On Component-based Reuse for Event-B

Andrew Edmunds’, Colin Snook?, and Marina Walden'

! Abo Akademi University, Finland
2 University of Southampton, UK

Abstract. Efficient reuse is a goal of many software engineering strategies and is useful
in the safety-critical domain where formal development is required. Event-B can be used
to develop safety-critical systems, but could be improved by a component-based reuse
strategy. In this paper, we outline a component-based reuse methodology for Event-B. It
provides a means for bottom-up scalability, and can also be used with the existing top-down
approach. We describe the process of creating library components, their composition, and
specification of new properties (involving the composed elements). We introduce Event-
B component interfaces and propose to use a diagrammatic representation of component
instances (based on iUML-B) which can be used to describe the relationships between
the composed elements. We also discuss the specification of communication flow across
component boundaries and describe the additional proof obligations that are required.

1 Introduction

Formal methods can play a useful role in the development of safety-critical systems. Having
flexibility in the formal approaches will make them more useful in the development process.
Event-B [3] is a formal method, with tool support [11], which has been used in industry. We
are seeking to improve the re-use of Event-B artefacts, with the aim of increasing agility.
The creation of a library of components and a way to assemble them would facilitate this.
Our proposal is based on shared-event composition [23], since we believe that it provides
an intuitive abstraction for the encapsulation that is often seen in object-oriented software
components.

In its current form, the existing composition approach, and tools, give little guidance as
to how machines and their elements should be combined. Components based on shared-
event composition provide a useful encapsulation abstraction. The shared-event approach
models the interactions between machines using event synchronization, we can view this as
an abstraction of method calling in object-oriented components [6]. Since we are focussed
on the potential for reuse, we need a way for developers to interpret the intended use
of a component. Typically, this is achieved through the use of interfaces, in conventional
software engineering practice. In our approach, we introduce interface events to make
events ‘available for use’ by potential users of a machine. When considering the design and
reuse of components, we consider how a developer understands what a component does.
The state updates are described by events, in the normal way, but to understand the flow
of information across the interface boundary we need to introduce additional annotations
to represent parameter directions.

Decomposition is a technique for simplifying complex developments or introducing struc-
tural partitions. A single machine is split into multiple sub-units, and the equivalence is
maintained using a composition technique [22]23]24]. In this paper, we introduce Event-B
components, interfaces, and composite components which builds on the existing composi-
tion techniques. To visualize developments, and assist with their specification, iUML-B [26]
provides a graphical interface, with state-machines and class diagrams [2125]. We propose

! The ADVICeS project is funded by Academy of Finland, grant No. 266373.

an extension to iUML-B class diagrams to assist with the use of components. We intro-
duce a composed machine diagram showing which machines and components to include
in a composition; and we introduce a new component instance diagram to specify how
machines and component instances are related. In addition to this, it may be desirable
to specify properties involving the elements of newly composed components. We describe
how we could extend the existing composition approach, by adding guards to a composed
machine, to ensure that these properties are satisfiable.

In Section [2] we provide an overview of Event-B, and Section [3| describes Event-B com-
position. Section [4 introduces ideas for component composition and interfaces. Section [f]
discusses use of composition invariants, and Section@introduces proof obligations showing
that communication between assembled components is feasible. Section [7] shows an exam-
ple of a Component. Section [8] discusses related work, and concluding remarks appear in
Section @ The work presented here was done as part of the ADVICeS* project [28].

2 Event-B

Event-B is a specification language and methodology [II3] with tool support provided by
the Rodin tool [11]. Event-B has received interest from industry, for the development of
railway, automotive, and other safety-critical systems [20]. In Event-B, the system, and
its properties, are specified using set-theory and predicate logic. It uses proof and re-
finement [I9] to show that the properties hold as the development proceeds. Refinement
iterations add detail to the development. Event-B tools are designed to reduce the amount
of interactive proof required during specification and refinement steps [8]. Proof obliga-
tions in the form of sequents are automatically generated by the Rodin tool. The automatic
prover can discharge many of the P.O.s, and the remainder can be tackled using the inter-
active prover. The basic Event-B elements are conterts, machines and composed-machines.
Contexts define the static parts of the system using sets, constants and axioms which we
denote by s,c¢, and a. Machines describe the dynamic parts of a system using variables
and events: v and e, and use invariant predicates I to describe the properties that should
hold. We specify an event in the following way,

e2 ANY p WHERE G(p, s,c,v) THEN A(p, s, c,v) END,

where e has parameter names p; a guarding predicate G; and actions A. State updates
(described in the action) can take place only when the guard is true. Guards and actions
can refer to the parameters, sets, constants and variables of the machine and seen contexts.
For events to occur, the environment non-deterministically chooses an event from the set
of enabled events. For clarity, in the remainder of the paper, we omit sets and constants
from the description where possible; the discussion largely focusses on parameters and
machine variables. As development proceeds, the models can become very detailed, these
can be broken down into more tractable sub-units using decomposition [24].

iUML-B [26] is a graphical modelling approach, for Event-B, for specifying state-machines,
and class diagrams [2T25]. The diagrams are linked to a parent machine and contribute to
its content using automatic translation tools. State-machine diagrams impose an ordering
on the machine’s events, and the behaviour can be illustrated using a diagram animator.
Class diagrams are used to define data entities and their relationships. We propose to
extend class diagrams to expose component interfaces. An example of the extension is
shown in Fig. [T} and described in more detail in Section [

3 Composition of Decomposed Machines

Previous work [23] describes the composition of events arising from the decomposition
of one machine into multiple sub-units. We make use of the shared-event approach for

decomposition, where variables are partitioned into different machines, and events can
be combined. The multiple, decomposed sub-units and the composed-machine construct
form a refinement of the abstract machine. The combined-events clause of the composed-
machine refines an abstract event e. We write e, H ep to combine events e, and ep, where
subscripts a and b also identify distinct sub-units (machines). These combined-events are
said to synchronize (i.e., both of the events are enabled) when the conjunction of the guards
are true. The combined actions are composed in parallel. The semantics of synchronizing
events is inspired by the CSP semantics of synchronization [10], however (unlike CSP)
matching event names are not required in the shared-event approach. This is due to one
of the features of the composed-machine specification, which allows a developer to select
which events to synchronize.

(1>

ea = ANY p?q,pla, 2o WHERE Gg(pa, Za,va) THEN Ag(pa, Za,ve) END
ey £ ANY p?,ply, 2y WHERE Gy (py, zv,v6) THEN Ay (ps, s, vpy) END)
ea|les = ANY p, 24,2y WHERE Go(p, Za,va) A Go(p, Tp, 0b)

THEN A, (p, Za,va) || Ab(p, Tz, v) END

Events e, and e, may have a set of parameters p in common, with parameters matched
by name. Parameter sets are annotated with “!” and “?” to describe output sets and
input sets respectively. The annotations are not part of the parameter name, but simply
inform us about the direction of data flow into, and out of, events. The annotation might
alternatively be written using the Ada parameter mode style ‘p : in’ for input, and
‘p: out’ for output. To account for multiple machines we use a machine name subscript;
the set of output parameter names of an event in machine a is written pl,. This is paired
with a set of input parameter names in machine b written p?;. Using syntactic sugar, we
can write e,(ply) for e, £ ANY pl, ... END. Events can have sets of uniquely named,
non-shared parameters z, and zp, which consist of the local variables of the combined-
event. The guards G, and Gp, and actions A, and A, range over the parameters of the
event and the machine variables v, and vp.

The decomposed sub-units, together with the composed-machine construct, form a refine-
ment of the abstract machine. The composed-machine and sub-units can be merged into
a single, unifying machine without changing the composition’s semantics. This can result
in duplication of the events guards, and some simplification may be necessary. The set of
communicating parameters of an event (pla || p?s) U (pls || p?a) reduces to p when combined.
This can be seen in the combined-events of Eq. m In an event, to pass a machine variable
w as an output parameter ¢!, we add a guard ¢ = w. To use an input parameter g7, we
can assign it to a machine variable w in an action, using the assignment w := q.
Parameter names are not duplicated when merging input-output pairs. For each input
parameter ¢? that is paired with its output parameter ¢!, after merging we have only a
single parameter ¢, so, ¢ = ¢! || ¢7.

4 Composition with Components

An important feature of a library component is its interface. It defines how the component
reveals itself to the outside world. Since we intend to use the components in shared-event
style composition, we need to reveal a set of events that can synchronize with some other
machine. We mark the events on the class diagram with an annotation; interface events
have the letter i next to the event name, see Fig.[l] The interface event may involve com-
munication across the component boundary. This will involve parameter passing, so the
interface event needs to reveal information about the names and ranges of the commu-
nicating parameters. Combined-events that communicate via parameters are required to
do so through parameters that have the same name. Events that are not marked with

< FIFO - component

@ buffer: (R + BYTE_16)
o head: R
< tail:

% inToBuffOK
i% inToBuffFail
i% retrvFromBuffoK

Fig.1: The FIFO Buffer Component

the interface annotation may not synchronize: they are ‘hidden’ from other components.
However, they may be non-deterministically selected by the environment, as usual.

4.1 Using Components in a Development

The composition diagram, shown in Fig. [2] is used to import components into a develop-
ment. It is a new graphical representation of the existing composed machine, but, addi-
tionally, it makes use of pre-existing components, which is a new concept. The composed-
machine Cm includes library machine components L and machines under construction M.
In addition, the machines M and L may be associated with an existing refinement chain, or
be used to specify a new one. In the diagram, combined-events are represented by dashed
lines between the machines. The diagram would be similar to an iUML-B diagram, in
that diagrammatic elements are added to the canvas, and the underlying Event-B can be
generated, or existing elements linked to it. One shortcoming of the composition diagram

Cm Composed Machine W
includes mcludes'\ includes

interface x(\ synchl

Cc Library Composed Component

(L) Library Machine Component B)
. synch2 \[/

refi nes[

M) Machine

internal event \\‘

interface events — =~

Fig. 2: Using Components in a Composition Diagram

is that it gives no information about the number of instances of each component. A user
should be able to select a component and drop an instance onto a canvas. The diagram
would be linked to a composed machine, in the style of iUML-B [26]. In this diagram, the
number of instances and their relationships with other components and machines can be
specified. A component instance diagram, showing this, is depicted in Fig. [d] However, the
concepts are best explained using an example, which we defer until Sect.

There are two scenarios for instance creation, one is where the library machine links to a
machine that initially has no corresponding events. In that case, new events will be added
to the machine under construction. The second case is where two existing events are to be
synchronized, where a check for compatible parameter names and directions would be done.
When no corresponding synchronizing event exists, event stubs can be added. An event
stub is a concept taken from programming, where a partial implementation (usually of a
method, operation, procedure or function) is generated automatically. This is illustrated
in Eq. [2 eq is an event in the library machine (annotated with interface) and e is the
automatically generated stub. For each output parameter in p!,, we generate an input

parameter in p?; and vice versa. Order of declaration is not important since parameters
are simply matched by name, regardless of the order in which they appear. Typing guards
for parameters may be suggested at the time of instantiation, but no other event guards
and actions are created automatically. The developer will complete the necessary details
during further development.

interface e, & ANY p?4,ple, 2« WHERE G, (Pas Za,Va)
THEN A, (pa,Za,ve) END
e» 2 ANY p?,,ply, WHERE Gy (py) END (2)
ea || er £ ANY p,zo WHERE Gy (p, 2a,v.) A Gi(p)
THEN A, (p, Za,vs) END

4.2 Composite Components

When a composed-machine is defined, it can be added as a library component. The system
boundary is then represented by the outer, dashed box, see Fig. ‘We need to decide
which of the events of the new component are revealed in the interface. We assume that,
by default, all events of a composed-machine are hidden, in which case we would need
to promote some new, or existing, events to the new interface. The parameters of the
exposed events can be marked with the input/output annotations, ? or !. The composed
event of Eq.[2]could be promoted to the composite component interface using the interface
annotation, as follows,

interface e, || ey £ ANY p, z, WHERE Ga(p,Ta,va) N Go(p)

3

THEN A, (p, Za,vs) END (3)
This would make the combined-event available for synchronization with some event outside
of the component.

5 The Composition Invariant

5.1 Adding a Guard to Satisfy the Composition Invariant

The existing composed-machine C'M is made up of the included machines My .. M, a list
of combined-events, and a composition invariant CI. Any of the machines My .. M,, may be
library machines. The C'I can be used to specify properties relating the elements of separate
components of a composition. These properties cannot be specified in machine invariants
since the elements they refer to reside in separate machines. In the case where a top-
down development introduces components in a refinement, and one finds that a particular
invariant in the abstraction involves elements that reside in separate components, then, in
the refinement, the CI in the composition will reproduce the invariant from the abstraction.
The composition invariant, Cl(s, ¢, v), has visibility of all of the sets and constants of
the included contexts, and variables of the composed-machines s, ¢, and v respectively. To
identify the sets, constants and variables of the individual machines, in a composition of
machines My .. M,,, we write s = sg.. S, for sets, ¢ = ¢g .. cm for constants and v = vg .. vm
for variables. The composed-machine invariant CM1I is a conjunction of the individual
machine invariants M Iy .. M I,, and CI, where each machine invariant has visibility of its
own variables and sets, and also the constants of its seen contexts as follows,

CMI(CM, My .. My,) = CI(s,c,v) AN MIo(s0,co,v0) A .. A MIm(Sm,yCm,Um) (4)

To ensure that the composition invariant C1 is preserved, we need to add guards Gcr,
but currently there is no mechanism in the existing tool that does this automatically, so

this remains as future work. We would like G¢r to range over the whole of v, ¢ and s.
That is, the guard requires component-wide visibility of variables, and of the sets and
constants of the seen contexts of the included machines. The intuitive place to do this
is in the composed-machine, where we propose to add an additional guard clause to the
combined-event clause. We extend the combined-event of Eq. [[| with G¢r, as follows,

ea || ev £ ANY p, 24,2 WHERE Ger(v) A Ga(p,Ta,va) N Go(p, o, vp)

5
THEN A, (p, Za,va) || As(p, xp,vs) END (%)

In the composed-machine, we should demonstrate that the invariants (including the CT)
are preserved for all events of the included machines. The invariant preservation proof
obligation INV, e, follows, for each invariant i in I, where local variables x are omitted,
and the remainder of the parameters refer to those in events before composition,

INVeq : Ia(va) A Ga(pa,va) A Aa(Pas Va,) & ia(vy) (6)
INVey : I(vs) A Go(po, v6) A Ap(ps, ve, vy) F i (vp) (7)

INV, e, : CI(v) A la(va) A Iy(vs)
A Ga(Payva) A Go(py,vs) A Ger(v)
A Aa(Pas Va, vg) A Ap(py, vp, vh)
Fia(vh) Adp(vy) A CI(v")

(®)

As seen above, we are required to choose an appropriate guard Ger to show that the
invariant holds. It appears in the antecedent of the combined-event’s invariant proof obli-
gation.

5.2 Component Development

One of the benefits of the existing decomposition approach is that once decomposition
has taken place, the individual machines can be refined independently. This is possible for
the components that are used in compositions, too, and allows components/machines to
be further refined, by a number of teams, independently. To see how this is possible we
comment on the two scopes of visibility in a composition. The top-level scope is defined
by the composed machine, which has visibility of all of the sets, constants and variables
of the machines that it includes, and of the contexts that those machines see. The CI
resides at the top-level in the composed machine, and can refer to variables of multiple
machines. The composed machines can have guards added to combined-events, these also
have visibility of the variables of the included machines. An important point here, is that
the CI should only describe the properties relating to the composition (i.e. properties that
cannot be described in a machine/component in isolation). Otherwise, those properties
should reside in the normal machine invariants. Each included machine, and its refinement
chain, in a composed machine, forms a lower-level scope of visibility. At the lower level
scope, the included machines and refinements can be worked on independently since it
contains no information about the composition.

The need to recompose components is a natural consequence of placing constraints on
elements residing in different machines of a composition. For each of the included machines
and their refinement chains, further refinements can be added independently by adding new
variables, strengthening guards, and data refinement. If a composition is complex, it will
be possible to add further composed-machines to the refinement chain (which may or may
not include existing components), thereby allowing specification of emerging composition
properties as development proceeds.

6 Proof Obligations

6.1 Feasibility of Inputs and Outputs

The use of components and their interfaces can be described using a contract with pre-
and post-conditions. However, pre-condition semantics are missing in Event-B. So, how
do we expect component users to understand what the interface provides? Since we pro-
pose using typed, directed event parameters, we can use this information. The parameter’s
typing guards define the input and output state-spaces. In Event-B, guards play the dual
role of typing and event-enabling. So, we need to be very clear about the semantics of
synchronization, and about when we expect synchronization and communication to take
place. In the existing Event-B approach, there is no requirement (in the form of proof
obligations) to show that an event is ever enabled. However, we believe that when com-
ponents are assembled (especially pre-existing components) we require assurance that the
data flow across component boundaries is compatible. There should be some common set
of input and output states that will allow the events to synchronize. A similar concept
was explored in work on feature composition [18]. Our solution is related to the idea of
feasibility in Event-B; feasibility proof obligations for non-deterministic assignment, for
instance, ensure that there is some initial value in the pre-state that allows a transition
to a given post-state. We believe that, in our approach, we should provide some proof of
the feasibility of synchronization/communication. To do this we introduce pre-condition
semantics for communication of data across the interface boundary where we show that,
for each parameter, the range A of output parameter values is a subset of the range B of
input parameter values, A C B. This is determined by the parameter’s range as defined
in the event guard.

6.2 Preconditions for Communicating Event Parameters

Design-By-Contract (DBC) [I4] is an approach for composing modules using contracts.
In DBC, pre-conditions and post-conditions are defined in a specification, pre-conditions
should be satisfied by users of the contract and post-conditions should be satisfied by
implementers of the contract. It can be seen that contracts define an interface specification
for a module, and part of their use deals with ensuring that the communicating parameter
values are always within acceptable bounds. In our work, the input and output parameters,
and their range (a (non-strict) subset of their type) and direction information, form part of
the interface specification. We wish to ensure that, for any input/output pair, the output
parameter’s value falls within the range of the allowable inputs. To do this, we introduce
two functions, to differentiate between the ranges of the inputs p? and the outputs p!.
Given an event e and input parameter g7, function rangeOfIn returns the range T of ¢7
as defined in the guard.

rangeOfIn(e,q?) =T 9)

Also, given an event e and output parameter ¢!, function rangeOfOut returns the range T'
of g!.

rangeO fOut(e,q!) =T (10)
We call the pre-condition style feasibility proof obligation FISprestyie- For the combined-
event e, || e», we have,

FISpT'eStyle(ea(p?avp!a)aeb(p?b,p!b))
= (11)
Vq!,q?- (¢! € p! A g? € p?) = (rangeO fOut(eq,q!) C rangeO fIn(es, q?)

Where ¢! represents an individual output parameter from the set of output parameters p! of
an event, and ¢? represents an individual input parameter from the set of input parameters

p? of an event. To satisfy this proof obligation, for each pair of communicating parameters
in an event, the output value must fall within the acceptable range of the input. Consider
a concrete example of a combined-event evtl || evt2, where evtl has an output parameter
named prm! of range 0 .. 256 and event evt2 has an input parameter prm? of range N1,
then,

rangeO fOut(evtl, prm!) C rangeO fIn(evt2, prm?)
=0..256 C N1 (12)
=1

In this case, the F.ISprestyie proof obligation is not satisfied, since 0 does not belong to
N1. If the input range was changed to prm? € N, it would be satisfied.

7 An Example lllustrating the Required Tool Support
7.1 Specifying a FIFO Buffer Component

We now describe how components might be defined in a version of iUML-B [26] adapted
to component (or interface) specification. Fig.[l|on Page shows the FIFO class diagram.
The FIFO class diagram contains the attributes: buffer, head and tail, and three interface
events, annotated with the letter 7. In the model, but not shown in the diagram, the FI1FO
instance is represented by the parameter this_F'IFO. It is automatically generated by the
iUML-B tool. We now provide details of inToBuf fOK and retrvFromBuffOK, two of
the events shown in the diagram. The inToBuf fOK event models successful receipt of a
value and the return of TRUE as an acknowledgement. The retrvFromBuf fOK models
retrieval of a value (by a consumer) from a buffer. We do not show the inToBuf f Fail
event, it handles the case of failure to receive a value, due to a full buffer, and returns a
FALSE acknowledgement.

inToBuf fOK &
ANY z?, ack!, this_ FIFO
WHERE ack € BOOLAx € BYTE 16 Aack =TRUE A
tail(this_.FIFO) — head(this_.FIFO) < buf fSize A ...
THEN buf fer(this_.FIFO) := buf fer(this.FIFO) < {tail(this_FIFO) — z} ||
tail(this_.FIFO) := tail(this.FIFO) + 1| ...
END

The inToBuffOK event shows the input parameter x? of range BY T'E_16: the value to put
in the buffer. It also has an acknowledgement, an output parameter ack! of range BOOL,
restricted to ack = TRUE. This is returned to the sender on success. The action shows
the value x being written to the tail of the buffer in a statement that overrides an existing
value or adds a new value. The value of tail is incremented in parallel.

retrvFromBuffOK £
ANY y, this_ FIFO
WHERE y € BYTE_16 Ay = buf fer(this-FIFO)(head(this_.FIFO)) A
THEN head(this-FIFO) := head(this_.FIFO) + 1
END

In the retrvFromBuf fOK event, we have an output parameter y!. The output is modelled
in the guard y = buf fer(this_.FIFO)(head(this_FIFO)) where y gets the value of the
head of the buffer. The head value is incremented in the action.

7.2 Using the FIFO Component

We now introduce a Producer class, shown in Fig. [3] that uses two instances of the FIFO
library component f1 and f2. Fig.[4]shows how the diagram might look, with two FIFO

< Producer

© generatedA: BYTE_8
© generatedB: BYTE_8
© success: BOOL

o fl1: FIFO

o f2: FIFO

generate

% inToBuffOK1
% inToBuffOK2
% inToBuffFaill
% inToBuffFail2

Fig. 3: The Producer Class

instances connected to a Producer, and two Consumers. The combined-events, labelled
a..e, specify synchronizations between the FIFO interface, and the Producer/Consumers.
Event f does not synchronize with any other event. It should be noted that there is only
one machine modelling all instances of the FIFO, and another modelling all instances of
the Consumer. Tool support, for the component instance diagram, can provide stubs for
the synchronizing events in the Producer and Consumer machines, when the connections
between an interface event and another machine are defined. The stub event for the Pro-
ducer, called Producer.inToBuffOK1, would be provided with the appropriate parameters
as follows,

Producer.inToBuf fOK1 £
ANY z!, ack?, this_Producer, this_-F'IFO
WHERE ack € BOOL Az € BYTE_16 A
this_Producer € Producer A this_.FIFO = f1(this_Producer)
END

The x and ack parameters modelling the communication,are shown, along with two addi-
tional parameters that are introduced by the iUML-B translators, these are used to model
the component instances. Namely, the parameters this_Producer and this_FIFO. The

Combined Events: s

a) Producer.inToBuffOK1 || FIFO.inToBuffOK

b) Producer.inToBuffOK2 || FIFO.inToBuffOK

¢) Producer.inToBuffFaill || FIFO.inToBuffFail

d) Producer.inToBuffFail2 || FIFO.inToBuffFail

e) Consumer.retrvFromBuffOK || FIFO.retrvFromBuffOK
f) Producer.generate

fl -) .
Producer <¢ Type: [p = N me €N

Fig.4: A Component Instance Diagram

developer of Producer should decide which value to output, and where to assign the input.
A possible solution would be to model the output using the variable value € BYTE_8
for output (it is possible that this would be driven by other design concerns) and use
success € BOOL for modelling the acknowledgement. We could then refine the stub with
these additions, note the use of the strengthened typing guard,
Producer.inToBuffOK1 =
ANY z!, ack?, this_Producer, this_FIFO
WHERE ack € BOOL ANz € BYTE 8 N x = generatedA(this_Producer) N\
this_Producer € Producer A this_.FIFO = f1(this_Producer)
THEN success(this_Producer) := ack END

We can see here, that we model the output assignment, of the variable generatedA to the
parameter x, in the guard, and we model assignment of the return value ack to the success
variable in the action. This is a typical pattern in shared-event synchronization.

Let us now consider the combined-event, where we look at the underlying Event-B showing
the instance parameter. From Fig. [3| we see that the Producer has two FIFO instances,
f1 and f2. To synchronize with a library component, the user of the interface requires a
separate event for each instance of the component. This is why we have two events in the
Producer related to the event FIFO.inToBuffOK. In the event, Producer.inToBuffOK1,
below, we can see f1(this_Producer) being used to identify which FIFO it is related
to. The parameter this_.FIFO and the guard could be generated automatically in the
Producer, with additional tool support. This relates to the this_F'IFO parameter in the
FIFO, which can be generated by iUML-B tools, from the FIFO class diagram. Also, since
the shared parameter z has two different ranges in the individual machines, we take the
view that the stronger guard should appear in the clause since it makes the weaker guard
redundant. The combined event follows,

Producer.inToBuffOK1 | FIFO.inToBuffOK £
ANY =z, ack, this_Producer, this_ FIFO
WHERE ack € BOOL ANz € BYTE_8 Az = generatedA(this_Producer) A
this_Producer € Producer A this_.FIFO = f1(this_Producer) A
ack = TRUE A tail(this_.FIFO) — head(this_.FIFO) < buf fSize A ...
THEN success(this-Producer) := ack ||
buf fer(this_.FIFO) := buf fer(this_FIFO) < {tail(this-FIFO) — z} ||
tail(this_.FIFO) := tail(this .FIFO) + 1] ...
END
Now we consider the pre-style proof obligation of Eq. In our example Byte 16 =
0..65535 and Byte-8 = 0.. 255, and we can discharge the proof obligation.
rangeO fOut(Producer.inToBuf fOK1,x!)
C rangeOfIn(FIFO.inToBuffOK, x?)

= Byte_8 C Byte_16 (13)
=0..255C0..65535
=T

7.3 A Composition Invariant

In our example, we may want the FIFO buffer f1 to hold odd numbers, and f2 to hold even
numbers. This is a property of the composition, and should be specified in the composition

10

invariant clause. To do this, we add an invariant stating that values in the producer’s f1
buffers must have mod 2 = 1 and those in f2 buffers must have mod 2 = 0. The invariant
that constrains f1 follows,

Vp-p € dom(f1) = (Vv-v € ran(buf fer(f1(p))) = v mod 2 =1)

It states that for each producer p in the domain of the variable f1, and for each value v in
its buffer, v € ran(buf fer(f1(p))), v mod 2 = 1 must hold. There is a similar guard stating
that f2’s values must be even. It would not be possible to specify this in the Producer
machine since it does not have visibility of FIFO’s buf fer variable.

8 Related Work

A concept that is closely related to our approach is that of Modularisation. It is an approach
for describing components and interfaces in Event-B, by Iliasov et al. [2]. It is based on the
shared-variable composition approach. The authors use a pre- and post-condition syntax
to specify the component interfaces and behaviour, and they introduce proof obligations
to prove refinement. In contrast, shared-event composition provides an appropriate ab-
straction for the encapsulation that is often seen in object-oriented software components,
sharing of variables is usually prohibited here. We also keep the introduction of new syn-
tactic elements to a minimum by extending the existing class diagram techniques. In this
way, an implementation of an interface is simply a refinement of that interface. A more
detailed discussion of the issues can be found in [7].

Eiffel [14] is another modular approach, based on Design-by-Contract; this too, makes use
of pre- and post-condition specifications. We prefer not to use pre- and post-conditions,
and present a more integrated method that does not diverge so greatly from the existing
iUML-B approach [26]. The CODA component model, of Butler et al. [5], describes how
components can be represented on a UML-B style diagram [27]. The underlying model is
used to simulate communication between components which are joined using ports and
connectors. This makes use of the ProB model checker [I3] and uses an oracle to compare
various simulation runs. In CODA, the focus is not on reuse. Rather, it is a way of modelling
message queuing over time, and it embodies the communication style found in VHDL [I7]
which makes it very domain specific.

Hallerstede and Hoang describe interface refinement in [9]. This makes use of the shared-
variable composition approach, where external variables, and a corresponding external
invariant are specified in the interface. We believe that by using the shared-event approach,
we avoid having to consider the effects of sharing variables. By using interface events,
as the means for interacting with components, this simplifies reasoning and proof: the
encapsulation of traditional software components is closely represented by the shared-
event abstraction. Banach extends the interface refinement concepts in [4], by using a
CONNECTS construct to make use of interface events: continuing with the shared-variable
style.

In other work on components, Kessel et al. discuss reuse of software components [12] fo-
cussing on partial matches for suitability in situations where a component’s intended use
differs from its ultimate use. For Event-B, in the development of high-integrity systems, it
will be very important to fully understand the behaviour of a component and underspeci-
fication must be judiciously applied to accommodate unforeseen variability. Other notions
include location aware components, such as the distributed computation notion of compo-
nents in CommUnity, which is presented by Oliveira et al. in [15]; and another concept is
the component approach used in the formal modelling of agent interactions with Event-B,
from [16]. Both of the latter use quite different notions of components; our components’
main purpose is reuse.

11

9 Conclusions

In the domain of software engineering, the concept of a component has many different
meanings. Our use of the term component is comparable with its use in the object-oriented
software world [29], where a component is an element that is intended for reuse and the flow
of data across the component boundary is described by its interface. In the work presented
here, we propose an extension to the existing composition approach by introducing Event-
B components. The existing composition approach was primarily designed to work as a
top-down decomposition method. We wish to have bottom-up composition for re-use. That
is not to say that we intend to dispose of the top-down approach, rather, we should have
the flexibility to include, and work with, existing artefacts as and when required.

Using our diagrammatic extension we can describe a collection of communicating com-
ponents. We introduce interface events as a concept to describe which events can be
synchronized with other events. Non-interface events cannot be synchronized, but they
can be non-deterministically chosen by the environment, as usual. We add input, and out-
put specifiers, “?” and “!” to annotate the event parameters, in order to clarify the flow
of information across the interface boundary. We introduce some new features to a class
diagram, to create an interface class, which is annotated to show the interface events. In
all other ways, class diagrams are unchanged. We introduce a new composition diagram to
describe machines that are included in the composition. It is a diagrammatic representa-
tion of the composed machine construct, and is used to aid visualization of the composed
machines and library components. We can describe which events synchronize and show
which events are promoted to the interface of a composite machine, but we do not provide
information about specific instances. To do this, we introduce a new component instance
diagram describing the composition of components as class instances showing the links that
describe their synchronizations. We model multiple components using the existing concept
of instance parameters where there may be several instances of a particular component in
the composition. All instances of a particular component are modelled in a single machine,
and there may be multiple components.

Properties involving a number of components may be described in the composition invari-
ant (CI) of the composed machine. These properties extend beyond component boundaries
and should be used to describe properties that cannot be described in a single component.
The guards related to the CI should go in the combined event. The feasibility of communi-
cation across the interface boundaries, for composed events, can be checked by generating
additional proof obligations which ensure that, for each parameter, the output values fall
completely within the range of values accepted by the corresponding input parameter.
This style of feasibility proof will be particularly useful when composing pre-existing com-
ponents since it is necessary to ensure that the data flow across component boundaries is
compatible.

As future work, we plan to do more investigation into the use of components and com-
positions for team-working, and to provide the additional diagrammatic tool support. In
addition, new translators will be required for generating Event-B from the diagrams. Ad-
ditional tool changes are also required, to add guards to the composed machine’s combined
event, in order to satisfy the composition invariant.

12

(1]
2]

Bl

(4]

(13]
[14]

[15]

[16]

[17]
18]

(19]
[20]

21]

22]
23]

24]

References

The Rodin User’s Handbook. Available at http:// handbook.event-b.org/.

A. Tliasov et al. Supporting Reuse in Event B Development: Modularisation Approach.
In Abstract State Machines, Alloy, B and Z, pages 174—188. Springer, 2010.

J.R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

R. Banach. The Landing Gear Case Study in Hybrid Event-B. In ABZ 201/: The
Landing Gear Case Study, pages 126-141. Springer, 2014.

M. Butler, J. Colley, A. Edmunds, C. Snook, N. Evans, N. Grant, and H. Marshall.
Modelling and Refinement in CODA. In Refine, pages 36-51, 2013.

A. Edmunds and M. Butler. Tasking Event-B: An Extension to Event-B for Gener-
ating Concurrent Code. In PLACES 2011, February 2011.

A. Edmunds and M. Walden. Modelling “Operation-Calls” in Event-B with Shared-
Event Composition. Technical Report 1144, 2015.

S. Hallerstede. Justifications for the Event-B Modelling Notation. In J. Julliand and
O. Kouchnarenko, editors, B, volume 4355 of Lecture Notes in Computer Science,
pages 49—63. Springer, 2007.

S. Hallerstede and T.S. Hoang. Refinement by Interface Instantiation. In Abstract
State Machines, Alloy, B, VDM, and Z, pages 223-237. Springer, 2012.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

J.R. Abrial et al. Rodin: An Open Toolset for Modelling and Reasoning in Event-B.
Software Tools for Technology Transfer, 12(6):447-466, November 2010.

M. Kessel and C. Atkinson. Ranking software components for pragmatic reuse. In
Emerging Trends in Software Metrics (WETSoM), 2015 IEEE/ACM 6th Interna-
tional Workshop on, pages 63-66. IEEE, 2015.

M. Leuschel and M. Butler. ProB: A Model Checker for B. In Proceedings of Formal
Methods Europe 2003, 2003.

B. Meyer. Design by Contract: The Eiffel Method. In TOOLS (26), page 446. IEEE
Computer Society, 1998.

C. Oliveira and M. Wermelinger. The CommUnity Workbench. In Proceedings of
the 26th International Conference on Software Engineering, pages 709-710. IEEE
Computer Society, 2004.

I. Pereverzeva. Formal Development of Resilient Distributed Systems. PhD thesis,
Abo Akademi University, 2015.

D.L. Perry. VHDL, 2nd Edition, 1994.

M. Poppleton. The Composition of Event-B Models. In Abstract State Machines, B
and Z, pages 209-222. Springer, 2008.

R. Back, J. Wright. Refinement Calculus: a systematic introduction. Springer Science
& Business Media, 2012.

A. Romanovsky and M. Thomas. Industrial Deployment of System Engineering Meth-
ods. Springer, 2013.

M.Y. Said, M. Butler, and C. Snook. Language and Tool Support for Class and
State Machine Refinement in UML-B. In FM 2009: Formal Methods, pages 579-595.
Springer, 2009.

R. Silva. Towards the Composition of Specifications in Event-B. In B 2011, June
2011.

R. Silva. Supporting Development of Event-B Models. PhD thesis, University of
Southampton, May 2012.

R. Silva and M. Butler. Shared Event Composition/Decomposition in Event-B. In
FMCO Formal Methods for Components and Objects, November 2010.

http://handbook.event-b.org/

[25] C. Snook. Event-B Statemachines. at http://wiki.event-b.org/index.php/Event-
B_Statemachines), 2011.

[26] C. Snook. iUML-B Statemachines. Proceedings of the 5th Rodin User and Developer
Workshop, 2014.

[27] C. Snook and M. Butler. UML-B: Formal Modelling and Design Aided by UML.
ACM Transactions on Software Engineering and Methodology, 2006.

[28] The ADVICeS Team. The ADVICeS Project. available at
https://research.it.abo.fi/ADVICeS/|
[29] Wikipedia. Component-based software engineering - Software component.

https://en.wikipedia.org/wiki/Component-based_software_engineering.

14

http://wiki.event-b.org/index.php/Event-B_Statemachines
http://wiki.event-b.org/index.php/Event-B_Statemachines
https://research.it.abo.fi/ADVICeS/
https://en.wikipedia.org/wiki/Component-based_software_engineering

	On Component-based Reuse for Event-B
	Andrew Edmunds, Colin Snook, and Marina Walden
	References

