers’ hours in order to comply with customer requirements at a minimum cost
with the rationalisation of available resources. Nevertheless, recent contributions in VRP
variants that try to reduce the environmental impact of transport have been recently introduced,;
it is worth to propose as future research techniques to reduce CO2 emissions while maintaining

cost reductions with the tailoring of the algorithms proposed in this research.
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APPENDIX A. QUESTIONNAIRE OF SURVEY FOR EVALUATION OF CVRS CAPABILITIES

Q1 Company name?

Q2. What is the main purpose of the vehicle fleet? If required multiple choices can be selected.

Provides freight services to other companies (e.g.: Transport providers, 3PL, etc.)
Supports private operation (The core of the company is other than logistic services but
have own vehicles to support operation)

Q3. What kind of operation is supported by the fleet? If required multiple choices can be selected.

Goods and others (e.g.: Post, waste, ancillary, etc.)
Services (e.g.: Maintenance and repair, engineering services, etc.)

Q4. What type of journeys does your company specialise in? If required multiple choices can be selected.
Urban

Regional (480 km)

Long Haul (Over 480 km)

Q5. How centralised is the routing of vehicles?

Company has only one depot that manages all the vehicles

Company operates several depots and scheduling is performed individually at each depot

Company operates several depots and scheduling is centralised

Q6. Fleet description

How many vehicles under 3.5 tonnes are operated by your company in the U.K.?

How many vehicles over 3.5 tonnes are operated by your company in the U.K.?

Q7. How would you describe the routing procedure in your depot for scheduling the cargo fleet?
If required multiple choices can be selected

Fixed schedule
Not supported by software and variable
Supported by software and variable

If Q7 answer is Fixed schedule
Q8. What are the main reasons for having fixed schedules in your depot for scheduling the cargo fleet?

Q9. Please grade each of the possible impacts that congestion has had on your transport operation.



Using the scale 1 (no impact at all) to 5 (high impact).

Transportation costs have increased

More vehicles are required to support the operation
More drivers are required to support the operation

Service level has decreased

Q10. If other please state it and grade it

Q11. What type of software supports the scheduling of the cargo fleet?
If not in-house please state the name of the software

Off-the-shelf software
Provided by a software company with tailor-made functionalities
In-house

Q12. Please grade each of the following reasons for having routing software according to your
cargo transport operation. Using the scale 1 (not agree at all) to 5 (strangly agree).

Control costs

Reduce scheduler's time

Control emissions

Control fuel consumption

Improve service level

Avoid congestion

Provide road information to drivers

Provide information about access restriction to certain zones and times

Balance routes

Q13. If other please state it and grade it

Q14. Please grade the capabilities of your routing software.

Using the scale 1 (large improvement required) to 5 (excellent functionality).

Allows the modification of the objective function
Supports different vehicle characteristics
The road representation is accurate

Access restriction to certain zones an times is depicted accurately




Provides support to schedule braking times for drivers

Optimises routes minimising impact of drivers’ hours regulation

Supports different speeds according to the time of the day

Optimises routes minimising impact of congestion

Supports localisation of vehicles to track vehicles and evaluate performance

It records information of drivers' driving times to comply with drivers' time regulation

Supports re-routing during delivery

Q15. Please describe what elements can be improved in routing software to provide higher benefits

Q16. Do you have any other comment that you consider may be relevant?







