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UNIVERSITY OF SOUTHAMPTON 
 

ABSTRACT 
 

FACULTY OF CIVIL ENGINEERING AND THE ENVIRONMENT 

Transportation 

Thesis for the degree of Doctor of Philosophy 
 

FREIGHT TRANSPORT, ROUTING SOFTWARE AND TIME-DEPENDENT VEHICLE 

ROUTING MODELS 

                   

By Nicolas Rincon-Garcia 

Routing and scheduling software is part of the Information and Technology systems available to 

support the transport industry, and uses complex algorithms along with geographical 

representations of the road network to allow better planning of daily collection and delivery 

schedules. This research reviews the evolution of routing and scheduling software, the algorithms 

used along with reported barriers to wider take-up and potential industry driven improvements 

that could be made. A survey of transport companies in the United Kingdom was conducted in 

order to validate and prioritize the software capabilities that require the most development 

according to the new challenges that the industry is facing. Responses suggested that companies 

required improved route optimization to tackle congestion based on time-dependent data and 

models, and greater accuracy in the representation of the road network. Not considering 

congestion leads to the underestimation of travel times and the production of inaccurate 

schedules. Literature shows that operational research techniques are available to solve problems 

that represent real world conditions, but research into the relative merits of using time-dependent 

models needs to be undertaken.  

  Although exact methods have been developed to solve the Vehicle Routing Problem, they 

cannot cope with large instances and rich variants that are required by the industry. Therefore, 

metaheuristic algorithms are usually implemented in routing software. A reported barrier in 

metaheuristic algorithms is the lack of accuracy (the difference between optimal or best-known 

values and the result of the proposed algorithm). In this research an algorithm was developed 

using elements of Large Neighbourhood Search that is capable to substantially improve the state 

of the art for the time-dependent Vehicle Routing Problem. Comparison of results with available 

test instances shows that the proposed algorithm is capable of obtaining a reduction in the number 

of vehicles (4.15%), travel distance (10.88%) and travel time (12.00%) compared to previous 

implementations in reasonable time.  A variant that considers the Rules on Drivers’ hours required 

in the scheduling of vehicles over 3.5 tons in the European Union and the UK is also introduced. 

Analysis of results show result improvements in number of vehicles (19.0%), travel distance 

(17.7%) and route duration (4.4%) compared to previous implementations. 
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Chapter  1 

 
Introduction 
 
1.1.  Motivation 

Logistics and transportation are considered key activities that contribute to business success 

and environmental mitigation, where both technology and innovation are vital to obtain better 

use of the network (European Commission, 2011). Companies must design and manage freight 

transport operations, taking into consideration the specific characteristics of their Supply Chain, 

the provision of available infrastructure, and regulations, where supply chain is defined by the 

relation between sources, logistic provisions and customer (Allen et al., 2000, Chopra and 

Meindl, 2007). 

 

Congestion and new transport policies have brought new challenges to the freight industry, as 

companies are being affected by travel time variability and low speed due to congestion (Golob 

and Regan, 2001). Travel time variations during a time of day may result from congested roads 

and other circumstances related to accidents, road maintenance, weather, etc., however 

recurrent delays due to congestion are responsible for up to 80% of total delays in peak hours 

(Skabardonis et al., 2003).  Not including time variation on routing decisions might lead to 

overtime and missed deliveries (Haghani and Jung, 2005, Kok et al., 2012). Additionally, 

measures imposed by authorities to tackle the negative impacts of transport, such as access 

restriction and rules pertaining to drivers’ hours, impose additional costs on the industry. 

Nevertheless, customers expect continuously improving and reasonably priced service, rather 

than a deteriorating service; this requires a higher level of scheduling reliability (Ehmke et al., 

2012). The importance of providing effective and efficient solutions to the industry is paramount, 

bearing in mind that the profit margin in the sector is a mere 3%  (FTA, 2015). 

 

Decision support systems that aid planners in providing vehicle schedules are available, called 

computerized vehicle routing software (CVRS). The benefits of implementation not only consist 

of reducing transportation costs—savings are estimated to be in the area of 5% to 20% (Toth 

and Vigo, 2001)—but also of ameliorating human calculations and providing a graphical 

interface of the routes, which takes into consideration the road representation (Tarantilis and 

Kiranoudis, 2002). With the previously mentioned challenges that the industry is facing, new 

technologies in communication and data processing have emerged and been implemented in 

CVRS, along with models to support vehicle scheduling in order to provide solutions to the 

industry. 

 
 



 
2 

 
1.2. Information and technology systems in the freight transport industry 

Affordable technologies that are present in everyday devices, such as mobiles, are being used 

in the transport industry to provide information to planners and drivers. In fact, the most 

frequently used information and technology system in the freight transport industry is the 

satellite and navigation system (Sat-Nav) (DFT, 2010). By using the Global Positioning System 

(GPS),  drivers can obtain their current location on a digital map of the road network (DFT, 

2010).  

 

Due to recent technological breakthroughs, decision support systems for vehicle scheduling 

have evolved from stand-alone applications to more sophisticated tools that involve the 

utilization of a range of technologies such as computers and telecommunication devices, 

portable or not, to store, retrieve, transmit and manipulate data. Nowadays, planners can obtain 

the current location of vehicles and communicate in real time with drivers to make changes in 

the routes, e.g. new collections. Additionally, drivers can get information about road conditions 

even in real time from intelligent transportation systems (ITS), e.g. predicted congestion, current 

congestion, accidents or road closures.  

 

Although a lot of new data and devices that provide solutions to the industry are available, and 

vendors offer a range of capabilities in their software, the shortcomings of these technologies 

are still not quite clear. It is in the interest of the industry and researchers to understand the 

barriers of these technologies in order to provide improved solutions to the industry.  

 

1.3. Models to support vehicle scheduling 

Among the main components of CVRS  are the mathematical models and different solution 

techniques to solve the Vehicle Routing Problem (VRP) (Drexl, 2012). The VRP is the set of 

models that look for the optimal series of routes to be followed by a fleet of vehicles to serve a 

number of locations (Toth & Vigo, 2001).  

 

Different VRP variants have been proposed in the literature to represent the different logistic 

configurations found in the industry, such as: a Vehicle Routing Problem with time windows 

(VRPTW),  where each customer has a demand, a time window to be served and each visit has 

duration; a capacity constrained problem for heterogeneous vehicle fleets (HVRP), where 

different vehicle types with different costs and characteristics are available (Taillard, 1999); a 

pickup and delivery Vehicle Routing Problem (PDVRP), where goods are picked up at one 

location and delivered to other location (Parragh et al, 2008); a multi-depot Vehicle Routing 

Problem (MDVRP), where multiple depots are allowed  (Pisinger & Ropke, 2007); a site-

dependent Vehicle Routing Problem (SDVRP), where certain customers can only be served by 

certain vehicles and vehicles do not need to have the same capacity; an open Vehicle Routing 

Problem (OVRP), where vehicles do not need to return to the depot at the end of the delivery 

day (Pisinger & Ropke, 2007); and a periodic Vehicle Routing Problem (PVRP), where the 

planning period is extended to several days (Yu & Yang, 2011). 
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The VRP is a hard combinatorial problem  (a non-deterministic polynomial-time hard problem) 

and some VRP variants such as the VRPTW have been studied thoroughly by the scientific 

community and efficient solutions techniques have been achieved. Although exact algorithms 

that guarantee optimality are computationally too demanding to be used for the industry, 

metaheuristic algorithms have been developed to execute “intelligent” searches and provide 

results near optimality with little computational effort, where algorithm analysis, comparison and 

improvement have been performed with available benchmark instances (an instance is a 

concrete set of input data necessary to solve a problem) (Bräysy & Gendreau, 2005a; Bräysy & 

Gendreau, 2005b; Cordeau et al, 2002; Drexl, 2012). Nevertheless, some variants that might be 

required by the industry have received less attention; such is the case of time-dependent VRP 

variants (TDVRP), where travel time varies according to departure time due to congested roads 

during different periods of the day (Kok et al, 2012).  

 

The development of algorithms for VRP variants with more complex restrictions is a challenging 

task as is the case, for example, with the Vehicle Routing Problem with time windows and 

driving time regulations in the European Union (the set of rules that dictate the maximum 

number of driving hours in a weekly planning horizon, resting periods, and the maximum driving 

time without a break in a working day). After its first formal formulation, along with benchmarking 

instances and a solution method based on a large neighbourhood search metaheuristic (LNS) 

by Goel (2009), results with a different LNS tailoring proposed by Prescott-Gagnon et al (2010) 

obtained highly improved results, namely a reduced number of vehicles (31.7%) and travel 

distance (17.2%).  

 

A number of critiques of the research on algorithms have been mentioned in the literature, as 

the most current efficient methods for VRP variants are intricate and difficult to reproduce (Vidal 

et al, 2013). Furthermore, some metaheuristic implementations have been tailored to work well 

in specific test instances by tuning parameters so specifically to consider the best random seed 

that provides high accuracy (Sörensen, 2015). There is a need for general and simple 

algorithms, applicable to practical settings required by the industry (Vidal et al, 2013), and 

capable of producing good results independently of the instance.  

 

There is a gap between VRP research and industry requirements, where VRP models that take 

into consideration the multiple restrictions that companies face are called rich models (Hartl et 

al, 2006).  The present research aims to understand the requirements of the industry and 

provide knowledge regarding VRP models that are capable of coping with industry necessities.  
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1.4. Research justification 

The situation of the freight industry is shifting due to innovation (new technologies that provide 

data and devices), the evolution of customer expectations (e-commerce and home delivery), 

and changes in road conditions (regulation, congestion, etc.). Although the VRP has been the 

subject of intensive research due to the challenge that finding optimal solutions presents and 

due to the possible benefits that it might bring to the transport industry. In the industry, a 

number of efficient techniques have been developed to solve some variants; however, 

algorithms for some richer variants that consider the new situation have received less attention 

from the scientific community and research with adequate evaluation accuracy remains scarce. 

 

As was previously mentioned, exact algorithms are not viable in real operations and 

implementations of metaheuristic approaches which might provide solutions that are far from 

optimal, if not adequately tailored. Consequently, CVRS might provide poor quality schedules. A 

test carried out by an academic group using different providers of software for vehicle routing 

showed a significant difference in the quality of solutions, up to 10% between the best vs. the 

worst schedule in instances of only 100 customers, where a higher difference was found in 

larger problems (Hallamaki et al., 2007; Bräysy & Hasle, 2014). Therefore, an understanding of 

available technology along with its shortcomings via a literature review, the necessities of the 

industry through direct discussion with companies that operate vehicles making use of CVRS, 

and understanding the capabilities that offer the current theories in solutions techniques to 

provide high accurate solution for the VRP variants that are required by the industry. 

 

As an example congestion data. By using ITS, it is possible to estimate the different travel times 

between locations on highways or urban roads according to the departure time (peak hours 

present longer travel times). If congestion is not considered, vehicle schedules will be 

inaccurate and may lead to the violation of the expected delivery time to customers. 

Additionally, a lack of attention to the rules pertaining to drivers’ hours, may give schedules that 

do not comply with the regulations.  

 

Therefore, it is important to understand the necessities of the industry and to focus research 

efforts on developing algorithms capable of providing near optimal solutions that mitigate the 

impact of new conditions in a market that every day demands more efficiencies with tighter 

restraints. 
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1.5. Objectives 

 To understand the needs of the industry regarding vehicle routing models and 

Computerized Vehicle Routing Software. 

 

 To better understand theory about models and solution techniques for vehicle routing 

and to understand if the algorithms are capable to solve the necessities of the industry. 

 

 To explore new approaches to better satisfy the industry needs. 

 

1.6. Results and products of the thesis 

The results presented in this thesis are the following: 

 Identification of Computerized Vehicle Routing Software capabilities that require 

improvements according to freight companies. 

 Presentation of a literature review of algorithms to solve Vehicle Routing Problems and 

technological advances that have been incorporated in Computerized Vehicle Routing 

Software. 

 Design of an algorithm for the Time-dependent Vehicle Routing Problem with Time 

Windows capable of obtaining a reduction in the number of vehicles (4.15%), travel 

distance (10.88%) and travel time (12.00%) compared to previous implementations. 

 Design of an algorithm for the Time-dependent Vehicle Routing Problem with Time 

Windows and Rules on Drivers’ hours (European Union Regulation) capable of obtaining 

a reduction in the number of vehicles (19.0%), travel distance (17.7%) and route duration 

(4.4%) compared to previous implementations. 

 Design of an algorithm for the Time-dependent Vehicle Routing Problem with Time 

Windows and Rules on Drivers’ hours (European Union Regulation and The Road 

Transport (Working Time) Regulation 2005 in the UK). 

 Application of the designed algorithms in a set of instances that resemble a home delivery 

case.  Results show the effects on costs and emissions of different levels of congestion, 

densities of customers and lengths of time windows.  

 

The list of research products that have been produced in this research are listed below as 

follows: 

 

Published  

Conference papers:  

 

 Rincon-Garcia Nicolas, Waterson Ben and Cherrett Tom (2013) When academic theory 

meets industry reality: The case of Vehicle Routing Problems. In, 18th Annual Logistics 

Research Network Conference. Birmingham, GB, 04 - 06 Sep 2013. 
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 Rincon-Garcia Nicolas, Velazquez-Abad Anthony, Waterson Ben and Cherrett Tom 

(2015). Improved Algorithms For Routing Urban Delivery Vehicles. In, 20th Annual 

Logistics Research Network Conference. Derby, GB, 9-11 Sep 2015. 

 

Submitted for review 

Papers in refereed journals: 

 

 Rincon-Garcia Nicolas, Waterson Ben and Cherrett Tom (2016) Requirements from 

Vehicle Routing Software: Perspectives from literature, developers and the freight 

industry. Journal: Transport Reviews 

 

 Rincon-Garcia, Nicolas, Waterson, Ben and Cherrett, Tom (2016) A hybrid 

metaheuristic for the Time-Dependent Vehicle Routing Problem with Hard Time 

Windows. Journal: International Journal of Industrial Engineering Computations. 
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Chapter  2 

 
Vehicle scheduling, software and industry 
requirements 
 

  “Time conscious customers demand flexible and reliable deliveries and these 
demands can be costly if driver’s routes and schedules are not optimised… 

 
For delivery drivers, it is frustrating to be within a mile of a delivery point and to then 
take another 10 minutes to get to the final destination because they are not familiar 
with the local road network … ” 

- DFT (2010)  -  
 
Vehicle scheduling is a complex activity that requires human expertise, in fact only a few cases 

of full scheduling automation are found in the industry, namely taxi scheduling solutions 

(Cegarra et al., 2012). However, a number of  IT systems are available to support drivers and 

planners, among these are Computerized Vehicle Routing and Scheduling Systems (CVRS) 

(DFT, 2010). Rochat and Semet (1994) illustrate the benefits of supporting schedules with 

CVRS in a Swiss company producing pet food and flour, by using software it was possible to 

produce routes, in a matter of minutes, that comply with Rules on Drivers’ hours, weight 

restrictions, access restriction and reduction of travelled distance, something that is time 

consuming and difficult to achieve manually. 

 

Despite the many benefits reported either by the industry and the scientific literature, adoption 

rate of CVRS in the industry is rather low, a survey conducted in 335 companies in 2010 by the 

Department for Transport in the UK found that adoption rate in companies with less than 10 

vehicles is 11% and for companies with more than 10 vehicles is 17% (DFT, 2010). The 

reasons to reject IT systems are: not suitable (49%), too expensive (33%), pointless (9%) and 

too complex (2%). 

 

In this chapter it is intended to understand the evolution of CVRS, the new reported benefits 

obtained by the implementation of new technologies and the barriers that have to be overcome 

to provide better IT systems to support vehicle scheduling. In order to do so, it is necessary to 

review current routing practices and routing characterization as long as to review CVRS 

architecture. Additionally, a survey conducted in companies in the UK to identify the reasons to 

implement CVRS and the software components that require improvement is presented. 

Literature dealing with IT systems for the freight transport industry usually is focused on 

adoption rates (e.g., research presented by Davies et al. (2007) and Golob and Regan (2003)) 

or vendors perspective (e.g., research presented by Drexl (2012) and OR/MS-Today (2014)).  
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This chapter  focuses on CVRS and the components that require further development according 

to industry users.  A relevant CVRS component is the routing model (Drexl, 2012), VRP variants 

have been subject of considerable interest among researchers since its first formulation in 1959 

(Dantzig and Ramser, 1959), with over one thousand papers found in a recent overview of 

scientific databases dealing with its variations, solution techniques and reported 

implementations (Eksioglu et al., 2009). Unfortunately, despite the immense attempt to provide 

high-efficient solutions for theoretical models, there remains (at least anecdotally) a feeling that 

theoretical models cannot be used in reality as they do not reflect the real constraints imposed 

by real life logistics and legislation. Routing characterization in this chapter follows the 

taxonomy proposed for VRP variants in order to identify relevant VRP variants that are of 

special interest to the industry.   

 
2.1. Routing decisions in practice and new challenges in the road freight industry 

Although all logistics operations (both in-house and third-party) face the same basic problem of 

using the available fleet of vehicles to serve the demand, the diversity of fleet sizes and 

compositions, and the diversity of demand constraints and predictability have led to a diverse 

range of scheduling approaches within the industry. 

 

For example, (Golob and Regan, 2003) surveyed 712 transport companies in California and 

categorized route methods in manual routing (63%), followed by software supported (23%) and 

fixed schedules (15%).  A more recent survey of 312 companies in Washington about route 

construction and prioritization of factors (Rowell, 2012)  found that majority of companies either 

have daily-dynamic routes or fixed schedules, where 65% of companies had 10 vehicles or less, 

prioritization of factors is shown in Figure 1. Similar results have been found in the European 

Union (ECORYS, 2006) with the main priority of carrier operators still being to satisfy customer 

requirements at the minimum possible cost, where the three main transportation costs are: 

labour, fuel and depreciation.  
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Figure 1. Prioritization of routing factors according to percentage of companies that ranked the 

factor   with the highest grade in the state of Washington, 312 freight carriers. 
Source: Rowell (2012) 

 
A common practice in the industry is to plan drivers and vehicles that will deliver to specific 

customers and allow drivers to decide the final sequence, the function of the planners is to find 

feasible plans that minimise operational costs (DFT, 2011c). Planners face complex decisions 

involving multiple constraints such as: personal (e.g., driver’s experience and knowledge of the 

route, language), environmental (e.g., weather, congestion, traveling time) and infrastructure 

(e.g., tolls, parking, access restrictions). Planners are vital to the operation in order to prioritize 

and relax constraints according to extensive knowledge in order to provide efficient solutions. 

Although full automation in vehicle scheduling is found in certain operation such as taxis, it is 

highly uncommon to find goods routing with full automation (Cegarra et al., 2012). 

 

The reported attributes in the literature review to describe transport operations and its relation 

with routing requirements are summarized in Table 1. 

 
    
 
 
 
 
 

0%

10%

20%

30%

40%

50%

60%

70%



 
10 

 

 

A
ttrib

u
te

L
e

n
g

th
 o

f jo
u

rn
e

y
T

y
p

e
 o

f v
isit

F
le

e
t S

iz
e

T
y
p

e
 o

f

o
w

n
e

rsh
ip

C
la

s
s
ific

a
tio

n

• U
rb

a
n
  

• R
e
g
io

n
a
l

• L
o
n
g
-H

a
u
l

• G
o
o
d
s

• S
e
rvic

e
s

• O
th

e
rs

• L
e
s
s
 th

a
n
 1

0
 ve

h
ic

le
s

• 1
0
 o

r m
o
re

 ve
h
ic

le
s

• T
ra

n
s
p
o
rt 

    p
ro

vid
e
r

• P
riva

te
 fle

e
t

D
riv

in
g

 re
g

u
la

tio
n

A
c
c
e

ss R
e

stric
tio

n
s

T
im

e
 w

in
d
o
w

s

M
u
ltip

le
 p

e
rio

d
s

T
im

e
-d

e
p
e
n
d
e
n
t m

o
d
e
ls

D
rive

rs
 a

s
s
ig

n
m

e
n
t

T
im

e
 w

in
d
o
w

s

R
o
a
d
 re

p
re

s
e
n
ta

tio
n

H
e
te

ro
g
e
n
e
o
u
s
 fle

e
t

D
e
ta

ile
d
 g

e
o
g
ra

p
h
ic

a
l d

a
ta

R
e
p
o
rte

d

b
e
n
e
fits

D
e
c
re

a
s
e
 im

p
a
c
t o

f

d
rivin

g
 re

g
u
la

tio
n
 c

o
s
ts

.

D
e
c
re

a
s
e
 im

p
a
c
t o

f a
c
c
e
s
s
 

re
s
tric

tio
n
s

A
c
c
u
ra

te
 ro

a
d
 in

fo
rm

a
tio

n
 

to
 p

la
n
n
e
rs

 a
n
d
 d

rive
rs

Im
p
ro

ve
 re

lia
b
ility

In
fo

rm
a
tio

n
 o

f fu
e
l a

n
d
 p

a
rk

in
g
 fo

r lo
n
g
-h

a
u
l 

o
p
e
ra

to
rs

R
o
u
tin

g
 u

n
d
e
r u

n
c
e
rta

in
ty

T
a
b
le

 1
. A

ttrib
u
te

s
 to

 d
e
s
c
rib

e
 tra

n
s
p
o
rt o

p
e
ra

tio
n
s
 a

n
d
 re

p
o
rte

d
 ro

u
tin

g
 re

q
u
ire

m
e
n
ts

.

V
e

h
ic

le
 siz

e
 

a
n

d
 re

g
u

la
tio

n

• L
ig

h
t g

o
o
d
s
 ve

h
ic

le
s
 

• H
e
a
vy

 g
o
o
d
s
 ve

h
ic

le
s
 

T
e
c
h
n
ic

a
l

re
q
u
ire

m
e
n
ts

T
im

e
 W

in
d
o
w

s

U
rb

a
n
:

    C
o
n
g
e
s
tio

n
 D

a
ta

    T
im

e
-d

e
p
e
n
d
e
n
t m

o
d
e
ls

    R
e
ro

u
tin

g
 (C

o
m

m
u
n
ic

a
tio

n
)

L
o
n
g
 H

a
u
l: N

o
 n

e
c
e
s
s
a
rily

 u
s
e
 o

f

                      L
e
s
s
-T

h
a
n
-L

o
a
d

                     (m
u
lti-d

ro
p
 d

e
live

rie
s
) m

o
d
e
ls

                     D
e
ta

ile
d
 g

e
o
g
ra

p
h
ic

a
l d

a
ta

T
im

e
 W

in
d
o
w

s

H
e
te

ro
g
e
n
e
o
u
s
 fle

e
t

S
e
rvic

e
s
: R

e
q
u
ire

m
e
n
t to

 

p
ro

vid
e
 u

s
e
fu

l in
fo

rm
a
tio

n
 to

 

d
e
rive

 u
s
e
fu

l p
ro

b
a
b
ility

 

d
is

trib
u
tio

n
s
 

M
o
d
e
ls

 to
 d

e
a
l w

ith
 o

p
tio

n
a
l o

r 

c
o
m

p
le

x
 re

q
u
e
s
t in

 e
x
te

n
d
e
d
 

p
la

n
n
in

g
 h

o
riz

o
n
s
 



 
11 

 
Policy and Regulation in the UK and the European Union has enforced different measures 

according to vehicle size such as speed limitations, Rules on Drivers’ hours and access 

restriction. Goods vehicles over 3.5 tonnes are defined as Heavy Goods Vehicles (HGV), since 

2002 speed limitation for HGV is recommended to 90 km/h (European-Commission, 2007), 

driving time regulation and access restriction depend on the characteristics of the vehicle, 

therefore imposing new challenges in route planning. 

 

Rules on Drivers’ hours 

Rules on Drivers’ hours are the set of rules that dictate maximum number of driving hours in a 

weekly planning horizon, resting periods (uninterrupted period where a driver may freely 

dispose of his time “at the end of the working day”), and maximum number of driving time or 

working time without breaks (periods “within the working day” which is used exclusively for 

recuperation) in a working day. Limiting driving times improves road safety by reducing drivers’ 

fatigue and drowsiness (Jensen and Dahl, 2009). Regulation 561/2006 (EC) applies to driving 

and working hours of road haulage vehicles over 3.5 tons in members of the European Union 

(European Union, 2006), with supplementary regulations sometimes found in particular 

countries (e.g. in the UK, The Road Transport (Working Time) Regulation 2005 imposes 

additional restrictions to drivers such as the introduction of mandatory breaks after six hours of 

working time even in situations where only a small portion of that time has actually been driving 

(DFT, 2005)).  

 

Drivers of Light Goods Vehicles under 3.5 Ton (LGV) in the UK have to comply with GB 

domestic Rules on Drivers’ hours (VOSA, 2011).  By 2008 driving time regulation for LGV 

seemed to be not clear to operators, where only 13% declared full knowledge, see Table 2 

(DFT, 2009). 

 
Table 2. Understanding and knowledge of drivers’ hours regulations. 

 

None 24% 

A little 22% 

Some 31% 

Extensive 13% 

Not specified 9% 

Source: DFT (2009) 
 

 
 
The sets of Rules on Drivers’ hours according to the type of vehicle in the UK are shown in 
Table 3. 
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Table 3. Sets of Rules on Drivers’ hours  according to the type of vehicle in the UK. 

 

Vehicle Type Regulation 561/2006 (EC) (European Union, 2006) 

over 3.5 Ton 

• Daily driving period shall not exceed 9 hours, with an exemption of twice a 
week when it can be extended to 10 hours. 

• Total weekly driving time may not exceed 56 hours and the total fortnightly 
driving time may not exceed 90 hours. 

• Daily rest period shall be at least 11 hours, with an exception of going down 
to 9 hours maximum three times a week. Daily rest can be split into 3 hours 
rest followed by 9 hour rest to make a total of 12 hours daily rest. 

• Weekly rest is 45 continuous hours, which can be reduced every second week 
to 24 hours. Compensation arrangements apply for reduced weekly rest 
period. Weekly rest is to be taken after six days of working, except for coach 
drivers engaged in a single occasional service of international transport of 
passengers who may postpone their weekly rest period after 12 days in order 
to facilitate coach holidays. 

• Breaks of at least 45 minutes (separable into 15 minutes followed by 30 
minutes) should be taken after 4 ½ hours at the latest. 

The Road Transport (Working Time) Regulation 2005 (VOSA, 2011) 

• Mobile workers must not work more than 6 consecutive hours without taking 
a break.  
• If working hours total between 6 and 9 hours, working time should be 
interrupted by a break or breaks totalling at least 30 minutes.  

• If working hours total more than 9 hours, working time should be interrupted 
by a break or breaks totalling at least 45 minutes. 

• Breaks should be of at least 15 minutes’ duration. 
• Weekly working time must not exceed an average of 48 hours per week over 
the reference period. A maximum working time of 60 hours can be performed 
in any single week providing the average 48-hour limit is not exceeded. 

• Night work: if night work is performed, working time must not exceed 10 hours 
in any 24-hour period. Night time is the period between 00.00 and 04.00 for 
goods vehicles and between 01.00 and 05.00 for passenger vehicles. The 10-
hour limit may be exceeded if this is permitted under a collective or workforce 
agreement. 

 
Working time definition (GB, 2005): time during which the mobile worker 
cannot dispose freely of his time and is required to  be at his workstation, ready 
to take up normal work, with certain tasks associated with  being on duty, in 
particular during periods awaiting loading or unloading where their foreseeable 
duration is not known in advance. 

Provisions under the Working Time Regulations 1998 (VOSA, 2011) 

• An entitlement to 4.8 weeks’ paid annual leave (increased to 5.6 weeks from 
1 April 2009). 

• Health checks for night workers. 

under 3.5 
Ton 

GB Domestic Drivers Hours (VOSA, 2011) 

• Maximum driving limit is 10 hours per day in any 24 hour period. 
 • Maximum duty is 11 hour maximum in a 24 hour period beginning at the start 

of the duty time. 
 
Duty definition (VOSA, 2011): In the case of an employee driver it includes all 
periods of work and driving, but does not include rest or breaks. 

Provisions under the Working Time Regulations 1998 (VOSA, 2011) 

• Weekly working time, which must not exceed an average of 48 hours per week 
over the reference period (although individuals can ‘opt out’ of this requirement 
if they want to). 

• An entitlement to 4.8 weeks’ paid annual leave (increased to 5.6 weeks from 
1 April 2009). 

• Health checks for night workers. 
• An entitlement to adequate rest. 
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Driving time regulation constraints in the VRP have obtained recent attention in order to mitigate 

its economic cost in transport operations (Goel et al., 2012, Kok et al., 2010a, Kok et al., 2010c, 

Xu et al., 2003), time windows and driver schedules must be considered where modelling the 

complete set of restrictions into solution algorithms has imposed new challenges to modellers 

(Kok et al., 2010c).     Kok et al. (2010c) show major improvements in the required numbers of 

vehicles and travelled distance if the planning horizon considers multiple days and the full set of 

regulations is modelled when scheduling long-haul operations. 

 

Access Restrictions 

Access restriction to certain zones and roads has changed due to congestion and noise; 

additionally, specific regulations must be considered. In the case of Paris city centre restriction 

is based on the area of the vehicle rather than on weight (Browne et al., 2007). Access 

restriction includes time restrictions, which has impacted transport operations, a clear example 

is the London Lorry Control Scheme enforced to protect Londoners at nights and weekends 

from noise where HGV over 18 tons can only access certain roads, imposing an estimated extra 

cost to the industry of 30 million (FTA, 2002). 

 

Modelling these kinds of restrictions require detailed road representation, time windows and 

considering multiple characteristics of different types of vehicles (heterogeneous fleet models). 

In order to handle in an effective way all the geographical data, Geographical Information 

Systems (GIS) are recommended. However, the majority of research has considered separately 

operational research models for the VRP and GIS data manipulation, leaving a gap of 

knowledge to analyse if routing decisions can be improved when data processing is integrated 

into solution algorithms (Keenan, 2008). 

 

Detailed geographical information for freight transport is an issue identified by transport 

operators worldwide, navigational systems have been focused on the car segment; therefore, 

lorries were directed to unsuitable roads and travel speed was based on car specification rather 

than in freight vehicles, it might lead to inaccurate travel time estimations and other issues 

(DFT, 2010, Rowell, 2012).  

 

Length of  journey 

Golob and Regan (2003)  and Rowell (2012) present length characterizations; however both 

can be summarized in the second approach: 

 

• Urban   

• Regional (Up to 480 km) 

• Long-Haul (Over 480 Km) 
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Urban companies are more likely to miss schedules and reroute due to congestion (Golob and 

Regan, 2003). The concept of city logistics addresses the technical requirements to routing in 

congested urban environments where time-dependent models with time windows might improve 

service level and reduce costs; developments in communications allow rerouting to reduce 

impact of non-predictive congestion (Ehmke et al., 2012). Shorter length journeys seem to affect 

vehicle size, Light Goods Vehicles account for 42 per cent of urban deliveries in the south of the 

UK (Cherrett et al., 2012). 

 

Drivers in urban operations are expected to expend less time driving than other drivers, a 

characterization of urban deliveries performed by (Allen et al., 2000) shows possible impacts of 

parking restriction and delivery procedures in urban operations, Table 4. 

 
Table 4. Delivery activities and proportion of time in city centres. 

 

Activity Percentage 

 Driving 12% 

 Parked at the roadside with driver 
present 

1% 

 Parked at roadside without driver 
present 

87% 

 Total 100% 

Source: Allen et al. (2000) 
 
It seems that regional companies are less demanding in terms of routing, they are less likely to 

use routing software and to reroute due to congestion, the number of missed schedules in 

regional companies is higher than in long-haul companies but lower than  in urban companies 

(Golob and Regan, 2003). 

 

Long-haul companies seem to have heavier vehicles and require equally all the routing factors 

to support the routing decision. Rules on Drivers’ hours, overnight parking and petrol stations 

might be considered; therefore, detailed geographical information is required, maximizing 

loading factor is an important issue to reduce costs. Software for this kind of companies not 

necessarily provides Less-than-truck-load (multi-drop deliveries) solutions (Rowell, 2012), multi-

drop is the term in the industry when vehicles perform a number of deliveries before returning to 

the depot e.g, parcels, mail,  home delivery. 

 

Type of visit  

Allen et al. (2000) presented the following characterization for urban deliveries that can be 

applied to different  type of  journeys: 

 

• Goods 

• Services 

• Others (e.g.: post, waste, ancillary) 
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Multiple requirements in goods and services are found in the literature (e.g., time windows, 

heterogeneous fleets). However, stochastic functionalities in routing software for service 

operations are reported to be the subject of possible improvement, they have not been fully 

implemented in commercial applications (Drexl, 2012). At the moment, gathering sufficient data 

to derive useful probability distributions in real operations is considered a difficult task, offering a 

research gap to improve this situation (Drexl, 2012). Additionally, literature dealing with optional 

or complex requests in extended planning horizons is rather scarce (Drexl, 2012). 

 

Fleet Size 

A frequent classification of fleet size is the division between less-than or more-than 10 vehicles. 

A characteristic of the freight UK market is that a large number of companies have few vehicles 

and a reduced number of companies have a large number of vehicles, reaching up to 

thousands of vehicles. Therefore, 93% of small firms (less than 10 vehicles) have 46% of the 

total vehicle fleet and 7% of large firms have 54% of the total vehicle fleet (Davies et al., 2007).  

Studies of Information and Communication Technologies (ICT) adoption in freight road 

providers and studies dealing specifically with routing software including companies with private 

fleets consistently find a positive relation between fleet size and adoption ratio (Davies et al., 

2007, Golob and Regan, 2003).  

 

Type of ownership 

• Transport provider 

• Private fleet. 

 

Transport providers have played a major role in the transport industry, in the case of the UK 

traditionally more goods have been transported by transport providers than by private fleets  

(DFT, 2011a). Performance indicators of transport providers and  private fleets vary in some 

aspects, vehicles of transport providers present higher utilisation and travel longer distances; 

however, lading factor and empty running indicators are similar for both type of operations 

(DFT, 2011b). Although  Golob and Regan (2003) suggest that transport service providers are 

more like to utilise routing software, no differences regarding software requirements are 

identified in the literature review. 

 

2.2. Evolution of Computerized Vehicle Routing and Scheduling Systems  

“Decision Support Systems (DSS) are computer technologies that can be used to support 

complex decision making and problem solving”  (Shim et al., 2002). Since the 1970’s, major 

technological breakthroughs have offered innovative solutions for vehicle planners and more 

recently for drivers.  In this section, a review of CVRS capabilities and the respective 

technological components that support them are presented.  
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The three main components of DSS are a database, a model and a user interface. Since the 

early 1970’s, the evolution of DSS has been influenced by data processing, the microcomputer 

and network communication developments (Shim et al., 2002). Supporting the routing decision 

might require an additional element to represent the road network, Geographical Information 

Systems (GIS) allow the manipulation and visualization of geographical data (road 

characteristics) such as streets, roads, intersections, velocities, congestion times, street names, 

length, and address ranges (Bozkaya et al., 2010, Ioannou et al., 2002, Sadeghi-Niaraki et al., 

2011, Weigel and Cao, 1999). Among the reported benefits in the implementations of CVRS are 

(Tarantilis and Kiranoudis, 2002): 

 

• Transport cost reduction 

• Reduction in fuel consumption and environmental impact 

• Improved customer service 

• Effective strategic planning 

• Less reliance on individual skills 

• Tighter control of distribution 

 

Although CVRS has advanced considerably since its first inception, manual intervention in route 

and schedule design is still vital to the operation in order to prioritize or relax certain constraints 

using the real-world  knowledge of the logistics planner to provide the most efficient solutions 

(Cegarra et al., 2012). Despite this, many technologies have aided the development of CVRS 

tools particularly  GIS for enabling detailed road characterisation and mobile technologies to 

allow the tracking of vehicles in real-time and the transfer of routing information emanating from 

CVRS systems to the driver, see Figure 2 (Jung et al., 2006).   
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Figure 2. Flowchart of the planning/delivering process with re-routing. 

Source: Jung et al. (2006) 
 

The evolution of CVRS is presented in   Figure 3. Initial schedules were based on obtaining a 

minimum distance/time route that satisfied all the customer service requests. In this way,  

Dantzig and Ramser (1959) proposed a theoretical model for determining the minimum distance 

routes for petrol tankers travelling between customers, so that each site was only visited once 

while satisfying all demands and not exceeding the vehicles capacities.  

 

 
Figure 3. Development of CVRS 
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The development and adoption of GIS by businesses and government  in the late 90s (Keenan, 

1998), allowed the inclusion of detailed road characteristics into commercial CVRS. In a survey 

conducted in 2010 to CVRS providers, 86% reported GIS capabilities e.g., displaying routes and 

maps, editable routes, address geocoding, turn-by-turn directions (where routes between 

locations are described by presenting the road segments and the turns) (OR/MS-Today, 2010). 

Road characterization offers the possibility to include into the model legal restrictions. 

Additionally, calculation of shortest paths between customers taking under consideration the 

road network geometry and restrictions becomes an automatized task with the adequate 

algorithm (Jung et al., 2006).  

 

Mobile technologies, defined as portable devices that encompass hardware, software and 

communications (Jarvenpaa and Lang, 2005), that utilise GIS concepts and  Global Positioning 

Systems (GPS) with real time communication have brought a range of products to the transport 

industry. Satellite navigation systems  offer drivers turn-by-turn directions when negotiating 

unfamiliar roads and 44% of companies with more than 10 vehicles in their fleet reported using 

it (DFT, 2010). In-cab communications and GPS provide vehicle tracking and status of 

deliveries in real time in order to re-route vehicles if necessary (e.g., courier pick-ups and 

deliveries, food distribution) (Montemanni et al., 2005). Additionally, it provides control over the 

operation with customers able to access the system and get information in real time about the 

status of the delivery and the location of the vehicle.  

 

The technologies previously mentioned have made possible the collection and communication 

of data depicting the status of the road network; concepts like Intelligent Transportation 

Systems (ITS) and Advanced Traveller Information (ATIS) are based on obtaining, processing 

and communicating information in order to make a better use of  transportation resources 

(Crainic et al., 2009, Khattak et al., 2004). Changing road conditions such as speed due to 

congestion is an issue for transport companies where schedules become unreliable if 

congestion is not considered when planning (Haghani and Jung, 2005, Kok et al., 2012). In a 

survey of transport managers in California, more than 80% considered congestion “serious”  or 

“critically serious” due to unreliable travel times, increased costs and driver frustration  (Golob 

and Regan, 2001), CVRS providers report the utilisation of traffic information for routing 

(OR/MS-Today, 2014), which provides more reliable schedules, not considering congestion 

might lead to the underestimation of travel time and missed deliveries (Haghani and Jung, 2005, 

Kok et al., 2012). Although congestion can be predicted to a certain extent, recurrent delays due 

to congestion are responsible for up to 80% of the total delays in peak hours (Skabardonis et 

al., 2003), mobile technologies can allow drivers to receive road information in real time in order 

to avoid unpredicted congestion (Cohn, 2009). 
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An important element in CVRS is the ability to provide control over the operation, where 

creation of reports with a statistical module is a common capability (Drexl, 2012). A new 

challenge in the industry involving data storage is the driving time regulation. The Tachograph is 

used to record the activities of drivers,  and can be paired to CVRS in order to provide driving 

times and  smooth out driver workloads (Paragon, 2009).   

 

In the UK, the main CVRS providers are: DiPS, LogiX, Optrak, Paragon, Roadnet, Descartes, 

Truckstops (DFT, 2005) and 5 out of the 7 are participants of the software survey conducted by 

OR/MS-Today (2014). Software characteristics (routing functions, features and type of fleet) are 

shown in Table 5. Most of the vendors provide capabilities to utilise historical traffic by road 

segments (OR/MS-Today, 2014), turn-by-turn directions is supported by the 5 vendors along 

with capabilities for handling driving time regulations and  re-routing during delivery (messaging 

to driver and real time vehicle tracking). Vendors offer support to different types of fleets, each 

type might have special requirements, e.g., long haul requires information about driving time 

regulation with restrictions for the week, overnight parking and resting, petrol stations, cost of 

petrol, tolls, etc. (Rowell, 2012), Descartes is the only vendor that supports bus routing.  

 
Table 5. Software characteristics of main CVRS vendors in the UK. 
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Optrak 1-100 x x x x x x x x x x  x x x x x x x   

Paragon 101-
500 

x x x  x x x x x x  x x x x x x x  x 

Roadnet +1001 x x x x x x x x x x x x x x x x x x  x 

Descartes +1001 x x x  x x x x x x x  x x x x  x x x 

TruckStops +1001 x x x x x x x x x x x x x x x x x x  x 

Source:  OR/MS-Today (2014) 
 
Although it seems that from the vendor perspective, there are a range of capabilities to support 

the transport industry, there remain questions about the components that require further 

improvements from a user perspective. The following section introduces a survey conducted to 

companies with freight operations that made use of CVRS in order to understand the 

requirements of the industry.  

 

 



 
20 

 
2.3. Survey 

The survey was designed to be answered by planners and transport managers in companies in 

the UK with freight transport operations that have implemented CVRS using an on-line 

structured questionnaire (see Appendix A). Companies were identified by business social 

networks, business directories and the database for HGV operators. Nine hundred companies 

were contacted initially by phone in order to request information regarding characteristics of 

transport operation and willingness of being part of the study. In many cases it was stated that 

as a company policy, no information could be provided to researchers. It is important to highlight 

that only companies with CVRS could participate in the survey and the adoption rate in the 

industry is low (11% in companies with less than 10 vehicles and 17% in companies with more 

than 10 vehicles).   In total 19 responses were gathered,  10 companies are 3PL and 9 support 

private operations where the core business is other than freight services. Characteristics of 

transport operations in surveyed companies are presented in Figure 4. 

 

 

Figure 4. Characteristics of transport operations in surveyed companies (n=19) 
 
 
 
Among the main reasons to adopt CVRS are: improvement of service level, reduction of 

scheduler’s time, balance routes and control costs, see Figure 5.   Surveyed companies 

reported that the financial impact of congestion and service level have been higher than the 

impact of driving time regulation, where more drivers are required to comply with driving time 

legislation when compared to schedules prior to the implementation of the regulation, see 

Figure 6.  

 

 



 
21 

 

 

(See appendix A, question 13) 
Figure 5. Reasons to adopt CVRS (n=19) 

 

 

              (See appendix A, questions 9 and 10) 
Figure 6. Impact of new challenges in the industry (n=19) 

 

The reported capabilities that require the most improvement, according to interviewed users are 

optimisation of routes minimising impact of congestion and accuracy of information regarding 

vehicle restriction to certain zones and times. Accuracy of road representation obtained an 

average marking, where capabilities to provide support to driving time directives is marked 

above average, support to different vehicle characteristics obtained the highest marking, a 

capability reported as a must have in CVRS according to Drexl (2012), see Figure 7.  
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(See appendix A, question 15) 
Figure 7. Evaluation of  CVRS capabilities according to users (n=18) 

 
Although main vendors report capabilities for routing with historical travel time and to some 

extent with real-time traffic information, surveyed companies state the necessity of improving 

related capabilities. The elements of information systems to provide capabilities are data, 

software and hardware. In the following section the reported issues on technologies that support 

CVRS are introduced. 

 
2.4. Issues and considerations in technologies that support CVRS capabilities 

 

Data 

The two capabilities that require the most development are optimisation of routes minimising 

impact of congestion, where patterns of traffic are needed, and accuracy of information 

regarding vehicle restriction to certain zones and times, additional capabilities related to data 

are re-routing, where real-time congestion might be required, and accuracy of road 

representation.  
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Within road characterization, it is reported in the literature the lack of accurate, detailed road 

information for freight transport, leading software to provide incorrect solutions, e.g., inefficient 

planning and vehicles on unsuitable roads (DFT, 2010). Furthermore, maps become out-of-date 

rather quickly. Gathering, processing and distributing data requires policy and resources, much 

of the information required by CVRS is obtained by local authorities and some initiatives have 

been put in place in order to openly share datasets in order to promote app development for 

transport users (Shrestha et al., 2014), for example, the city of Reading shares the links of the 

road network  and estimation in real-time of road conditions based on loop detectors in selected 

links1. However, the freight industry requires a number of road characteristics such as:  allowed 

height, allowed weight, allowed width, road gradient, allowed turns according to vehicle 

characteristics, tolls and petrol stations (Rowell, 2012). This level of detail is expensive to 

achieve and responsibility is not clear, available datasets are in different stakeholders, road 

information and characterization might be argued that relies on councils and government, but by 

2008 approximately 58% of total road length was unclassified in the UK (DFT, 2010). Road 

classification consists of identification of roads that are best suited for traffic where unclassified 

roads are intended for local traffic, but still there is not a clear standard and it relies on local 

government characterization (DFT, 2012). 

 

Different mapping strategies and products have come up in the market. In the car segment, 

traditional Sat-Nav providers have decreased sales due to nearly free mobile apps, such is the 

case of TomTom. The strategy of Waze, map-navigation app provider, is to rely on users to 

update maps, at the moment there are 140.000 volunteer map editors (Gibbs, 2014). The freight 

industry requires highly detailed information and Waze is an example of how to use and 

communicate driver’s knowledge.  

 

Regarding traffic patterns, currently some applications provide travel time estimations even 

considering  real-time conditions, such as TomTom in some European Countries (Switzerland, 

UK and The Netherlands) (Cohn, 2009) and Google Traffic, some of the initiatives to obtain 

traffic information are the following: 

 

i) Obtaining road congestion data from users: It makes use of mobile technologies 

and GPS to get information of multiple drivers in order to estimate network 

conditions (Marfia et al., 2013). Marfia et al. (2013) named Google Traffic as an 

example of this initiative and suggest that data should be used carefully due to lack 

of information about accuracy (Marfia et al., 2013). Privacy issues are also 

mentioned in the literature regarding user consent, data security and anonymization 

(Laurila et al., 2012).  

 

                                                           
1 http://opendata.reading-travelinfo.co.uk/ 
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ii) Automatic Vehicle Identification: Plate video recognition systems are used to 

identify vehicles by their plates and estimate travel time between locations when the 

same vehicle is identified in two different locations in a period of time (Dion and 

Rakha, 2006).     

iii) Spot speed measurement systems: Speed detectors measure the speed of the 

vehicles at the location of the sensor (e.g., loop detectors, radar and infrared 

technologies) (Dion and Rakha, 2006). However, travel time estimations might be 

inaccurate due to the complexities involved in calculations based on speed on 

location of the sensor and not considering traffic dynamics and queue evolution in 

the studied stretch (Soriguera and Robusté, 2011).   

 

Traffic information is used to predict travel times on congested roads, it requires continuous 

data collection across the day in order to tailor the speed model (Kok et al., 2012), gathering 

traffic information on minor roads and all the links on urban networks is a difficult task due to 

prohibitive investment cost in the case of loop detectors and cameras, where road congestion 

data from users is emerging due to the fact that it leverages mobile network infrastructure  

providing a cost-effective way to collect traffic data (Herrera et al., 2010).  

 

Nevertheless, data managing is an expensive task that still is a matter of controversy regarding 

who should be responsible for it, local councils, map providers, public agencies, etc. (DFT, 

2010).  There are no definitive standards governing how road database information should be 

collected, updated or distributed  (DFT, 2010, DFT, 2008). Recommendations to improve these 

issues are: joined-up working between authorities, mapping providers, and software vendors; 

resolve compatibility issues between telematics, Sat-Nav and any other IT freight solutions; and 

standardisation and collaboration (DFT, 2010).  Cooperation and standardisation between 

stakeholders is required in order to  provide accurate data. Still, there is the concern about 

price, should this information be free and government subsidise it or it should come at a price.  

Nevertheless, government has started to address these issues due to the possible benefits in 

users of transport systems (Shrestha et al., 2014). 

 

Software 

Computer programmes on CVRS usually have 5 components: i) interface to a database or 

enterprise resource centre (ERP) (system that support cross-functional  processes in 

companies) (Mabert et al., 2003) ii) GIS tools for geocoding addresses, calculating shortest 

paths in road networks (distance and travel time between locations), geolocation, etc.  iii) a 

planning module to support automated/manual interactive planning (the core analytic tool), iv) a 

telematics module that allows data exchange between dispatchers and vehicles, v) statistic  

module   to provide KPIs and reports (Drexl, 2012).  

 

 



 
25 

 
According to Drexl (2012) the most challenging component is the automated planning module 

that makes use of VRP models to find close to optimal schedules. It is important to highlight that 

finding the shortest route between locations could be also a non-deterministic polynomial-time 

hard (NP-Hard) problem, but different applications in network transport optimisation can be 

solved in polynomial times such as the Time-dependent quickest path problem in FIFO 

networks and the Time-dependent least consumption path problem (minimisation of fuel 

consumption and driver wage) (Gendreau et al., 2015).  

 

The VRP has been subject to extensive research, where a large number of variants that 

consider different logistic configurations have been proposed (Eksioglu et al., 2009). However a 

number of critiques have been addressed to VRP research.  In many cases results cannot be 

replicated, proposed algorithms make use of highly tailored parameters and focus on improving 

best-known results, the industry requires parameter-free algorithms capable to consistently 

solve real-life problems. According to Drexl (2012) “The last 0.1 % in solution quality to be 

gained from an additional complex algorithmic device are insignificant, since the data available 

in practice are never 100 % accurate”.  

 

Despite the large number of publications in the topic, recent literature reviews on VRP 

algorithms highlight the importance of providing solutions for dynamic problems (where some of 

the information is revealed during the execution of the route), stochastic models (where a level 

of uncertainty in the data is present and probabilistic distribution is known) (Hoff et al., 2010, 

Laporte, 2009, Pillac et al., 2013),  more complex instances to account for realistic situations 

with richer models  (Hoff et al., 2010) and integrated and synchronized models to account for 

multi-modal transport and a range of operations where routes depend on each other (Drexl, 

2012). 

 

Regarding the necessities stated by the surveyed companies in this research for route 

optimisation minimising the impact of congestion, Gendreau et al. (2015) conducted the most 

recent literature review in time-dependent routing problems. Some of the mentioned problems 

are the “time-dependent point-to-point route planning” (which is obtaining the optimal path 

between two locations in a road network) and the “time-dependent vehicle routing” (time-

dependent VRP variants). The challenge in the point-to-point route planning relies on providing 

efficient algorithms on-line for the next-generation web-based travel information systems that 

require results in milliseconds or microseconds. Although, it is required to use this problem to 

establish time-dependent travel times in the TDVRPTW, shortest paths might be determined in 

a pre-processing phase (Kok et al., 2012) prior to the execution of solving the actual schedule 

due to the fact that forecasted travel-times are used and there is no need of on-line applications 

when designing the routes for the following planning period. Gendreau et al. (2015) highlight the 

requirement of additional contributions of the Operational Research community in time-

dependent routing problems, where techniques for constant-speed classic network optimisation 

problems exist but it is required research for their time-dependent counterparts. 
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Hardware 

CVRS might receive information from and make use of different ITS technologies, where there 

are potential benefits from device interconnectivity such as retrieving actual driving times from 

the Tachograph in order to provide schedules for next day accommodating driving time 

regulation, telematics and analysis of driver behaviour, downloading detailed turn-by-turn 

schedule into the Sat-Nav for driver knowledge, etc. However, standardization and collaboration 

are required to improve device connectivity (DFT, 2010).  

 

An additional barrier mentioned in ITS related to routing and driving is accuracy of vehicle 

location, where there is signal loss of GPS due to the “city canyon” effect; tall building in city 

environments, trees and hills might bounce radio signals from satellites and derive inaccurate 

GPS location (Gong et al., 2012). Although it is a key issue in systems that require high 

accuracy, e.g., driverless car, different solutions have been created for the freight industry such 

as the integration of road characteristics to estimate the position of the vehicle when no signal is 

received (DFT, 2010, Gong et al., 2012).  

 

2.5. Discussion of the chapter 

The concept of business logistics is more frequently recognized as a core capability that 

enables companies to gain and maintain competitive advantage based on offering better 

customer value, defined as the relation between perceived benefits and customer’s costs, 

where effective planning and operation in logistics is able to improve  both elements and create 

value to customers (Christopher, 2010). When routing, it seems that companies maintain these 

objectives, in the prioritisation of key routing factors reported by Rowell (2012), meeting 

customers’ requirements and the minimisation of total cost (travel time and travel distance) 

appear among the most important factors. Something according to the prioritisation of reasons 

to adopt CVRS reported by companies in this research, additional reasons are reduction of 

scheduler’s time and balancing workloads. Available processor capacity allows the creation of 

feasible optimised routes that take under consideration a range of restrictions in a fraction of the 

time that is required by manual schedules. Still, it is reported in the literature that human 

interaction is required to verify and modify routes, Erdoğan et al. (2013) exemplify it in a charity 

organization that adopted a prototype VRP model for bank charity collection and shop delivery, 

transport manager yet has to modify routes in order to minimise the risk of time window 

violations due to heavy traffic, balancing workloads, clustering, inclusion of urgent requests, 

forced or delayed collections and unavailability of vehicles or staff. When additional restrictions 

not supported in the model have to be considered or a relaxed schedule is required, manual 

route modifications should be easily performed and evaluated with an adequate CVRS interface 

design based on GIS (Cegarra et al., 2012).  
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The freight transport industry has some special characteristics, low margin profits (up to 3%) 

(FTA, 2015), a large number of operators with very few vehicles and a small number of 

companies with a large number of vehicles (7% of operators control 54% of the total goods 

vehicles in the UK) (Davies et al., 2007), and a large range of logistic configurations to support 

different business models. Therefore the low CVRS adoption rate, in many companies it does 

not support the specific type of operation or bring enough benefits to compensate the 

investment of its implementation. Nevertheless, big players are implementing and improving 

computerized routing such as UPS and its ORION project (On-Road Integrated Optimisation 

and Navigation), it saves more than 1.5 million gallons of fuel, reduces the environmental 

impact of the operation and has shown in preliminary tests the possibility to save millions of 

dollars. It will enable the next generation of software capabilities by allowing customers to see 

on-line their incoming deliveries and actively choose drop preferences and reroute shipment if 

necessary  (UPS, 2015), it is an example of how  ITS has transformed the industry and will 

continue to do so. 

 

There is the necessity to provide improved solutions to the industry, companies have stated that 

optimisation under congestion and accuracy of road characteristics are capabilities that require 

the most improvement. The impact of congestion has increased over the last 30 years, with the 

101 largest US cities reporting that travel delay had increased from 1.1 billion hours in 1982 to 

4.8 billion hours in 2011 (Chang et al., 2015). The key impact congestion has on vehicle 

planning is that travel times between locations vary as a function of the changing traffic 

patterns. Failure to account for this in routing decisions leads to drivers running out of hours, 

additional overtime payments and missed deliveries (Haghani and Jung, 2005, Kok et al., 

2012). Although traffic data is available to a certain extent and some vendors claim that the 

routing under congestion capability is implemented on software, a recent literature review 

(Gendreau et al., 2015) shows that the theory to provide algorithms for time-dependent VRP 

variants is still scarce.  

 

Many initiatives have been put in place to provide and maintain relevant data for public, private 

and freight transport, where policy and cooperation are key drivers. Although many questions 

remain regarding security and costs, technologies to gather travel time data are available.  

Additionally, there is a clear statement from policy makers to promote the use of open data, it is 

recognized as the  “raw material” for developments in information products and services that 

can yield great economic and social benefits. The roadmap in policy is based on adapting the 

legal framework, mobilizing financing instruments and facilitating coordination and experience 

(European-Commission, 2011).  
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To sum up 

CVRS is used in the transport industry to improve service level by supporting planners in the 

complex activity of vehicle scheduling. The literature review shows that a range of technological 

breakthroughs has been implemented in this type of systems in order to provide representation 

of road characteristics, on-line delivery status and vehicle location, and traffic information in 

order to support software capabilities required by the industry. However, it is important to 

understand the barriers found in real life when compared to technological or theoretical 

concepts, which is intended in this research in order to provide knowledge to software 

developers, researchers and stakeholders in order to identify the most relevant issues to 

contribute to the transport industry. 

 

Congestion is reported as a major concern and sampled companies report that it affects the 

operation in terms of cost increment and deteriorating service. Furthermore, companies 

identified route optimisation under congestion as one of the two capabilities that require the 

most development. The technological elements to improve planning under congestion are traffic 

patterns and time-dependent models in order to provide reliable schedules and both elements 

are reported as barriers; gathering information in all the links of the road network is a difficult 

task where some initiatives have been introduced to provide traffic data and although the VRP 

has received much attention from researchers, recent literature reviews mention that some 

variants require further research, including time-dependent variants. 

 

Providing algorithms for routing vehicles is reported as a complex research area that might 

improve the freight industry by creating routes that minimise the impact of some of the current 

challenges that the industry is facing (e.g., congestion and regulation). The next chapter 

introduces a literature review in VRP models and solution algorithms in order to understand the 

benefits and limits of current theory to solve VRP variants.  
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Chapter  3 

 
A review of VRP variants and heuristic 
solution procedures 
 
The Vehicle Routing Problem (VRP) is a generic name for a large set of variants involving the 

optimisation of routes for a fleet of vehicles to serve a set of customers with a number of 

constraints that represent the restrictions that are present in logistic operations (Baldacci et al., 

2012). It is considered an NP-Hard problem due to the complexity of obtaining optimal solutions, 

meaning that no algorithm has been developed to solve it by proving optimality in a reasonable 

time for large instances. 

 

The simplest algorithm that one could propose would be the enumeration and evaluation of 

each possible solution of visiting all customers (n! possible solutions in the worst case scenario 

with one vehicle). With current computers, for a problem of 25 delivery points, it would take 

thousands of years of computational time. Therefore, this problem has been of special interest 

to workers across a number of disciplines (e.g. mathematics, computer science, engineering, 

etc.). Although algorithms that guarantee optimality have been developed to solve up to 200 

customers for some VRP variants (Baldacci et al., 2012), metaheuristic algorithms (based on 

“intelligent” search strategies rather than  mathematical approaches that cannot provide results 

for large instances in reasonable time) might provide fast and reliable solutions for problems of 

considerable size.  

 

However, when using metaheuristics, researchers should be careful regarding the accuracy of 

the results, since metaheuristics do not guarantee optimality, and algorithms should be tested in 

order to understand their capabilities of solving the studied variant (Toth and Vigo, 2001, Vidal 

et al., 2013, Cordeau et al., 2002). In the previous chapter it was identified that the industry 

requires time-dependent VRP models that account for congestion. This chapter examines what 

the (academic) state of the art actually is, and offers a review of the evolution of heuristic and 

metaheuristic solution methods for VRP variants.  
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The capacitated Vehicle Routing Problem and the Vehicle Routing Problem with time windows 

are NP-hard problems that nonetheless have good solutions using metaheuristics due to 

research in algorithms based on adequate evaluation with available instances (Toth and Vigo, 

2001). The first and second sections of this chapter present a review of Operational Research 

techniques that have been developed and tested with these variants. The following sections 

deal with richer variants and proposed instances in the literature, along with algorithm research 

that presents algorithm evaluation in order to identify variants that require additional research, 

due to a lack of analysis of the accuracy in solution methods.  

 

3.1. The Vehicle Routing Problem and the Capacitated Vehicle Routing Problem 

The first formal definition for the VRP was presented by Dantzig and Ramser (1959) for routing 

a fleet of petrol delivery lorries, where each customer is represented as a point. Every pair of 

points, also called arcs, is linked by a distance; every point has a demand and all lorries must 

depart and finish at a central depot; all lorries have the same characteristics. The objective is to 

find the set of routes with minimum travelled distance or routing time, satisfying that every 

customer be served once and the capacities of lorries are not exceeded. It was presented as a 

generalisation of the Travelling Salesman Problem (TSP: where the shortest route through a set 

of points has to be found). This basic formulation is called capacitated Vehicle Routing Problem 

(CVRP) (Toth and Vigo, 2001). 

 

The CVRP is NP-Hard (Toth and Vigo, 2001); no exact algorithm has been developed to 

provide consistently optimal values for instances in the range of 200 customers, even some 

instances of 100 customers have not been solved for the CVRP (Baldacci et al., 2011).  In 

practice, heuristic and metaheuristic procedures have been developed to procure relatively fast 

solutions.  

 

Heuristics are algorithms designed specifically for a given problem and explore a limited search 

space (Toth and Vigo, 2001), while metaheuristic algorithms are search strategies that allow a 

robust exploration by local search and specially designed procedures, avoiding local optima, 

forcing the search to new unexplored regions. These strategies have been used for many 

combinatorial problems (Glover and Kochenberger, 2003). Although heuristics are generally 

faster than metaheuristic algorithms for the VRP, the solutions are poorer.    
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Cordeau et al. (2002) presented an evaluation of heuristics and metaheuristic algorithms for the 

CVRP in terms of accuracy and speed. Accuracy is the difference between the obtained results 

of the procedure and the optimal value or the best-known value for a certain instance, while 

speed is the time required to obtain the reported solution. These values can be found in the 

literature or web pages. Simplicity (i.e. the grade of the algorithm to be replicated obtaining 

reported solutions) and flexibility (i.e. the grade of the algorithm to accommodate different 

constraints without decreasing solution accuracy) are attributes introduced in the evaluation. 

Cordeau et al. (2002)  reported that several procedures are not implemented in the routing 

software due to their complexity and lack of information provided in the literature.  

 

 
Figure 8. Evaluation for CVRP procedures, 14 instances between 50 and 199 customers. 

Source: Cordeau et al. (2002) 
 
A comparison of results of different procedures reported in the literature for the CVRP is shown 

in Figure 8 based on 14 instances, between 50 and 199 customers, where the parameters of 

evaluation are the sum of travel distance (accuracy) and computational time to obtain the 

solution (speed). Although accuracy is a very straightforward comparison, speed is more 

complex due to the fact that hardware (processor, RAM), compiling software and code 

efficiency have an impact on it (Figliozzi, 2012). Dongarra (2007)  presented detailed 

information to compare relative computer power. Nevertheless, Figure 8 is an example of 

solution technique evolution for the CVRP due to research in search strategies and 

computational processor capacity increment.   

 

Metaheuristic algorithms are capable of obtaining greater accuracy than heuristics, for example 

the Clarke and Wright (1964) heuristic, also called the savings algorithm, is a very well-known 

algorithm that yields results of 6% average from the best-known values in seconds (Cordeau et 

al., 2002). The Granular Tabu Search metaheuristic algorithm proposed by Toth and Vigo 

(1998) is capable of obtaining results within 1% from best-known values.  
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The savings algorithm is based on the concept of merging routes that offers the highest saving, 

the pseudo code of the parallel version of the algorithm is presented as follows: 

 
 
Although other heuristics have been developed, metaheuristic algorithms have offered greater 

accuracy for the CVRP, where some implementations based on Tabu Search (TS) have 

achieved results on average within one per cent from best-known solutions (Cordeau et al., 

2002). Unified Tabu Search (Cordeau et al., 1997),  Taburoute (Gendreau et al., 1994)  and 

Granular Tabu Search (Toth and Vigo, 1998) are  implementations of TS with high accuracy 

where researchers have provided execution time to compare algorithms (Cordeau et al., 2002).  

 

TS is based on the concept of exploring the search space by hill climbing and allowing non-

improvement movements to avoid local optima. Cycles are forbidden with a Tabu list that 

impedes visiting an explored neighbourhood (Glover, 1989). The basic elements of TS are 

presented below; for a detailed description see Gendreau (2003). 

 

 Search Space and Neighbourhood Structure: Search Space is the definition of all 

possible solutions that can be visited; Neighbourhood Structure is the local 

transformation of the actual solution to construct the neighbourhood at each iteration or 

move. 

 

 Tabu List: This is a list containing information to avoid cycles; although it might contain 

a full description of the visited solutions, it is rarely implemented due to the required 

computational effort. Instead, actions in recent transformations or characteristics of 

visited solutions are recorded. 

 

 Aspiration Criteria: Tabu List can impede certain movements that could achieve better 

values; therefore, evaluation to allow movements that are considered Tabu might be 

implemented. 

__________________________________________________________________________________

Algorithm 1: Clark and Wright heuristic for the CVRP 
__________________________________________________________________________________        
Input Data:    Let 𝐺= (𝑉, 𝐴) be a graph where vertex 𝑉 = ( 𝑣0 ,  𝑣1, … , 𝑣𝑛 ) being 𝑣0 the depot  

       and 𝑣1, … , 𝑣𝑛  the set of customers, and 𝑑𝑖𝑗  distances between customers 

     Start 
1. Calculate savings for each pair of customers:  𝑆𝑖𝑗   ← 𝑑𝑜𝑖  + 𝑑𝑗𝑜  - 𝑑𝑖𝑗   

2. 𝐶𝑟𝑒𝑎𝑡𝑒 𝑛 𝑟𝑜𝑢𝑡𝑒𝑠  𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 : 𝑅𝑘 = {𝑣0, 𝑣𝑘 , 𝑣0  }  
3. 𝑆𝑜𝑟𝑡  𝑆𝑖𝑗  in descending order 

4. Repeat  
5.       Select highest Saving 𝑆𝑖𝑗  

6.       Check feasibility of merging routes that contains customers 𝑣𝑖  and 𝑣𝑗  

                            //only routes with edges 𝑣𝑖   and  𝑣𝑗   may be merged//  

7.                   If  (merge is feasible) then  
8.                               merge routes 
9.        EndIf 
10.        Disregard selected 𝑆𝑖𝑗  

11.  Until  all 𝑆𝑖𝑗  are disregarded 

      End 
__________________________________________________________________________________ 
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 Termination Criteria:  Because TS do not guarantee optimality, there is not a 

finalisation per se. Usually, three criteria can be implemented: i) stop at a certain 

number of iterations or CPU time, ii) stop after a number of iterations without 

improvement, and iii) stop after achieving a certain estimated value. 

 

 Intensification: The concept relies on exploring more thoroughly some promising 

portions of the Search Space, which might take place by modifying the neighbourhood 

structure or forcing the utilisation of some values in the solution.  

 

 Diversification: This is a procedure to force the search into unexplored areas of the 

Search Space. 

 

Unified Tabu Search, Taburoute and Granular Tabu Search start with fast heuristics such as the 

savings algorithm to produce initial solutions and use well-known neighbourhood structures as 

search space; see Figure 9. The search space may include non-feasible solutions that are 

penalised in the objective function. A key element to improving the speed is to reduce the 

neighbourhood size by selecting arcs with a higher likelihood of producing a better move 

(Cordeau et al., 2002). An example is presented by Toth and Vigo (1998) by not considering in 

the search process arcs with small “likelihood” of producing a good solution. “Likelihood” is 

evaluated with the following function, ϑ = β x ĉ, where β is a sparsification parameter and ĉ is 

the average cost of the arcs in the initial solution generated with the savings algorithm.  With β 

values between 1–2.5, approximately 10–20% of arcs are used in the neighbourhood 

construction; intensification and diversification are achieved by modifying the parameter β. 
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Figure 9. Common neighbourhood structures for the VRP search space. 

Source: Bräysy and Gendreau (2005a) 

Although the CVRP is an NP-Hard problem,  the solution methods have evolved to provide 

highly accurate solutions for large instances due to increment in computational capacity and the 

development of search strategies that take advantage of heuristics and well-known 

neighbourhood structures. In this section, the evolution of algorithm research for a VRP variant 

has been shown. Although TS is recognised as one of the available solutions, many different 

concepts might be employed in state-of-the-art algorithms to solve the CVRP and richer 

variants; the following sections will show some of these search strategies.  

 

 

 

 

 

 

 

 

 

 

2-Opt* Operator

Depot Customer

Relocate operator

CROSS-Exchange Operator

Combining two routes so the last customers of

a route are inserted after the first customers of

other route, the orientation of the routes are

never modified.

Relocating a chain of consecutive customers

in a different route.

Swapping two sequences of customers in

different routes, the orientation of the routes

are never modified.

2-Opt Operator

Replacing two edges by other two edges

within the same route, the orientation of the

route is partially modified.

Exchange Operator

Swapping two customers in different routes.
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3.2. The Vehicle Routing Problem with Time Windows 

The Vehicle Routing Problem with time windows (VRPTW) is a VRP variant where each 

customer has a demand, a time window to be served and each visit has duration. In the hard 

VRPTW, the service has to start strictly in the time window interval; if the vehicle arrives early it 

has to wait until the time window allows the service and no customer can be served after the 

time window is closed, whereas in the soft version, a penalty is associated with every violation 

of the time window restriction. Commonly the VRPTW has two objectives: first, minimisation of 

number of vehicles; secondly minimisation of travel distance (Bräysy and Gendreau, 2005a, 

Bräysy and Gendreau, 2005b, Toth and Vigo, 2003). 

 

The VRPTW is more complex than the CVRP: due to the time window restriction, finding 

feasible solutions is computationally expensive and minimising the number of vehicles requires 

additional modifications in the search process (Bräysy and Gendreau, 2005a, Bräysy and 

Gendreau, 2005b, Vidal et al., 2013). The VRPTW has been the subject of intense research 

(Bräysy and Gendreau, 2005a, Bräysy and Gendreau, 2005b, Toth and Vigo, 2001, Vidal et al., 

2013), and evaluation of procedures is commonly performed with 56 instances of 100 

customers created by Solomon (1987);  instances of up to 1000 customers were introduced by 

Gehring and Homberger (1999) following Solomon’s methodology. See Table 6 for the 

description of Solomon’s instances. A range of heuristics and metaheuristic algorithms has 

been developed to solve the VRPTW. Figure 10 shows the evolution in solution accuracy and 

speed due to research in search strategies and increment in computational processing capacity.   

 
Table 6. Description of Solomon’s instances – 100 customers. 

Problem 
class 

Number of 
problems 

Description Best-known values 

Customer location 
Time Window 

/planning 
horizon 

Cumulative 
Number of 
Vehicles 

Cumulative 
Distance 

R1 12 Random Tight 143 14,524.08 

R2 11 Random Lax 30 10,461.33 

C1 9 Cluster Tight 90 7,455.42 

C2 8 Cluster Lax 24 4,718.88 

RC1 8 Random-Cluster Tight 92 11,073.28 

RC2 8 Random-Cluster Lax 26 8,953.92 

Total       405 57,186.91 
Tight:  Short time windows that allows a few number of customer per vehicle and short planning horizon 
Lax:    Long time window that allows a large number of customers per vehicle and long planning horizon 

Source: Solomon (1987) and Vidal et al. (2013) 
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Figure 10. Evaluation for VRPTW procedures, Solomon’s 56 instances of 100 customers 

Source: Bräysy and Gendreau (2005a), Bräysy and Gendreau (2005b) and Vidal et al. (2013). 
 
 
A very well-known heuristic is the insertion heuristic I1 proposed by Solomon (1987). With 

results around 11% from best-known values of number of vehicles and 28% for travel distance, 

it is considered a fast procedure, easy to implement, but with low accuracy. However, the 

concept of sorting customers into routes according to time savings by reducing the waiting time 

is applied in a number of procedures to provide initial solutions for further improvement (Bräysy 

and Gendreau, 2005b). The pseudo-code is presented as follows; for a full description, see 

Solomon (1987): 
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Bräysy (2002)
Bräysy (2002)
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Ioannou (2001)

Ioannou (2001)

Russell (1995)
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Nagata (2010)

Evolution strategies

Nagata (2010)

Evolution strategies

__________________________________________________________________________________

Algorithm 2: Solomon’s heuristic I1 for the VRPTW 
__________________________________________________________________________________        
Input Data:    Let 𝐺= (𝑉, 𝐴) be a graph where vertex 𝑉 = ( 𝑣0 ,  𝑣1, … , 𝑣𝑛 ) being 𝑣0 the depot  

       and 𝑣1, … , 𝑣𝑛  the set of customers, and 𝑑𝑖𝑗  distances between customers  

        μ, α1, λ : parameters to control weight of distance  
        α2 : parameter to control weight of time insertion 

            α1 + α2 =1; α1≥0; α2≥0; λ ≥0; 
     Start 

1. Repeat  
2.         Select customer seed 𝑣𝑠𝑒𝑒𝑑   //method 1: The farthest unrouted customer 

                                                                 method 2: The unrouted customer with the earliest deadline//  
3.           Create route  { 𝑣0 , 𝑣𝑠𝑒𝑒𝑑 , 𝑣0 } 
4.           Repeat 
5.                   𝐶11(𝑖 ,𝑢 ,𝑗 ) ← 𝑑𝑖𝑢  + 𝑑𝑢𝑗 - ( μ ∗ 𝑑𝑖𝑗 ) 

6.                   𝐶12(𝑖 ,𝑢 ,𝑗 ) ← 𝑏𝑗𝑢 −  𝑏𝑗  // 𝑏𝑗  is the starting time of service for customer 𝑣𝑗   

                                                             𝑏𝑗𝑢  is the new starting time of service at 𝑣𝑗  if 𝑣𝑢  is inserted// 

7.                   𝐶1(𝑖 ,𝑢 ,𝑗 ) ← α1 ∗ 𝐶11(𝑖 ,𝑢 ,𝑗 ) + α2 ∗ 𝐶12(𝑖 ,𝑢 ,𝑗 ) 

8.                   𝐶2(𝑖 ,𝑢 ,𝑗 ) ← λ  ∗  𝑑0𝑢   - α1 ∗ 𝐶1(𝑖 ,𝑢 ,𝑗 ) 

9.           Until all unrouted customers have been evaluated at all positions in current route 
10.           Select 𝑣𝑢  with lower 𝐶2(𝑖 ,𝑢 ,𝑗 ) and insert in current route between 𝑣𝑖  and 𝑣𝑗   

              //Note that only feasible insertions are allowed// 
11. Until  all customer are in solution 

      End 
__________________________________________________________________________________ 
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State-of-the-art exact methods for the VRPTW are capable of solving instances in the range of 

100 customers based on set partitioning formulation and branch-and-price or branch-and-cut 

algorithms  (Baldacci et al., 2012). However, computational time is considerably higher than 

metaheuristic approaches and some instances still are difficult to solve, e.g. problems with 100 

customers can take up to 7.9 hours to solve when a solution can be obtained. Table 7 shows 

computational time for three exact algorithm approaches using Solomon’s instances for 100 

customers.  

 
 Table 7. Benchmark for exact algorithms for the VRPTW – Solomon’s instances 100 customers. 

 

Different metaheuristic algorithms have been developed for combinatorial problems and have 

been tested with the VRPTW, where high accuracy in reasonable time has been achieved with 

different search strategies (Vidal et al., 2013). However, they commonly share elements; some 

of the concepts are listed below with examples of implementations of search strategies that 

make use of them:   

 

 Creation of initial solution with fast heuristics: Different metaheuristic algorithms create 

an initial solution with a fast heuristic and then try to improve the initial solution e.g.  

Tabu Search (Bräysy and Gendreau, 2005b), Variable Neighbourhood Search, and  

Large Neighbourhood  Search (Ropke and Pisinger, 2006).  

 

 Evolutionary algorithms: Genetic algorithms and evolution strategies use simulated 

evolution based on selection, recombination and mutation in order to solve complex 

problems, where stochastic elements are commonly present at some stage (Whitley, 

2001), state-of-the-art evolutionary algorithms for the VRPTW are Vidal et al. (2013) 

and Nagata et al. (2010). 

 

 Local search operators: Neighbourhood structures based on arc-and-node exchange 

are used to explore the search space, see Figure 3, e.g. Tabu Search (Bräysy and 

Gendreau, 2005b, Cordeau and Maischberger, 2012), Variable Neighbourhood Search 

and Evolutionary algorithms (Nagata et al., 2010, Vidal et al., 2013). 

 

 

 

Problem 
class 

Number of unsolved 
problems 

Average computational time per problem 
(sec) 

Approach 1 2 3 1 2 3 

R1 0 0 0 251 27,412 2,327 

R2 1 7 3 28,680 35,292 63,068 

C1 0 0 0 25 468 18 

C2 0 1 0 40 2,795 2,093 

RC1 0 0 0 276 11,004 2,150 

RC2 0 3 2 3,767 3,204 15,394 

  1:  Baldacci et al. (2011) Intel Xeon X7350  2.93 GHz 16 GB RAM   2:  Jepsen et al. (2008) Pentium IV 3.0 GHz     
  3:  Desaulniers et al. (2008) Dual Core AMD Opteron 2.6 GHz      
      Source: Baldacci et al. (2011) 
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 Ruin and recreate / Large Neighbourhood Search (LNS): The basic element of these 

search strategies is the iterative partial destruction of solutions (i.e. the removal of 

customers from the original routes) and rebuilding them by fast heuristics (insertion of 

removed customers in the current solution in a smart way: Schrimpf et al., 2000), e.g. 

Tabu Search (Cordeau and Maischberger, 2012)  and Large Neighbourhood Search 

(Ropke and Pisinger, 2006). 

 

 Guidance and memories: It operates by penalising particular solution features that are 

considered not to be in “good solutions”, such as long arcs. The algorithm might 

remember how many times each penalised feature appears in the search process and 

update the value of the penalty, e.g. Evolutionary algorithms (Mester and Bräysy, 2005, 

Vidal et al., 2013). 

 

 Ejection chains: Changes in selected elements cause other elements to be ejected from 

their initial state or position, in the VRP consist of removing a customer from its initial 

route and trying to insert it in another route by “making room” through consecutive 

iterations of insertions and removals (Bräysy and Gendreau, 2005a, Glover, 1992) e.g. 

Tabu Search (Rego, 2001) and Evolutionary algorithms (Nagata et al., 2010). 

 

 Parallel computing: The presence of multiple cores in computers has given workers the 

opportunity to work with multiple threads in order to speed up the search process (Le 

Bouthillier et al., 2005), e.g. Tabu Search (Cordeau and Maischberger, 2012) and 

Evolutionary algorithms (Gehring and Homberger, 2002). 

 

 Mathematical programing hybrids: Although exact algorithms are computationally 

expensive. the search process can be sped up by its integration with metaheuristic e.g. 

Branch-and-Price and Large Neighbourhood Search (Prescott‐Gagnon et al., 2009) and 

Evolutionary algorithms and set partitioning formulation (Alvarenga et al., 2007). 

 

In order to speed up execution time, some strategies have been proposed to reduce the search 

space (Bräysy and Gendreau, 2005b). In the case of local search operators, two acceptance 

strategies are common: best-accept and first-accept. The best-accept strategy examines the 

complete neighbourhood and selects the best solution, whereas the first-accept strategy selects 

the first neighbour that provides an improvement (Bräysy and Gendreau, 2005b). Additional 

strategies are available, such as allowing only moves between close-distance customers 

(Garcia et al., 1994) and identifying “promising candidates” in terms of distance, time proximity 

and asymmetry issues (Vidal et al., 2013). An example is provided by Vidal et al. (2013), where 

it is proposed to evaluate neighbourhood movements only between the most correlated pair of 

customers,  defined by γ 𝑣𝑖,𝑣𝑗 
 , which is defined as the weighted sum of distance, the minimum 

waiting time and the minimum penalty between any pair of customers 𝑣𝑖 and 𝑣𝑗. 
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γ 𝑣𝑖,𝑣𝑗 
= 𝑑𝑖𝑗 + γ𝑊𝑇 max{e𝑗 + g𝑖 + t𝑖𝑗 − l𝑖 , 0} + γ𝑇𝑊 max{e𝑖 + g𝑖 + t𝑖𝑗 − l𝑗, 0}                                                                           

 

where 𝑑𝑖𝑗 is the distance between customers 𝑣𝑖 and 𝑣𝑗, t𝑖𝑗 is the travel time, e𝑖 is the lower time 

window of customer 𝑣𝑖, l𝑖  upper time window,g𝑖 service duration,  γ𝑊𝑇 and γ𝑇𝑊 are parameters 

that balance the role of geometrical and temporal parameters and have to be calibrated 

according to spatial characteristics, distribution and tightness of time windows of the problem at 

hand. Another technique to speed up the search process is the use of “macronodes”, where a 

sequence of customers is treated as a node in order to evaluate neighbourhoods (Bräysy and 

Gendreau, 2005a, Cordone and Wolfler-Calvo, 1997). 

 

A number of techniques have been developed to deal with the different decisions and issues 

that come up in the implementation of algorithms to solve the VRPTW; perhaps one of the most 

complete literature reviews that deals with this topic is presented by Bräysy and Gendreau 

(2005a, 2005b). An important factor in the increased complexity of the VRPTW versus the 

CVRP is minimising the number of vehicles in the presence of time windows, where a number of 

approaches have been implemented; see Bräysy and Gendreau (2005a, 2005b). Two-stage 

algorithms that focus the search firstly by reducing routes and secondly by minimising travel 

time are more likely to obtain the optimal minimum number of vehicles (Bent and Van 

Hentenryck, 2004), therefore requiring specific tailoring for each stage. 

 

A successful example of explicit strategies for route minimisation is introduced by Bent and Van 

Hentenryck (2004). They make use of the metaheuristic algorithm Simulated Annealing for 

minimisation of vehicles and LNS for distance minimisation due to the fact that initial testing of 

LNS yielded low accuracy in Solomon instances with lax time windows (i.e. instances with a 

large number of vehicles per route). In the first stage, routes with a large number of customers 

and a low number of customers are maintained throughout the search process with the 

implementation of an objective function that maximises the sum of the squares of route sizes in 

order to try to insert customers from small routes into large routes, where simulated annealing is 

used to guide the search. The result of this implementation achieved the best-known values for 

the number of vehicles (improving the best-known values at the time of publication).  

 

Research on metaheuristics has provided highly efficient algorithms to deal with the VRPTW. 

Table 8 shows some approaches capable of coping with instances of up to 1000 customers with 

a high accuracy in a reasonable time, such as the mathematical programming hybrid branch-

and-cut and the LNS proposed by Prescott‐Gagnon et al. (2009) and evolutionary algorithms 

(Nagata et al., 2010, Repoussis et al., 2009, Vidal et al., 2013).  
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Table 8. Benchmark for metaheuristic algorithms for the VRPTW. 

 
  Best known results are in bold  CNV: Cumulative number of vehicles   CTD: Cumulative travel distance 

 

3.3. Rich models 

The CVRP and the VRPTW are frequently not applicable in logistic operations and therefore 

over the years many variations have been proposed, including, for example, Vehicle Routing 

Problems with heterogeneous fleets, pickup and delivery, multiple depots, etc. Although 

algorithms have been developed to provide high accuracy for some theoretical VRP variants, 

richer variants may require additional algorithm tailoring. In this subsection the literature review 

is focused on research that performs adequate algorithm evaluation (using benchmark 

instances) for relevant VRP variants in the industry such as heterogeneous fleets (a must-have 

feature in CVRS according to Drexl (2012)) or  time-dependent Vehicle Routing Problems (in 

order to provide reliable schedules when congestion is present). It is in the interest of the 

industry and researchers to understand the capabilities of state-of-the-art algorithms reported in 

the literature to provide highly accurate solutions in a reasonable time for variants that consider 

the necessities of the freight industry. 

 
 
 
 
 
 
 
 

 

Approach 
Best-

known 
values 

  

1 2 3 4 5 

Number of runs 5 3 1 5 5 

Number of customers 
       

100 

CNV 405 405 405 405 405 405 

CTD 57187 51240 57216 57205 57187 57196 

Time (min) 
 

5x30 3x17.9 3.2 5x5.0 5x2.68 

200 

CNV 694 694 694 694 694 694 

CTD 168067 168556 169163 168143 168067 168092 

Time (min) 
 

5x53 90 4.7 5x4.1 5x8.4 

400 

CNV 1381 1381 1381 1381 1381 1382 

CTD  388013 389011 395936 388548 388466 388697 

Time (min) 
 

5x89 180 34 5x16.2 34.1 

600 

CNV 2066 2071 2066 2067 2067 2068 

CTD 816326 800797 816326 789420 789592 786373 

Time (min) 
 

5x105 270 80.4 5x25.3 5x99.4 

800 

CNV 2738 2745 2739 2739 2738 2739 

CTD 1357695 1391344 1424321 1352478 1357695 1334963 

Time (min) 
 

5x129 360 126.8 5x27.6 5x215 

1000 

CNV 3420 3432 3428 3424 3424 3420 

CTD 2036700 2096823 2144830 2040661 2045720 2036700 

Time (min) 
 

5x162 450 186.4 5x35.3 5x349 

Processor    P4-2.8G Opt-2.3 P4-3 Opt -2.4 Xe-2.93 

1. Branch-and-Price and Large Neighbourhood Search  Prescott‐Gagnon et al. (2009) 2.  Evolutionary 

Algorithm Repoussis et al. (2009) 3. – 4. Evolutionary Algorithm Nagata et al. (2010) 5. Evolutionary 
Algorithm Vidal et al. (2013) Evolutionary Algorithm. 
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3.3.1. Fleets with heterogeneous vehicles and the Vehicle Routing Problem 

Vehicle fleets in real life are rarely homogeneous; fleets are acquired over long periods of time 

and vehicles will have different characteristics due to technological developments and market 

conditions,  where versatility is a desired fleet characteristic in order to cope with operational 

constraints (urban environment, access restriction, economies of scale, etc.); vehicles may differ 

in dimensions, weight, capacity, speed, equipment, fuel consumption and cost structure (Bräysy 

et al., 2008; Hoff et al., 2010). The heterogeneous fleet VRP (HVRP) and the fleet size and mix 

VRP (FSM) are sets of variants of the VRP that consider vehicles with different characteristics 

e.g., capacities, travel costs, capital costs, etc. (Baldacci et al., 2008). In the HVRP the number 

of vehicles available per each type of vehicle is restricted, e.g. there are limited vehicles available 

at the depot, whereas in the FSM there is an unlimited number of vehicles, e.g. a decision is 

needed about what types of vehicles are required. 

 

The first formal formulation for a heterogeneous fleet was presented by Golden et al. (1984)  as 

the fleet size and mix Vehicle Routing Problem. Over the years, theoretical variants have been 

proposed, but the notation in the literature is not consistent (Baldacci et al., 2008; 

Paraskevopoulos et al., 2008). The notation introduced by Baldacci et al. (2008) for the 

capacitated HVRP and FSM will be used and extended for variants with time windows as follows: 

HVRP (Heterogeneous VRP), FSM (Fleet Size and Mix VRP), F (Dependent Fixed Costs), D 

(Dependent Running costs) and  TW (Time Windows); see Table 9.  

 
                                                 Table 9. Variants for Heterogeneous Fleets. 
 

Problem 
Name 1 

Unlimited 
Fleet Size 

Dependent 
Fixed Cost 

Dependent 
Running Costs 

HVRP-F-TW  ✓  

HVRP-D-TW   ✓ 

HVRP-FD-TW  ✓ ✓ 

FSM-F-TW ✓ ✓  

FSM-D-TW ✓  ✓ 

FSM-FD-TW ✓ ✓ ✓ 
1 Notation: HVRP Heterogeneous VRP FSM Fleet Size and Mix 
VRP F Dependent Fixed Cost D Dependent Routing Cost TW Time 

Windows  
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VRP variants with heterogeneous vehicles with time windows have been studied far less by the 

scientific community than their counterparts the VRPTW (Koç et al., 2014a) or simpler VRP 

variants with heterogeneous vehicles without time windows (Hoff et al., 2010). The review of 

literature in this research will focus on variants with time windows. For a review of simpler 

variants, refer to Baldacci et al. (2008). Table 10 shows some of the publications focused on 

heterogeneous vehicles and time windows, the fleet size and mix VRP with dependent fixed 

costs. FSM-F-TW, where fixed costs include vehicle excise duty (VED), insurance and 

depreciation of vehicle value, has received the most attention from the theoretical perspective, 

commonly using instances proposed by Liu and Shen (1999a), based on Solomon's (1987) 

instances for algorithm performance analysis. For the heterogeneous VRP with dependent fixed 

costs (HVRP-F-TW), Paraskevopoulos et al. (2008) introduced an extension of instances of Liu 

and Shen. The available number of vehicles is the best number of vehicles obtained by Liu and 

Shen (1999b) for FSM-F-TW instances. Recently, instances for the heterogeneous VRP with 

dependent fixed costs and dependent routing costs (HVRP-FD-TW) were proposed by Jiang et 

al. (2014). Solution analysis with formally proposed instances was not found in the literature 

review for the heterogeneous VRP with dependent running costs and time windows (HVRP-D-

TW), fleet size and mix VRP with dependent running costs and time windows (FSM-D-TW), or 

fleet size and mix VRP with fixed costs dependent running costs and time windows (FSMF-DT-

TW). 

 

Liu and Shen (1999a) solved the FSM-F-TW with a number of heuristics and an improvement 

phase based on perturbation and local search, with the objective of minimising the sum of the 

fixed costs and travel time. The proposed instances are an extension of Solomon’s instances, 

and three different sets of vehicle costs are considered for each of Solomon’s problems (for a 

total of 168 problems) with dependent capacities and fixed costs for each type of vehicle (see 

Table 11). 
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Table 11. Benchmark instances for the FSMFTW (100 customers) - Liu and Shen (1999a) 

Problem 
Vehicle 

type  
Capacity 

Fixed cost per vehicle 

a b c 

R1 

A 30 50 10 5 

B 50 80 16 8 

C 80 140 28 14 

D 120 250 50 25 

E 200 500 100 50 

      

R2 

A 300 450 90 45 

B 400 700 140 70 

C 600 1200 240 120 

D 1000 2500 500 250 

      

C1 

A 100 300 60 30 

B 200 800 160 80 

C 300 1350 270 135 

      

C2 

A 400 1000 200 100 

B 500 1400 280 140 

C 600 2000 400 200 

D 700 2700 540 270 

      

RC1 

A 40 60 12 6 

B 80 150 30 15 

C 150 300 60 30 

D 200 450 90 45 
a, b, c are different cost structures  

Source: Liu and Shen (1999a) 
 
 

Dell'Amico et al. (2007) proposed a Ruin and Recreate metaheuristic approach for the FSM-F-

TW, and their solution took advantage of the similarity to the bin-packing problem, where 

objects of different volumes must be packed into bins, in order to propose new movements. 

Selected routes are targeted to be served by a smaller vehicle if a number of customers are 

removed, and a parallel recreate heuristic tries to recreate a new feasible solution. Evaluation of 

the algorithm’s performance showed improved results (6%) when compared to  Liu and Shen 

(1999a). Figure 11 shows the performance of the algorithm when more execution time is 

allowed. 
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Figure 11. Performance of the Ruin and Recreate algorithm proposed by Dell'Amico et al. 
(2007) for the fleet size and mix VRP with dependent fixed costs at different execution times. 

Source: Dell'Amico et al. (2007) 
 

Paraskevopoulos et al. (2008) present a Variable Neighbourhood Search metaheuristic (VNS) 

using Tabu search for local search for the FSM-F-TW and the heterogeneous VRP with 

dependent fixed costs with time windows (HVRP-F-TW), proposing  benchmark instances, 

where an algorithm with two stages is tailored: i) the method for construction of an initial solution 

and minimisation of the number of vehicles describes a construction heuristic with multiple 

metrics specially designed for heterogeneous fleets and subsequently ejection chains are used 

to reduce the number of vehicles required where an infeasible search space is temporarily 

allowed; ii) a Tabu search embedded in a VNS makes use of local search neighbourhoods to 

improve the solutions. The algorithm improved the resulting values for the FSM-F-TW by an 

additional 2% when compared to Dell'Amico et al. (2007).  

 

Bräysy et al. (2008) studied the FSM-F-TW with the objective function proposed by Liu and 

Shen (1999a), and an additional objective function based on route duration. The proposed 

solution method is based on the construction of an initial solution, minimisation of routes by 

selecting a complete route for elimination and attempts to insert its customers in the remaining 

routes, with simple insertion heuristics trying to improve the total cost reduction, and local 

search with a deterministic annealing framework to guide the search. The algorithm obtained an 

additional 1.6% reduction when compared to Paraskevopoulos et al. (2008). Bräysy et al. 

(2009) introduced new instances based on Gehring and Homberger (1999) for instances up to 

1000 customers, and their search procedure made use of a threshold acceptance value (where 

solution deterioration is accepted until a certain threshold value in order to escape from local 

optima) and guided local search (introduction of penalisation in the objective function of certain 

solution features that are not considered in near-optimal solutions). 
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Koç et al. (2014a) studied the FSM-F-TW and the heterogeneous VRP with dependent fixed 

costs with time windows (HVRP-F-TW), making use of a hybrid evolutionary algorithm and 

finding improved results of 0.34% over the work of Paraskevopoulos et al. (2008) for the HVRP-

F-TW. Jiang et al. (2014) presented a Tabu search for the FSM-F-TW and introduced instances 

for the HVRP-FD-TW based on Solomon’s instances (dependent capacity, dependent fixed 

cost, dependent variable cost and dependent returning time to the depot) (see Table 12). The 

objective function is based on costs and distance.  

 
Table 12. Benchmark instances for the HVRP-FD-TW (100 customers) - Jiang et al. (2014). 

Proble
m 

class 

Vehicle characteristics 

Vehicl
e 

type 

Availabl
e 

vehicles 
Capacit
y Fixed Cost Variable cost Last Returning time 

R1 

A 10 50 80 1.0 180 

B 15 80 140 1.2 200 

C 10 120 250 1.4 230 

       

R2 
A 10 300 45 1.0 800 

B 5 400 70 1.2 1000 

       

C1 
A 20 100 30 1.0 1000 

B 5 200 80 1.2 1236 

       

C2 
A 20 400 100 1.0 3000 

B 5 500 140 1.2 3390 

       

RC1 

A 10 40 60 1.0 200 

B 20 80 150 1.2 220 

C 10 150 300 1.4 240 

       

RC2 
A 10 100 150 1.0 900 

B 5 200 350 1.2 960 
                                                      Source: Jiang et al. (2014) 
 
Dullaert et al. (2002) presented a set of sequential heuristics for the FSM-F-TW and introduced 

a discussion about variable running costs in the industry. According to the authors, distance and 

time should be considered with their corresponding cost coefficients when scheduling vehicles 

in the freight industry in order to calculate the routing costs rather than using an objective 

function distance as in the theoretical VRPTW (see Table 13).  
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                  Table 13. Representative routing costs in the industry, values in Euros for 1999. 
 

Vehicle type 
Fixed 
cost 

Hour 
coefficient 

Kilometre 
coefficient 

Van 0.5 t 144.27 0.27 0.1 

Lorry 5 t 154.26 0.29 0.15 

Lorry 8 t 162.54 0.3 0.17 

Lorry 20 t 187.92 0.35 0.21 

Truck and trailer 28 t 195.75 0.36 0.24 
Source: Dullaert et al. (2002) 

 
Recently, Koç et al. (2014b) proposed the fleet size and mix pollution-routing problem with time 

windows, where a number of vehicle types are available and the main objective is the reduction 

of vehicle fixed costs (depreciation, repair and maintenance, tyres, etc.) and routing cost based 

on travel time (wages) and fuel cost (distance, optimisation of speed across the links and CO2 

emissions). Fuel consumption is estimated with the model of Barth et al. (2005) and Barth and 

Boriboonsomsin (2009), vehicle dependent parameters are shown in Table 14, and vehicle 

constant parameters are shown in Table 15. The instances are an extension of the instances 

proposed by Demir et al. (2012) for the homogeneous mix polluting problem with time windows 

for up to 200 nodes. The solution procedure is a hybrid heuristic with the principles of an 

evolutionary algorithm (Koç et al., 2014a), adaptive large neighbourhood search, the Split 

algorithm for heterogeneous VRP (Prins, 2009) and a Speed Optimisation Algorithm (SOA) 

(Hvattum et al., 2013; Norstad et al., 2011). 

 
Table 14. Dependent parameters according to vehicle type for estimation of fuel consumption 

and other costs. 

        

Notation  Description Light duty (L)  Medium duty (M)   Heavy duty (H) 

wh Curb weight (kg) 3500 55000 14000 

Qh Maximum payload (kg) 4000 12500 26000 

𝑓ℎ Vehicle fixed cost (£/day) 42 60 95 

kh Engine friction factor (kj/rev/liter) 0.25 0.2 0.15 

Nh Engine speed (rev/s) 38.34 36.67 30 

Vh Engine displacement (liter) 4.5 6.9 10.5 

𝐶𝑑
ℎ Coefficient of aerodynamics drag  0.6 0.7 0.9 

Ah Frontal surface area (m2)  7 8 10 

Source: Koç et al. (2014b) 
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Table 15. Fixed parameters for estimation of fuel consumption and other costs. 
 
___________________________________________________________________________ 

Notation Description                                                                          Typical values 

ξ* Fuel-to-air mass ratio 1 

g Gravitational constant (m/s2) 9.81 

ρ Air density (kg/m3) 1.2041 

𝐶𝑟 Coefficient of rolling resistance 0.01 

η Efficiency parameter for diesel engines 0.45 

𝑓𝑐 Fuel and CO2 emissions cost (£/liter) 1.4 

𝑓𝑑 Driver wage (£/s) 0.0022 

κ Heating value of a typical diesel fuel (kj/g) 44 

ψ Conversion factor (g/s to L/s) 737 

𝑛𝑡𝑓 Vehicle drive train efficiency 0.45 

ʋ𝑙 Lower speed limit (m/s)  5.5 (or 20 km/h) 

ʋ𝑢 Upper speed limit (m/s)  27.8 (or 100 km/h) 

      ɵ Road angle 0 0 

τ Acceleration (m/s2) 0 0 
* Refers to the relative fuel-air ratio of fuel and air that enter into the engine (𝐹𝐴𝑅stoichiometric)  
 

𝐹𝐴𝑅stoichiometric =
𝑓𝑢𝑒𝑙 𝑡𝑜 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 

𝑓𝑢𝑒𝑙 𝑡𝑜 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟 𝑟𝑎𝑡𝑖𝑜stoichiometric  
=  

𝑛𝑓𝑢𝑒𝑙/𝑛𝑜𝑥

 𝑛𝑓𝑢𝑒𝑙/𝑛𝑜𝑥 stoichiometric

 

                                                           𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 
 

See El-Mahallawy & Habik (2002) 

 
Source: Koç et al. (2014b) 

 

The conclusions drawn by Koç et al. (2014b) from analysing the results for 100 nodes 

suggested that the main reduction might be achieved with vehicle type selection by finding the 

most appropriate fleet composition. By selecting only light duty vehicles the average cost in the 

test instances increased by 19.88% on average, and 24.9% when only heavy duty vehicles 

were used. Regarding the optimisation of the vehicle travel speed, by allowing vehicles to travel 

at maximum speed (100 km/h), there is a small cost increment when compared to optimising the 

travel speed in each arc, and the authors concluded that in real life operations it might be easier 

to allow vehicles to travel at the maximum speed due to the small benefit of travel speed 

optimisation. Figure 12 shows the relation between fuel consumption and average speed using 

a simplified model to estimate fuel consumption provided by the UK Department of Transport 

(DFT, 2014), which uses as parameters the type of vehicle and average travel speed. 
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Figure 12. Typical Fuel consumption for a Diesel LGV vs. average speed with constant weight. 

Source: DFT (2014) 
 
An industry application for VRP variants with heterogeneous fleets and time windows with only 

dependent physical characteristics (capacity, weigh, access restriction) is presented by  Rochat 

and Semet (1994) and Brandão and Mercer (1997), where the analysis of the solution is based 

on comparison of manual schedules versus the results of the proposed algorithm. Although the 

new solutions do not always represent a reduction in the required number of vehicles or costs, 

which may be up to 24% in certain scenarios, the software is capable of dealing with multiple 

restrictions in a better way than manual scheduling by offering solutions that comply with weight 

restrictions, access restrictions and rules on drivers’ hours.   

 

Routing vehicles with multiple restrictions is a complex activity that can be improved by 

software. Companies commonly have heterogeneous fleets to cope with multiple restrictions in 

real life so VRP models for fleets with heterogeneous vehicles with time windows have attracted 

attention recently from researchers. Although the metaheuristics are available, it is required to 

propose more research with adequate benchmark instances for richer instances that consider 

the multiple restraints found in logistic operations (Hoff et al., 2010).  

 
3.3.2. Rules on Drivers’ hours 

New restrictions dealing with Rules on Drivers’ hours in the VRP have attracted attention in 

order to mitigate their economic cost in transport operations (Kok et al., 2010a; Kok et al., 

2010c; Xu et al., 2003). Driver schedules must be considered and modelling the complete set of 

restrictions into solution algorithms has imposed new challenges for modellers (Kok et al., 

2010c).  
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Goel (2009) proposed an algorithm to accommodate regulation (EC) 561/2006 (Rules on 

Drivers’ hours for member states of the European Union for vehicles over 3.5 ton) that 

considers a sub-set of rules that are strict enough to ensure the feasibility of the routes when all 

regulations are taken into account in long-haul operations (Prescott-Gagnon et al., 2010). A set 

of benchmarking instances based on Solomon (1987) were introduced. The primary objective is 

the minimisation of vehicles and the secondary objective is the minimisation of travel distance. 

The algorithm is based on LNS with a ruin procedure based on random removals and an 

auction method (Antes and Derigs, 1995) for recreation that involves random elements in the 

insertion procedure. 

 

Kok et al. (2010c) designed an algorithm for the VRP variant proposed by Goel (2009), and the 

solution algorithm was based on a restricted Dynamic Programming (DP) algorithm (Gromicho 

et al., 2008) with a giant tour representation. DP provided improved results (17% fewer vehicles 

and a travel distance reduction of 5%). Prescott-Gagnon et al. (2010) also studied this variant 

and obtained a further improvement (an additional reduction in the number of vehicles by 17% 

and travel distance by 12%) with an LNS tailoring that made use of a column generation 

heuristic for neighbourhood exploration. The work of Goel and Vidal (2014) has showed 

promising results by providing a hybrid genetic search capable of coping with driving time 

regulation for different countries (e.g., United States, Canada, the European Union and 

Australia) and outperform previous implementations for  constant-speed VRP variants.  

  

Although urban and regional freight operations should also comply with regulation (EC) 

561/2006, accommodating the restrictions specially designed for long-haul operation such as 

daily and weekly rest periods may be easily introduced in the planning horizons of one day 

(routing for the next day), as opposed to long-haul operations, where overnight parking and 

journeys of more than one day may be considered. However, urban environments are subject to 

congestion (speed varies according to the time of the day), and providing reliable schedules that 

comply with the regulations is in the interest of the industry in order to accommodate the 

regulations at the minimum possible cost. Therefore Kok et al. (2010b) proposed a rich VRP 

variant that considers time-dependent travel times and a sub-set of rules of the regulation (EC) 

561/2006 applicable in urban or regional operations. No other research was found in the 

literature studying this variant.  

 

3.3.3. Time-Dependent travel times in the Vehicle Routing Problem 

VRP variants have assumed constant speed throughout the day; the time-dependent Vehicle 

Routing Problem (TDVRP) addresses travel time variations during periods of delivery in order to 

represent congestion (Kok et al., 2012; Malandraki and Daskin, 1992). Congestion is present 

due to the growing amount of traffic and limited capacity of the road infrastructure, and delays 

have impacted the logistic sector, so that models that avoid traffic have a large potential to 

mitigate the impact of congestion (Kok et al., 2012). Analysis of VRP models with time-

dependent travel times versus models with constant speed depicts the impact of not considering 
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congestion on routing decisions when speed varies during deliveries. Solution of constant 

speed models might underestimate the actual travel time, provide infeasible solutions and fail to 

comply with delivery times (Donati et al., 2008; Fleischmann et al., 2004; Ichoua et al., 2003). 

The instances proposed by Solomon (1987) are commonly used to evaluate solution algorithms 

for the  VRPTW and a vast range of approaches is available with results near to optimality in 

little computational time (Bräysy and Gendreau, 2005a; Bräysy and Gendreau, 2005b; Toth and 

Vigo, 2001; Vidal et al., 2013). Although Donati et al. (2008) and Fleischmann et al. (2004) used 

variations of this set of instances to evaluate algorithms for the TDVRPTW, only Figliozzi (2012) 

provides the complete information to fully reproduce instances when speed variation is present. 

These instances consist of an extension of Solomon’s instances with 12 different congestion 

patterns. Figliozzi (2012) proposed an insertion heuristic to construct an initial feasible solution 

and a Ruin and Recreate heuristic algorithm to improve the results. Benchmarking for accuracy 

is performed with the available best-known values for the VRPTW and executing the proposed 

algorithm for the TDVRP with constant speed data. The VRPTW commonly has two objective 

functions: firstly the number of vehicles is minimised, secondly the distance is reduced. The 

results of Figliozzi’s (2012) approach provide 4.2% more vehicles and an 8.61% greater 

distance than the best-known values. Additional speed profiles are provided in order to analyse 

the impact of congestion patterns on the results. Evaluation of Figliozzi’s (2012) approach with 

constant speed shows that there is still room for improvement and an algorithm capable of 

improving this special case of the TDVRPTW might provide better solutions in all the proposed 

instances. Kok et al. (2010b) introduced a variant with time-dependent travel times and a subset 

of the European driving time regulation applicable in urban or regional operations that might 

consider planning only one day ahead, where the proposed benchmark instances are an 

extension of Figliozzi (2008). 

 

The relations between time-dependent travel times, fuel consumption and CO2 emissions have 

recently been of interest to researchers. Maden et al. (2010) compared the scheduling of 

vehicles with and without considering time-dependent travel times for a sample fleet in the south 

of the UK, obtaining a reduction of 7% of CO2 emissions by considering travel time dependency. 

Jabali et al. (2012) considered the fuel consumption, driver and CO2 costs as well as CO2 

emissions for modified theoretical instances for the VRP without time windows in different 

scenarios. Speed was restricted in order to save fuel for lorries of 32-42 tons, and it was found 

that restraining the speed in free flow from 90 to 85 km/h might reduce the fuel consumption 

without significantly compromising the driver cost.   
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Franceschetti et al. (2013) proposed the time-dependent pollution-routing problem with time 

windows with an integer programming solution method. Fuel consumption is estimated with the 

model of Barth et al. (2005) and Barth and Boriboonsomsin (2009). In this variant, the departure 

times from the depot and from customers are optimised as well as speeds across the arcs that 

make-up the route. The test instances are an extension of the instances proposed by Demir et 

al. (2012) in the cases of 10, 15 and 20 nodes, where the speed intervals are restricted to two 

periods (congested and free flow). The authors identify a number of conditions in which it is 

optimal to wait at the end of the service according to different driver wage policies: (i) the driver 

of each vehicle is paid from the beginning of the time horizon until returning to the depot, or (ii) 

the driver is paid only for the time spent away from the depot, excluding waiting times at 

customers (either en-route or performing the delivery). Although the proposed method 

outperforms previous mathematical solutions, this research only considers two time intervals 

and further research is required to handle larger problems with more time intervals, due to the 

restrictions of the proposed mathematical solution approach.  

 

A comprehensive recent review of VRP variants that consider fuel optimisations with constant 

and variable speeds is presented by Eglese and Bektas (2014). The work of Qian (2012) is 

mentioned, where a time-dependent VRP variant aims to minimise fuel consumption by 

optimising speeds in each segment of fixed sequences that conform the schedules but the 

proposed algorithm (dynamic programming algorithm and heuristics solutions) establish the 

route between customers. Results in a data set of Bristol suggest that average emissions 

savings might be 6-7% but at the expense of increasing trip time by 9-10%.  

 

The model reliability might be improved if time dependency is included when congestion is 

present (Kok et al., 2010b). It is worth mentioning the work of Maden et al. (2010), in which an 

algorithm was designed for a distribution system of electronic goods that considered time-

dependent travel times, a sub-set of Rules on Drivers’ hours, and time windows (though the 

company did not offer time windows). Analysis of routing strategies revealed that planning 

without considering congestion led to an additional 57 min per vehicle when evaluating the initial 

constant-speed schedules in a congested environment, and model restrictions were violated. A 

managerial solution to tackle congestion could be to reduce by 20% the speed when planning 

the routes in order to produce routes that do not violate restrictions. However, by using the 

proposed algorithm with the available traffic data, vehicle schedules had 6% less route duration 

and 7% less CO2 than when routing with a reduced constant speed.  
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3.3.4. Unified algorithms 

Unified algorithms  to solve  multiple VRP variants have been proposed (Pisinger and Ropke, 

2007, Vidal et al., 2014), and a successful approach is shown by Pisinger and Ropke (2007) for 

the capacitated VRP, VRP with time windows, multi-depot VRP, site-dependent VRP and open 

VRP. Each variation is transformed into a rich pickup and delivery model with time windows and 

the solution algorithm applies an Adaptive Large Neighbourhood Search heuristic (ALNS). The 

authors reported improved results   for some variants when compared to best-known values 

provided by state-of-the-art algorithms, see Table 16.  

 

ALNS is an extension of the Large Neighbourhood Search, where the procedures used to 

remove and reconstruct solutions in the search process are chosen from an adaptive 

mechanism that evaluates performance procedures and favours those that have achieved 

higher improvements (Ropke and Pisinger, 2006). Heuristics based on LNS have shown 

outstanding results in solving a number of transportation and scheduling problems of a tightly 

constrained nature (such as the problem imposed by the use of time windows) (Pisinger and 

Ropke, 2010). Additionally, LNS stands out in terms of simplicity and wider applicability for 

complex VRP variants (Vidal et al., 2013). 

 

A very promising approach to solve a number of VRP variants for a large range of logistic 

configurations is shown by Vidal et al. (2014). In 1045 out of 1099 tested instances the best-

known value was retrieved or improved, with a hybrid genetic search addressing attributes by 

means of assignment (e.g., customers to depots or days), sequencing (neighbourhood 

structures) and route-evaluation (e.g., time-dependent travel times, driving time regulation).  
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3.4. Discussion of the chapter 

Research in metaheuristic algorithms has proved to offer efficient solutions for some VRP 

variants, and state-of-the-art algorithms make use of different approaches to provide high 

accuracy in a reasonable time. However, although replicability is considered a requirement in 

scientific literature, much of the research conducted in VRP variants lacks enough replicability 

and adequate solution evaluation with the available instances in order to provide solutions for 

the industry (Cordeau et al., 2002; Drexl, 2012; Figliozzi, 2012).  

 

New elements may be considered if truly innovative solutions need to be designed for the 

industry. Analysis of vehicle scheduling that considers fleets with heterogeneous vehicles 

shows some of these new elements, such as Rules on Drivers’ hours (vehicles over 3.5 ton 

have to consider the regulation) and fuel consumption according to the type of vehicle and 

speed on the road. This last item not only affects the cost structure but also has an 

environmental impact. Vehicle planning may mitigate the financial cost of accommodating the 

regulation and the environmental repercussions of the freight transport. Additionally, when 

working in congested environments (e.g., cities), not considering congestion leads to inaccurate 

schedules due to underestimation of the travel time, and consequently vehicles will require 

more time than planned. All the effort to optimise the problem may be lost and solutions may not 

comply with the promise of service (time windows), regulation and other specific restraints of the 

business model (e.g., drivers’ working day, latest time to return to the depot, etc.).  

 

An example of the importance of adequate algorithm research based on the analysis of results 

with the available test instances is the VRP variant that considers Rules on Drivers’ hours. After 

its first formal formulation along with benchmark instances, improved algorithms in the following 

year obtained reductions in the number of vehicles of 34% and reduction in travel distance of 

17%. Some implementations may be highly inaccurate when dealing with rich variants, 

therefore two issues must be considered: i) tailoring solution methods for VRP variants is a 

complex activity that may yield low accuracy when using non-exact algorithms (heuristics and 

metaheuristics); ii) research in algorithms that do not provide benchmark instances or make use 

of them to test results cannot guarantee accuracy and the industry must be careful about their 

implementation.  
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From the review on industry needs and the state-of-the-art in solution techniques, it is clear that 

improvements in current algorithms are needed to account for (1) time-dependent travel times 

to provide accurate schedules in congested environments and (2) Rules on Drivers’ hours to 

provide vehicle schedules that comply with the regulation (most goods vehicles over 3.5 ton in 

the European Union are subject to this regulation). In the case of the TDVRPTW, Figliozzi 

(2012) proposed the first set of replicable instances; however, its solution approach still leaves 

room for improvement when comparing best-known values versus the reported solution in the 

constant speed case. Furthermore, research in time-dependent travel time and Rules on 

Drivers’ hours in the planning horizons of one day (e.g., the urban case) with benchmark 

instances has been proposed by Kok et al. (2010b), but the accuracy of the solution has not 

been analysed. Research on this topic may help the industry to mitigate the impact of 

congestion and regulation. 

 

There is a range of solution methods from the Operational Research discipline, where some 

concepts have been identified as promising due to their simplicity and capability to 

accommodate multiple restraints such as Large Neighbourhood Search. In the following 

chapters some of these methods will be tailored and tested with the available benchmark 

instances for some of the most relevant variants identified in this research. The remaining parts 

of this research will therefore develop improved algorithms for rich models based on industry 

requirements for i) the TDVRPTW, and ii) the TDVRPTW and Rules on Drivers’ hours. 

 

To sum up 

Although the main CVRS vendors offer the capability of routing that considers congestion, the 

surveyed companies stated that further development was required. The literature review shows 

that exact algorithms for VRP variants are not viable in rich industry applications and 

metaheuristic algorithms are capable of providing solutions for the industry. However, 

metaheuristics do not guarantee the optimality and accuracy of new algorithms that deal with 

rich variants and therefore have to be tested with the available benchmark instances. Only 

recently have benchmark instances been proposed for the Vehicle Routing Problem with time 

windows and time-dependent travel times, and a more complex variant that also considers 

Rules on Drivers’ hours.  

 

A reported issue in metaheuristic implementations is the flexibility of the algorithm (the grade of 

the algorithm to accommodate different constraints without decreasing solution accuracy). 

Although in chapter 2 surveyed companies stated that transportation costs have increased at a 

certain extent due to regulation, and to a lesser extent due to Rules on Drivers’ hours (see 

figure 6), there is the need of providing reliable schedules that consider travel time variability 

originated by congestion  along with complying with regulation. Available algorithms might 

decrease accuracy and produce poor solutions when considering these restrictions; therefore, 

the importance of understanding the capability of current theory to solve the related variants and 

to provide efficient algorithms if necessary. 
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Although there is a range of innovative approaches such as variants that reduce emissions to 

make transport operations more environmentally friendly, the industry is interested in accurate 

models that consider time-dependent travel times, comply with regulation and are capable to 

reduce transport costs. The literature review shows that literature that provides high accuracy 

for time-dependent variants is still scarce; therefore this research will focus in these issues, 

where future research might incorporate additional complexities. 
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Chapter  4 

 
A metaheuristic approach for the Time-
Dependent Vehicle Routing Problem with 
Time Windows 
 
The time-dependent Vehicle Routing Problem with hard time windows (TDVRPTW) is the 

variant where travel time between locations depends on the time of the day with a strict (non-

negotiable) time window for the delivery being initially established by the customer (Figliozzi, 

2012, Malandraki and Daskin, 1992). The primary objective is to reduce the number of vehicles 

required to complete the schedule whilst minimising travel distance and travel time (Figliozzi, 

2012). 

 

Variants of the Vehicle Routing Problem (VRP) are NP-Hard and metaheuristic algorithms have 

been developed to solve the problem with trials suggesting significant improvement in 

performance over current schedules. Some implementations have achieved high accuracy 

(difference between best-known values and results of the particular algorithm for available test 

instances) with execution times that allow logistics  planners to realistically use the approach as 

part of their everyday operations (Cordeau et al., 2002, Drexl, 2012).  

 

In an industry where the profit margin can be as low as 3% (FTA, 2015),  logistics companies 

have recognized the importance of utilising time-dependent VRP variants  to support planning  

and there is a need to further investigate the capabilities of current time-dependent algorithms 

to deliver improved performance across a variety of operational and traffic settings.  

 

Time-dependent models create new complexities for algorithm design related to tailoring 

existing search strategies designed specifically for constant-speed models.  Common local 

search procedures require significant modification as alterations within a route as part of the 

search process could potentially affect the feasibility of the rest of the route. This might alter the 

departure times of subsequent visits to customers and consequently modify travel times. Route 

evaluation is considerably more computationally expensive with time-dependent travel times 

(Harwood et al, 2013) and accommodating hard time constraints for time windows also requires 

more computational resources than soft constraints where solutions with violations of time 

windows are allowed  (Figliozzi, 2012). Recent work has been done to reduce the computational 

processing cost of the evaluation of the well-known operator 2 opt for a variation of the Time-

dependent travelling salesman problem with no time windows (a schedule with one vehicle). By 
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producing quick estimations of movement evaluation, computational time was reduced up to 

80%. However, it requires further development to cope with the large number of search 

procedures that require the optimization of a TDVRPTW  (Harwood et al, 2013). 

 

Large Neighborhood Search (LNS) is a search strategy that stands out in the range of concepts 

among state-of-the-art algorithms to solve vehicle routing models due to its simplicity and wider 

applicability and it has been extended to successfully address various variants (Vidal et al., 

2013). In this chapter, a LNS algorithm is tailored to solve the complexities involved in the 

TDVRPTW with results compared against available test instances in order to understand its 

capabilities. 

 

4.1. Previous work 

Recent research in time-dependent VRP variants including introduction of benchmark instances 

is mentioned in the previous chapter. However, in this subsection solution techniques and 

issues regarding modelling traffic patterns are reviewed.  

 

The first formal formulation of the Time-Dependent VRP was presented by Malandraki (1989) 

and Malandraki and Daskin (1992), a fleet of vehicles with limited capacity has to visit a number 

of customers with fixed demands and total travelled time has to be minimised, travel time 

between customers depends on distance and time of day, a single depot exists, vehicles must 

depart and return to the depot after finishing the delivery tour, no split deliveries are allowed and 

service time windows might be present. Two different solution approaches were proposed for 

instances up to 25 customers generated randomly without time windows, a set of greedy 

heuristic algorithms and a cutting-plane algorithm. Although the cutting-plane algorithm was 

more expensive computationally and was able to solve to optimality only small instances, it 

showed incumbent solutions with lower travelled time in 2/3 of the tested problems with 10 or 

more customers than the heuristic approach.   

 

The TDVRP formulation of  Malandraki and Daskin (1992)  was based on a travel time step 

function where each period of time has a specific travel time between nodes, which leads to an 

unrealistic assumption, a vehicle with a later departure time might arrive earlier than a vehicle 

with an earlier departure time across the same link, as it is point out by Ichoua et al. (2003). 

Later work on the TDVRP has implemented travel time functions that respect the FIFO property 

“first-in-first-out” based on a continuous function (Figliozzi, 2012, Donati et al., 2008, 

Fleischmann et al., 2004). Figure 13 shows the difference between Malandraki’s step travel time 

function and Figliozzi’s continuous travel time function for 5 periods of time in a day (Figliozzi, 

2012). 
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a. Step function                                      b. Continuous function 

 
a. (Malandraki and Daskin, 1992) 
b. (Figliozzi, 2012)  

Figure 13. Different Travel Time functions for constant distance with variable speed. 
 
 

Work on different TDVRP models has been carried out, Ichoua et al. (2003) studied the TDVRP 

with soft time windows, where violation of the required service time was permitted but with a 

resulting penalty in the objective function. The number of routes was  fixed and vehicle capacity 

was not taken into consideration. The objective function was to minimise travel time and 

penalties incurred due to service time window violations. The solution approach was based on a 

Tabu Search metaheuristic algorithm, when the schedules created with  constant-speed models 

are analysed under an scenario with time-dependent travel times (variable speed due to 

congestion), actual travel times are greater than planned travel times and it generates violation 

of time windows. Fleischmann et al. (2004) presented the TDVRP with and without time 

windows using  scenarios based on real congestion patterns from a traffic information system in 

Berlin. The solution approach used different heuristic algorithms and local search techniques 

with the results suggesting that using constant-speed models might generate underestimates of 

travel time of 10%.   

 

Donati et al. (2008) implemented an ant colony metaheuristic algorithm for TDVRP variants on 

two sets of instances, the first set is the time-dependent Vehicle Routing Problem with time 

windows (TDVRPTW) with Solomon’s instances using two different speed profiles: a) constant 

speed in order to compare the special case of the TDVRPTW that is equal to the VRPTW b) 

speeds assigned randomly.  A second set of instances for the TDVRP without time windows 

using the road network of Padua with data from a traffic information system is used in order to 

compare the results of using constant speed models in congested roads, travel time 

underestimation ranges from 5.23% up to 11.98%. 

 

An exact algorithm for the TDVRPTW is presented by (Dabia et al., 2013) using a modified set 

of the commonly known instances of Solomon (1987) for the VRPTW for up to 100 customers, 

links between nodes get different speed profiles which were assigned randomly, solution 

approach is based  on a pricing algorithm with column generation and a labelling algorithm, 

63% of the 25 customer instances were solved, 38% of the 50 customer  and 15% of the 100 
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customer. However, details about the categorization of links are not provided in order to be able 

to reproduce the instances. 

 

For the TDVRPTW Figliozzi (2012) proposed an insertion heuristic (IRCI) to construct an initial 

feasible solution and a ‘ruin-and-recreate’ heuristic algorithm to improve the results (IRCI-R&R).  

Benchmarking for accuracy was performed with available best-known values for the VRPTW 

and executing the proposed algorithm for the TDVRPTW with constant-speed profiles. The 

VRPTW commonly has 2 objective functions, to minimise the number of vehicles and their travel 

distance. Results of Figliozzi (2012) approach suggested a 4.2% increase in vehicles required 

leading to an 8.6% increase in overall travel distance compared to the best-known values 

returned by the constant-speed case. Additional speed profiles are provided in order to analyse 

the impact of congestion patterns in results.  

 

In some of the time-dependent variants the number of vehicles are fixed and optimisation is only 

based on travel time reduction across the fleet. However, finding the minimum number of 

vehicles required in the presence of hard time windows is in itself a complex problem, more 

computationally expensive with time-dependent travel times. Additionally, most current efficient 

methods for the VRP variants are intricate and difficult to reproduce (Vidal et al., 2013). 

Furthermore, some metaheuristic implementations have been tailored to work well in specific 

test instances by tuning parameters so specifically as considering the best random seed that 

provides high accuracy (Sörensen, 2015). 

 

There is clearly therefore a need for general and simple methods applicable to practical 

applications required by the industry (Vidal et al., 2013), such as effective algorithms that 

consider congestion and provide reliable schedules.  However, the capability of current 

algorithms to provide high accurate solutions for time-dependent VRP variants is still not well 

understood due to the lack of adequate algorithm evaluation with previously proposed 

instances. 

 

4.2. Problem definition 

 Deliveries are requested by 𝑛 customers 

 let 𝐺= (𝑉, 𝐴) be a graph where vertex 𝑉 = ( 𝑣0,  𝑣1, … , 𝑣𝑛), 𝑣0 is the depot and 𝑣1, … , 𝑣𝑛 the 

set of customers. Each element of 𝑉 has an associated demand 𝑞𝑖 ≥ 0 (which must be 

fulfilled), a service time 𝑔𝑖 ≥ 0 and a service time window [𝑒𝑖 , 𝑙𝑖]. Note that 0 = 𝑞0 = 𝑔0 

 An undetermined number of identical vehicles each with maximum capacity 𝑞𝑚𝑎𝑥 are 

available and stationed at 𝑣0. Vehicles must depart from and return to the depot 𝑣0 at the 

end of the delivery tour and their maximum capacities cannot be exceeded 

 The departure time of any given vehicle from 𝑣𝑖 is denoted 𝑏𝑖, its arrival time 𝑎𝑖 

 Arrival time to customer 𝑣𝑖 must be before 𝑙𝑖. If arrival time is before 𝑒𝑖, the vehicle has to 

wait until 𝑒𝑖. Each customer can only be visited once 
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 Let 𝐴 be the set of arcs between elements of 𝑉, having constant distance 𝑑𝑖𝑗 between 𝑣𝑖 

and 𝑣𝑗 

 For each arc (i,j) ∈ 𝐴 there exists a travel time 𝑡𝑖𝑗(𝑏𝑖) ≥ 0 a function of departure time 𝑏𝑖, 

(e.g. of a form as proposed by Ichoua, Gendreau and Potvin (Ichoua et al., 2003) see 

Algorithm 3). 

 

The primary objective is to minimise the number of vehicles and the second objective might be 

either minimisation of travel distance or travel time. In the research proposed by Figliozzi (2012) 

the second objective is the sum of travel distance and travel time. 

 

Travel time function 𝑡𝑖𝑗(𝑏𝑖) proposed by Ichoua et al. (2003) to account for FIFO restriction,  

using notation of Figliozzi (2012), is presented as follows, note that travel time depends of 

departure time from customer 𝑣𝑖 : 

 
𝑣𝑖 : customer i     𝑎𝑖 : arrival time at 𝑣𝑖    𝑏𝑖 : departure time from 𝑣𝑖     𝑑𝑖𝑗 : distance between 𝑣𝑖 and 𝑣𝑗  

𝑒𝑖 : greatest lower bound of the time window for 𝑣𝑖       𝑔𝑖 : service time (length of the requested service) for 𝑣𝑖  

𝕤𝑘 : associated constant travel speed of 𝑇𝑘        𝑡𝑘: greatest lower bound of 𝑇𝑘     tk̅: lowest upper bound of 𝑇𝑘 

 
4.3. Solution procedure 

As previously mentioned in the literature review, there is a range of available operators for 

neighbourhood exploration and techniques to speed up the search process when solving VRP 

variants. However, for time-dependent VRP variants, little research is available and analysis of 

different approaches has not been yet properly addressed. In this research, different techniques 

were tested to reduce the required number of vehicles and travelled distance/time.  

 

 

__________________________________________________________________________________ 

Algorithm 3: Travel time function 
__________________________________________________________________________________       
Input Data: 𝑏𝑖  ;   𝑇= 𝑇1 , 𝑇2,…, 𝑇𝑝  where each period 𝑇𝑘   has an associated constant travel speed 𝕤𝑘 ,  

           an initial time 𝑡𝑘  and  a final time tk̅  

     Start 
1.  if 𝑎𝑖  < 𝑒𝑖  then 
2.      𝑏𝑖  ← 𝑒𝑖  + 𝑔𝑖  
3. else 
4.       𝑏𝑖  ← 𝑎𝑖  + 𝑔𝑖  
5. endif 
6. find 𝑘 where 𝑡𝑘  ≤ 𝑏𝑖  ≤ tk̅  

7. 𝑎𝑖  ← 𝑏𝑖+𝑑𝑖𝑗 /𝕤𝑘  

8. 𝑑 ← 𝑑𝑖𝑗 , 𝑡 ← 𝑏𝑖  

9. while 𝑎𝑗  > tk̅  do 

10.       𝑑 ← 𝑑 – (tk̅  –𝑡) 𝕤𝑘  

11.       𝑡  ← tk̅  

12.       𝑎𝑗  ← 𝑡 + 𝑑𝑖𝑗 /𝕤𝑘+1 

13.       𝑘 ← 𝑘 + 1 
14. end while 
Return: 𝑎𝑗  

      End 
__________________________________________________________________________________ 
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The first approach was to work always in a feasible search space and try to reduce the number 

of vehicles with ejection chains; however high accuracy was obtained in several minutes. Another 

approach was to employ elements of genetic algorithms to create a set of parents; this approach 

was too demanding in terms of computational processing time in order to reconstruct feasible 

solutions. Additionally, genes that were feasible in certain periods of time became infeasible when 

inserted in a different time slot due to the characteristics of time-dependent models.   

 

After initial testing, it was decided to use an algorithm that started with a feasible solution created 

by a fast heuristic that offered some degree of accuracy and employ a metaheuristic approach to 

improve the solution. The major breakthrough was to use neighbourhood structures present in 

LNS. Although Figliozzi (2012) proposed an algorithm based on the Ruin and Recreate concept 

(similar to LNS), exploration is based on a fast heuristic called IRCI, rather than the procedures 

proposed by Schrimpf et al. (2000) Ropke and Pisinger (2006), Pisinger and Ropke (2007), 

Mattos Ribeiro and Laporte (2012) to solve constant speed VRP variants with LNS. 

 

Further algorithm tailoring to LNS movements was required in order to produce schedules with 

reduced number of vehicles in reasonable time. The search space is extended to manage 

violation of time windows where the proposed tailoring identifies particularly difficult customers to 

accommodate in schedules with reduced number of vehicles, and guide the neighbourhood 

exploration towards new regions that are able to accommodate those customers. 

 

Additionally, an analysis of neighbourhood structures is presented at the end of this chapter in 

order to understand the capabilities of LNS versus well-known movements (such as 2-opt and 2-

opt*) when exploring the search space in time-dependent VRP variants.  

 

4.3.1. Algorithm Background 

 

Large Neighbourhood Search 

LNS is an algorithm for neighbourhood exploration introduced by Shaw (1997) utilising a very 

similar concept to the ‘ruin-and-recreate’ algorithm introduced by Schrimpf et al. (2000) (Ropke 

and Pisinger, 2006, Shaw, 1998). A number of partial-destruction procedures are used to remove 

customers from the solution and a different set of reconstruction procedures are used to create a 

new solution by inserting removed customers in a smart way, see Figure 14. 
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Figure 14. Large Neighbourhood Search movement. 

 
Schrimpf et al. (2000) proposed some basic procedures for the VRPTW that were extended by 

Ropke and Pisinger (2006), Pisinger and Ropke (2007), and Mattos Ribeiro and Laporte (2012) 

for VRP variants, some are presented below: 

 

Destruction  procedures 

 Random-Ruin: Randomly select and remove  𝑤 customers from all customers in the 

solution. 

 Radial-Ruin: Randomly select a customer 𝑣𝑖. Remove 𝑣𝑖 and 𝑤 -1 closest customers to 

𝑣𝑖. 

 Sequential-Ruin: Select a random route 𝑘 (vehicle 𝑘) and select a random customer 𝑣𝑖 

in 𝑘. Remove a chain of consecutive customers of length 𝑤 in 𝑘 starting with 𝑣𝑖. 

 Worst-removal: Remove the customers that have the most negative impact according to 

a function removal-cost(𝑣𝑖). 

 

Recreation procedure 

 Basic-greedy heuristic: Given the list of removed customers 𝑈, calculate an insertion-

cost(𝑣𝑖 , 𝑘, 𝑝) for all 𝑣𝑖∈ 𝑈 in all possible routes and positions when 𝑣𝑖 is inserted in route 

𝑘 in position 𝑝, and insert 𝑣𝑖 with the lowest insertion-cost(𝑣𝑖 , 𝑘, 𝑝) in the solution. 

Repeat the procedure until all 𝑣𝑖∈ 𝑈 are inserted or no feasible insertion exists.  
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One characteristic of the LNS for VRP variants is that the request bank is an entity that allows 

the search process for the exploration of infeasible solutions (Ropke and Pisinger, 2006) without 

directly calculating the violation of restrictions. In the case of the TDVRPTW, any solution with 

unscheduled customers is infeasible. Additionally, insertion procedures are quite myopic, in 

order to avoid stagnating search processes, where destruction and recreation procedures keep 

performing the same modification to a solution, providing diversification in different levels of the 

search process might improve accuracy of solutions (Mattos Ribeiro and Laporte, 2012). 

 

Previous LNS implementations have made use of other metaheuristic algorithms at the master 

level to guide the search to new regions and accept improved solutions such as Simulated 

Annealing (Mattos Ribeiro and Laporte, 2012, Ropke and Pisinger, 2006). In the neighbourhood 

exploration, applying noise in recreation procedures also avoids stagnation e.g., by using 

randomisation in the insertion evaluation function in recreation procedures  (Ropke and 

Pisinger, 2006), or tailoring recreation procedures to ensure diversification (Mattos Ribeiro and 

Laporte, 2012). 

 

Variable Neighbourhood Search 

VNS is a metaheuristic algorithm introduced by Mladenović and Hansen (1997) and Hansen 

and Mladenović (2001). VNS has been previously implemented in a range of combinatorial 

problems (Hansen et al., 2010) including VRP models (Bräysy, 2003, Kytöjoki et al., 2007) and 

the TDVRP with soft time windows (Kritzinger et al., 2011). VNS uses local search 

neighbourhoods  and avoids local optima with specially designed procedures called “Shaking” 

which usually have random elements (Hansen and Mladenović, 2001, Hansen et al., 2010). An 

additional element of VNS is the concept that a local optima in a neighbourhood is not 

necessarily a local optima for other neighbourhoods, therefore changing neighbourhoods might 

avoid local optima. The pseudo code that illustrates the basic concept of VNS is presented as 

follows:  

 

__________________________________________________________________________________

Algorithm 4: Basic concepts of Variable Neighbourhood Search 
__________________________________________________________________________________         
    Start 

1. Initialization by selecting 𝐻 neighbourhood structures  𝐻 = {ℎ1 ,…, ℎ𝑚𝑎𝑥 } 
2. Initialize Incumbent solution 
3. Current solution ← Incumbent solution 
4. ℎ ← 1 
5. Repeat  
6.       Current solution ← Shaking with ℎth neighbourhood (Incumbent solution) 
7.       Current solution ← Local search (Current solution) 
8.      If  (Current solution < Incumbent solution) then 
9.                      Incumbent solution ← Current solution 
10.                      ℎ ← 1 
11.               Else 
12.                      ℎ ← ℎ+1 
13.        EndIf 
14.  Until ℎ = ℎ𝑚𝑎𝑥  

      End 
__________________________________________________________________________________ 



 
67 

 
A characteristic of the presented basic VNS concept is that it works on an ‘only-descendent’ 

approach. It changes the search space region when an improvement has been found, (lines 8 to 

10). However, it may be easily transformed to a ‘descendent–ascent’  approach by introducing 

some selection criteria to allow exploration of regions with a deteriorated solution, e.g., 

randomness (Hansen and Mladenović, 2001) or a threshold acceptance value (Kritzinger et al., 

2011).  

 

An additional characteristic of VNS is that it does not follow a trajectory, but it explores 

increasingly distant regions, the set of procedures for “Shaking” is at the core of VNS and 

provides a balance between obtaining a sufficiently large perturbation of the incumbent solution 

while still making sure desired attributes of “good” solutions are maintained. In order to guide 

the search, a metric in the “Shaking” procedure is introduced (Hansen and Mladenović, 2001), 

(lines 1 and 6). Local search, line 7, is a set of procedures that allow the exploration of the local 

search space. 

 

An example of VNS for the multi-depot VRPTW is presented by Polacek et al. (2004), as 

initialization of an incumbent solution with a cheap heuristic and fast running times was 

proposed. The set of procedures for “Shaking” is based on the CROSS-exchange operator 

where orientation of routes is preserved and the iCROSS-exchange operator where orientation 

of routes is reversed. Figure 9 (page 34) shows some well-known neighbourhood exploration 

procedures.  

 

The “Shaking” metric between solutions was established as the number of depots used to 

generate the new solution and the maximum length of the removed sequence in the 

neighbourhood construction. Local search was the 3-opt operator neighbourhood with reverse 

of route orientation not allowed and the length of the sequences to be exchanged bounded by 

an upper limit of three. Decision about moving the search to a new region follows the 

descendent–ascent approach with a threshold acceptance value.  

 

Analysis of results in terms of accuracy and speed showed that the proposed VNS was 

competitive to other metaheuristic algorithms and it was capable to improve some of the best-

known results at that moment. A very similar VNS approach for the TDVRP with soft time 

windows was proposed by Kritzinger et al. (2011).  

 

4.3.2. A hybrid metaheuristic for the TDVRPTW 

Search procedures for the TDVRPTW are computationally expensive, with the proposed 

algorithm designed to guide the search to highly accurate solutions in a reasonable time. The 

search process is divided into two stages, the first is where an initial incumbent solution is 

created using a fast construction heuristic to undertake a reduction of vehicles. In the second 

stage the objective is the minimisation of the sum of travel distance and  travel time in order to 

compare results with the work of  Figliozzi (2012). 
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Stage 1a: Construction of Initial Solution 

IRCI heuristic is an algorithm that constructs routes sequentially, designed initially for the 

VRPTW (Figliozzi, 2008, Figliozzi, 2010) it can also solve the TDVRPTW (Figliozzi, 2012). Its 

main components are a generalized-cost-function that estimates the minimum cost of 

appending unrouted customers into an existing route (vehicle) or adding a new route and a 

“looking ahead” evaluation that assess the impact of the current insertion versus other possible 

insertions. The generalized-IRIC-cost-function adapted to handle only hard windows and time-

dependent travel times depends on travel time 𝑡𝑖𝑗(𝑏𝑖) between customers 𝑣𝑖 and 𝑣𝑗, the service 

starting time at 𝑣𝑖 in route 𝑘 denoted 𝑦𝑖
𝑘 which is the  max  𝑎𝑖 , 𝑒𝑖 , the remaining capacity on 

vehicle 𝑘 after serving 𝑣𝑖 denoted 𝑞𝑖
𝑘,   and  a set Δ of parameters, Δ = {  δ0,  δ1,  δ2,  δ3 ,  δ4} 

where  δ0 is the cost of adding a new vehicle,  δ1 takes into account travel time between 

customers,  δ2 accounts for the “slack” between departure time from 𝑣𝑖  and service starting 

time at 𝑣𝑗,  δ3 accounts for the “urgency” of servicing 𝑣𝑗 and  δ4 takes into consideration the 

spare capacity of vehicle 𝑘 after servicing 𝑣𝑗. The modified generalized-IRCI-cost-function 

(𝐶𝐼𝑅𝐶𝐼) proposed in this research for inserting  unrouted customer 𝑣𝑗 after visiting 𝑣𝑖  in vehicle 𝑘 

is presented as follows:  

 

𝐶𝐼𝑅𝐶𝐼(𝑣𝑖 , 𝑣𝑗 , 𝑘) =  δ1𝑡𝑖𝑗 𝑏𝑖  +  δ2 𝑦𝑗
𝑘 −  𝑦𝑖

𝑘 + 𝑔𝑖  +  δ3 𝑙𝑗 − (𝑦𝑖
𝑘 + 𝑔𝑖 + 𝑡𝑖𝑗(𝑦𝑖

𝑘 + 𝑔𝑖))  +  δ4(𝑞𝑖
𝑘 − 𝑞𝑗)      

 
 
If adding 𝑣𝑗 in vehicle 𝑘 is infeasible, the generalized-IRCI-cost-function of adding a new vehicle 

is: 
 
 

𝐶𝐼𝑅𝐶𝐼(𝑣0, 𝑣𝑗) = δ0+δ1𝑡0𝑗 𝑏0  +  δ2 𝑦𝑗
𝑘 − 𝑒0 +  δ3 𝑙𝑗 − 𝑡𝑜𝑗 𝑒𝑜 +  δ4(𝑞𝑚𝑎𝑥 − 𝑞𝑗)                                      

 
 
The pseudo code of IRCI is presented as follows: 
 

 

__________________________________________________________________________________

Algorithm 5: IRCI 
__________________________________________________________________________________       
     Start 

1.  Repeat 
2.      For each unrouted customer in best sequence calculate generalized-IRIC-cost-function 
3.       Sort in decreasing order customers according to generalized-IRIC-cost-function 
4.      Select 𝑧 best customers 𝑣𝑖  with less generalized-IRIC-cost-function,  𝑉′={𝑣1 , …𝑣𝑧} 
5.      Repeat for each 𝑣𝑖  ∈  𝑉′ (Creation of 𝑧 sequences, 𝑆 = {𝑠1 , … , 𝑠𝑧}) 
6.             Repeat 
7.                    For each unrouted customer in 𝑠𝑗  calculate generalized-IRIC-cost-function 

8.                    Select customer with lowest generalized IRCI cost 
9.                    Insert customer in 𝑠𝑗  

10.            Until all customers are in 𝑠𝑗  

11.       Until 𝑧 sequences are created 
12.         Select sequence 𝑠𝑗  with best evaluation that insert best customer 𝑣𝑖  

13.          Insert best customer 𝑣𝑖   in best sequence   
14. Until all customers are in best sequence 
15. Return:  best sequence 

      End 
__________________________________________________________________________________ 
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IRCI evaluates at each insertion in best sequence the customer 𝑣𝑖 with less generalized cost 

(line 2) that offers the best solution in the overall route that is represented in a sequence (lines 5 

to 11), the evaluation of the best sequence (line 12) is considered on terms of minimum number 

of vehicles or distance/travelled time and requires the insertion of all customers in order to 

assess the best route that can be achieved by inserting the evaluated customer  𝑣𝑖  in best 

sequence (line 13). The number of sequences evaluated in each insertion 𝑧 in best sequence is 

the “width” of the search (line 4). A special characteristic of  IRCI is that it produces feasible 

routes. Additionally IRCI can be repeated with different sets of parameters  Δ in order to obtain a 

more thorough search space. However, in this research parameters were fixed for all the tested 

instances,  δ0 is a value sufficiently large to force IRCI to generate as few vehicles in each 

sequence as possible,  δ1 +  δ2 +  δ3 = 1 and  δ4 is bounded by 0 and the ratio of the median 

distance between customers and the median customer demand (Figliozzi, 2012). Values used 

in this research are ( δ0 = 200,  δ1 = 0,  δ2 = 0.8,  δ3 = 0.2,  δ4 = 0.02). 

 

Stage 1b: Route Reduction Procedure 

In previous implementations of the LNS for constant-speed models, minimising the required 

number of vehicles relied on removing routes from an incumbent solution and placing 

customers in the request bank until a solution was found without unscheduled customers (some 

customers still in the request bank) (Pisinger and Ropke, 2007, Ropke and Pisinger, 2006). In 

the initial test of this approach for the TDVRPTW, lengthy computational time was required in 

order to get high accuracy due to the complexity in movement evaluation originated by time-

dependent travel times. 

 

In order to speed up the search process, a strategy to quickly guide the search towards higher 

accuracy was designed. Solutions which violated time windows were allowed, and the objective 

function was minimising the sum of violations of time windows (penalty). Due to the myopic 

behaviour of LNS, the search quickly reached stagnation. Small time window violations were 

generated by frequent pairs of customers. In order to avoid stagnation, a tabu list of forbidden 

pairs of customers was introduced to force the recreation procedure to unexplored trajectories. 

 

At the extent of the knowledge of the authors, this is the first implementation of LNS with 

allowed time window violations that exploits the destruction and recreation procedures and 

introduces a tabu list of forbidden pairs of customers for VRP variants with time windows.  This 

strategy allows sequences of customers to be identified that are particularly difficult to 

accommodate in a solution with a reduced number of vehicles, and allows the algorithm to focus 

on scheduling these customers without incurring  time window violations while avoiding 

stagnation.  The local search consists of a modified Worst-removal procedure to remove 

customers that generate penalties along with other destruction procedures before executing a 

modified Basic-greedy heuristic for minimisation of time window penalties (LNS-Penalty 

Procedure). The pseudo code of Number of vehicles minimisation procedure is presented as 

follows: 
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The main steps of Number of vehicles minimisation are the following: 

i) Creation of an initial incumbent solution with IRCI heuristic (line 1). 

ii) Remove one route: The vehicle with the minimum number of customers is removed and 

its customers are allocated to the request bank in order to be inserted in the other routes 

that conform the schedule (line 2) with Basic-greedy heuristic with the insertion-costvm that 

is presented in step iii. A penalty might be generated, which is calculated  as the sum of 

the time violations of the upper time windows. Each time that the search process reaches 

a solution with the penalty equal to 0 (line 18), a feasible schedule, the solution is stored 

(line 19) and another vehicle is removed (line 20).  

iii) Minimisation of penalty with LNS Penalty Reduction Procedure (line 8): The local search 

consists of minimising the penalty with LNS procedures:  Random-Ruin, Radial-Ruin, 

Sequential-Ruin, Worst-removal and Basic-greedy heuristic with the following insertion-

costvm. 

insertion-costvm(𝑣𝑖 , 𝑘, 𝑝  = Δ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

           or in case there is no penalty in the insertion  

                   insertion-costvm(𝑣𝑖 , 𝑘, 𝑝  = Δ 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 + Δ 𝑇𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + Δ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 

__________________________________________________________________________________ 

Algorithm 6: Number of vehicles minimisation procedure 
__________________________________________________________________________________ 
      Start 

1. Incumbent solution ← Construction of Initial Solution with IRCI 
2. Incumbent-penalty solution ← Remove one route (Incumbent solution) 
3. Tabu List = { Ø } 
4. ℎ ← 1 
5. Repeat  
6.      Repeat  
7.             Current solution ← Shaking-Route Reduction Procedure (ℎ , Tabu List, Incumbent-penalty solution) 
8.             Current solution ← LNS Penalty Reduction Procedure (Current solution, Tabu List) 

9.             If penalty(Current solution) >  0 

10.                     Tabu List ← Tabu List   ∪   Elements-Generate-Penalty(Current solution) 
11.                      If  penalty(Current solution) < penalty (Incumbent-penalty solution) 
12.                             ℎ ← 1 
13.                             Incumbent-penalty solution ← Current solution  
14.                     else  
15.                             ℎ ←  ℎ + 1 
16.              EndIf 
17.        Until    ℎ = ℎ𝑚𝑎𝑥     or    penalty (Current solution) = 0 
18.        If penalty (Current solution)  = 0 
19.             Incumbent solution ←  Current solution 
20.             Incumbent-penalty solution ← Remove one route (Incumbent solution) 
21.             Current solution ← Incumbent-penalty solution 
22.             Tabu List = { Ø } 
23.             ℎ ← 1 
24.         Else       
25.             Incumbent-penalty solution ← Current solution 
26.             ℎ ←  1 
27.         End if           
28.  Until stop criteria met  

       Return Incumbent solution 
       End 
__________________________________________________________________________________ 
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where customers that generate penalty are firstly inserted and secondly customers that 

do not generate penalty are inserted. 

In order to avoid stagnation, each time that LNS procedures reach a local optima, the 

schedule is modified with IRCI in order to diversify the search. All customers in a number 

of vehicles are removed from the solution and assigned to these vehicles with IRCI 

without violation of the time windows. Customers that could not be inserted in these 

vehicles are inserted in other vehicles using the Basic-greedy heuristic. Subsequently 

LNS procedures are used again to try to reduce the penalty.  

A tabu list is introduced in order to avoid stagnation, each time that the search reaches a 

local optima the pairs of customers that generate the penalty are recorded, when they 

appear a third time they are introduced into the tabu list (line 10). Basic-greedy heuristic 

and IRCI make use of the tabu list to avoid creating schedules that contain sequences 

with the pair of customers that are in the tabu list. Each time that the search reduces one 

vehicle, the tabu list is emptied (line 22).  

iv) Diversification with Shaking-Route Reduction Procedure (line 7): The exchange operator 

is used to modify the position in the schedule of ℎ customers in order to create new 

solutions. Customers to be exchanged are preferably those that generate penalty. 

 

Stage 2: Travel time and travel distance minimisation 

This procedure relies on the identification of promising search regions. In each iteration, a new 

region is visited and explored with a fast algorithm. It is established if the region is promising for 

intensification with a fast exploration and an evaluation with a threshold value. Intensification is 

based on LNS and VNS. The objective function value in the search is the sum of  travel time 

and travel distance in order to compare results with the work of Figliozzi (2012). The proposed 

Travel timed and travel distance minimisation procedure is presented below as follows: 

 
The main steps of Travel time and travel distance minimisation procedure are the following: 

i) Modification of current solution in order to identify a new region with the Shaking 

procedure (line 4):  Firstly, a random 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘 is selected and all 𝑣𝑖 in  𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘 are 

inserted in the remaining vehicles when insertions are feasible (no violation of time 

__________________________________________________________________________________ 

Algorithm 7: Travel time and travel distance minimisation procedure 
__________________________________________________________________________________ 
      Start 

1. Incumbent solution ← Number of vehicles minimisation procedure 
2. Current solution ← Incumbent solution 
3. Repeat  
4.     Current solution ← Shaking procedure (Current solution) 
5.     Current solution ← Educate procedure  (Current solution) 
6.     If objective (Current solution) < Threshold value 
7.            Current solution ← LNS-VNS Intensification procedure (current solution) 
8.            If objective (Current solution) < objective (Incumbent solution) 
9.                      Incumbent solution ← Current solution 
10.            EndIf 
11.     EndIf  
12. Until stop criteria met 

       End 
__________________________________________________________________________________ 
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windows are allowed).  Secondly, vehicles are randomly sorted, S′ = { 𝑣𝑒ℎ𝑖𝑐𝑙𝑒1, … , 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘, … , 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑚}. Thirdly, each 𝑣𝑖 in  𝑣𝑒ℎ𝑖𝑐𝑙𝑒1 is exchanged, with the exchange 

operator, in the first feasible insertion in the subsequent vehicles. The third part of the 

procedure is repeated in all  𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘 ∈  S′, 𝑘 ≠ m and only feasible solutions are allowed.   

ii) Identification of a promising regions with the  Educate procedure (line 5): The procedure 

consists of 2-opt operator, 2-opt* operator and relocate operator with the length of the 

sequences to be exchanged bounded by an upper limit of three. These operators conduct 

a systematic search by modifying the position of customers within the same route and 

between routes. Although computationally expensive for a large number of iterations, 

they are used to identify search regions where a fast reduction in the objective function 

can be achieved. Educate procedure consists of a limited number of iterations. Identified 

regions that achieve certain objective function value are selected for intensification (line 

6). 

iii) Search intensification with LNS-VNS Intensification procedure (line 7): This procedure 

consists of minimisation of the objective value with LNS procedures (e.g., Random-Ruin, 

Radial-Ruin, Sequential-Ruin and Basic-greedy heuristic set to minimise travel time + 

travel distance) in an iterative way by using a “Shaking” procedure. When the search 

reaches  a local optima, the exchange operator and relocate operator are used to modify 

the position in the schedule of ℎ customers in order to create new solutions in a similar 

way than in Number of vehicles minimisation procedure. 

 

4.4. Benchmark instances 

Due to the fact that the TDVRPTW is an extension of the VRPTW, Figliozzi (2012) proposed a 

modification to the well-known instances for the VRPTW of Solomon (1987) to account for 

congestion by adding speed profiles.  Solomon instances consist of 56 problems with 100 

customers and a single depot. Problems are divided in six classes namely:  R1, R2, C1, C2, 

RC1 and RC2. R accounts for random locations, C for clustered locations and RC for a mix of 

random and clustered locations. Type 1 consist of schedules with tight time windows that allow 

fewer customers per vehicle than type 2.   

  

Figliozzi (2012) proposed 4 types of speed profiles, with 3 cases for each type, for a total of 12 

speed cases. The depot working time [e0,l0] is divided into five periods of equal duration. An 

additional instance with constant speed of 1 is also introduced in order to compare the 

performance of the proposed solution for the TDVRPTW with available best-known values for 

the largely studied VRPTW. Speed profiles are as following:      

 
CASES TYPE a (Fast periods between depot opening and closing times) 
 
      TD1a = [1.00, 1.60, 1.05, 1.60, 1.00]  
      TD2a = [1.00, 2.00, 1.50, 2.00, 1.00]  
      TD3a = [1.00, 2.50, 1.75, 2.50, 1.00]  
 
 
 

http://en.wikipedia.org/wiki/Not_equals_sign
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CASES TYPE b (Higher travel times at the extremes of the working day) 
 
      TD1b = [1.60, 1.00, 1.05, 1.00, 1.60]  
       TD2b = [2.00, 1.00, 1.50, 1.00, 2.00]  
              TD3b = [2.50, 1.00, 1.75, 1.00, 2.50]  
 
CASES TYPE c (Higher travel speeds are found at the beginning of the working day) 
 
      TD1c = [1.60, 1.60, 1.05, 1.00, 1.00]  
      TD2c = [2.00, 2.00, 1.50, 1.00, 1.00]  
      TD3c = [2.50, 2.50, 1.75, 1.00, 1.00]  
 
CASES TYPE d (Higher travel speeds at the end of the working day) 
 
      TD1d = [1.00, 1.00, 1.05, 1.60, 1.60]  
      TD2d = [1.00, 1.00, 1.50, 2.00, 2.00]  
      TD3d = [1.00, 1.00, 1.75, 2.50, 2.50]  
 
4.5. Implementation and Experimental Results 

Algorithm benchmarking is commonly evaluated in terms of accuracy and speed (Bräysy and 

Gendreau, 2005a, Bräysy and Gendreau, 2005b, Toth and Vigo, 2001). Accuracy can be easily 

evaluated when data sets are available. However, different factors have an impact on speed 

such as hardware (processor, ram), code efficiency and compiler (Figliozzi, 2012). Additionally, 

it is mentioned in the literature that better results might be obtained by tailoring algorithms 

accordingly to the test instance. This practice is impractical in industry applications that require 

fast and reliable solution procedures capable to consistently provide high accurate results 

(Cordeau et al., 2002, Drexl, 2012, Figliozzi, 2012, Golden et al., 1998).   

 

The proposed LNS approach was coded in Java Eclipse version Juno. It has random elements 

and results might vary in each run, where multi-core processors offer the possibility to execute 

multiple threads simultaneously. In this research a computer with processor Intel core i7-2600 

3.40GHz and 16 GB of ram was used, three independent threads were run simultaneously and 

the best result of the three was chosen. The algorithm was run with two different sets of 

parameters according to termination criteria, which consist of maximum number of iterations, 

maximum running time, and allowed running time without improvement. The first set of 

parameters (named F) was set to produce a fast algorithm whereas the second one (named L) 

produces a more thorough search by allowing a larger number or iterations and/or execution 

time before terminating the procedures.   

 

Donati et al. (2008)  and Figliozzi (2012) have presented results for metaheuristic approaches 

for the TDVRPTW using Solomon instances with constant speed in order to compare results 

with best-known values for the VRPTW, Table 17. Best-known values for the minimum number 

of vehicles for the 56 problems was 405. The result for the proposed algorithm, with set of 

parameter L, is 408 and best-known values can be achieved by extending running time. 

However, parameter tuning was set to deal with 672 problems (56 problems x 12 speed cases). 
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Running the proposed algorithm with sets of parameters F (set to a short execution time  with 

fewer number of iterations) and L (set to long execution time with a higher number of iterations) 

provide higher accuracy than previous implementations for the TDVRPTW in the primary 

objective (average number of vehicles) for instances R1, RC1 and RC2 (see tables 18-21). 

 

Analysis of the secondary objective (distance) shows that the proposed LNS obtained higher 

accuracy than IRCI-R&R (Figliozzi, 2012) in all instances, results within 1% of best-known 

values can be achieved by increasing running time.  Ant colony approach (Donati et al., 2008) 

obtained higher accuracy in the secondary objective. However, reduced distances might be 

achieved easily when more vehicles are used, e.g.: problem type R1, reduction of 0.93% from 

best-known values is achieved with 5.88% more vehicles.  

 

 

Table 17. VRPTW results for Solomon’s 56 problems with 100 customers – Constant speed 

 

(1) Nagata et al. (2010) CPU Time 25 min (5x5 min), processor Opt-2.4 GHz. (2)  Figliozzi (2012) CPU Time 19 min, 
processor Intel Core Duo 1.2 GHz. (3) Donati et al. (2008) CPU Time 168 min, Pentium IV 2.66 GHz. (4) VNS F (3 threads 
of  26 min) Intel Core i7 3.4 GHz.  (5) VNS L (3 threads of 62 min) Intel Core i7 3.4 GHz. 
 

In the TDVRPTW the proposed primary objective is the minimisation of the number of vehicles, 

secondary objective might be minimisation of travel distance, travel time or both. Figliozzi (2012) 

proposed the sum of distance and travel time as secondary objective.  Tables 18 to 21 show 

benchmarking of IRCI-R&R and the proposed LNS.  

 

The proposed algorithm is capable of obtaining a reduction in vehicles required of up  to 12.96% 

(cases type b, set of parameter L, instance R2, Table 19) and secondary reduction objective up 

to 19.60% in travelled time and distance with fewer vehicles (cases type a, set of parameter L, 

instance RC2, Table 18) in a reasonable computational time. Each instance of 100 customers 

can be solved on average in 26.78 seconds using 3 threads with set of parameter F and 65.35 

seconds with set L.  Table 22 shows the overall sum of number of vehicles, total travelled 

distance and total travelled time required to solve the 56 problems in each speed profile.  

 
 
 
 

Method R1 Δ R2 Δ C1 Δ C2 Δ RC1 Δ RC2 Δ

  (1) Best known value 11.9 2.7 10.0 3.0 11.5 3.3

  (2) IRCI – R&R 12.6 5.88% 3.0 11.11% 10.0 0.00% 3.0 0.00% 12.1 5.22% 3.4 4.62%

  (3) Ant Colony 12.6 5.88% 3.1 14.81% 10.0 0.00% 3.0 0.00% 12.1 5.22% 3.8 16.92%

  (4) VNS F Best 3 runs 12.2 2.52% 3.0 11.11% 10.0 0.00% 3.0 0.00% 11.6 1.09% 3.3 0.00%

  (5) VNS L Best 3 runs 12.0 0.84% 2.8 4.38% 10.0 0.00% 3.0 0.00% 11.6 1.09% 3.3 0.00%

  (1) Best known value 1210.3 954.0 828.4 589.9 1384.8 1119.2

  (2) IRCI – R&R 1248.0 3.11% 1124.0 17.82% 841.0 1.52% 626.0 6.12% 1466.0 5.86% 1308.0 16.87%

  (3) Ant Colony 1199.0 -0.93% 967.0 1.36% 828.0 -0.05% 590.0 0.02% 1374.0 -0.78% 1156.0 3.29%

  (4) VNS F Best 3 runs 1222.3 0.99% 961.7 0.81% 834.0 0.68% 590.3 0.07% 1405.9 1.52% 1170.0 4.54%

  (5) VNS L Best 3 runs 1232.2 1.81% 969.6 1.64% 828.6 0.02% 590.3 0.07% 1404.1 1.39% 1160.0 3.65%

Average NV

Average Distance
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Table 18. TDVRPTW average results for 3 instances in Case Type (a) 100 customers. 

 
(1) Figliozzi (2012) CPU Time 54.1 min, processor Intel Core Duo 1.2 GHz.  (2) VNS F (3 threads of 78 min) processor 
Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 183 min)  processor Intel Core i7 3.4 GHz. 
 

 
 
 
 
 
 
 
 
 
Table 19. TDVRPTW average results for 3 instances in Case Type (b) 100 customers. 

 
(1) Figliozzi (2012) CPU Time 57.4 min, processor Intel Core Duo 1.2 GHz.  (2) VNS F (3 threads of 75 min) processor 
Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 186 min)  processor Intel Core i7 3.4 GHz. 

 
 
 
 
 
 
 
 
 

Method R1 Δ R2 Δ C1 Δ C2 Δ RC1 Δ RC2 Δ

    NV 10.8 2.5 10.0 3.0 10.6 3.0

    Distance 1263.3 1243.0 874.3 669.3 1387.3 1444.0

    Travel Time 923.3 875.0 660.3 514.3 1004.3 1012.3

    Second objective 2197.4 2120.5 1544.7 1186.7 2402.3 2459.3

(2) VNS F

    NV 10.4 -3.53% 2.5 -1.83% 10.0 0.00% 3.0 0.00% 10.2 -4.02% 2.9 -2.03%

    Distance 1164.4 -7.83% 1007.4 -18.95% 841.6 -3.74% 589.9 -11.87% 1309.9 -5.58% 1168.6 -19.07%

    Travel Time 833.2 -9.76% 674.2 -22.95% 625.9 -5.21% 447.6 -12.97% 924.8 -7.92% 789.2 -22.04%

    Second objective 1997.6 -9.09% 1681.7 -20.69% 1467.5 -5.00% 1037.5 -12.57% 2234.7 -6.98% 1957.7 -20.40%

(3) VNS L

    NV 10.3 -4.66% 2.4 -7.19% 10.0 0.00% 3.0 0.00% 10.0 -5.90% 2.8 -7.09%

    Distance 1165.6 -7.74% 1013.9 -18.43% 834.7 -4.53% 589.4 -11.94% 1313.0 -5.36% 1178.7 -18.37%

    Travel Time 832.6 -9.82% 685.9 -21.61% 619.6 -6.16% 447.2 -13.05% 922.5 -8.14% 795.9 -21.38%

    Second objective 2008.5 -8.60% 1702.2 -19.73% 1464.3 -5.20% 1039.7 -12.39% 2245.6 -6.52% 1977.3 -19.60%

(1) Figliozzy IRCI-R&R

Method R1 Δ R2 Δ C1 Δ C2 Δ RC1 Δ RC2 Δ

(1) Figliozzy IRCI-R&R

    NV 11.8 2.8 10.0 3.0 11.5 3.2

    Distance 1277.7 1225.0 880.3 683.7 1441.7 1439.7

    Travel Time 925.7 917.0 655.3 486.0 1035.3 1078.0

    Second objective 2215.1 2144.8 1545.7 1172.7 2488.5 2520.9

(2) VNS F

    NV 11.2 -4.92% 2.7 -4.26% 10.0 0.00% 3.0 0.00% 10.9 -4.89% 3.0 -6.54%

    Distance 1197.7 -6.26% 1004.7 -17.98% 847.3 -3.75% 590.0 -13.70% 1633.2 13.29% 1202.7 -16.46%

    Travel Time 853.9 -7.75% 730.6 -20.33% 602.3 -8.09% 432.0 -11.11% 966.4 -6.66% 896.7 -16.82%

    Second objective 2051.6 -7.38% 1735.3 -19.09% 1449.6 -6.22% 1022.0 -12.85% 2332.6 -6.26% 2099.4 -16.72%

(3) VNS L

    NV 11.1 -5.68% 2.5 -12.96% 10.0 0.00% 3.0 0.00% 10.8 -6.20% 2.9 -9.14%

    Distance 1204.5 -5.72% 1027.8 -16.10% 837.8 -4.83% 589.9 -13.72% 1373.9 -4.70% 1213.1 -15.74%

    Travel Time 859.5 -7.15% 752.6 -17.93% 599.3 -8.54% 432.0 -11.11% 968.1 -6.50% 903.7 -16.17%

    Second objective 2075.2 -6.32% 1782.9 -16.88% 1447.2 -6.37% 1024.9 -12.60% 2352.7 -5.46% 2119.7 -15.91%
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Table 20. TDVRPTW average results for 3 instances in Case Type (c) 100 customers. 

 
(1) Figliozzi (2012) CPU Time 55.9 min, processor Intel Core Duo 1.2 GHz.  (2) VNS F (3 threads of 72 min) processor 
Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 174 min)  processor Intel Core i7 3.4 GHz. 

 
 
 
 
 
 
 
 
Table 21. TDVRPTW average results for 3 instances in Case Type (d) 100 customers. 

 
(1) Figliozzi (2012) CPU Time 56.8 min, processor Intel Core Duo 1.2 GHz.  (2) VNS F (3 threads of 81 min) processor 
Intel Core i7 3.4 GHz. (3) VNS L (3 threads of 189 min)  processor Intel Core i7 3.4 GHz. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Method R1 Δ R2 Δ C1 Δ C2 Δ RC1 Δ RC2 Δ

(1) Figliozzy IRCI-R&R

    NV 10.9 2.5 10.0 3.0 10.8 2.9

    Distance 1280.0 1242.0 863.3 668.7 1419.0 1439.0

    Travel Time 916.0 868.7 626.7 502.3 1034.0 1020.0

    Second objective 2206.9 2113.2 1500.0 1174.0 2463.8 2461.9

(2) VNS F

    NV 10.4 -4.50% 2.5 -1.83% 10.0 0.00% 3.0 0.00% 10.3 -4.57% 2.8 -4.00%

    Distance 1171.6 -8.47% 1142.0 -8.05% 836.8 -3.07% 589.3 -11.87% 1335.3 -5.90% 1197.2 -16.80%

    Travel Time 826.2 -9.80% 800.0 -7.90% 605.1 -3.44% 445.3 -11.35% 960.9 -7.07% 857.2 -15.96%

    Second objective 1997.9 -9.47% 1942.0 -8.10% 1441.9 -3.87% 1034.6 -11.87% 2296.2 -6.80% 2054.3 -16.56%

(3) VNS L

    NV 10.3 -5.37% 2.3 -9.57% 10.0 0.00% 3.0 0.00% 10.1 -6.19% 2.7 -7.14%

    Distance 1172.7 -8.39% 1022.4 -17.68% 829.7 -3.90% 589.3 -11.86% 1322.6 -6.79% 1196.3 -16.87%

    Travel Time 828.7 -9.53% 710.6 -18.19% 601.2 -4.06% 445.3 -11.35% 954.6 -7.68% 855.9 -16.09%

    Second objective 2011.6 -8.85% 1735.3 -17.88% 1440.9 -3.94% 1037.6 -11.61% 2287.3 -7.16% 2054.9 -16.53%

Method R1 Δ R2 Δ C1 Δ C2 Δ RC1 Δ RC2 Δ

(1) Figliozzy IRCI-R&R

    NV 11.6 2.8 10.0 3.0 11.3 3.3

    Distance 1292.0 1216.3 865.0 678.3 1421.7 1410.0

    Travel Time 976.0 935.3 665.0 502.3 1063.7 1073.3

    Second objective 2279.6 2154.5 1540.0 1183.7 2496.7 2486.6

(2) VNS F

    NV 11.3 -3.32% 2.7 -3.23% 10.0 0.00% 3.0 0.00% 10.7 -5.51% 3.1 -5.87%

    Distance 1195.1 -7.50% 1026.5 -15.61% 833.5 -3.64% 590.1 -13.01% 1373.0 -3.42% 1178.2 -16.44%

    Travel Time 901.3 -7.65% 782.6 -16.33% 642.9 -3.32% 437.7 -12.87% 1020.8 -4.03% 890.4 -17.04%

    Second objective 2096.3 -8.04% 1809.1 -16.03% 1476.4 -4.13% 1030.0 -12.98% 2393.8 -4.12% 2068.6 -16.81%

(3) VNS L

    NV 11.3 -3.32% 2.6 -6.59% 10.0 0.00% 3.0 0.00% 10.7 -5.51% 3.0 -7.64%

    Distance 1184.2 -8.34% 1005.2 -17.36% 831.3 -3.90% 591.4 -12.82% 1367.3 -3.83% 1169.6 -17.05%

    Travel Time 894.2 -8.38% 764.1 -18.31% 641.5 -3.53% 438.6 -12.68% 1013.0 -4.76% 883.9 -17.65%

    Second objective 2089.6 -8.34% 1771.9 -17.76% 1482.8 -3.71% 1033.1 -12.72% 2391.0 -4.23% 2056.5 -17.30%
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Table 22. Total Number of vehicles, distance and travelled time in all 56 problems (100 

customers) in each of the 12 speed profiles (case types) 

 
                                  (1) Figliozzi (2012)  (2) VNS L 

 
4.6. Analysis of results 

The proposed algorithm consistently provided improved results for the TDVRPTW. As 

previously mentioned, route evaluation in the search process is computationally expensive in 

TDVRP variants. Therefore, selection of neighborhood structures and its adequate tailoring is at 

the most importance in algorithm design.   

 

Analysis of the computational complexity of different neighborhood structures and performance 

shows the capability of the proposed LNS tailoring to quickly achieve high accuracy over other 

procedures. Well-known neighborhood structures involve the deletion of (up to) x arcs of the 

current solution and the generation of x new arcs to create the subsequent solution, the 

complexity of neighborhood exploration is 𝑂 𝑛𝑥   (Zachariadis and Kiranoudis, 2010). 2-opt and 

2-opt* operators are commonly used in VRP variants with time windows (Bräysy and Gendreau, 

2005a), the first one relocates customers within the same vehicle and the second one relocates 

customers in different vehicles and their complexity of exhaustively examining all possible 

solutions “naive exploration” is 𝑂 𝑛2 , more complex operators with more arc removals are 

consequently more computationally complex (Zachariadis and Kiranoudis, 2010). 

 

The computational complexity of a LNS procedure that makes use of Basic-greedy heuristic  for 

recreation depends on the number of elements in the request bank, the number of routes 

(vehicles) and the number of customers in the modified route in current solution. After the first 

insertion, the subsequent customer insertions are only evaluated in the previously modified 

route with insertion-cost. Therefore, computational complexity largely varies according to the 

number of routes in current solution, being the worst case a solution with one route and quickly 

reducing computational complexity with more routes. 

 

Case Type

NV Distance Travel Time NV Distance Travel Time

TD1a 402 64875.0 53643.0 387 57439.0 46703.4

TD2a 378 64580.0 45847.0 361 57105.5 39505.4

TD3a 360 64667.0 41198.0 348 57358.7 35105.3

TD1b 420 65044.0 54053.0 403 57950.2 47892.0

TD2b 398 64925.0 46773.0 378 59178.5 41878.0

TD3b 393 65781.0 42837.0 370 59018.2 37480.2

TD1c 402 65304.0 53346.0 387 57842.2 47051.2

TD2c 380 64921.0 45583.0 360 57794.1 40599.2

TD3c 365 64791.0 40985.0 350 57317.0 36004.6

TD1d 417 64858.0 54930.0 401 57639.0 48841.1

TD2d 399 64304.0 47905.0 387 57317.9 42465.6

TD3d 388 65084.0 44466.0 375 58368.9 39472.9

TOTAL 4702 779134.0 571566.0 4507 694329.1 502998.9

Δ -4.15% -10.88% -12.00%

 (1) Figliozzy IRCI-R&R (2) VNS L
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It is important to highlight that the concept of LNS relies on designing a neighborhood 

exploration using a group of LNS procedures, that might make use of random elements to 

diversify the search process, and effectively exploration of neighborhood is wider than well-

known neighbourhood structures.  

 

In order to understand the computational complexity of the proposed LNS tailoring and its 

benefits, a simplified algorithm for travel time minimisation is introduced where different 

neighborhood structures are used for local search, namely LNS procedures and 2-opt along 

with 2-opt* procedures. The pseudo code is presented as follows:  

 
 
The tested instances are R101 and R201 with speed case TD1a (Solomon (1987) instances, 

see Table 6 page 35). The termination criterion is allowed execution time and it was executed 

50 times in a single thread for different execution times in order to illustrate the impact of 

parameter variation. Note that 2-opt* is restricted, the “naive exploration” only performs a 

fraction of iterations obtaining deteriorated results in solutions with few routes, such as R201. 

The behaviour of different local search procedures  in  Travel time minimisation procedure 2  is 

shown in Figure 15. The numbers of routes as a result of Construction heuristic are respectively 

21 in R101 and 5 in R201 (See Table 6 in page 35). 

 

 

 

__________________________________________________________________________________ 

 

Algorithm 8: Travel time minimisation procedure  2 
__________________________________________________________________________________ 
      Start 

1. Incumbent solution ← Construction heuristic 
2. Current solution ← Incumbent solution 
3. Repeat  
4.     Current solution ← Local Search procedure  (Current solution) 
5.     If objective (Current solution) < objective (Incumbent solution) 
6.            Incumbent solution  ←   Current solution                     
7.     EndIf 
8.     Current solution  ← Diversification procedure  (Current solution)  
9. Until stop criteria met 

       End 
__________________________________________________________________________________ 
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Figure 15. Behaviour of LNS movements vs. 2-opt and 2-opt* in the presence of time-

dependent travel times. Solomon  instances R101 and R102 (100 customers) – Figliozzi (2012) 
speed case TD1a. 

 
 
Results in execution time of 0.5 seconds illustrate the computational complexity and the 

accuracy of the proposed LNS, see Table 23. 2-opt and 2-opt* were executed a few hundred 

times whereas LNS complete removals and insertions were executed on average 7,544 times in 

R101 and 4073 in R102. LNS in instance R101 obtained an average travel time reduction of 

22.0% and minimum value reduction of 16.16% over 2-opt and 2opt* local search, in the case of 

R102 reductions respectively are 7.5% and 5.3%. LNS clearly provides a more accurate local 

search. 

 
Table 23. Results of executing travel time minimisation procedure  with different local search 
procedures at execution time 0.5 s.  

 
Solomon  instances (100 customers) – Figliozzi (2012) speed case TD1a. 

 
 

 

 

Instance LNS Δ

Best average travel time 1,608.3 1,348.4 16.2%

Average travel time 1,781.0 1,389.0 22.0%

Worst travel time 1,893.5 1,460.0 22.9%

2-opt 178.9

2-opt* 192.7

Best average travel time 1,059.9 1,003.5 5.3%

Average travel time 1,132.0 1,046.5 7.5%

Worst travel time 1,265.3 1,131.2 10.6%

2-opt 239.9

2-opt* 229.1

Local Search

2-opt & 2-opt*

R101

R201

Average Iterations

Average Iterations

7,544.2

4,073.1



 
80 

 
Although Figliozzi (2012) implementation for the TDVRPTW was based on the ‘ruin-and-

recreate’ concept, alternative destruction and recreation procedures were proposed rather than 

LNS procedures. The route improvement procedure consisted of iteratively removing all the 

customers in selected vehicles in order to rearrange them with a fast heuristic introduced by the 

author. The criteria to select the vehicles were: a) geographical proximity (distance between any 

two routes’ centre of gravity), b) number of customers in vehicles.  

 

Donati et al. (2008) made use of well-known neighbourhood operators and algorithm tailoring 

was based on restricting movements taking under consideration customer proximity and the 

introduction of a variable called “slack time” for each delivery in order to evaluate how long the 

delivery could be delayed so subsequent visits in the route will not violate time windows in the 

search process in the presence of time-dependent travel times. 

 

This research consistently provides improved results for the TDVRPTW when compared with 

previous implementations. It is based on the capabilities of LNS movements to provide a fast 

and wide exploration of the search space that can quickly reach highly accurate results in the 

presence of time-dependent travel times and time windows. Furthermore, taking advantage of 

the capabilities of LNS, additionally tailoring of destruction and recreation procedures also 

achieved high accuracy in the minimisation of the required number of vehicles. 

 

4.7. Discussion of the chapter 

It is clear from the literature that time-dependent algorithms are necessary to substantially 

improve vehicle planning and scheduling in congested environments, with existing approaches 

that do not take congestion into consideration leading to extra time and missed deliveries.  

However, the added complexities of including time-dependent functions in models requires 

increased computational process capacity to provide as near optimal results as constant-speed 

models. 

 

Tailoring algorithms to effectively and efficiently solve VRP variants is proven to be a 

challenging task. In this research, it is shown how two different strategies are used to solve 

different elements of the time-dependent Vehicle Routing Problem with hard time windows.  

 

For the minimisation of vehicles it was necessary to have a very specific approach of 

minimisation of time window violations in order to focus the search in scheduling customers that 

are particularly difficult to accommodate. Large Neighbourhood Search procedures guided with 

Variable Neighbourhood Search achieved high accuracy with the proposed algorithm tailoring.  

It provided a reduction of 4.15% vehicles than previous implementations in the 672 test 

instances. 
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Travel time or travel distance minimisation strategy was based on the search of distant regions 

in order to obtain a robust exploration of the search space. When compared to previous 

implementations, the algorithm was capable to obtain reductions in some test problems up to 

19.60% in travel time and distance with fewer vehicles. It consistently provided improved 

solutions in the 672 test instances. 

 

Although the proposed algorithm makes use of random elements to escape from local optima 

and can therefore be run on a single processor core if required, parallel computing is also 

demonstrated here to take advantage of current processor architecture to execute multiple 

threads and explore different regions of the search space simultaneously without increasing the 

overall time of the search. 

 

Large Neighborhood Search is a strategy that stands out in Vehicle Routing Problem solution 

algorithms due to its simplicity and wider applicability to solve different variants. The proposed 

approach shows its capacity to provide planners and drivers with accurate and reliable 

schedules when congestion is present using current computer architecture in a reasonable time 

with adequate algorithm tailoring. 

 

To sum up 

From the literature review in Operational Research techniques to solve VRP variants it is clear 

that metaheuristic algorithms do not guarantee optimality and it is necessary to test their 

accuracy when studying new variants. This chapter introduces an algorithm based on LNS 

movements for the time-dependent Vehicle Routing Problem with hard time windows that 

improves previous implementations, reduction of number of vehicles (4.5%), travel distance 

(10.8%) and travel time (12%).  

 

In an industry with a low profit margin, these figures are quite relevant to accurately plan 

vehicles schedules that consider congestion, a required feature identified by companies, where 

scarce literature is found time-dependent variants. Therefore, in the next chapter the capability 

of the proposed algorithm  will be studied to accommodate a richer VRP variant that considers 

Rules on Drivers’ hours in order to provide algorithms capable to mitigate the impact of 

congestion and regulation. 
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Chapter  5 

 
A metaheuristic approach for  the time-
dependent Vehicle Routing Problem with 
Rules on Drivers’ hours. 
 
Planners have to consider different restrictions when producing vehicles schedules such as 

congestion and regulation. Congestion is unlikely to diminish in the near future and stiffer 

regulations designed to mitigate the negative externalities of freight transport are unavoidable. 

Among imposed regulation there are the rules on Drivers’ hours, which are restrictions that limit 

driving time and working time according to the vehicle type (VOSA, 2011).  

 

In the case of members of the European Union the regulation (EC) 561/2006 applies to vehicles 

over 3.5 tons (European Union, 2006) regarding rest periods and breaks for driving time, along 

with local regulations. In the case of the UK, The Road Transport (Working Time) Regulation 

2005 imposes additional restrictions to drivers such as the introduction of mandatory breaks 

after certain working time (VOSA, 2011). Although regulation for vehicles under 3.5 tons also 

has been introduced in the UK, it is much less difficult to accommodate (see Table 3 in chapter 

2 for the detailed set of restrictions according to vehicle type).  

 

However, the set of regulations for vehicles over 3.5 tons that impose rest periods and 

maximum working time per week or fortnight can be easily accommodated in logistic operations 

dedicated to urban or regional distribution in everyday planning, as opposed to long haul 

operations that should consider resting places and resting times and consequently longer 

planning horizons. The benefits of solving a relaxed problem that do not consider all the set of 

restrictions but only a sub set when relaxed constraints are not active is that problem complexity 

is reduced, algorithm tailoring is less demanding, and highly accurate solutions in reasonable 

time are more likely to be obtained. In order to cope with time-dependent travel times and 

driving time regulation for multi-drop operations (schedules with up to 100 deliveries) with 

restrictions that only consider one planning day, Kok et al. (2010a) formally introduced a VRP 

variant, the time-dependent Vehicle Routing Problem with time windows and European 

regulation on driving and working hours (TDVRP-EC), along with benchmarking instances and 

reported results of a restricted dynamic programing algorithm.  
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In this chapter an algorithm for the TDVRP-EC is tailored based on the LNS algorithm 

introduced in chapter 4 and results are compared with the algorithm proposed by Kok et al. 

(2010a). Additionally, the algorithm is tailored to cope with The Road Transport (Working Time) 

Regulation 2005 required in the UK and results are reported. At the extent of the knowledge of 

the author this is the first research that studies the time-dependent Vehicle Routing Problem 

with time windows and European regulation on driving time and UK working hours (TDVRP-EC-

UW) reported in the literature. 

 

A desired attribute that is not considered in the traditional VRPTW is the construction of 

compact schedules that minimise the time that drivers expend on the street. In the VRPTW 

resulting routes might impose long waiting times to drivers because the secondary objective is 

minimising travel distance or travel time. Although waiting time in customer locations might be 

considered as break time, some companies pay for breaks and therefore it has an economic 

impact e.g. truck driver hiring costs (Kok et al., 2010a). In the case where companies have the 

policy of not paying breaks, one can infer that drivers would prefer compact routes where break 

times are only imposed to comply with regulation or because no other feasible sequence of 

visits is found with shorter waiting time. In order to produce compact routes it is necessary to 

specifically tailor the algorithm (Kok et al., 2010a). The TDVRP-EC proposed by Kok et al. 

(2010a) and the TDVRP-EC-UW consider travel distance or route duration as second objective. 

 

Additionally, Kok et al. (2010a) highlighted the importance of considering congestion and 

consequently time-dependent travel times in vehicle planning in order to schedule breaks 

adequately and comply with the rules on Drivers’ hours. 

 

The cost structure of transportation depends on different elements such as fixed costs of 

vehicles, running costs associated to travel distance and duration of route and labour costs per 

hour (Dell'Amico et al., 2007). In this chapter an analysis of impact on transportation costs 

according to the accuracy of the algorithm is also introduced.   
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5.1. Previous work on Rules on Drivers’ hours 

Kok et al. (2010a) introduced a new VRP variant with time-dependent times, time windows, and 

a sub-set of rules for regulation (EC) 561/2006 (TDVRP-EC). The sub-set of rules apply for 

regional or urban environments when schedules only consider daily planning horizons, the 

decisions supported by the model are: i) assigning customers to vehicles, ii) sequencing 

customer visits for each vehicle, and iii) selecting departing times for each vehicle from the 

depot and also at each customer to account for the sub-set of Rules on Drivers’ hours where 

breaks are considered to be taken only at customer locations. Additionally, instances are 

proposed based on Solomon (1987) and Figliozzi (2008).  The algorithm is an extension of Kok 

et al. (2010c) for regulation (EC) 561/2006 that takes under consideration the insertion of 

breaks in a Dynamic Programming heuristic. A characteristic of the algorithm is that route 

duration minimisation as second objective leads to substantial reduction of route duration, but 

more vehicles and longer travel distance is required (Kok et al., 2010a). In the literature review 

no other work was found dealing with Rules on Drivers’ hours and time-dependent travel times. 

 

5.2. Problem definition  

Both the TDVRP-EC and the TDVRP-EC-UW are extensions of the TDVRPTW, therefore the 

problem description presented in section 4.2. is still applicable for these variants, where the 

primary objective is minimisation of the number of vehicles but the second objective is either 

minimisation of travel distance or route duration. Rules on Drivers’ hours applicable to vehicles 

over 3.5 ton in the UK are subject to regulation (EC) 561/2006 and The Road Transport 

(Working Time) Regulation 2005, therefore common definitions are required to introduce these 

constraints into the model, the following are proposed: 

 

Route Duration: Period of time between the vehicle leaves the depot before the 

first request and the vehicle returns to the depot after servicing the last request.  

 

Accumulated Working Time: Accumulated time during which the driver cannot 

dispose freely of his free time (driving, loading or unloading, other work). It 

includes awaiting to service a customer where their foreseeable duration is not 

known.   

 

Accumulated Driving Time: Accumulated time during which the driver has been 

driving between a valid break of 45 min, see RD1.  

 

Total Accumulated Driving Time: Accumulated time during which the driver has 

been driving in the working day. 

 

Accumulated Break EC: Accumulated break that accounts for (EC) 561/2006 

following restriction  RD1. 
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Accumulated break UW: Accumulated break that accounts for The Road 

Transport (Working Time) Regulation 2005. 

 

The additional sets of constraints applicable for planning horizons of one day to account for the 

Rules on Drivers’ hours are as follows:  

 

Relaxed driving time constraints following regulation (EC) 561/2006 as proposed by Kok et 

al. (2010a) 

 

RD1. A period between two breaks of at least 45 min is called a driving period. The 

accumulated driving time in a driving period may not exceed 4.5 h. The break that 

ends a driving period may be reduced to 30 min if an additional break of at least 15 

min is taken anywhere during that driving period. The driving hours regulations do not 

allow service times at customers to be considered as break time. 

RD2.  The total accumulated driving time may not exceed 9 h for any individual driver. 

RD3.  The route duration may not exceed 13 h for any individual driver.  

 

The Road Transport (Working Time) Regulation 2005 (VOSA, 2011) 

 

RD4.  Mobile workers must not work more than 6 consecutive hours without taking a 

break.  

RD5. If the Accumulated Working Time total between 6 and 9 hours, working time should 

be interrupted by a break or breaks totalling at least 30 minutes.  

RD6.  If the Accumulated Working Time total more than 9 hours, working time should be 

interrupted by a break or breaks totalling at least 45 minutes.  

RD7.  Breaks should be of at least 15 minutes’ duration. 

 

Constraint  RD3 is proposed by  Kok et al. (2010a) in order to comply with the part of regulation 

EC (561/2006) that dictates that daily rest period shall be at least 11 hours. Although the 

original restriction in regulation EC (561/2006) could be handled in different ways, it is 

considered in this research as proposed by Kok et al. (2010a) in order to be able to compare 

results of the proposed algorithm. 

 

An example of a valid schedule for regulation (EC) 561/2006 in a single work day for one 

vehicle (driver)  is shown in Figure 16. RD1 is satisfied by taking 2 breaks of total duration of 45 

min after an Accumulated Driving Time of 4.5 h, the first break of 15 min and the second one of 

30 min.  
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Figure 16. Valid schedule for deliveries with regulation (EC) 561/2006. 

 

However, the schedule presented in Figure 16. is invalid when applying The Road Transport 

(Working Time) Regulation 2005 because there is only a 15 min break in Accumulated Working 

Time 1 (7 hours), it should be an Accumulated Break UW  of 30 min in an Accumulated Working 

Time with a duration between 6 and 9 hours, as shown in Figure 17. 

 

 

 
Figure 17. Valid schedule for deliveries with regulation (EC) 561/2006 and The Road Transport 

(Working Time) Regulation 2005. 

5.3. Algorithm description 

Inclusion of  Rules on Drivers’ hours requires a more complicated model that the TDVRPTW, it 

is necessary to account for accumulated driving time, accumulated working time and designing 

model constraints  that assure the insertion of breaks that satisfy regulation. Due to the fact that 

LNS movements quickly reached highly accurate solutions in the TDVRPTW, the algorithm is 

based on the LNS tailoring introduced in chapter 4, initial testing with other Operational 

Research techniques required long execution time to reach high accuracy (i.e. genetic 

algorithms and ejection chains). However, the proposed tailoring makes use of fewer elements 

due to the complexity of accommodating Rules on Drivers’ hours in implementation, e.g., a 

much simpler construction algorithm is introduced based on Basic-greedy heuristic instead of 

IRCI; removing the use of well-known neighbourhood structures (which might require longer 

computational time than LNS movements); and using a much simpler diversification strategy 

based on Tabu search instead of Variable Neighbourhood Search.  

 

The aim with this  algorithm tailoring  is to produce a solution with the characteristics  proposed 

by Cordeau et al. (2002) for implementations that can be used in the industry (i.e. accurate, fast, 

simple and flexible). The proposed algorithm firstly constructs a feasible route, then minimises 

the number of vehicles in a search space that allows violations of time windows and finally 

minimises the second objective (distance or route duration). 

 

Other work 2.5 h
Break 

15 min
Driving 2.5 h Driving 2 h

Break 
30 min

Driving 4 h

Route Duration Time 11.75 h
Total Accumulated Driving time 8.5 h

Driving period 1 Driving period 2

Accumulated Working Time 1

Other work 2.5 h
Break 

30  min
Driving 2.5 h Driving 2 h

Break 
30 min

Driving 4 h

Route Duration Time 12 h
Total Accumulated Driving time 8.5 h

Driving period 1 Driving period 2

Accumulated Working Time 1
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The centre of the tailoring is the design of an algorithm called “Scheduler”, that accounts for 

Rules on Drivers’ hours  based on object programming in its implementation. Scheduler object 

is called across the algorithms that create LNS movements. As proposed by Kok et al. (2010a) 

breaks are only taken at customer locations.  

 

Scheduler for Drivers’ hours Rules 

The purpose of  Scheduler is to determine where to insert breaks in the current LNS movement 

(removing or inserting customers in a solution) by calculating the driving time required by the 

movement and subsequently calculating the Accumulated Driving Time and Accumulated 

Working Time and establishing if a break is required. In the case of an insertion, it starts in the 

customer prior to the position of the insertion and determines if in order to make possible the 

insertion, the insertion of a break is required. It later calculates break requirements in the 

following customers that are in the route, see Figure 18. 

 

 
Figure 18. Description of the evaluation performed by Scheduler to establish if insertion or break 

are required. 
 
 
The time windows in the model might impose drivers to wait at a customer location when the 

arrival time at a customer is earlier than the lower time of the time window. Waiting time at a 

customer might be valid as a break or part of a break, the conditions that trigger the scheduling 

of a break and possibly requiring more time at a customer location are the following: 

 

 By visiting the next customer accumulated driving time is over 4.5 h without a 45 min 

valid Accumulated Brake EC (Constraint R1). 

 By visiting and conducting the service at the next customer accumulated working time is 

over 6 h and under 9 h and accumulated break UW is under 30 min. 

 By visiting and conducting the service at the next customer Accumulated Working Time 

is over 9 h and Accumulated Break UW is under 45 min. 

 

Depot Customers

Partial destruction

List of removed customers

(request bank)

Possible insertion

Movement evaluation

Scheduler determines if break is required by possible insertion



 
89 

 
Additionally, when customer time windows impose waiting time due to early arrival, breaks that 

count for Rules on Drivers’ hours could  be taken even if no trigger from Rules on Drivers’ hours 

is activated (not requiring additional time at customer location), therefore taking advantage of 

waiting times, a model characteristic not implemented by Kok et al. (2010a).  

 

(The conditions implemented in Scheduler to comply with the Drivers’ hours rules are presented 

in a textual description in order to make easier the comparison with the problem definition) 

 

 If waiting time is equal or longer than 15 min and shorter than 30 min, a break of 15 min 

is inserted that accounts for Accumulated Break UW. It might account for Accumulated 

Brake EC if  Accumulated Break EC is equal to 0 min.  

 

 If waiting time is equal or longer than 30 min and shorter than 45 min, a break of 30 min 

is inserted that accounts for Accumulated Break UW. It might account for  Accumulated 

Break EC in the case that the previous value of Accumulated Break EC is equal to 15 

min (insertion of a 30 min break) or in the case that the previous value of Accumulated 

Break EC is equal to 0 min (insertion of a 15 min break).  

 

 If waiting time is equal or larger than 45 min, a break of 45 min is inserted that accounts 

for Accumulated Break UW and Accumulated Break EC.  

 

Note that each time that Accumulated Break EC reaches 45 min a new driving period is inserted 

(Accumulated Break EC takes the value of 0 min).  

 

Note that breaks required by regulation (EC) 561/2006 also count for The Road Transport 

(Working Time) Regulation 2005.  

 

The conditions to establish if additional time is required at a customer location to satisfy breaks 

for Rules on Drivers’ hours are the following: 

 

 If waiting time is longer than the required break, no extra time at customer location is 

inserted. 

 

 If waiting time plus the length of the time window is equal or longer than the required 

break, an additional time at customer location is inserted of duration of the required 

break minus the waiting time (break start as soon as the vehicle arrives at the customer 

and service does not start until the break is finished).  

 

 If waiting time plus the length of the time window is shorter than the required break, 

service starts at the first feasible time and time at customer location is inserted of 

duration of the required break (break starts after the service).  



 
90 

 
 

In order to determine break insertions and additional time at customer locations it is required to 

calculate different characteristics of the route. Therefore, additional return values of scheduler 

that do not impose extra computational burden are also calculated, returns values of scheduler  

are the following:  

 

 Customer where breaks are scheduled 

 Duration of breaks 

 Duration of insertion of time  at customer  

 Sum of time window violations 

 Total distance  

 Total travel time (driving time)   

 Total waiting time 

 Route duration  

 Feasibility of route or penalty (violation of time windows when service start after the 

upper time of the time window) 

 A random value if insertion is feasible 

 

Different return values of scheduler are used according to the objective value in the optimisation 

stage.  

 

The last item is used to diversify the search process of LNS and avoid stagnation in recreation 

procedures by using a random order to reinsert customers; this is a new characteristic from the 

algorithm presented in chapter 4.  

 

Construction procedure 

The proposed construction procedure is rather simple and makes use of random elements to 

generate different solutions that have the characteristic of being feasible, it is presented as 

follows.   
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The insertion-costcp (line 14) is the following function: 
 

                     insertion-costcp(𝑣𝑖 , 𝑘, 𝑝   = δ1
𝑐𝑝

  Δ 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 + δ2
𝑐𝑝

 Δ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 

 
 
where  Δ 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 is the variation in total travel time by inserting customer 𝑣𝑖 in route 𝑘 

in position 𝑝, Δ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 is the variation in total waiting time by inserting customer 𝑣𝑖 

in route 𝑘 in position 𝑝,  δ1 and  δ2 are parameters to weight the impact of travel time and waiting 

time, δ1
𝑐𝑝

+ δ2
𝑐𝑝

= 1; δ1
𝑐𝑝

 and δ2
𝑐𝑝

 might vary randomly. 

 

This procedure can be repeated a number of times where the solution with minimum number of 

vehicles is chosen as the initial solution for minimising the number of vehicles.  

 
Minimisation of the number of vehicles procedure 

This procedure is very similar to the LNS algorithm for the TDVRPTW presented in chapter 4 for 

minimisation of number of vehicles, the route (vehicle) with minimum number of customers is 

removed and customers are reinserted in the solution creating violations of the upper limit of the 

time windows. The procedure reduces the penalties by using LNS movements, it is presented 

as follows: 

 
 
 
 
 
 

__________________________________________________________________________________

Algorithm 9: Construction procedure  
__________________________________________________________________________________         
    Start 

1. Creation-of-route  ←  true 
2. Inserted-Customers ← 0 
3. 𝑘 ← 0 
4. Repeat 
5.        If  (Creation-of-route  = true)  then 
6.              Randomly select  customer 𝑣𝑖 ′ 
7.              Create route {𝑣0 − 𝑣𝑖 ′ − 𝑣0} 
8.            Creation-of-route  ← false 
9.              Inserted-Customers ← Inserted-Customers + 1 
10.       End If  
11.        If  (Creation-of-route  = false)  then 
12.                Repeat 
13.                    For each unrouted customer calculate insertion-cost

cp
 (𝑣𝑖 , 𝑘, 𝑝)   

14.                    Select customer with lowest insertion-cost
cp 

15.                    Insert customer in route 𝑘 position 𝑝 
16.                    Inserted-Customers ← Inserted-Customers + 1 
17.                Until no feasible insertion in route 𝑘 
18.        End if 
19.       𝑘 ← 𝑘 + 1 
20. Until Inserted-Customers = Number of customers to schedule  

      End 
__________________________________________________________________________________ 
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The main steps of Minimisation of number of vehicles procedure are the following: 

 
i) The LNS Penalty Reduction Procedure (line 5) makes use of ruin procedures (Random-

Ruin, Radial-Ruin, Worst-removal) and Basic-greedy heuristic with the following  insertion-

costcp: 

                     insertion-costcp(𝑣𝑖 , 𝑘, 𝑝  = Δ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 

          or in case there is no penalty in the insertion (in order to avoid stagnation) two insertion- 

            costcp might be used. 

                                insertion-costcp(𝑣𝑖 , 𝑘, 𝑝  = Δ 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 +  Δ 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒  

                           or 

                                insertion-costcp(𝑣𝑖 , 𝑘, 𝑝  = Random value 

where customers that generate penalty are firstly inserted and secondly customers that 

do not generate penalty are inserted. 

ii) The Diversification Penalty Procedure (line 4) is based on selecting a random number of 

customers that generate penalty (Worst-removal) along with Random-Ruin and inserting 

them in a different route (vehicle) in the solution with Basic-greedy heuristic with the 

previously mentioned insertion-costcp. 

 

Minimising second objective 

This procedure can minimise travel distance or route duration by using LNS movements. The 

search strategy at master level is a simple tabu search that prevents the search to explore 

previously visited regions instead of the Variable Neighbourhood Search implemented for the 

TDVRPTW.  

__________________________________________________________________________________ 

Algorithm 10: Minimisation of number of vehicles procedure 
__________________________________________________________________________________ 
      Start 

1. Incumbent solution ← Construction of Initial Solution 
2. Current solution ← Remove one route (Incumbent solution) 
3. Repeat  
4.             Current solution ← Diversification Penalty Procedure (Current solution) 
5.             Current solution ← LNS Penalty Reduction Procedure (Current solution) 
6.             If penalty(Current solution) =  0 
7.                     Incumbent solution ←  Current solution 
8.                     Current solution ← Remove one route (Incumbent solution) 
9.            End if           
10.  Until stop criteria met  

       Return Incumbent solution 
       End 
__________________________________________________________________________________ 
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The main steps of Minimisation of travel distance/route duration procedure are the following: 

i) LNS Multi-objective (line 5): It makes use of ruin procedures (Random-Ruin, Radial-Ruin 

and Sequential-Ruin) and  Basic-greedy heuristic for recreation, where insertion-costtrp 

makes use of different returns values of scheduler to avoid stagnation.  

               insertion-costtrp = δ1
𝑡𝑟𝑝

  Δ 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 + δ2
𝑡𝑟𝑝

 Δ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + δ3
𝑡𝑟𝑝

 Δ 𝑇𝑜𝑡𝑎𝑙  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

      where 

              δ1
𝑡𝑟𝑝

+ δ2
𝑡𝑟𝑝

+ δ3
𝑡𝑟𝑝

= 1; δ1
𝑡𝑟𝑝

 ,δ2
𝑡𝑟𝑝

and δ3
𝑡𝑟𝑝

  might vary randomly 

or  

              insertion-costtrp =   Δ 𝑅𝑜𝑢𝑡𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

or  

              insertion-costtrp =   Random value 

ii) Diversification Second Objective  procedure (line 4): It is based on removing two 

sequences of customers of  random length calling  Sequential-Ruin and inserting them in 

the solution with Basic-greedy heuristic with insertion-costtrp  set as a random number 

when insertion is feasible. A Tabu search maintains records of explored solutions to force 

the search to new regions, the recorded tabu solution characteristic is the value of the 

objective function.  

 

In the case of route minimisation as second objective, evaluation to store an improved solution 

(line 6) makes use of Optimisation Departure Time procedure to obtain the minimum possible 

route duration of the current solution.  

 

Optimisation Departure Time procedure is an algorithm that moves forward the departure time 

from the depot in an iterative way until the route becomes infeasible and modifies the route if it 

finds a departure time that reduces the route duration. 

 

Although the proposed tailoring can minimise travel distance or route duration, an optimisation 

of departure times is always executed in order to minimise route duration when the search is 

__________________________________________________________________________________ 

Algorithm 11: Minimisation of travel distance/route duration procedure 
__________________________________________________________________________________ 
      Start 

1. Incumbent solution ← Construction of Initial Solution 
2. Current solution ← Minimisation of number of vehicles procedure (Incumbent solution) 
3. Repeat  
4.             Current solution ← Diversification Second Objective (Current solution) 
5.             Current solution ← LNS Multi-objective (Current solution) 
6.             If Objective(Current solution) < Objective(Incumbent solution) 
7.                     Incumbent solution ←  Current solution 
8.             End if           
9.  Until stop criteria met  
10. Current solution ←  Optimisation Departure Time procedure (Current solution) 

       Return Incumbent solution 
       End 
__________________________________________________________________________________ 
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terminated (line 10). In the case of minimisation of travel distance, it doesn’t affect the obtained 

distance and provides solutions with compact routing times.  

 

5.4. Test instances 

The well-known test instances for the VRPTW proposed by Solomon (1987) consist of 56 

problems of 100 customers. Figliozzi (2008) modified them by adding speed profiles in order to 

account for congestion. The depot opening time [𝑒𝑜, 𝑙𝑜] is divided into 5 periods of equal 

duration, with 3 speed profiles (TD1-TD3). An additional profile (TD0) with constant speed of 1 

is also considered in order to offer result comparison for best-known values with constant speed 

models, the speed profiles are as follows: 

 
         TD0 = [1.00, 1.00, 1.00, 1.00, 1.00]  
                                                    TD1 = [1.00, 1.60, 1.05, 1.60, 1.00]  
                                                    TD2 = [1.00, 2.00, 1.50, 2.00, 1.00]  
                                                    TD3 = [1.00, 2.50, 1.75, 2.50, 1.00] 

 

Solomon instances present different depot opening times where units of distance and time are 

equal. For ease of comparison therefore Kok et al. (2010) introduced an additional modification, 

where required breaks of regulation (EC) 561/2006  are scaled to a working day of 12 hours 

(from 7 AM until 7 PM) based on the different opening times of the depot in Solomon instances 

(the length of the break and the maximum time of Accumulated Driving Time without break are 

scaled). These scaled instances with the Figliozzi (2008) speed profiles collectively provide 

(56x4=) 224 test instances that are used as the basis of the results in this chapter. 

 

5.5. Experimental results 

 

Rules on Drivers’ hours 

Analysis of additional logistic resources required to accommodate the Rules on Drivers’ hours 

along with algorithm accuracy is possible by comparing the results of different algorithms when 

tested with similar VRP variants, namely the VRPTW (no regulation or congestion are 

considered), EC (European regulation on driving and working hours) and  EC-UW (European 

regulation on driving and working hours and The Road Transport (Working Time) Regulation 

2005 required in the UK). The VRPTW has been largely studied and highly accurate result 

values are available with primary objective minimisation of vehicles and secondary objective 

minimisation of travel distance (Toth and Vigo, 2001). Table 24 shows the minimum number of 

required vehicles and travel distance when algorithms are set to minimise travel distance as 

secondary objective and no congestion is considered for the mentioned  variants. While the DP 

algorithm of Kok et al. (2010a) requires 26.9% more vehicles and 26.7% more travel distance to 

accommodate regulation (EC) 561/2006  when compared to best-known values for the VRPTW, 

the algorithm proposed in this research requires only 6.9% more vehicles and 4.7% travel 

distance. Results also show that in order to accommodate regulation EC-UW it is required 

11.6% more vehicles and 6.6% travel distance when compared to the VRPTW.  
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Table 24. Impact of Rules on Drivers’ hours with no congestion (TD0), minimising travel 
distance as secondary objective, Solomon instances (100 customers). 

 

 
                          (1) Best-known values, see Vidal et al. (2013) (2) Kok et al. (2010a) Running time 138 min  

(Core 2 Quad 2.88 GHz, 4 GB Ram)  (3-4)  Running Time 112 min (Core i7 3.4 GHz, 16 Ram)  

 
 
European regulation on driving and working hours and time-dependent travel times. 

The DP algorithm (Kok et al., 2010a)  and the proposed LNS can schedule vehicles with time-

dependent  travel times, regulation (EC) 561/2006 and minimisation of route duration as 

secondary objective. LNS provides improved solutions with 19.0%  less vehicles, reduction of 

4.4% in route duration along with routes with  17.7% travel distance, results are shown in  Table 

25. A characteristic of the DP algorithm is that in order to deal with time-dependent travel times 

it requires additional execution time Kok et al. (2010a), whereas the proposed LNS was set to 

maintain the same execution time as that in the constant speed case. Although speed 

comparison of algorithms is a complex activity due to difference in CPU capacity and language 

compiler, it is important to highlight that the proposed LNS obtained a large reduction in number 

of vehicles and travel distance in a fraction of the execution time.  

 

 
Table 25. Results for regulation (EC) 561/2006  on driving hours in urban or regional 

environments and different levels of congestion,  minimising route duration as second objective, 
instances based on Solomon (100 customers). 

 

 
                                        (1) Kok et al. (2010a) Running time 1138 min (Core 2 Quad 2.88 GHz, 4  GB Ram)   
                                        (2) Running time 448 min (Core i7 3.4 GHz, 16 Ram)  
 

European regulation on driving and working hours, The Road Transport (Working Time) 

Regulation 2005 and time-dependent travel times. 

In this research results for the VRP variant with time windows,  Regulation (EC) 561/2006 on 

driving and working hours and The Road Transport (Working Time) Regulation 2005 in the UK 

with time-dependent travel times are introduced, see Table 26. 

 
 
 

NV Δ Distance Δ

VRPTW (1) 405 57187

EC     DP (2) 514 26.9% 72464 26.7%

EC     LNS (3) 433 6.9% 59862 4.7%

EC-UW   LNS (4) 452 11.6% 60995 6.7%

Variant and algorithm

Speed profile NV Distance Route Duration NV Distance Route Duration

TD0 523 73584 272160 433 60183 259603

TD1 494 73808 254240 401 60461 236927

TD2 458 74256 243712 374 61200 235946

TD3 458 74480 236768 358 61826 230304

Total 1933 296128 1006880 1566 243671 962780

Δ 19.0% 17.7% 4.4%

DP (1) LNS (2)
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Table 26. Results for regulation (EC) 561/2006  on driving hours and The Road Transport 
(Working Time) Regulation 2005  in urban or regional environments and different levels of 

congestion,  minimising route duration as second objective, instances based on Solomon (100 
customers). 

 

 
Running time 448 min (Core i7 3.4 GHz, 16 Ram) 

 
 

Cost Implications in vehicle scheduling of Drivers’ hours Rules 

Minimising total cost rather than travel distance is actually the core objective of logistics 

scheduling in reality (Dullaert et al., 2002). It is therefore important to analyse results in relation 

to overall cost implications rather than mere theoretical objective values. A variation of the 

instances proposed by Kok et al. (2010a)  is introduced to account for logistic costs when the 

different set of rules of Drivers’ hours are introduced in a scenario that does not consider 

congestion, namely: i) consideration of the industry logistic costs, ii) escalation of distances and 

break times to represent deliveries in a working day in an urban environment and iii)   the use of 

a speed that represents the conditions of urban roads.  

 

Based on a survey of UK logistics operators conducted by FTA (2014) fixed costs (including 

vehicle excise duty (VED), insurance and depreciation of vehicle value), variable costs 

(including fuel consumption, tyre wear and maintenance) and time related costs (including driver 

wages and National Insurance contributions) can be estimated (a Lorry of 7.5 ton is used as the 

example here). The following cost coefficients are proposed: Fixed cost per vehicle per day 

£17.8, coefficient per km £ 0.25 and coefficient per hour £ 9.91.  

 

In instances proposed by Kok et al. (2010a) the parameters to establish breaks (maximum 

driving time of 4.5 hours, required break 45 min, etc.) are scaled accordingly to the opening time 

of the depot in Solomon instances, which vary to represent different time windows 

characteristics, see Table 6 page 35. In the instance variation proposed in this research, 

distances, time windows and depot opening times are scaled to a working day of 12 hours (7:00 

AM – 7:00 PM), while maintaining a maximum driving time without break of 4.5 hours and 

required break of 45 min.  

 

Additionally, it is necessary to further scale the travel distances in the Solomon instances to be 

realistic based on a feasible speed (in the original Solomon instances the units of distance and 

travel time are equal). Therefore travel distance is calculated by multiplying the travel time 

(which is the same travel distance in the theoretical instances of Solomon) by the average 

speed in free flow condition in urban areas of 48 km/h. 

Speed profile NV Distance Route Duration

TD0 452 62137 275348

TD1 422 62816 262902

TD2 398 63147 252541

TD3 383 63203 246971

Total 1655 251302 1037762
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The economic impact of considering Rules on Drivers’ hours in urban conditions is shown in 

Table 27. With the proposed algorithm in this research, in the theoretical instances, the cost of 

regulation (EC) 561/2006 is 3.0% and the cost of the full set of rules is 6.9%.  An estimation of 

the cost of regulation (EC) 561/2006 using the DP algorithm is feasible by extrapolating the 

additional number of vehicles, route duration and travel distance provided by the algorithm 

when compared to the results of LNS (19.0%, 4.4%, 17.7% respectively). The estimated 

solution provided by the DP algorithm is £ 94,535, 8.9% more expensive than the results 

obtained by the proposed LNS.  

 

Table 27. Cost implications of Rules on Drivers’ hours. 

 

VRP Variant NV 
Route Duration 

(Hours) 
Distance 

(Km) 
Cost 
(£) 

Δ 

VRPTW   416 4053 81261 83994   

EC     433 4226 81882 86862 3.0% 

EC-UW    452 4399 82795 89818 6.9% 

 
 
 

5.6. Discussion of the chapter 

The industry requires models and algorithms capable to cope with a range of restraints found in 

real life operations that impose extra costs and affect operation, such as Rules on Drivers’ 

hours and time-dependent travel times. Although rich VRP variants are a challenge to 

researchers and software developers, state-of-the-art search strategies can produce highly 

accurate solutions that ameliorate the logistic resources required to accommodate new 

conditions. A characteristic of a previously reported algorithm, which accounted for regulation 

(EC) 561/2006,   was that compact routes were obtained at the expense of providing schedules 

with higher number of vehicles and longer travel distance.   The LNS tailoring presented in this 

research obtained solutions with shorter route duration (4%), with fewer required vehicles 

(19%), and less travel distance (17%) in reasonable time when tested with previous 

implementations reported in the literature when time-dependent travel times are considered.  

 

Although the proposed LNS algorithm makes use of fewer elements than the LNS proposed in 

chapter 4, analysis of results when comparing best-known results for the VRPTW in terms of 

number of vehicles and travel distance, shows that the LNS for regulation (EC) 561/2006 

presented in this chapter provides schedules with only 6.9% more vehicles and 4.7% longer 

travel distance than best-known values for the largely studied variant, note that LNS 

accommodate regulation (EC) 561/2006.  

 

Furthermore, an economic analysis of the impact of the regulation and algorithm accuracy is 

also introduced. According to the analysis of theoretical instances, in the case of only 

considering regulation (EC) 561/2006, by using a previously reported algorithm, the estimated 
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extra cost for providing solutions that comply with regulation is  12.45% whereas the LNS 

algorithm provides solutions with a mere 3.0% of extra cost with an execution time of 2 minutes 

per instance (100 customers).  Accommodating Regulation (EC) 561/2006 and the Road 

Transport (Working Time) Regulation 2005 required in the UK have a cost of 6.9% 

 

Regarding algorithm tailoring, LNS is considered a simple search strategy capable to provide 

highly accurate solutions for rich problems, this research is an example of it. As reported in 

chapter 4, LNS offers a quick and thorough search for the time-dependent VRP with time 

windows, and it can be tailored to accommodate complex restraints and still offer highly 

accurate solutions for richer time-dependent VRP variants. 

 

Nevertheless, the tested instances are theoretical and analysis of results has to be taken 

carefully. There is a range of logistic configurations with different complexities, e.g. length of 

journey, time window service promise, economies of scale, level of congestion, etc. Analysis of 

the outcome of the proposed algorithm should consider the complexities involved in the studied 

logistic operation. 

 
To sum up 

This chapter introduces an implementation of LNS capable to deal with a rich VRP variant that 

considers time-dependent travel times and Rules on Drivers’ Hours. A characteristic of the 

proposed algorithm is that it introduces a modification to LNS movements to quickly reduce the 

number of vehicles, achieving solutions with 19% less vehicles when accounting for Regulation 

(EC) 561/2006 than previous implementations.   

 

Furthermore, a cost analysis is introduced based on the current structure of the freight industry. 

Results show the importance of adequate algorithm design and evaluation to mitigate the 

impact of the challenges that the industry is facing, the proposed algorithm provides routes that 

accounts for regulation (EC) 561/2006 with a reduced cost (8.9%) when compared to previous 

algorithms reported in the literature. Additionally, benchmark values are introduced for a VRP 

variant that considers regulation (EC) 561/2006 and the Road Transport (Working Time) 

Regulation 2005 required in the UK. 
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Chapter  6 

 
Application of a rich time-dependent VRP 
variant in home delivery and the last-mile 
problem 
 
New challenges have arisen in the transport industry, such as road congestion and regulation 

imposed by authorities to tackle the negative impacts of transport. This coupled to the ever 

demanding customer and the move to same-day delivery has meant that logistics providers 

have had to continually improve their level of service (Ehmke et al., 2012). The continuous 

growth of e-commerce in the last 16 years and home delivery imposes new conditions on the 

industry (Visser et al., 2014). In the case of required customer presence or signature, more 

accurate schedules are needed, and dispatchers and drivers often complain about their 

inaccuracy due to underestimation of travel times (Eglese et al., 2006, Ehmke et al., 2012). 

Current retail trends show that online sales represent 14% of all UK brick-and-mortar stores and 

e-commerce and this is expected to rise up to 35% by 2020 (Javelin-Group, 2011; Visser et al., 

2014),   where it is estimated that 12% of first deliveries fail (Visser et al., 2014). This situation 

has drawn attention to certain issues in the final part of the supply chain when the product is 

delivered to the customer, which is referred to in the literature as the ‘last-mile problem’ 

(Gevaers et al., 2011), 

 

The last mile is considered as one of the more expensive, less efficient and polluting sections of 

the entire logistic chain (Gevaers et al., 2011). Some of the issues involved are the security 

aspects regarding a safe place to leave the packages, the not-at-home problem when the 

customer may have to sign, and a lack of critical mass to achieve economies of scale that make 

the operation profitable (Boyer et al., 2009, Gevaers et al., 2011). Although some successful 

business examples with delivery to customers are Ocado (groceries delivery), Office Depot 

(office supply) and package  logistic providers such as UPS, there are catastrophic examples, 

such as Webvan, the online grocery business that was initially valued at over US$ 5 billion and 

eventually made losses of hundreds of millions until it went bankrupt (Boyer et al., 2009, Ring 

and Tigert, 2001). Webvan service’s promise of time windows of 30 minutes proved to be a 

huge logistical challenge (Boyer et al., 2009), where some of the biggest mistakes were  to not 

understand customers’ expectations, poor marketing, and aiming at a large geographic area, 

which proved to be too costly (Lunce et al., 2006). Companies need to face the trade-off 

between satisfying customer expectations to improve sales and the related logistic costs (Yang 

et al, 2014). 
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Last-mile costs may account for 13% to 75% of logistic costs (Gevaers et al., 2011; Onghena, 

2008), with one of the most substantial issues occurring when delivery requires the presence of 

the customer. If no specific window of delivery is arranged, the failure rate will be inevitably high 

and consequently additional visits will be necessary. Failed delivery rates may be reduced by 

allowing customers to choose the delivery time, but at the expense of increasing logistics costs. 

Tight time windows require more mileage for the same number of deliveries, a phenomenon 

referred to as the ‘ping-pong effect’ due to the graphic visualization of the schedule where 

vehicles have to revisit geographically close locations at different times to accommodate time 

windows (Gevaers et al., 2011).  

 

Although in some business models time windows are allowed in the service e.g. online 

groceries such as Ocado (1-hour time window) and Tesco (2-hours time window2) (Boyer et al., 

2009),  currently most home delivery services do not provide a time window for the delivery 

(Visser et al., 2014). The identified issues from the customer perspective in home delivery are: i) 

not on time, not at home, not delivered; ii) delivery charges are too high, delivery time too long; 

and iii) forced to stay at home (about 50% stay at home (Visser et al., 2014)).  

 

A number of technologies and initiatives are available to support planners in order to satisfy 

customers’ expectations. Such has been the scientific interest in improving logistics operations 

in cities, the concept of city logistics is defined as ‘the process for totally optimising the logistics 

and transport activities by private companies in urban areas while considering the traffic 

environment, the traffic congestion and energy consumption within the framework of a market 

economy’ (Taniguchi et al., 2001), where ITS and models are crucial in the optimisation of 

urban freight systems (Taniguchi & Thompson, 2002).  

 

The importance of improving freight transport in cities relies on the fact that 85% of the EU’s 

GDP is generated in urban areas where 72% of the European population lives (Cattaruzza et 

al., 2015; European-Commission, 2009). Some of the special characteristics of route planning in 

urban areas are:  congestion and reliability of schedules, high density, accidents, regulation and 

access restriction (especially in old European cities where streets are narrow, with restricted 

parking) (Cattaruzza et al., 2015). 

 

 

 

 

 

 

                                                           
2 http://www.tesco.com/groceries/help/default.aspx?rel=help#my_delivery. Accessed on 04-09-2015. 
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Boyer et al. (2009) studied the impact of customer density and length of the promise of time 

windows, taking into consideration logistic conditions in the US for grocery delivery, but without 

accounting for congestion, finding that costs increased in low-density areas and tight time 

windows, e.g. by comparing a delivery with no time windows with a service promise of a  3-hour 

time window, delivery costs increased by 45%. Boyer et al.'s (2009) methodology was based on 

using commercial software to provide results, with no discussion regarding the accuracy of the 

algorithm.  

 

The impact of urban congestion has increased over the last 30 years, with the 101 largest US 

cities reporting that travel delay had increased from 1.1 billion hours in 1982 to 4.8 billion hours 

in 2011 (Chang et al., 2015). Rising levels of traffic congestion mean that logistics providers 

face the challenge of maintaining time-critical service levels whilst at the same time minimising 

the extra costs that congestion and delays impose. However, the research by Boyer et al. 

(2009) does not consider the impact of congestion. 

 

The algorithm proposed in chapter 5 is capable of coping with time-dependent travel times and 

Rules on Drivers’ hours with high accuracy. Therefore, in this chapter the algorithm is used in 

instances that account for urban conditions in order to provide knowledge to researchers and 

the industry regarding the last-mile challenge and to show the implications of using the 

proposed algorithm in the analysis of the supply chain.  

 

6.1. Previous work 

The research presented by Boyer et al. (2009) was based on randomly generating a set of 

instances in an unmentioned metropolitan area of 5,120 km2, where the impact of the length of 

time window and density of customers in vehicle schedules were studied. Addresses of 

students were used as customer locations and service time was established as 10 min. Each 

experiment was replicated between 5 and 10 times and solved in a server with the routing 

software Descartes; small instances (500 customers) required from 1 to 2 hours whereas large 

instances (4000 customers) required over 24 hours.  

 

One of the main contributions of the paper is proposing a methodology to estimate delivery 

costs for multi-drop operations, where the independent variables are length of the time window 

and density of customers, see Table 28. Giving a transport cost structure with vehicle 

depreciation per year of US$ 8,000, running costs of US$ 0.375 per kilometre,  labour costs of 

US$ 20 per hour and assuming average route duration of 8 hours and that vehicles work 250 

days per year,  the cost per delivery in US$ is estimated as follows: 
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𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 =  𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 + 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 + 𝑇𝑖𝑚𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 ;   𝑤ℎ𝑒𝑟𝑒 

 

𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 = 8000 ∗  
1

250 ∗ 𝑆𝑡𝑜𝑝𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑡𝑒
  

 
 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 = 0.375 ∗  
𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑟𝑒𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑡𝑒

𝑆𝑡𝑜𝑝𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑡𝑒
 

 
 

𝑇𝑖𝑚𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 = 20 ∗  
8

𝑆𝑡𝑜𝑝𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑡𝑒
 

 
 
 

Table 28. Cost per delivery according to customer density and length of time window. 
 

 
Source: Boyer et al. (2009) 

 
Results obtained by Boyer et al. (2009) show the impact of tight time windows: providing a 2-

hour time window presents an average transport cost increment of 48%, and a 1-hour time 

window an increment of 70%. However, transportation costs per delivery decrease in the 

presence of high customer density. The costliest scenario is low customer density (500 

customers) with a time window of 1 hour (US$ 15.3 per delivery), whereas the least expensive 

scenario is in conditions with high customer density (4000 customers) with no time window 

(US$ 15.3 per delivery). This shows the impact of market penetration and service promise – in 

the studied scenarios it may mean a cost overrun of up to 118%. 

 

Low customer density might be the result of low market penetration or actually few people living 

in the area. However, it is important to consider the density of deliveries in a territory  (Boyer et 

al., 2009). An example is presented by a UPS representative statement:  ‘It's an important 

determination because it costs a little less to ship to a commercial address. That's because it's 

less expensive to deliver to densely clustered commercial addresses than to residences often 

scattered throughout sprawling suburban neighbourhoods.”’3 

 

Economies of scale are vital to obtain low logistics costs (Chopra & Meindl, 2007). In the 

research by Boyer et al. (2009), customers’ locations are randomly chosen from a list of 

students. However, the density pattern that might be found in an actual grocery delivery 

operation is not addressed nor the consequent road speeds or congestion present in the city or 

suburban areas. A metropolitan area consists of a densely populated urban area (city) and its 

less-populated surrounding territories. Take for example New York and its metro area: the 

                                                           
3 UPS http://compass.ups.com/article.aspx?id=2147483832 Accessed 05-09-2015. 

Customer

Density

Area 5120 Km2
Stops per

route

Kilometres 

per delivery

Cost per

delivery
Δ

Stops per

route

Kilometres per

delivery

Cost per

delivery
Δ

Stops per

route

Kilometres 

per delivery

Cost per

delivery
Δ

Time Windows

No TW 22.3 49.5 9.1 30.9 44.3 7.6 32.8 39.7 7.0

2 hr 15.0 56.2 13.7 50% 22.1 58.5 11.3 48% 24.0 57.1 10.3 47%

1 hr 13.4 54.8 15.3 67% 18.9 60.5 13.3 75% 21.1 59.4 11.8 69%

0.097 

(500 customers)

0.39

(2000 customers)

0.78

(4000 customers)
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population of the city is over 8 million people in a land area of 784.76 km2, the population of the 

total metropolitan area is over 18 million in a land area of 17,319 km2.4 A higher density of 

customers may be expected in the city than in the rest of the metropolitan area. Additionally, 

other circumstances that affect the operation may vary in urban or semi-urban areas, such as 

congestion and speed limits. 

 

Logistics configuration and business strategies also impose different logistic conditions. In the 

instances proposed by Boyer et al. (2009) for an online grocery company, the depot serviced an 

area of 5120 km2 with a maximum of 4000 customers, with a service time of 10 minutes and 

vehicles with a capacity of up to 33 deliveries. The case of Sainsbury, the giant supermarket in 

the UK, shows a different logistic configuration, Sainsbury’s online operates from almost 200 

sites across the UK with a fleet of approximately 1300 vans (specially designed to maximize 

volume and controlled temperature). It is available to 90 per cent of UK households, with a 6 

minutes service time and a total of 120,000 deliveries per week (Commercial-Vehicle-Engineer, 

2012). 

 

In order to understand the practical implications of the algorithm introduced in this research a 

number of scenarios are designed to account for the restraints found in urban environments 

(congestion, density of population) and service conditions of home delivery (length of the time 

window).  

 

6.2. Scenarios 

One of the different logistic conditions in the UK that differs from the United States is that the 

UK is more densely populated with a reduced area of territory. The proposed scenarios are 

based on an area of the UK densely populated, 400 km2 in size (the distance between the depot 

and the furthest customers is 10 km) and the number of deliveries are 100 and 400 customers. 

Length of time window varies between no time window to a tight time window of 1 hour. The 

depot opening time is between 9 a.m. and 7 p.m. 

 

Additionally, different levels of congestion are introduced in the analysis. The average US 

pattern of congestion in urban environments according to the time of day is presented in Figure 

19. Commonly there are two peaks of congestion, morning and evening. TomTom (2015) has 

introduced the congestion level traffic index (see Table 29 for the level of congestion in selected 

cities). The congestion level of cities is measured by the calculated increment in overall travel 

times when compared to a free-flow situation. For example, a congestion level of 20% 

corresponds to 20% longer travel times compared to free-flow conditions.  The indicator weights 

the number of measurements, therefore busier and more important roads have more influence 

than quieter roads.  Table 29 shows the TomTom traffic index for selected cities.  

 

                                                           
4 United States Census Bureau https://www.census.gov/dataviz/visualizations/026/508.php (2010) 
Accessed 05-09-2015. 
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Source: US Department of Transport (2003) 

Figure 19. Variation in Congestion by time-of-day. 
 
 

Table 29. TomTom Traffic index for selected cities. 
 

 
Source: TomTom (2015). 

 

Congestion is introduced in the scenarios following the same pattern presented in figure 19. The 

four congestion levels are as follow: i) (S0) No congestion (constant speed of 48 km/h); ii) (S1) 

the evening peak speed is reduced by a factor of 1.4 compared to a free-flow state (a very 

similar pattern to that presented in Figure 19); iii) (S2) the evening peak speed is reduced by a 

factor of 1.7 compared to the free-flow state; and the rest of the speeds in each 15 minutes 

interval are scaled accordingly, based on the pattern shown in Figure 19). Note that free-flow 

conditions are not present in the analysed period (9:00 AM to 7 PM), iv) (S3) the evening-peak 

speed is reduced by a factor of 2.0 compared to the free-flow state, and the rest of the speeds 

are scaled accordingly, a similar condition to that in Turkey. See figure 20. 

 
                                       

World rank City
Congestion

level

Morning peak

(1)

Evening Peak

(2)

1 Istanbul (Turkey) 58% 76% 109%

10 Los Angeles (US) 39% 60% 80%

16 London (UK) 37% 65% 67%

90 Birmingham (UK) 24% 46% 50%

- Southampton (UK) 24% 56% 51%

(1) The busiest one-hour-long period in the morning

(2) The busiest one-hour-long period in the evening
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Figure 20. Speeds according to congestion level. 
 
 
Due to the fact that the aim of this chapter is to show the impact of  congestion, regulation and 

customer density, a simplified experiment is designed where the distances between the nodes 

are represented as the Cartesian distances between the points. Locations of customers follow 

the patterns introduced by Solomon (1987) for 100 customers and extended to 400 customers 

by Gehring and Homberger (1999), namely: random, cluster and random-cluster. Coordinates 

are scaled to an area of 400 km2. Figure 21 shows the location of the customers in the different 

scenarios. Although in the real world many roads are quicker to traverse at some times of day 

than at others and the algorithm is capable to consider this data  (e.g., obtaining data from 

Google traffic), in the proposed instances congestion varies in an uniform way in all the links of 

the instances according to the four congestion levels presented in figure 20. Parameters are set 

to a 3.5 ton diesel van with the following cost coefficients (estimations based on FTA (2014)): 

fixed cost per vehicle per day £12.51, coefficient per km £ 0.17 and coefficient per hour £ 9.91. 

Fuel consumption is calculated according to DFT (2014) (see Figure 12 page 49) and emissions 

according to CarbonTrust (1 Litre of diesel = 2.6676 KgCO2e). 
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Figure 21.  6 scenarios of customer location (area: 400 km2). 
 
 

6.3. Experimental results 

Instances were executed in a Corei7 with 16 GB of ram in a single thread with the algorithm 

introduced in chapter 5; the primary objective was the minimisation of the number of vehicles 

and the second objective was set to minimize total cost rather than the minimisation of route 

duration. Execution time for instances of 100 customers was set to 2 minutes and for 400 

customers 5 minutes.   

 

Impact of length of time windows and customer density 

Routing results of executing three instances (clustered, clustered-randomly, randomly) with 100 

customers and 400 customers for different lengths of time windows are shown in Table 30. 

Tight time windows are more expensive and present a considerable environmental impact (up 

to 74% more cost and 196% more emissions  by comparing No time window vs. 1-Hour time 

window in instances of 100 customers). However, the impact in cost and emissions can be 

reduced with higher density (see instances with 400 customers). The studied instances show 

the importance of promise of service in logistic operations. A 1-Hour time window with low 

customer density is 111% more expensive than a No time window with high density, where 

emissions increase by 444%. 
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Table 30. Analysis of delivery costs with different length of time windows and customer density 
for a diesel van at a constant speed of 48 km/h  (No regulation) 

 
 
 
Impact of congestion and regulation 

Total costs and performance indicators for delivering in the six test instances with different 

levels of congestion and set of regulations are shown in Table 31.  As expected, with higher 

congestion levels there are increments in costs and fuel consumption (emissions) in any case of 

regulation (up to 9% cost increment at congestion level S3 in EC-Regulation and up to 6.3% 

increment in emissions at No regulation). Enforcing the full set of regulations in the UK has an 

average extra cost of 5.7% at different levels of congestion. 

 
 
 

Table 31. Delivery costs with different levels of congestion for a diesel van. 
 

 
 
 

 

 

 

 

  No Time Window   AM or PM   2 Hour Time Window   1 Hour Time Window 

3 Instances of 100 Customers       Δ     Δ     Δ 

NV 6     6     6     9   

Total Route Duration (Hr) 37.1     40.7     49.2     59.6   

Total Distance (Km) 341.3     487.8     759.5     1,012.7   

Total KgCO2e 63.0     90.1     140.2     187.0   

Total Cost (£) 500.8     561.4     691.8     875.4   

KgCO2e per delivery 0.2     0.3 42.9%   0.5 122.5%   0.6 196.7% 

Cost per delivery (£) 1.7     1.9 12.1%   2.3 38.1%   2.9 74.8% 

                        

3 Instances of 400 Customers                     

NV 15.0     15.0 Δ   18.0 Δ   22.0 Δ 

Total Route Duration (Hr) 135.5     139.0     160.0     193.3   

Total Distance (Km) 743.8     910.4     1,723.0     2,313.0   

Total KgCO2e 137.3     168.1     318.2     427.1   

Total Cost (£) 1,657.0     1,720.0     2,103.8     2,584.1   

KgCO2e per delivery 0.1     0.1 22.4%   0.3 131.6%   0.4 211.0% 

Cost per delivery (£) 1.4     1.4 3.8%   1.8 27.0%   2.2 56.0% 

 

    
NV Route Duration 

(Hr) 

Travel Time 
(Hr) 

Distance 
(Km) 

KgCO2e Delivery Cost     

      Δ (£) Δ   Δ 

N
o

 r
e

gu
la

ti
o

n
 S0 97 814.2 172.7 8,291.6 1,531.0   10,692.3       

S1 97 829.2 191.6 8,663.3 1,609.9 5.1% 10,904.1 2.0%     

S2 99 838.8 198.5 8,495.6 1,593.8 4.1% 10,995.8 2.8%     

S3 103 855.2 218.5 8,456.2 1,627.9 6.3% 11,201.7 4.8%     

              Sum delivery cost (£)   43,793.8   

                        

EC
-R

eg
u

la
ti

o
n

 

S0 100 838.1 178.6 8,574.7 1,583.3   11,014.8       

S1 100 850.5 188.9 8,542.7 1,587.4 0.3% 11,132.2 1.1%     

S2 101 860.1 195.8 8,381.6 1,572.4 -0.7% 11,212.5 1.8%     

S3 108 930.2 218.0 8,438.9 1,624.4 2.6% 12,004.5 9.0%     

              Sum delivery cost (£)   45,364.1 3.6% 

Fu
ll 

R
e

gu
la

ti
o

n
                       

S0 100 862.9 177.0 8,498.3 1,569.2   11,247.6       

S1 101 880.8 189.7 8,439.0 1,572.1 0.2% 11,427.4 1.6%     

S2 103 900.1 199.4 8,537.4 1,601.6 2.1% 11,660.4 3.7%     

S3 109 921.6 222.6 8,627.9 1,660.1 5.8% 11,964.0 6.4%     

              Sum delivery cost (£)   46,299.4 5.7% 
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6.4. Discussion of the chapter 

This chapter introduces a practical application of using a rich VRP variant to study the last-mile 

problem found in home delivery. Although extensive analysis could be proposed regarding the 

impact of decisions related to routing in the supply chain, the aim in this research is to show the 

possible benefits obtained with algorithm research based on the necessities of the industry. The 

presented analysis shows the impact of length of time windows at different levels of density of 

deliveries in a territory of 400 km2 in terms of delivery costs and emissions (by introducing the 

estimation of fuel consumption according to average speed and vehicle type proposed by the 

DFT (2014)),  e.g. the cost of imposing a time window of 1 hour with 100 customers is a cost 

increment of 74% and 196% more CO2 emissions when compared to a service with no time 

windows, etc. 

 

A straight comparison of results with the research  of Boyer et al. (2009) is difficult due to the 

fact that cost structure is different in each country as is the size of the studied territories, in 

Boyer et al. (2009) the studied area is more than 12 times  the territory in this research, a 

characteristic of US when compared to the UK in logistic challenges. Nevertheless, the cost 

trend of imposing tighter time windows is similar: the tighter the time window the higher the cost. 

The solution method proposed by Boyer et al. (2009) was based on commercial software, which 

required execution time of 1 to 2 hours in instances of 500 customers and congestion was not 

considered. The algorithm proposed in this research requires 2 minutes to produce solutions 

that improved best-known solutions for  time-dependent problems with 100 customers. 

Execution time for instances with 400 customers was set to 5 minutes.  

 

The impact of congestion in the studied logistic configurations show   the relation between the 

level of congestion and logistic costs: a congestion level of 2 (where speed in the evening peak 

is reduced by a factor of 1.4 compared to a free-flow state) imposes an extra cost of 9%. 

Further analysis of results shows the impact of service time on this type of operation. In the 

proposed scenarios, service time was set at 6 min based on the case of Sainsbury’s 

(Commercial-Vehicle-Engineer, 2012), where the driver would expend a large portion of their 

day in the doorway of customers,  around 75% in the scenario with 400 customers, where the 

average number of deliveries per vehicle per day is 69  (the total time per route expended in 

service time is 6.8 hours out of around 9 hours of route duration per vehicle). This shows the 

importance of the training and experience of drivers to reduce the service time per delivery in 

multi-drop operations, such as parcel delivery or online groceries. 
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Continuing with the case of online groceries, in recent years it has been stated in the media that 

these types of operations are unviable, with logistic costs per delivery of £205 where brick-and-

mortar customers subsidize online shoppers. However, the analysis of results in this chapter 

shows the importance of the length of time window and density of deliveries, where costs can 

be as low of  £1.4 with no time window or £1.8 with a 2-hour time window or as high as £2.9 

with a 1-hour time window in territories with low customer density. These values are not 

intended to be representative to the industry, but they are an example of how to use algorithms 

to calculate delivery costs. The use of rich algorithms with high accuracy may help the industry 

to support logistics operations and the design of the supply chain to provide better solutions 

according to the specific characteristics of the business model.  

 

As previously mentioned, additional analysis could be proposed to study other issues in delivery 

operations with the algorithm introduced in chapter 5, such as: i) delivery cost structure and the 

relation between length of time windows, congestion and location of customers; ii) impact of the 

location of the depot, where the fast execution time of the algorithm may be used to run 

simulations; iii) impact of vehicle selection, etc. However, these analyses are out of the scope of 

this research and it was only intended to show the relevance of developing such algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
5 Daily Mail  http://www.dailymail.co.uk/news/article-2707071/Supermarket-giants-lose-100million-
year-online-delivery-services-Cost-delivery-means-effectively-paying-customers-shop-them.html.  
Accessed on 04-09-2015. 
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Chapter  7 

 
Contributions and conclusions 

 
This research takes new approaches, or at least some that are not common in the literature, 

regarding the Vehicle Routing Problem. It is not only based on taking a variant and improving 

best-known solutions for a set of instances or showing an industry implementation without 

algorithm evaluation, but it considers the requirements of the industry and the available data 

sets brought by ITS development (presenting a literature review of its barriers), where the 

importance of the variants chosen for study are validated by a literature review and surveying of 

companies. Algorithms are specifically tailored and their accuracy is evaluated with available 

benchmark instances. The proposed algorithms in this research consistently improve theoretical 

results of state-of-the-art implementations to solve the studied variants, and the managerial 

implications of such algorithms are demonstrated in scenarios that consider the restraints found 

in real operations.  

 

The literature review shows that not using time-dependent models and congestion data when 

planning vehicle routes might lead to inaccurate schedules that underestimate actual travel 

times and violate time windows of deliveries expected by customers, where all the effort of 

providing optimised routes is lost in congested environments by not using an adequate model 

and data set. The freight industry is responsible for transporting goods through traditional 

logistic configurations along with satisfying new customer expectations. Current retail trends 

show that customer preferences are shifting towards e-commerce and consequently home 

delivery. The last mile problem is considered one of the major challenges in distribution, where 

urban conditions have to be considered, congestion has continuously increased and its patterns 

are available thanks to ITS implementations to a certain extent. 

 

Although main CVRS companies claim that models that consider congestion are implemented, 

the surveyed companies recognised that the software capabilities that required the most 

development are: i) route optimisation minimising the impact of congestion, and ii) accuracy of 

information regarding vehicle restriction to certain zones and times. Gathering, processing and 

distributing the data required to provide accurate maps and data that satisfy the requirements of 

the freight industry requires policy and resources to involve a range of stakeholders, where a 

number of initiatives have been put in place. The scope of this research is restricted to reporting 

on current technologies and data sets mentioned in the literature along with their barriers, and 

providing knowledge regarding the core analytic tool, the VRP variants that optimise freight 

operations and are capable of mitigating the impact of new conditions such as congestion and 

regulation. 
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The literature review of techniques to solve the VRP shows that exact algorithms are not viable 

for rich models, where in some instances in the range of hundreds of customers for the basic 

VRP with time windows have eluded achieving optimality and metaheuristic algorithms are 

capable of providing high accuracy in execution times that are sufficient to support the industry 

with an adequate algorithm design. Issues that must be considered in algorithm design include: 

i) metaheuristics do not guarantee optimality and their accuracy should be evaluated with 

benchmark instances. Poor accuracy has been reported in some implementations and a 

characteristic of the freight industry is low profit margin, therefore solutions should be as 

effective as possible to reduce costs and mitigate the impact of the operation; ii) although the 

Operational Research community is interested in developing complicated approaches with high 

theoretical value, the industry requires easy-to-implement algorithms capable of producing high 

accuracy bearing in mind the restrictions found in real operations in reasonable time. 

 

Although VRP variants that consider congestion have been previously proposed, research with 

adequate algorithm evaluations is still scarce. For the time-dependent VRP with time windows 

(TDVRPTW) a set of instances were previously introduced; the primary goal is the minimisation 

of the required number of vehicles and the secondary objective is travel time and/or distance 

minimisation. In this research an algorithm to solve time-dependent VRP variants is tailored 

using the concept of neighbourhood exploration based on LNS along with algorithm 

modifications in order to speed up the search process in the presence of time-dependent travel 

times by allowing penalties for time windows violation in the stage of vehicle minimisation and 

focusing the search on allocating customers particularly difficult to insert in a reduced number of 

routes. Previous LNS approaches used different strategies in this stage (utilisation of a request 

bank to temporarily “store” unrouted customers and try to insert them in a feasible solution).  

 

In the stage of travel time minimisation, neighbourhood exploration only allows feasible 

solutions. LNS movements prove to be more efficient than well-known neighbourhood 

structures for providing highly accurate solutions in both stages using the proposed tailoring; the 

algorithm is capable of obtaining reductions in some test instances for the TDVRPTW of up to 

18% in distance with 19% less travel time and 7% fewer vehicles. It consistently provided 

improved solutions in the 672 test instances (average reduction in number of vehicles of 4.15% 

and travel time of 12.0%).  
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A richer time-dependent variant that considers Drivers’ hour rules in urban or interurban 

environments Regulation 561/2006 (EC) (European Union, 2006) and time windows was also 

previously introduced. In this variant the primary objective is the minimisation of the number of 

vehicles, while the second objective is the minimisation of route duration. In this research, LNS 

is also adapted to cope with driving time regulation following a similar approach designed for the 

TDVRPTW. The LNS tailoring is capable of obtaining an average reduction in the number of 

vehicles of 19% and route duration of 4.4% whilst also reducing travel distance by 17.7%. 

Additionally, an extended variant is introduced to also comply with the Road Transport (Working 

Time) Regulation 2005 (VOSA, 2011) in UK freight regulation.  

 

The economic analysis of results according to the cost structure of the industry is a clear 

example of the benefits of tailoring algorithms to accommodate the new restrictions that the 

logistic sector is facing. By using the proposed algorithm in this thesis, routing solutions that 

comply with Regulation 561/2006 (EC) and time-dependent travel times for vehicles over 3.5 

tons are 8.9% less expensive than using a previous implementation reported in the literature for 

this variant.  

 

From the theoretical perspective, in algorithm design, minimising the number of vehicles in 

richer variants has been a challenge. Proof of that is the TDVRPTW along with the VRP with 

time windows and Rules on Drivers’ hours (Prescott-Gagnon et al., 2010). The proposed 

modification of LNS to intensify the search in customers that generate penalties in solutions with 

a reduced number of vehicles was capable of reducing the number of vehicles in the studied 

variants. The proposed algorithms are capable of obtaining high accuracy in a matter of a few 

minutes even in variants as computationally demanding as time-dependent travel times with 

Rules on Drivers’ hours, where it is also required to decide the departure times that minimise 

the objective. Fast execution times are a desirable characteristic in everyday operations or 

when analysing different decisions within the configuration of the logistic configuration in its 

design or planning. With regard to the issues in algorithm design previously mentioned, LNS is 

considered an easy-to-implement metaheuristic and this research proves its capacity to achieve 

high accuracy where algorithm modification is proposed and described in order to provide 

accurate solutions for relevant variants that are important to the industry. 

 

The benefits of using fast and accurate algorithms that consider congestion and regulation are 

demonstrated in this research by studying the last mile problem. The concept of city logistics 

relies on optimising transport activities in urban areas while considering the following elements: 

congestion, energy consumption and the market economy. The algorithms developed in this 

research take these elements into consideration and provide an example of their utilisation by 

analysing the impact of length of time window (e.g. the shorter the time window, the more CO2 

emissions per delivery) and different levels of congestion (e.g. with more congestion, more 

vehicles might be required).  
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Congestion is present in urban areas and has been consistently increasing. Additionally, the 

market is shifting towards new trends involving home delivery in congested environments with 

higher customer expectations. Logistic companies might make use of the algorithms proposed 

in this research to understand the capabilities of their current infrastructure, identify the impact 

of changes within their supply chain and plan accurate schedules that account for congestion 

and Rules on Drivers’ hours in order to comply with customer requirements at a minimum cost 

with the rationalisation of available resources. Nevertheless, recent contributions in VRP 

variants that try to reduce the environmental impact of transport have been recently introduced; 

it is worth to propose as future research techniques to reduce CO2 emissions while maintaining 

cost reductions with the tailoring of the algorithms proposed in this research. 
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