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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aerodynamics and Flight Mechanics Research Group

Doctor of Philosophy

NUMERICAL SIMULATION OF VORTEX DIPOLE FORMATION AND

EVOLUTION IN STABLY STRATIFIED FLUID

by Daniel Neil Mulvaney

Direct numerical simulation has been used to study how axisymmetric vorti-

cal �ow structures evolve whilst propagating horizontally in both homogeneous

�uid and in �uid with a linear stable density strati�cation in the vertical direc-

tion. The structures studied were initially toroidal vortex rings and impulsive

jets formed from a brief, horizontal injection of �uid into a quiescent domain.

Previous experimental studies have demonstrated that when these initially

axisymmetric structures are allowed to evolve under the in�uence of stable

strati�cation, acceleration due to buoyancy acts to suppress vertical displace-

ment of �uid particles, eventually reducing the �ow to a pair of contra-rotating,

planar vortices, commonly referred to as a vortex dipole.The numerical simula-

tions documented in this thesis demonstrate the process by which the initially

axisymmetric structures are transformed into late time dipoles in a strati�ed

�uid, with the stages of this transformation categorised both through visual

changes in the �ow �eld as well as characteristic variations in kinetic energy

and buoyancy variance histories that are inaccessible to the experimental work,

thus allowing the energetics and vorticity �elds of these �ows to be directly

correlated for the �rst time. Additionally, it has been demonstrated that while

di�erent means of imparting horizontal momentum to the �uid through an ini-

tial solution or di�erent pro�les of momentum injection may generate distinct

vorticity �elds at the early time, the energetics, scaling behaviours and agree-

ment with theoretical models appear universal across the late time dipoles

formed from these cases, which has not been addressed directly in previous

literature.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview

The work conducted for this thesis is a numerical study looking to create

a simulated analogy to the wide range of experimental and theoretical work

documented in literature regarding the formation of vortex dipoles. Speci�-

cally, this work is concerned with dipoles that are formed when a horizontally

propagating region of �uid, with an initially axisymmetric structure about

its propagation axis, deforms due to the in�uence of the background density

gradient in a stably strati�ed �uid. Such phenomena have been observed by

Flór et al. (1995),Voropayev et al. (2008) and Praud and Fincham (2005) to

name but a few, but by comparison numerical work in this �eld appears to be

considerably lacking.

This thesis documents the generation of numerically simulated analogies

to these experimental works, with the aim of not only verifying existing ex-

perimental observations and theoretical models, but also adding new insight

to the formation process of late time dipoles through the energetics and buoy-

ancy scalar �eld which are unavailable (or extremely di�cult to determine)

in experimental studies. The universality of the late time dipoles across a

range of initial conditions, Reynolds numbers and strati�cation strengths is

also demonstrated.

1



CHAPTER 1. INTRODUCTION

1.2 Literature review

1.2.1 The formation of a vortex ring and trailing jet from

an impulsive momentum injection

The formation of coherent, vortical structures from impulsively acting momen-

tum sources into �uid volumes is a widely observed phenomena in nature, has

been studied extensively in both laboratory experiments and numerical sim-

ulations, and has a range of useful applied engineering applications. For the

purposes of this project, we consider two such vortical structures, namely a

toroidal vortex ring, and its two dimensional analogy, a vortex dipole.

In nature and the laboratory, a vortex ring can be formed when su�cient

impulse is applied to a slug of �uid to accelerate it to a higher speed relative

to �uid surrounding it. Often in laboratory experiments, a piston/cylinder

arrangement is used to accelerate the �uid slug (Gharib et al., 1998; Dabiri

and Gharib, 2004) though other novel methods involve the use of speakers con-

nected to a waveform generator to create a short, controlled momentum addi-

tion to a �uid (Dawson et al., 2010) and the use of a cyclically closing/opening

jet exhaust to break up an otherwise continuous �uid �ow into shorter, im-

pulsive intervals (Ruiz et al., 2010). Whichever method is used to create the

impulsive injection, the physical mechanism that leads to the formation of a

vortex ring is much the same.

A static, axisymmetric momentum source applied impulsively to an oth-

erwise quiescent �uid of uniform density will �rst create a starting jet. As a

consequence of viscous forces between the moving jet �ow and the stationary

�uid that surrounds it, a shear layer forms at the outer extreme of the jet's

radius. At the leading edge of the jet, the outer part of this shear layer begins

to decelerate and �roll up�, with a radial component of motion introduced that

eventually forms a vortex ring. A simple illustration of this is given in �gure

1.1.

Gharib et al. (1998) studied the development of these jets in experiments

using a round, piston driven jet nozzle with the jet velocity recorded at all

times. Using a combination of �ow visualisation and Particle Image Velocime-

try (PIV), it was discovered that for an impulsive, constant velocity jet the

circulation of the leading vortex ring initially increased linearly with time. If

the jet was sustained long enough however, a point was reached where the

vortex ring suddenly gains no further circulation and detaches from the shear

layer that was feeding its development. This was described as vortex ring

�pinch o��. The authors proposed a non-dimensional time scale based on the

2
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Figure 1.1: Schematic of vortex ring production from a jet nozzle with output

velocity VJ and diameter DJ

jet velocity, UJ , and diameter of the jet ori�ce, DJ , to give

T =
UJt

DJ

. (1.1)

The duration of the jet, and the time at which vortex pinch o� is achieved

can be given in terms of this non-dimensional time scale and are hereafter

de�ned as TJ and TΓ respectively. Both experimental studies (Akhmetov,

2001; Dawson et al., 2010) and numerical simulations (Boersma et al., 1998;

Mohseni et al., 2001) have reported TΓ to have a value of approximately 4. If

TJ < TΓ, all of the circulation input into the �ow is entrained into the leading

ring once the jet input has ceased. For TJ > TΓ the leading vortex ring is

followed by a trailing jet that includes a series of smaller vortex ring structures.

Boersma et al. (1998) observed that for a sustained jet, these secondary rings

were formed through Kelvin-Helmholtz instability and were observed to break

down to quasi-turbulent �ow at a downstream point where x/D ≈ 8, where x

is the downstream distance from the �uid nozzle/outlet.

The concept of formation time and vortex ring pinch o� has interesting

applications when using impulsive jets or pulsed jets as a form of propulsion.

Krueger and Gharib (2003) found that optimum propulsive e�ciency (for a

single momentum injection) is achieved when generating a vortex ring from

a jet with TJ = TΓ i.e. by forming a vortex ring with maximum possible

circulation and shutting o� the momentum source at the exact time of pinch

o�. Such a phenomenon has been studied in nature with examples including

marine creatures such as squid that utilise jet-like propulsion and cardiac �ows

in humans. Though not strictly relevant to the main aims of this project, a

more comprehensive description of the formation time/propulsive e�ciency

relation for biological propulsion can be found in the review by Dabiri (2009)

and the works cited therein.

The experimental study of Afanasyev (2006) attempted to extend the con-
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cept of vortex ring pinch o� and the non-dimensional time scale to a vortex

dipole formed by a quasi two dimensional momentum injection into a shallow

layer of �uid. The momentum injection was provided by a paddle partially

submerged in the shallow layer between two bounding walls (analogous to the

piston/cylinder arrangement for three-dimensional works), with the movement

of the paddle through the channel creating a two dimensional starting jet. In-

stead of rolling up into a vortex ring, the shear layers at the outer edges of the

starting jet roll up in opposite directions to create two contra-rotating vortex

patches (the vortex dipole), which grow in size and circulation as they con-

tinue to receive mass and momentum from the source. Like the formation of

a vortex ring, the circulation in the dipole initially grows linearly with time

(assuming a constant rate of momentum addition), though instead of the cir-

culation being maximised at some time, TΓ, the circulation continues to rise

linearly until a time TS, after which linear increase continues but at a reduced

rate. This time, TS, was referred to as a vortex dipole �starting time�.

For the purposes of this project, we are interested in the development of

vortex dipoles, not from a two dimensional starting jet, but a three-dimensional

vortex ring and trailing jet subjected to a constraint against motion in the

vertical direction. Speci�cally, this project is concerned with how impulsive

jet �ows develop in a �uid volume with a linear, stable density strati�cation

in the vertical direction.

1.2.2 Formation of a vortex dipole from a starting jet in

a strati�ed �uid

When the momentum injection that creates an impulsive jet is shut o�, the

injected �uid propagates downstream as a quasi-axisymmetric starting jet,

which may take the form of a single vortex ring (van Atta and Hop�nger,

1989), a sequence of laminar vortex rings (Gharib et al., 1998) or a turbulent

cone (van Heijst and Flór, 1989) depending on the duration and Reynolds

number of the source. In a su�ciently large domain of uniform density �uid,

the propagating structure maintains a certain degree of axisymmetry with

equal vertical and lateral length scales. However, a vertical constraint placed

upon the �ow either via the domain boundaries or buoyancy forces due to a

non-uniform density will cause the axisymmetry to break down.

In the case of buoyancy forces a�ecting the development of the erstwhile

axisymmetric structure, one of the most often considered scenarios is where

the �uid has been given momentum in a horizontal plane in a domain with
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a stable background density gradient in the vertical direction. In nature, a

�uid layer with such a gradient can be found in the near-surface region of

ocean bodies (the �pycnocline�) which can typically feature a near linear, stable

salinity-based density pro�le from depths of 100 to 1000 metres, depending on

location, season and other factors.

The general e�ects of buoyant forces on �uid �ow structures are docu-

mented extensively in Turner (1979). Within a stable density pro�le, motions

induced by a three dimensional vortical structure will initiate mixing in the

vertical direction, with the denser �uid from lower regions within the density

gradient lifted upwards and lighter �uid carried downwards. Where denser

�uid has been moved above lighter �uid, the density pro�le is no longer stable

and buoyancy forces the displaced �uid particles back towards their equilib-

rium level. If we consider a single particle, if it is displaced from its equilibrium

layer in an otherwise quiescent domain, the �uid particle will be subjected to

a force, m′g, where m′ is the di�erence in mass between the displaced particle

and the �uid layer it currently lies within and g is the acceleration due to grav-

ity. A negative value of m′ (�uid particle less dense than surrounding layer)

will result in an upward force and a positive value of m′ (�uid particle more

dense than surrounding layer) will result in a downward force. In the case

of a slightly displaced �uid particle, these forces act to accelerate the particle

back towards its equilibrium level. Each time it reaches the equilibrium level it

will overshoot and now be subjected to buoyancy forces acting in the opposite

direction, with the particle continuing to oscillate about the equilibrium level

with an angular frequency,

N =

√

−
g

ρRef

∂ρ

∂z
. (1.2)

The quantity N is known as the buoyancy or Brunt-Väisälä frequency, and

has a constant value throughout the domain provided the background density

gradient, ∂ρ/∂z is uniform. The reference density, ρRef , is taken as a repre-

sentative density from within the domain. The Boussinesq approximation, as

detailed by Turner (1979), allows for the use of a constant reference density

provided that changes in density over the domain's vertical extent are su�-

ciently small. The amplitude of the particle oscillation about the equilibrium

layer will decay over time due to viscous forces until they reach negligible

levels.

In the case of a three-dimensional vortical �ow, the mixing and subsequent

particle displacement generates buoyancy forces which oppose the vertical mo-

tions within the �ow, transferring some of the vertical component of kinetic
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energy into internal energy of the buoyancy scalar �eld, referred to hereafter as

buoyancy variance. If the magnitude of inertial forces within the �ow is su�-

ciently high, compared to that of the buoyancy forces, then the development of

the �ow will be more or less equivalent to a neutrally strati�ed equivalent. In

the case of a free shear �ow where no additional kinetic energy is contributed

to the �ow, the magnitude of inertial forces will decay due to viscosity until the

buoyancy forces become signi�cant. Eventually, the buoyancy forces will be-

come su�ciently dominant to completely suppress vertical motion within the

�ow, reducing the �ow structures to a quasi-two-dimensional state, a process

known as buoyant/gravitational collapse.

In the case of a decaying starting jet, the previously coherent vortical struc-

tures develop buoyant instabilities as they move downstream (van Atta and

Hop�nger, 1989), with the individual structures collapsing to patches of two

component, vertical vorticity. As observed by Voropayev et al. (1991), the

most forward part of the starting jet (the leading vortex ring in an initially

laminar case) is the �rst to undergo the process of buoyant suppression, form-

ing a slow-moving front region once it has collapsed. As the trailing structures

subsequently collapse, they advect forward to merge with the front region. All

the while, the Reynolds number of the �ow decays rapidly and the smaller

structures, now that they have been reduced to an arrangement of planar ed-

dies, begin to merge to form larger structures. This process has previously been

described as an �inverse energy cascade� (Marino et al., 2013). Eventually, all

the eddies merge to form two contra-rotating patches of vertical vorticity - the

�vortex dipole�.

The formation of vortex dipoles in a strati�ed �uid is a widely observed

phenomena in large-scale �ow systems in nature (Fedorov and Ginsburg, 1989).

Past laboratory research to understand such structures has led to similar

dipoles being created experimentally, with a commonly-used method utilis-

ing a horizontal momentum source acting impulsively into a �uid tank with

stable density strati�cation (Voropayev et al., 1991; Flór et al., 1995). This

stable strati�cation is achieved through layering saline solutions of di�erent

concentrations within the tank to create a linear density pro�le.

Whilst the collapse of a starting jet to a dipole under such conditions has

been widely documented, available literature contains little quantitative data

on the transformation from quasi-axisymmetric jet �ow to a vortex dipole,

with most focusing attention instead on the evolution of the late-time dipole

once it has fully formed.

The most analogous literature that quanti�es the buoyant collapse pro-
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cess of a three-dimensional, vortical structure in some detail are experimental

studies of a single, horizontally propagating vortex ring in a stably strati�ed

�uid as studied by van Atta and Hop�nger (1989), Johari and Fang (1997)

and Scase and Dalziel (2006). These studies generated isolated vortex rings

using an impulsively acting momentum source in much the same way as was

discussed in section 1.2.1, but with a su�ciently small injection duration such

that only a single ring is formed that contains almost all of the �ow circulation

with no appreciable trailing jet (i.e. TJ < TΓ). A vortex ring generated in such

a way propagates horizontally with velocity, UR, as

UR =
Γ

4πRR

(ln
8RR

δR
+CR) , (1.3)

where RR is the ring radius, δR is the ring core radius and CR is determined

from the shape of the vorticity distribution within the core (see Archer et al.

(2008)). The ring radius and volume gradually increases due to the entrain-

ment of ambient �uid, which corresponds to a reduction in ring velocity and

the rotational speed within the core. As with the more elaborate leading ring

and trailing jet structures considered previously, an initially axisymmetric ring

propagating horizontally through a stably strati�ed domain will maintain its

axisymmetry provided the in�uence of buoyant forces is small compared to the

rotational inertia within the ring core. The studies mentioned here quantify

the ring in terms of two non-dimensional parameters, a ring Reynolds num-

ber, ReR and a ring Froude number FrR. The exact de�nition of length and

velocity scales used to determine each varies between studies, though a typical

example is an adaption of that used by Scase and Dalziel (2006), viz.

ReRy =
2URRRy

ν
, (1.4)

ReRz =
2URRRz

ν
, (1.5)

FrR =
UR

NRRz

. (1.6)

The two Reynolds numbers given here are based on the lateral radius, RRy,

and vertical radius, RRz, of the ring, which are initially identical for an ax-

isymmetric ring but will di�er as the ring is distorted under the in�uence of

buoyancy. Provided the initial Froude number is high enough, the ring will

initially maintain similar levels of circulation in both the vertical and lateral

directions. As the ring speed decreases the Froude number rises, with baro-

clinic torque now acting to reduce the circulation in the lateral plane. As a

consequence, the sections of the ring nearest the vertical midplane (predomi-

nantly consisting of vertical vorticity) will propagate faster than the higher and
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lower sections, leading to a distortion of the formerly toroidal structure. van

Atta and Hop�nger (1989) found that for rings with initial Froude numbers

in the range 1.0-2.0, instability development and buoyant collapse occurred

when the Froude number dropped to around half the initial value. The au-

thors clari�ed that the relationship between initial and collapse Froude number

could not be conclusively determined from the experiments due to the limited

range of Froude numbers considered, as well as various experimental uncer-

tainties. Johari and Fang (1997) proposed and experimentally veri�ed that

the collapse of the ring could be predicted in terms of either elapsed time or

distance propagated, with the point of collapse increasingly linearly with a

composite parameter ReR0Fr
2/3
R0 , where ReR0 and FrR0 are respectively the

initial Reynolds and Froude numbers of the ring.

In either case, while some e�ort has been made to quantify the point of

buoyant collapse in terms of Froude number, the de�nition of when precisely

collapse occurs remains somewhat vague, though the apparent Reynolds num-

ber and Froude number dependence discussed in these vortex ring studies

provides a starting point from which to uncover such a de�nition. Scase and

Dalziel (2006) noted that a collapsing vortex ring will go on to form a quasi-

horizontal vortex dipole that bears a strong resemblance to those seen from

the collapse of a more elaborate vortex ring and trailing jet structure.

1.2.3 Description of the late time strati�ed dipole

While the transformation of an axisymmetric vortex ring and trailing jet struc-

ture to a vortex dipole has not yet been quanti�ed in signi�cant detail, much

more attention has been paid to the structure of the late time dipole itself,

often involving comparison with a theoretical dipole model.

A vortex dipole, literally two contra-rotating vortices positioned su�ciently

close to one another to signi�cantly interact, is a widely recognised �ow feature

and source of considerable research interest in the �eld of �uid dynamics. As

discussed by Voropayev et al. (1991), conceptually, the simplest example of

a vortex dipole is two inviscid line vortices orthogonal to a two-dimensional

plane, separated by distance, d, with equal magnitude but opposite signed

circulation, ±Γ, with no background velocity imposed (Llewellyn Smith and

Nagem, 2013). In isolation, each vortex induces a circular velocity �eld around

itself with the radial and tangential velocity components (ur, uθ) given by

ur = 0, (1.7)

uθ =
Γ

2πr
, (1.8)
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where r =
√
x2 + y2 and the cartesian coordinates system, (x, y), is centred

at the vortex. The Cartesian velocity �eld, (u, v), around two such vortices

centred at (0,±d/2) is given in �gure 1.2, and is determined by superposing

two velocity �elds calculated from equations 1.7-1.8. This vortex dipole ar-

rangement will propagate along the x axis with a self-induced velocity,

UD =
Γ

2πd
. (1.9)

While this inviscid, point-vortex description is a valid example of a dipole

�ow, being a steady solution of the Euler equations, most recent literature con-

cerning dipole development makes reference to more elaborate dipole models.

The review paper of Meleshko (1994) discusses in depth a model referred to

henceforth as the �Lamb-Chaplygin� dipole model. This model originates from

the apparently unrelated works of British mathematician, Sir Horace Lamb,

and Russian/Soviet mathematician, Sergey Chaplygin, who both presented

very similar analyses of dipolar �ow in the late nineteenth and early twentieth

centuries. The model describes a circular region with radius, a, which contains

two contra-rotating patches of vorticity, the stream function of which is given

(in radial coordinates with origin at the dipole centre) as

ψ = −
2UD

kJ0(ka)
J1(kr) sin θ, for r ≤ a, (1.10)

where UD for this model is a prescribed dipole propagation velocity, J0 and J1

are respectively zeroth and �rst order Bessel functions of the �rst kind and k

is given by

ka = 3.8317. (1.11)

Outside of the region r ≤ a, the model gives the stream function

ψ = UD (r −
a2

r
) sin θ, for r ≥ a. (1.12)

Equation 1.11 gives the �rst zero of Bessel function, J1, and is required to give

a smooth transition of ψ between the circular vortex and surrounding region.

This model gives a stationary dipole with a background velocity UD (as the

coordinates system is centred at the dipole).

Flór et al. (1995) drew extensive comparisons between this dipole model

and dipoles formed via a horizontal momentum injection into stably strati�ed

�uid. In particular the authors make reference to the Lamb-Chaplygin model

prescribing a linear relationship between stream function and vorticity within

the two-dimensional plane i.e.

ωz(x, y) = k
2ψ(x, y). (1.13)
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This predicts that that streamlines within the vortex dipole are also lines

of constant vorticity, and as such the vorticity level outside the bounding

streamline of the dipole is taken to be zero, assuming a stationary or uniform

background reference plane. An example of the vorticity distriubtion within a

vortex dipole prescribed by this model is given in �gure 1.2.

Figure 1.2: Contours of vorticity for a stationary Lamb-Chaplygin dipole,

calculated from equations 1.10-1.12 with UD = 1 and a = 2.

The work of Flór and van Heijst (1994) found that the relationship between

vertical vorticity and stream function was linear for dipoles that evolved from

a laminar starting jet prior to buoyant collapse, whereas a turbulent starting

jet gave a relationship more akin to a hyperbolic sine function such as that

seen demonstrated by the later work of Flór et al. (1995). Comparison of the

experimentally generated dipole visualisations from Flór et al. (1995) and the

vorticity contours in 1.2(b) indicates that this experimental dipole is indeed

similar in shape to the circular Lamb-Chaplygin prediction, with the most

obvious di�erence being the trailing part of the structure, which features two

vortical extensions that appear to result from the dipole entraining additional

�uid as it propagates downstream.

As is typical of many experimental studies of vortex dipoles forming in

strati�ed �uid (Voropayev et al., 1991, 2008), the vertical vorticity data is

taken from the same horizontal plane into which the momentum source injects

�uid (often referred to as z = 0 or the �vertical midplane�). Limiting analysis of

the dipole to this single plane provides for easy comparison between the experi-

mental results and two-dimensional models such as Lamb-Chaplygin. However,

while some agreement may be found between the model and the �ow within

this single plane, two important factors are excluded in such an analysis. First,

even if a circular region exists at the front of the dipole that contains a vortic-

ity �eld akin to that of a Lamb-Chaplygin model, behind this region exists a
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vortical �tail� or wake. The nature of this tail and how signi�cant it is with re-

spect to the dipole front region appears to vary signi�cantly between di�erent

studies, due to the wide range of case parameters and analysis/visualisation

techniques utilised. Such a tail is not limited to the experimental, strati�ed

domain cases. The two-dimensional simulations of Delbende and Rossi (2009)

demonstrate the origin of a vortical tail from a combination of vorticity di�us-

ing from the outer edges of the dipole front region, which is then left behind

as the front region continues to advect forward at a higher velocity.

Secondly, the two-dimensional models do not consider how development of a

vortex dipole's vertical structure can impact upon its evolution in the horizon-

tal plane. In the case of Voropayev et al. (1991), the inherent assumption made

is that the fully formed dipole has a su�ciently small vertical length scale com-

pared to its size in the horizontal plane, that the dipole �ow is two-dimensional

to the �rst order, paving the way for a two-dimensional analysis. However, as

discussed at length by Praud and Fincham (2005), vortex dipoles that evolve

from impulsive injections into strati�ed �uid exhibit a distinct three dimen-

sional structure that had been only �eetingly acknowledged in most relevant

literature. They found that many of the key dipole statistics at any horizontal

plane within the dipole (e.g. vertical vorticity and propagation speed) could

be well predicted by Gaussian distributions in the vertical direction, using the

value at the vertical midplane as a maximum and �tting a Gaussian pro�le

to the data to determine measures of the dipole's vertical length scale, as had

been previously explored by Flór et al. (1995) for a strati�ed vortex dipole and

Beckers et al. (2001) for a strati�ed vortex monopole. Furthermore, whereas

previous works had limited their comparison with the Lamb-Chaplygin model

to the vertical midplane, it was found that an experimentally generated vor-

tex dipole contained two �columns� of vertical vorticity, with the variation of

vorticity in any horizontal plane lying within the columns well described by

the model, with the value of UD in the plane determined by an aforementioned

Gaussian distribution. The columns were found to have a near-constant lateral

separation throughout their vertical extent such that the local values of a, k in

equations 1.10-1.12 can be considered to be constant.

Physically, the Gaussian variation of UD in the vertical direction arises from

similar Gaussian pro�les of peak vorticity and circulation (which themselves

arise from viscous di�usion, as will be discussed later). If we consider the

vortex columns as two line vortices, then equation 1.9 can be used to show

that for a constant horizontal separation between the vortices, the horizontal

propagation speed of the dipole at any given height within the columns is
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proportional to the circulation in the same horizontal plane (and thus both

can be described by Gaussian distributions with identical vertical length scale).

One of the interesting characteristics of such a vorticity distribution is that the

horizontal dipole layers nearest the vertical midplane propagate more quickly

than those above or below. This leads to a self-deformation of the vortex

columns with the vertical extremities appearing to �bend back� as the dipole

advects downstream. Such behaviour was observed by Praud and Fincham

(2005) for both an experimentally created dipole and for a simulation which

used an extended, three dimensional Lamb-Chaplygin model with a Gaussian

distribution of UD in the vertical direction. Even though this model does not

consider the viscous e�ects that become increasingly dominant at the late time,

reasonable correlation was found with experimental data.

1.2.4 Scaling of the late-time strati�ed dipole

However the structure of these late time dipoles is described, universally recog-

nised traits are their slow propagation velocity and large lateral length scale

when compared with the source of the momentum injection. van Heijst and

Flór (1989) generated a dipole that propagated downstream at a velocity ap-

proximately 2000 times slower than the output velocity of the momentum

source, but with a lateral length scale approximately 200 times larger than

the source diameter. The velocity of these dipoles is observed to decrease and

diameter increase over time due to the combined e�ects of viscous entrainment

and di�usion.

Voropayev et al. (2008) details a number of scaling laws governing the late

time dipole, with the downstream position and dipole diameter both scaling

with the cube root of time, i.e.

XD ∝DD ∝ t1/3, (1.14)

where XD is the dipole's downstream position from the momentum source, DD

the dipole's diameter and t is time. As noted by Rojanaratanangkule et al.

(2012), the power-law scaling behaviour will not commence at the start of

the experiment (t = 0) as the dipole takes time to fully form via the process

described previously. Instead, one expects to see a non zero time o�set prior

to the onset of the expected scaling behaviour, which can be accounted for in

equation 1.14 to give

XD = αX(t − tX)1/3, (1.15)

DD = αD(t − tD)1/3, (1.16)
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where αX , αD are constants of proportionality and tX , tD are the time o�sets.

These scaling laws were derived from momentum-balance and dimensional ar-

guments based on the assumption that the fully formed dipole has a constant

vertical thickness, as detailed in the prior work of Voropayev et al. (1991), but

neglecting the in�uence of viscous di�usion on dipole growth. An entrainment

coe�cient,

αXD =
αD
αX

, (1.17)

was de�ned in Voropayev et al. (1991) and found to have a mean value of

approximately 0.46 for a range of experimental parameters. A value of 0.23

was reported instead in the subsequent work of Voropayev et al. (2008), which

was attributed to the di�erent measuring techniques for DD used in the two

studies. Similarly, the same authors proposed the maximum vertical vorticity

within a single dipole core decays inversely proportional to elapsed time, i.e.

ωz ∣Max = αω(t − tω)
−1, (1.18)

a relationship supported by experimental data with an approximate value of 17

found for αω. Comparison was drawn with the data of both Flór et al. (1995)

and Praud and Fincham (2005), with the former giving reasonable agreement

with equation 1.18, though the latter suggested a faster rate of decay (i.e. the

exponent of equation 1.18 being a lower value than −1).

Perhaps the most signi�cant disagreement between the experimental stud-

ies is how the vertical thickness of the dipole is considered. As mentioned

previously, Voropayev et al. (1991) presents their dipole scaling laws working

under the assumption that the late time dipole has a constant thickness once

it has fully formed. This thickness, HD, was proposed to be a function of the

initial impulse imparted on the �uid by the momentum source and the strength

of the strati�cation, such that

HD = γ(I/N)1/4. (1.19)

The constant γ was found experimentally to be approximately 1.4. The same

authors (Voropayev et al., 2008) later stated that whilst viscous di�usion may

cause a slow vertical growth of the dipole structure at the late time, the con-

stant thickness argument is a good �rst-order approximation. Both Flór et al.

(1995) and Praud and Fincham (2005) demonstrated that at the late time the

dipole's thickness scales with the square root of the multiple of elapsed time

and �uid kinematic viscosity i.e.

HD ∝ (νt)1/2. (1.20)
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As this is faster than the diameter scales with time, it suggests the vertical

growth cannot be neglected when considering the dipole's three-dimensional

structure. Flór et al. (1995) and Praud and Fincham (2005) went on to demon-

strate that the planar velocity �elds within the dipole are not uniform through-

out its vertical extent and thus cannot be considered truly two-dimensional.

At the vertical mid-plane, where the dipole has the greatest circulation, the

propagation velocity and peak vorticity of the dipole are also the greatest.

Towards the vertical extremes of the dipole the velocity and vertical vorticity

reduce with a Gaussian pro�le, which had previously been observed by Beckers

et al. (2001) for a shielded monopole in a strati�ed �uid, with

⟨ωz⟩Max(z) = ωz ∣Max exp(−
z2

(Hω/2)2
) , (1.21)

where ⟨ωz⟩Max is the maximum vertical vorticity value for a �xed value of

height, z, and Hω is the �vorticity thickness� of the structure. Such a pro�le

can be related to the di�usion model for vorticity proposed by Flór et al.

(1995), which describes the vertical vorticity distribution within the dipole

as it evolves from an initially two-dimensional Lamb-Chaplygin dipole. This

model, like the later model of Praud and Fincham (2005), assumes a Lamb-

Chaplygin vorticity distribution at any horizontal plane regardless of z, with

the dipole initially occupying a two-dimensional plane at t = 0. The model

coordinates system in the horizontal (x, y) plane has a varying origin in z,

with (x′, y′) de�ning the horizontal position relative to the Lamb-Chaplygin

centre within that plane. The model is thus given as

ωz(x
′, y′, z, t) = ωz(x

′, y′, t = 0)
1
√
t

exp (−tνk2) exp(−
z2

4νt
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vertical diffusion

, (1.22)

recalling that k is a Lamb-Chaplygin model constant. The �nal exponential

term on the right hand side describes the vertical vorticity pro�le as it evolves

in the z direction due to viscous di�usion, and is noted to be equivalent to the

exponential term on the right-hand-side of equation 1.21. The denominators

of the two can therefore be equated and rearranged to give

Hω = 2
√

2(νt)1/2 ≈ 2.828(νt)1/2. (1.23)

Both Flór et al. and Praud and Fincham developed three-dimensional, time-

dependent models for the vorticity distribution within the dipole, with the

former showing a constant thickness model to be approximately valid for the

early development of the dipole, but a vertical di�usion model being more

appropriate at large times.

14



CHAPTER 1. INTRODUCTION

However, as these models are intended to predict the late-time growth of the

dipole by a three-dimensional extension of a Lamb dipole model, they do not

consider either the initial transformation from a three-dimensional structure

to a vortex dipole and how this may a�ect the late-time development. Thus

the exact relationship between the dipole's vertical growth and the governing

parameters of impulse, buoyancy frequency, viscosity and elapsed time is still

unclear.

Whilst the experimental studies mentioned here have well documented the

evolution of the dipole from an impulsive momentum source in a strati�ed

�uid, it appears from the literature examined that no comparable numerical

study has been carried out to date. The numerical studies found to date ap-

pear to have focused on analytical models of the late-time dipole (Praud and

Fincham, 2005) or two-dimensional simulations of dipole dynamics (Delbende

and Rossi, 2009; Makarov and Kizner, 2011). A comparable numerical study is

described in Rojanaratanangkule et al. (2012), though this concerned the gen-

eration of vortex dipoles through con�ning an impulsive jet-like �ow between

two non-deformable free surfaces, as opposed to stable density strati�cation.

As discussed in Praud and Fincham (2005), shallow layer vortex dipoles may

exhibit qualitative similarity to strati�ed vortex dipoles, though do not expe-

rience the same highly dissipative evolution at the late time.

1.3 Thesis objectives

Following the examination of the literature, it is possible to see areas in which

this project can contribute to further understanding of how dipolar structures

created by a horizontal momentum injection evolve in a stably strati�ed �uid.

One obvious advantage of this work is the use of a DNS code to simulate the

�ow, which allows for precise control over the governing �ow parameters and

analysis of the �ow �eld in much greater detail than would be possible for even

a highly sophisticated experimental set up. At the time of writing, the author

has not found any publicly documented study using DNS to study such �ows

to complement experimental work, and thus a window of opportunity exists to

compare and contrast experimental work with analogous simulations for the

�rst time. The rich data set that DNS provides allows for simple evaluation of

the simulated �ows to see how well they agreed with the experimental works

from which they are derived, as well as providing additional data to help

describe the mechanics of the �ow in a much more quantitative fashion than

is possible via experiment.
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Broadly speaking, the questions to be answered by this project are as fol-

lows:

� How does a vortex dipole evolve in stably strati�ed �uid from an axisym-

metric, horizontally directed, impulsive momentum injection?

� How does this �ow vary from the equivalent case for a neutrally strati�ed

�uid?

� Can such dipoles be considered as quasi-two-dimensional �ow structures

as described in Voropayev et al. (2008) etc., or do they exhibit a more

distinct three-dimensional structure as described in Praud and Fincham

(2005)?

� To what extent do the late-time dipoles simulated in this work corrob-

orate the con�icting scaling laws and experimental observations of the

experimental studies discussed previously.

� How are any of the above in�uenced by changes in the Reynolds number,

strati�cation strength and total impulse imparted by the momentum

source?

� Does the distribution of the momentum �ux from the source (i.e. the

�shape� of the momentum source) have any signi�cant e�ect on the late-

time dipole properties, particularly their adherence to scaling laws and

theoretical models laid out in previous literature?

These questions could be answered by completing the studies described in

subsequent chapters.

1.4 Thesis overview

The remainder of this thesis is summarised for each chapter as follows.

Chapter 2 documents the governing equations used by the numerical code

employed for this project, which are the full Navier-Stokes equations sub-

ject to the Boussinesq approximation to allow for the in�uence of buoyant

forces to be included. These equations are presented in their dimensional

and non-dimensional forms, along with associated equations for energetics. A

description of the Direct Numerical Simulation code used for this project is

also provided, along with a description of the speci�c features relevant to the

simulation of decaying vortical structures in strati�ed �uid.
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Chapter 3 documents a series of small studies and analyses that test the

functionality of the simulation code, and demonstrate good agreement with

experimental works concerning the generation of vortex rings from impulsive

momentum injections and internal waves generated from an oscillating body

force in a strati�ed �uid. These studies, allied to the validation work conducted

by previous users of the simulation code, help demonstrate the validity of its

use for the research of this thesis.

The collapse of an isolated vortex ring has seemingly been studied in greater

detail than a collapsing starting jet (Johari and Fang, 1997; Scase and Dalziel,

2006), providing a rich set of quantitative data with which to compare numer-

ical simulation. As discussed previously, the quantitative data available from

experimental work for describing the collapse process and transformation of

an axisymmetric jet to a vortex dipole is relatively sparse by comparison. One

way to verify that simulations conducted for this project are a good represen-

tation of experiment is to evaluate how well the simulation code predicts the

collapse of a horizontally propagating vortex ring, both with and without the

in�uence of strati�cation. Chapter 4 documents such simulations, with the

following outcomes:

� A demonstration of the process by which an initially axisymmetric vortex

ring is deformed by, and eventually collapses under the in�uence of stable

strati�cation (and how this compares to a ring in neutrally strati�ed

�uid), with particular attention paid to the energy levels in the �ow that

are not available from experimental literature.

� How this varies with initial ring Reynolds and Froude numbers, showing

a weak relation between the energetics and Reynolds number, but a much

stronger dependence on strati�cation level during the collapse process.

� That initially perturbing the ring as previous numerical studies have

done in order to accelerate turbulent breakdown has negligible e�ect on

the development of the ring due to buoyant forces.

The most signi�cant body of work to be undertaken for this research is to

create a simulated analogy to many of the experimental studies of vortex dipole

formation in a strati�ed �uid. Speci�cally, this involved simulating a horizontal

momentum injection into an otherwise quiescent domain with a linear, stable

density pro�le. The key results are given in chapter 5 and summarised as

follows:

� A demonstration of the time evolution of kinetic energy components, the

rate of transfer of kinetic energy to buoyancy scalar variance through
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buoyancy �ux and how these can be used to quantify the point of gravi-

tational collapse for stably strati�ed case. As with the study of collapsing

vortex rings, the energy levels documented in these simulations are not

presented in experimental literature, thus this numerical work adds a

further layer of understanding to the collapse process.

� The three-dimensional shape of the fully formed vortex dipole structure

at di�erent times using vorticity-based visualisations similar to those of

Praud and Fincham (2005) and Voropayev et al. (2008), and how these

structures correspond to the changing energy levels.

� Scaling laws for the dipole's streamwise position, diameter, vertical thick-

ness and maximum vertical vorticity from experimental precedents are

veri�ed.

� Discussion of how the above results are linked to the governing �ow

parameters of Reynolds number, strati�cation strength and impulse.

� Demonstration of the variation in the buoyancy scalar �eld due to the

motion induced by the dipole and identifying internal wave generation

(particularly at times during the process of gravitational collapse), which

is another aspect of the �ow that experiment struggles to capture.

As discussed in more detail in chapter 5, the momentum source utilised in

the simulations of that chapter uses a smooth, Gaussian forcing pro�le that,

while preferable for numerical reasons, may not resemble an initial starting

jet seen in experiments of, for example Gharib et al. (1998). As the primary

goal of the simulation work of that chapter was to investigate the e�ect of

key parameters (Reynolds number etc.) on the late-time dipole, this apparent

discrepancy is not of great concern so long as the structure of the dipole for

a Gaussian forcing pro�le is not signi�cantly di�erent to that produced by a

more representative forcing pro�le. This will be veri�ed by investigating how

sensitive the late-time dipole is to the initial forcing conditions with similar

simulations but with di�erently distributed forcing pro�les. The results of

these �nal simulations are given in chapter 6 and demonstrate:

� That while the shape of the initial momentum injection pro�le is decisive

in shaping the vortical �eld in neutrally strati�ed cases or at early times

in stably strati�ed cases, the late dipoles formed in stably strati�ed cases

are structurally very similar and obey the same scaling laws veri�ed in

chapter 4, indicating that the agreement with these scaling laws may well

be universal for all dipoles formed in stably, linearly strati�ed �uid.
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� That the dipoles give excellent agreement with each other and with the

Lamb-Chaplygin dipole model at the late time in terms of vorticity pro-

�le across the dipole, further indicating the universal similarity of such

dipoles.

A summary of the key results achieved during the research for this thesis,

and how future studies might lead on from this, is given in chapter 7.
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Chapter 2

Numerical methods

2.1 Governing equations

2.1.1 Formulation

In order to derive the non-dimensional governing equations used by the sim-

ulation code for this project, we �rst consider the dimensional Navier-Stokes

equations for an incompressible �ow with the continuity equation

∂ûi
∂x̂i

= 0, (2.1)

and the momentum equation for a �ow subject to a gravitational �eld acting

in the vertical direction,

∂ûi

∂t̂
+ ûj

∂ûi
∂x̂j

= −
1

ρ̂∞

∂p̂

∂x̂i
+ ν̂

∂2ûi
∂x̂j∂x̂j

− ĝ
ρ̂

ρ̂∞
δ3i + f̂i. (2.2)

The �nal two terms in equation 2.2 are respectively the accelerations due

to gravitational force and applied body forces. If density variations in the

vertical direction are to be considered, but small enough for the Boussinesq

approximation to be valid (Turner, 1979), then the vertical acceleration due

to gravity can be given as −ĝρ̂/ρ̂∞, with density in the pressure gradient term

assumed to be ρ̂∞ at all points. An assumption of constant density also allows

the continuity equation (2.1) to be used in the incompressible form without

the need to consider the e�ect of density variation on mass conservation. With

ĝ and ρ̂∞ = ρ̂Ref taken to be constants, the evolution of the gravitational term

throughout the �ow �eld can determined by the transport equation for density,

∂ρ̂

∂t̂
+
∂ρ̂ûi
∂x̂i

= κ̂
∂2ρ̂

∂x̂i∂x̂i
, (2.3)
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where κ is the scalar di�usivity of the �uid and represents the rate at which

a scalar such as temperature conducts through a �uid beyond the transport

provided by convection. The density itself can be broken down into a constant

mean component, ρ̂Ref , the background lapse rate multiplied by vertical po-

sition, Φ̂ẑ (which together give the initial vertical density pro�le), and some

�uctuation from this initial pro�le due to motion within the �uid, ρ̂′, such that

ρ̂ = ρ̂Ref + Φ̂ẑ + ρ̂′.

Substituting this into equation 2.3, the time derivative of all but the �uctuation

is zero, and eliminating terms through substitution of equation 2.1 leaves

∂ρ̂′

∂t̂
+
∂ρ̂′ûi
∂x̂i

+ ûi
∂(Φ̂ẑ)

∂x̂i
= κ̂(

∂2(Φ̂ẑ)

∂x̂i∂x̂i
+

∂2ρ̂′

∂x̂i∂x̂i
) .

Next, if we assume an initially linear density pro�le in the vertical direction,

this gives Φ̂ as a constant, and with Φ̂ẑ only varying in the vertical direction

this eliminates all second spatial derivatives of Φ̂ẑ and leaves just the �rst

spatial derivative in the vertical direction,

∂ρ̂′

∂t̂
+
∂ρ̂′ûi
∂x̂i

+ û3Φ̂ = κ̂
∂2ρ̂′

∂x̂i∂x̂i
. (2.4)

We can de�ne a scalar quantity, θ̂, that gives the magnitude of the gravity

induced acceleration in the vertical direction as

θ̂ = ĝ
ρ̂′

ρ̂Ref

,

which now gives us the momentum equation as

∂ûi

∂t̂
+ ûj

∂ûi
∂x̂j

= −
1

ρ̂∞

∂p̂

∂x̂i
+ ν̂

∂2ûi
∂x̂j∂x̂j

− θ̂δ3i + f̂i. (2.5)

If we multiply equation 2.4 by ĝ/ρ̂Ref , the evolution of θ̂ with time can be

solved as a scalar transport equation given by

∂θ̂

∂t̂
+
∂θ̂ûi
∂x̂i

= N̂2δ3iû3 + κ̂
∂2θ̂

∂x̂i∂x̂i
, (2.6)

where N̂2, the square of the buoyancy frequency, is given by

N̂2 = −
ĝ

ρ̂Ref

Φ̂. (2.7)

Combined with the continuity and momentum equations, this gives the three

governing equations of the strati�ed �ow using the Boussinesq approximation.
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2.1.2 Non-dimensionalisation

If we de�ne a reference length and velocity value, L̂Ref and ÛRef , these can be

used to return a series of non-dimensional quantities i.e.

ui =
ûi

ÛRef

,

xi =
x̂i

L̂Ref

,

t = t̂
ÛRef

L̂Ref

.

We assume that the density changes in the �uid are su�ciently small such

that the viscosity is approximately constant and is itself a reference quantity.

Combining this with reference length and velocity allows for de�ning a non-

dimensional viscosity in terms of a reference Reynolds number as

ν =
ν̂

ÛRefL̂Ref

=
1

ReRef

.

Considering another reference quantity, the mean density of the �ow �eld,

ρ̂∞ = ρ̂Ref , the non-dimensional pressure is given by

p =
p̂

ρ̂RefÛ2
Ref

.

The non-dimensional form of equation 2.1 is achieved simply by dividing

through by the reference velocity scale and multiplying by the reference length

scale. Given that the form of equation 2.2 used here is a balance of accelera-

tions, we can consider a reference acceleration to be

(
∂û

∂t̂
)

Ref

=
Û2

Ref

L̂Ref

.

The dimensional momentum equation can be divided across by this reference

acceleration value.

Recalling the scalar transport equation (2.6), we consider the square of the

buoyancy frequency, N̂2, as an input �ow parameter. This in turn can be

considered as a non-dimensional �ow parameter, by multiplying by the square

of the reference time scale (LRef/URef) to give

N2
Ref = (

N̂L̂Ref

ÛRef

)

2

.

This can also be used to de�ne a reference Richardson number, RiRef = N2
Ref or

the analogous Froude number, FrRef = 1/NRef . Taking the scalar di�usivity, κ̂
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to be κ̂ = ν̂/Pr and dividing equation 2.6 by Û3
Ref/L̂

2
Ref to non-dimensionalise

leaves us with the �nal non-dimensional governing equations to be solved by

the DNS code as
∂ui
∂xi

= 0, (2.8)

∂ui
∂t

+ uj
∂ui
∂xj

= −
∂p

∂xi
+

1

ReRef

∂2ui
∂xj∂xj

− θδ3i + fi, (2.9)

∂θ

∂t
+
∂θui
∂xi

= N2
Refu3δ3i +

1

PrReRef

∂2θ

∂xi∂xi
, (2.10)

where ReRef , P r and N2
Ref are governing �ow parameters. If the characteristic

length and velocity scales in the �ow are taken to be the non-dimensional unit

length and unit velocity from the simulation code, we can replace ReRef and

N2
Ref with Re and N

2 respectively.

Pr, the Prandtl number, is given here as the ratio of viscous di�usivity

to scalar di�usivity of the �uid. Strictly speaking, the Prandtl number is the

ratio of momentum/viscous di�usivity to thermal di�usivity of a �uid and

relates how quickly momentum and temperature of a �uid is dispersed via

viscous di�usion and thermal conduction respectively. Similarly, the Schmidt

number is the ratio of momentum/viscous di�usivity to molecular di�usivity.

The Prandtl number is thus more suited to describing buoyant �ows where the

e�ects of buoyancy are realised through thermal strati�cation of the �uid, with

Schmidt number more appropriate where buoyancy e�ects arise from density

strati�cation. In the case of numerical simulation where a more generic active

scalar �eld is de�ned, Prandtl number has been given as the governing �ow pa-

rameter by Redford et al. (2015) and de Stadler et al. (2010), with the former

using an earlier iteration of the simulation code for the research documented in

this thesis. In the case of the latter, the authors conducted a numerical study

to determine the e�ect of varying Prandtl number on a temporally evolving

wake of a towed blu� body. The need for such a study arose from an inherent

di�culty in simulating �ows of high Prandtl or Schmidt number (with a typi-

cal Schmidt number of 700 reported for saline strati�ed water, and a Prandtl

number of 7 for air). As the Prandtl/Schmidt number increases above unity,

the Batchelor length scales formed in the scalar �eld will be smaller than the

Kolmogorov length scales within the velocity �eld, with the relative Batchelor

length scale reducing by half with each fourfold increase in Prandtl/Schmidt
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number. Thus a higher computational resolution is required in order to prop-

erly resolve the scalar �eld for these higher Prandtl/Schmidt numbers, with

the velocity �eld "over"-resolved. In the case of numerical simulations of the

towed blu� body, the velocity �eld of the turbulent wake this produced was

found to be relatively insensitive to choice of Prandtl number, though the scalar

�eld did show some weaker structures at lower Prandtl number. Nonetheless,

the work of those authors demonstrated a Prandtl number of unity was not

an unreasonable assumption for simulating strati�ed wake structures and also

avoids the computational cost that would be required to fully resolve a scalar

�eld for a Prandtl number more representative of analogous experiments. The

numerical simulations of this thesis take this as a precedent and the Prandtl

number is set to unity for all stably strati�ed cases.

2.1.3 Energetics

When studying the �ows considered in this project, the kinetic energy and

buoyancy variance levels (and the transfer between them) are to be determined

both as an analytic tool and a means of verifying the accuracy of the DNS code.

The integral non-dimensional kinetic energy of the domain can be given as a

volume integral of the square of velocity magnitude i.e.

K =
1

2 ∫V
∣u∣2dV, (2.11)

where ∣u∣2 = u2 + v2 + w2. Similarly, the integral non-dimensional buoyancy

variance within the domain (per unit mass) can be found through integrating

P =
1

2N2 ∫V
θ2dV. (2.12)

Physically, this buoyancy variance represents a form of internal energy within

the domain that arises from the displacement of buoyant �uid particles from

an equilibrium layer. This can be thought of as a form of potential energy

within the domain, though rather than being gravitational potential energy,

the buoyancy variance represents the potential of the scalar �eld to perform

work on the velocity �eld, with energy transferred back and forth between the

two forms. In the context of this thesis, the buoyancy variance can be consid-

ered a proxy to gravitational potential energy, with which it is dimensionally

consistent.

Multiplying equations 2.9 and 2.10 by ui and θ/N2 respectively and rear-

ranging using the rules of product di�erentiation yields transport equations

for kinetic energy components and buoyancy variance with
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1

2
(
∂(u2

i )

∂t
+ uj

∂(u2
i )

∂xj
) = −u3θδ3i +K

′

ν + uifi, (2.13)

1

2N2
(
∂(θ2)

∂t
+ ui

∂(θ2)

∂xi
) = u3θδ3i + P

′

ν , (2.14)

with

K ′

ν =
1

Re
(

1

2

∂2(u2
i )

∂x2
j

−
∂ui
∂xj

∂ui
∂xj

) ,

P ′

ν =
1

PrReN2
(

1

2

∂2(θ2)

∂x2
i

−
∂θ

∂xi

∂θ

∂xi
) .

The �rst terms on the right hand side of equations 2.13 and 2.14 are equal

in magnitude but opposite in sign. This is the buoyancy �ux term, and gives

the rate at which energy is transferred between kinetic and buoyant forms.

The terms K ′

ν and P
′

ν represent the viscous/thermal transport and dissipation

of the kinetic energy and buoyancy variance in the domain. The buoyancy

variance transport equation can also be considered analogous in this context

to the transport equation of gravitational potential energy, though the latter

would omit the scalar dissipation terms included within P ′

ν . Through use of

the buoyancy variance as a proxy to potential energy, a similar proxy for total

energy can be given as

Etotal =K + P.

For sake of conciseness, this proxy in referred to as "total energy" in the

remainder of this thesis, though strictly is a summation of kinetic energy and

buoyancy variance.

2.2 Spectral DNS

Direct numerical simulation (DNS) within computational �uid dynamics refers

to explicitly solving the governing equations of the �uid motion (i.e. Navier-

Stokes equations) at all scales of motion, from the largest eddies to the smallest

turbulent scales. This allows the e�ect of turbulent �uctuations on the bulk,

mean �ow to be accurately depicted. This contrasts with Reynolds averaged

Navier-Stokes (RANS) or Large eddy simulation (LES) methods, which use a

turbulence model to approximate the e�ect that either some or all of the turbu-

lent scales of the �ow (those smaller than the resolution of the computational

domain) have on the explicitly resolved scales.
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Provided that grid resolution is su�cient to include the smallest scales of

the �ow, DNS o�ers superior accuracy to the methods that utilise turbulence

models. However, the high number of grid points required for a su�cient

resolution means that DNS is extremely expensive in terms of computational

resources, and for complex 3D �ows of moderate Reynolds number will usu-

ally require a large parallel computing resource to complete in practical time

periods. The relative bene�ts and drawbacks of DNS compared to other com-

putational methods are discussed further in Coleman and Sandberg (2010).

The �ow solving components of the code used in this project are imple-

mented using spectral numerical methods, as opposed to the �nite di�erencing

used by many DNS codes. In contrast to �nite di�erencing methods, the spec-

tral methods do not evaluate velocity gradients in Cartesian space but instead

uses Fourier transformations to represent the velocity �eld as the sum of a

series of basis functions. For codes using periodic boundaries, this often takes

the form of a Fourier series of complex exponentials. For a velocity compo-

nent, uM , varying with spatial position, x, and time, t. Coleman and Sandberg

(2010) represent the Fourier basis functions as

uM(x, t) =
+M/2

∑
n=−M/2

αn(t)e
iknx =

+M/2

∑
n=−M/2

αn(t)(cos (knx) + i sin (knx)), (2.15)

where kn is the wavenumber of the mode, n, from the total number of modes,

M . αn(t) is the expansion coe�cient for a given mode, n, at time, t. This is es-

sentially a truncated Fourier series, with the number of Fourier modes/wavenumbers

being equal to the number of grid points in the relevant spatial direction of

the domain.1 Gottlieb and Orszag (1977) refer to this as a �Galerkin approx-

imation�. The key bene�t of the approximation is that these basis functions

have exact derivatives for all wavenumbers. This allows the spatial gradients

to be calculated precisely as shown by Hussaini and Zang (1987) i.e.

d

dx
uM(x, t) =

d

dx

+M/2

∑
n=−M/2

αn(t)e
iknx =

+M/2

∑
n=−M/2

iknαn(t)e
iknx. (2.16)

The larger the value ofM , the larger the number of modes that can be resolved

(or in Cartesian space, more spatial scales are evaluated). As such, if the sum of

the basis functions gives a good approximation of uM(x, t) across the domain,

1It should be noted that the series given here is not a general method for all spectral DNS,

but is applicable to computational domains such as that used for this project, which feature

periodic boundaries and a uniform grid spacing. Non-uniform spacing, wall boundaries etc.

would potentially make use of polynomial basis functions and/or weighting functions for

each mode.
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asM increases, the expansion coe�cients for the higher wavenumbers will tend

towards zero i.e.

M →∞, ∣αn∣→ 0

The expansion coe�cients therefore can give a measure of how well resolved

the computational domain is at a given time. If the higher mode coe�cients

are still large, it suggests that the smaller scales in the simulation are not com-

pletely resolved and a �ner grid spacing/higher number of modes is required.

This is particularly relevant for DNS of turbulent �ows, as insu�cient resolu-

tion will lead to the smaller, dissipative scales of the �ow being under-resolved,

reducing the accuracy of the simulation at the larger scales as well.

Provided that the Galerkin approximation to the �ow �eld is suitably ac-

curate, the computational error reduces signi�cantly with increasing M. For a

�nite di�erence method of order P , the error will be proportional to (1/M)P .

By contrast, error with spectral methods decreases exponentially with increas-

ing M, an e�ect known as �in�nite order accuracy�. As such, spectral methods

can yield solutions that converge very quickly, and yield more accurate results,

even with a coarser grid than an equivalent �nite di�erence simulation.

Incompressible, viscous �ow cases and the spatial derivatives within them

are usually smooth, making a Fourier series approximation a good �t for the

solution. The use of Fourier series also requires that the computational domain

make use of periodic boundaries (i.e. in�ow conditions are equal to out�ow

conditions), in order for periodic basis functions to be applicable. Spalart

et al. (1991) made use of a code to simulate boundary layer �ow that used

polynomial basis functions in the direction normal to the physical boundary

(where periodic boundary conditions would not be suitable for meeting the

no-slip condition at the boundary) and Fourier basis functions in the other

two directions where periodic boundaries were utilised.

2.3 Speci�c code features

2.3.1 Domain and discretisation

The code used in this project uses Fourier based spectral methods, applied over

a triply periodic domain. Equations 2.9-2.10 are discretised through the use

of Fast Fourier Transforms (FFTs) and are evolved in time using a third order

Runge-Kutta technique, with the non-linear terms evaluated in Cartesian space

and the viscous terms evaluated using an exact, integration factor method. The

domain size is chosen to allow su�cient space for the large scale structures
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Figure 2.1: Schematic indicating the computational domain, with an origin at

the centre of the momentum source.

expected at the later times to evolve without excessive interaction with any of

the periodic boundaries or the fringe regions discussed in section 2.3.4.

The lateral (y) and vertical (z) domain sizes are the same with identical,

uniform grid spacing, with the streamwise (x) direction somewhat longer. As

one of the main considerations of this work is to evaluate how vertical density

strati�cation a�ects initially axisymmetric �ows, the equal domain sizing and

grid spacing helps eliminate one potential cause for axisymmetry to break

down. The domain origin is located at the centre of the momentum source for

impulsive source simulations, or the radial centre of the vortex ring at t = 0

for vortex ring initialised simulations, with the origin placed just downstream

of a streamwise boundary and equidistant between the lateral and vertical

boundaries as indicated in �gure 2.1.

The time step used in the Runge-Kutta method is either prescribed man-

ually as an input parameter, or the code determines a suitable value based on

the selected maximum Courant number of the code. The Courant number in

each direction at a given point in the domain is de�ned as

C =
ui∆t

∆xi
. (2.17)

For the spectral DNS code used here, the maximum value permitted value for

the Courant number anywhere in the domain is 1.6. When prescribing its own

time step, the code uses the maximum value of ∆t that ensures C ≤ 1.58 at

all points, in order to ensure a stable time integration. In practical terms,

this means that for a decaying �ow where the maximum velocity values are

decreasing with time, the time step can become progressively larger whilst

maintaining numerical stability.
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2.3.2 Evaluating convective terms, applying momentum

sources and moving reference frame

One stumbling block with using spectral methods for �uid dynamics is the

need to evaluate the convective, non-linear terms of the momentum equation

(2.9), which is not easily achieved in Fourier space. Instead, the code used here

uses inverse Fourier transforms to return Cartesian velocity and vorticity �elds,

calculates the non-linear terms in Cartesian space, then Fourier transforms the

result for use in Fourier space.

This does allow additional forcing terms de�ned in Cartesian space to be

added to the non-linear terms prior to converting back to Fourier space. This

feature is utilised extensively in the simulation code to modify the momentum

equations to create momentum sources to represent the e�ect of a propulsive

or drag force of a manoeuvring body, apply the acceleration due to buoyancy

e�ects, and also to apply the fringe method discussed in section 2.3.4.

Aside from adding momentum sources to the domain, manipulating the

convective terms allows us to simulate the e�ect of freestream velocity on the

�ow �eld by adding an additional velocity component into the convective term

for the streamwise direction i.e.

u
∂ui
∂xj

is replaced by

(u +UT )
∂ui
∂xj

,

where UT is the desired freestream velocity and can be prescribed directly.

This essentially places the �ow �eld within a moving reference frame.

2.3.3 Zero mode treatment and moving reference frame

Another potential issue with using this particular code for evaluating spatially

evolving �ow �elds is the treatment of the zero (mean) modes in Fourier space

for the velocity and scalar �elds. The code discretises each velocity and buoy-

ancy scalar component into Fourier modes in each of the x, y, z directions. The

numerical algorithm used in the code is such however, that the �zero� mode is

decoupled from the rest of the Fourier mode calculations and is thus unchanged

throughout the simulation. The Fourier coe�cient associated with this zero

mode determines the mean velocity or scalar component in a given spatial di-

rection. The code is written such that the �zero� modes for all velocity and

scalar components in all directions have Fourier coe�cients of zero at all times
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e.g.

u(t) = αn(t)e
i0x = αn(t) = 0, (2.18)

or alternatively,

∫
V
u(t)dV = 0. (2.19)

For the momentumless wake �ows previously simulated using this spectral

CFD code, this zero mode treatment is acceptable as equation 2.19 is valid

at all times. This is not true however, for the cases studied in this project

where some net momentum is added to the domain via an impulsively acting

momentum source.

The practical e�ect of the zero mode treatment is that when streamwise

momentum is added to the �ow from the source, the value of u within and

immediately adjacent to the source increases, while a background velocity is

imposed on the whole domain in the opposite direction such that the spatial

mean of u remains zero. The more momentum is added into the domain, the

greater this background velocity becomes, remaining constant once the mo-

mentum injection has ceased. At the early times in the simulations conducted

for this work, the important �ow structures are relatively small compared to

the domain volume and are moving at a velocity with a magnitude far greater

than this background velocity. The in�uence of the zero mode treatment is

therefore barely apparent at the early times. However, at the late times, the

structures of interest grow in volume and slow considerably, such that the

background velocity can no longer be neglected as key statistics such as the

propagation velocity of �uid structures through the domain and volume inte-

grated kinetic energy will be unduly in�uenced by the zero mode.

It should be noted that this e�ect has no in�uence on the �uid mechanics

at work within the �ow �eld, nor does it change the vorticity �eld (which, as

calculated from the spatial derivatives of the velocity �eld, is independent of

any background velocity). Thus the structures observed in the domain will not

appear di�erent in any signi�cant way other than their position and relative

velocity being shifted by the background velocity.

In order to combat this issue, a new zero mode treatment is implemented.

As the acceleration due to the momentum source is prescribed directly in the

code as fi (see equation 2.9), we can determine the kinematic impulse, Ii,

added to the domain at any point in the simulation by the time and volume

integral of fi(x, y, z, t) i.e.

Ii(t) = ∫
t

0
∫
V
fidV dt. (2.20)
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As this gives a precise measure of the momentum added to the domain in the

streamwise direction, and with no other momentum sources or sinks acting on

the �uid, we see that the expected mean value for the velocity components in

the domain is given by

ui(t) =
Ii(t)

V
=

Ii(t)

LxLyLz
. (2.21)

The precise value of Ii implemented within the simulation can be determined

in the code by performing simple addition of fi∆x∆y∆z throughout the do-

main to determine the total kinematic momentum �ux, multiplying this by the

time step used and adding to the value of Ii at iteration. This value is then

divided by the domain volume to determine the exact mean velocity required.

The Fourier coe�cient of the zero mode for the relevant discretised velocity

component is then set to this value i.e.

αn(t) =
Ii(t)

LxLyLz
. (2.22)

This removes the background velocity that would otherwise be enforced by

the zero mode treatment. It would also be possible to correct for this back-

ground velocity by manipulating the convective term directly as discussed in

section 2.3.2, which is a more transparent and easily implemented way of ap-

plying a moving reference frame to the domain. However, as the code performs

all kinetic energy calculations within Fourier space, it is more convenient to

modify the Fourier modes directly, as changes made to the velocity �eld by

manipulating the convective terms are not accounted for when transforming

the non-linear, convective terms back into Fourier space. Though the velocity

�elds may di�er, the vorticity �eld produced by either of these two approaches

should be identical, and is something to be veri�ed during code testing.

2.3.4 Fringe method

As mentioned previously, one consequence of utilising periodic boundary con-

ditions in the simulation code is that internal waves, generated by buoyancy

e�ects, propagate to the edge of the domain, re-enter on the opposite side and

subsequently interact with other �ow structures until they are dissipated by

viscous di�usion. This of course would not be the case for the in�nite domain

case that the code approximates, as the waves would propagate away from

their source with increasingly negligible e�ect. As such, the code needs to be

modi�ed to either remove or severely diminish the strength of internal waves

in the �ow when they reach the domain boundaries.
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One method previously employed in a variant of the simulation code used

for this project was implemented by Redford et al. (2015), and is reused again

here. The method's basic function is to create an additional forcing term in

the momentum equation (2.9) and scalar transport equation (2.10) near the

vertical and lateral boundaries of the domain. The magnitude of the forcing

term, S, is given by S = σ(s − s0) where s is the appropriate component of

velocity or the buoyancy scalar and s0 is a target value. σ is a scaling function

calculated in two dimensions by

σ = σc(σy + σz − σyσz), (2.23)

where σc is the maximum strength of the forcing term and

σy = −
1

2
(tanh(tw [

y

lfy
− 1]) + tanh(tw [

ly − y

lfy
− 1]) + 1) , (2.24)

σz = −
1

2
(tanh(tw [

z

lfz
− 1]) + tanh(tw [

lz − z

lfz
− 1]) + 1) , (2.25)

where lfy = lyNfy/2ny, ly is the lateral domain size, ny is the lateral grid sizing

and Nfy is the number of grid points utilised at the edges of the domain to

implement the forcing. tw sets a smoothing length over which the value of The

region where the forcing is implemented is known as the domain �fringe� and

the application of forcing as the �fringe method�.

The target value, s0, is prescribed as the lateral/vertical boundary mean

value of the velocity or scalar component, which was used previously to de-

termine the zero mode background velocity correction as discussed in section

2.3.3. When this moving reference frame is taken into account, the fringe essen-

tially enforces a weak no-slip like condition at the lateral and vertical domain

boundaries in order to dissipate the internal waves. Obviously, the presence of

the fringe can have an adverse e�ect on �ow structures other than the internal

waves when they increase in size at the late time, as the fringe forcing will act

against the motion in the outer edges of the structure. Therefore the size and

strength of the fringe region needs to be chosen to be su�ciently �aggressive�

to dissipate the internal waves to negligible levels, without occupying so much

of the domain as to make the late time simulation unrepresentative of the

in�nite domain approximation.

2.3.5 Regridding

One characteristic of the �ows simulated in this work, particularly those sub-

ject to a linear density strati�cation, is that at the late time the length scales of
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the main �ow structures increase signi�cantly and the corresponding velocity

scales reduce signi�cantly. As a consequence, the high level of spatial resolu-

tion (or large number of Fourier modes) required for su�cient �delity at the

early times are somewhat excessive at the late time, meaning an unnecessarily

large number of computations requiring high levels of compute time, processor

cores and memory. The �ne grid resolution also severely limits the maximum

time step in order to ensure su�ciently small Courant number (see equation

2.17).

In order to combat this problem, it is favourable to regrid the simulation

onto a coarser domain, achieved by removing the higher wavenumber modes

from the domain in Fourier space. This greatly reduces computational cost

and allows for a larger time step, allowing the late time �ow development to

be assessed over large time intervals. Typically, nx, ny, nz can be reduced by

as much as 50% at the late time without compromising simulation accuracy.

2.3.6 Post-processing

The code writes data �les containing certain �ow statistics at every time step

throughout the simulation, examples being the volume integrated kinetic en-

ergy and buoyancy variance levels. Aside from this, large data �les containing

the entire computational domain in Fourier space are dumped at regular in-

tervals, which can be used for �ow visualisation and more complex analysis

of the �ow structures. The vast majority of the post-processing is conducted

using a variety of bespoke scripts written for Matlab.
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Chapter 3

Validation of numerical methods

Before conducting simulations of the wake structures of interest to this project,

it is useful to conduct some validation tests within some �warm up� simula-

tions. This ensures the code correctly evaluates the governing equations it

is presented with, so that results from later, production quality runs can be

considered trustworthy.

Variants of the project's code have been used to evaluate cases from an

initial velocity �eld of domains containing a vortex ring (see Archer et al.

(2008)), axisymmetric wakes (Rind (2010)) and strati�ed wakes (Redford et al.

(2015)). For this work, the code's evaluation of the Navier-Stokes equations

has been tested extensively, with simpler governing equations such as a one

dimensional wave and heat equation solved correctly as well.

Unlike those examples of previous work, this code makes use of two addi-

tions to facilitate simulation of impulsively generated wake �ow. These are the

application of freestream e�ects through modifying the convective term of the

Navier-Stokes equations, and the addition of a momentum source that is to

generate propulsive �ow and emulate the drag forces on a manoeuvring body.

These features were tested, along with an additional test to evaluate the ap-

plication of both buoyancy e�ects and the fringe method implemented in the

code, and checks to examine the e�ects of domain regridding and domain size

on �ow �eld evolution.

3.1 Impulsive starting jet

3.1.1 Background and simulation set up

In order to test the code's ability to simulate propulsive structures in the

�ow domain, a subroutine was implemented to accelerate �uid in a selected
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region of the domain. For purposes of validation, this momentum source was

implemented as a thin axisymmetric actuator disc with a hyperbolic forcing

pro�le in the radial and streamwise directions i.e.

fy(x, y, z) =
f0

4
(tanh(20(0.5 − r)) + 1)(tanh(20(0.1 − ∣y∣)) + 1), (3.1)

where r =
√
x2 + z2. 1 This pro�le produces an actuator disc like momentum

source with a diameter of 1 and a thickness of 0.2, centred about (x, y, z) = 0.

The factor of 20 in the hyperbolic tangent functions de�nes the smoothness

of the edge of forcing region, with this value giving a well de�ned disc, whilst

smoothing the transition from maximum fy to zero over enough grid points

in the domain to reduce the likelihood of Gibbs phenomena associated with

discontinuities in the �ow �eld.

This actuator disc is intended to generate a laminar starting jet, with a

well de�ned vortex ring followed by a trailing jet structure of smaller rings. As

discussed in Section 1.2.1, previous experimental studies demonstrated that the

evolution of the jet can be considered in terms of non-dimensional formation

time, T with

T =
VJt

DJ

,

where

VJ =
1

tf
∫

tJ

0
VJ(t)dt.

The strength of the actuator disc, f0, is adjusted using proportional control to

create a jet at the desired velocity, Vj i.e.

f0 = fg(Vj − VJ),

where fg is the controller gain. VJ is not measured directly in the �ow, but

taken to be twice the velocity at the centre of the actuator disc. This is ex-

plained further in Ruijgrok (1996), where an actuator disc (used to model

propeller �ow) adds a velocity component to a cylindrical region of �uid. Half

the �uid acceleration is achieved upstream of the disc and half downstream,

with the velocity at the centre of the disc denoted at V0. As the freestream

velocity in the case simulated here is zero, this gives VJ = 2V0. Additionally,

treating the accelerated cylinder of �uid as a stream tube, the doubling of

velocity from the centre of the disc to the resulting jet means that the stream-

tube must constrict to half the area of the disc in order to conserve mass �ow,

1This set of validation simulations was performed on an early iteration of the code, where

the y direction was de�ned as streamwise, and the x direction de�ned as the lateral direction,

with z the vertical direction. The axes were reorganised for the main research simulations

documented in later chapters, but were not retroactively altered for these validation tests.
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giving an e�ective streamtube diameter of 1/
√

2 of the actuator disc diameter,

D0 where v = VJ .

This controller was given su�cient gain to increase V0 quickly enough to

consider the jet �ow from the disc akin to an impulsive starting jet. Using

the downstream velocity induced by the actuator disc and the diameter of

the constricted streamtube as the velocity and length scales this gives the

formation time of the jet �ow as

T =
2V0t

D0/
√

2
(3.2)

The actuator disc set up was implemented in a computational domain with

(nx,ny, nz) = (192,384,192) and (Lx,Ly,Lz) = (1.5π,3.0π,1.5π), with a time

step equal to approximately 1/60th of a formation time unit. The actuator disc

was operated continuously throughout the simulation, providing a constant

rate of momentum addition once the desired jet velocity was achieved. The

Reynolds number of the �ow based on VJ and DJ =D0/
√

2 was approximately

8000.

3.1.2 Results and analysis

Visualisations of the impulsively started jet and the resulting vortex ring pat-

tern are given in �gure 3.1 and �gure 3.2. The characteristic leading vortex ring

and its trailing jet of smaller rings are clearly seen in the vorticity contours,

with these smaller rings produced at regular intervals of just over 3 formation

time units. Within this pattern, if we assign the leading ring a title of �ring 1�,

the �rst trailing ring as �ring 2� and so on, then it is observed that every even

numbered ring is eventually entrained by the preceding odd numbered ring.

Such entrainment was observed in Gharib et al. (1998) and noted to result in

a temporary increase in the circulation of the entraining ring.

As found in experimental studies of vortex ring formation, measuring the

circulation in the leading ring is somewhat problematic, as it requires distinc-

tion between which parts of the �ow domain are within the leading ring and

which are part of the trailing jet. This also poses issues when determining

both the ring radius and downstream position.

To overcome this, we consider a two dimensional slice of the vortex ring

at z = 0 (given the axisymmetric nature of the problem, this should be rep-

resentative of the ring as a whole). Next, an initial guess as to the location

of the centre of the leading ring vortex cores is made by tracking the location

of the points of both maximum and minimum azimuthal vorticity, ωz. Once
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Figure 3.1: Contours of azimuthal vorticity, ωz, for starting jet and resulting

vortex ring formation at (a) T = 4.8 (b) T = 9.5 (c) T = 14.3 (d) T = 19.0

- red indicates positive (�clockwise�) vorticity, with blue indicating negative

vorticity

located, all vorticity in the �eld that lies beyond one actuator disc radius (0.5)

from these points is excluded, isolating the vorticity within the leading ring.

A threshold value of 5% maximum vorticity magnitude is applied, with all

vorticity that has a magnitude below this threshold excluded as well. This

is intended to create a tangible disconnect between the leading ring and the

shear layer feeding in from the trailing jet. Once these conditions have been

applied, the ring circulation, radius and downstream position are determined

using similar analysis to the vortex ring tracking in Archer et al. (2008).

As seen in �gure 3.3, the non-dimensional circulation, Γz/(VJDJ), in the

leading ring does increase linearly with formation time. It continues to do

so until T ≈ 4, after which the circulation does continue to rise, albeit at a

rate, dΓz/dT , approximately 1/6th the rate prior to T = 4. This is somewhat

contrary to the constant circulation state noted by Gharib et al. (1998) and

Rosenfeld and Gharib (1998). Closer examination of results from these pre-

vious works showed that for impulsively generated starting jet �ows, small

circulation gains in the late time can be inferred (see �gure 8,10 in Gharib

et al. (1998)). The Reynolds number of the �ow in the leading ring, based on

the non-dimensional circulation, is found to be approximately ReΓ = 1500. At
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Figure 3.2: Isosurfaces of 15% maximum vorticity magnitude (
√
ω2
x + ω

2
y + ω

2
z)

for T = 12.7, coloured by value of ωz (a) Top down view (b) Frontal view (c)

Isometric view

around T = 13, the second ring is entrained into the leading ring. This tem-

porarily increases the rate of circulation input into the leading ring, though

the rate returns to its previous level by around T = 15, suggesting that some of

the excess vorticity the entrainment provides is shed into the trailing jet struc-

ture. In order to determine how representative these results are compared to

experimental works, the time history of ring circulation is normalised by the

value at T = 4, and contrasted with analogous data from Gharib et al. (1998)

as shown in �gure 3.4. The same linear increase of total circulation up to T ≈ 4

is observed, along with a much more gradual rise in ring circulation thereafter,

once it has pinched o� from the starting jet.

Next we examine the ring's streamwise velocity and radius, given in �gure

3.5. The velocity appears to rise in a roughly linear manner until T ≈ 4.2, then

remains constant thereafter. There are some poorly correlated data points in

these results, which have likely arisen from the particular tracking method used

for the vortex ring. Somewhat more consistent are the measurements of the

ring radius, which retains a near constant value throughout the initial vortex

ring formation of rR ≈ D0/2. At the same value of T where the circulation

increase slows, the radius of the ring begins to increase.
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Figure 3.3: Evolution of leading vortex ring circulation, Γz/(VJDJ), and rate

of change, d(Γz/(VJDJ))/dT with formation time

This increase in ring radius may explain the continued circulation rise for

T > 4. As the ring radius increases, the maximum circulation it can entrain

will increase accordingly. If we now non-dimensionalise circulation in the ring

by its rR rather than DJ (�gure 3.6 we can see that the ring circulation per

unit radius remains approximately constant for T > 4, suggesting that for a

given radius, the ring circulation has indeed been maximised. Coincidentally,

the value of this ring normalised circulation is roughly equal with formation

time until T ≈ 3.8. In the literature that was consulted, little reference was

made to the evolution of ring radius and how or if this related to observed

circulation, so the validity of this result is somewhat unclear.

Nonetheless, the �ow structures formed by an impulsive jet noted in rel-

evant literature have been reproduced with reasonable accuracy, validating

the code's ability to simulate the generation of impulsive jets and subsequent

vortical structures.

3.2 Cross-pattern internal waves in strati�ed �uid

3.2.1 Background and simulation set up

As discussed previously, the code implements the e�ects of density strati�-

cation on a �ow through use of the Boussinesq approximation in the Navier-

Stokes equations, assuming a constant initial lapse rate, Φ (and hence constant

buoyancy frequency, N). It is prudent to try and replicate simple test cases
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Figure 3.4: (#) Circulation of leading vortex ring, normalised by total circu-

lation in domain at T = 4 for simulation conducted for this chapter, (×) Total

domain circulation, normalised by total circulation in domain at T = 4 as pre-

sented in �gure 10 from Gharib et al. (1998), (+) Leading ring circulation,

normalised by total circulation in domain at T = 4 as presented in �gure 10

from the same publication.

from previous experimental work with strati�ed �uids under these conditions

to check that the code implementation of strati�cation is valid.

3.2.2 Background and simulation set up: Cross pattern

internal waves

An often cited case in relevant literature is work published by Mowbray and

Rarity (1967), concerning work where a small circular cylinder was suspended

in a tank of liquid with uniform buoyancy frequency. The cylinder was then

oscillated horizontally at a particular angular frequency, ωf , generating an in-

ternal wave pattern in the tank that was visualised using Schlieren imagery. As

shown in the experiments, and discussed further by Lighthill (1978), when the

magnitude of the radial frequency of the cylinder was less than the buoyancy

frequency of the liquid, the Schlieren images revealed an �x� shaped pattern

of density variation (often referred to as a �Southern Cross� or �St. Andrews

Cross�).

The experiments found where the ratio between the radial frequency of the
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Figure 3.5: Evolution of (a) leading vortex ring translational velocity, VR =

dYR/dT (b) leading vortex ring radius, rR, with formation time

oscillation and the buoyancy frequency (ωf/N) was varied over the interval

of 0 to 1, the angle of the cross pattern's �spokes� (the internal waves) from

vertical was found to vary. This angle, φ, is given as

φ = cos−1(ωf/N).

Hence, when ωf/N is near a value of 1, the spokes appear near vertical as φ

approaches zero, with near horizontal results for ωf/N close to zero.

A similar e�ect to this can be observed by setting up a case using the DNS

code, involving a two dimensional, square domain with strati�cation applied

in the vertical (z) direction to give a known, constant vale of N . At the centre

of the domain, an unsteady momentum source is applied in the lateral (x)

direction varying in x, z at t as

f1 = sin(2πft)
JJe−(r2/rJ)

2

(πrJ2)3/2
,

where r2 =
√
x2 + z2. This momentum source is intended to emulate the body

force exerted on the �uid by the solid, oscillating cylinder in the experimental

cases.

The test cases were run on a 256 by 256 square grid with domain size

−π ≤ x, z ≤ π with a �xed time step of approximately 0.36 of the buoyancy

period (1/N). The momentum source was centred at (x, z) = (−0.5,−1). The

radius of the source, rJ , was set as 0.125, peak momentum �ux, JJ , was set

to 0.01 and reference Reynolds number, ReRef was set arti�cially high to try
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Figure 3.6: Evolution of leading vortex ring circulation (normalised by ring

radius), Γz/(VJrR)

and limit the in�uence of viscous dissipation on internal wave propagation.

ωf/N was varied for �ve di�erent cases to emulate the experimental work,

starting with an initially quiescent domain each time. As density is not stored

in the code (with buoyancy determined by the Boussinesq approximation and

a known value of N), the Schlieren plots from experimental work cannot be

reproduced directly. Instead, we plot contours of θ, the magnitude of vertical

acceleration due to buoyancy e�ects as given in equation 2.9.

3.2.3 Results and analysis

First, we look at a single case where ωf/N = 0.426, which would be expected to

give the wave angle, φ, as approximately 64.8○ from vertical. The evolution of

θ over time is demonstrated in �gure 3.7. The plots show the initial evolution

of the internal waves (high magnitude areas of θ), propagating outwards from

the momentum source to form the expected cross shape pattern. Once formed,

the angle of the waves is invariant in time. The value of φ was observed to be

approximately 65○, giving very good agreement with the relationship suggested

by the experimental work.

One e�ect observed here, unlike the experimental work, is the presence of

additional, weaker wave formation above and below the expected cross pattern

region. These are a consequence of utilising periodic boundary conditions for

the computational domain, with the waves leaving one side of the domain and

re-entering at the other. The presence of these additional waves appears to

have little or no e�ect on φ however, and can be potentially eliminated through
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Figure 3.7: Contours of θ for ωf/N = 0.426 at (a) Nt=7.2 (b) Nt=21.6 (c)

Nt=36 (d) Nt=50.4

the use of the fringe method (discussed in section 3.3).

Next, the frequency of the oscillation was varied in order to observe whether

φ would change accordingly. Four additional runs were performed with fre-

quencies both higher and lower than the �rst test. The wave patterns gener-

ated at these di�erent frequencies is given in �gure 3.8.

The values of cosφ for the �ve runs are plotted in �gure 3.9, along with a

line showing the theoretical relationship. It can be seen that for all frequency

ratios, ωf/N , that were tested, the resultant angle of the wave pattern was in

close agreement with theory. In this respect, the buoyancy forcing implemented

in the code via the Boussinesq approximation can be considered valid.

3.3 Suppressing internal waves using fringe method

3.3.1 Background and simulation set up

As observed in �gure 3.7 and �gure 3.8, the internal waves generated by the

momentum source in the domain transmit across the periodic boundaries, with

their energy continuing to contribute to the total energy in the domain, rather

than propagating away to in�nity. The fringe method discussed in section

2.3.4 can be applied to dissipate these waves at the periodic boundaries, and is

tested here. Aside from the activation of forcing in fringe regions and adjusting

the fringe parameters, these test cases use the exact same parameters as the
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Figure 3.8: Contours of θ at Nt = 72 for (a) ωf/N = 0.1, (b) ωf/N = 0.3, (c)

ωf/N = 0.7, (d) ωf/N = 0.9

�rst cross pattern wave test (�gure 3.7, ωf/N = 0.426).

The original implementation of the fringe method in the DNS code was

retooled slightly from the version used by Redford et al. (2015). Recalling

equation 2.23-2.25, the terms are relabeled to apply a fringe region at the x

and z periodic boundaries in this validation work:

σ = σc(σx + σz − σxσz),

σx = −
1

2
(tanh(tw [

x

lfx
− 1]) + tanh(tw [

lx − x

lfx
− 1])) + 1,

σz = −
1

2
(tanh(tw [

z

lfz
− 1]) + tanh(tw [

lz − z

lfz
− 1])) + 1.

.

Firstly a range of test cases were run to evaluate the e�ect of varying

σc, lfx, lfz and tw on how e�ective the fringe would be on dissipating the cross

pattern waves generated by the oscillating force. The length scales lfx and lfz

were both set as the same percentage of the domain width and height, lf%.

Some of the cases are presented here to demonstrate both the geometry of the

fringe and the resulting e�ect on the scalar �eld. The case names and fringe

parameters are given in table 3.1. The geometry of the fringe is illustrated in

�gure 3.10, with the resultant scalar �elds illustrated in �gure 3.11.
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Figure 3.9: (#) cosφ for varying ωf/N across numerical simulations docu-

mented in �gure 3.7, (×) analogous experimental data taken from �gure 6 in

Mowbray and Rarity (1967). The dashed line represents cosφ = ωf/N predic-

tion)

3.3.2 Results and analysis

Scalar �eld

It is easily observed from �gure 3.11 that the extent and strength of the fringe

regions has a marked e�ect on the extent that the wave pattern is allowed to

transmit through the periodic boundaries and pervade throughout the rest of

the domain. Lengthening the fringe region to include more of the domain and

reducing tw to smooth the transition from the non-fringe region both appear

to be e�ective methods of dissipating the internal waves at the boundaries.

However, this is at the expense of giving over a large proportion of the domain

to the fringe region (e.g. NF23, NF27). By comparison, increasing σc also

appears to weaken the waves as they pass through the boundaries, but for high

values (e.g. NF25) close observation demonstrates that the internal waves are

no longer just passing through the fringe region but are partially re�ected by

it. This is no more desirable than waves transmitting through the boundaries,

as the re�ected wave pattern also pervades throughout the domain (albeit with

a di�erent geometry to the transmitted wave pattern).

After examining the test cases presented here (and a number of others with

di�erent combinations of fringe parameters), the impression given is that for
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Table 3.1: Fringe method test simulation parameters

Case lf% σc tw

NF20 No fringe

NF21 5% 4.0 2.5

NF22 10% 4.0 2.5

NF23 25% 4.0 2.5

NF24 10% 0.4 2.5

NF25 10% 40.0 2.5

NF27 10% 4.0 0.5

NF28 10% 4.0 1.5

NF29 10% 4.0 3.5

the oscillating force case the ideal fringe region should:

� be relatively small to reduce computational cost (lf% = 5%)

� have a smooth transition region (tw=1.0)

� have the peak forcing strength �tuned� to eliminate transition whilst not

inducing re�ection

It should be noted that even with a relatively thin fringe region, the e�ects

of the resulting σ �eld are felt throughout most of the domain, with slightly

over 63% of the domain having a σ value more than 5% of σc. The value

of σc required to meet the last of these criteria is not obvious and requires a

certain degree of trial and error to determine a suitable value, with a closer

examination of the values of θ near the boundaries.

After a further round of simulations, a value of σc = 16 was chosen as the

optimum peak fringe strength. Contours of fringe σ and resulting contours of θ

are given in �gure 3.12. It can be seen that the fringe signi�cantly dissipates the

internal waves at the boundary. Some of the wave does still transmit through

and continue throughout the domain, but it was found that whilst increasing σc

reduced the transmitted waves, it strengthened the wave re�ection, nullifying

the gains.

To better understand the e�ect of the fringe on the scalar �eld, we examine

the vertical variation of θ with z at both x = −1.5 and x = 1.5 (see �gure 3.13).

In the lateral extent of the fringe, this represents two lines where σx ≈ 5%.

The scalar contours are given again, labeled with equivalent points on the line
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Figure 3.10: Contours of σ for selected fringe method test cases

plots to better identify the relevant scalar values. The reduction in scalar value

between the original wave and re�ected/transmitted values at these points are

also given in table 3.2.

Table 3.2: �Optimum� fringe scalar values at selected points

Wave Points Original θ Trans./re�. θ Reduction %

A,AR −0.390 −0.055 86%

B,BR 0.390 0.095 76%

C,CT 0.345 0.065 81%

D,DT −0.350 −0.060 83%

Reductions in wave strength (based on the peak θ values presented here)

were in the region of 80% across the fringe region. Some wave transmission was

still observed, as were some wave re�ections from within the fringe. No value of

θ was found that gave a near 100% reduction with the fringe geometry chosen.

Two possible reasons present themselves for why this may be so. First, the

fringe geometry chosen is designed to maintain a region of the domain outside

of the in�uence of the fringe (such that the observed wave pattern is considered

credible). This limits the size of the fringe, thus it may be insu�cient to

dissipate the waves entirely. Second, the �ow studied here is driven by a

combination of buoyant forcing and the oscillating momentum source. The
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Figure 3.11: Contours of θ at Nt = 144 for selected fringe method test cases

Figure 3.12: (a) Contours of σ for �optimum� fringe (b) Contours of θ at

Nt = 72 for �optimum� fringe

momentum source maintains a regular energy input into the domain, meaning

that if the waves it generates are not fully dissipated by their �rst passage

through the fringe region, then another will be generated behind it which also

will not be fully dissipated and so on, with the energy of each wave partially

retained.

The decaying strati�ed wake simulations of Redford et al. (2015) featured

internal waves that were not driven by a continuous momentum source but by

an initial velocity �eld with non-zero momentum, that was allowed to decay

over time. If the waves were not dissipated on the �rst pass through the fringe

they would be after subsequent passes. Additionally, the initial strength of

the waves generated by the �ow would reduce with time as the Reynolds and

Froude numbers of the wake decay.

This would suggest that the fringe method employed here is not fully suited

to fully dissipating the internal waves as desired. Nonetheless, a signi�cant

49



CHAPTER 3. VALIDATION OF NUMERICAL METHODS

Figure 3.13: (a) Annotated contours of θ at Nt = 72 for �optimum� fringe (b)

Annotated plot of θ with varying z for �xed x locations for �optimum� fringe

reduction in strength is achieved, with the resulting wave pattern resembling

the original work of Mowbray and Rarity (1967) much more closely than the

cases with no fringe employed.

Energy balance

We can further examine the e�ects of the fringe method by considering both the

domain integrated kinetic energy and buoyancy variance of the �ow induced

by the oscillating force. Recalling equations 2.13-2.14,

1

2
(
∂(u2

i )

∂t
+ uj

∂(u2
i )

∂xj
) = −u3θδ3i +K

′

ν + uifi,

1

2N2
(
∂(θ2)

∂t
+ ui

∂(θ2)

∂xi
) = u3θδ3i + P

′

ν ,

we can now distinguish the meaning of each term on the left and right hand

side of these energy transport equations as well as adding in an additional term

to account for the energy extracted from the domain in the fringe region to

give
dK

dt
= −K ′

B +K
′

ν +K
′

f +K
′

σ,

dP

dt
=K ′

B + P
′

ν + P
′

σ,

where K ′

σ and P ′

σ are respectively the rates of change of kinetic energy and

buoyancy variance due to the presence of the fringe.
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The code records each of the components on the right hand side of the

equations based on the instantaneous velocity and scalar �elds, as well as the

instantaneous integration of the kinetic energy and buoyancy variance over

the whole domain. A simple central di�erencing in time is used to obtain the

time derivative of these total energies, and thus allows a check of whether the

left and right hand sides of the equations add up. The oscillatory nature of

the momentum input is re�ected in the energy �ux terms with a sinusoidal

variation in time noted for all. The period of these oscillating energy �ux

readings was found to be one half the period of the oscillating momentum

source, which is to be expected as the momentum source will produce two

�peak� energy inputs when imparting maximum acceleration on the �uid in

either direction during a cycle.

As can be seen in �gure 3.14, the kinetic energy input from the momentum

source is positive throughout, with the buoyancy �ux component negative

at all times, with the maximum rate of kinetic energy lost due to buoyancy

concurrent with the maximum rate of kinetic energy gain from the momentum

source. As expected, the viscous dissipation in the domain is near zero at all

times, as was intended through the use of arti�cially high Reynolds number.

Of more interest is the kinetic energy lost to the fringe . Initially zero, the

energy removed from the domain by the fringe increases until it reaches a

quasi-steady state with small oscillations thereafter. These oscillations have

the same frequency though a slight phase shift from the momentum source

input, suggesting a lag between the energy input into an internal wave from

the source and the energy lost at the fringe (i.e. the time taken for the wave

to propagate from the source to the fringe). As this fringe energy �ux reaches

a quasi-steady state, the total rate of change of kinetic energy for the domain

begins oscillating about zero with a constant frequency and amplitude. This

shows that the domain has reached a state of maximum kinetic energy (albeit

with periodic oscillations).

In addition to analysing these terms individually, the �ux terms were added

together and the result compared with the calculated rate of change of kinetic

energy. The sum of the �ux terms was found to equal the rate of change

of kinetic energy, showing that there are no terms in the governing energy

equation unaccounted for, and that the energetics are correctly resolved in the

DNS code.

Similar patterns are observed in the �ux terms for the buoyancy variance

(�gure 3.15). The buoyancy �ux term is simply the positive equivalent of that

shown for kinetic energy, and the viscous term is again near zero. Like the
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Figure 3.14: Domain integrated kinetic energy �uxes for �optimum� fringe case

with dK/dt (�), K ′

B (− ⋅−), K ′

ν (- -), K
′

σ (●), K
′

f (×), −K
′

B +K
′

ν +K
′

σ +K
′

f (○)

domain integrated kinetic energy, the buoyancy variance reaches a maximum

level with a time derivative oscillating about zero at the same time the buoy-

ancy variance removed by the fringe also reaches a quasi steady state. Again,

the sum of the �ux terms and the time derivative of buoyancy variance overlay

near perfectly, further adding trust to the code's ability to resolve the �ow

�eld.

Figure 3.15: Domain integrated buoyancy variance �uxes for �optimum� fringe

case with dP /dt (�), K ′

B (− ⋅ −), P ′

ν (- -), P
′

σ (●), K
′

B + P
′

ν + P
′

σ (○)

Domain enlargement

Although the fringe method used here showed promising results when adjusted

to the �optimum case� discussed previously. It was decided to conduct one �nal

series of simulations to determine whether expanding the domain itself could

be used to facilitate a more e�ective fringe for dissipating internal waves. A

new set of test cases were run with the domain size enlarged by 50% in both di-

rections. By adjusting the fringe parameters accordingly, all of this additional

domain was given over to extend the maximum strength fringe region, whilst

maintaining the same length of the transition region and hence the same size
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of the region outside of the fringe in�uence.

Scalar contours for two of these cases are given in �gure 3.16. The addi-

tional fringe length was observed to signi�cantly reduce the transmission of

waves across the boundaries to negligible levels, with a large reduction in the

re�ected wave pattern observed also. By reducing the fringe strength slightly

from σc = 16 to σc = 12, the re�ections were weakened further, such that al-

most no additional wave pattern is visible in the domain. This con�rms that

additional fringe length can help dissipate internal waves more e�ectively than

the tuned but size-limited fringes used previously, although here the area of

the domain (and hence the number of grid points) was increased by over 50%,

sacri�cing a certain degree of computational e�ciency.

Figure 3.16: Contours of θ at Nt = 72 for domain enlarged �optimum� fringe

with (a) σc = 16 and (b) σc = 12

Oddly, the most signi�cant unexpected pattern in the domain were a quar-

tet of additional waves propagating from the origin (with those on the right

side of the origin more visible with a slightly jagged appearance). These waves

are short lived within the domain and appear to not propagate all the way to

the fringe region. Measurement of these waves showed that where the original

waves were generated by a force oscillating with ωf/N = 0.426, the additional

waves have a value of φ more characteristic of ωf/N ≈ 0.8, around double the

original waves and hence just under the frequency of the �rst harmonic.

A similar e�ect is observed in the Mowbray and Rarity (1967) for ωf/N =

0.366, with weaker waves at a more vertical inclination than the �original� wave

pattern. Such waves are also faintly visible in previous test cases presented here

(NF27-NF29 being notable examples). The authors of the paper attributed

such additional waves to �rst harmonic induced motion and also demonstrated

that for higher forcing frequencies with ωf/N > 0.5, the �rst harmonic is above

the frequency where cross pattern waves are observed, so the additional pattern

will not appear.

As these harmonic waves arise through mode coupling within the non linear,
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convective terms of the Navier-Stokes equations, the velocity scales within

the waves will rise approximately proportional to the square of the scales in

the original wave. As such, it was found that reducing the forcing strength

in the simulation by a factor of 10, and thus reducing the velocity of the

original waves, reduced the harmonic wave pattern strength to a point where

the density �uctuations they induced were below the visible contours of θ.

3.4 Evaluating domain sizing and re-gridding

3.4.1 The in�uence of regridding on energy levels

As discussed in section 2.3.5, it is possible to regrid the simulations to a lower

resolution at the late time to save on computational cost per iteration and

also allow for an increased ∆t. This regridding is applied extensively for the

simulations of chapter 5, where vortical structures are formed via a horizon-

tal momentum injection into an initially quiescent domain with either neutral

of stable background strati�cation. At early times, these simulations feature

�elds of small eddies formed through turbulent breakdown, buoyant instabil-

ity or a combination of the two. At the late time, these structures tend to

relaminarise to the point where grid resolution is more than su�cient to fully

resolve the length scales in the �ow �eld. The full details of these simulations

are given in chapter 5, but two examples here are cases JSD1 and JSD2, which

have neutrally and stably strati�ed initial domains respectively.

Figures 5.2-5.6 demonstrate that at the late time, the length scales of the

smallest eddies in both cases have increased, with the drop in kinetic energy

levels implying that the �ow velocity within these eddies has decreased signi�-

cantly, with both cases after 2250 iterations to take advantage of this. In order

to check whether this was a suitable stage to regrid, the simulations were al-

lowed to run for an additional 50 iterations at both the new, coarser resolution

and the original �ne resolution to determine whether the change in resolution

had any signi�cant impact on the simulation results. It would be expected that

if signi�cant kinetic energy and buoyancy variance is contained within small

scale structures (the higher wavenumber modes in Fourier space), reducing the

resolution by removing some of the higher modes would remove this energy

from the domain. Even though the �ow appears to have lost most of its �ne

scale structure for both cases (particularly for the stably strati�ed case) by

2250 iterations, the regrid removed just the highest 25% of the wavenumbers

from each direction, reducing the total grid count to around 42% of the initial
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Figure 3.17: Time evolution ofKu (�),Kv,Kw (�) for case JSD1 from shortly

before to shortly after regridding takes place at 2250 iterations. The × markers

indicate the equivalent values from 2250 to 2300 iterations if the simulation

continues at its original resolution.

value. Figure 3.17 demonstrates that for the case JSD1, the initial resolution

used and the new resolution both gave equal streamwise and lateral/vertical

kinetic energy levels after 2250 iterations. It can be inferred from this that the

energy contained within the higher Fourier modes that were removed from the

simulation during regridding was negligible.

3.4.2 The in�uence of domain sizing on late time struc-

tures

Also detailed in chapter 5 are the two domain sizes used for simulating impul-

sive momentum injection into a stably strati�ed �uid. Two domain sizes were

used for these simulations with the JSD type simulations used to evaluate the

early time �ow features in a high level of detail without the extra computa-

tional cost associated with a large domain, while JLD type simulations feature

a larger domain to provide su�cient room for the larger structures to develop

without being unduly a�ected by domain boundary proximity. The initial grid

spacing for these simulations is identical in all directions, and remains so until

any regridding is applied. As an example, case JLD1 is essentially a direct

repeat of case JSD2, but with the domain 67% larger in each direction.

The evolution of volume integrated kinetic energy and buoyancy variance

components for the two cases are given in �gure 3.18. It can be seen that
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Case Re N tJ NtJ/2π Lx, Ly, Lz nx, ny, nz

JSD2 1400 0.2 5 0.16 24π,8π,8π 768,384,384

JLD1 1400 0.2 5 0.16 40π,13.3π,13.3π 1280,640,640

Table 3.3: Cases and �ow parameters for selected simulations of chapter 5

there is no signi�cant change in the �ow behaviour between the two cases,

an assertion further corroborated by visualising the vorticity �eld over time,

showing the same injection, quasi-axisymmetry, collapse and planar dipole

stages for both JSD2 and JLD1. However, in spite of the similarity, it can be

seen that during the collapse phase shortly after t ≈ 50, the larger domain case

gives higher kinetic energy in the lateral and vertical directions, along with

higher buoyancy variance. Given that the only change in parameters between

the two cases is the domain size (and by extension, the size of the fringe

regions), and the timing of the change in energy behaviour, it is reasonable to

assume that the energy discrepancies arise as a result of di�erences between

the internal wave characteristics of the two cases and the handling of the waves

within the fringe regions.

As the fringe region is inherently an arti�cial condition when compared to

the experimental studies of previous literature, di�erences between the energy

levels in the fringes between the two cases are not as relevant as the energy

levels within the evolving dipole structure itself. The volume integration of

kinetic energy and buoyancy variance levels conducted by the code at every

time step includes the whole domain including the fringe region and is calcu-

lated during a stage where the velocity �eld is stored in Fourier space. By

extracting the velocity �eld in cartesian space at regular time steps, it is pos-

sible to isolate a volume within the domain for each case that does not include

the fringe but does include the collapsing jet structure. Figure 3.19 shows the

kinetic energy levels for both cases, evaluated at regular time intervals during

the collapse phase, but limiting the integration to a volume de�ned as

−2.4π ≤ x ≤ +21.6π,

−3.6π ≤ y ≤ +3.6π,

−3.6π ≤ z ≤ +3.6π.

As in �gure 3.18, there was no signi�cant di�erence in the streamwise kinetic

energy between cases with the fringe region removed from consideration. The

lateral kinetic energy was also approximately equal throughout, suggesting the
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Figure 3.18: Time evolution of kinetic energy and buoyancy variance levels for

smaller domain case, JSD2 (�) and larger domain equivalent, JLD1 (−−).
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Figure 3.19: Time evolution of kinetic energy levels for inner domain volume

for smaller domain case, JSD2 (#) and larger domain equivalent, JLD1 (×).
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Figure 3.20: Time evolution of (a) total kinetic energy level along with the

energy level lost/transferred due to (b) fringe region dissipation, (c) viscous

dissipation and (d) buoyancy �ux for smaller domain case, JSD2 (�) and

larger domain equivalent, JLD1 (−−).

additional energy seen in 3.18(b) was contained either in internal waves prop-

agating away from the inner domain or within the fringe region. Interestingly,

the vertical kinetic energy for the larger domain case was is within the inner

domain during the collapse phase than for the full domain volume integration.

In order to better understand why this is so, the three mechanisms for kinetic

energy �ux in the domain are considered individually, namely: viscous dissipa-

tion, transfer to the scalar �eld through buoyancy �ux and arti�cial dissipation

in the fringe. The time history of kinetic energy lost to these mechanisms is

given in �gure 3.20, with

Kν = ∫

t

0
K ′

νdt, (3.3)

KB = ∫

t

0
K ′

Bdt, (3.4)

Kσ = ∫

t

0
K ′

σdt. (3.5)

The �rst signi�cant di�erence observed from these energy histories is that

the energy extracted by the fringe is somewhat higher for the smaller domain
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case. However, the di�erence appears most pronounced prior to the collapse

phase, becoming smaller as the two simulations progress. Prior to the collapse

phase, the extra energy extracted by the fringe in the smaller domain case

is almost certainly due to the closer proximity of the fringe to the quasi-

axisymmetric jet structure. The increased rate of energy lost to the fringe

for the larger domain case during the collapse phase can be attributed to the

proportionately larger fringe region. As was demonstrated in section 3.3.2,

even a modest increase in fringe size can markedly increase the amount of

energy extracted from internal waves at the domain boundaries, and similar

behaviour would explain the fringe energy extraction for the cases considered

here. It should be noted that after the conclusion of the collapse phase, the

vertical kinetic energy for the two cases converges to similar levels, as both

have now almost completely dissipated the internal waves and removed their

energy from the domain.

Further evidence of the fringe proving more e�ective for the larger domain

cases can be garnered from the history of kinetic energy transferred to the

scalar �eld. After the start of the collapse phase at around t ≈ 50, the rate

at which energy is transferred to the buoyancy �eld sharply reduces. For the

larger domain case, the �ow of energy plateaus, but for the smaller domain

case the level continues to rise slowly. This is consistent with the higher value

of Kw seen in �gure 3.19(c), suggesting that internal waves are able to pass

through the fringe regions, re-enter the domain and interact with the collapsing

jet structure, allowing vertical motion within the structure to persist. This is

corroborated again by the vorticity contours given in �gure 3.21. The contours

for the smaller domain case demonstrate vorticity patches surrounding the

collapsing jet structure that appear to be a result of lingering internal wave

motion, particularly those far ahead of the jet. Even at a signi�cantly earlier

time in the larger domain case, such patches are not evident, with only a

few waves emanating from the collapsing structure visible. This data seems

to suggest that the fringe used in the larger domain case is well suited to

eliminating the in�uence of internal waves on the late time �ow.

With the early time and collapse phase di�erences between the two cases

having been considered, the �nal comparison carried out was to evaluate what

e�ect the relative proximity of the domain boundaries has on the evolution

of the vortex dipole at the late time. Neglecting the e�ect of the fringe for

the moment, the use of periodic boundaries in all directions essentially means

that instead of a single vortical structure propagating through the domain, the

simulation gives us an in�nite, periodic three dimensional array of structures

60



CHAPTER 3. VALIDATION OF NUMERICAL METHODS

z

x

(a)

0 10 20 30 40 50 60

−10

−5

0

5

10

z

x

(b)

0 10 20 30 40 50 60

−10

−5

0

5

10

Figure 3.21: Contours of ωy at y = 0 for (a) case JSD2 at t = 380 and (b) case

JLD1 at t = 251. The contour levels at each time range between ±0.6∣ωy ∣Max,

where ∣ωy ∣Max is the instantaneous, absolute maximum of lateral vorticity at

y = 0. Note the additional vorticity patches in (a) suggesting lingering internal

waves not seen in (b) even at the later time.
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(�image dipoles�) each physically identical to the original dipole, with their

geometric centres each separated by Lx, Ly, Lz in the respective directions.

The induced velocity from the image dipoles acts to slow the original dipole

as it propagates in the streamwise direction, an e�ect that becomes markedly

more pronounced as the dipole expands laterally and vertically at the late

time.

Archer et al. (2008) considered such a problem for the simulation of a

propagating vortex ring within a periodic domain and was able to quantify the

induced streamwise velocity de�cit based on the ring radius and circulation as

well as the periodic separation distance between the ring and its images. Such

an evaluation is more di�cult here, partly due to the more irregular shape of

the strati�ed vortex dipole compared to a toroidal vortex ring, but more due

to presence of the unphysical in�uence of the fringe region. Like the presence

of neighbouring image dipoles, the fringe will act to slow the propogation

speed of the original dipole, the exact impact of which is di�cult to quantify

analytically.

In order to estimate at what point in a simulation the boundary e�ects

begin to signi�cantly impact the development of the late time dipole, we track

both the dipole's propagation in the streamwise direction and its lateral growth

over time for both cases. The precise criteria for determining the values of

the dipole's streawmise centre, XD and diameter, DD are not always well

de�ned or necessarily consistent in relevant literature, so here we evaluate

the two using a similar enstrophy weighted method to the numerical study of

Rojanaratanangkule et al. (2012) i.e.

XD =
1

Ω ∫V
x∣ω∣2dV, (3.6)

DD =
2

Ω ∫V
∣y∣∣ω∣2dV, (3.7)

Ω = ∫
V
∣ω∣2dV. (3.8)

Equation 3.7 can still be applied due to the apparent symmetry of the dipole

about the lateral midplane. For dipoles that deviate from this symmetry, ∣y∣

can be replaced with ∣y − YD∣, where YD is the lateral coordinate of the dipole

centre.

The time history of dipole position and diameter for both JSD2 and JLD1

are given in �gure 3.22. The two cases give approximately equal values of XD

and DD until t ≈ 6000 implying that, up until this point, the boundary e�ects

in both cases on propagation speed and lateral growth can be neglected. After

this, while the lateral growth rate apparently remained consistent, the dipole
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Figure 3.22: Time history of (a) dipole streamwise centre, XD and (b) diam-

eter, DD. Circle markers (#) indicate the smaller domain case, JSD2, with

cross markers (×) indicating the larger domain case, JLD1.

in JSD2 begins to slow more rapidly than that in JLD1, indicating that the

closer boundaries and fringe region had now impacted signi�cantly on the late

time dipole. At this time, the two dipoles each have a diameter of around 6.5,

approximately 26% of the domain width, Ly. Given that the larger domain

cases are two thirds larger in each direction than the smaller domain cases,

we can infer that when the dipole diameter in the larger cases reaches the

same percentage, the results thereafter may be regarded with suspicion, but

are reliable until then. Thus the results for the larger domain cases exclude

boundary e�ects from consideration until DD ≈ 10.8.

3.5 Chapter summary

This chapter has documented the validation and testing of the simulation code

used for the research described in this thesis. The code is able to generate

starting jet structures akin to those reported by Gharib et al. (1998) for a

momentum injection into a quiescent domain, and also replicate the internal

wave patterns observed by Lighthill (1978) for an oscillating body within a

stably strati�ed �uid. The combination of these two validation studies, allied to

the validation work conducted for the earlier iteration of this code by Redford

et al. (2015) demonstrate that the Naiver-Stokes equations, including the terms

for buoyancy required by the Boussinesq approximation, are applied correctly

in this code and provide a good representation of experimentally generated
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�ows.

Additionally, the fringe method used to dissipate internal waves in buoy-

ancy driven �ows at the domain boundaries has been tested and optimised,

and the e�ects of domain boundary proximity and grid resolution have also

been accounted for. All of this gives con�dence to the results of simulations

presented in the following chapters.
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Chapter 4

Evolution of a horizontally

propagating vortex ring in

neutrally/stably strati�ed �uid

4.1 Simulation set up and study parameters

The �rst main body of numerical work for this research involves the simula-

tion of a horizontally propagating vortex ring in stably strati�ed �uid with a

linear density pro�le in the vertical direction. The primary objective of this

set of simulations was to gain a more quantitative measure of how parame-

ters such as Reynolds number and strati�cation strength a�ect the collapse

process, as well as gaining more insight into the physical mechanisms of the

collapse process itself. There exists a signi�cant literature base of comparable

experimental work looking into the buoyant collapse of an isolated ring (Jo-

hari and Fang, 1997; Scase and Dalziel, 2006), but there appears to be little

or no analogous literature detailing any numerical studies. In the experimen-

tal works, the vortex rings are generated via a horizontal �uid injection into

a stably strati�ed domain through a round ori�ce, with the duration of the

injection kept su�ciently small such that all circulation added to the domain

is entrained into the forming ring once the injection has ceased (i.e. TJ < TΓ)

as noted by Gharib et al. (1998). The bene�t of this numerical approach is

to allow access to the energetics and buoyancy scalar �elds within the vortex

ring as it evolves in a strati�ed domain, with such information extremely di�-

cult to attain experimentally. As a result, no comparison between the energy

levels observed in the simulations of this chapter and previous experimental

literature is made here.

For this numerical study, the vortex rings were not created through the
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use of a momentum injection but were instead created by imposing a suitable

vorticity �eld on the domain as an initial condition and allowing it to evolve

over time. The initial vorticity �eld de�nes a ring with initial core circulation,

ΓR0, and a Gaussian distribution of azimuthal vorticity, ωθ, within the core,

with mean ring radius, RR0, and core radius, δR0. This is much the same

de�nition used to generate a vortex ring in the numerical work of Archer et al.

(2008) with

ωθ =
ΓR0

πδR0
2 exp(−s2/δR0

2
). (4.1)

The distance from the centre of the vortex ring core, s, is calculated by

s =
√
x2 + (r −R∗

R0)
2, (4.2)

where r =
√
y2 + z2 and R∗

R0 is the initial ring radius subject to an applied

perturbation. A perturbation to the otherwise uniform ring radius is intro-

duced here in order to help accelerate the turbulent transition of the ring at

su�ciently high Reynolds number. The perturbation is sinusoidal in nature

and thus R∗

R0 can be de�ned as

R∗

R0 = RR0 + ε sin(nεψR), (4.3)

where ε is the magnitude of the perturbation, nε is the wavenumber of the per-

turbation and ψR = tan−1(z/y). The azimuthal vorticity, ωθ can be converted

to Cartesian equivalents by

ωy = ωθ sin(ψR); (4.4)

ωz = −ωθ cos(ψR). (4.5)

All of this provides for a ring which should initially propagate directly along

the x-axis in the positive direction (assuming ΓR0 is positive). For the purposes

of these simulations, ΓR0 is set to 1 such that the circulation based Reynolds

number, ReΓ, is simply equal to Re. The mean ring radius is set to 0.5 to give

a unit diameter, with a core radius of 0.2 to give δR0/RR0 = 0.4, a similar value

to simulations A1 and A2 from Archer et al. (2008).

For the perturbation about the ring circumference, the magnitude, ε, was

chosen to be RR0/50 and nε was chosen to be 7. This choice of perturba-

tion wavenumber gives the ring a very slight heptagonal appearance, and was

decided upon based on the work of Dazin et al. (2005, 2006). In those exper-

imental studies of vortex ring transition from a laminar to turbulent state, it

was found the transition took place in two phases. In the �rst phase, natu-

rally occurring deformation of the vortex rings occurred as linear instabilities,
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Figure 4.1: Isosurfaces of constant vorticity magnitude, ∣ω∣, for perturbed vor-

tex ring cases at t = 0 with views looking from (a) positive x, negative y,

positive z to negative x, positive y, negative z, (b) positive x to negative x, (c)

positive z to negative z (d) negative y to positive y. Colour contouring ranges

between ±0.6∣ωz ∣Max, with isosurface threshold set at 0.25∣ω∣Max.

developing as a waveform about the ring circumference. It was found that the

most pronounced instabilities occurred within a band of unstable modes with

wavenumbers from 7 to 10. It follows from this that the turbulent transition

of a vortex ring initially de�ned in a laminar state can be accelerated by per-

turbing its radius to create such a waveform. The initial vortex ring for these

cases is presented through isosurface visualisations in �gure 4.1.

To determine the in�uence of initial Reynolds and Froude numbers on the

collapse process, a baseline case with high Reynolds and low Froude num-

ber (with values comparable to those tested in the experimental literature)

was simulated (case RSD2), along with further cases with a range of inital

Reynolds and Froude numbers as documented in table 4.1. Additionally a

single case with the same non-dimensional parameters as the baseline stably

strati�ed case, but without a radial perturbation applied to the ring, allowing

the e�ects of the perturbation on the collapse process to be better understood

(case RSD3). As mentioned previously, the initial Reynolds number of the
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Case Re Fr Notes

RSD1 5000 ∞ Neutrally strati�ed baseline

RSD2 5000 1.0 Stably strati�ed baseline

RSD3 5000 1.0 As RSD2 but no perturbation

RSD4 3000 1.0 Testing initial Re sensitivity

RSD5 1000 1.0 Testing initial Re sensitivity

RSD6 5000 5.0 Testing initial Fr sensitivity

RSD7 5000 10.0 Testing initial Fr sensitivity

RSD8 5000 2.0 Testing initial Fr sensitivity

RSD9 5000 0.5 Testing initial Fr sensitivity

RSD10 5000 0.2 Testing initial Fr sensitivity

Table 4.1: Cases and �ow parameters

cases based on the unit ring circulation can be given as

ReΓ =
Γ

ν
=

1

ν
= Re, (4.6)

and the initial Froude number based on unit ring circulation and unit diameter

is given by

Fr =
Γ

2NRR0

=
1

N
. (4.7)

All cases were run on a computation grid with (Lx, Ly, Lz) = (4.5π,3π,3π)

and (nx, ny, nz) = (512,512,512). This grid was con�rmed through energy bud-

get analysis to suitably resolve the �ow �eld at the highest Reynolds number

used. Grid resolution was kept constant throughout the duration of each simu-

lation, as the simulations run here were not run long enough to yield signi�cant

savings in computational cost by reducing resolution at the late time.

4.2 Results and analysis

4.2.1 Vortex ring evolution in neutrally strati�ed domain

The �rst simulation conducted for this study, case RSD1, initially places a

vortex ring in a neutrally strati�ed domain (N = 0, F r =∞). As time elapses,

the ring propagates along the x axis, undergoing a readjustment phase in the

early time steps as the ring detrains some of its circulation in the negative x

direction, with the apparent core radius becoming smaller and the ring pro�le

no longer Gaussian as was initially de�ned by equation 4.1. This readjustment

had been previously documented by Archer et al. (2008) and other works cited
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therein. Figure 4.2 gives isosurfaces representing the ring as it propagates and

changes in appearance over time. At the early times, the ring maintains a

smooth, toroidal appearance before adopting a more heptagonal shape beyond

t ≈ 5. Such an appearance is to be expected given the perturbation wavenum-

ber of 7 chosen for these simulations, with this change in shape to a stationary

waveform leading to the development of an azimuthal instability. This insta-

bility results in the manifestation of smaller scale structure within the core

itself, as well as the generation of �halo vorticity�, looping structures that sur-

round the inner vortex core (visible at t = 21.51 in �gure 4.2). After a period

of continued breakdown to smaller scale, turbulent structure, the ring begins

to relaminarise as the smaller scale structures di�use under the in�uence of

viscosity, with the ring eventually returning to a smooth appearance (though

notably deformed from its initial toroidal state).

These stages of vortex ring evolution can also be illustrated via the time

history of the volume integrated kinetic energy components as detailed in �gure

4.3, with the energy levels calculated by

K =Ku +Kv +Kw,

Ku =
1

2 ∫V
u2dV (4.8)

etc.

The initial ring adjustment phase occurs approximately during the period

up to t ≈ 3, with kinetic energy quickly transferred from the lateral and ver-

tical directions to the streamwise direction and back again as vorticity is re-

distributed within the vortex ring core. Thereafter, during the laminar phase

(t < 15), the kinetic energy in each direction appears to reduce steadily due to

viscous di�usion. As the ring begins to breakdown to small scale structure, the

rate of energy loss due to di�usion increases, with the smaller scale, low energy

containing structures more susceptible to the in�uence of the viscous term in

the Navier-Stokes equations than the larger, high energy structures seen up

to the point of breakdown. The start of the relaminarisation appears to be

characterised by another back and forth exchange of kinetic energy from the

streamwise to lateral and vertical directions (t ≈ 30), followed by a subsequent

resumption in energy decay for all directions, though the rate of decay is slower

than noted during the turbulent phase as the energy within the ring is now

once again primarily contained in larger scale structures. Although the initial

ring is not perfectly axisymmetric about the x axis, the lateral and vertical

kinetic energy levels remain largely similar throughout and are nearly identi-

cal at the early time, suggesting the perturbation applied was not so excessive
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Figure 4.2: Isosurfaces of constant vorticity magnitude, ∣ω∣ for case RSD1

(Re = 5000, Fr = ∞) at various times from the early laminar stage, through

turbulent breakdown and �nally relaminarisation. Viewing angle is identical

to �gure 4.1(a). Colour contouring ranges between ±0.6∣ωz ∣Max, with isosurface

threshold set at 0.25∣ω∣Max.
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Figure 4.3: Time history of volume integrated kinetic energy levels for case

RSD1 (Re = 5000, Fr =∞) with (a) streamwise kinetic energy, Ku, (b) lateral

kinetic energy, Kv (�), vertical kinetic energy, Kw (−−).

that the initial condition was unrepresentative of a toroidal vortex ring.

4.2.2 Vortex ring evolution in stably strati�ed domain

The evolution of a propagating vortex ring in neutrally strati�ed �uid has pre-

viously been studied extensively in both experiment and numerical simulation

by previous authors and so is not examined in great detail here. Of more rele-

vance to this study is identifying how the same vortex ring evolves in a stably

strati�ed �uid and identifying the di�erences in the �ow that said strati�cation

creates. Case RSD2 de�nes an identical initial ring to case RSD1, but now

with unit initial Froude number. Figures 4.4 and 4.5 illustrate the early time

evolution of the ring through a series of vorticity contours, showing both the

lateral vorticity at the lateral midplane (y = 0) and the vertical vorticity at

the vertical midplane (z = 0). All the contours are given on identically scaled

and positioned axes for clarity. Like the neutrally strati�ed case, the ring

undergoes an initial adjustment from the initial Gaussian core distribution of

vorticity.

Whereas the neutrally strati�ed case showed the vortex ring to maintain

approximate axisymmetry (initial perturbation aside) up until t ≈ 10, the sta-

bly strati�ed case shows the vortex ring to deviate from the axisymmetric state

much more quickly. Indeed, comparing the lateral and vertical vorticity con-

tours demonstrates axisymmetry has been clearly lost by t ≈ 4. Thereafter, �g-
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Figure 4.4: Contours of lateral vorticity, ωy at y = 0 for case RSD2 (Re = 5000,

Fr = 1) for various times from initial condition to early stages of buoyant

collapse. Colour contouring ranges between ±0.6∣ωy ∣Max.

ure 4.4 shows the rapid change from the coherent vorticity minima/maxima in

the ring's lateral cross section to a front of smaller eddies, while also appearing

to detrain some vorticity behind this front, forming a v-shaped tail extending in

the vertical direction. The coherence of the vorticity minima/maxima appears

to persist longer in the vertical direction as shown in �gure 4.5, though vortic-

ity within the cores is still detained, in this instance forming a tail consisting

of two adjacent stripes of counter-rotating vorticity, indicating a streamwise

acceleration of �uid in the direction of travel of the initial vortex ring. By

t ≈ 7, the vertical vorticity contours also show production of smaller eddies in

a similar manner to the lateral vorticity contours.

Figure 4.6 shows the evolution of the vorticity pro�le across the ring in the

lateral and vertical direction at the very early time, prior to the ring losing

its apparent axisymmetry. The initially Gaussian distribution of vorticity in

the ring as prescribed by the initial solution appears to persist until ≈ 1,

though after this the peak lateral vorticity, ωy, appears to increase, reaching

up to 150% its original value. This result is somewhat unexpected as it was
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Figure 4.5: Contours of vertical vorticity, ωz at z = 0 for case RSD2 (Re = 5000,

Fr = 1) for various times from initial condition to early stages of buoyant

collapse. Colour contouring ranges between ±0.6∣ωz ∣Max.
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anticipated that Baroclinic torque would act to slow the rotation of the vortex

ring in the lateral direction. As an example, the lateral views of the ring in

�gure 4.4 show an upper core of negative sign vorticity (�ow rotating anti-

clockwise relative to the lateral view). Fluid forward in x of the core centre

has a positive z component of velocity, with the �uid behind the core centre

having a negative component of vorticity. Recalling the governing equations

2.9 and 2.10,

∂ui
∂t

+ uj
∂ui
∂xj

= −
∂p

∂xi
+

1

ReRef

∂2ui
∂xj∂xj

− θδ3i + fi,

∂θ

∂t
+
∂θui
∂xi

= N2
Refu3δ3i +

1

PrReRef

∂2θ

∂xi∂xi
,

it may be expected that the initial vertical velocity of the �uid would result in

a locally non-zero value of θ, with a positive vertical velocity locally inducing

a positive θ, which in turn contributes a negative accelerative term to the

momentum equation, acting to suppress the positive velocity, and a locally

negative velocity inducing the same e�ects in the reverse direction. In the

case of the upper core in the lateral views of 4.4, this would imply a positive

value of θ ahead of the core and a negative value behind, creating a clockwise

torque to suppress the anti-clockwise rotation. The evolution of the ωz pro�le

across the ring appears more intuitive, with a slight reduction of the initial

peak vorticity magnitude in the positive and negatively signed cores. Also

visible for t > 2 are two smaller peaks between the main cores, which may well

be an early signature of the tail between the cores seen in �gure 4.5, formed

from the detrainment of vorticity from the main cores.

Returning to the question of why the peak lateral vorticity in the ring

increases after the initial solution, the value of θ at the lateral midplane is given

in �gure 4.7. Between t ≈ 1 and t ≈ 2, it can be seen that the value of θ is not

exclusively positive ahead of the upper core nor exclusively negative behind it.

The transport of the buoyancy scalar due to the prevailing circulation appears

to convect �uid with positive θ above the core in z initially, and then behind

it in x resulting in a positive value of θ immediately adjacent to and behind

the core centre, and similarly a negative value of θ ahead of the core centre.

As a physical analogy, one may imagine that ahead of the core, denser �uid

particles are displaced upward and rearward initially by the vortex, but are

then pulled down behind it su�ciently quickly that before buoyant forces are

su�cient to dominate the �ow, the particles initially ahead of the ring now

sit behind the ring in x, but still above their equilibrium plane in z. These
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Figure 4.6: Vorticity pro�les across the vortex ring of case RSD2 (Re = 5000,

Fr = 1) at various times prior to the onset of buoyant collapse. The solid black

lines (�) show the variation of lateral vorticity, ωy, with varying z, where the

x, y coordinates are those of the point where ωy = ωy ∣Max. The dashed blue

lines (−−) show the variation of vertical vorticity, ωz, with varying y, where

the x, z coordinates are those of the point where ωz = ωz ∣Max.
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Figure 4.7: Contours of buoyancy scalar, θ, at y = 0 for case case RSD2

(Re = 5000, Fr = 1) at various times during and just after completion of a

single buoyancy cycle.

particles, represented in 4.7 as areas of positive θ above the centre of the

upper core in z and behind the core centre in x, will be subject to a downward

acceleration. The reverse e�ect is seen for the the areas of negative θ below

the upper core centre. The consequence of this is a local anti-clockwise torque

which temporarily serves to increase the peak lateral vorticity in the core as

seen in �gure 4.6. Between t ≈ 2 and t ≈ 4, the extent to which the buoyancy

scalar �eld is positive behind the upper core, and negative ahead of it, begins

to reduce, which may explain why the peak lateral vorticity in the core does

not rise beyond t ≈ 2.2.

The e�ect of the background density gradient on the structure of the vortex

ring is further represented in the isosurfaces of �gure 4.8, showing (at the six

consecutive time intervals shown here): 1. Initial solution; 2. The axisymmet-

ric ring after initial core readjustment; 3. Vertical distortion of the ring with

the increase in lateral vorticity seemingly manifesting as a thicker upper and

lower core; 4.-6. detrainment of vorticity from the core into the surrounding

�uid. The evolution of the ring from its initially axisymmetric state to the

more complex structures seen in these isosurfaces is further described by the

integrated kinetic energy and buoyancy variance levels within the ring pre-
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sented in �gure 4.9. The time measure used here is chosen not to be the raw

solution time, t, but the number of buoyant cycles that have elapsed since the

initial solution, with this buoyant time measure given as Nt/2π. As would be

expected, the initial streamwise kinetic energy gradually reduces, with time,

though the rate of decrease suddenly levels out somewhat at the conclusion of

one buoyant cycle (Nt/2π = 1, t ≈ 6.28). Immediately after this, the rate of

energy decrease is notably more gradual. Buoyancy variance levels also rise ini-

tially, which can be inferred also from the spread of non-zero areas of θ across

the domain as indicated by �gure 4.7. Interestingly, the rise in buoyancy vari-

ance commences between zero and one-quarter buoyant cycles, plateaus for the

next quarter of a buoyant cycle, then continues to rise before reaching a max-

imum at one buoyant cycle, coincident with the change in streamwise kinetic

energy behaviour indicated previously. Thereafter, the buoyancy variance level

beings to reduce, but as shown in �gure 4.9, the proportion of the total energy

in the domain provided by buoyancy variance plateaus, and until nearly 100

buoyant cycles into the simulation the internal energy from buoyancy variance

makes up approximately 30% of the total energy in the domain i.e.

P

K + P
= 0.3, (4.9)

with no clear indication from either governing equations or experimental lit-

erature as to why this would be so. The lateral and vertical components of

kinetic energy also show a surprising result, maintaining a similar order of

magnitude until approximately 100 buoyant cycles, at which stage the verti-

cal kinetic energy and buoyancy variance levels decrease rapidly. As buoyant

forces were expected to suppress the vertical motion within the �uid and not

(directly) suppress the streamwise or lateral velocity components, it is curious

why the vertical kinetic energy persists for so long.

Once again considering the early time evolution of kinetic energy and buoy-

ancy variance levels, it is useful to examine what proportion of energy is being

lost to viscous dissipation, and what proportion is simply transferred between

the velocity and scalar �elds. Recalling the energy transport equations 2.13

and 2.14,

1

2
(
∂(u2

i )

∂t
+ uj

∂(u2
i )

∂xj
) = −u3θδ3i +K

′

ν + uifi,

1

2N2
(
∂(θ2)

∂t
+ ui

∂(θ2)

∂xi
) = u3θδ3i + P

′

ν ,

the left hand sides of these equations give the absolute time derivative of

kinetic energy, dK/dt and buoyancy variance, dP /dt. For kinetic energy, the
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Figure 4.8: Isosurfaces of constant vorticity magnitude, ∣ω∣, for case RSD2

(Re = 5000, Fr = 1) at various times from the early laminar stage to the early

stages of buoyant collapse. Viewing angle is from positive x to negative x.

Colour contouring ranges between ±0.6∣ωz ∣Max, with isosurface threshold set at

0.25∣ω∣Max.
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Figure 4.9: Time history of volume integrated kinetic energy and buoyancy

variance levels for case RSD2 (Re = 5000, Fr = 1) with (a) streamwise kinetic

energy, Ku, (b) lateral kinetic energy, Kv (�), vertical kinetic energy, Kw

(−−), (c) buoyancy variance, P and (d) buoyancy variance expressed as a

fraction of the total energy in the domain. The vertical lines (from left to

right) indicate Nt/2π = 0.25, Nt/2π = 0.5, Nt/2π = 1, Nt/2π = 2.
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external forcing term, uifi is zero for the simulations of this chapter as no

impulse is added to the �uid after the initial solution. This leaves just the

�rst term on the right hand side as the rate of transfer of kinetic energy to

the scalar �eld, and the second term being viscous dissipation. Similarly, the

rate of change of buoyancy variance is given by the summation of the kinetic

to internal transfer term, and its own viscous/thermal dissipation term. The

balance of these terms can be seen in �gure 4.10. For the �rst two buoyant

cycles, the rate of change of kinetic energy and buoyancy variance are almost

equal in magnitude though opposite in sign, as the only signi�cant change in

energy is the transfer between the two states, with viscosity making a minimal

contribution by comparison over this time period. Indeed, the rate of change of

kinetic energy due to buoyancy �ux peaks at around ten times the loss of energy

due to viscosity, with a similar trend seen for buoyancy variance. From this we

can infer that virtually all of the structural change in the stably strati�ed case

at this early time, as demonstrated by the �gures 4.4, 4.5, 4.8 etc. are driven

by the e�ects of buoyancy, rather than the viscous e�ects that shape the ring

in the neutrally strati�ed case. After reaching a near zero buoyancy �ux at

Nt/2π = 2, the transfer rate increases again, though more gradually and to a

lower peak value than within the �rst two buoyant cycles, before the �ux term

gradually reduces. Beyond approximately ten buoyant cycles, the magnitude

of the buoyancy �ux and viscous dissipation terms are well within the same

order of magnitude, indicating that subsequent evolution of the structures in

the �ow is driven more equally by buoyancy and viscosity. This also indicates

that the rates of kinetic energy and buoyancy variance redduction beyond this

time are very similar, which would go some way to explaining the constant

ratio of internal to total energy described previously.

The isosurfaces in 4.11 depict the evolution of the vortex ring beyond the

completion of the �rst buoyant cycle. From the deformed ring and tail structure

seen previously as t ≈ 6, at t ≈ 8.4 the ring is now only discernible from two

slender columns of counter-rotating vertical vorticity, surrounded by several

smaller eddies, giving an appearance bearing some similarity to the turbulent

vortex ring in the neutrally strati�ed case, though the time from initial solu-

tion to the appearance of smaller eddies is signi�cantly shorter (similar eddies

were not seen in the neutrally strati�ed case until t ≈ 20). As quickly as they

appear however, the smaller eddies begin to merge into larger eddies to give

an increasingly laminar appearance, culminating in the formation of a lami-

nar, �at, disc shaped structure colloquially known in literature as a �pancake�

vortex. Two patches of counter-rotating vorticity are clearly visible, main-
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Figure 4.10: Time history of volume integrated kinetic energy and buoyancy

variance �uxes for case RSD2 (Re = 5000, Fr = 1) with (a) rate of change of

kinetic energy, dK/dt (�), rate of kinetic energy lost to viscous dissipation,

K ′

ν (−−), reverse buoyancy �ux −K ′

B (− ⋅ −), (b) rate of change of buoyancy

variance, dP /dt (�), rate of buoyancy variance lost to viscous dissipation, P ′

ν

(−−), buoyancy �ux K ′

B (− ⋅ −). The vertical lines (from left to right) indicate

Nt/2π = 0.25, Nt/2π = 0.5, Nt/2π = 1, Nt/2π = 2.
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taining the same sense of rotation of the two sides of the initial vortex ring

core at the vertical midplane. The ring at this stage can be considered to

have undergone buoyant collapse, a process apparently complete at the late

time when both buoyancy variance and vertical kinetic energy levels reduce

sharply as seen in �gure 4.9. The three-dimensional structure at the late time

is depicted in �gure 4.12. Qualitatively, this structure appears similar to the

three-dimensional vortex dipole as described by Praud and Fincham (2005) in

both an experimental and analytically modelled context. The two columns of

contra-rotating vorticity are clearly visible in front view, bounded by a thick

shear layer above and below. Vorticity contours presented in �gure 4.13 show

the structure at the lateral and vertical midplanes, with the dipolar cores of

vertical vorticity and the �v� shaped form taken by the shear layers above and

below the vertical midplane. Subsequent analysis in chapter 5 demonstrates

that this shape arises from pure shear, and the value of vorticity shown in the

lateral midplane contours arises from this shear alone, rather than rotation of

�uid in the horizontal plane.
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Figure 4.11: Isosurfaces of constant vorticity magnitude, ∣ω∣, for case RSD2

(Re = 5000, Fr = 1) at various times from the early stages of buoyant collapse

through to the emergence of a late time laminar dipole. Viewing angle is

from positive x, negative y, positive z to negative x, positive y, negative z.

Colour contouring ranges between ±0.6∣ωz ∣Max, with isosurface threshold set at

0.25∣ω∣Max.
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Figure 4.12: Isosurfaces of constant vorticity magnitude, ∣ω∣, for case RSD2

(Re = 5000, Fr = 1) at t = 50.9 demonstrating the structure of the late time

dipole, with views looking from (a) positive x, negative y, positive z to negative

x, positive y, negative z, (b) positive x to negative x, (c) positive z to negative

z (d) negative y to positive y. Colour contouring ranges between ±0.6∣ωz ∣Max,

with isosurface threshold set at 0.25∣ω∣Max.
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Figure 4.13: Contours of vorticity for case RSD2 (Re = 5000, Fr = 1) at t = 50.9

with (a) lateral vorticity, ωy at y = 0, (b) vertical vorticity, ωz at z = 0. Colour

contouring ranges between ±0.6∣ωy ∣Max and ±0.6∣ωz ∣Max respectively.
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Returning to the comparison between the neutrally strati�ed and stably

strati�ed cases, the vertical and horizontal length scales of the vortex ring at

the early time can be given by

DRy =
2

Ω ∫V
∣y∣∣ω∣2dV, (4.10)

DRz =
2

Ω ∫V
∣z∣∣ω∣2dV, (4.11)

and its streamwise centre position given by

XR =
1

Ω ∫V
x∣ω∣2dV, (4.12)

where,

Ω = ∫
V
∣ω∣2dV.

The early time history of these values for the neutrally strati�ed case RSD1

and the stably strati�ed case RSD2 are given in �gure 4.14. Also presented

are the values for case RSD3, which has an identical initial solution to RSD2

with the exception that the radial perturbation to the initial vortex ring is not

applied, such that it is truly axisymmetric as opposed to the near-axisymmetry

of the initial solution of all other cases presented in this chapter. In the neu-

trally strati�ed case, after the initial readjustment of the ring between t = 0

and t = 1, the vertical and horizontal length scales of the ring appear equal and

are near-constant for the time interval considered here. The evolution of the

ring's x location also appears to rise near linearly i.e. ring propagation velocity

is near constant. Recall that vortex ring velocity was de�ned in Archer et al.

(2008) as

UR =
Γ

4πRR

[ln
8RR

a
+ c] , (4.13)

where RR, a is a measure of core radius and c is a constant determined by

the vorticity pro�le within the ring core, and for a Gaussian de�ned core such

as those used here has a value of approximately -0.558 (Sa�man, 1970). The

de�nition of vortex radius used for calculating velocity in this instance is chosen

not based on equations 4.10-4.11, but instead determined as half the distance

between the vorticity minima and maxima across a radial slice though the

ring. In the case of simulation RSD1, the approximate ring radius using this

de�nition is 0.57 immediately after initial readjustment, with an estimated

average core radius of 0.27. Using the value of c given by Sa�man (1970) and

the unit value of circulation de�ned previously, this gives a predicted velocity

of 0.313. The mean measured velocity of the ring, dXR/dt, between t = 6 and

t = 20 was found to be 0.316. Though some discrepancy is to be expected in the
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method used to determine core radius (given that after readjustment, the ring

pro�le is no longer truly Gaussian), this nonetheless suggests this simulation

gives excellent agreement with the predicted velocity from literature and helps

verify that the numerical methods in use here are valid.

In the stably strati�ed cases, immediate di�erences are apparent in terms

of ring length scales, which initially appear to increase in the vertical direction

and decrease in the lateral direction over the �rst quarter buoyant cycle. For

the remainder of the �rst buoyant cycle, the ring's vertical length scale reduces

as can be seen in the isosurfaces of �gure 4.8. Over the next buoyant cycle,

the ring length scale increases in the lateral direction to beyond its original

value and the vertical length scale again decreases. One may imagine that the

detrainment of vorticity into structures surrounding the ring core and ejected

from it may now be skewing the measurements given that the structure no

longer resembles a toroidal vortex ring. The velocity of the structure as a

whole is perhaps a more relevant quantity, with the propagation speed of the

structure notably slowing beyond one buoyant period.

Also of note is that the cases RSD2 and RSD3, despite the lack of initial

perturbation in the latter, give near identical results for length scale and x posi-

tioning. Further to this, examining the isosurfaces in �gure 4.15 demonstrates

qualitatively similar evolution of the vortical structures in the �uid for case

RSD3 to those in case RSD2, with the initially unperturbed case giving more

exact symmetry about the lateral and vertical midplanes but no new feautres

beyond that. Finally, the time evolution of the kinetic energy and buoyancy

variance components in the �uid for both cases are plotted in �gure 4.16. The

energy levels are almost exactly equal for each component throughout. The

conclusion to draw from this would appear to be that, while an initial per-

turbation may be useful to accelerate the breakdown of a laminar vortex ring

to a turbulent state in a neutrally strati�ed environment, the buoyant forces

within the stably strati�ed cases are su�cient to break such structures into

smaller eddies. As has already been demonstrated, the in�uence of buoyancy

on the stably strati�ed case presented here would appear to far outweigh the

e�ects of viscosity anyway.
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Figure 4.14: Time history of (a) vortex ring horizontal length scale, DRy, (b)

vortex ring vertical length scale, DRz, (c) vortex ring streamwise location, XR,

for cases RSD1 (#), RSD2 (×) and RSD3 (+). The vertical lines are spaced

at intervals of 2π to indicate the completion of each buoyant cycle for cases

RSD2 and RSD3.
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Figure 4.15: Isosurfaces of constant vorticity magnitude, ∣ω∣, for case RSD3

(Re = 5000, Fr = 1, unpeturbed initial ring) at various times from the early

stages of buoyant collapse through to the emergence of a late time laminar

dipole. Viewing angle is from positive x, negative y, positive z to negative

x, positive y, negative z. Colour contouring ranges between ±0.6∣ωz ∣Max, with

isosurface threshold set at 0.25∣ω∣Max.
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Figure 4.16: Time history of volume integrated kinetic and buoyancy variance

levels for cases RSD2 (�) and RSD3 (−−). Levels shown are (a) streamwise

kinetic energy, Ku, (b) lateral kinetic energy, Kv (c) vertical kinetic energy

and (d) buoyancy variance, P .
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4.2.3 The in�uence of initial Reynolds and Froude num-

bers on buoyant collapse

In order to gain further understanding of how viscous and buoyant forces de-

termine the fate of the initial vortex ring in stably strati�ed cases, further

cases were run as listed in table 4.1 that varied both the initial Reynolds and

Froude numbers of the ring. Figure 4.17 plots the time evolution of the ki-

netic energy and buoyancy variance levels for three cases with initial Reynolds

numbers of 1000, 3000 and 5000. The time history of each energy component

is markedly similar between the three cases, with the key points at which en-

ergy levels vary as described previously occur at the same time for each of

the three cases. As an example, buoyancy variance levels between the three

cases appear near identical until just before peak buoyancy variance level is

reached. Thereafter, the lower Reynolds number cases show a slightly more

rapid decay of buoyancy variance, with similar trends seen for the three ki-

netic energy components. The more rapid drop in energy can be attributed

both to increased viscous dissipation extracting energy from the domain, with

the smaller value of Re giving a more dominant viscous contribution to the

momentum equation.

The greater in�uence of viscosity can also be seen in the streamwise location

of the vortex ring as it evolves from its initial axisymmetric state to the late

time dipole. All three cases give a near identical initial structure propagation

velocity over the �rst buoyant cycle, but thereafter the lower Reynolds cases

show a more rapid deceleration. This is attributable both to increased dissipa-

tion extracting kinetic energy directly from the �ow as mentioned previously,

as well as increased di�usion spreading the momentum of the �uid over a larger

volume, giving a slower propagation velocity. Overall though, the variation of

Reynolds number alone does not appear to raise any particularly unexpected

behaviours or o�er any further detailed insight into the initial evolution and

buoyant collapse of the vortex ring in a stably strati�ed background. These

simulations were not run on long enough to consider how the structure evolves

at the latest times under the in�uence of viscosity after the collapse process is

complete, this instead being a focus of the next chapter.
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Figure 4.17: Time history of volume integrated kinetic energy and buoyancy

variance levels for cases RSD2 (Re = 5000) (�), RSD4 (Re = 3000) (−−) and

RSD5 (Re = 1000) (− ⋅ −) . Levels shown are (a) streamwise kinetic energy,

Ku, (b) lateral kinetic energy, Kv (c) vertical kinetic energy and (d) buoyancy

variance, P .
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Figure 4.18: Time history of vortex ring streamwise location, XR, for cases

RSD2 (Re = 5000) (#), RSD4 (Re = 3000) (×) and RSD5 (Re = 1000) (+).
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Of greater in�uence on the ring energy at the early time is the strength

of the background density gradient. Figure 4.19 gives the time evolution of

kinetic energy and buoyancy variance levels for three stably strati�ed cases

with di�ering initial Froude number, as well as the kinetic energy levels for

neutrally strati�ed case (Fr = ∞) documented previously. Immediately ap-

parent is that the stably strati�ed case and the higher Froude number stably

strati�ed case give very similar kinetic energy histories for the early stages of

the solution. Examining the buoyancy variance level in the solution, the higher

Froude number results in much lower buoyancy variance than the lower Froude

number cases. This results from a much reduced rate of kinetic energy to buoy-

ancy variance transfer, with the work required to displace a �uid particle by

a unit vertical distance from its equilibrium plane reduced in a more weakly

strati�ed background. The other two stably strati�ed cases give a higher level

of buoyancy variance at the early time, and show bigger deviation from the

neutrally strati�ed case in terms of kinetic energy as a result. Interestingly, all

three stably strati�ed cases show very similar buoyancy variance trends with

time (albeit with di�ering maximum values), with the time at which the key

features identi�ed in �gure 4.9 occurring at a later solution time for the higher

Froude number cases. Figure 4.20 shows the variation of the ratio of internal

to total domain energy for four stably strati�ed cases at di�erent initial Froude

number, but plotted against the number of elapsed buoyant cycles. In each

case this ratio increases rapidly initially before brie�y plateauing or at least

slowing notably between one quarter and one half buoyant cycles, before rising

again thereafter. As mentioned before, the Fr = 1 case plateaus at a internal

to total energy ratio of around 0.3 at almost exactly one buoyant cycle. The

ratio for two intermediate Froude number cases plateau between two and three

buoyant cycles into the simulation with the highest Froude number case not

run su�ciently long to reach the point of this ratio plateauing. The interme-

diate Froude number cases appear to reach a ratio of nearer 0.5, as opposed

to the 0.3 observed previously. Returning to �gure 4.19, we see that while the

initial value of buoyancy variance for the Fr = 1 case is higher than for the

other stably strati�ed cases, beyond t = 10 it has a lower buoyancy variance

level than the Fr = 2 case and beyond t = 100 has a lower buoyancy variance

than the Fr = 5 case, despite this being within the time period where the

internal to total energy ratio has plateaued. The streamwise kinetic energy

level in the higher Froude number cases also appears to drop to a lower level

at later times than the lower Froude number cases. In order to better under-

stand these kinetic energy levels, the streamwise position of the vortex ring
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Figure 4.19: Time history of volume integrated kinetic energy and buoyancy

variance levels for cases RSD1 (Fr = ∞) (�), RSD2 (Fr = 1.0) (−−), RSD8

(Fr = 2.0) (− ⋅ −) and RSD6 (Fr = 5.0) (⋅ ⋅ ⋅) . Levels shown are (a) streamwise

kinetic energy, Ku, (b) lateral kinetic energy, Kv (c) vertical kinetic energy

and (d) buoyancy variance, P .
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Figure 4.20: Time history of volume integrated buoyancy variance levels, ex-

pressed a fraction of total domain energy, for cases RSD2 (Fr = 1.0) (�),

RSD8 (Fr = 2.0) (−−), RSD6 (Fr = 5.0) (− ⋅ −) and RSD7 (Fr = 10.0) (⋅ ⋅ ⋅) .

is considered with the position history over elapsed buoyant cycles plotted in

�gure 4.21. Taking cases RSD2 and RSD8 as a comparison, these two cases

appear to give a similar rate of change of position per buoyant cycle at later

times, though given each buoyant cycle is longer for the latter case as a re-

sult of higher Froude number, this means the absolute propagation velocity of

the ring is lower, which would explain the reduced streamwise kinetic energy

at the later times. The lateral and vertical extent of the ring, also given in

�gure 4.21 is seen to oscillate in an irregular manner for all three cases with

no clear pattern other than the peak of the oscillations being slightly more

extreme for reduced Froude number. From the isosurfaces given in �gure 4.22,

it is apparent that the structure of the ring after a given number of buoy-

ant cycles is highly dependent on the initial Froude number, particularly at

the later times. After two buoyant cycles, an initial Froude number of 1 has

given the expanding structure of smaller eddies discussed previously. By con-

trast, an initial Froude number of 5 has given a structure that is qualitatively

more reminiscent of the neutrally strati�ed case, with the ring appearing to

have undergone the same breakdown to smaller eddies and return to laminar

state shown in 4.2 and discussed in the previous section. This di�erence in

structure highlights that while the changes in buoyancy variance level showed

similar trends after similar buoyant cycles had elapsed for di�erent cases, the

use of buoyant cycles as a non-dimensional time measure does not result in

agreement for the kinetics of the vortex ring for the cases where initial Froude
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Figure 4.21: Time history of (a) vortex ring horizontal length scale, DRy, (b)

vortex ring vertical length scale, DRz, (c) vortex ring streamwise location, XR,

for cases RSD2 (Fr = 1.0) (#), RSD8 (Fr = 2.0) (×) and RSD6 (Fr = 5.0) (+).
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number was varied.

4.3 Chapter summary

This chapter has documented Direct Numerical solution of the evolution of a

horizontally propagating vortex ring, both in neutrally and stably strati�ed

�uids. While both cases show the initially laminar ring to break down into

many smaller eddies soon after the simulation is commenced, the breakdown

is accelerated in the stably strati�ed case due to the in�uence of the buoyant

term in the momentum equation. Regardless of strati�cation, the eddies even-

tually merge to form a laminar structure once more at later times, with the

stably strati�ed cases forming a pancake like dipolar vortex structure very sim-

ilar to those documented in literature. Varying both the Reynolds and Froude

numbers of the simulations has further demonstrated that the initial break-

down process in the stably strati�ed cases has little sensitivity to viscosity,

instead being dominated by the strength of the background density gradient,

with the vortical structure and energetics of the vortex ring deviating signi�-

cantly from a neutrally strati�ed case at lower Froude number. Emphasis has

been placed on relating the changes in the vorticity �eld to the trends shown

for both kinetic energy and buoyancy variance levels within the �ow, with no

experimental analogy found in literature, and thus o�ering insight into this

relationship for the �rst time.

The late time evolution of late-time dipolar structures is not considered in

detail in this chapter, but is the primary focus of the following chapter. The

following chapters will also consider how a vortex ring-like structure forms

from an impulsively acting momentum source, and how this formation is also

a�ected by the presence of a stable background density gradient.

Though not exhaustively considered here, a comparison of cases where the

initial vortex ring has or has not been radially perturbed to accelerate the

breakdown process showed that such perturbation had minimal quantitative

e�ect on the breakdown in a stably strati�ed background. As a consequence,

radial perturbation was not employed for the impulsive momentum injection

cases of the following chapters.
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(a)

(b)

(c)

Figure 4.22: Isosurfaces of constant vorticity magnitude, ∣ω∣, after approxi-

mately one half, one and two buoyant cycles have elapsed for (a) case RSD2

(Fr = 1.0), (b) case RSD8 (Fr = 2.0) and (c) case RSD6 (Fr = 5.0). Viewing

angle is from positive x, negative y, positive z to negative x, positive y, nega-

tive z. Colour contouring ranges between ±0.6∣ωz ∣Max, with isosurface threshold

set at 0.25∣ω∣Max.
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Chapter 5

Vortex dipole formation in a

strati�ed �uid

5.1 Simulation set up and selecting study pa-

rameters

The next stage of this research involves simulating an axisymmetric momen-

tum injection into an initially quiescent, stably strati�ed domain in order to

create a numerical analogy to many of the experimental works discussed in

sections 1.2.2 and 1.2.3. The injection is generated by a mometum source re-

gion centred at the origin of the computational domain, which delivers a total

kinematic momentum �ux, J . The momentum �ux is distributed across the

computational grid by the same 3D Gaussian function utilised in the work of

Rojanaratanangkule et al. (2012), where impulsive momentum injections were

simulated and then allowed to form a dipole under the vertical constraint of

free surfaces placed above and below the injected �uid. The forcing term, fi,

in equation 2.9 is de�ned as

fi = (fx,0,0),

fx =
J

((δG/2)2π)3/2
exp(−

x2 + y2 + z2

(δG/2)2
) , (5.1)

where δG is the Gaussian diameter of the forcing region. The denominator,

((δG/2)2π)3/2, scales the acceleration applied to the �uid at any one grid point

such that

∫
V
fxdV = J,

regardless of the value of δG. The momentum injection is switched on at

t = 0 and turned o� at t = tJ , with no further momentum injection there-

after. A Gaussian forcing pro�le is favoured here over a smoothed top hat
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such as those used for the impulsive jet simulations of Mohseni et al. (2001)

and Rojanaratanangkule et al. (2014), as it is less likely to produce sharp

velocity gradients that the spectral numerical method of the simulation code

will struggle to capture without a very high level of resolution. Both these

latter studies used a �nite di�erencing method to discretise the computational

domain, so were less susceptible to such issues.

The values of input �ow parameters for the simulation are chosen based

on equivalents noted from previous literature. The three parameters to be

varied between simulations are the Reynolds number, Re, the non-dimensional

buoyancy frequency, N and the duration of the �uid injection, which for stably

strati�ed cases can be given in terms of the number of buoyant periods that

elapse during the injection, NtJ/2π.

The Reynolds number selected here is applied in terms of the kinematic

momentum �ux of the injection source i.e.

Re = ReJ =
ĴJ

1/2

ν̂
= J1/2ReRef . (5.2)

This is the de�nition used in Voropayev et al. (2008) and di�ers from some

other literature that makes use of the injection velocity and inlet diameter to

give a Reynolds number as

ReS =
ÛJD̂J

ν̂
.

The range of Reynolds numbers used in a selection of previous studies is pre-

sented in the table 5.1, with some given by the ReJ de�nition and some by

ReS. For the latter, an estimate of ReJ is calculated from the injection veloc-

ity and diameter (with ĴJ = ÛJ
2
πD̂J/4) and given in brackets for comparative

purposes. As can be seen from the table, the Reynolds number based on mo-

mentum �ux is estimated to be around 10% lower than the velocity/length

scale counterpart.

Some of these sources also present the uniform buoyancy frequency applied

throughout the �uid and the duration of the injection, with dimensional values

given in table 5.2. Also presented are typical non-dimensional equivalents,

found with a reference time scale, t̂Ref determined from the injection diameter,

D, and the kinematic momentum �ux of the source, J , i.e.

t̂Ref =
πD̂/4

Ĵ1/2
. (5.3)

The non-dimensional injection times and strati�cation strengths from experi-

ment are long enough and weak enough that it would take lengthy simulations

and a very large domain to capture the full evolution of an axisymmetric jet
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Source ReS ReJ

van Heijst and Flór (1989) 2000 (1800)

Flór et al. (1995) 360-11500 (320-10200)

Praud and Fincham (2005) 10000 (8900)

Voropayev et al. (2008) N/A 650-1400

Rojanaratanangkule et al. (2012) N/A 625-2000

Table 5.1: Injection source Reynolds numbers (ReJ ,ReS) from relevant litera-

ture

�ow to the late time vortex dipole we expect if using similar non-dimensional

parameters. However, we can create simulations that closely match the values

of NtJ/2π seen in experiment i.e. the number of buoyant cycles over which

the momentum injection is sustained. This gives an alternative means of nor-

malising elapsed time in the simulations and can be used to compare with the

time evolution of the �ow properties seen in experimental work.

Source N̂ (rad s−1) N/10−3 t̂J (s) tJ NtJ/2π

van Heijst and Flór (1989) 1.68 0.74 1.0 2256.8 0.27

Flór et al. (1995) 1.2-3.0 1.26 0.2-0.7 752.8 0.15

Praud and Fincham (2005) 0.3 7.68 1.0-8.0 175.7 0.21

Voropayev et al. (2008) 0.8-1.2 2.75 3.0-5.0 1452.5 0.72

Table 5.2: Stably strati�ed domain buoyancy frequency and from relevant

literature

A total of eight simulations were conducted for this part of the study, with

the governing �ow parameters and details of the computational grid detailed

in table 5.3. The �rst two simulations, JSD1 and JSD2, were conducted to

compare the early time di�erences that develop between a momentum source

injection into both a neutrally and stably strati�ed domain. The remaining

simulations, JLD1-6, are all stably strati�ed cases with a larger domain, in-

tended for studying the e�ect of the governing �ow parameters on the late

time dipole development. It should be noted that while the values of N and

tJ are somewhat higher than their experimental counterparts, the values of

NtJ/2π are representative of previous work as detailed in table 5.2. A uni-

form lateral and vertical domain size is used to eliminate the proximity of
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Case Re N tJ NtJ/2π Lx, Ly, Lz nx, ny, nz

JSD1 1400 0.0 5 - 24π,8π,8π 768,384,384

JSD2 1400 0.2 5 0.16 24π,8π,8π 768,384,384

JLD1 1400 0.2 5 0.16 40π,13.3π,13.3π 1280,640,640

JLD2 800 0.2 5 0.16 40π,13.3π,13.3π 1280,640,640

JLD3 2000 0.2 5 0.16 40π,13.3π,13.3π 1280,640,640

JLD4 1400 1.0 5 0.80 40π,13.3π,13.3π 1280,640,640

JLD5 1400 0.2 15 0.48 40π,13.3π,13.3π 1280,640,640

JLD6 1400 1.0 15 2.39 40π,13.3π,13.3π 1280,640,640

Table 5.3: Cases and �ow parameters

boundary conditions as a potential cause for the breaking of axisymmetry

seen in the stably strati�ed cases. The grid spacing used for each direction

is identical for both JSD and JLD cases so that the e�ects of changing do-

main size can be fairly evaluated. The initial grid resolution for all cases

was veri�ed to be suitable through a combination of grid convergence testing

and energy budget analysis. The fringe region parameters were chosen based

on the work conducted in section 3.3, and are universal across all the cases

with (σc, σa, σb, tw, lfy, lfz) = (0.04,0.5,0.5,2.5, Ly/40, Lz/40). These parame-

ters were found to be su�cient to dissipate internal waves generated during

the evolution of the strati�ed cases without signi�cantly impacting on the de-

velopment of �ow structures until the very latest times in the simulation for the

larger domain cases. The combined e�ect of domain size and fringe proximity

is discussed in more detail later in this chapter.

During the momentum injection phase (t ≤ tJ), the time step was held �xed

at ∆t = 0.02 in order to maintain a stable time integration. This also has the

advantage of being able to precisely implement the tJ cut-o� within the code.

After tJ , the code was free to prescribe its own time step based on the Courant

number of 1.58 as discussed in section 2.3.1.

5.2 Results and analysis

5.2.1 Initial development of momentum injection in neu-

trally/stably strati�ed domains

The �rst two simulations conducted, JSD1 and JSD2, involve a momentum

injection at Re = 1400 with tJ = 5 into both a neutrally and stably strati�ed
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Figure 5.1: Comparison of midplane vorticity contours at t = tJ = 5 for (a)

neutral strati�cation, N = 0 (b) stable strati�cation, N = 0.2; (i) ωy at y = 0

(ii) ωz at z = 0. All contour levels range from −2 (blue) to +2 (red) and are

viewed looking from negative to positive along the normal axis.

domain, where the stably strati�ed case uses N = 0.20.

The momentum source produces a starting jet originating from the domain

origin, creating an axisymmetric shear layer protruding in the x direction. At

the leading edge of the jet, the shear layer rolls up into a vortex ring in a

process well documented in previous experimental studies (see Gharib et al.

(1998) etc.), with the shear layer forming a trailing jet behind the ring. The

ring observed here is somewhat more spherical than that observed in experi-

mental studies of starting jets, ostensibly due to the use of a Gaussian forcing

pro�le, though qualitatively the behaviour is consistent with experimental ob-

servations.

Figure 5.1 shows vorticity contours, taken at the lateral and vertical mid-

planes of the domain at the end of the momentum injection for both cases.

The axisymmetry of the starting jet and vortex ring is clearly observed for the

neutrally strati�ed case, with the stably strati�ed case showing little di�erence

at this early stage.

Once the injection has ceased, the ring and trailing jet propagate down-

stream. Figure 5.2 illustrates that the neutrally strati�ed case maintains ax-

isymmetry throughout, with the leading vortex ring propagating faster than

the trailing jet, becoming detached and moving away, with a secondary ring

forming at the leading edge of the separated trailing jet. Until t ≈ 15 (around
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1 complete buoyant period into the simulation), the quasi-axisymmetry of the

stably strati�ed case (�gure 5.3(a)) is maintained and appears qualitatively

similar to the neutrally strati�ed case as seen in �gure 5.2(a).

Beyond a full buoyancy period, the quasi-axisymmetry breaks down. At

this point, instabilities develop in both the leading and secondary vortex, form-

ing a quasi-turbulent arrangement of much smaller vortical eddies. These

structures form two distinct patterns in the midplane vorticity contours, both

of which are symmetric about the x axis and visible in �gure 5.3(b).

Approximately, three buoyant periods after this stage, the propagation

velocity of the total �uid structure reduces rapidly, with some of the smaller

eddies moving laterally away from the x axis, such that the width of the

structure undergoes a signi�cant increase. By contrast, the eddies do not

signi�cantly expand in the vertical direction, instead remaining con�ned in

a layer of �uid comparable in height to the quasi-axisymmetric stage (�gure

5.3(c)).

Over a period of an additional 2-15 buoyancy periods, the small eddies

within the structure begin to merge together and advect forward into the

frontal region of the structure. The merging eddies, when viewed along the

z axis, form a series of dipolar vortices that each advect into the front region

in turn. During this stage of small eddies merging, signi�cant generation of

internal waves can be implied by examining the lateral midplane vorticity �eld

as seen in �gure 5.3(c)(i). These waves are generated along the length of

the structure and propagate away forwards and either up or down from the

evolving dipolar structure. The fringe region at the vertical and lateral domain

boundaries dissipates the waves before they can re-enter the domain.

At the late time (t>300), the dipolar eddies have merged together to form

two large contra-rotating vortex columns, bounded by two relatively thin shear

layers above and below the columns, with a �tail� of trailing �uid extending

behind as seen in �gure 5.3(d). At this stage, vertical motion in the structure

has been almost entirely suppressed, reducing the previously three dimensional

�ow to a vertical arrangement of planar �ow layers. The contours of ωy ob-

served in �gure 5.3(d)(i) result from the shear between these layers, with the

layers nearest z = 0 moving faster than those above and below.

The vertical vorticity contours at the late time exhibit a similar appearance

to the two dimensional dipoles considered in the analytical and numerical work

of Delbende and Rossi (2009), which also demonstrated the presence of a weak,

vortical tail extending behind the leading dipole structure. The isosurfaces

given in �gure 5.4 further illustrate this three dimensional structure, with the
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Figure 5.2: Comparison of midplane vorticity contours for case JSD1 (N = 0.0)

at (a) t = 25.6 (b) t = 52.3 (c) t = 170.2 (d) t = 2073.9. As in �gure 5.1,

displayed contours are (i) ωy at y = 0, (ii) ωz at z = 0. The contour levels

at each time range between ±0.6∣ωz ∣Max, where ∣ωz ∣Max is the instantaneous,

absolute maximum of vertical vorticity at z = 0.
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Figure 5.3: As �gure 5.2 but for case JSD2 (N = 0.2) at (a) t = 26.5 (b) t = 50.2

(c) t = 159.2 (d) t = 2045.8.
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Figure 5.4: Isosurfaces of constant vorticity magnitude, ∣ω∣ = (ωx + ωy + ωz)1/2

for N = 0.2 at t = 3410, with colour contours to the same scale as �gure

5.3(d). Isosurface threshold set at 0.3∣ω∣Max, looking from (a) maximum x, y, z

to minimum x, y, z (b) positive x to negative x (c) negative z to positive z.

columns, shear layers and tail region clearly visible, giving good qualitative

agreement with the features observed in previous experimental work (see �gure

12 in Praud and Fincham (2005)). Referring to this complete structure as

a dipole is something of a misnomer, as it exhibits a distinct non-uniformity

throughout its vertical extent and cannot be considered truly two dimensional,

though for lack of a simpler title it will be continued to be referred to as a

dipole hereafter.

The visualizations of the dipole are useful for illustrating the dipole features

and corroborating that the �ow observed in these simulations is representative

of the experimental equivalents, but they yield little quantitative information

on the mechanisms behind the change from a quasi-axisymmetric jet to a vor-

tex dipole. In order to better understand these mechanism we consider key

statistics of the �ow as they evolve in time, and relate them to the visual

changes in the �ow structures noted previously. As indicated by the visualisa-

tions given previously, there are four distinct stages of �ow evolution for the

stably strati�ed case, which can also be identi�ed by considering the volume-
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Figure 5.5: Time evolution of Ku for N = 0.0 ( o ) Kv,Kw for N = 0.0 (�),

Ku for N = 0.2 ( x ), Kv for N = 0.2 (−−), Kw for N = 0.2 (− ⋅ −). The plot

regions (i)-(iv) indicate the subsequent phases of evolution for N = 0.2 i.e. (i)

t ≤ tJ (ii) instability development (iii) buoyant collapse (iv) planar �ow.

integrated kinetic energy and buoyancy variance in the domain. The time

evolution of some of these integrated energy components is given in �gures 5.5

and 5.6, with the transition point between the four stages indicated. During

the momentum injection (stage (i) in �gure5.5), Ku rises as �uid velocity is

increased in the x direction. Viscous roll up at the leading edge of the starting

jet transfers some of this energy to the y and z directions, forming the leading

vortex ring seen in �gure 5.1. For the neutrally strati�ed case, the simulation

maintains perfect axisymmetry about the streamwise axis such that Kv = Kw

throughout, and are therefore represented by a single line. For the stably

strati�ed case, the vertical motions induced during this roll up displace �uid

particles from their equilibrium layer in the z direction, leading to a concurrent

production of buoyancy variance. At this early stage, P is at least one order

of magnitude less than either Kv or Kw, suggesting that the potential of the

buoyancy scalar �eld to in�uence the velocity �eld is minimal. As such, Kv

and Kw are almost identical, to each other and to their equivalents for the

neutrally strati�ed case, and quasi-axisymmetry is maintained.

Shortly after the momentum injection is ceased at t = tJ (stage (ii) in

�gure5.5), Ku begins to reduce, partly as a result of viscous drag slowing the

propagating structure's advance in the x direction and partly due to continued

transport of energy into the other directions as the trailing jet rolls up into

further ring-like structures (note the secondary ring visible in �gure 5.2(a).
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Figure 5.6: Time evolution of K (�) and P (−−) for N = 0.2. Plot regions

(i)-(iv) indicate the same time periods as �gure 5.5

.

During this additional roll up in the stably strati�ed case, P appears to tem-

porarily reach a plateau, not unlike the vortex ring cases of chapter 4. Beyond

t ≈ 50, a small disparity begins to develop between Kv and Kw as instabilities

develop in the leading ring and trailing jet structures, visible in 5.3(a).

As indicated in �gure 5.7, the start of instability development within the

leading ring is approximately coincident in time with the peak angular velocity

within the ring reducing to a level below the buoyancy frequency. The angular

velocity of each rotating �uid particle about its own centre of mass, φ′, can be

given as half the vorticity at that point and can be separated into individual

components with

φ′x = ωx/2,

φ′y = ωy/2, (5.4)

φ′z = ωz/2.

The instabilities appear to manifest when ∣φ′y ∣Max, ∣φ′z ∣Max < N . Physically

speaking, this is the point at which the changes in the velocity of �uid particles

due to the buoyant force term in the momentum equation (−θδ3i in equation

2.9) occur at a faster rate than changes due to the overturning of the vortex

ring core. As previously noted in the experimental work of Scase and Dalziel

(2006), the trailing vortical structures behind the leading ring also develop

instabilities in a similar manner, such that the whole �ow structure appears to

become turbulent. Initially, this newly turbulent �ow regime creates further
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Figure 5.7: Time evolution of peak angular velocities within the leading vortex

ring core. Horizontal line indicates φ′ = N .

buoyant displacement thanks to the increased mixing in the z direction that

the smaller eddies provide. Thus between t ≈ 20 and t ≈ 50, Kv and Kw reduce

quickly, partly due to the increased viscous dissipation associated with the

small scale structures now present, and the increased transfer of energy to the

buoyancy scalar �eld that in turn explains the rise in P .

Beyond this time, the integrated buoyancy variance within the scalar �eld

is somewhat greater than the vertical and lateral kinetic energy components,

suggesting that the inertial forces within the unstable vortex ring will become

overwhelmed by the greater forces generated due to buoyant displacement.

The buoyancy variance level in the domain begins to reduce as the energy is

transferred back to kinetic energy �eld (primarily to Kw), with the vertically

displaced �uid particles returning to their equilibrium layers (stage (iii) in

�gure5.6).

The kinetic energy is carried through the domain in the form of the buoy-

ancy waves �rst observed in �gure 5.3(c)(i). These waves appear to carry most

of their kinetic energy and buoyancy variance away from the streamwise axis

in the z direction, explaining why Kw > Kv at this stage, with the major-

ity of this energy dissipated by the fringe region at the vertical and lateral

boundaries. The individual waves propagate with a straight trajectory and

form a pattern that appears symmetric about both the horizontal and lateral

midplanes as seen in �gure 5.8. This pattern is qualitatively very similar to

that observed to form around the decaying monopole of Beckers et al. (2001),

with the waves initially containing a high level of kinetic energy and buoyancy

variance at the onset of the collapse phase, though rapidly becoming weaker as

Kw and P decay. At t ≈ 500, the vertical kinetic energy and buoyancy variance

�elds quickly become depleted as the energy carried by the waves is dissipated
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within the fringe region, and vertical motion within the remaining structure

is almost completely suppressed. Both Kw and P quickly reduce by several

orders of magnitude compared to Ku and Kv, reducing the structure to the

planar �ow regime described previously (stage (iv) in �gure5.6). Such is the

rapid reduction of w and θ throughout the �ow �eld at the late time, we can

infer that once the dipole has fully formed the buoyant �eld has no further

in�uence on the future development of the structures within the domain.

5.2.2 Evolution of the vortex dipole at the late time

With the transformation from an axisymmetric �ow to the vortex dipole now

documented, our attention turns to how the fully formed dipole evolves at the

late time and how well this relates to the dipoles created in the experimental

studies mentioned previously. Figure 5.9 shows the time evolution of the two

contra-rotating vortex patches characteristic of the dipole and shows that once

the dipole is fully formed, it continues to grow laterally at the late time as well

as propagating forward in the x direction. Although the lateral vorticity con-

tours seen previously (�gure 5.3 etc.) suggest that rotational motion persists

at the late time, all motion in the domain is now quasi-horizontal. The mag-

nitude of ωy at any given point in the domain is dominated entirely by shear

in the vertical direction i.e.

ωy = ∂w/∂x − ∂u/∂z ≈ −∂u/∂z (5.5)

as ∣∂u/∂z∣ ≫ ∣∂w/∂x∣, as illustrated by �gure 5.10.

Using the horizontal location of the vertical vorticity maximum as a rough

estimate for the centre of one of the dipole cores, a vertical pro�le for the

buoyancy scalar through the core can be obtained at various times as shown

in �gure 5.11. These pro�les show us that within the dipole core's vertical

extent there remains �uid displaced from buoyant equilibrium, with the dense

�uid above the vertical midplane giving a negative value of θ, with the lighter

�uid below the midplane giving a positive value. Hence, even at the late time,

there are still weak buoyant forces driving �uid towards the vertical midplane,

though the magnitude of θ decays so rapidly that the forces become negligible

at the late time (particularly when considered against the in�uence of viscous

di�usion on the dipole's vertical structure). These pro�les are qualitatively

similar to those seen experimentally for both a strati�ed monopole (Beckers

et al., 2001) and a strati�ed vortex dipole (Voropayev et al., 1991), though in

those cases the pro�les provided are of �uid density, rather than the pro�le of

θ such density would yield.
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Figure 5.8: Contours of buoyancy scalar, θ at (a) t = 26.5, y = 0 (b) t = 26.5,

x = 13.5 (c) t = 159.2, y = 0 (d) t = 159.2, x = 19.9. Contour levels range from

the instantaneous value of θ∣Min (blue) to θ∣Max (red)). The dashed lines in

(a) and (c) indicate the x coordinate of the planes presented in (b) and (d)

respectively.
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Figure 5.10: Contours of velocity gradients for case JLD1 with (a) −∂u/∂z

(b) ∂w/∂x, both at y = 0, t = 1400. The contour levels at each time range

between ±0.6∣∂u/∂z∣Max. Note that ∣∂u/∂z∣ ≫ ∣∂w/∂x∣ at this late time such
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Figure 5.11: Vertical pro�le of buoyancy scalar, θ, passing through point where

ωz = ωz ∣Max at t = 604 (�), t = 1191 (−−), t = 2242 (− ⋅ −).

With the basic structure of this late time dipole appearing to be compar-

ing favourably with those seen in experiment, our attention now turns to the

late time scaling behaviours of the expanding dipole to see how well it agrees

with those documented in experimental works. First, we examine the dipole's

streamwise centre, XD and diameter, DD, calculated using equations 3.6 and

3.7. To this end we can recall equations 1.15-1.16 derived from the work of

Voropayev et al. (2008) i.e.

XD = αX(t − tX)1/3,

DD = αD(t − tD)1/3,

where tX , tD are the time o�sets and αX , αD are the proportionality constants.

Figure 5.12 shows the time history of XD and DD, both raised to the third

power. The plots suggest there is indeed a proportional relationship between

D3
D and elapsed time at the late time, hence DD = αD(t − tD)1/3 appears to

be valid. This scaling behaviour appears to apply for t > 2000, with this

information and examination of vorticity contours suggesting the dipole is

fully formed at this point. This is approximately consistent with the sharp

reduction in vertical kinetic energy and buoyancy variance between t = 1000

and t = 2000, implying that almost all vertical motion has been suppressed

by this point and the structure has entered the planar �ow regime. However,

whilst the experimental scaling law for DD appears to be strongly supported

by this data, the same cannot be said for XD. There appears to be reasonable

agreement with the scaling law for 2000 < t < 4000, but beyond this time

the dipole propagation rate is somewhat lower than predicted, suggesting that

both the assertion XD ∝ t1/3 and subsequently XD ∝ DD are invalid at the

late time.
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Figure 5.12: Time history of dipole streamwise location and horizontal diame-

ter, both raised to their third power to demonstrate potential agreement with

experimentally derived scaling laws. (a) Streamwise location, X3
D (b) Dipole

diameter, D3
D. The dashed lines have constant gradients, demonstrating that

XD ∝ t1/3 for 2000 < t < 4000 and DD ∝ t1/3 for t > 2000.

The next scaling law we consider is the rate of decay of peak vertical vor-

ticity within the dipole, with Voropayev et al. (2008) reporting a scaling law of

ωz ∣Max = αωt−1, where αω ≈ 17 for all cases. The reciprocal relationship for the

case JSD1 is plotted in �gure 5.13(a). For the majority of the simulation time,

up until t ≈ 6000, the agreement with the proposed scaling law is poor, with the

shallower gradient implying vorticity is decaying more slowly than expected

long after �gure 5.12(b) implies the dipole has become fully formed. Beyond

t ≈ 6000 the data appears to asymptote to a straight line to give agreement

with equation 1.18

ωz ∣Max = αω(t − tω)
−1, (5.6)

where tω is the time axis intercept for this relationship as tD was for equation

1.16. The value of αω found for this case was 3.11, less than one �fth the value

of 17 previously reported. Another approach to considering the vorticity decay

is to consider the evolution an integral quantity such as vertical enstrophy i.e.

Ωz = ∫
V
ω2
zdV. (5.7)

Such an integral quantity gives a more representative picture of how the

vorticity evolves throughout the domain, rather than at a single grid point.

If we assume that, rather than ωz ∣Max ∝ t−1, the volume integral of vertical
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Figure 5.13: Time histories of dipole maximum vertical vorticity and total

vertical enstrophy levels indicating agreement with expected scaling behaviour,

with (a) (ωz ∣Max)
−1 (b) Ω

−1/2
z . The dashed line in (b) indicates that, for the

late time dipole, Ωz ∝ t−2.

vorticity within either the left or right half of the dipole inversely proportional

to time instead, this in turn would imply

Ωz ∝ t−2. (5.8)

Such a relationship is strongly supported by �gure 5.13(b).

Next, we consider the thickness of the fully formed dipole to determine

whether it has an approximately constant thickness, or expands vertically with

time. Examination of the lateral vorticity contours over time would suggest

the dipole does indeed grow vertically with time, but this can be veri�ed in a

more quantitative fashion by considering the vertical vorticity pro�le through

the dipole. As demonstrated by Flór et al. (1995) and Praud and Fincham

(2005), a fully formed dipole has a Gaussian vorticity pro�le in the vertical

direction at any given time, with

⟨ωz⟩Max

ωz ∣Max

= exp(−
z2

2(Hω/2)2
) ,

where ⟨ωz⟩Max is the maximum vertical vorticity for a given altitude, z within

the dipole and Hω is the dipole's vorticity thickness (i.e. the �width� of the

Gaussian pro�le). From equation 1.22, we have previously deduced that ac-

cording to the di�usion model,

exp(−
z2

2(Hω/2)2
) = exp(−

z2

4νt
) ,

116



CHAPTER 5. VORTEX DIPOLE FORMATION IN A STRATIFIED FLUID

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

(a)

〈ωz〉Max/ωz|Max

z

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45
(b)

t

H
2 ω

Figure 5.14: (a) Vertical pro�les of normalised vertical vorticity through the

dipole core at t = 3295 (�), t = 5612 (−−), t = 8244 (− ⋅ −) (b) Evolution of

the square of the same dipole's vorticity thickness, Hω, with time. The dashed

line has a constant gradient, demonstrating Hω ∝ t1/2.

and thus, recalling that in the non-dimensional form ν = 1/Re, we �nd the

model's prediction for dipole thickness as it evolves in time according to equa-

tion 1.23 i.e.

Hω = 2
√

2(
t

Re
)

1/2

≈ 2.828(
t

Re
)

1/2

.

The multiplier, 2
√

2 ≈ 2.828 = αH is a universal constant predicted by the

model. Figure 5.14(a) demonstrates the Gaussian vorticity pro�le through the

dipole at three times after the dipole appears to be fully formed. The gradual

vertical expansion of the dipole can be inferred from the increasing width of

the pro�le with time and thus the constant thickness dipole condition reported

in Voropayev et al. (1991) is not valid according to these simulations. By using

a Gaussian �tting function on this pro�le at any given time, the time history

of Hω can be determined, with the history of H2
ω plotted in �gure 5.14(b)

to demonstrate H2
ω ∝ (t − tH) where tH is the time axis o�set for equation

1.23. The agreement of the simulated dipole to this particular scaling law is

by far the best seen so far, with a near exact linear relationship between H2
ω

and t. From the gradient of this line, and using Re = 1400, the value of αH

returned for this case is approximately 2.784. This is less than 2% lower than

the value given by the di�usion model, suggesting further good agreement with

equation 1.23, though it is prudent to examine the value of αH from the other

cases before drawing a �rm conclusion.
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5.2.3 In�uence of Reynolds number

By analysing the results of cases JLD2 and JLD3 (with Re = 800,2000 respec-

tively) in the same way as JLD1 (Re = 1400), we can evaluate the e�ect of

Reynolds number on both the early and late time development of a dipole from

the impulsive momentum injection. Figure 5.15 compares the kinetic energy

and buoyancy variance histories for these three cases from just before tJ until

after the late time buoyant collapse. We can see from this that during the

injection phase, the lateral and vertical kinetic energy levels are higher with

increased Reynolds number, in part due to the lower rate of dissipation of ki-

netic energy from the leading vortex ring. The magnitude of the di�erences

between cases are relatively small compared to the total energy level and do

not represent any signi�cant di�erence in behaviour between cases. As with

JLD1, the other two cases appear to maintain quasi-axisymmetry throughout

the injection phase and for a short time afterward.

Beyond t ≈ 10, the same �gure shows a more rapid drop in streamwise

kinetic energy is noted for Re = 1400,2000 than is seen for Re = 800. Recalling

the earlier comparison of Ku for a neutrally and stably strati�ed case seen in

�gure 5.5, similarities can be drawn between the Re = 800, stably strati�ed

case and the Re = 1400, neutrally strati�ed case. Both have Ku levels higher

than the Re = 1400, N = 0.2 case for a period of 50 to 100 time units beyond

t = 10. Examination of vorticity contours for all cases at various times reveal

that for the Re = 1400,2000 cases, small scale structures develop within the

leading ring and trailing jet after t ≈ 10 that are not seen for either Re =

800 or the neutrally strati�ed case. A possible explanation for this is that

the stably strati�ed cases introduce a slight ellipticity into the leading ring,

with the lateral radius larger than the vertical radius due to slight buoyant

supression of vertical growth during the injection. For the higher Reynolds

number cases, the combination of ring ellipticity and lower viscosity may be

su�cient for development of the elliptical instability proposed by Kerswell

(2002) and documented in the numerical simulations of Archer et al. (2008) for

an isolated vortex ring. Such instabiltiies may be developed further through the

concurrent buoyant instabilties introduced by the vertical displacement of �uid

creating a locally unstable density pro�le within the leading ring. Whichever

instability mechanism is the more dominant, the breakdown of the coherent

ring and trailing jet structure into smaller vortical motions that are more

susceptible to viscous dissipation is observed in all three cases.

The presence of small scale structure for Re = 1400,2000 but not for Re =

800 is also consistent with the vertical kinetic energy levels seen in �gure 5.15(c)
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Figure 5.15: Kinetic energy and buoyancy variance histories from momentum

injection phase to late time dipole phase for Re = 800 (�), Re = 1400 (−−),

Re = 2000 (− ⋅ −). (a) Streamwise kinetic energy (b) Lateral kinetic energy (c)

Vertical kinetic energy (d) Buoyancy variance. The thick lines in (a) and (b)

indicate that at the late time Ku ∝ t−5/4 and Kv ∝ t−4/3 respectively.
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between t = 10 and t = 100, which show both the higher Reynolds number cases

having lower vertical kinetic energy, with the Re = 2000 case being marginally

the more energetic. As with Ku, the smaller scale structure in these cases is

more susceptible to viscous dissipation. Additionally, the increased mixing in

these cases increases the local magnitude of θ and hence the rate of energy

transfer from Kw to P is increased slightly, explaining the higher levels of P

seen for 10 < t < 60. The lateral kinetic energy (�gure 5.15(b)) also experiences

a more rapid decline at this stage for the higher Reynolds number cases, though

as both have a higher level of Kv prior to t ≈ 10, the subsequent drop in energy

level brings the value of Kv in both cases back in line with that seen for

Re = 800, rather than dropping signi�cantly below it as seen with Ku,Kw.

Beyond t = 100, the merging of smaller scale motions to form the large,

coherent dipole structure in each case brings the length and velocity scales for

both the lower and higher Reynolds number cases back to comparable levels,

such that the e�ects of viscosity, in the horizontal plane at least, are easier to

explain, with Ku and Kv reducing according to power laws in time that seem

consistent across all three cases with

Ku ∝ t−5/4, (5.9)

Kv ∝ t−4/3, (5.10)

as indicated in �gures 5.15(a) and 5.15(b). The �ow at this late stage has

entered a di�usion dominated regime, with the streamwise and lateral kinetic

energy levels persisting for a greater time at higher Reynolds number. The

vertical kinetic energy and buoyancy variance rapidly reduce at the late time

in all cases, with the start of the �nal, rapid decay roughly coincident for the

higher Reynolds number cases at t ≈ 1000. The Re = 800 case undergoes a

slightly di�erent behaviour, with an earlier starting (t ≈ 500) but more gradual

decay of these energy levels, before becoming approximately coincident with

the other cases at the latest times observed.

Figure 5.16 illustrates the late time structure of the dipole from the three

cases at roughly comparable times after injection (as the simulation prescribes

its own time step by this point, it is di�cult to extract full domain velocity

�elds at precisely coincident times). A clear progression in shape can be seen

from the lower to higher Reynolds number cases, with Re = 800 giving a

more �bulbous� appearance than Re = 1400, with Re = 2000 giving the most

�compact� appearance of the three. As will be explored further, the dipole has

entered a di�usive state by this point in time, with the lower Reynolds number

cases expanding more quickly in the vertical and horizontal direction than the
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Figure 5.16: Isosurfaces of constant vorticity magnitude, ∣ω∣ for N = 0.2 at

t = 3410, demonstrating the structure of the late time dipole for (a) Re =

800, t = 5550 (b) Re = 1400, t = 5402 (c) Re = 2000, t = 5370. Colour contouring

ranges between ±0.6∣ωz ∣Max, with isosurface threshold set at 0.2∣ω∣Max.

higher Reynolds number cases. The aspect ratio of the dipole can be de�ned

as

αHD =
Hω

DD

, (5.11)

with the value of αHD clearly larger for the lower Reynolds number cases than

the higher Reynolds number cases at comparable times.

The histories of dipole streamwise centre and diameter for all three cases,

calculated again using equations 3.6-3.7, are plotted in �gure 5.17, along with

lines indicating the required logarithmic gradient for XD ∝ DD ∝ t1/3. While

the dipole diameter indicates reasonable agreement with the expected scaling

behaviour at the late time for all three cases, the dipole's streamwise centre

does not, with the three cases all giving signi�cantly di�erent scaling with time,

and all moving somewhat more slowly than predicted by XD ∝ t1/3. Assuming

that the �ow seen here is representative of the dipoles seen in experimental

studies, the discrepancy originates either from the method of calculating XD

or the assumption that it is proportional to t1/3.

Firstly, with regard to calculating XD using equation 3.6, the centre of the
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Figure 5.17: Time history of (a) dipole streamwise centre and (b) diameter,

forRe = 800 (#), Re = 1400 (×), Re = 2000 (+). The thick lines in (a) and (b)

indicate the required gradients for XD ∝ t1/3 and DD ∝ t1/3 respectively.

dipole will be calculated as the weighted centre of vorticity. For a circular

dipole, with a vorticity distribution akin to the Lamb-Chaplygin model, this

centre will lie exactly halfway between the two maximum/minimum vorticity

poles. However, as seen throughout the visualisations in this chapter, the

dipoles comprise both a front region, resembling a circular dipole, as well as

a tail region extending behind it that becomes progressively longer with time

(see �gure 5.9). The vorticity contained within the tail is notably weaker

than in the front region, but still signi�cant enough to bring the calculated

position of XD behind the expected location between the poles. Additionally,

while the front region propagates downstream, the tail does not (or does so

at an extremely slow rate by comparison). As a consequence, this gives the

impression of the dipole propagating more slowly, as a sizable proportion of

its vorticity remains stationary. In order to overcome this, XD and DD are

recalculated, but this time all points that have a vorticity magnitude lower than

50% of the maximum vorticity magnitude within the �ow �eld are excluded

from the volume integration. The practical e�ect of setting this threshold is

illustrated in �gure 5.18, which shows that this choice of threshold isolates

the vorticity within the front region and excludes the tail. It leaves behind

two columnar regions of contra-rotating �ow, bounded top and bottom by two

layers of horizontal shear between the columns and the quiescent �uid above

and below it. The trend of a lower Reynolds number giving a larger vertical

length scale compared to the horizontal seen in �gure 5.16 are repeated for the
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Figure 5.18: As �gure 5.15 but with isosurface threshold set at 0.5∣ω∣Max. Zoom

level and viewing angle have been changed slightly to help demonstrate dipole

core structure.

isolated dipole core.

Using this approach, much improved agreement was found with the ex-

pected scaling behaviour as indicated in �gure 5.19, with the values of αX , αD, tX , tD

given in table 5.4. These values were �tted to the late time data available for

each case (typically the last 5-6 markers in each plot) using a least-squares

type �tting routine. The magnitude of tX yielded by the three cases makes

plotting the XD vs. t−tX relationship for all three cases impractical on a single

set of logarithmic axes, so these are distributed across �gure 5.19(a)-(c), with

DD vs. t − tD given in �gure 5.19(d) for all three cases.

Case Re αX tX αD tD Plot marker

JLD2 800 0.676 -79523 0.480 1852 #

JLD1 1400 1.194 -25146 0.365 1491 ×

JLD3 2000 1.629 -12530 0.323 1511 +

Table 5.4: Constants of proportionality and time o�sets for XD and DD time

scaling plotted in �gure 5.19.
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A signi�cant improvement in agreement for both scaling laws is found com-

pared to that seen in �gure 5.17. Of the two, the scaling behaviour for diame-

ter appears to conform to equation 1.16 from a much earlier stage in all three

simulations than the agreement for dipole position, which does approach the

expected behaviour (equation 1.15) but appears to asymptote towards it at the

late time rather than following a consistent scaling behaviour for an extended

period. However, the agreement in scaling law behaviour for streamwise po-

sition is apparently much improved when the time o�set for the scaling law

is chosen to be tD rather than tX , with this improved agreement apparent

in �gure 5.20. This would suggest that the dipole evolution in the horizontal

plane for these simulations is consistent with that observed by Voropayev et al.

(2008) and related studies.

As inferred by the isosurfaces in �gure 5.18, the lower Reynolds num-

ber dipole propagates more slowly and expands more quickly than a higher

Reynolds number dipole. For each case, we can compare ratio of DD to XD to

value αXD = DD/XD = 0.23 reported in Voropayev et al. (2008). Here we can

de�ne the ratio as

αXD =
αD
αX

, (5.12)

which yields values of 0.710, 0.305 and 0.192 for Re = 800,1400,2000 respec-

tively, suggesting a strong Reynolds number dependence of αXD not reported

in the experimental study, possibly due to the comparatively narrow range of

ReJ investigated (650-1135). On closer examination of the data seen in �gure

4 of Voropayev et al. (2008), it can be seen that the DD = 0.23XD prediction,

which was determined from a case with ReJ = 850, slightly over predicts DD

for cases with higher ReJ and under predicts DD for cases with lower ReJ (all

have roughly equivalent values of tJ and N).

Figure 5.22 gives the decay of maximum vertical vorticity within the dipole

for each of the three cases to investigate whether agreement is found with the

assertions of Voropayev et al. (2008), previously given as equation 1.18 i.e.

ωz ∣Max = αω(t − tω)
−1,

where αω and tω are the scaling coe�cient and time o�set similar to those used

for equations 1.15 and 1.16. As was the case for dipole position given in �gures

5.19(a)-(c), agreement with the scaling law is found at the late time, though

once again the agreement appears asymptotic as opposed to the sustained

agreement seen for lateral growth in �gure 5.19(d).

Next, we consider the vertical growth of the three dipoles over time. As

discussed previously with equation 1.23, the di�usion model predicts that at
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Figure 5.19: Time history of (a)-(c) dipole streamwise centre (d) dipole diam-

eter for all three cases; Re = 800 (#), Re = 1400 (×), Re = 2000 (+). The

dashed lines in each plot correspond to a best �t of the late time data corre-

sponding to equations 1.15-1.16, with gradient and time o�sets given in table

5.4.
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Figure 5.20: Time history of dipole streamwise centre for all three cases; Re =

800 (#), Re = 1400 (×), Re = 2000 (+). In this plot, the o�set on the time

axis has been set to each case's value of tD, rather than tx.
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Figure 5.21: Time history of (a) dipole vertical thickness, Hω (b) the same

thickness multiplied by Re1/2, for Re = 800 (#), Re = 1400 (×), Re = 2000 (+).

The solid line in (b) indicates HωRe1/2 = 2
√

2(t − tH)1/2.

the late time the dipole expands vertically such that its horizontal length scale,

Hω can be determined as Hω = 2
√

2((t− tH)/Re)1/2, a prediction supported by

the results seen in �gure 5.14. Figure 5.21(a) shows the relative size of the three

dipoles as they evolve over time, with the three cases all giving Hω ∝ t1/2. As

expected, the lower Reynolds number cases expand more quickly in the vertical

direction due to the increased vertical di�usion of vorticity.

Figure 5.21(b) plots the same data, but now multiplied by the correspond-

ing value of Re1/2 for each case. According to the model, the gradient of these

lines should equal 2
√

2, with a line of HωRe1/2 = 2
√

2(t− tH)1/2 plotted along-

side the simulation data. Based on this plot, the di�usion model of Flór et al.

(1995) appears to give an excellent prediction for the vertical growth of the

vortex dipoles for di�erent Reynolds number. The value of αH and tH for each

case is given in table 5.5. The percentage di�erence between the measured

αH and the 2
√

2 prediction is relatively small for each case, being largest for

Re = 2000. This discrepancy can be reduced by evaluating the value of αH

from only the latest 2-3 data points rather than the latest 5-6, as the scaling

behaviour does not precisely conform to Hω ∝ t1/2 until the very latest times

observed. The delay in conforming to the scaling law arises due to the higher

Reynolds number allowing the inertial e�ects within the dipole structure to

persist longer before they are dominated by viscosity at the late time.

Figure 5.22 shows that, as would be expected, the lower the Reynolds num-
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Case Re αH ±% of 2
√

2 tH Plot marker

JLD2 800 2.862 +1.2% 42 #

JLD1 1400 2.784 -1.6% 478 ×

JLD3 2000 2.667 -5.7% 619 +

Table 5.5: Constants of proportionality and time o�sets for HωRe1/2 time

scaling plotted in �gure 5.21(b).
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Figure 5.22: Time history of maximum vertical vorticity for Re = 800 (#),

Re = 1400 (×), Re = 2000 (+). The dashed lines in each plot correspond to a

best �t of the late time data corresponding to ωz ∣Max = αω(t − tω)−1.

ber, the more quickly the peak vorticity has decayed. The angular momentum

within the dipole cores is more quickly spread at lower Reynolds number due

to increased entrainment and dissipation of the expanding dipole, with a cor-

responding faster drop in the maximum vorticity.

5.2.4 In�uence of strati�cation strength and additional

impulse

With the in�uence of Reynolds number having been considered, the next step is

to evaluate the e�ects of increasing strati�cation strength. Figure 5.23 details

the time history of the kinetic energy and buoyancy variance levels in the

domain for the case JLD1 (with N = 0.2) and the case JLD4 (N = 1.0). Unlike

the previous comparison for di�erent Reynolds numbers, there is a qualitative
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di�erence in behaviour during the injection phase of the two simulations. For

N = 0.2, the injection duration tJ is considerably less than the period of a

single buoyant oscillation with NtJ/2π ≈ 0.159. For N = 1.0, NtJ/2π ≈ 0.796,

such that well over half a buoyant cycle has passed during the injection. As a

consequence, the motions induced by buoyant forces have a more pronounced

e�ect during the injection phase for N = 1.0, with the result being a notable

break in axisymmetry indicated by the values of Kv and Kw shortly before tJ .

The rate of increase of Kw slows as the vertical motions within the leading

ring and trailing jet are partly suppressed by buoyant forces. As the rate

of kinetic energy input from the momentum injection is virtually identical

between the two cases, the energy that is lost from Kw is transferred instead to

both increased Kv and P . After the injection phase, the two cases give similar

trends in energy histories through the collapse and internal wave generation

phase, albeit with N = 1.0 the changes in behaviour occur at an accelerated

rate compared to N = 0.2.

The buoyancy variance level is higher during the collapse phase for N = 1.0

as, assuming that during the vertical displacement of any given �uid particle is

similar between the two cases, the stronger background density gradient means

that the value of ρ′ and hence θ is higher. Interestingly, the three kinetic energy

components have higher values during this phase as well, though drop to levels

comparable with N = 0.2 at the late time. From this we can infer a more

energetic internal wave �eld being generated during the collapse phase, which

is consistent with the elevated value of P . The late time trends of Ku and Kv

were found to be very similar to those indicated in �gure 5.15.

Figure 5.24 re-plots the data from �gure 5.23(c)-(d) on a modi�ed time axis,

which now gives the elapsed time in terms of the number of buoyant periods

that have elapsed since the end of the injection. The �nal collapse of the

vertical kinetic energy and buoyancy variance at the late time occurs for both

cases approximately 30-40 buoyant periods after injection. The di�erences

seen in 5.23 and the similarity seen here indicate that during the injection,

quasi-axisymmetric and collapse phases of the �ow evolution, the changes in

behaviour can be attributed to the point along the non-dimensional time scale

Nt.

Isosurfaces comparing the structure of the late time dipoles at similar times

for these cases are given in �gure 5.25, along with a third indicating the ef-

fect of increased tJ (case JLD5). The dipole produced with N = 1.0 appears

slightly more compact than N = 0.2, with a smaller diameter. A possible ex-

planation for this is that, with the collapse phase being accelerated for higher
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Figure 5.23: Kinetic energy and buoyancy variance histories from momentum

injection phase to late time dipole phase for N = 0.2 (�), N = 1.0 (−−). (a)

Streamwise kinetic energy (b) Lateral kinetic energy (c) Vertical kinetic energy

(d) Buoyancy variance. The thick lines in (a) and (b) indicate that at the late

time Ku ∝ t−5/4 and Kv ∝ t−4/3 respectively.
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Figure 5.24: Kinetic energy and buoyancy variance histories from momentum

injection phase to late time dipole phase for N = 0.2 (�), N = 1.0 (−−). (a)

Vertical kinetic energy (b) Buoyancy variance. The standard non-dimensional

time scale, t, has been replaced by N(t−tJ)/2π, the number of buoyancy cycles

that have elapsed since the end of the momentum injection for both cases.

strati�cation, there is less time for the collapsing ring and jet to entrain ad-

ditional �uid before entering the late time dipole phase, with the momentum

remaining concentrated in a smaller volume of �uid. This would also explain

why the dipole in �gure 5.25(b) has moved further downstream than that in

(a). The additional momentum of the dipole in (c) increases the dipole propa-

gation velocity, with the additional entrainment in the lateral direction giving

a greater diameter, with the vertical length scale not appearing signi�cantly

greater than either (a) or (b), giving a lower aspect ratio and hence a ��atter�

appearance.

Figure 5.26 demonstrates the agreement of the dipole's streamwise location

with equation 1.15, calculated using the same 50% vorticity magnitude thresh-

old discussed previously. As with the cases given in �gure 5.19, there seems to

be asymptotic agreement with the scaling law at the late time, though the time

o�sets are still su�ciently large and di�erent between cases to make compari-

son on a single set of axes impractical. As with �gure 5.20, improved scaling

law agreement is apparent when using tD instead of tX for a time o�set, with

this plotted in �gure 5.27. The two cases with larger tJ give a faster propagat-

ing dipole at the late time owing to the greater initial impulse they received

from the momentum source. Additionally, higher strati�cation initially gives

a more quickly propagating dipole than for the more weakly strati�ed cases.

This appears to result from the higher strati�cation accelerating buoyant col-

lapse, giving a more compact dipole in both the vertical and lateral directions,
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Figure 5.25: Isosurfaces of constant vorticity magnitude, ∣ω∣, demonstrating

the structure of the late time dipole for (a) tJ = 5,N = 0.2, t = 5402 (b) tJ =

5,N = 1.0, t = 5409 (c) tJ = 15,N = 0.2, t = 5750. Colour contouring ranges

between ±0.6∣ωz ∣Max, with isosurface threshold set at 0.2∣ω∣Max.
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which through conservation of momentum gives a higher dipole velocity imme-

diately after the collapse phase than for the higher volume structure produced

by a weakly strati�ed collapse phase.

Case tJ N αX tX αD tD Plot marker

JLD1 5 0.2 1.194 -25146 0.365 1491 #

JLD4 5 1.0 1.537 -13483 0.338 893 ×

JLD5 15 0.2 2.588 -5648 0.344 245 +

JLD6 15 1.0 2.827 -3182 0.360 245 2

Table 5.6: Constants of proportionality and time o�sets for XD and DD time

scaling plotted in �gure 5.19.

Of further interest is the comparison of dipole diameters for the four cases

given in �gure 5.28. In spite of the di�ering impulse and strati�cation strength

combinations, the scaling coe�cient appears nearly identical for each case, all

giving αD ≈ 0.35 as detailed in table 5.6. While this may not be too sur-

prising for di�erent strati�cation strengths, as the in�uence of buoyancy is

negligible at the late time, it would be expected that a dipole with greater

forward momentum would entrain �uid and increase in diameter at a signi�-

cantly higher rate, even when the time o�set, tD has been accounted for. For

earlier times ((t− tD) < 1000) it does appear that the rate of lateral expansion

is greater for the higher impulse cases, though beyond this time the scaling

behaviour between the cases becomes remarkably similar. Given that the two

mechanisms for the dipole to expand are viscous entrainment (dependent on

dipole momentum and viscosity) and viscous di�usion (dependent on viscosity

alone), the comparable expansion rates suggests a di�usion dominated growth,

as discussed further in the next section.

Figure 5.29(a) illustrates the decay of the maximum vertical vorticity within

the dipole for each of the four cases. As would be expected, the peak vorticity

at the early time is higher for the cases with higher impulse as greater circu-

lation is imparted to the �ow during the injection phase. Higher strati�cation

strength also gives a higher vorticity at the early time. From visualisations of

the dipoles at comparable times, such as that given in �gure 5.25, it has al-

ready been observed that the initial dipole structure formed after the collapse

phase is more compact for higher strati�cation, thus the circulation within it

is more densely concentrated within the cores and the peak vorticity is higher.

At the late time, the rate of decay for the cases JLD1 and JLD4 appear to
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Figure 5.26: Time history of dipole streamwise location for (a) tJ = 5,N = 0.2

(#) (b) tJ = 5,N = 1.0 (×) (c) tJ = 15,N = 0.2 (+) (d) tJ = 15,N = 1.0 (2).

The dashed lines in each plot correspond to a best �t of the late time data

corresponding to equation 1.15, with gradient and time o�sets given in table

5.6.

103 104

t− tD

35

40

45

50

55

60

X
D

Figure 5.27: Time history of dipole streamwise location for tJ = 5,N = 0.2 (#),

tJ = 5,N = 1.0 (×), tJ = 15,N = 0.2 (+), tJ = 15,N = 1.0 (2). In this plot, the

o�set on the time axis has been set to each case's value of tD, rather than tx.
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Figure 5.28: Time history of dipole diameter for tJ = 5,N = 0.2 (#), tJ = 5,N =

1.0 (×), tJ = 15,N = 0.2 (+), tJ = 15,N = 1.0 (2). The dashed lines in each

plot correspond to a best �t of the late time data corresponding to equation

1.16, with gradient and time o�sets given in table 5.6.

converge to a similar scaling coe�cient, αω. The higher impulse cases also

appear to be converging to a similar value, though case JLD6 had a tendency

to become unstable and fail at the late time 1 , so it was not possible to run

the simulation long enough to see if the �nal value of αω was truly comparable

to case JLD5. Interestingly, the value of αω for case JLD5 (with tJ = 15) is

found to be a little over three times greater than αω for cases JLD1 and JLD4

(with tJ = 5), implying the late time decay rate is approximately proportional

to initial impulse i.e. αω ∝ tJ , with it having already been demonstrated in

�gure 5.22 that the late time vorticity decay is also strongly dependent on

Reynolds number. This single comparison is insu�cient to make a de�nitive

conclusion however, so this issue will be addressed further in subsequent chap-

ters. What is clear, assuming that cases JLD5 and JLD6 do converge to a

single value of αω, is that the vorticity decay, like the dipole lateral growth

rate, is independent of strati�cation strength at the late time.

Figure 5.29(b) illustrates the dipole's vertical growth in each case, based

on the Gaussian vorticity pro�le in the vertical direction discussed previously.

It is immediately apparent that all four cases gives excellent agreement with

equation 1.23 across the four cases, with each giving a very similar value of

1This failure appears to stem from unanticipated interaction of lingering internal waves

interacting with the fringe region, and could be alleviated somewhat by limiting the timestep

or decreasing the value of σc for the fringe, though neither change would completely eliminate

the problem.
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Figure 5.29: Time history of (a) maximum vertical vorticity and (b) dipole

vertical thickness, for tJ = 5,N = 0.2 (#), tJ = 5,N = 1.0 (×), tJ = 15,N = 0.2

(+), tJ = 15,N = 1.0 (2). The dashed lines in each plot correspond to a

best �t of the late time data corresponding to equation 1.23, with gradient

and time o�sets for (b) given in table 5.6. The solid line in (b) indicates

Hω = 2
√

2((t − tH)/Re)1/2 with Re = 1400 for all four cases.

αH ≈ 2
√

2, helping show that at the late time the vertical expansion of the

dipole is governed purely by di�usion as found by Flór et al. (1995). The time

taken to achieve this di�usive state, along with with the comparable rates of

lateral expansion seen in �gure 5.28 are considered further for all the large

domain cases in the following section.

5.2.5 Late time scaling and the advection/di�usion bal-

ance

In order to further corroborate the dipole vertical growth (and Reynolds num-

ber dependence) seen for the cases considered so far, a comparison is made in

this section with data from previous experimental studies. Figure 5.30 presents

data from cases JLD1, JLD2 and JLD4 seen previously, along with data from

Praud and Fincham (2005) and Flór et al. (1995). The data from Praud and

Fincham (2005) is for a case with ReS ≈ 12000, N̂ = 0.3rads−1 and t̂J = 4s and

was scaled to give the same Gaussian length scale used to determine Hω. The

data from Flór et al. (1995) is for a case with ReJ ≈ 1145, N̂ = 1.8rads−1 and

t̂J = 0.3s and does not use the vertical vorticity pro�le to determine thickness,

instead using a pro�le of streamwise dipole displacement (i.e. how far each
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Figure 5.30: Time history of dipole vertical thickness normalised by Re1/2 =

ν−1/2 and t
1/2
J , for cases JLD1 (#), JLD2 (×), JLD4 (+), along with comparable

data from Praud and Fincham (2005) (2) and Flór et al. (1995) (♢). The solid

line indicates Hω(Re/tJ)1/2 = 2
√

2((t − tH)/tJ)1/2.

vertical �layer� of the dipole has moved downstream), which is demonstrated

by the authors to also follow a Gaussian pro�le in z from which a length scale

can be determined. In the �gure, the axes have been scaled using tJ as a refer-

ence timescale. The agreement of the two experimental cases to both equation

1.23 and the simulation data is encouraging, particularly at the late time.

As mentioned previously, the values of αD for cases JLD1, JLD4, JLD5

and JLD6 are all remarkably similar given the di�erences in both strati�cation

strength and total impulse. Given that all utilise Re = 1400, it suggests that

Reynolds number is the sole important governing parameter for dipole lateral

growth at the late time for these cases, with the initial conditions unimportant

once the dipole has fully formed. As the �ow is quasi-two dimensional by this

stage, the evolution of the vertical vorticity �eld can be determined from the

two dimensional form of the vorticity equation i.e.

∂ωz
∂t

+ ui
∂ωz
∂xi

= ν
∂2ωz
∂xi∂xi

. (5.13)

At the very latest times where the dipole has expanded and di�used su�-

ciently, the convective term approaches zero, yielding a similar vorticity di�u-

sion in the horizontal plane to that seen in the vertical direction such that

DD ∝ (
t − tD2

Re
)

1/2

= αD2 (
t − tD2

Re
)

1/2

, (5.14)

where tD2 and αD2 are the time o�set and scaling coe�cient respectively. Ob-

viously, this scaling behaviour contradicts equation 1.16, for which reasonable
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agreement had been obtained thus far. However, both types of scaling be-

haviour give a weak dependence of DD on t, such that reasonable agreement

may be found for both, depending on the range of t over which the correlation

to the scaling law is evaluated. Figure 5.31 demonstrates the late time agree-

ment of dipole diameter with this di�usion-based scaling behaviour for two

cases conducted for this project (with di�erent values of Re) as well as four

others from literature; the same case from Praud and Fincham (2005), another

case from Flór et al. (1995) with ReJ ≈ 3500, N̂ = 1.7rads−1 and t̂J = 0.6s, DNS

data from Rojanaratanangkule et al. (2012)2 for a case with Re = 2500 (and

the two-dimensionality of the �ow achieved by free-surface con�nement) and

DNS data from Delbende and Rossi (2009) which used Re = 2500 (for a purely

two-dimensional dipolar �ow system).

Of the six cases considered, the two cases from this work as well as the DNS

of Rojanaratanangkule et al. (2012) collapse well to a constant value of αD2,

which was found to be almost exactly 2
√

2 such that αD2 = αH (with a line

indicating this value added to �gure 5.31). These three cases utilise equation

3.7 to determine dipole diameter, whereas Flór et al. (1995) and Praud and

Fincham (2005) measure the diameter as the distance between vertical vorticity

extrema at the vertical midplane (i.e. the equivalent plane to z = 0 in this

project). Delbende and Rossi (2009) use an equivalent two-dimensional form

of equation 3.7. Interestingly, the experimental cases give dipoles that expand

at a much faster rate by comparison, with the data from Praud and Fincham

(2005) yielding αD2 ≈ 4
√

2 ≈ 2αH . The two-dimensional case also yields a faster

rate of expansion, though the simulation apparently was not run over su�cient

time to achieve a well-de�ned scaling behaviour with time. The available data

appears to be slowly tending towards DD(Re/tJ)1/2 = 2
√

2((t − tD2)/tJ)1/2 as

with the other numerical cases, but this cannot be assured.

There are three potential reasons why the experimental data yields a faster

expansion rate than the DNS data. Firstly, the di�ering de�nitions of DD

mentioned previously will only give identical answers provided the radial dis-

tribution of vertical vorticity within each dipole core is symmetric about the

vorticity extrema. Though the vorticity extrema method was not favoured for

this work, a check was made to see what impact the di�ering measurement

method has on the value of DD. Across the cases conducted for this work, cal-

culating diameter between vorticity extrema yielded a value of DD typically

10-15% higher than the enstrophy wighted method of equation 3.7. Though

2The data presented here is not included in the publication, but does originate from one

of the cases covered in the work, with the data used here supplied by the author directly.
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Figure 5.31: Time history of dipole diameter normalised by Re1/2 = ν−1/2

and t
1/2
J , for cases JLD1 (#), JLD3 (×), along with comparable data from

Rojanaratanangkule et al. (2012) (+), Praud and Fincham (2005) (2), Flór

et al. (1995) (♢) and Delbende and Rossi (2009) (●). The solid line indicates

DD(Re/tJ)1/2 = 2
√

2((t − tD2)/tJ)1/2.

arguably a signi�cant change, this doesn't fully explain the doubling (or more)

of αD2 between the experimental cases compared to the DNS.

The second potential reason is that the experimental data may have been

collected at times before the dipole has reached a state where the lateral growth

is mostly due to di�usion, with viscous entrainment still the dominant cause of

expansion. Such a transition between an entrainment dominated and di�usion

dominated growth can be seen for both case JLD3 and Rojanaratanangkule

et al. (2012) in �gure 5.31, where DD rises sharply at earlier times before

asymptoting to the di�usive scaling later on. With the experimental data

being collected over comparatively narrow time scales compared to the DNS,

it is di�cult to be sure whether entrainment or di�usion is dominant and thus

whether it is fair to compare the relative scalings of DD.

The third possible reason is that the vorticity distribution of the dipole

structure at the late time di�ers substantially between the DNS and experi-

mental cases due to use of a Gaussian forcing pro�le at the momentum source

for both the cases in this work and the work of Rojanaratanangkule et al.

(2012), as opposed to a smoothed top hat pro�le such as that used by Mohseni

et al. (2001), which may be more representative of the forcing pro�le for an

experimentally generated impulsive jet. The e�ect of these di�ering pro�les

on both the early and late time behaviour of the �ow were later investigated
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Figure 5.32: Vertical and lateral di�usion time o�sets for cases JLD1-3 with

tH (#) and tD2 (×).

and documented in chapter 6. That research demonstrated little di�erence in

the behaviour between cases at the late time for the di�erent forcing pro�les,

the late time dipole development can be considered truly independent of initial

conditions and thus the di�erences between the experimental and DNS scal-

ing behaviour will almost certainly be due to the former having not reached a

di�usively dominated time frame.

Regarding the dipole's aspect ratio, it had been noted previously that, from

casual observations of the dipole structure for di�erent cases, a higher value of

Re yields a lower value of αHD. However, as it appears that DD(Re/tJ)1/2 =

2
√

2((t−tD2)/tJ)1/2 at the late time, the late time aspect ratio can be calculated

as a function of time by

αHD =
Hω

DD

=
2
√

2((t − tH)/Re)1/2

2
√

2((t − tD2)/Re)1/2
= (

t − tH
t − tD2

)
1/2

. (5.15)

The values of tH and tD2 as they vary with Reynolds number for the cases

JLD1-3 (Re = 800,1400,2000) are given in �gure 5.32. Although these values

are of course sensitive to the exact �tting used for the late time vorticity

thickness and diameter data, two points are clear. Firstly, tH is positive and

tD2 negative such that equation 5.15 can only be valid for t > tH (and in

practice, t ≫ tH before it is accurate). Secondly, the percentage increase of

∣tD2∣ with increasing Re is much greater than the percentage increase of ∣tH ∣.

This in turn yields smaller values of αHD with higher Reynolds number as was

demonstrated in �gure 5.16.

At the very late time, when t≫ ∣tH ∣, ∣tD2∣, equation 5.15 implies the aspect
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ratio for all dipoles, regardless of initial conditions or Reynolds number, will

tend to αHD = 1. Figure 5.33 gives the time history of the dipole aspect ratio

for all six large domain simulations covered so far. Similar data is presented for

experimental cases in Praud and Fincham (2005), which used the dipole aspect

ratio to quantify the transition in dipole behaviour from an advective phase

to a di�usive one. At the early time (typically t < 100), Hω is large compared

to DD as the individual vortical structures in the leading ring and trailing

jet have yet to fully collapse, with the initial increase in DD associated with

the collapsing structures advecting into a dipole front and spreading laterally

having yet to be realised.

After a short time, the value of Hω drops rapidly, partly as a result of

buoyant collapse and partly due to the mechanism of �viscous peel-o�� con-

sidered by Godoy-Diana et al. (2004), where it was observed that the shear

layers formed between the evolving structure and the quiescent �uid above

and below it leads to a shedding of vertical vorticity, further reducing the ωz

based vertical length scale. At the same time, a combination of advection and

entrainment leads to a marked increase in diameter, with this being the phase

at which the whole structure takes on its familiar dipole appearance. The

combination of decreasing thickness and increasing diameter leads to a rapid

drop in αHD.

Some time after this, the aspect ratio reaches its minimum value, typically

between 0.6 to 0.8 for the cases seen here (with the exception of JLD2). Sub-

sequently, the rate of vertical expansion due to di�usion exceeds the rate of

lateral entrainment and the aspect ratio begins to rise again. As the lateral

growth becomes more and more di�usion dominated, the increase in aspect

ratio slows, with it eventually expected to reach an asymptote at αHD = 1. For

the case JLD2 (with the lowest value of Re), there is a notable di�erence in

behaviour, with the aspect ratio never dropping signi�cantly below 1 at any

time, and maintaining a steady value of 1 at the late time. This suggests that,

in the lateral direction, the expansion of the dipole is dominated by di�usion

even before the collapse/peel-o� phase has concluded. This case in particular

lends credence to the late time validity of equation 5.15.

Aside from this case, more trivial di�erences can be observed between

cases, with higher Reynolds number (JLD3) giving a lower minimum aspect

ratio than lower Reynolds number (JLD1) due to increased entrainment and

a delay on the onset of di�usion dominated growth. Higher strati�cation

strength (JLD4, JLD6) suppresses initial growth in the vertical direction giv-

ing a smaller minimum aspect ratio, but at the late time (when buoyancy has
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Figure 5.33: Time history of dipole aspect ratio for cases JLD1 (#), JLD2

(×), JLD3 (+), JLD4 (2), JLD5 (♢), JLD6 (∗). The dashed line indicates

αHD = 1.

negligible impact) the increase in aspect ratio is closely comparable with the

weaker strati�cation equivalents (JLD1, JLD5 respectively).

To conclude this investigation of the late time behaviour, the kinetic energy

levels at the late time for various cases are re-examined alongside the time his-

tory of dipole aspect ratio. Figure 5.34 presents the lateral and vertical kinetic

energy histories of three cases, with the onset of late time scaling behaviours

discussed previously (see equations 5.9-5.10, �gure 5.15 etc.) appearing to

be coincident with the transition from an advective to di�usive dipole �ow.

The data presented in �gure 5.33 is taken at discreet time intervals making

an exact value of this transition time unavailable, so an estimate based on a

smooth �tting is used instead. Nonetheless, the data available is su�ciently

strong to infer that the �nal conversion from the advective to di�usive phase

is coincident with the end of signi�cant internal wave generation for each case,

with the associated sharp drop in vertical kinetic energy proving a tell tale

sign of the commencement of the fully di�usive state at the late time.

5.3 Chapter summary

As detailed in this chapter, the evolution of a dipolar vortex from an ini-

tially axisymmetric momentum injection under the vertical constraint of sta-

ble strati�cation has been simulated through the use of the Spectral DNS

code detailed in section 2.3. In accordance with all comparable experimental
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Figure 5.34: Time evolution of (a) lateral kinetic energy and (b) vertical kinetic

energy for cases JLD3 (�), JLD4 (−−) and JLD5 (− ⋅ −). The dashed vertical

lines indicate the approximate time where the �ow transfers from the advective

to the di�usive regime for each case based on the data presented in �gure 5.33.

The colour of each vertical line corresponds to the case it refers to.

studies, the dipole forms following the buoyant collapse of the �ow as vertical

motions are suppressed to leave a three dimensional structure, but consisting

of quasi-horizontal velocity �elds throughout its vertical extent. The stages of

this evolution from momentum injection to late time vortex dipole have been

quanti�ed primarily through changes in kinetic energy and buoyancy variance

levels that are not readily available via experiment, thus allowing this numer-

ical study to present this information for the �rst time.

Concerning the late time dipole, excellent agreement has been found with

the late time di�usive behaviour discussed in Praud and Fincham (2005) etc.

with weaker agreement found with the scaling laws for vortex propagation

velocity and peak vorticity proposed by Voropayev et al. (2008) and related

works. In particular, the simulations documented in this chapter show the

constant thickness dipole condition reported in Voropayev et al. (1991) to be

invalid, with the dipole thickness increasing according to a viscous scaling

law that appears universal for the range on simulation parameters considered,

with these simulations providing the �rst directly analogous numerical results

to those experimental works.

The �nal study documented in the following chapter investigates what e�ect

the initial forcing condition has on the late time vortex dipole, given that the

vortex dipoles seen in this chapter appear qualitatively similar to those seen in

chapter 4 in spite of the completely di�erent means of initialising the solution

(initial solution with vortex ring vs. horizontal momentum injection into a

quiescent domain).
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Chapter 6

The in�uence of initial forcing

conditions on the late time

strati�ed dipole

6.1 Simulation set up and study parameters

So far, the work documented in the previous two chapters has demonstrated

how axisymmetric, vortical structures undergo a collapse process due to sta-

ble strati�cation and how this leads to the formation of dipolar vortices that

undergo a well predicted viscous scaling at the late time. However, both the

vortex ring and the impulsive jet based simulations conducted previously do

not necessarily provide a close representation of how an experimentally gener-

ated, impulsive jet in a strati�ed �uid evolves at the early time, and thus may

call in to question how reliable any late time observations are (even though

the results seen in section 5 showed good agreement with some of the avail-

able experimental literature). In the case of the vortex ring based simulations

of chapter 4, the discrepancy arises from implementing the early time vortical

structure as an initial velocity �eld at t = 0 and allowing it to evolve thereafter.

Whilst this method allows for an exact de�nition of the initial axisymmetric

structure (facilitating a �before� and �after� series of comparisons once the

structure has been deformed due to the e�ects of strati�cation), it does not

consider how the vortex rings formed in experimental studies (van Atta and

Hop�nger, 1989; Scase and Dalziel, 2006) are a�ected by strati�cation during

their initial roll up and how this impacts on their subsequent evolution. In

the case of the impulsive jet simulations of chapter 5, the impulsive source

uses a Gaussian forcing pro�le. The use of such a pro�le was chosen based

on a number of factors including the use of such a pro�le in the related study
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of Rojanaratanangkule et al. (2012) and numerical concerns documented in

section 5.1. Whilst the use of an impulsive forcing region to generate vorti-

cal structures allows the in�uence of strati�cation to be felt throughout the

roll up process and beyond, the Gaussian pro�le used previously is arguably

unrepresentative of the equivalent forcing pro�les from experimental studies

and thus the simulated early time vortex ring and trailing jet structures, as

well as the late time dipolar structures, may be unrepresentative of their ex-

perimental equivalents also. Di�erences in structure between experimentally

observed starting jets and those simulated from a Gaussian source were already

commented upon in section 5.2.1.

To summarise, there are enough conceptual di�erences between the simula-

tions conducted so far for this project and documented experiments to question

the validity of comparing the results of the two. In order to address these con-

cerns, a further series of simulations was conducted with the aim of better

representing the early time formation of the vortical structures than has been

attempted so far. The key di�erence noted between the experimentally cre-

ated starting jets and vortex rings (formed by a piston/cylinder arrangement

or similar) to those generated through Gaussian forcing is a much smoother

vorticity pro�le across the leading ring and trailing jet for the latter, with the

ratio of the leading ring core radius to the overall ring radius appearing to be

much higher for a Gaussian pro�le (though this was not assessed quantitatively

in chapter 5). The numerical work of both Mohseni et al. (2001) and Roja-

naratanangkule et al. (2014) details how more representative starting jets than

simulated in this project so far can be generated by using a smoothed top-hat

type forcing distribution, which in those cases was based around the use of

an error function to create the smoothed forcing pro�le in the radial direction

away from the streamwise axis and a Gaussian pro�le along the streamwise

axis.

For the work detailed in this chapter, a similar smoothed top-hat pro�le

was introduced as an alternative forcing mechanism to the Gaussian pro�le

used in chapter 5. That pro�le applied an additional streamwise forcing term

into the governing equations de�ned by

fxG =
J

((δG/2)2π)3/2
exp(−

r2
3

(δG/2)2
), (6.1)

where δG is the Gaussian length scale and r3 =
√
x2 + y2 + z2. Instead of a

combined error function and Gaussian based pro�le used by previous studies,

a smoothed top-hat forcing pro�le is achieved in this work though the use of

hyperbolic tangent functions in both the radial and streamwise directions with

144



CHAPTER 6. THE INFLUENCE OF INITIAL FORCING CONDITIONS ON THE
LATE TIME STRATIFIED DIPOLE

Case Type Re N tJ Lx, Ly, Lz nx, ny, nz

GAU1 Gaussian 2000 0.0 1 12π,4π,4π 640,320,320

GAU2 Gaussian 2000 0.0 5 12π,4π,4π 640,320,320

GAU3 Gaussian 2000 1.0 5 12π,4π,4π 640,320,320

HYP1 Hyperbolic 2000 0.0 1 12π,4π,4π 640,320,320

HYP2 Hyperbolic 2000 0.0 5 12π,4π,4π 640,320,320

HYP3 Hyperbolic 2000 1.0 5 12π,4π,4π 640,320,320

GAU4 Gaussian 2000 1.0 1 24π,8π,8π 1280,640,640

GAU5 Gaussian 2000 1.0 5 24π,8π,8π 1280,640,640

HYP4 Hyperbolic 2000 1.0 1 24π,8π,8π 1280,640,640

HYP5 Hyperbolic 2000 1.0 5 24π,8π,8π 1280,640,640

Table 6.1: Cases and �ow parameters

the forcing term now given by

fxH =
J

(δH/2)2π
(

1

2
tanh(8(1 − r2/(δH/2))) + 1)(

1

2
tanh(4(1 − ∣x∣/(δH/2))) + 1) ,

(6.2)

where δG is the radius of the forcing region from the x axis and r2 =
√
y2 + z2.

As mentioned previously, one of the reasons a top-hat type pro�le was not

adopted for the impulsive jet simulations conducted in chapter 5 was the di�-

culty of a Fourier based spectral DNS code resolving sharp changes in velocity

gradients (akin to discontinuities) which could not be accurately mapped to

the available number of Fourier modes. This problem could have been eased

somewhat by increasing grid resolution and thus the number of modes, though

at signi�cant increases in computational cost to a level impractical for the

resources of this project. However, unlike the simulations of chapter 5 the

simulations described hereafter do not aim to capture a signi�cant portion of

the late time scaling behaviour and thus does not require as large a domain,

allowing for increased resolution while not incurring excessive grid count. The

initial grid spacing used in this chapter, given in table 6.1 is 40% smaller in

each direction than that used in chapter 5.

Table 6.1 details the case parameters for this study. The Reynolds number

for the Gaussian and Hyperbolic pro�led sources was based on the kinematic

momentum �ux in both cases with both using a momentum �ux of identical

magnitude. For this study, all cases utilise a Reynolds number of 2000. The

variation in momentum injection duration, tJ , for the Gaussian and Hyper-

bolic cases was intended to explore whether the duration of the momentum

injection has any signi�cant e�ect on the structures that are formed at the
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late time. Speci�cally, the shorter duration cases were intended to give a for-

mation time measured duration of less than 4, such that most (if not all) the

impulse transferred to the domain is contained within a single leading vortex

ring without a signi�cant trailing jet. Conversely, the longer duration injec-

tions are intended to give an injection that extends past four formation time

units and thus should form both a leading vortex ring and a trailing jet struc-

ture during the injection phase. These simulations, combined with the vortex

ring initialised cases conducted both in chapter 4 should help determine both

whether a vortex ring initialised case is analogous to a case where a vortex

ring rolls up from a momentum injection and also what di�erence the presence

of a trailing jet makes to the late time structure. Simulations were conducted

using both neutral and stably strati�ed backgrounds in order to demonstrate

how the early and late time �ow structure di�erences between the Gaussian

and Hyperbolic cases in particular are either reduced or exaggerated if a stably

strati�ed background is utilised.

As in chapter 5, the grid resolution for some of the stably strati�ed cases

was reduced at the late time to reduce computational cost once the smaller

scale structures in the domain have merged to form the larger, slower dipolar

vortices now expected of such �ows.

6.2 Results and analysis

6.2.1 Impulsively generated structures from Gaussian and

Hyperbolic sources in neutrally strati�ed �uid

Figure 6.1 demonstrates that the choice of a hyperbolic forcing pro�le gener-

ates a markedly di�erent structure to the Gaussian pro�les used in Chapter 5.

For the short duration momentum injection cases (GAU1/HYP1), at a short

time after the momentum injection has ceased, the Gaussian case has formed

a vortex ring-like structure, but with highly eccentric cores and a signi�cant

proportion of the overall circulation in the �ow �eld contained within a tail

extending back toward the origin of the momentum injection. By contrast, the

Hyperbolic momentum injection has given a more compact structure with al-

most all the circulation in the �ow �eld entrained into a core that, super�cially,

appears to have a more circular distribution more akin to the experimentally

generated vortex rings documented widely in available literature. The longer

duration injection for the Gaussian case (GAU2) does appear to form a leading

vortex ring and trailing jet, though the ring core is su�ciently wide to give
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the vortex an overall spherical appearance. The Hyperbolic injection (HYP2)

produces a more tightly formed core as before, with the emergence of smaller

ring-like structures appearing in the trailing jet, somewhat more representative

of the structure reported in Gharib et al. (1998) and subsequent works.

Focusing exclusively on the leading vortex ring from each of the four cases

considered in Figure 6.1, the vertical vorticity distribution within the leading

rings for each are given in Figure 6.2, at a time after momentum injection

had ceased and the leading ring had the opportunity to advect downstream.

As inferred from the vorticity contours, the core radius of the leading ring is

smaller for the Hyperbolic momentum injection, with a higher peak vorticity

magnitude and a pronounced in�exion in the lateral distribution of vorticity

about the centre of the ring than seen for the Gaussian momentum injections.

After normalising the vorticity pro�les by peak vorticity magnitude and the

lateral separation between the vorticity peaks of the ring, Dyω, it was seen

that the Hyperbolic momentum injection gave a leading vortex ring with a

Gaussian core distribution very similar to the rings simulated in Chapter 4,

with case RSD1 taken as an example from those results. Ironically, the vortex

ring formed from the Gaussian momentum injection forms a less Gaussian

distribution of vorticity, with a more linear pro�le of vorticity between the

cores, particularly for the case of longer momentum injection.

This change in structure is further re�ected in both the streamwise and

kinetic energy levels for the early time ring and trailing jet structure, with the

Hyperbolic case giving markedly higher values of both. This would be con-

sistent with the more compact leading ring structure given in the Hyperbolic

case, which has been imparted with the same impulse at the Gaussian case but

concentrates the momentum into a smaller volume, giving a higher streamwise

kinetic energy. Similarly, the more compact distribution and higher peak value

of vorticity for the vortex ring core as shown in �gure 6.2 gives a faster core

rotation and thus a higher level of kinetic energy in the lateral and vertical

directions as well.

6.2.2 Impulsively generated structures from Gaussian and

Hyperbolic sources in stably strati�ed �uid

Though there are clear structural di�erences between the structures produced

by the Gaussian and Hyperbolic momentum sources after the initial momen-

tum injection, the primary aim of the work in this chapter is to determine what

impact this has on the late time vortex dipole in stably strati�ed cases, and
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Figure 6.1: Contours of vertical vorticity, ωz at z = 0 for short and long momen-

tum injection from both Gaussian and Hyperbolic pro�led momentum sources

in neutrally strati�ed �uid. (a)(i) Case GAU1 at t = 1, (ii) Case HYP1 (tJ = 1)

at t = 1, (b) as (a) but t = 5, (c)(i) Case GAU2 (tJ = 5) at t = 5, (ii) Case HYP2

(tJ = 5) at t = 5, (d) as (c) but (i) t = 8.4, (ii) t = 9.2. Colour contouring ranges

between ±0.6∣ωz ∣Max.
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Figure 6.2: Vertical vorticity pro�les across the leading vortex rings for short

and long momentum injection from both Gaussian and Hyperbolic pro�led

momentum sources in neutrally strati�ed �uid, with pro�le taken at z = 0 and

x coordinate equal to location of ωz ∣Max. (a) GAU1 at t = 5 (�), HYP1 at

t = 5 (−−), (b) GAU2 at t = 9.2 (�), HYP2 at t = 8.4 (−−), (c) as (a) but now

includes equivalent pro�le from RSD1 (− ⋅ −) and data rescaled by maximum

vertical vorticity and lateral separation of vorticity extrema, (d) as (b) but now

includes equivalent pro�le from RSD1 (− ⋅ −) and data rescaled by maximum

vertical vorticity and lateral separation of vorticity extrema.

149



CHAPTER 6. THE INFLUENCE OF INITIAL FORCING CONDITIONS ON THE
LATE TIME STRATIFIED DIPOLE

thus help further validate (or cast doubt upon) the results of chapter 5. Figure

6.3 gives isosurface visualisations of the initial starting jet and leading vortex

ring structure for a Gaussian and Hyperbolic momentum source with tJ = 5 and

unit buoyancy frequency. Early in the injection process the structures gener-

ated are largely representative of the neutrally strati�ed equivalents discussed

in the previous section. At the point of the momentum injection ceasing, the

axisymmetry of both cases has been lost with the Gaussian case showing the

near spherical vortex ring at the leading edge expanding in the vertical direc-

tion and constricting in the lateral direction, though appearing to maintain the

integrity of its core. By contrast, the Hyperbolic case shows the leading vortex

ring to expand laterally and constrict vertically, while also detraining vorticity

from its core into the surrounding �uid, forming loops of �halo� vorticity not

unlike those seen for the isolated vortex ring cases considered in chapter 4.

In spite of the apparent structural di�erences between these two cases at

the early time, the time history of the volume integrated kinetic energy and

buoyancy variance components within the domain follow very similar trends.

As observed for the neutrally strati�ed cases, the Hyperbolic momentum in-

jection gives a more energetic �ow due to the more compact nature of the

vortical structures produced, but once injection has ceased the energy decay

of both cases appears broadly equivalent as shown in �gure 6.4. As would be

expected from these trends, the ratio of internal to total energy is near iden-

tical for the two cases throughout as indicated in �gure 6.5. All of this points

to the mechanism of energy transfer between the kinetic and internal states

being una�ected by the shape of the vortical structure within the domain,

and more dependent on the level of momentum injected into the �uid as well

as background strati�cation strength and viscosity. Indeed, the only previous

occasion in this work where two cases with equivalent momentum, strati�-

cation strength and Reynolds number was considered was the comparison of

the vortex ring case RSD2 from chapter 4 and the similar case RSD3 without

radial perturbation of the initial ring, with those cases also giving near iden-

tical energy histories. The di�erences in vortical structure at the early time

between those vortex ring cases is less extreme than observed for the Gaus-

sian and Hyperbolic momentum sources documented in this chapter, but still

demonstrates the insensitivity of the energetics of the �ow to the shape of the

vorticity �eld.

Thereafter, both the Gaussian and Hyperbolic cases undergo similar pro-

cesses of vertical motion suppression, wave generation and �nal collapse as

documented in chapter 5 before arriving at the late time viscous dipole. The
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(a)

(b)

(c)

Figure 6.3: Isosurfaces of constant vorticity magnitude, ∣ω∣, for Gaussian and

Hyperbolic momentum sources in stably strati�ed �uid (N = 1) with (a)(i)

Case GAU3 at t = 3, (ii) Case HYP3 at t = 3, (b)(i) Case GAU3 at t = 4,

(ii) Case HYP3 at t = 4, (c)(i) Case GAU3 at t = 5, (ii) Case HYP3 at t = 5.

Colour contouring ranges between ±0.6∣ωz ∣Max, with isosurface threshold set at

0.25∣ω∣Max.
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Figure 6.4: Time history of volume integrated kinetic and buoyancy variance

levels for cases GAU3 (�) and HYP3 (−−). Levels shown are (a) streamwise

kinetic energy, Ku, (b) lateral kinetic energy, Kv (c) vertical kinetic energy

and (d) buoyancy variance, P
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Figure 6.5: Time history of volume integrated internal to total energy ratio

for cases GAU3 (�) and HYP3 (−−).
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isosurfaces given in �gures 6.6 and 6.7 demonstrate the structure of the dipole

for the Gaussian and Hyperbolic case at near identical times. Both cases give

a very similar structure with the characteristic contra-rotating columns of vor-

ticity bound by the upper and lower shear layers as seen in chapters 4 and 5.

Both cases appear to have similar lateral spacing between the columns (veri�ed

further in �gure 6.9), with the columns themselves having similar height (ver-

i�ed further in �gure 6.12). The key di�erence in structure appears to be the

shape and thickness of the shear layer, which is thinner and covers a larger area

in the horizontal plane for the Hyperbolic case than the Gaussian case. This

thinner shear layer might help explain why the dipole in the Hyperbolic case,

while attributed the same momentum as the Gaussian case, has propagated a

shorter distance over this near identical time period, with viscous drag from

the thin shear layer exhibiting a larger declarative e�ect on the dipole than

the thicker shear layer seen for the Gaussian case. Overall though, the similar-

ity between these late time structures is much closer than the initial trailing

jet and leading ring structures formed during the early stages of momentum

injection.

Figure 6.8 demonstrates the vertical vorticity �eld at the vertical midplane

at the equivalent times given in �gures 6.6 and 6.7, again showing marked

similarity in structure between the two dipoles. The key distinction between

the two would appear to be the Gaussian case maintains a more signi�cant

tail structure in the wake of the leading dipole, with the Hyperbolic case

having a far more minimal tail with a greater majority of the vertical vorticity

contained within leading dipole. Arguably, the latter gives better qualitative

agreement with the dipoles documented by Voropayev et al. (2008) though

this is quite subjective, with the contouring levels, sampling time etc. all

having an e�ect on how visible the tail structure is compared to the leading

dipole. A more quantitative comparison of dipole structure is given in �gure

6.9, with the lateral pro�le of vertical vorticity through the cores of the dipoles

at the vertical midplane at these times. Figure 6.9(a) demonstrates that the

Hyperbolic case has a slightly higher core circulation than the Gaussian case at

this time, which is perhaps unsurprising given that less vorticity is contained

within the tail structure, with the lateral distance between the vorticity minima

and maxima again slightly higher for the hyperbolic case as documented in

table 6.2. Using these distances and peak vorticity values, the lateral vorticity

pro�les can be normalised as demonstrated in �gure 6.9(b). These normalised

pro�les are near identical for the two dipoles, further pointing toward the

late time structure being independent of the pro�le of the initial momentum
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Figure 6.6: Isosurfaces of constant vorticity magnitude, ∣ω∣, for case GAU3 at

t = 209 demonstrating the structure of the late time dipole (for a Gaussian

pro�le momentum injection), with views looking from (a) positive x, negative

y, positive z to negative x, positive y, negative z, (b) positive x to negative

x, (c) positive z to negative z (d) negative y to positive y. Colour contouring

ranges between ±0.6∣ωz ∣Max, with isosurface threshold set at 0.25∣ω∣Max.
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Figure 6.7: Isosurfaces of constant vorticity magnitude, ∣ω∣, for case HYP3 at

t = 211 demonstrating the structure of the late time dipole (for a Hyperbolic

pro�le momentum injection), with views looking from (a) positive x, negative

y, positive z to negative x, positive y, negative z, (b) positive x to negative

x, (c) positive z to negative z (d) negative y to positive y. Colour contouring

ranges between ±0.6∣ωz ∣Max, with isosurface threshold set at 0.25∣ω∣Max.
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Figure 6.8: Contours of vertical vorticity, ωz, at z = 0 for (a) case GAU3 at

t = 209 and (b) case HY P3 at t = 211. Colour contouring ranges between

±0.6∣ωy ∣Max and ±0.6∣ωz ∣Max respectively.
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Case t Dyω ωz ∣Max

GAU3 209 2.094 0.121

HYP3 211 2.258 0.140

± 7.8% 15.5%

Table 6.2: Vortex dipole midplane maximum to minimum vorticity distances

and maximum vorticity values for Gaussian and Hyperbolic momentum injec-

tions as used in �gure 6.9(b).
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Figure 6.9: Lateral pro�les of vertical vorticity, ωz, through the late time vortex

dipole, with pro�le taken at z = 0 and x coordinate equal to location of ωz ∣Max.

(a) Raw lateral vorticity pro�le for case GAU3 at t = 209 (�) and HYP3

at t = 211 (−−). (b) As (a) but lateral distance normalised by the distance

in y between ωz minimum and maximum for each case, and vertical vorticity

normalised by ωz ∣Max and an additional pro�le added for the Lamb-Chaplygin

model detailed in section 1.2.3 (− ⋅ −).

injection. In addition to this, the equivalent normalised pro�le for a Lamb-

Chaplygin dipole model is plotted on the same axes. Both the late time dipoles

appear to give excellent agreement with this model, which not only helps

validate the numerical methods employed here but also lends further credence

to the di�using dipole model proposed by Praud and Fincham (2005), which

simulated dipole evolution through the vertical di�usion of a Lamb-Chaplygin

dipole from a vertical midplane.

Finally, the streamwise centre, diameter and vertical thickness of the late

time dipoles for the Hyperbolic cases is evaluated to compare with the scaling

laws de�ned in previous chapters, namely equations 1.15, 1.16 and 1.23 which

give
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Case tD tH Plot marker

GAU4 344 190 #

HYP4 1028 313 ×

HYP5 168 206 +

Table 6.3: Time o�sets for dipole lateral and vertical scaling as given in �gures

6.11 and 6.12).

XD = αX(t − tX)1/3,

DD = αD(t − tD)1/3,

Hω = 2
√

2(
t − tH
Re

)
1/2

≈ 2.828(
t − tH
Re

)
1/2

.

Good agreement for the latter two of these scaling laws was demonstrated

across a range of cases for the late time dipoles in chapter 5. The values of

streamwise centre and diameter are calculated here using the same methods

as employed for �gure 5.19, where thresholding has been used to exclude the

vorticity in the tail to make for more accurate tracking of the leading dipole.

As the simulations conducted for this chapter were not run for as long as those

documented in chapter 5, it was not practical to calculate values of the time

o�set for streamwise position scaling, tX . However, the simulations had been

run long enough to obtain suitable time o�sets for the diameter and vertical

thickness scaling laws as documented in table 6.3. Figure 6.10 gives the time

history of the late time dipole's streamwise position for cases GAU4 and HYP4

(short momentum injection, large domain) as well as HYP5 (as HYP4 but

longer momentum injection). As mentioned previously, the length of these

simulations was less than the simulations from chapter 5, and insu�cient time

appears to have been allowed for the simulation to develop to the point where

the validity of the streamwise position scaling law can be properly evaluated.

Nonetheless, comparing the dipole position for cases GAU4 and HYP4 does

con�rm the previous observation that the Gaussian pro�le momentum injection

results in a faster propagating dipole than an equivalent Hyperbolic pro�le

injection. Despite this, the agreement with the scaling law for dipole diameter

as demonstrated in �gure 6.11 was seemingly achieved for each case at the

late time with dipole diameter scaling well with DD ∝ (t − tD)1/3. Similarly,

each of the cases appears to give very similar vertical scaling behaviour at the

late time, with all three appearing to collapse onto 2
√

2 ((t − tH)/Re)
1/2

at the
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Figure 6.10: (a) Time history of dipole streamwise location, XD, for GAU4

(#), HYP4 (×) and HYP5 (+) (b) The same data plotted on logarithmic axes

with the thick line indicating XD ∝ t1/3.

late time (�gure 6.12). Thus, for all of the models and scaling laws considered

here, where agreement could be found with the late time dipoles produced from

a Gaussian pro�le momentum injection into a stably strati�ed �uid, similar

agreement could be found for dipoles produced from an equivalent Hyperbolic

pro�le injection.

6.3 Chapter summary

The primary purpose of this chapter has been to investigate how sensitive the

late time dipole formed in a stably strati�ed �uid from a horizontal momentum

injection is to the forcing pro�le of said injection. This was investigated by

simulating multiple cases with equivalent viscosity and background strati�ca-

tion strength, but with either momentum injection provided by a source term

distributed by a three-dimensional Gaussian function or a three-dimensional

Hyperbolic function (scaled to give equivalent impulse to the �uid). While

these cases exhibited clear structural di�erences at the early time in terms

of the shape of the starting jet and leading vortex ring, at the late time the

leading vortex dipoles were structurally similar, with the midplane vorticity

pro�les giving excellent agreement with the Lamb-Chaplygin model. Addition-

ally, both pro�les of momentum injection gave late time dipoles that agreed

with the lateral and vertical scaling laws provided by Voropayev et al. (2008)
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Figure 6.11: (a) Time history of dipole diameter, DD, for GAU4 (#), HYP4

(×) and HYP5 (+) (b) The same data plotted on logarithmic axes with the

thick line indicating DD ∝ (t − tD)1/3.
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Figure 6.12: (a) Time history of dipole vertical thickness, Hω, for GAU4 (#),

HYP4 (×) and HYP5 (+) (b) The same data plotted on logarithmic axes with

the thick line giving 2
√

2 ((t − tH)/Re)
1/2
, where Re = 2000 for all cases.
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and Praud and Fincham (2005) respectively. This is in spite of the fact that

the qualitative agreement for a Gaussian momentum injection and experimen-

tal observations of starting jets in neutrally strati�ed �uid, or at the early time

in stably strati�ed �uid, is apparently poor in comparison to the Hyperbolic

momentum source.

Overall, the outcome of this chapter is to both lend additional credence to

the results of chapter 5 in terms of describing the late time vortex dipole, and

also provide further agreement between the numerical simulations of this work

and experimental studies documented in literature.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The evolution of a dipolar vortex from an initially axisymmetric �ow structure

under the vertical constraint of stable strati�cation has been simulated through

the use of the Spectral DNS code detailed in section 2.3. The two structures

considered in this work are a horiztonally propogating vortex ring, as well as an

axisymmetric starting jet formed from a horizontal momentum injection into

an initially quiescent domain. In accordance with all comparable experimental

studies, the dipole forms following the buoyant collapse of the �ow as vertical

motions are suppressed to leave a three dimensional structure, but consisting

of quasi-horizontal velocity �elds throughout its vertical extent.

The evolution of kinetic energy and buoyancy variance levels within the

structure have been divided into four phases, namely (i) injection, (ii) instabil-

ity development, (iii) buoyant collapse and internal wave generation, (iv) quasi-

horizontal, di�usive �ow. Each of these stages can be identi�ed clearly with

corresponding changes in energy levels, vorticity contours, buoyancy scalar

and dipole aspect ratio (at the late time). A thorough quanti�cation of the

stages of dipole evolution through energy levels is not something discussed in

any of the relevant literature reviewed in chapter 1, and as such is believed to

present an original data set for future investigations to be compared against.

The energy history for each of the stages is qualitatively similar between each

stably strati�ed case, though sensitivities to the three governing parameters;

Reynolds number, strati�cation strength and initial impulse were noted and

discussed. In particular, the changes in vertical kinetic energy and buoyancy

variance (which are coupled through the buoyancy �ux term in the govern-

ing equations) appear to take place on a buoyancy normalised time measure,

Nt/2π, at intermediate times.
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Comparisons have been made with the (sometimes con�icting) scaling laws

for a late time dipole proposed in literature. Most signi�cantly, the assertion

of Voropayev et al. (2008) that dipole thickness is near constant once fully

formed appears to be invalid for the cases considered here. Instead, excellent

agreement is found with the vertical di�usion model provided by Flór et al.

(1995). Given that the experimental works used to previously verify the dif-

fusion model all used a saline solution with approximately equal kinematic

viscosity in each case (around 10−6m2s−1), there remained a question as to

whether the viscous scaling model would be valid for di�erent �uid viscosity.

The range of Reynolds numbers (Re = 1/ν) simulated in this work lends more

credence to the model than could be achieved from experiments alone. Ad-

ditionally, the other important governing parameters considered here, namely

strati�cation strength and initial impulse, appear to have a minimal e�ect on

the late time scaling of dipole vertical thickness, only in�uencing the interval

between the end of the momentum injection and the time at which the di�usive

behaviour becomes signi�cant in the vertical direction. The commencement of

di�usive dominated behaviour could be quanti�ed consistently between cases

as the point at which the dipole's vertical to lateral aspect ratio begins to

increase after an initial rapid decrease.

Asymptotic agreement was found with the scaling behaviours for dipole

streamwise position and peak vertical vorticity proposed in Voropayev et al.

(2008), though both were highly sensitive to the range of data chosen to evalu-

ate the agreement, so the validity of those experimental scaling laws (equations

1.15, 1.18) remains questionable. Much improved agreement was found with

the dipole diameter scaling proposed by the same authors, though as discussed

in the latter part of chapter 5, there is su�cient evidence to suggest that the

dipole actually expands slightly faster as the lateral expansion becomes di�u-

sion dominated. As such, the late time expansion of the dipole in both the

lateral and vertical directions are both governed by a viscosity normalised time

measure, νt. A di�usion based model for lateral expansion of the dipole is not

presented in any of the literature studied for this project, though the data from

this work and some (but not all) of the data from previous literature indicates

that such a model may be valid. Certainly the lateral structure and expansion

of the dipole is a topic warranting further investigation and could be consid-

ered further in future works. Additionally, excellent agreement was found for

the vorticity pro�le across the late time dipole and the Lamb-Chaplygin model

often used as a basis for comparison in experimental literature.

In any case, the author believes this to be �rst documented work that pro-
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vides a set of fully resolved numerical simulations analogous to the experimen-

tal works of Voropayev et al. (1991); Praud and Fincham (2005); Voropayev

et al. (2008) and others. While some previous attempts have been made to

model the late time dipoles via analytical models such as those of Praud and

Fincham (2005), they did not rely on fully resolving the Navier-Stokes equa-

tions as per the simulations in this work, though these models are further

validated by results presented in previous chapters. In addition to verifying

or contradicting the results of these experimental studies, this work o�ers an

insight into the kinetic energy and buoyancy variance evolution from the ini-

tially axisymmetric structure to the late time dipole and a brief examination

of the buoyancy scalar �eld, none of which is easily accessible via experiment.

7.2 Future work

Several avenues of future investigation could be taken on from the conclusions

of this project. Firstly, an often cited application of research into impulsive

momentum sources in a strati�ed �uid is the study of the wakes of submerged

vehicles or marine creatures that utilise impulsive momentum injections for

acceleration. An example of an experimental study that aimed to represent

this was performed by Voropayev et al. (1999), using a self-propelled model

submarine to generate wake structures in a testing tank of stably strati�ed

saline �uid. A numerical study aiming to create an analogy to this would

require numerical simulation of an impulsive momentum source in a moving

frame of reference (or for the source itself to propagate) to mimic the e�ects

of acceleration, as well as some way of simulating the drag imparted on the

body at non-zero velocities (i.e. an accelerating force doublet).

The simulations in this work considered only the evolution of a horizontal

momentum injection or horizontally propagating vortex ring. However, in

the case of a momentum injection to propel a submerged body, there are likely

several instances where an impulsive momentum injection would be required to

have some vertical component to the propulsive vector, and so simulation could

be used to determine how the structures formed from these non-horizontal

momentum injections compare with the late time dipoles detailed in this thesis.

Finally, a further step in understanding vortex dipoles in a strati�ed �uid

is achieved not just from studying the �ow inside the core of the dipole at its

vertical midplane, but how the �ow within the dipole propagates in the vertical

direction and how this may be detected at the surface of a �uid body containing

such a dipole (e.g. a geophysically created dipole beneath the ocean surface
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being detected from a surface signature). Again, this has been approximated

experimentally though the work of Voropayev et al. (2007), though numerical

literature appears to remain lacking in this area.
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Appendix A

Computational resources

Two high performance computer clusters were available for the project in order

to perform the necessary simulations. The University of Southampton's own

cluster, Iridis 3, and the national research cluster, HECToR.

A.1 Iridis 3

Iridis 3, at the time this research was conducted, was the most powerful of two

computer clusters available for research at the University of Southampton, and

at the time of its introduction was the most powerful university owned super-

computer in the UK. It is available for in-house academic and postgraduate

research work that requires moderate to high levels of processor count, speed

and memory.

Initially the cluster was equipped with 1008 compute nodes, each with 8

2.27GHz processor cores and 22GB of memory, giving a peak system perfor-

mance of over 72 Tera�ops. The nodes were later upgraded to 12 processor

cores each, increasing the total number of cores available to users. Software

installed on Iridis 3 includes Intel supplied compilers and MPI libraries, which

were used to compile and run the Fortran code scripts used in this project.

The code can be ported between Iridis and HECToR with simple modi�cations

to the compiling and batch submission procedures.

Iridis 3 has since been superseded by Iridis 4.

A.2 HECToR

HECToR (High-End Computing Terascale Resource), at the time this research

was conducted, was the United Kingdom's largest and most powerful super-

computer, funded by a consortium of research councils and based at the Uni-
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versity of Edinburgh. The cluster was designed for academic research such

as that undertaken for this thesis, where memory and processor speed and

quantity are required to levels beyond the capabilities of a single institution's

cluster such as Iridis.

HECToR was based on a Cray XE6 and was equipped with 2816 compute

nodes with 32 processor cores rated at 2.3GHz each, with 32GB of memory per

node. The interconnect hardware provided a reported bandwidth of 5GB/s or

greater, with the machine as a whole having a peak theoretical performance of

800 Tera�ops. The code was compiled using a GNU copiler library as opposed

to the Intel library used on Iridis.

HECToR has since been replaced by ARCHER.

A.3 Use of resources

At the time of writing this report, much of the early simulation work for the

project was carried out on Iridis 3. This included all the validation simula-

tions discussed in Chapter 3, and early test versions of simulations discussed in

Chapter 5. The high clock speed and unlimited usage of Iridis 3 makes it suit-

able for rapid development of the code and low quality simulations, although

the upper limit on cores that can be requested at one time, added to poten-

tially lengthy queue times for sizable jobs leads to high quality production runs

taking up to several days to complete after initial job submission.

HECToR's processing cores are slightly slower than Iridis, and less memory

is available per core, but the total number of cores that can be requested is

far higher, allowing for much larger, memory intensive jobs to be performed.

The total number of core hours available to the project does have an upper

limit, which makes regular lengthy test runs impractical. The validation tests

for the code used in this research and some early simulations of vortex dipole

�ows were performed on Iridis, with the bulk of the intensive research work

performed on HECToR.
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