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ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Ecological Modelling 

Thesis for the degree of Doctor of Philosophy 

SPATIAL METHODS FOR MODELLING SPECIES DISTRIBUTIONS 

Nicholas William Synes 

Species distribution modelling methods are used for a variety of applications including: to assess 

current patterns of biodiversity, to make predictions about the impacts of environmental and 

climate change, and to assist in conservation planning. However, important factors are often 

neglected both in the pre-processing of data (e.g. ignoring sampling bias), and in the construction 

of models (e.g. ignoring ecological processes). In terms of the pre-processing of data, recent 

improvements in distance sampling methods are used to convert count data to abundance 

estimates, utilising both distance and habitat data from a previously conducted bird count survey. 

Biotic interactions are studied using MaxEnt and pairs of virtual species; a novel iterative method 

is demonstrated, using each species prediction as a subsequent variable for the partner species. 

Population dynamics and dispersal are studied using RangeShifter, a recently developed 

individual-based model. A number of climate change adaptation actions are applied to a section 

of UK landscape data, and the range shifting ability of a set of focal species is measured. Many 

previous studies have predicted climate change impacts on species; some have started to 

incorporate simple measures of dispersal ability. This work demonstrates the importance of 

considering both dispersal and population dynamics when predicting the future distributions of 

species and assessing their ability to track climate change. Finally, dynamic feedbacks between 

species and their environment are studied by coupling RangeShifter with CRAFTY, a recently 

developed agent-based model of land-use dynamics. Socio-ecological system dynamics are crucial 

in determining species distributions, but have rarely been studied as a truly coupled system. The 

coupled model presented here is the first of its kind, modelling both animals and land-use agents 

at an individual level. A case study is presented, demonstrating the feedback mechanisms that 

exist between pollinators and farms that rely on them, and the potential risk posed by agricultural 

intensification. 
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Chapter 1: Introduction 

Species distribution models (SDMs) are a commonly used set of techniques for predicting the 

geographic distribution of species from species sample data and suitable predictor variables 

(Anderson et al., 2006). Most SDMs model the species’ fundamental niche, using abiotic predictor 

variables only (Guisan and Thuiller, 2005), i.e. the environmental space within which the species 

can exist. However, the actual distribution of a species is determined by many other factors 

including biotic interactions, dispersal, population dynamics, and land-cover. 

 

Many previous studies and literature reviews have identified and discussed the current limitations 

of SDMs (Pearson and Dawson, 2003; Araújo and Guisan, 2006; Ibáñez et al., 2006; Dormann, 

2007; Thuiller et al., 2008; Franklin, 2010; Iverson et al., 2011). Criticisms have included the 

limitations of using historical inventory species data (Hortal et al., 2008) which are often 

incomplete and spatially biased (Araújo and Guisan, 2006), the assumptions of constancy of 

limiting factors (Lo et al., 2010), the lack of biotic interactions (Elith and Leathwick, 2009), the use 

of simplistic global dispersal, and no evolutionary adaptation (Dormann, 2007), the lack of 

population dynamics/viability testing (Keith et al., 2008), the static nature of SDMs (Pearson and 

Dawson, 2003; Ibáñez et al., 2006; Franklin, 2010), and interactions between the effects of 

climate and land-use rarely being considered (Thuiller et al., 2008). Other issues also need careful 

consideration when applying SDMs, for example different modelling algorithms can give different 

predictions (Araújo et al., 2005; Anderson et al., 2006; Pearson et al., 2006); the selection of 

environmental predictor variables can greatly impact results (Synes and Osborne, 2011); and 

collinearity is a common issue when dealing with multiple environmental predictor variables 

(Dormann et al., 2013). 

 

One of the first steps when applying an SDM approach is to obtain spatially referenced 

observations of the study species. Historical inventories of species location data are frequently 

used (e.g. Ponder et al., 2001; Reutter et al., 2003; Stockman et al., 2006; Liu et al., 2013). Such 

data has often been collected ad-hoc, under different conditions and biases which are rarely 

identified in the meta-data; this can result in geographic and taxonomic biases (Graham et al., 

2004; Anderson, 2012). Such data is often collated from multiple sources, resulting in regional 

variations in sampling efforts. This can lead to incomplete descriptions of the environmental 

responses of species (Hortal et al., 2008; Beck et al., 2014). Historical inventory data can also be 
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prone to spatial errors due to differences in, or lack of, georeferencing (Wieczorek et al., 2004; 

Graham et al., 2008). It is therefore preferable (though admittedly often not feasible) to collect 

species data specifically for the study, meaning that sampling methods can be standardised, 

reducing geographic bias and errors. With careful field design and data processing, positional 

errors and bias can be minimised (Hirzel and Guisan, 2002; Osborne and Leitão, 2009). 

 

Historical inventory data is generally based only on species presences (Elith and Leathwick, 2007), 

but it is generally preferable to use data that includes known species absences (Brotons et al., 

2004; Václavík and Meentemeyer, 2009). However, true absence is difficult to confirm as the 

species may simply have gone undetected. Where feasible, i.e. for smaller study areas and species 

with high detectability, it is generally preferable to collect abundance data rather than presence-

absence data (Joseph et al., 2006), as this allows for the core of a species’ range to be identified 

(Iverson et al., 2011). By contrast, the use of presence-absence data can lead to the inclusion of 

uncertain distribution edges. A number of alternative SDMs are available that can take advantage 

of the extra information that abundance data provides, for example: generalised additive models 

(Hastie and Tibshirani, 1990; Guisan et al., 2002) and boosted regression trees (Elith et al., 2008). 

However, abundance data is difficult to calculate because raw count data is only a relative 

measure of abundance (Buckland et al., 2008; Kéry and Royle, 2010). Field survey counts will 

always be constrained by imperfect detection: mobile species are more difficult to detect 

(Granholm, 1983), and their detectability may vary by habitat (Gu and Swihart, 2004), season 

(Selmi and Boulinier, 2003), observer (Diefenbach et al., 2003), and distance from observer 

(Buckland et al., 2001). Field and study design methods can be utilised to reduce the detectability 

bias in count data, but bias cannot be removed, and statistical methods should be used to account 

for it (Elphick, 2008). 

 

The main factor that reduces the detectability of a species is its distance from the observer 

(Buckland et al., 2001). When habitat is also expected to influence the detectability of a species, 

point rather than line transect surveys are generally favoured since they allow habitat 

associations to be more readily incorporated (Buckland et al., 2008). Chapter 2 makes use of 

existing detailed point transect field survey data for bird species in the Castro Verde region of 

Portugal to test how the use of distance sampling (Thomas et al., 2010), and in particular the 

inclusion of habitat and species covariates, can be used to improve abundance estimates. The 

incorporation of these methods (to improve abundance estimates) into SDMs is left for future 

work. Such work will require a hierarchical modelling framework to incorporate the combined 
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effects of habitat on detectability, abundance and spatial distribution (Royle et al., 2007; Sillett et 

al., 2012). 

 

A crucial factor often missing from SDM studies is the influence of biotic interactions on the 

observed distributions of species. The majority of SDM studies have focused on the use of abiotic 

predictor variables (Guisan and Thuiller, 2005) since environmental conditions are key 

determinants of a species’ distribution, and biotic interactions are difficult to quantify. However, 

biotic interactions can affect species response differently along environmental gradients 

(Callaway et al., 2002; Brooker, 2006; Sutherst et al., 2007; Kissling et al., 2010; Van der Putten et 

al., 2010), and may be particularly important when projecting distributions under climate change 

(Davis et al., 1998; Dormann, 2007). Whilst biotic interactions are rarely considered, the species 

occurrence data used to generate predictions will always inadvertently include the effects of 

biotic interactions, leading to potential misrepresentations of the species’ responses to the 

chosen abiotic predictor variables. Some studies have shown that the inclusion of predictor 

variables representing the distributions of interacting competitors (Leathwick and Austin, 2001; 

Anderson et al., 2002) and mutualists (Gutiérrez et al., 2005; Araújo and Luoto, 2007) can increase 

the predictive power of SDMs. However, biotic interactions are generally difficult to incorporate 

because they are dynamic, with species both influencing and being influenced by those 

interactions (Soberón, 2007). 

 

Using a novel iterative approach, Chapter 3 studies the inclusion of the distributions of interacting 

species as SDM predictor variables. This work utilises “virtual” or “artificial” species (Hirzel et al., 

2001) to investigate the potential improvements that can be made to SDM predictions by 

including interacting species. The benefit of this approach is that the underlying relationship is 

known, and so predictions can be directly compared to a known “truth”. Whilst the iterative 

approach does not result in an increase in predictive power, potential issues of collinear predictor 

variables are identified. There is scope for future work to expand on this methodology, studying 

different types and strengths of species interactions to identify which interactions provide the 

most predictive power. Furthermore, future work should investigate the influence of spatial 

resolution on model results, since this is a potentially important difference between the influence 

of biotic and abiotic factors over a species’ distribution (Pearson and Dawson, 2003; Soberón, 

2007; Wisz et al., 2013). Such an approach may require hierarchical integration of predictor 

variables at different scales, as previously demonstrated by Pearson et al. (2004) with climate and 

land-cover data. 
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When studying the impacts of environmental change, one of the most important considerations is 

to what extent species will be able to reach and fill their future fundamental niche (i.e. predicting 

their realised niche). The ability to track climate change varies greatly both between and within 

taxonomic groups (Hickling et al., 2006), with dispersal ability a crucial factor in a species’ ability 

to track climate change (Best et al., 200; Schloss et al., 2012; Travis et al., 2013). The 

representation of dispersal in SDMs has often been limited, particularly with the early use of 

simple universal or no dispersal rules (e.g. Araújo et al., 2004; Thomas et al., 2004; Thuiller, 2004; 

Araújo et al., 2006; Thuiller et al., 2006). More detail has been brought to dispersal in SDMs 

through use of dispersal kernels, in particular to study the spread of invasive species (e.g. Williams 

et al., 2008; Václavík and Meentemeyer, 2009), and methods that account for species-specific 

dispersal ability have been shown to reduce uncertainty in projections of species distributions 

under climate change (Engler and Guisan, 2009). Modelling of dispersal is particularly important in 

fragmented landscapes, as limited habitat availability constrains the ability of species to shift their 

ranges (Wilson et al., 2009). Furthermore, in fragmented landscapes the intervening matrix 

between habitat patches can influence dispersal success and population viability (Ricketts, 2001; 

Vandermeer and Carvajal, 2001; Prevedello and Vieira, 2010; Villard and Metzger, 2014). It is 

increasingly recognised that process-based models of dispersal, that capture the interaction 

between species-specific dispersal abilities and landscape structure, are required to improve our 

understanding of the distribution of species populations in fragmented landscapes (Palmer et al., 

2011; Pe’er et al., 2011; Baguette et al., 2013). 

 

Population dynamics are also crucial to our understanding of species distributions in changing 

environmental conditions (Franklin, 2010), with a number of studies incorporating meta-

population models or population viability models into SDM approaches (e.g. Keith et al., 2008; 

Wilson et al., 2009; Carroll et al., 2010; Lawson et al., 2010). Chapter 5 uses RangeShifter (Bocedi 

et al., 2014a), a platform for individual-based modelling of population dynamics and dispersal, to 

examine the impacts of different climate change adaptation strategies on species range shifting 

ability. A broad range of species life-history and dispersal characteristics are used, including stage 

structuring, density dependent dispersal and inter-specific variation in movement behaviour. This 

allows for differences in range shifting ability to be discussed in the context of species ecology. 

The climate change adaptation strategies follow a set of different spatial rules (see Chapter 4, 

which describes the GIS toolbox developed to generate these landscapes), allowing opposing 

theories about connectivity to be tested (see Hodgson et al., 2009; Doerr et al., 2011; Hodgson et 
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al., 2011a). Chapter 5 highlights the utility of individual-based models such as RangeShifter for 

studying habitat connectivity. Evidence is given for the usefulness of different connectivity 

measures, and the details that conservation practitioners should consider before choosing 

landscape management strategies. 

 

The study in Chapter 5 does not consider climate effects on the species; a purely process-based 

approach is used. A number of studies have suggested and some have developed “hybrid” models 

which incorporate process-based ecological processes such as population dynamics and dispersal 

into SDMs (Keith et al., 2008; Drielsma and Ferrier, 2009; Engler and Guisan, 2009; Kearney and 

Porter, 2009; Franklin, 2010; Midgley et al., 2010; Schurr et al., 2012; Conlisk et al., 2013). 

RangeShifter can facilitate such approaches, since habitat suitability landscapes can be loaded. 

However, there are many difficulties in using such “hybrid” methods, particularly in realistic 

parameterisation (Franklin, 2010; Schurr et al., 2012). Greater knowledge is required on the 

interactions between ecological processes and environmental conditions before truly integrated 

SDM population models can be developed and effectively utilised. For example, rising 

temperatures can result in changes in growth rates, fecundity levels and mortality risk (Dullinger 

et al., 2004). Incorporating such effects into future hybrid models is an important next step. 

 

Whilst many studies on the future distributions of species focus on the impacts of climate 

conditions, habitat and land-cover condition and configuration are also important factors in the 

distributions of species (Chamberlain et al., 1999; Benton et al., 2003; Luoto et al., 2007). 

Furthermore, as Chapter 5 demonstrates, habitat availability and configuration play an important 

role in species-specific range shifting ability. A number of studies have included land-cover data 

alongside climate data as predictor variables in SDMs (e.g. Pearson et al., 2004; Pompe et al., 

2008; Hof et al., 2011; Barbet‐Massin et al., 2012b). Such studies have shown improved SDM 

performance when land-cover is considered, although its influence is generally at finer spatial 

scales than the influence of climate conditions (Pearson et al., 2004; Luoto et al., 2007; Barbet‐

Massin et al., 2012b). At large scales, land-cover is broadly correlated with climate (Thuiller et al., 

2004), but at finer scales agriculture and anthropogenic influences become greater. Climate 

change, land-cover change and habitat destruction are expected to have interacting impacts on 

species distributions (Travis, 2003; McRae et al., 2008; Nathan et al., 2011). At finer scales, future 

land-use is likely to be dynamically related to species distributions, with the potential for the 

presence of pest species to result in habitat degradation and land-cover change (Pimentel et al., 
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2005; Aukema et al., 2006), and the presence of endangered species to result in habitat 

protection (Noss et al., 1997; Rissman et al., 2007; Beatley, 2014). 

 

The modelling of interactions between human decision-making and ecology, commonly termed 

“socio-ecological system modelling”, is becoming increasingly popular due to its potential for 

identifying unexpected behaviours, non-linear dynamics and feedback loops (Liu et al., 2007). 

Socio-ecological systems are ubiquitous, and an improved understanding of their dynamics is 

crucial for tackling the challenges of global sustainability (Liu et al., 2015). The development of 

models to represent such systems can be a technical challenge due to the difficulty in integrating 

work from two separate fields of study, a task which may require multi-disciplinary collaborative 

work (Luus et al., 2013; Malawska et al., 2014). Nevertheless, a number of socio-ecological system 

models have been developed, for example to study the impacts of farmer decision-making on 

local biodiversity or pest species (Rebaudo et al., 2011; Carrasco et al., 2012; Polhill et al., 2013), 

or of homeowner decision-making on habitat quality (Linderman et al., 2005; Monticino et al., 

2007). However, the representation of ecology in such systems remains limited. Whilst human 

decision-making is often represented at the individual-level, the ecological system is often 

simplistic and aggregated. Chapter 6 presents the integration of an agent-based model of land-

use dynamics (CRAFTY: Murray-Rust et al., 2014), with an individual-based model of animal 

population dynamics and dispersal (RangeShifter: Bocedi et al., 2014a). The coupled model allows 

land-use agents and animals to interact with each other through land capitals which represent 

ecosystem service potential. This work demonstrates the potential of such model integrations to 

identify important interactions between species distributions and land-use decision-making. 

 

1.1 Publication overview 

Several parts of this work have been presented in International Conferences and Workshops: 

 Nicholas W. Synes, Kevin Watts, Stephen C.F. Palmer, Greta Bocedi, Kamil A. Bartoń, 

Justin M.J. Travis, Patrick E. Osborne. Landscape-scale conservation: the role of space and 

time in the realisation of biodiversity benefits. Spatial Ecology & Conservation 2 – 

Ecological Research and Training. Held in Birmingham, UK, from 17th to 20th June 2014 – 

Oral presentation. 

 Nicholas W. Synes, Kevin Watts, Stephen C.F. Palmer, Greta Bocedi, Kamil A. Bartoń, 

Justin M.J. Travis, Patrick E. Osborne. Landscape-scale conservation: the role of space and 
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time in the realisation of biodiversity benefits. Student Conference on Complexity Science 

2014. Held in Brighton, UK, from 19th to 22nd August 2014 – Oral presentation. 

 

 Nicholas W. Synes, Kevin Watts, Stephen C.F. Palmer, Greta Bocedi, Kamil A. Bartoń, 

Justin M.J. Travis, Patrick E. Osborne. Individual-based modelling to study habitat 

connectivity under future landscape management scenarios. German Ecological Society 

(GfÖ) Annual Meeting. Held in Hildesheim, Germany, from 8th to 12th September – Oral 

presentation. 

 

 Nicholas W. Synes, Kevin Watts, Stephen C.F. Palmer, Justin M.J. Travis, Patrick E. 

Osborne. Coupled socio-ecological systems: linking local ecology to land-use decision 

making. Agent-based modelling of land-use workshop, University of Edinburgh. Held in 

Edinburgh, UK, from 4th to 5th May 2015 – Oral presentation. 

 

 Nicholas W. Synes, Kevin Watts, Calum Brown, Stephen C.F. Palmer, Greta Bocedi, Justin 

M.J. Travis, Patrick E. Osborne. Coupled socio-ecological system modelling: linking local 

ecology to land-use decision making. International Association for Landscape Ecology 

World Congress 2015. Held in Portland, USA, from 6th to 10th July 2015 – Oral 

presentation. 

 

 Nicholas W. Synes, Kevin Watts, Stephen C.F. Palmer, Greta Bocedi, Kamil A. Bartoń, 

Justin M.J. Travis, Patrick E. Osborne. Climate change adaptation to assist range shifting: 

the key considerations for achieving long term conservation goals at a landscape-scale. 

International Association for Landscape Ecology World Congress 2015. Held in Portland, 

USA, from 6th to 10th July 2015 – Oral presentation. 

 

The results from Chapter 2 formed the basis of a paper published in the Portuguese Society for 

the Study of Birds’ peer-reviewed journal Airo (Moreira et al., 2012). This paper focuses on the 

conservation implications of the analysis in Chapter 2. I am third author on the paper and 

contributed the majority of the analysis, sections of the methodology write up and provided 
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comments and corrections on the manuscript. This chapter utilises existing data, the collection of 

which was led by Pedro J. Leitão, second author on the Airo paper. 

 Moreira, F., Leitão, P.J., Synes, N.W., Alcazar, R., Catry, I., Carrapato, C., Delgado, A., 

Estanque, B., Ferreira, R., Geraldes, P., Gomes, M., Guilherme, J., Henriques, I., Lecoq, M., 

Leitão, D., Marques, A.T., Morgado, R., Pedroso, R., Prego, I., Reino, L., Pedro, R., Tomé, 

R., Zina, H., Osborne, P.E., 2012. Population trends in the steppe birds of Castro Verde in 

the period 2006-2011: consequences of a drought event and land use changes? Airo 22, 

79–89. 

Chapter 5 is published in the international peer-reviewed journal Ecological Informatics (Synes et 

al., 2015). I am first author on this paper, and wrote the first draft of the manuscript, with all 

authors providing comments, corrections and changes. All authors helped devise the questions 

addressed and methods used in this paper, I conducted all modelling work and analyses. 

 Synes, N.W., Watts, K., Palmer, S.C.F., Bocedi, G., Bartoń, K.A., Osborne, P.E., Travis, 

J.M.J., 2015. A multi-species modelling approach to examine the impact of alternative 

climate change adaptation strategies on range shifting ability in a fragmented landscape. 

Ecological Informatics 30, 222–229. doi:10.1016/j.ecoinf.2015.06.004 

Chapter 4 is in preparation for submission to Ecography as a Software Note (short format) article 

(authors: Nicholas W. Synes, Kevin Watts, Justin M.J. Travis, Patrick E. Osborne). Chapter 6 is in 

preparation for submission to the Proceedings of the National Academy of Sciences (authors: 

Nicholas W. Synes, Kevin Watts, Calum Brown, Stephen C.F. Palmer, Greta Bocedi, Justin M.J. 

Travis, Patrick E. Osborne). The work in Chapter 5 presents only a small number of the computer 

simulations that were undertaken. Another manuscript is planned from this work, as well as a 

number of extensions of the methodology. 
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Chapter 2: Use of species and habitat covariates to 

improve distance sampling estimates of abundance 

2.1 Abstract 

Bird population surveys collect count data that is heavily biased by the fact that not all birds at 

any survey location can be detected. The main factor that affects whether or not a bird will be 

detected is its distance from the observer. Distance sampling is a commonly used method for 

dealing with the issue of imperfect detection that all animal population studies face. Recent 

advancements in the method mean that multiple covariates known to impact upon detectability 

can now be included. This study uses bird count data from the Castro Verde special protection 

area in Portugal to test the use of multiple covariate distance sampling methods. The Castro 

Verde data covers two separate years, one of which followed a severe drought event in the 

region. Detailed habitat information for the region (in the form of the percentage coverage of five 

different habitat types) allowed for the analysis of how different habitats affect species 

detectability. 

 

Results showed that the use of a species covariate can improve abundance estimates. This is 

especially true for rare or under-surveyed species for which sample size is an issue. The use of 

habitat covariates was also found to improve the models, although they had little effect on final 

abundance estimates. Bird detectability was found to vary between different habitats, with the 

number of detections in woodland areas falling far quicker with distance than in open habitats. Of 

the eight species studied, two have undergone large population increases in the five years 

between the two surveys, one has had a 50% reduction in population size, and the rest have 

remained relatively stable. These population trends are discussed in the context of the known 

habitat preferences of the species. 
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2.2 Introduction 

2.2.1 Estimating species abundance 

Accurate estimation of species populations and population trends is crucial for the effective 

protection of wildlife and threatened species. Estimates of species abundance can be used to 

identify threats to species populations and guidelines for restricting urban development (Dallimer 

et al., 2009), to identify core areas of habitat for the protection of species (Chávez-León and 

Velázquez, 2004) to study population trends using time-series data (Fewster et al., 2000; Pagel et 

al., 2014), to assess extinction risk (Araújo et al., 2005; Wilson et al., 2011) or to assess the threat 

or impact of invasive species (Cerasale and Guglielmo, 2010; Parker et al., 2013). However, due to 

the nature of ecological data, it is still a great challenge to generate accurate population 

estimates. Populations can never be fully counted, so instead field sampling methods must be 

used. Sampling methods invariably introduce bias and reduce precision. The use of sampled data 

to estimate populations necessitates the use of statistical methods to try to account for the biases 

of data collection, and to quantify and reduce the uncertainty in the data. Research into methods 

for estimating species populations generally looks to either improve data collection methods to 

reduce the bias or to develop statistical methods to account for the bias (Elphick, 2008). 

 

Raw count data is often used to estimate bird population densities (Bächler and Liechti, 2007) but 

this method is overly simplistic, and likely to be inaccurate (Farnsworth et al., 2002; Rosenstock et 

al., 2002). The number of birds counted during a survey is in fact only a relative measure of 

abundance rather than an absolute measure (Buckland et al., 2008). The problem with using raw 

count data is that the data is always constrained by imperfect detection. Whilst suitable survey 

techniques can allow stationary objects such as plants to be detected with certainty, highly 

mobile species such as birds are far less likely to be detected (Granholm, 1983). The main factor 

that reduces the detectability of a species is its distance from the observer (Buckland et al., 2001). 

Use of abundance estimates adjusted for detectability at distance gives more robust estimates of 

population trends than use of raw density estimates (Norvell et al., 2003). 

 

Distance based sampling methods are frequently used for a wide variety of species; one 

particularly popular area of use is for studying bird species abundance (e.g. Marsden, 1999; 

Chávez-León and Velázquez, 2004; Freeman et al., 2007; Cimprich, 2009; Gottschalk and 

Huettmann, 2011; Amundson et al., 2014; Peele et al., 2015). Distance sampling has been used for 
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studies over a wide range of geographical scales, from national (Freeman et al., 2007) to small 

scale (<50,000 hectares) studies of protected areas (Marsden et al., 2005). Distance sampling 

methods have also been tested with simulated data; the advantage of this is that it allows the 

characteristics of the study species to be controlled, and is thus a useful way to test the method 

and its ability to deal with bias (Elphick, 2008). Ekblom (2010) used a simulation study with two 

hypothetical bird species; it was found that distance sampling methods can give estimates similar 

to the true abundance (true abundance values were always within the 95% confidence intervals). 

 

The two most common survey techniques for estimating bird abundance are point transect 

surveys and line transect surveys. Point transect surveys are where an observer remains 

stationary at one point for a predetermined period of time during which they record all bird 

detections (visual or audible). Line transect surveys are where the observer moves along a 

predetermined line through the environment at a consistent speed recording all bird detections. 

Methods can vary between studies in terms of the duration of counts (or the length of the line), 

the number of survey points/lines, the survey effort at each point/line (the number of times it is 

visited), and the amount of extra information that is recorded for each location or observation. 

 

Whilst use of line transects is generally considered favourable compared with point transects (due 

to the higher proportion of detections close to the observer), point transects should be used if the 

quality of line transects is likely to be compromised (Buckland et al., 2008). This can happen, for 

example, when traversing a straight line placed randomly in the environment is made difficult by 

dense and uneven habitat. Use of point transects can also be advantageous when surveying 

multiple species; from point transects, observers have more time to identify species and make 

recordings since they do not need to think about navigation. Another benefit of using point 

transect surveys is that they are more practical for incorporating habitat associations into the 

study (Buckland et al., 2008). Since observers are motionless throughout the survey, habitat 

associations are the same for all detections at any one point; this issue is far more complicated for 

line transects. 

 

Both good survey design and strict adherence to the predetermined field methods are crucial for 

reliable use of the distance sampling methodology (Cassey and McArdle, 1999). For a detailed 

guide to bird survey design and field techniques for distance sampling, see Bibby et al. (1998) and 

Buckland et al. (2015). Observers must be experienced in species identification, and trained in 
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specific field methods such as distance estimation and the correct recording of data (Buckland et 

al., 2001). Without sufficient distance estimation training, distance errors can lead to bias in 

density estimates (Marques, 2004). Furthermore, the process of an observer getting to a point 

transect before the survey begins can influence the behaviour and locations of the birds (Lee and 

Marsden, 2008). If the observer disturbs birds whilst approaching the point, it is possible that the 

birds will become louder as a warning to others (Haselmayer and Quinn, 2000), or that they will 

move towards or away from the observer (Rosenstock et al., 2002). Such varied reactions are 

difficult to measure and can result in either under or over-estimation bias. It is therefore crucial 

for observers to minimise the disturbance they cause prior to and during surveys. 

 

2.2.2 Distance sampling theory 

If it were possible to count all birds within a set of plots, then the density of the animals in a wider 

region could be estimated by:  

𝑁̂ = 𝐴
𝑛

𝑎
 , 

 

where 𝑁̂ is the estimated density of the species in the region, 𝐴 is the area of the region, 𝑛 is the 

total number of birds in the plots, and 𝑎 is the total area of the plots. This estimate is reliant on 

the fact that the sampled plots were chosen randomly from the wider region (Marques, 2009). 

Since complete detection of mobile species is not possible, the above estimate is too simplistic. 

Use of distance sampling methods acknowledges the fact that not all birds within a point transect 

survey region can be detected. For point transect sampling, the observer records every detected 

bird at each survey point during a pre-determined period of time, and the radial distance to the 

location at which the animal was detected. The number of detections at increasing distance from 

the observer is then used to create a detection function. 
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Figure 2.1: [From Buckland et al. (2005)] An example probability density function of distances, 
𝑓(𝑟). Since it is a probability density function, the area under the curve is equal to 1. 
Furthermore, since 𝜌 is the point at which as many birds are detected beyond 𝜌 as are 
missed within 𝜌, the two shaded areas are equal in size. 

 

 

If the survey consists of 𝑘 points, and any birds detected within a radial distance 𝑤 of the point 

are recorded, then the total surveyed area is 

 

𝑎 = 𝑘𝜋𝑤2. 

 

If 𝑛 birds are detected, and the estimated probability that a bird is detected within the surveyed 

area is 𝑃̂𝑎, then bird density can be estimated by 

 

𝐷̂ =  
𝑛

𝑎 ×  𝑃̂𝑎

 

 

Buckland et al. (2001) define an effective radius 𝜌, which is the radius < 𝑤 at which as many birds 

are detected beyond 𝜌 as are missed within 𝜌 (Figure 2.1). Then we have 

 

𝑃̂𝑎 =  
𝜋𝜌̂2

𝜋𝑤2
 . 

 

The equation for the density estimate then becomes 
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𝐷̂ =  
𝑛

𝑘𝜋𝑤2  ×  𝜌̂2 𝑤2⁄
=  

𝑛

𝑘𝜋𝜌̂2
 . 

 

The area under the probability density function (equivalent to the area of the triangle in Figure 

2.1) gives: 

 

𝜌2  ×  𝑓′(0) 2⁄ = 1 . 

 

It therefore follows that 

 

𝐷̂ =  
𝑛𝑓′(0)

2𝑘𝜋
 . 

 

This is the equation that the Distance software (Thomas et al., 2010) uses to estimate the density 

of the study species; it does this by modelling the probability density function of detection 

distances, and calculating the slope of the fitted function at radial distance 𝑟 = 0. This equation 

highlights the importance of detections at zero distance from the point transect, since it is the 

slope at this point that controls the density estimate. 

 

Three assumptions are crucial for the distance sampling methodology to provide reliable 

estimates of density (Buckland et al., 2005): 

1) Objects at the point are always detected, g(0) = 1. 

2) Objects are detected at their initial location, prior to any movement in response to the 

observer. 

3) Distances are measured accurately, or are correctly allocated into distance intervals. 

 

1) Objects at the point are always detected, g(0) = 1. Perfect detection close to the observer is 

crucial because this gives the scale by which counts at greater distances are adjusted. Bächler and 
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Liechti (2007) found that few papers that use distance sampling methods discuss the importance 

of the g(0)=1 assumption. They suggest that the assumption of perfect detection close to the 

observer is violated in many published studies. One example of the violation of this assumption 

was given by Applegate et al. (2011) in a case study on a single species of bird. 

 

2) Objects are detected at their initial location, prior to any movement in response to the observer. 

The detection of animals at their initial location is important because movement consistently 

towards or away from the observer will result in systematic bias, and abundance will be under or 

over-estimated (Ekblom, 2010). It has been suggested that “settling down” periods should be 

used, whereby the observer arrives at a point then waits a few minutes before beginning the 

survey to allow animals to settle after the disturbance of the observer’s movement (Bibby et al., 

1998). However, Lee and Marsden (2008) found that movement away from the observer was 

more common than attraction to the observer, resulting in underestimates of abundance when 

“settling down” periods are used. 

 

The assumption that all animals will be detected at their initial location also makes it important 

for the length of surveys to be carefully chosen. Granholm (1983) found that the movements of 

birds into a point transect area during a survey could lead to biased density estimates due to 

cumulative rather than instantaneous counts. This bias is best reduced by minimising the count 

period. However, there is a delicate balance: if counts are too short then animals near the 

observer may be missed (violation of assumption 1), if they are too long then animals are more 

likely to move both within, and into and out of the study area (violation of assumption 2). Fuller 

and Langslow (1984) compared results from point transect surveys of 5, 10, 15 and 20 minutes in 

length. They concluded that surveys of between 5 and 10 minutes in length are best. In their 

study, 5 minute counts were able to record 50% or more of the species that were recorded in 20 

minute counts. They suggest that the potential for multiple counts of individuals, and for the 

movement of birds into the study area reduces the benefits of longer counts. It has also been 

suggested that count duration should be chosen dependent on the study species (Lee and 

Marsden, 2008), however for multiple species studies such an approach would be impractical. 

 

3) Distances are measured accurately, or are correctly allocated into distance intervals. The 

assumption that distances are measured accurately is particularly important for point transect 

surveys since errors increase geometrically with distance (Bibby et al., 1998). In fact, Buckland et 
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al. (2008) give an example where bias in estimates due to measurement error from point transect 

surveys are more than double the bias in estimates from line transect surveys. If the accurate 

measurement of distance is expected to be a problem, then the grouping of distance data into 

intervals can help. Distance sampling methods have been shown to be robust to the use of 

grouped distance data (Ekblom, 2010), although it is important that measurement accuracy is 

enough for the distances to be assigned to the correct groups. Alldredge et al. (2007a) identified 

two sources of error in the collection of distance data from auditory cues: locating the cue, and 

estimating the distance. They found that giving observers training in distance estimation reduced 

errors by approximately 15%. So long as observers are given training in distance estimation, and 

recorded distances are grouped into intervals appropriate to their accuracy, then this assumption 

should not be violated. 

 

2.2.3 Other factors that affect detectability 

The detectability of a bird does not depend solely on its distance from observer; there are many 

other factors that may be important, for example species characteristics, habitat, season and 

observer skill (Ramsey et al., 1987; Diefenbach et al., 2003; Selmi and Boulinier, 2003; Gu and 

Swihart, 2004; Johnston et al., 2014). The distance sampling methodology makes distance the 

main factor that affects detectability; other factors can be introduced as covariates to the model. 

The methodology allows for the fitting of both a key function and adjustment terms to the 

detectability of species. Covariates can then be used to adjust the scale of both the key function 

and the adjustment terms. This means that covariates can be set to either adjust only the scale, or 

both the scale and the shape of the overall detection function. Both possibilities have been shown 

to be plausible (see Otto and Pollock, 1990; Marques et al., 2007). 

 

2.2.3.1 Species 

Different species have different levels of detectability due to size, colour, song and behaviour. 

There are three possible approaches to modelling the detectability of multiple species. Firstly, if 

sample sizes are large enough for each species then individual models can be built. If sample sizes 

are not large enough for all species, another option is to build one detection function based on 

data from all species, and then to stratify the results by the individual species samples 

(Rosenstock et al., 2002). The final option is to use a species covariate, which means that a global 

detection function is built for all species, but then a species covariate is used to adjust the scale 
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(and potentially the shape) of the detection function according to each species’ sample data 

(Alldredge et al., 2007a; Marques et al., 2007). The advantage of this method is that the pooling of 

data from multiple species increases the sample size from which the detection function is 

modelled, whilst still allowing for between species variability to be included. Use of covariates for 

multiple species analyses has been demonstrated to provide more parsimonious models and 

more precise estimates than individual models which can often be over parameterised (Alldredge 

et al., 2007a). If survey data is to be pooled together for multiple species, then it is important that 

the species have similar characteristics and are expected to exhibit similar levels of detectability 

(Johnston et al., 2014). One example of a characteristic that can be used to group species is their 

maximum detection distance (Alldredge et al., 2007a). 

 

2.2.3.2 Habitat 

In densely vegetated habitats, detections are usually based on auditory cues (Alldredge et al., 

2007b), and the availability of the bird depends both on it being present and on the probability 

that it sings/calls during the count (Farnsworth et al., 2002). This means that detection functions 

are likely to be different between densely and sparsely vegetated habitats (Brewster and Simons, 

2009). However, few studies have included habitat as a factor affecting detectability. Cerasale and 

Guglielmo (2010) used habitat-specific detection functions, but did not find that this approach 

improved their estimates. Sillett et al. (2012) found that detectability was a function of the 

percent cover of forest habitat, however they did not compare abundance estimates with 

estimates from models without habitat-specific detectability. For species that are rarely detected 

by auditory cues, the habitat they are present in is likely to have an even larger impact on 

detectability. This highlights the importance of considering the effects of both species and habitat 

on detectability. 

 

2.2.3.3 Observer 

Even when trained and experienced observers are used, they are often found to be a large source 

of variation in detectability (Norvell et al., 2003; Buchanan et al., 2006; Diefenbach et al., 2003). 

Variability of detection functions between observers is difficult to rectify; although training in 

distance estimation has been shown to improve observer accuracy by approximately 15% 

(Alldredge et al., 2007b). The problem with observer variability is that it is very hard to separate 

from other factors. If observers work in regions that favour certain species, or are dominated by 

certain habitats then any variability between observer detection functions could be attributed to 



Chapter 2 

18 

real effects. However, it is very difficult to assign observers to point transects that are fully 

stratified by habitat and species because (i) if the study region is large it may be logistically 

impossible to have every observer travel to points throughout the region, and (ii) stratifying the 

locations that each observer will visit by species relies on knowledge which is probably not yet 

ascertained. 

 

2.2.3.4 Summary of factors that affect detectability 

The detectability of animals is dependent on many factors which include distance, species, 

habitat, season and observer. Whilst previous distance sampling studies have included covariates 

for species and habitat, few have investigated the effects of including covariates for both. Only 

one previous study has been identified which uses habitat percentage coverage information, but 

in that study only one species is considered (Sillett et al., 2012). More commonly, where the 

effect of habitat on detectability is considered, the predominant habitat type at each survey point 

is typically used (e.g. Marques et al., 2001). It is also possible that the detectability of habitats will 

vary between regions and over time, so it may be important to consider this effect when studying 

population trends. For example, woodland habitat may grow denser over time, gradually reducing 

detectability; alternatively, drought may reduce the density of some habitats, increasing 

detectability. If the aim is to make comparisons over time, then it should not necessarily be 

assumed that detectability will remain constant (Buckland et al., 2008). 

 

This study uses point count data for multiple bird species which was collected in two different 

years for the same region. Prior to the first survey period, the region was affected by a significant 

drought event. This study uses distance sampling methods, and habitat percentage cover data to 

derive corrected abundance estimates for the two years, identifying changes in population sizes 

over this period. 

 

2.3 Methods 

2.3.1 Study area 

Castro Verde special protection area (SPA) is an area of about 80,000 ha. It has a Mediterranean 

climate with temperatures averaging 30 - 35°C in July, and 5 - 8°C in January, with annual rainfall 
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approximately 500 to 600 mm. The area has a mixture of cereal, fallow, woodland and shrub 

habitats. The agricultural system generally cultivates cereal land for two years followed by two to 

three years (but potentially up to seven years) as fallow land, before being returned to cereal 

cultivation. Therefore, fallow land generally occupies 50% or more of Castro Verde SPA (Moreira, 

1999). The habitat of the region is threatened by changes in farming practices and agricultural 

abandonment (Moreira, 1999). 

 

Castro Verde SPA has international importance for several steppe bird species with unfavourable 

conservation status (Moreira et al., 2007). It holds high densities of breeding Little Bustards 

(Tetrax Tetrax) and Calandra Lark (Melanocorypha calandra). Moreira et al. (2007) provided the 

first assessment of the distributions and populations of a number of important bird species in the 

region. In 2005, the Castro Verde region was hit by the worst drought in Portugal for 60 years, 

resulting in a poor agricultural year, especially for cereal fields (Moreira et al., 2007). This drought 

may have had negative impacts on resident bird populations (Moreira et al., 2007). This study 

uses the same data used by Moreira et al. (2007), with the addition of new data collected in 2011. 

 

2.3.2 Sample design 

The sampling area was a rectangular area across the centre of the SPA, corresponding to an area 

of 44,860 hectares (Figure 2.2). The rectangle corresponded to an area where pseudo-steppe 

habitat prevailed (Moreira et al. 2007). Total steppe area in the region is 55,490 hectares, and so 

bird abundance estimates were extrapolated to this entire region. A grid of 391 sample points 

were placed systematically throughout the study area, with one sample point for each GAUSS 1x1 

km grid square (Hayford Gauss projection, International Ellipsoid, Datum Lisboa IGeoE). To keep 

the points accessible for observers, the sample points were placed on dirt tracks. They were 

placed as close to the centre of each square as possible. For the Distance estimate method, points 

are assumed to be randomly located, so this was not followed for this study. However, a 

systematic survey design was used, as recommended (Thomas et al., 2010), resulting in a set of 

sampled points representative of the habitat available in the area. 

 

A 125 m circular buffer around each point was checked to ensure that it lay completely within 

pseudo-steppe habitat, and within a single grid square. If these conditions were not met, then the 

grid square was not surveyed.  
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Figure 2.2: [From Moreira et al. (2007)] The Castro Verde special protection area (SPA study area - 
rectangle, the sampling area, and the sample points). 

 

 

2.3.3 Sampling methods 

In 2006, the majority of bird counts were carried out between the 29th of April and the 8th of May, 

with the remainder of counts being carried out by two observers over a larger period of time 

(between the 20th March and the 12th May). In 2011, all bird counts were carried out between the 

18th April and the 11th May. Each count lasted for 5 minutes. This count duration was chosen since 

it has been suggested as a suitable duration to ensure complete detection of species at the point 

whilst also minimising chances of birds not being detected at their initial locations (Fuller and 

Langslow, 1984). A distance limit of 125 m was set since detections beyond this distance would be 

hard to identify and measure accurately. All observations within 125 m of the observer were 

registered, along with the radial distance. All counts were carried out in the first 4 hours after 

sunrise or in the last two hours before sunset. All observers were experienced in bird 

identification; they also all attended a joint training session to improve their accuracy in 

estimating distances (Moreira et al., 2007). 

 

2.3.4 Habitat data 

Habitat data was available in the form of the percentage coverage of five different habitat types: 

bare soil, cereal, fallow, woodland/shrub, and water. The variable for the percentage coverage of 
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water was discarded due to its very low occurrence in the point transects. These habitat variables 

came from previously conducted support vector analysis of a temporal series of Landsat images. 

Each variable was log transformed to remove the issue of the habitat variables summing to a 

constant value. 

 

2.3.5 Bird data 

In total, 2,177 detections were made in 2006 and 2,705 were made in 2011; this accounted for a 

total of 62 different bird species. For this study, only the eight species with the greatest frequency 

of occurrence were selected for further analysis (Table 2.1), although data for the other species 

were retained in some analyses to improve pooled measures of detectability. Five of the bird 

species in this study are Passeriformes (small perching birds). The three other species in the study 

are either Galliformes or a Gruiform; these are larger species which are known to be more 

detectable by auditory cues than Passeriformes. Owing to these known differences in 

detectability between species, a new variable was created to classify two broad groups of species 

in this study, a method previously used by Alldredge et al. (2007a). One group contained Aleruf, 

Cotcot and Tettet (two Galliformes and a Gruiform) which are likely to have greater detectability 

at distance (see Table 2.1 for full species names). The other group contained the remaining five 

Passeriform species, which are expected to have a sharper drop in detectability at distance, 

especially in dense habitats where most detections are by auditory cues (Alldredge et al., 2007b). 

 

2.3.6 Distance methods 

The program Distance (Thomas et al., 2010) was used to analyse the count and distance data, and 

associated covariates. Whilst distance data were collected to the nearest 5 metres with a 

maximum distance of 125 metres, for analysis these values were transformed into intervals with 

cut points at 0, 20, 40, 60, 80, 100, 120 metres. It was important to place the distance data into 

intervals because of the variability in the way that different observers recorded distance; some 

rounded to the nearest 5 m, others rounded to the nearest 10 m. This difference in accuracy 

created data spikes which would not be appropriate for the fitting of a detection function (Figure 

2.3a). Use of 20 metre intervals was found to provide a smoother graph of the frequency of 

distance measurements (Figure 2.3b).  
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Table 2.1: The eight species with the greatest frequency of occurrence selected for analysis in this 
study. Species Group is a variable created to classify broadly between species based 
on their maximum detectability distance.  

Abbreviation Scientific name Common name Order Species Group 

Aleruf Alectoris rufa Red-legged Partridge Galliform B 

Calbra Calandrella brachydactyla Short-toed Lark Passeriform A 

Cisjun Cisticola juncidis Zitting Cisticola Passeriform A 

Cotcot Coturnix coturnix Quail Galliform B 

Melcal Melancorypha calandra Calandra Lark Passeriform A 

Milcal Miliaria calandra Corn bunting Passeriform A 

Saxtor Saxicola torquatus Stonechat Passeriform A 

Tettet Tetrax tetrax Little Bustard Gruiform B 

 

Distances were truncated at 120 metres, meaning that any observations at distances of 120 

metres or greater were removed from the analysis; this is in accordance with the guidance of 

Buckland et al. (2001) that the 10% of detections associated with the largest distances should be 

discarded. Distance software then uses the midpoint of these intervals for analysis. Selection of 

truncation distance is a balance between the fact that larger truncation distances will result in 

small tail probabilities that increase bias, and the fact that smaller truncation distances mean 

more data is discarded, reducing precision. Distance sampling methodology has been shown to be 

robust to right truncation (Ekblom, 2010). Truncation of distances also has the advantage that it 

reduces the complexity of the detection function, generally allowing for a better fit to the 

remaining data (Dallimer and King, 2008). 

 

Observers have previously been shown to be a source of detection function variability (Norvell et 

al., 2003; Buchanan et al., 2006; Diefenbach et al., 2003). Initial investigation of the dataset 

suggested that some observers had significantly different detection functions (Figure 2.4). 

However, the difficulty in dealing with the effects of inter-observer variability is that the variability 

caused by the observer and the variability caused by the environment, species and time of 

observations can rarely be disentangled. For example, some observers only participated in 

surveys in 2006 and some only in 2011; the abundance of some species is likely to have changed 
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significantly between these two survey periods, so this may cause observers from only 2006 to 

have very different detection functions from observers in 2011. Another issue is that observers 

were assigned to regions of the Castro Verde SPA (for the logistical reason that it maximised the 

number of point transects they could visit); this means that some observers may have justifiably 

different detection functions. It is therefore unwise to remove observers from the analysis unless 

there are known issues with their skills; in fact, it is not possible to remove observers from this 

study without introducing bias (i.e. removing data for a region creates bias in the survey design; 

removing data for a year creates bias in sample size between years). 

 

Figure 2.3: a) Histogram of the original distance data (note the far smaller frequency of distances 
at multiples of 5 m compared to multiples of 10 m – this is due to rounding 
differences between observers). b) Histogram of the distance data as it was used in 
this study, with distances grouped into 20 m intervals, and truncated at 120 m.  

a) 

 

b) 

 

 

2.3.7 Conventional distance sampling models 

Firstly, conventional distance sampling (CDS) models were run for each species individually. CDS 

models do not include any covariates. This method has the disadvantage that there may be too 

few observations to fit an accurate detection function (particularly for rare or poorly surveyed 

species). For each species, half-normal and hazard-rate functions were used to fit the detection 

function, with the best model chosen by AIC. No adjustment terms were used since this was 

simply to identify the best general function for each species, and to test the improvements that 

can be made over these basic models. Use of adjustment terms can also lead to over-fitting to the 
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data, especially when sample size is small. Observations from both years were used to generate 

the detection function, but estimations of abundance were stratified by year. 

 

A CDS model was also run on all the species data combined; this included the eight species chosen 

for this study (Table 2.1) and an extra group which contained all observations made of other 

species during the surveys. This method creates one detection function for all species combined. 

This method has the advantage of sharing information from all species, thus helping to build 

realistic detection functions for rare or under surveyed species (Rosenstock et al., 2002). This 

helps to increase precision since it effectively increases the sample size for the creation of the 

detection function. However, the disadvantage is that it can bias estimates when observations of 

multiple species are pooled to create the detection function. If the species are known to have 

similar detectability, then it can be useful to share this information; Alldredge et al. (2007a) 

grouped species for analysis according to their maximum detection distance. However, if species 

are pooled when significant differences exist, this can lead to under or over estimating bias. 

 

Figure 2.4: Box plot for each observer showing median and inter-quartile range of radial distance 
for their observations. This shows the significant variability between some observers, 
with some having no observations within 10 m of themselves.  
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Table 2.2: Covariates used in the multiple covariate distance sampling (MCDS) models. 

Covariate name Description 

Species Each species is classified separately. 

SpGroup Two species groups: Passeriformes, and 
Galliformes/Gruiformes. 

DomHab The habitat type with the greatest percentage 
coverage within the point transect buffer. 

Ba Percentage coverage of bare soil within the point 
transect buffer. 

BaFa Percentage coverage of bare soil and fallow within 
the point transect buffer. 

Ce Percentage coverage of cereal within the point 
transect buffer. 

Fa Percentage coverage of fallow within the point 
transect buffer. 

Wo Percentage coverage of woodland/shrub within the 
point transect buffer. 

 

2.3.8 Multiple covariate distance sampling models 

A series of multiple covariate distance sampling (MCDS) models were run to allow for the 

incorporation of covariate effects on the detectability of birds. The covariates used in this study 

are listed in Table 2.2 and relate to either species or habitat properties. All MCDS models were 

run with the option of using either the half-normal or the hazard-rate key function; the best 

model was selected using minimum AIC.  

 

Adjustment terms were initially experimented with, but these generally lead to over-fitting to the 

data. Adjustment terms allow the detection function to fit to specific characteristics of the data. 

However, unless there are known ecological reasons for humps or troughs in detectability at 

certain distances from the observer, it seems erroneous to over-fit to such trends in the data. A 

better method is to introduce covariates to explain changes in detectability. Using covariates to 

group and distinguish between stratum allows for the development of more parsimonious models 

of detectability (Alldredge et al., 2007a). 

 

A MCDS model was created with only Species as a covariate. This allowed for the creation of 

graphs to interpret how the effect of species changed the scale of the detection function. Another 

MCDS model was created with the four habitat variables (Ba, Ce, Fa and Wo – see Table 2.2). 
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Further analyses were also made to investigate the expectation that species in Bare Soil and 

Fallow habitats would have similar detectability.  

 

2.3.9 Model selection 

A total of nine covariates, based on either species or habitat data, were available for the MCDS 

models (Table 2.2). This part of the study aimed to develop the best possible detection function 

model based on combinations of the available covariates. A forward stepwise selection procedure 

was used; one covariate was added to the model at a time, with the most explanatory covariate 

(based on AIC) added to the model before each variable was again tested in turn. This procedure 

was stopped when the addition of new covariates no longer reduced AIC. 

 

2.4 Results 

The CDS individual species model results confirm the different shapes of the detection functions 

of Cotcot (Galliform) and Tettet (Gruiform); the data for both of species was best modelled by a 

hazard-rate key function, compared with all modelled Passeriform species for which detectability 

was best modelled by the half-normal key function. Although note that the detectability for Aleruf 

(Galliform) was best modelled by a half-normal key function (Table 2.3). 

 

Table 2.3: The functions chosen according to minimum AIC for the conventional distance sampling 
individual species models, stratified by year (n is the sample size). AIC is not given 
here since it is meaningless for use across different datasets.  

Species Key function n 

Aleruf Half-normal 110 

Calbra Half-normal 88 

Cisjun Half-normal 369 

Cotcot Hazard-rate 140 

Melcal Half-normal 493 

Milcal Half-normal 1518 

Saxtor Half-normal 132 

Tettet Hazard-rate 311 
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Table 2.4: Abundance estimates (𝑁̂), stratified by year, from the individual species models, and 
from the combined species model (95% confidence intervals in parentheses). CV is the 
coefficient of variation which is the ratio of the standard deviation to the mean. These 
were conventional distance sampling models which do not use covariates.  

  Individual species models Combined species model % difference 

in 𝑵̂ Species Year 𝑵̂ CV 𝑵̂ CV 

Aleruf 2006 2,190 
(1,396-3,437) 

0.23 3,417 
(2,440-4,784) 

0.17 64.1% 

 2011 3,546 
(2,375-5,295) 

0.21 5,532 
(4,428-7,202) 

0.14  

Calbra 2006 7,792 
(4,990-12,166) 

0.23 4,799 
(3,313-6,953) 

0.19 162.4% 

 2011 3,830 
(2,365-6,203) 

0.25 2,359 
(1,558-3,571) 

0.21  

Cisjun 2006 4,654 
(3,371-6,431) 

0.17 3,742 
(2,769-5,056) 

0.15 124.4% 

 2011 32,692 
(27,302-39,147) 

0.09 26,275 
(22,937-30,099) 

0.07  

Cotcot 2006 1,144 
(735-1,779) 

0.23 2,440 
(1,610-3,699) 

0.21 46.9% 

 2011 4,193 
(3,254-5,404) 

0.13 8,948 
(7,303-10,964) 

0.10  

Melcal 2006 19,369 
(15,099-24,846) 

0.13 19,442 
(15,608-24,217) 

0.11 99.6% 

 2011 20,584 
(16,530-25,633) 

0.11 20,662 
(17,170-24,864) 

0.09  

Milcal 2006 64,588 
(56,542-73,778) 

0.07 62,474 
(55,298-70,580) 

0.06 103.4% 

 2011 63,074 
(55,594-71,560) 

0.06 61,009 
(54,407-68,413) 

0.06  

Saxtor 2006 5,222 
(3,638-7,496) 

0.19 5,125 
(3,912-6,714) 

0.14 101.9% 

 2011 5,720 
(3,942-8,299) 

0.19 5,613 
(4,222-7,462) 

0.15  

Tettet 2006 5,609 
(4,426-7,108) 

0.12 12,121 
(9,834-14,939) 

0.11 46.3% 

 2011 6,098 
(4,874-7,630) 

0.11 13,178 
(10,848-16,008) 

0.10  

 

The CDS combined species model created one detection function based on the pooled 

observations of all species. This means the abundance estimates are more precise (narrower 

confidence intervals), but that the results will be biased if the species have different detectability. 

Table 2.4 shows the abundance estimates from the CDS individual species models, and from the 

CDS combined species model. Using the combined species model reduces the coefficient of 

variation, and generally narrows the 95% confidence interval in comparison to individual models 

for each species. It also shows that whilst either similar or larger abundance estimates for the 

Passeriform species are given by the individual models, for the non-Passeriforms (Aleruf, Cotcot 
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and Tettet), much smaller abundance estimates are given by the individual species models 

compared with the combined species model. 

 

The detection function for the MCDS model with only Species as a covariate (Figure 2.5) 

demonstrates the expected separation between the Passeriform species and the Galliform and 

Gruiform species. Aleruf, Cotcot and Tettet are all modelled to have notably higher detectability at 

distance from the observer. In contrast, the detectability of all the Passerines deteriorates sharply 

as distance is increased. 

 

The best MCDS model (based on AIC) used the half-normal key function and the covariates: 

Species, DomHab, Fa, and Wo.  

Table 2.5 shows the covariates used and the corresponding ∆AIC values for the different MCDS 

models tested during the forward stepwise selection procedure to identify the best model. 

Table 2.6 shows the final abundance estimates from the species covariate MCDS model and the 

best MCDS model; it also gives a direct comparison of the results of this paper with the results of 

Moreira et al. (2007), a previous study on the Castro Verde SPA which used only the raw bird 

count data to estimate abundance. 

 

Figure 2.5: The detection functions created by a multiple covariate distance sampling (MCDS) 
model with Species as the only covariate in the model. 
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Detectability was found to vary in different habitat types (Figure 2.6), although this had minimal 

effect on the final abundance estimates (Table 2.6). The graphs were created from a MCDS model 

with only the percentage coverage of each habitat type as covariates. Detectability was found to 

deteriorate most rapidly in Woodland/Shrub habitat. Species were most detectable at distance in 

the Bare Soil habitat type, with very similar detectability in Fallow habitat. 

 

Table 2.5: The full list of models tested during the forward stepwise selection process to find the 
best combination of covariates (shaded cells indicate which covariates were included 
in each model). ∆AIC values give the difference in AIC between the current model and 
the best model (i.e. the best model has ∆AIC = 0).  
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Table 2.6: Abundance estimates (𝑁̂) from the species covariate model, and the final chosen model 
(95% confidence intervals in parentheses). Covariates used in the final model were: 
Species, Wo, DomHab, and Fa. CV is the coefficient of variation which is the ratio of 
the standard deviation to the mean. The data from Moreira et al. (2007) are the 
previous abundance estimates for each species in the Castro Verde SPA in 2006; these 
estimates were not adjusted for detectability.  

 
 
Species 

 
 
Year 

Moriera 
et al. 

(2007) 

MCDS with species covariate Final MCDS model 
 

𝑵̂ 

 
CV 

 

𝑵̂ 

 
CV 

∆(%) 
2006-2011 

Aleruf 2006 1,511 3,504 
(2,506-4,898) 

0.17 3,518 
(2,516-4,918) 

0.17  

 2011 - 5,673 
(4,366-7,371) 

0.13 5,696 
(4,383-7,401) 

0.13 +61.9 

Calbra 2006 2,906 4,922 
(3,402-7,120) 

0.19 4,942 
(3,416-7,149) 

0.19  

 2011 - 2,419 
(1,600-3,658) 

0.21 2,429 
(1,607-3,673) 

0.21 -50.9 

Cisjun 2006 2,616 3,838 
(2,845-5,176) 

0.15 3,853 
(2,856-5,197) 

0.15  

 2011 - 26,946 
(23,618-30,743) 

0.07 27,055 
(23,712-30,868) 

0.07 +602.2 

Cotcot 2006 930 2,503 
(1,653-3,789) 

0.21 2,513 
(1,660-3,804) 

0.21  

 2011 - 9,177 
(7,509-11,214) 

0.10 9,214 
(7,539-11,260) 

0.10 +266.7 

Melcal 2006 12,320 19,938 
(16,046-24,775) 

0.11 20,019 
(16,110-24,876) 

0.11  

 2011 - 21,190 
(17,660-25,425) 

0.09 21,275 
(17,731-25,528) 

0.09 +6.3 

Milcal 2006 32,370 64,070 
(56,969-72,056) 

0.06 64,328 
(57,196-72,350) 

0.06  

 2011 - 62,568 
(56,068-69,822) 

0.06 62,821 
(56,291-70,107) 

0.06 -2.3 

Saxtor 2006 3,080 5,256 
(4,019-6,872) 

0.14 5,277 
(4,036-6,900) 

0.14  

 2011 - 5,756 
(4,338-7,639) 

0.14 5,779 
(4,355-7,670) 

0.14 +9.5 

Tettet 2006 8,426 12,430 
(10,111-15,281) 

0.11 12,480 
(10,152-15,343) 

0.11  

 2011 - 13,515 
(11,156-16,372) 

0.10 13,569 
(11,201-16,438) 

0.10 +8.7 
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Figure 2.6: The effect of habitat on detectability. Lines represent modelled detectability in 100% 
coverage of each habitat type, with data pooled for both years. 

 

 

2.5 Discussion 

The fact that the detectability of Cotcot and Tettet were both best modelled by a hazard-rate 

function suggests that these two species have fundamentally different detectability to the other 

species in this study. The hazard rate function allows for fitting to data that has a shoulder (i.e. for 

species that do not have instantly deteriorating detection rates as distance from the observer). 

The fact that Aleruf was best modelled by a half-normal function is perhaps surprising since it was 

expected to have similar detection characteristics to Cotcot and Tettet. This expectation was 

based on the fact that Calbra, Cisjun, Melcal, Milcal and Saxtor are Passerines. In comparison, 

Aleruf and Cotcot are of the same order, Galliform, whilst Tettet is of the order Gruiform. All three 

of these species are markedly larger and have louder auditory cues than the Passerine species. 

Figure 2.5 illustrates the similarities in the detection functions of Aleruf, Cotcot and Tettet when 

they are included in a MCDS model using a half-normal key function. These three species stand 

out as having significantly higher detection rates at distances greater than 40 m from the 

observer. Whilst the hazard-rate function provided the best fit individually to these species, their 

increased detectability at distance can still be modelled within a pooled species half-normal 

framework. 

 

The pooling of species observations to develop a global detection function can increase precision 

because of the increased sample size (Table 2.4). However, estimates will be biased if species 
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have fundamentally different detection functions (Buckland et al., 2008), as demonstrated in this 

study. For this reason, it is important to include covariates to explain these differences. The fact 

that SpGroup was not a useful covariate (Table 2.5) suggests that within group differences 

between species were too large for the grouping of Passeriformes and Galliformes/ Gruiformes to 

be beneficial to the model. Whilst it is clear that Aleruf, Cotcot and Tettet have markedly different 

detection functions to the other species, there is enough variation between each individual 

species for the SpGroup covariate to be redundant in comparison to the Species covariate (Figure 

2.5). 

 

The order with which the covariates were added to the model in the forward selection procedure 

(Table 2.5) gives an indication of the importance of each variable to the model. The first covariate 

added to the model was Species; this is logical because of the differences between species 

discussed above. The next most important variable was Wo (percentage coverage of 

woodland/shrub); since this covariate represents the habitat with the greatest impact on 

detectability it is not surprising that it holds the most useful habitat-based information on 

detectability. A similar result has been demonstrated by Sillett et al. (2012), who found the 

percentage of forest cover to be an important determinant of the detectability of their study 

species. In a 100% woodland habitat, detectability is most severely reduced by distance; if there is 

0% woodland habitat, then the habitat must be bare soil, cereal or fallow (or any mixture of the 

three), which all allow for greater detection rates than woodland habitat. The next most 

important variable was DomHab, although these additional covariates now create only small 

reductions in AIC (Table 2.5). DomHab is perhaps useful because it holds information on what 

habitat is dominant when the percentage of woodland is low, allowing detectability to be 

adjusted when bare soil, cereal or fallow habitats dominate. The next covariate added to the 

MCDS model by forward selection was Fa; whilst this covariate does improve the model, its effect 

is minimal. The usefulness of Fa to the model perhaps derives from the fact that fallow habitat 

generally covers more than 50% of the Castro Verde region (Moreira, 1999). Therefore the 

percentage of fallow habitat simply holds more information than the other remaining covariates. 

 

It is important to note that the covariates used in this study are highly correlated and so the 

importance of the variables should always be interpreted with caution. The habitat variables are 

highly correlated due to the fact that they are based on percentage coverage, i.e. a high 

percentage for one habitat type necessitates that the other habitat types will be of a low 

percentage. The Species and SpGroup covariates are also clearly highly correlated. When one of 
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these covariates is added to the model, the new information that the other covariate can provide 

is drastically reduced. Similarly for the habitat covariates, due to the forward stepwise selection 

procedure, once a habitat covariate has been added, additional habitat covariates will contain less 

new information. In this situation, a principal components analysis could be used to convert the 

correlated habitat variables into a set of uncorrelated variables. However, this method was not 

used in this study as it also removes the ecological context of the habitat covariates, i.e. 

differences in detectability between different principal components could no longer be attributed 

to habitat types. 

 

2.5.1 Population trends 

Substantial population increases (more than 250%) were identified between 2006 and 2011 for 

Zitting Cisticola (Cisjun) and Quail (Cotcot), species with known associations with taller and denser 

vegetation such as cereal fields (Delgado and Moreira, 2000; Moreira et al., 2007). In the 2005 

drought year, cereal crops had low vegetation development, resulting in farmers introducing 

livestock grazing in the failed cereal fields (Moreira et al., 2007). This reduction in cereal habitat in 

2005 is likely to have had a negative impact on the local population of cereal associated bird 

species, through a combination of mortality and dispersion to more suitable areas. Whilst pre-

drought population numbers are not known, these results suggest that populations of Zitting 

Cisticola (Cisjun) and Quail (Cotcot) are recovering from the impacts of the drought. Whilst most 

species either made gains or had relatively stable populations between 2006 and 2011, Short-

toed Lark (Calbra) had a noticeable decline in numbers. The 95% confidence intervals for the two 

years only have a small overlap, suggesting a real reduction in abundance. This species is 

associated with sparse vegetation and bare ground (Delgado and Moreira, 2000; Moreira et al., 

2007), so the availability of suitable habitat may have increased for this species during the 2005 

drought, perhaps explaining the decrease in population from 2006 to 2011. However, the species 

is a trans-Saharan migrant, so population trends may also be influenced by climatic and habitat 

conditions in their wintering grounds. 

 

2.6 Conclusion 

The results of this study suggest that the use of a species covariate can improve estimates when 

individual species have low sample sizes. Previous studies (Alldredge et al., 2007a; Marques et al., 

2007) have come to similar conclusions. The addition of habitat covariates made only very small 
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changes to abundance estimates, and made no clear difference to the size of confidence intervals. 

However, the inclusion of habitat variables did improve the models in terms of AIC. This suggests 

that whilst habitat variables did not change abundance estimates, in agreement with Sillett et al. 

(2012), they allow the model to explain more of the variation in detectability. This chapter has 

demonstrated that sharing distance sampling data for multiple species can improve the 

estimation of detectability. Whilst the focus thus far has been on data collection and pre-

processing, the following chapter moves on to the modelling phase but continues to utilise co-

occurring species data. Chapter 3 tests a novel iterative species distribution modelling method, 

with the distributions of interacting species used to predict the co-occurring species. 
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Chapter 3: Incorporating biological interactions into 

species distribution models: the use of virtual species 

to test hypotheses 

3.1 Abstract 

Use of biotic information is commonly suggested as a way to improve the predictive performance 

of species distribution models (SDMs). However, use of such data is rare; there appear to be two 

main reasons for this: (1) knowledge of how species interactions affect distributions is still limited, 

(2) modelling methods require spatially explicit predictor variables covering the full extent of the 

study area. For this study, pairs of artificial species were created based on plausible climatic 

responses. These species pairs were given interaction terms through resource competition, 

leading to the generation of species with distributions constrained by both abiotic and biotic 

factors. MaxEnt was then used to predict the distribution of one of the pair of species based on 

climatic predictor variables. MaxEnt was subsequently run iteratively using the partner species’ 

distribution and the climatic variables as predictors. Models were run until 500 predictions were 

created for each species. AUC (area under the receiver operating characteristic curve) and map 

comparison techniques were used to assess the accuracy of predictions. Predictive maps were 

found to repeatedly expand and contract, with no clear improvement with repeated iterations. 

The percentage contribution of the species based predictor variables was found to increase with 

repeated iterations; although this did not correspond to improved predictions. Since artificial 

species were used, the “true” distributions were known; this allowed for the evaluation of AUC as 

a method for measuring predictive accuracy against direct map comparisons. AUC was found to 

be insensitive to variations in predictions. 

 

3.2 Introduction 

The vast majority of species distribution modelling (SDM) studies have focused on the use of 

abiotic predictor variables (Guisan and Thuiller, 2005) since environmental conditions are key 

determinants of a species’ distribution. The region of environmental space within which a species 

can exist is often referred to as its fundamental niche, and it is the fundamental niche which most 

SDM research tends to predict. However, the environment is only one of many constraints on a 

species’ distribution. The realised niche is the actual distribution of a species (the locations where 
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the species will actually be found), and is determined by environmental factors, biotic 

interactions, dispersal, colonisation history and migration. These ideas of fundamental and 

realised niches (Hutchinson, 1978) can be applied to both the Grinnellian and Eltonian niche 

concepts (Soberón, 2007). A species’ Grinnellian niche is the habitat within which it exists, and is 

defined by those variables that have a direct impact on the species due to physiological responses 

(Soberón, 2010). These direct variables (Austin and Smith, 1990) are independent of the species, 

i.e. a species has no impact on them. A species’ Eltonian niche is defined by the community within 

which it exists, and its location in the food web (Soberón, 2010). Whilst the climate data required 

for investigating a species’ Grinnellian niche are now readily available and frequently used, data 

for the Eltonian niche is far harder to collect. Unlike the Grinnellian niche, for the Eltonian niche 

the species has a direct impact on those variables that define its niche; this makes the domain of 

the Eltonian niche dynamic and complex (Soberón, 2007). To be able to understand and map 

species’ realised distributions, modelling of both Grinnellian and Eltonian niches is required. 

 

Some studies have attempted to include biotic interactions in SDMs, but this is rare. Leathwick 

and Austin (2001) investigated competition between tree species in New Zealand; firstly 

modelling abundance from environmental predictors, and then including statistical terms 

describing the abundance of other species. They found that inclusion of abundance data of 

competitors helped to explain the target species’ abundance, and led to changes in species’ 

responses to temperature variables. This study shows the potential importance of biotic 

interactions in understanding a species’ distribution, and the complexity involved in introducing 

such terms. Whilst Leathwick and Austin (2001) and Gutiérrez et al. (2005) demonstrated that the 

use of biotic interactions can improve predictive power at local extents, more recent studies have 

shown that biotic interactions can also improve predictions at regional (Araújo and Luoto, 2007) 

and continental extents (Heikkinen et al., 2007; Sutherst et al., 2007). An issue to contend with 

when attempting to model species interactions is that the strength and impact of these 

interactions can vary along environmental gradients (Sutherst et al., 2007). In fact, in some cases 

the nature of interactions can even change in different environmental conditions (Brooker, 2006). 

 

One of the main problems with using SDMs is the difficulty in evaluating their performance when 

the “truth” is unknown (Austin et al., 2006). The use of artificial species data is an important step 

in studying the predictive power of SDMs, and their sensitivity to inconsistencies in data. With 

artificial data, a species’ distribution can be fully defined so that its “true” distribution is exactly 

known, and the quality of predictions can be accurately measured. There are numerous examples 



Chapter 3 

37 

in the literature of artificial data being developed for use in SDMs. The basic concept is to take an 

environmental variable and then create a viable ecological response curve to that variable. 

Minchin (1987) developed software called COMPAS which can be used to generate artificial 

species data, and has since been used to evaluate different SDM methods (Austin et al., 2006). 

One limitation of COMPAS is that it generates artificial species based on entirely fictitious 

environmental data. However, other studies have created virtual species from real environmental 

data (e.g. Hirzel et al., 2001; Moisen and Frescino, 2002). Hirzel et al. (2001) created 11 predictor 

variables with either Gaussian, linear or truncated linear response curves for each species. 

Meynard and Quinn (2007) generated 18 artificial species with random, linear, Gaussian, 

threshold or mixed response curves. Legendre et al., (2002) used only linear responses to 

environmental variables. The variety of response curves used in different studies indicates the 

lack of knowledge about how species respond to environmental gradients. There is also debate on 

the subject of whether species responses are unimodal or multimodal. Oksanen and Minchin 

(2002) suggest that most species responses are unimodal, and that it is interactions between 

different environmental responses and biotic interactions which can sometimes cause multimodal 

responses in field data. 

 

The overall response of a species to environmental variables is a combination of each relevant 

individual environmental response; how the interaction between responses is modelled varies 

between studies. Species can be given additive responses (Hirzel et al., 2001), multiplicative 

responses (Barbet‐Massin et al., 2012a), or mixed responses (Wintle and Bardos, 2006). Whilst 

complex variations in the interactions between responses to environmental variables are likely to 

exist in reality, implementing varied or more complex interactions would require guesswork on 

the theories behind them; this is beyond current ecological knowledge. 

 

By generating artificial pairs of interacting species, this study aims to assess how predictions of 

each species distribution can help improve the predictions for the other species. If a species 

distribution changes, then this change will impact upon those species that it interacts with. 

Species distributions are not stable, but constantly changing (at the very least at small scales) due 

to the multitude of biotic interactions that all species are influenced by, and the dynamical system 

that this creates (Davis et al., 1998). This study applies this idea to species distribution modelling, 

repeatedly predicting a species’ distribution based on a partner species’ distribution which is also 

repeatedly predicted in a feedback loop. The desired outcome from this methodology would be to 

observe predictions tending towards a greater precision, with perhaps some fluctuation in 
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precision due to uncertainty from the SDM approach. The use of artificial species in this study also 

allows for the analysis of AUC as a measure of SDM predictive accuracy. Recent studies have 

brought doubt on the usefulness of the AUC measure (Lobo et al., 2010), and have demonstrated 

its inability to differentiate between substantially different predictions (Synes and Osborne, 

2011). Since the species’ “true” distributions are known, map comparison techniques can be used 

to precisely quantify the accuracy of predictions, and therefore assess the performance of the 

AUC measure. 

 

3.3 Methods 

3.3.1 Climate data 

Climate data were obtained from the WorldClim dataset (version 1.4; Hijmans et al. (2005), 

http://www.worldclim.org/) at 30 arcsec resolution. These climate data were cropped to cover 

the United Kingdom and Ireland. This extent was chosen as a balance between covering a large 

enough area to realistically represent a full species distribution, whilst also minimising computer 

processing time. The WorldClim dataset includes 19 different bioclimatic variables; for this study 

five were selected for their expected importance in limiting species distributions: (1) mean diurnal 

range, (2) maximum temperature of the warmest month, (3) minimum temperature of the coldest 

month, (4) annual precipitation, (5) precipitation of the driest quarter. 

 

3.3.2 Species data 

Two different pairs of species were generated by assigning Gaussian responses to each climate 

variable. For the first pair of species (Set1), both were given identical responses to temperature, 

with the only differentiation between species being in precipitation threshold. Set1 Species1 was 

given a far greater tolerance of wetter conditions, and a requirement for more rain in the driest 

months. Set1 Species2 on the other hand has a far narrower tolerance of precipitation, generally 

preferring drier conditions. For the second pair of species (Set2), again both were given identical 

responses to temperature, with the only differentiation between species being in precipitation 

threshold. Set2 Species1 has a greater tolerance of wetter conditions than Set2 Species2, but they 

have been created so that they are physiologically far more similar than the species in Set1 (Figure 

3.1). Each individual response variable was scaled to values between 0 and 1 so that each had 

equal weighting in the overall species response. 
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Figure 3.1: The “true” distributions of the artificial species. 

 

(a) Set1 

 

(b) Set2 

 

 

For each species, the responses to the five different climatic variables were multiplied together to 

give an overall physiological response. Previous studies with virtual species have defined additive 

(Hirzel et al., 2001), multiplicative (Barbet‐Massin et al., 2012a) and mixed (Wintle and Bardos, 

2006) responses to climatic variables. Additive responses suggest that climatic variables are 

independent, and that unsuitability of one variable can be compensated for by another. This may 

be true for some variables, but in general one unsuitable climate factor will cause a location to be 

unsuitable, regardless of any other climate factors. Real species most likely have a mixed response 

to climatic variables, with some variables able to compensate for others whilst others will be truly 

crucial. For this study multiplicative responses were chosen due to the assumptions (and 

guesswork) that would be required to design a realistic mixed response physiology, it simply 

makes more sense to acknowledge that ecological knowledge is currently insufficient to be that 

precise. 
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Finally, a presence/absence threshold of 0.5 was set for the species’ overall environmental 

response (i.e. for each pixel, if the species’ response is above 0.5 then it is recorded as present, 

otherwise it is recorded as absent). 

 

3.3.3 Species interaction 

Interaction between the species pairs was created through resource competition. Godsoe and 

Harmon (2012) created a model of competition based on consumer resource dynamics; a 

consumer resource model creates interactions between species by assigning each species an 

ability to deplete a given resource. Whilst Godsoe and Harmon (2012) created a dynamic 

consumer resource model, for this study the concept was simplified to allow for the basic concept 

of resource competition to be implemented on a spatial grid. 

 

Firstly, a new variable was created to represent the resource for which the species would 

compete. The new variable was growing degree days (GDD), created as specified by Synes and 

Osborne (2011). Growing degree days is a good proxy for a resource variable because it is known 

to be an important limiting factor on plant growth (Prentice et al., 1992); it is therefore a variable 

likely to be highly important in dictating the vegetative biomass of an area. The rule for resource 

competition was as follows: for each pixel, if annual GDD was greater than or equal to 1,750 for 

Set1, or 1,700 for Set2, then the species could co-exist. Below this value only one species could 

exist; the species was chosen according to which one had the higher multiplicative environmental 

response for that pixel. 

 

3.3.4 Sampling 

The “true” distribution of the artificial species was sampled to match the method of data 

collection for real species. Sampling methods are known to commonly be biased (Williams et al., 

2002), for example with samples being taken in easily accessible areas or near to human 

infrastructure. It has been recommended that the best sampling method is random stratification 

across an environmental gradient with major control over the species’ distribution (Hirzel and 

Guisan, 2002), rather than the more common random geographic stratification. For this study, 

samples were randomly stratified across the gradient for “maximum temperature of the warmest 
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month”. A total of 300 samples were collected for each species. All samples were of presence 

data; no absence data were collected.  

 

3.3.5 Modelling procedures 

The SDM algorithm MaxEnt (Phillips et al., 2006) was used to make predictions from the sample 

data; it has been found to perform well with presence-only data (Anderson et al., 2006). MaxEnt 

was chosen for its ease of use, and for the deterministic nature of its algorithm. Some SDMs rely 

on algorithmic stochasticity to generate predictions (e.g. GARP – Stockwell, 1999), and therefore 

repeated predictions based on a single dataset can exhibit variability. For this study, it is 

important that any variability in predictions can be attributed solely to the predictor variables and 

so a deterministic algorithm is required. MaxEnt’s default parameter values were used since they 

were found to produce good results in a broad range of situations (Phillips and Dudík, 2008). The 

only change from default values was to set aside 25% of the sample points to allow for the 

calculation of AUC (area under the receiver operating characteristic curve), as is the common 

method for estimating model accuracy in SDM studies (Vaughan and Ormerod, 2005). The 25% of 

sample points set aside for testing were kept the same across each model run so that AUC values 

could be compared. 

 

For Species1 in Set1 and Species1 in Set2, MaxEnt was first run once with the five original climatic 

variables as predictors; this gave an initial prediction for each species. After this, MaxEnt was run 

iteratively with the 5 climatic variables and the previous prediction of the partner species (the 

other species in its set) as predictors. This process was conducted for both the species in Set1 and 

the species in Set2, with the predictors for one species always containing all five climatic 

predictors as well as the most recent prediction of the partner species. This process was repeated 

until 500 prediction maps were created for each species.  

 

The default output from MaxEnt is a logistic format, which is a value between 0 and 1 for each 

pixel; this can be considered as a probability of presence (Phillips and Dudík, 2008). To allow for 

the comparison of MaxEnt output maps with the “true” species distributions, the MaxEnt outputs 

were converted to presence-absence maps with the “maximum training sensitivity and specificity” 

threshold. Jiménez-Valverde and Lobo (2007) found this to be a good threshold in studies where 
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prevalence of the species was not low (all species in this study have relatively high prevalence, see 

Table 3.1). 

 

Table 3.1: Species prevalence. 

Set Species Percentage of pixels in 
which species is present 

Set1 Species1 42% 

Set1 Species2 13% 

Set2 Species1 59% 

Set2 Species2 37% 

 

3.3.6 Output and map comparisons 

MaxEnt calculates AUC values for each map prediction, based on the data set aside for testing 

(25% in this study). MaxEnt also calculates the percentage contribution that each predictor 

variable makes towards the model; these are calculated by adding the increase in regularised gain 

to the contribution of the corresponding variable for each iteration of the training algorithm 

(Phillips et al., 2006). These data were all recorded for each model run. 

 

Each predicted map was compared to the “true” species distribution using direct pixel 

comparisons to give the total number of correct pixels, the total number of false positives (over 

predictions) and the total number of false negatives (under predictions). Map comparisons were 

also made using the fuzzy numerical statistic from the Map Comparison Kit (Visser and De Nijs, 

2006). This statistic compares two numerical maps (in this case: 0 - absence, 1 - presence), but 

also includes fuzziness of location; this means that for each pixel-to-pixel comparison, a radius is 

used to check the similarity of pixels in the local neighbourhood. For this analysis, a radius of five 

pixels was used so that localised fuzziness in predictions could be accounted for. The fuzzy 

numerical statistic can take values between 0 (fully distinct) and 1 (fully identical). 

 

3.4 Results 

Species distribution predictions all attained high AUC scores, with the lowest score across all 

models being 0.7543. Fuzzy numerical values were also high, with the lowest being 0.7297 (Table 
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3.2). The maximum values achieved for AUC and fuzzy numerical indicate that the best predictions 

for the species in Set1 were more accurate than the best predictions for the species in Set2. A 

one-way analysis of variance showed a highly significant effect of which set the species came from 

on the AUC scores (F1,1998 = 35.9, p < 10-9). Similarly, a one-way ANOVA showed a highly significant 

effect of which set the species came from on fuzzy numerical values (F1,1998 = 2721.6, p < 10-16). 

For both AUC and fuzzy numerical, predictions from Set1 were more likely to attain higher scores 

than predictions from Set2. 

 

Table 3.2: Minimum, maximum, mean and standard deviation for AUC and fuzzy numerical values 
for each species across the model runs for Set1 and Set2. 

Model Set Species Measure Min Max Mean SD 

Set1 Species1 AUC 0.7597 0.8005 0.7815 0.0074 

Set1 Species1 Fuzzy Numerical 0.7308 0.8981 0.817 0.0287 

Set1 Species2 AUC 0.9451 0.954 0.9495 0.0009 

Set1 Species2 Fuzzy Numerical 0.9476 0.9683 0.959 0.003 

Set2 Species1 AUC 0.7543 0.792 0.7768 0.0078 

Set2 Species1 Fuzzy Numerical 0.5431 0.7309 0.6291 0.0292 

Set2 Species2 AUC 0.9066 0.9167 0.9131 0.0015 

Set2 Species2 Fuzzy Numerical 0.7297 0.8349 0.7842 0.0188 

 

Table 3.3: Mean and standard deviation for the number of predicted presence pixels across all 
model runs for each species. 

Model Set Species Mean SD 

Set1 Species1 153,601.2 22,164.85 

Set1 Species2 82,214.32 6,842.117 

Set2 Species1 140,663.8 20,504.92 

Set2 Species2 92,726.73 11,356.16 

 

Linear regressions of AUC against fuzzy numerical for each species in each set gave varied results. 

Whilst two gave no significant result, the other two gave significant results but with very low R-

squared values and visually unimpressive correlations (Figure 3.3). These results suggest there 

was minimal, if any, correlation between AUC and fuzzy numerical values. 

 

AUC and fuzzy numerical values for Set1 (Figure 3.2a) and Set2 (Figure 3.2b) varied throughout 

the model run, with no discernible pattern. In Set1, for Species1 the maximum AUC and fuzzy 
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numerical values (Table 3.2) were attained at run 111 and 1 respectively; for Species2 the 

maximum AUC and fuzzy numerical values were attained at run 2 and 479 respectively. In Set2, 

for Species1 the maximum AUC and fuzzy numerical values (Table 3.2) were attained at run 377 

and 1 respectively; for Species2 the maximum AUC and fuzzy numerical values were attained at 

run 464 and 245 respectively. 

 

Figure 3.2: AUC and fuzzy numerical values plotted against model run number for each species in 
(a) Set1 and (b) Set2. 

Legend 

 

 

(a) Set1 

 

(b) Set2 
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Figure 3.3: Scatter plots of AUC values against fuzzy numerical values for each species. Where a 
significant result was found, the regression line is plotted (although it should be noted 
that the R-squared value is very poor).  

  
Set1, Species1: F1,498 = 100.7, p < 10-16, R-
squared value: 16.8% 

Set1, Species2: No significant result (p = 0.15) 

  
Set2, Species1: F1,498 = 8.96, p<0.005, R-
squared value: 1.7% 

Set2, Species2: No significant result (p = 0.83) 

 

Analysis of predictor variable contributions show that the importance of the partner species as a 

predictor variable increases as the model run number increases. A linear regression model to 

predict the contribution of Set1 Species2 as a predictor for Set1 Species1 in terms of the run 

number gave a highly significant result (F1,498 = 2057, p < 10-16), with an R-squared value of 80.5% 

showing that the run number (i.e. the number of iterations of MaxEnt) explains most of the 

variation in the contribution of the predictor variable. Significant results were also found for the 

contribution of Set1 Species1 as a predictor for Set1 Species2 (F1,498 = 135.4, p < 10-16, R-squared 

value: 21.4%), the contribution of Set2 Species2 as a predictor for Set2 Species1 (F1,498 = 547.2, p < 

10-16, R-squared value: 52.4%), and the contribution of Set2 Species1 as a predictor for Set2 

Species2 (F1,498 = 613.7, p < 10-16, R-squared value: 55.3%), although these results show less 

explanation of the variance. 
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Linear regression was also used to predict the fuzzy numerical value in terms of the contribution 

of the species predictor variable. Results were mixed; whilst all results were significant, three of 

the four had R-squared values less than 16% showing minimal explanation of variance. The other 

result was for the contribution of Set1 Species2 as a predictor for Set1 Species1; the linear 

regression was highly significant (F1,498 = 455.8, p < 10-16), with an R-squared value of 47.8%. This 

result had a negative gradient meaning that as the percentage contribution of Species2 as a 

predictor for Set1 Species1 increased, the fuzzy numerical value decreased. 

 

3.5 Discussion 

The high AUC values obtained across model predictions indicate that all predictions were fair to 

excellent. However, the maximum fuzzy numerical values indicate that even the best predictions 

were still quite distinct from the “true” species distributions. The standard deviation for AUC 

scores was generally lower than the standard deviation for fuzzy numerical values. This indicates 

that the AUC measure is relatively insensitive to changes in predictive accuracy when compared 

with the fuzzy numerical measure. Linear regression of fuzzy numerical values against AUC 

indicates that the relationship between the two measures is limited. Whilst the scales of the axis 

indicate broadly similar values, the limited correlations show that AUC does not have the same 

sensitivity to predictive accuracy as the fuzzy numerical measure. Unfortunately, the fuzzy 

numerical method cannot generally be used in SDM studies because it relies on the species’ 

“true” distribution being known. However, this study does give further evidence of the problems 

with using AUC, and its insensitivity to variability in predictions (Lobo et al., 2010). 

 

The significant result that predictions in Set1 were more likely to attain higher AUC and fuzzy 

numerical values than predictions in Set2 indicates that there must be something in the 

underlying species distributions that affects MaxEnt’s predictive ability. The species in Set1 have 

only a small distributional overlap; perhaps MaxEnt benefited from this since the presence of one 

species generally explains the absence of the other. The resource competition as set up for Set1 

resulted in competitive exclusion being the dominant outcome; the distributions of species that 

competitively exclude each other have been found to be good predictors of each other’s 

distributions (Anderson et al., 2002). On the other hand, the species in Set2 coexist for the 

majority of their distributions. Whilst the distributions of mutualist species can be used to 
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improve the predicted distributions of their associates (Gutiérrez et al., 2005), the coexistence of 

the species in Set2 is due to a low resource threshold allowing the two species to coexist, rather 

than an underlying mutualist behaviour. It appears that such an interaction is difficult for MaxEnt 

to identify. Furthermore, there are still large areas (particularly for Species1) where the species 

exist in isolation; this may explain why Species1 from Set2 was the worst predicted species. 

 

These issues may have been compounded by the fact that MaxEnt does not use true species 

absence data. Instead, MaxEnt uses pseudo-absences (also referred to as background data) which 

are taken from across the study extent during the modelling procedure. Pseudo-absences can 

therefore be taken from locations where the species is in fact present; this may have reduced 

MaxEnt’s ability to identify the bordering regions along which the species in both Set1 and Set2 

exclude each other. For future studies of species with competitive interactions, it may be better 

to use a “true” presence-absence SDM technique such as Generalised Additive Models (GAMs). 

GAMs can take confirmed absences as input data, and perhaps this will allow the model to better 

identify those bordering regions in which species exclude each other. 

 

The positive correlation between species distribution predictor variable importance and model 

run number suggests that the species distribution predictor variable gains information (increasing 

its predictive capacity) with successive iterations of MaxEnt. However, it was also found that the 

increasing importance of the species distribution predictor variable corresponded to a worsening 

of predictions for Set1 Species1, and broadly unchanged predictive accuracy for the other species. 

This implies that the increased importance of the species distribution predictor variable is not due 

to new information, but is in fact due to it absorbing information held by the climatic predictor 

variables. This is an issue of correlated variables; once the species distribution predictor variable 

has absorbed important information from the climatic variables, MaxEnt ranks it as the most 

important variable in the model. This however leads to other important information in the 

climatic variables being neglected. This may explain the variability in the number of pixels 

predicted as presences throughout the iterations of MaxEnt. Since MaxEnt is a deterministic 

algorithm (Phillips et al., 2006), these fluctuating predictions can only be accounted for by the 

species distribution predictor variable.  

 

Correlated variables are an important issue in species distribution modelling (Graham, 2003; 

Dormann et al., 2013). For this study, predictor variables were chosen due to their perceived 
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ecological importance. Perhaps future studies on this topic should use principal component 

analysis (PCA) to generate uncorrelated predictors. This technique was not used here because it 

removes the ecological meaning of the predictor variables. However, when studies are conducted 

using simulated data, perhaps use of ecologically justifiable variables is less important. Use of 

uncorrelated variables should lead to increased predictive accuracy. 

 

Whilst this work did not identify improvements in predictions through the iterative method, only 

two sets of interacting species were studied. Future work could expand on this methodology to 

test different types and strengths of biotic interactions. Such work would be beneficial if it could 

identify which types of interactions result in species distributions that can be useful predictors of 

their interacting species. Another factor likely to have influenced these results is the spatial 

resolution of the predictor variables. The influence of biotic and abiotic factors may vary at 

different scales (Pearson and Dawson, 2003; Soberón, 2007; Wisz et al., 2013), so future work 

should test the influence of scale on the predictive power of the distributions of interacting 

species. Such an approach may require hierarchical integration of predictor variables at different 

scales, as previously demonstrated by Pearson et al. (2004) with climate and land-cover data. 
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Chapter 4: Spatio-Temporal Land Management Action 

Generator (STeLMAG): A Python-based GIS toolbox for 

automated replication of landscape management 

scenarios in real landscapes 

4.1 Abstract 

A new GIS toolbox, STeLMAG, is presented for the implementation of land management actions 

on raster-based landscapes. The toolbox allows users to control rules which determine the 

habitats to be managed, the size distribution of new habitat patches, maximum and minimum 

distances between new and existing habitat patches, the quality of new habitat and the spatially 

dependent transition of habitat quality through time. Within this rule set, actions are applied 

stochastically allowing for actions to be replicated based on the same rule set but with variations 

in the spatial allocation of new habitat. A brief example of STeLMAG’s application to a highly 

anthropogenic landscape is presented, demonstrating how the toolbox can help inform decisions 

on how and where to increase habitat area in order to improve connectivity. Outputs from 

STeLMAG can easily be exported for analysis in the growing number of connectivity tools and 

models for simulating animal movement. 

 

4.2 Background 

Habitat fragmentation is causing biodiversity loss throughout the world (Fahrig, 2003; Ewers and 

Didham, 2006; Lindenmayer and Fischer, 2013); in interaction with climate change it poses an 

even greater threat (Travis, 2003; Opdam and Wascher, 2004). These threats have led to research 

on optimising reserve network design for the protection of species and their habitats (Rodrigues 

and Gaston, 2002). In recent years, the focus has shifted towards long-term population 

persistence and habitat connectivity (Nicholson et al., 2006; Pressey et al., 2007), rather than the 

creation of large nature reserves and the representation of in-situ species (Cabeza and Moilanen, 

2003). This shift in focus has been led by a greater understanding of the effects of population 

isolation on genetic diversity (Templeton et al., 1990; Debinski and Holt, 2000) and the need to 

facilitate natural adaptive responses to climate change (Dawson et al., 2011; Hoffmann and Sgro, 

2011). Thus habitat connectivity has seen a great deal of research in recent years and many 
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questions remain on how best to manage landscapes to maintain connectivity for a wide range of 

taxa (Crooks and Sanjayan, 2006). 

 

Studying the effects of fragmentation on habitat connectivity in field-based studies is rarely 

feasible due to the costs and time-scales involved in replication, and the difficultly in collecting 

sufficient species movement and population data (but see: Haddad and Baum, 1999; Haddad et 

al., 2003; Haddad and Tewksbury, 2005). Instead, simulation studies are increasingly used to 

model ecological processes in artificial landscapes. The creation of artificial landscapes can be 

categorised into two main approaches: (1) a pattern-based approach which is neutral to the 

underlying processes that shape the landscape patterns, i.e. “neutral landscapes” (Gardner et al., 

1987); (2) a process-based approach which creates spatial patterns based on underlying processes 

(Pe’er et al., 2013). Neutral landscape models (NLMs) are useful because they allow for the study 

of specific landscape features, where landscape effects can be separated from the intrinsic 

properties of ecological processes. NLMs also allow for replication of landscapes with similar 

spatial characteristics over a wide variety of configurations, meaning that robust statistical 

analysis of spatial structure is possible (Chipperfield et al., 2011).  

 

Many NLMs have been developed over the last few decades, from simple binary maps (Gardner et 

al., 1987), to more recent attempts to represent mosaics of agricultural and forested landscapes 

with polygonal landscapes (Gaucherel, 2008), a wide array of different models now exist (see 

references in: Ricotta et al., 2002; Wang and Malanson, 2008). Neutral landscapes have been 

used in many studies of animal movement, for example to study: the threshold at which 

fragmentation impacts on movement behaviour (With et al., 1999); the impacts of habitat loss 

and fragmentation on population density (Hiebeler, 2000); the importance of spatial pattern and 

dispersal behaviour for dispersal success (King and With, 2002); methods for controlling invasive 

species in heterogeneous landscapes (Andersen et al., 2005); the effects of habitat configuration 

and stochasticity in survival and reproduction on population dynamics (Fraterrigo et al., 2009); the 

impact of landscape structure on dispersal distance (Bonte et al., 2010); the importance of cell-

size when modelling dispersal in fragmented landscapes (Bocedi et al., 2012); the impact of 

landscape spatial pattern on the speed of range shifting (Hodgson et al., 2012). Most studies on 

animal movement in neutral landscapes do not consider dynamics transitions of the landscape 

since the majority of NLMs generate only static representations of the landscape, but see Cambui 

et al., (2015) for an NLM that creates landscapes to represent progressive loss of habitat. NLMs 

have also been incorporated within individual-based modelling platforms (e.g. Bocedi et al., 



Chapter 4 

51 

2014a), and multiple NLMs have also recently been collated in a Python package, for direct 

integration with geographic information systems (Etherington et al., 2015). 

 

Although an increasing set of methods are used in NLMs, they still have difficulty capturing some 

key spatial characteristics of real landscapes (Li et al., 2004). Whilst the similarity of neutral 

landscapes to real landscapes can be improved by adding extra rules, for example to represent 

rivers and wetlands, these may no longer be classified as “neutral” models, instead becoming 

process-based landscape models. Whilst pattern-based models (i.e. NLMs) are generally useful for 

theoretical studies, process-based models may be more useful to study landscape specific 

questions. Process-based landscape models have been developed with varying levels of 

complexity: from simple models of roads transecting a landscape (Pe’er et al., 2013), to models of 

urban growth (Wu et al., 2009), to the broad array of land-use change models developed for 

different scales and regions (e.g. Le et al., 2008; Verburg and Overmars, 2009; Meiyappan et al., 

2014; Murray-Rust et al., 2014). The landscapes generated by such process-based models have 

been used to study the impacts of land-use change on species distributions, the connectivity of 

ecological networks and biodiversity in more general terms (Martínez et al., 2009; Brady et al., 

2012; Piquer-Rodríguez et al., 2012; Akber and Shrestha, 2015). Other studies have investigated 

how real landscapes can be managed to improve habitat connectivity, using bespoke (un-

replicated) GIS methods to create land management strategies (e.g. Mokany et al., 2013; Gimona 

et al., 2015). Such studies typically assume instantaneous implementation of land management 

strategies (i.e. a static landscape), even though temporal habitat succession and disturbance are 

important drivers of meta-population dynamics (Wilcox et al., 2006). No software packages or 

tools have been found for the creation and replication of conservation-focused land management 

actions. Habitat management strategies are rarely transferable between different species, 

landscapes and habitats (Cabeza and van Teeffelen 2009), so a tool is required that can apply 

conservation and land management actions across any set of landscapes and habitat types. 

 

A new GIS toolbox, STeLMAG (Spatio Temporal Land Management Action Generator), is 

presented for the creation of rule-based land management action replicates on real landscape 

data. With habitat connectivity still a much debated topic (e.g. Hodgson et al., 2011a; Doerr et al., 

2011), it is believed that STeLMAG is a unique set of tools that can aid researchers and land 

managers in the selection of site and species specific habitat management strategies. NLMs have 

become widely used due to the ease of creating replicate landscapes, a frequent difficulty in 

landscape ecology field studies (Ricotta et al., 2002). STeLMAG allows for the creation of 
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replicates since the land management actions are rule-based, but the procedures are stochastic. 

STeLMAG can also generate transitional landscapes allowing for temporal habitat quality 

transitions to be studied. Since STeLMAG is a GIS toolbox, landscapes can easily be exported to a 

wide range of connectivity tools and individual-based models to evaluate the consequences of 

different land management actions. STeLMAG has already been used to generate a selection of 

climate change adaptation strategies for a real UK landscape, allowing the use of an individual-

based model of animal population dynamics and dispersal to test impacts of different strategies 

on range shifting ability (see Synes et al., 2015). 

 

4.2.1 Software requirements 

STeLMAG requires ArcGIS 10.2 or above, and the spatial analyst extension (ESRI, 2013). It also 

requires the Python packages: NumPy and SciPy. 

 

4.3 Methods and features 

4.3.1 Tools 

The STeLMAG toolbox is divided into three tools: ExistingPatches, CustomPatches_Adjacent and 

CustomPatches_ExSitu. An example landscape (Figure 4.1) is used to illustrate the use of these 

tools. For a full list of parameter options, see Appendix A. 

 

4.3.1.1 ExistingPatches 

This tool applies land management actions to entire contiguous patches of a given habitat type, 

changing the habitat quality of the randomly selected set of patches. 

 

4.3.1.2 CustomPatches_Adjacent 

Existing habitat patches are expanded by the creation of new adjacent habitat patches. The sizes 

of new adjacent patches are defined by a beta distribution, the limits of which are defined by the 

user. For examples, see Table 4.1 - CustomPatches_Adjacent. 
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4.3.1.3 CustomPatches_ExSitu 

New habitat patches are created with no requirement for adjacency to existing habitat. The sizes 

of new patches are defined by a beta distribution, the limits of which are defined by the user (see 

Table 4.1 - CustomPatches_ExSitu, Positional rule: Random). The locations of new patches can 

optionally be controlled by setting minimum and/or maximum distances from existing patches 

(Table 4.1 - CustomPatches_ExSitu, Positional rule: 300 – 600 m buffer). 

 

Figure 4.1: The study landscape prior to any land management actions, as used by Watts et al. 
(2010). The red outline indicates the single habitat patch from which the hypothetical 
study species population was initiated. Movement costs determine the associated 
cost of movement through each habitat type for the study species.  
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Table 4.1: Example land management actions generated by the STeLMAG toolbox. 
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4.3.2 Tool outputs 

Each tool returns raster-based maps in the following categories: 

 a set of “change” rasters: binary maps indicating the areas in which the land management 

actions have been applied; 

 a “patch” raster prior to those changes: the contiguous areas of study habitat prior to 

land management actions, with each region/patch given a unique number; 

 a set of “patch” rasters after those changes: the contiguous areas of the study habitat 

after land management actions, with each region/patch given a unique number; 

 an optional set of “transition” rasters: indicating the temporal transition of habitat 

quality, as defined by the user (Figure 4.2). 

 

Figure 4.2: Illustrative example of temporal habitat quality transitions. These examples are to 
demonstrate possible uses of the STeLMAG toolbox, not actual habitat quality 
transitions. If temporal habitat quality transitions are provided, the STeLMAG toolbox 
generates a set of rasters to represent these transitions.  

 

 

4.4 Example 

The STeLMAG toolbox was applied to a small section (measuring 9.79 x 6.19 km; ~6,060 ha at 10 

m resolution) of highly anthropogenic landscape (Figure 4.1) as used previously by Watts et al. 

(2010). 
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For each strategy, a total of 200 ha of land management actions were applied to the landscape in 

either of two different patch size distribution scenarios: patches were 1 to 3 ha in size, or patches 

were 5 to 10 ha in size. The strategies tested were: 

 to expand existing woodland patches (using the CustomPatches_Adjacent tool – see Table 

4.1); 

 to create new woodland patches in spatially randomised locations in the landscape (using 

the CustomPatches_ExSitu tool – see Table 4.1); 

 to create new woodland patches in spatially randomised locations in the landscape, but 

restricted to a zone of between 300 and 600 m from existing woodland patches (using the 

CustomPatches_ExSitu tool – see Table 4.1). 

(Note: the ExistingPatches tool was not used, but see the Improve-In-situ strategy from Synes et 

al. (2015) for an example.) Ten replicate landscapes were created for each patch size distribution 

(two) within each strategy (three), resulting in 60 new landscape configurations. 

 

A hypothetical species inhabiting a woodland network was modelled using RangeShifter (Bocedi 

et al., 2014a), an individual-based model of population dynamics and dispersal, and 

parameterised based on the species defined in example 2 from that paper. The same 

parameterisation was used as the female-only model, but habitat specific probabilities of 

mortality were also included, matching the final section of their example. For each simulation, the 

species was initialised in the same single patch (see Figure 4.1). 

 

Twenty replicate simulations were run in RangeShifter for each of the 61 landscapes (the original 

landscape plus 60 new landscape configurations), with each simulation lasting for 100 years. 

Patch occupancy in the final simulation year was calculated (1) based on all habitat patches, and 

(2) based only on those patches present in the original landscape. Temporal habitat quality 

transitions were not defined, as the use of dynamic landscapes is not currently available in 

RangeShifter. However, it is anticipated that this will be a key future usage of STeLMAG, since 

habitat succession is an important driver of meta-population dynamics (Wilcox et al., 2006) but 

has rarely been considered in ecological models. 

 

All tested habitat management strategies resulted in greater occupancy of the original habitat 

patches (Figure 4.3). This is not surprising given that 200 ha of additional habitat was created in 
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each strategy. However, the gain in occupancy varied between strategies, demonstrating the 

importance of the different spatial rules used. The Adjacent strategy resulted in the largest gain in 

occupancy whilst the Random strategy resulted in the smallest gain. Since the Random strategy 

has no spatial restrictions, there is a greater probability of new habitat patches being created in 

locations where they will not improve connectivity. The Ex-situ strategy demonstrates the 

improvements that can be made to habitat connectivity when habitat creation is restricted to 

specific distances around existing habitat patches, improving the chance of new habitat being 

used as “stepping stone” features. The simulation results also indicate that the size distribution of 

new patches can influence their benefit for habitat connectivity (e.g. Adjacent and Ex-situ 

strategies, Figure 4.3), but a more detailed analysis would be needed to make any further 

conclusions about these differences. 

 

Figure 4.3: Landscape metrics and RangeShifter simulation results for the original landscape, and 
the ten replicate landscapes for each patch size distribution (1-3 ha and 5-10 ha) 
within each land management strategy (Adjacent, Random and Ex-situ 300-600 m). 

 
 
 
 

 

 

 
Landscape metrics 

Original Adjacent Random Ex-situ 
300-600 m 

1-3 ha 5-10 ha 1-3 ha 5-10 ha 1-3 ha 5-10 ha 

No. replicate landscapes 1 10 10 10 10 10 10 

Woodland area (patches > 1 
ha) 

202.67 402.67 402.67 402.67 402.67 402.67 402.67 

No. woodland patches (> 1 
ha) ± SD 

50 46.2 ± 
1.14 

44.5 ± 
1.08 

171.8 ± 
3.52 

75.6 ± 
2.63 

186.2 ± 
1.40 

82.7 ± 
0.95 

Mean woodland size 
(patches > 1 ha) ± SD 

4.05 ± 
3.66 

8.72 ± 
7.28 

9.05 ± 
9.43 

2.34 ± 
2.56 

5.33 ± 
4.0 

2.16 ± 
2.22 

4.87 ± 
3.04 
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4.5 Conclusion 

The development of STeLMAG was motivated by the work in Chapter 5, and the lack of existing 

tools with the functionality of this toolbox. Chapter 5 moves on to use an agent-based model of 

population dynamics and dispersal to investigate the potential for different climate change 

adaptation strategies to assist species range shifting. Population dynamics and dispersal have 

rarely been considered in previous SDM research. Whilst Chapter 5 is a purely process-based 

model, it is expected that future studies will integrate this methodology with correlative SDM 

approaches. In order to systematically generate a set of climate change adaptation strategies for 

this work, a toolbox was required capable of replication based on a set of spatial and area-based 

rules. The STeLMAG toolbox was used to replicate a set of climate change adaptation strategies 

across six different landscapes. Chapter 5 presents the work for one of these landscapes. 

 

4.6 Software availability 

The STeLMAG GIS toolbox is open-source and freely available here: 

http://www.arcgis.com/home/item.html?id=ad369e24395f4eed9e919b05795df1cd 

 

 

http://www.arcgis.com/home/item.html?id=ad369e24395f4eed9e919b05795df1cd
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Chapter 5: A multi-species modelling approach to examine 

the impact of alternative climate change adaptation 

strategies on range shifting ability in a fragmented 

landscape 

5.1 Abstract 

An individual-based model of animal dispersal and population dynamics was used to test the 

effects of different climate change adaptation strategies on species range shifting ability, namely 

the improvement of existing habitat, restoration of low quality habitat and creation of new 

habitat. These strategies were implemented on a landscape typical of fragmentation in the United 

Kingdom using spatial rules to differentiate between the allocation of strategies adjacent to or 

away from existing habitat patches. The total area being managed in the landscape was set at 

realistic levels based on recent habitat management trends. Eight species were parameterised to 

broadly represent different stage structure, population densities and modes of dispersal. 

Simulations were initialised with the species occupying 20% of the landscape and run for 100 

years. As would be expected for a range of real taxa, range shifting abilities were dramatically 

different. This translated into large differences in their responses to the adaptation strategies. 

With conservative (0.5%) estimates of the area prescribed for climate change adaptation, few 

species display noticeable improvements in their range shifting, demonstrating the need for 

greater investment in future adaptation. With a larger (1%) prescribed area, greater range shifting 

improvements were found, although results were still species-specific. It was found that 

increasing the size of small existing habitat patches was the best way to promote range shifting, 

and that the creation of new stepping stone features, whilst beneficial to some species, did not 

have such broad effect across different species. 

 

5.2 Introduction 

Climate change is expected to have increasingly detrimental effects for biodiversity, reducing 

available habitat (Huntley et al., 2008) and increasing extinction risk for many species (Thomas et 

al., 2004). Species distribution modelling studies have shown that the environmental niches of 

species will shift polewards under climate change (Parmesan et al., 1999; Walther et al., 2002; 
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Hickling et al., 2006; Chen et al., 2011), meaning that existing conservation areas are likely to 

become less suitable for many of the species that currently occupy them (Carroll et al., 2010; 

Araújo et al., 2011). Furthermore, there is growing concern that habitat fragmentation, which is 

already a key factor in global biodiversity declines (Wilcox and Murphy, 1985), may further reduce 

species’ abilities to shift their ranges (Fahrig, 2003; Hansen and Hoffman, 2011). These impacts 

from climate change and habitat fragmentation need to be considered in unison to fully 

understand the impacts on biodiversity (Opdam and Wascher, 2004; Barbet‐Massin et al., 2012a). 

 

The selection of conservation areas generally focuses on balancing the number and size of habitat 

patches (Hodgson et al., 2009), and the representativeness of the desired habitats (Margules and 

Pressey, 2000; Thorne et al., 2011). More recently there has been a shift towards increasing 

connectivity to facilitate natural adaptive responses and resilience (Williams et al., 2005; Heller 

and Zavaleta, 2009; Hansen and Hoffman, 2011), allowing species to track their climatic niche 

(Heller and Zavaleta, 2009; Araújo et al., 2011). 

 

A number of empirical studies have demonstrated that habitat corridors, stepping stones and 

permeable matrix features can help species move through fragmented landscapes (e.g. Aars and 

Ims, 1999; Fischer and Lindenmayer, 2002; Haddad et al., 2003; Haddad and Tewksbury, 2005; 

Robertson and Radford, 2009), but their effectiveness is variable and species-specific (Baum et al., 

2004; Prevedello and Vieira, 2010; Humphrey et al., 2014). In addition, it is important to 

distinguish between foraging behaviour and dispersal behaviour, and between individual 

movements and population level benefits (which is not necessarily an implied result - Gilbert-

Norton et al., 2010). Hodgson et al. (2011a) found that evidence for the benefits of habitat 

corridors, stepping stones and matrix improvements was weaker in comparison to the range 

expansion benefits provided by increasing habitat area, quality or aggregation. 

 

Whilst previous studies have compared alternative climate change adaptation and reserve design 

strategies, they have often used simplistic models of dispersal (e.g. no dispersal versus universal 

dispersal, (Araújo et al., 2004); generic dispersal kernel across all study species, (Mokany et al., 

2013)), or simplistic theoretical landscapes (e.g. binary habitat classification (Kinezaki et al., 2010); 

fractal landscapes (Hodgson et al., 2012); randomly generated fragmentation (Bocedi et al., 

2014b); habitats represented as nodes in a network (Schoon et al., 2014)). Whilst these studies 

provide important theoretical insights, there is also a need to combine greater detail in dispersal 
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and population dynamics with more realistic landscape configurations. Another important 

consideration is for studies to broaden the representation of species, since reserve design focused 

on a single species is unlikely to provide community-wide benefits (Moilanen et al., 2005; Carroll 

et al., 2010). Hodgson et al. (2011b) studied the effects of climate change adaptation strategies on 

the range shifting of a selection of species types in a real landscape, using a modified version of 

the Incidence Function metapopulation model (Hanski, 1994). Further studies are required, using 

more detailed models of dispersal and population dynamics, to test these and other possible 

climate change adaptation strategies on a range of species in real landscapes. 

 

The modelling framework presented here, in contrast to many studies (although note Hodgson et 

al., 2011b), is applied to a real landscape and aims to represent climate change adaptation 

strategies at achievable scales (both in terms of total area prescribed for adaptation action and 

the size distribution of individual actions). Multiple species are separately modelled, with realistic 

traits and the incorporation of population dynamics and dispersal behaviour, but without 

considering biotic interactions. This research aims to inform the prioritisation of landscape-scale 

climate change adaptation strategies in order to conserve biodiversity and allow it to adapt to a 

changing climate. The study determines the relative impact of different adaptation strategies on 

the population dynamics and range-shifting potential for a number of species. The results give 

insights into the species-specific nature of adaptation strategy success, the importance of the 

spatial location of adaptation strategies, and the influence of the quantity of habitat change on 

their effectiveness. 

 

5.3 Methods 

5.3.1 Landscape 

The study landscape was a 20 km x 50 km region extracted from UK Landcover Map 2007 data 

(Morton et al., 2011) and gridded at 20 m cell resolution (Figure 5.1). The landscape is dominated 

by agriculture (~66% by area), with broadleaved woodland making up only ~8% of the total area, 

and represents typical fragmentation comparable with the UK national average: 50% agriculture, 

6% broadleaved woodland (Morton et al., 2011). The remainder of the landscape is made up of 

semi-natural habitat (~16%), coniferous woodland (~4%) and built up areas (~6%). Broadleaved 

woodland was defined as the breeding habitat for the study species, and other habitat types 

formed the inter-patch matrix, each having its own associated movement cost. 
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Figure 5.1: The study landscape, dominated by agriculture (~66% by area), with broadleaved 
woodland making up ~8% of the total area. The remainder of the landscape is made 
up of semi-natural habitat (~16%), coniferous woodland (~4%) and built up areas 
(~6%).  

 
 
 
 

 
 

 

 

 

5.3.2 Climate change adaptation strategies 

A number of climate change adaptation strategies were applied to the study landscape as defined 

by Oliver et al. (2012), namely: (i) improvement of existing habitat, (ii) restoration of low quality 

habitat, and (iii) creation of new habitat (Table 5.1). The improvement strategy increased the 

carrying capacity of existing broadleaved woodlands by 10%. Although habitat quality does not 

always correlate with population density (Van Horne, 1983), there are many examples of quality 

having a positive correlation with abundance for butterflies (Pöyry et al., 2009; Thomas et al., 

2011), small mammals (Peles and Barrett, 1996; Haughland and Larsen, 2004; Corbalán et al., 

2006) and birds (Lloyd, 2008). Thus the simplification and generalisation of habitat quality across 

species is considered a reasonable representation of current knowledge of the potential effects of 

Land cover (movement costs)

Broadleaved woodland (cost 1)

Dwarf shrub heath (cost 10)

Coniferous woodland, fen marsh and swamp (cost 25)

Semi improved grassland (cost 100)

Improved grassland, arable, water (cost 1000)
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improving existing breeding habitat. The restoration strategy represents the conversion of 

unsuitable non-broadleaved woodland (i.e. conifer), which was adjacent to broadleaved 

woodland, into suitable breeding habitat. The creation strategy was split into three sub-categories 

based on different spatial rules: (a) adjacent to existing habitat, (b) randomly within the 

landscape, to act as stepping stones, or (c) adjacent to small patches (defined as < 3 ha). Under 

each creation strategy new patches of habitat were formed from an initial cell (pixel) in the 

correct spatial location (Table 5.1). In order to create realistic woodlands, the new habitat patch 

was then expanded from these starting cells to reach the desired patch size derived from the size 

frequency distribution of existing broadleaved woodlands in the study landscape. 

 

Table 5.1: The climate change adaptation strategies, as collated by Oliver et al. (2012), which were 
applied to the study landscape. 

Name Details 

i. Improve-In-situ Existing habitat patches are improved (e.g. plant diversity increased, 
or non-desirable plant species removed), increasing their carrying 
capacity. 

ii. Restore-Adjacent Existing low quality patches which are not currently suitable 
breeding habitat and are adjacent to existing suitable breeding 
habitat, are improved to become suitable breeding habitat. 

Iiia. Create-Adjacent New habitat patches are created within improved grassland and 
arable landcover types, adjacent to existing suitable breeding 
habitat. 

Iiib. Create-Random New habitat patches are created within improved grassland and 
arable landcover types, with no rule for adjacency to existing 
suitable breeding habitat. 

Iiic. Create-AdjacentSmall New habitat patches are created within improved grassland and 
arable landcover types adjacent to existing suitable breeding habitat 
below a size threshold of 3 ha. 

 

Two plausible scenarios of the area prescribed for climate change adaption actions were used: (1) 

500 ha (0.5% of the landscape), representing a conservative level of change; (2) 1,000 ha (1% of 

the landscape), representing a more ambitious level of change. These scenarios relate to the 

observed change in woodland area in the UK from 9% of total land area in 1980 to 12.9% in 2014 

(Forestry Commission, 2014a). However, these values do not differentiate between broadleaved 

and conifer planting. Furthermore, due to limitations of land ownership and funding, the rate of 

woodland planting has decreased in recent years. Since 2009, an average of 82 km2 of 

broadleaved woodland were planted in the UK each year, with 58% of this planting occurring in 

Scotland (Forestry Commission, 2014b). If this rate were maintained for the next 15 years, this 

would equate to 0.5% of UK land area being planted with new broadleaved woodland. Since the 
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strategies are applied to the landscape using a stochastic spatial algorithm, ten replicates of each 

of the five strategies (see Table 5.1) were created. At the 1% level of prescribed change, the 

Restore-Adjacent strategy was not possible due to insufficient conifer woodlands adjacent to 

broadleaved woodlands in the study landscape. 

 

5.3.3 Species 

A number of artificial species were modelled, parameterised to represent a range of taxa having 

different population densities, stage structuring, dispersal abilities and lifespans (Table 5.2 and 

Appendix B). The species are not designed to represent real species accurately, but rather to 

represent a broad range of realistic characteristics, including density dependence and accounting 

for inter-specific variation in behaviour during transfer through the landscape matrix. 

 

Table 5.2: Species characteristics (SMS – Stochastic movement simulator (Palmer et al., 2011), a 
mechanistic model of dispersal; Kernel – standard dispersal kernel). For detailed 
RangeShifter parameter values, see Appendix B.  

 
Group 

Dispersal 
ability (D) 

Abundance / 
Population 
density (P) 

Reproduction 
(S) 

Dispersal 
method 

Name (letters 
and symbols 
indicate key 
species 
parameters) 

Invertebrates Low (--) Very high (++) Asexuala (-) SMS Invert_D--P++S- 

Medium (-) High (+) Asexuala (-) SMS Invert_D-P+S- 

Medium (-) Very high (++) Asexuala (-) Kernel Invert_D-P++S- 

Medium (-) Very high (++) Sexual (+) Kernel Invert_D-P++S+ 

Mammals Medium (-) Medium (-) Sexual (+) SMS Mam_D-P-S+ 

High (+) Low (--) Sexual (+) SMS Mam_D+P--S+ 

Birds High (+) Medium (-) Sexual (+) SMS Bird_D+P-S+ 

Very high (++) Low (--) Sexual (+) SMS Bird_D++P--S+ 
a In this context, an ‘asexual’ species does not necessarily imply asexual reproduction. This 
form of simulation may represent invertebrate species which mate upon emergence into 
the adult stage within the natal patch, and then fertilised females disperse and are able to 
found a new colony alone; hence dispersal of males does not need to be modelled. 

 

For species modelled with dispersal kernels (see Table 5.2 and Appendix B), distinct breeding 

habitat patches were defined as contiguous areas of habitat only. For species modelled with 

mechanistic dispersal, for which a perceptual range was estimated, patches were defined using a 

least-cost network methodology (Watts et al., 2010). This approach applies a cost distance 
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analysis to generate a buffer around each distinct habitat patch, using the permeability of the 

surrounding matrix (taken from the Delphi analysis of Eycott et al. (2011)) as the cost values and 

the estimate of perceptual range as the maximum distance. Where multiple distinct patches were 

contained within a buffer, these were defined as a single home range patch. 

 

5.4 The model 

Species were simulated in the study landscape using RangeShifter (Bocedi et al., 2014a), a 

platform for spatially explicit individual-based modelling of population dynamics and dispersal. An 

important feature of RangeShifter is that dispersal is modelled in terms of its three fundamental 

phases: emigration, transfer and settlement. This level of detail in dispersal is often neglected in 

simulation models, but is crucial for determining species responses to environmental change and 

therefore for conservation planning (Travis et al., 2013). Moreover, RangeShifter incorporates 

optional mechanistic modelling of transfer limited by perceptual range using the ‘stochastic 

movement simulator’ (SMS; Palmer et al., 2011); simulating perceptual range in individual-based 

models has been demonstrated as a crucial factor in differentiating movement success through a 

fragmented landscape (Pe’er and Kramer-Schadt, 2008). 

 

5.4.1 Simulation run-in 

Owing to the stochastic nature of the population dynamics and dispersal in RangeShifter, “run-in” 

simulations are important to determine a stable starting population for each species. For run-in 

simulations, the landscape was reduced to the southern 20% only, and each species was initialised 

at half its carrying capacity in every habitat patch. Ten replicates of the simulations were run for a 

period of 50 years each, and the final patch occupancy and mean density of each species was 

used to initialise all subsequent simulations from which the results in this paper were gathered. 

This initialisation in the southern 20% of the study landscape represents the population prior to a 

northward shift. 

 

5.4.2 Main simulations 

Ten replicate simulations were run in RangeShifter for each of the eight species on the full 

landscape to generate baseline measures of range shifting. Range shifting was measured as the 
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northern edge of the most northern patch containing an individual for asexual species, or a 

breeding pair for sexual species. Each replicate was initialised in the specific patches and at the 

mean population density from the run-in simulations in the southern 20% of the landscape only, 

and run for 100 years. For the ninety landscape adaptation scenarios created (two quantities for 

area of change; five adaptation strategies at 0.5%, four adaptation strategies at 1%; ten replicates 

of each), and for each of the eight species, ten replicate 100-year simulations were run (initialised 

as above). 

 

5.5 Results 

The baseline simulations for each species on the original landscape demonstrated the huge 

disparity in range shifting potential that results from differences in species characteristics (Figure 

5.2). Whilst some species were able to shift their range through almost the entire landscape 

(Bird_D++P--S+), others barely expanded their range by more than 5 km (Mam_D+P--S+, Invert_D-

P++S+) or 10 km (Mam_D-P-S+, Bird_D+P-S+, Invert_D-P++S-). The species most successful at range 

shifting in the original landscape were those with a very high dispersal ability and low population 

density (Bird_D++P--S+) or a high to very high population density and low to medium dispersal 

ability (Invert_D--P++S-, Invert_D-P+S-). 
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Figure 5.2: Time series of range shifting in the baseline simulations  (unchanged landscape), 
measured by the northern edge of the most northern patch containing an individual 
for asexual species, or containing a breeding pair for sexual species. Each line 
represents the mean of 10 replicates (replicates within RangeShifter).  

 

 

The difference between baseline range shifting and range shifting in the managed landscapes 

showed a variety of responses dependent on the species and management strategy (Figure 5.3). 

At 0.5% habitat change (Figure 5.3a), some species showed very little response to any of the 

adaptation strategies (Mam_D-P-S+, Bird_D+P-S+, Invert_D-P++S-). There was evidence that the 

Create-AdjacentSmall strategy can be one of the best for increasing the range shifting distance for 

some species (Invert_D--P++S-, Bird_D++P--S+); Restore-Adjacent also provided a clear increase in 

range shifting for some species (Mam_D+P--S+, Invert_D-P++S+). There were also species-specific 

benefits from the Create-Random (Invert_D--P++S-) and Create-Adjacent (Bird_D++P--S+) strategies. 

Total gains over the baseline range shifting after 100 years were small, with the greatest gains for 

Bird_D++P--S+ under the Create-Adjacent strategy and Create-AdjacentSmall strategy (Figure 5.3a 
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and Figure 5.4). Invert_D-P++S+ made large gains under the Restore-Adjacent strategy. All other 

species gained 1 km or less in range shifting from any of the habitat management strategies over 

the 100 years at 0.5% habitat change (Figure 5.3a and Figure 5.4). 

 

Increasing the percentage of habitat change from 0.5% to 1% led to a consistent, but not 

guaranteed, increase in range shifting distance for the creation strategies (Figure 5.4). Differences 

were still very limited for some species (Mam_D-P-S+, Invert_D-P++S-), and the Create-Random 

strategy resulted in a lower range shifting distance for some low to medium dispersal ability 

species (Invert_D--P++S-, Invert_D-P++S+) when increasing the percentage of habitat change from 

0.5% to 1% (Figure 5.4). Whilst the difference in range shifting distance from their baseline was 

different between species, the Create-AdjacentSmall strategy gave the greatest increase in range 

shifting distance for all species except Mam_D-P-S+ at the higher percentage of habitat change 

(Figure 5.4). Create-Adjacent also increased range shifting distance for Bird_D++P--S+ and Invert_D-

P++S-, whilst Create-Random increased range shifting distance for Bird_D+P-S+ (Figure 5.3b and 

Figure 5.4). 
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Figure 5.3: Time series (for each species) of the difference in range shifting response between the 
adaptation strategy (with (a) 0.5% and (b) 1% habitat change) and the baseline 
simulation (unchanged landscape), measured by the northern edge of the most 
northern patch containing an individual for asexual species, or containing a breeding 
pair for sexual species. Each line represents the mean of 100 replicates (10 strategy 
replicates x 10 RangeShifter replicates). Note that fluctutations in “Difference from 
baseline y coord” are the result of both baseline range shifting (where the fluctuation 
will be visible across every adaptation strategy in the species’ graph), and adaptation 
strategy range shifting (where the fluctuation will only be visible in the relevant 
adaptation strategy in the species’ graph).  

a) 
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b) 
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Figure 5.4: Difference in range shifting response between five adaptation strategies and the 
baseline simulation (unchanged landscape), measured by the location after 100 years 
of the northern edge of the most northern patch containing an individual for asexual 
species, or containing a breeding pair for sexual species. Error bars represent 
standard error from 100 replicates (10 strategy replicates x 10 RangeShifter 
replicates). The Restore-Adjacent strategy was not possible with 1% prescribed for 
change due to insufficient conifer woodlands adjacent to broadleaved woodlands. 

 

5.6 Discussion 

It is often suggested that conservation strategies and nature reserve design should aim to provide 

habitat and connectivity measures that will benefit as many species as possible (Moilanen et al., 

2005; Nicholson et al., 2006; Carroll et al., 2010). This work demonstrates how difficult it can be to 

target multiple species when resources for climate change adaptation are limited. At the 0.5% 

(500 hectares) level of change, the improvements in range shifting are unremarkable, with some 

species achieving no increase in their range. In fact, an adaptation strategy can benefit range 

shifting for some species, but be detrimental for others. For example, the Restore-Adjacent 

strategy (Figure 5.4) was beneficial for three species (Invert_D-P++S+, Mam_D+P--S+ and Bird_D++P--

S+), but detrimental for others (Invert_D-P+S- and Invert_D-P++S-); the strategy was neutral or only 

slightly beneficial for the remaining species. When the adaptation strategy is focused on 

increasing the quality or area of existing habitats independent of their size (Improve-In-situ, 

Restore-Adjacent, Create-Adjacent), species with high to very high population density and only 

low to medium dispersal ability (Invert_D--P++S-, Invert_D-P+S-) may make smaller gains than they 

would have made in the unchanged landscape (Figure 5.3). No species makes more than a 4.3 km 

increase in their range compared with the baseline (i.e. range shifting in the unchanged 

landscape), and most species gain no more than 1 km over the 100 year period at the 0.5% level 

of change (Figure 5.4). However it is important to note that this result may illustrate one of the 

problems with focusing on connectivity as a measure of the success of conservation actions. 
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Conservation objectives strongly influence which habitat configuration will be most suitable 

(Margules and Pressey, 2000). Some strategies may be better suited to increasing in-situ 

population size, for example strategies that increase the size or quality of existing habitat. The 

proximity of new habitat to existing habitat can influence the lag in habitat growth and 

restoration, and may have a significant effect on the time it takes for new habitat to be colonised 

(Huxel and Hastings, 1999). This factor is rarely considered in reserve design or climate change 

adaptation studies, and was also not modelled in this study. Future work should incorporate 

habitat growth and restoration lag to determine its influence on the efficacy of different climate 

change adaptation strategies. 

 

Increasing the percentage of habitat change from 0.5% to 1% leads to greater increases in range 

shifting distances (Figure 5.4), demonstrating that one of the key factors in improving habitat 

connectivity is simply increasing the amount of habitat. This suggests that there are no cheap or 

shortcut solutions. Stepping stones (the Create-Random strategy) proved only to be one of the 

best strategies for two species (Invert_D--P++S- - Figure 5.3a; Bird_D+P-S+ - Figure 5.3b) that have 

vastly different population densities and dispersal abilities, both of which contribute towards a 

species’ gap-crossing ability (e.g. Creegan and Osborne, 2005; Awade and Metzger, 2008; 

Robertson and Radford, 2009). If the total habitat area remains low, the creation of small stepping 

stone features cannot fix centuries of habitat fragmentation. Different species will benefit from 

alternative strategies and have varying thresholds for the size of gaps that they can cross, 

meaning that the dominant use of a single strategy will not provide connectivity for all species, 

especially where the amount of habitat change is low. Mokany et al. (2013) demonstrated the 

importance of using a balanced set of strategies, rather than focusing exclusively on connectivity, 

aggregation or representativeness. This study adds further evidence to this argument, but also 

demonstrates that in terms of range shifting, not all climate change adaptation strategies are 

equal; some provide greater benefits across broader groups of species (e.g. Create-AdjacentSmall 

- Figure 5.4). Even though making changes to 1% of the landscape did increase range shifting, the 

improvement is not huge, and species that exist in medium population densities and with medium 

dispersal ability will still struggle (e.g. Mam_D-P-S+ - Figure 5.4). It is important to note that this 

study used only one landscape for all simulations so perhaps there are landscape specific effects. 

Landscape configuration is known to play a crucial role in determining the success of different 

habitat management strategies (Hodgson et al., 2011a; Mokany et al., 2013), so an important 

future area of research is to test how influential this effect was over the results of this study. 
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The strategy that gives the most consistent benefit across species is the creation of new habitat 

adjacent to existing small patches (Create-AdjacentSmall). Hodgson et al. (2011b), on the other 

hand, found that their “random” (new habitat added to cells chosen at random) and “even” (new 

habitat added to cells with lowest connectivity) strategies gave the most consistent increases in 

range expansion speed, and that “aggregation” was the least effective at facilitating range 

expansion. Whilst these findings are in stark contrast to the work in this chapter, it is important to 

note some key differences between the studies. Firstly, the two studies are based on different 

landscapes and at different scales; as discussed above, landscape configuration is an important 

factor in the success of habitat management strategies. Secondly, different adaptation strategies 

are used and whilst some are similar, none is identical; future work could study the effect of small 

variations in the way adaptation strategies are implemented. Thirdly, different models are used 

for the species populations; future studies to compare results from different population and 

dispersal models would be useful. The key is that a balanced approach should be used whereby 

different strategies are used for different regions and species (Mokany et al., 2013). This study 

demonstrates that increasing the size of small patches may be the best method for improving 

connectivity for a number of different species simultaneously. In a world where conservation is 

increasingly restricted by land ownership and where budget is a limiting factor, focusing on 

increasing the size of small patches may be the best and most realistic option. However, 

landscape specific studies are crucial to ensure that the adaptation strategies chosen are best 

suited to the configuration of existing habitat and to the target species. 
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Chapter 6: Coupled socio-ecological system modelling: 

feedback mechanisms, the emergence of spatial 

patterns and the importance of ecology in land-use 

change models 

6.1 Abstract 

The study of socio-ecological systems is of crucial importance for the development and usage of 

environmentally sustainable practices. Integrated modelling approaches are increasingly used to 

help us understand the interactions and feedbacks within such systems. A socio-ecological system 

model was developed through the coupling of two existing modelling platforms: CRAFTY, an 

agent-based model of land-use dynamics, and RangeShifter, an individual-based model of animal 

population dynamics and dispersal. A hypothetical case-study was established to simulate animal 

pollinators in a changing agricultural landscape, and to explore the coupled model system 

dynamics. The coupled model (with bi-directional system interactions) identified more severe 

declines in crop supply and pollinator populations than an uncoupled version (unidirectional 

system interactions) that ignored the interaction of pollinator ecology and population dynamics 

with crop productivity in the landscape. The spatial properties of the system also diverged under 

the two versions, with particular mechanisms in the coupled version leading to the emergence of 

spatial clusters of land-uses that neither support nor require animal pollinators. This study 

demonstrates the importance of considering species ecology in socio-ecological system modelling; 

ignoring it neglects a potentially crucial determinant of future land-use. 

 

6.2 Introduction 

The growing impact of humans on their environment is leading to an ever increasing challenge to 

achieve global sustainability. To move towards sustainability, it is crucial that we develop a better 

understanding of the complexity of human-environment interactions (Alberti et al., 2011). 

Research and management efforts towards this goal often focus on either social or environmental 

issues, potentially missing crucial system interactions (Liu et al., 2015). To improve our 

understanding, it is important that research increasingly spans multiple scientific disciplines, 

integrating models from different fields of research (Voinov and Shugart, 2013). This is especially 
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true when there are dynamic interactions between multiple systems, because interventions and 

policy decisions may have unexpected consequences. Well-intentioned actions can sometimes 

have negative impacts that are difficult to predict, or even identify as a possibility (see Malawska 

et al., 2014). 

 

Individual- or agent-based modelling (hereafter ABM) is becoming a widely accepted method of 

studying underlying interactions in large systems, their impacts upon system-level properties, and 

decision making scenarios (at both an individual and policy level) (Farmer and Foley, 2009; Grimm 

and Railsback, 2013). In ecology, an important advantage of ABMs over aggregated population 

models is that they can utilise knowledge of mechanisms and processes at an individual level, to 

help us understand potential system-level outcomes (Batchelder et al., 2002). Similarly in social 

science and land system science, ABMs have become increasingly popular in part because they 

have allowed for differential equations at the population level to be replaced by decision rules of 

low level entities (Matthews et al., 2007). ABMs have also been used to study the responses of 

human decision making to environmental changes. For example, in a study on the Anasazi people 

of southwest USA, Axtell et al. (2002) used an ABM which simulated climatic and environmental 

changes to investigate possible explanations for their population decline. ABMs have also been 

used to study the response of farmer decision making to climate change, and the impacts on land-

use (e.g. Bharwani et al., 2005; Malanson et al., 2014). 

 

In ecology, ABMs are increasingly used to study animal movement in representations of real 

landscapes (Tang and Bennett, 2010), demonstrate that model outputs can exhibit similar 

patterns to field data (Watkins et al., 2015), help identify threats to populations (Wiegand et al., 

2004), test the efficacy of conservation strategies (Synes et al., 2015), and test the impacts of 

land-use scenarios (Gimona et al., 2015). Nevertheless, few studies of species populations 

consider changes in landscapes through time. Instead, populations are simply simulated in 

landscapes with and without prescribed environmental changes (e.g. Imron et al., 2011; Gimona 

et al., 2015; Synes et al., 2015). While there have been ABM studies of the ecological impacts of 

temporal variability in environmental conditions, these are rare and have generally focussed on 

direct changes to foraging and migratory behaviour rather than the long-term impacts on 

populations. For example Yamanaka et al. (2003) studied the sex-pheromone-orientated 

movement patterns of male moths under changing wind-direction, and Bennett and Tang (2006) 

studied elk Cervus canadensis migratory behavioural responses to changes in snow cover and 

vegetation biomass based on previous winter conditions. 
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In general, models of ecological processes incorporate a representation of the environment, but 

where human impacts are included, they are often based on a prescribed set of changes in land 

management (Bithell et al., 2008; Luus et al., 2013). On the other hand, models of social or land-

use systems and their environmental impacts tend to incorporate a simplistic or static 

representation of the environment (Veldkamp and Verburg, 2004). ABMs of land-use and land-

cover change often use land-use as a proxy for the available ecosystem services, and ecological 

processes are rarely represented as drivers of human decision making (Luus et al., 2013). 

However, there is a growing recognition of the importance of interactions between ecological 

processes and the responses of humans in determining land-use (Liu et al., 2007). 

 

Previous models of land-use agents interacting with the landscape have created a human-

environment link through hydrological processes (Becu et al., 2003; Schreinemachers et al., 2010; 

Hu et al., 2015), soil nutrient flow (Matthews, 2006; Gaube et al., 2009; Schreinemachers and 

Berger, 2011; Marohn et al., 2012), timber harvesting (Evans and Kelley, 2008), and wildfire 

suppression (Hu and Sun, 2007). Socio-environmental system models have tended to focus on 

unidirectional interactions, with humans either acting as a driver or a user of the environment, 

but rarely both (Matthews and Selman, 2006; Filatova et al., 2013). Bi-directional feedback 

between humans and their environment are crucial, particular in the context of agriculture, where 

farming decisions can both depend on and impact upon the environment (Altieri, 1999; 

Lichtenberg, 2002). Models have also been developed to study socio-ecological interactions, 

although these have tended to focus on modelling habitat (e.g. Linderman et al., 2005; Monticino 

et al., 2007), rather than directly modelling the study species. Some socio-ecological systems have 

been developed which incorporate greater ecological detail, for example, modelling farmer and 

hunter agents and their interactions with a wintering duck population, determined as a function 

of land-use, time, water availability and hunting disturbance (Mathevet et al., 2003). Others have 

developed ABMs to study the interactions of farmer decision making with pest species, modelling 

the species through cellular automata (Rebaudo et al., 2011) or a spatial stochastic simulation 

(Carrasco et al., 2012). Polhill et al. (2013) coupled an ABM of land-use change with a species 

meta-community model, to investigate the effect of increasing government incentives to improve 

biodiversity. Their study identified non-linear responses of biodiversity to incentive policies, 

demonstrating the importance of coupling land-use and ecological models. For a review of 

applications of ABMs to environmental management, see Le Page et al. (2013).  
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Socio-ecological systems are inherently complex, often exhibiting non-linear behaviour, feedback 

mechanisms, time lags and shocks (Liu et al., 2007; Filatova and Polhill, 2012). Their complexity 

necessitates that sufficiently detailed models are developed (Matthews and Selman, 2006), but 

caution must also be used to ensure that the model does not contain more processes, parameters 

and functions than is necessary (Luus et al., 2013). Decision-makers have a general preference for 

simple explanations (Couclelis, 2002) that provide justification without needing to confront the 

intricacies of the system. In this context, striking an appropriate balance between simplicity and 

complexity is a major challenge. Evans et al. (2013) have recently suggested that a preference for 

excessively simple models may have limited progress in ecology, and that more complex models 

can in fact be more general. 

 

Socio-ecological system models can be developed either by coupling existing models, or by 

developing the combined model from the ground up. When existing models are coupled, 

parameters in one part of the model may become endogenous to the system as a whole, making 

it more difficult to discern causal relationships (Marohn et al., 2012) and to interpret results 

(Grimm et al., 2005). However, model coupling allows for separate validations to be carried out 

prior to complexity being added through model integration. Whilst many simulation models have 

previously combined social, economic and environmental components, few have incorporated 

dynamic interactions (Argent, 2004) and fewer still have incorporated those between land-use 

and ecology. No models have yet been created that integrate individual-level farmer decision 

making with individual-level wildlife responses (Malawska et al., 2014). The incorporation of 

individual-level species ecology into socio-ecological systems is important, because it is crucial in 

determining population dynamics and viability; the responses of species populations to farming 

practices can differ both between and within taxonomic groups (Malawska et al., 2014). 

 

Developing models of animal population dynamics, vegetation dynamics, land-use change or 

agricultural practices are significant challenges in their own right. Creating models that are 

integrated across these disciplines can become a huge undertaking. Broadly speaking, there are 

three different levels of model integration: loose coupling, where files are simply passed between 

the different models; tight coupling, where libraries are shared but the models remain separate; 

and full integration, where the models are combined into one system (Luus et al., 2013). At each 

of these levels, there are trade-offs between model complexity, computational time, 

programming effort and ownership issues (Bithell and Brasington, 2009). Another key 

consideration in the development of a socio-ecological system model is the temporal and spatial 
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scale at which the interacting systems operate (Malawska et al., 2014). This can be a challenge as 

social and ecological systems often operate and interact at different (or multiple) temporal and 

spatial scales (Janssen and Ostrom, 2006). 

 

In this work, two existing ABMs are loosely coupled and their application demonstrated with an 

abstract case study of pollinator populations in a landscape under pressure to increase food 

production. Previous studies on socio-ecological systems have modelled suitable habitat as a 

proxy for species presence (e.g. Linderman et al., 2005; Monticino et al., 2007); this study tests 

this assumption by comparing results when population dynamics are incorporated with results 

when only suitable habitat is considered. It is believed that this is the first study to integrate ABMs 

from different research disciplines, and therefore the first that demonstrates the dynamic 

feedback between a social land-use system and an ecological population model, both of which 

operate at the individual level. 

 

6.3 Case study 

A key socio-ecological system in the move towards sustainability is the interaction between 

agriculture and pollination. Approximately 75% of global food crops rely on animal pollination 

(Winfree, 2008). These crops account for 35% of global food crop production, and the level of 

animal pollinator dependence varies greatly between crops (Klein et al., 2007). Global decline in 

pollinators is a potential concern for food production; for example, Californian orchards produce 

over 80% of the world’s almonds, but rely almost exclusively on managed honeybees for 

pollination (Klein et al., 2012). Demand for food globally is projected to continue to rise, driven 

mainly by population growth (Valin et al., 2014). To meet this demand, agricultural intensification 

will continue to be required, but this creates a greater risk for pollinator populations (Klein et al., 

2012). In particular, managed honey bee populations have been in decline in recent years (Ellis et 

al., 2010; Potts et al., 2010; vanEngelsdorp and Meixner, 2010). Balancing the need for productive 

agricultural land-use with the need to conserve biodiversity (including bees) is a global challenge 

(Tscharntke et al., 2012). 

 

The aim of this work was to test the importance of feedback mechanisms between ecology and 

land-use. To do this, an example study was developed, focussing on a hypothetical pollinator 

species in an agricultural landscape with increasing pressure from demand for food. The 
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sensitivity of the system to both the variability in crop dependence on animal pollinators and 

variability in ecological parameters were assessed. 

 

6.4 Methods 

6.4.1 Model coupling 

RangeShifter (Bocedi et al., 2014a), an ABM of animal dispersal and population dynamics, was 

integrated with CRAFTY (Murray-Rust et al., 2014), an ABM of land-use dynamics. The integration 

was implemented through loose coupling, i.e. the models interact through file-sharing. Loose 

coupling is simple to implement in terms of programming time, but runtimes are slower, since 

both models create output files and load input files in each time-step. 

 

An important feature of CRAFTY is that instead of land-use types being used as proxies for 

ecosystem services, each pixel of land has a number of “capitals” representing the land’s potential 

for each available ecosystem service. Natural capitals are the stock of natural assets from which 

humans derive ecosystem services (Costanza et al., 1997), and their representation has previously 

been suggested as a key feature to study feedbacks in socio-ecological systems (Luus et al., 2013). 

The definition of a landscape through natural capitals gives greater realism, since it allows for two 

land parcels with the same land-use type to have different natural capitals and ecosystem service 

levels. It also means that agents can use ecosystem services to make decisions based on the 

environment, thus making CRAFTY suitable for integration with models of natural systems. For 

this case study, the pollinator population has a direct influence over the capital for crop 

productivity (i.e. crop productivity is reduced in locations without pollination). A change in crop 

productivity changes the competitiveness of the land-use agents, potentially leading to land-use 

change. 

 

RangeShifter operates on an annual time-step, whilst one time-step of CRAFTY incorporates a full 

set of agent decisions about land-uses that do not have a fixed timescale. RangeShifter was 

modified to call CRAFTY with updated capitals (based on the species distribution – see Section 

6.4.5), and to load the new landscape provided by CRAFTY each year. Two CRAFTY iterations were 

run for each year in RangeShifter to allow for initialisation and subsequent changes in the agent 

population. For the full integrated model workflow, see Figure 6.1. 
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Figure 6.1: Workflow diagram for the coupled RangeShifter and CRAFTY model. For specific 

workflow diagrams of RangeShifter and CRAFTY see their respective papers.  

 

 

6.4.2 Landscape 

An artificial landscape was created to allow for the simplistic representation of a scenario where 

demand for food (both meat and crops) is increasing but the production potential of the land has 

a finite limit. To define the landscape, capitals were created for each cell, selected from a uniform 

distribution (0 < 𝑥 ≤ 1). These capitals determine the productive potential of the land for 

different ecosystem services: crop productivity, livestock productivity, and forestry productivity. 

The “crop” is defined only as a generic crop since its reliance on pollination is one of the 

independent variables being tested; crop selection is not considered, and so all crop farmers 

produce the same crop. In this landscape of 100 x 100 cells (equating to a per-cell land unit size of 

25 ha at 500 m resolution), each cell could either be managed by a unique agent implementing 

one type of land use or left unmanaged. Agents belonged to the following types: high intensity 

crop farmers, low intensity crop farmers, high intensity livestock farmers, low intensity livestock 

farmers, foresters. Similar to a previous application of CRAFTY (Brown et al., 2014), high intensity 

farmers were defined with higher productivity than low intensity farmers, but greater sensitivity 

to the quality of the land. For the full CRAFTY parameter specification, see Appendix C.1. 
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6.4.3 Species 

The study species was a hypothetical pollinator, defined as unable to breed in high intensity 

livestock and high intensity crop farm cells, and subject to carrying capacities dependent on land-

use type (Appendix C.2). A female-only population model was used, thus assuming that males are 

non-limiting. Here, an ‘individual’ represented a single colony of pollinators rather than individual 

insects. The species’ population dynamics were modelled at the cell scale, i.e. the individuals 

(colonies) present in each cell represent a distinct population, and density-dependent emigration 

operated at this scale. A number of species parameters were varied, in a factorial design, to study 

their impact on model results: maximum fecundity, carrying capacity reduction factor, and the 

inclusion or exclusion of long-distance dispersal in the pollinator movement model (Table 6.1). For 

the full RangeShifter parameter specification, see Appendix C.2. 

 

Table 6.1: Ecological parameter variants used for different simulation runs. These parameter 
variations were run in a factorial design (i.e. 23 = 8 parameter combinations). See 
Appendix C.2 for full parameter details.  

Parameter Parameter variant 

Maximum fecundity 1.5 2 

Carrying capacity reduction 
factor 

50% 100% 

Long-distance dispersal Not included – only a 
single dispersal kernel is 
used 

Included – 10% chance that 
the long distance dispersal 
kernel will be used 

 

6.4.4 Model type: coupled or uncoupled 

To test the importance of incorporating population dynamics and the specific details of a species’ 

ecology into socio-ecological system modelling rather than using suitable habitat as a proxy for 

the species, two versions of each simulation were run. The coupled models include bi-directional 

feedback between land-use and pollinators, meaning that land-use affects habitat suitability for 

pollinator populations and that pollinator distributions affect crop productivity, changing the 

competiveness of land-use. The uncoupled models include only unidirectional feedback, meaning 

that land-use affects habitat suitability for pollinator populations, but pollinator distributions do 

not affect crop productivity. Instead, the uncoupled model assumes that all suitable habitat will 

contain pollinators which will provide pollination in the neighbourhood. 
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6.4.5 Pollination 

For each cell that contains a pollinator population, that cell and its eight cell neighbourhood are 

pollinated (i.e. a maximum pollinator foraging distance of 500 m is assumed – in an empirical 

study, Osborne et al. (1999) found that bumble bees have a mean foraging distance of 275 m, and 

a range of 70-631 m). Pollinated cells retain the full crop productivity capital value that was 

originally assigned to that cell (Section 6.4.2). In absence of pollination, crop yield is reduced by a 

factor, which takes a single value for each simulation. For each species parameterisation (Section 

6.4.3, Table 6.1) and each model type (Section 6.4.4), simulations were run varying the crop yield 

reduction factor from 0.1 (crop yield is reduced to 10% without pollination) to 0.9 in increments 

of 0.2. These values are representative of the variable dependence that different crops have on 

pollination (Klein et al., 2007). 

 

6.4.6 Simulation run-in 

The initial demand for crop produce was set at 2.5 x initial demand for livestock produce, 

approximately matching the proportions of world demand for crop commodities compared to 

livestock commodities (Valin et al. (2014), using UN historical data). A ‘spin-up’ CRAFTY simulation 

was run for 20 years, allowing the agents to achieve a stable spatial distribution at initial demand 

levels. The resulting land-use map (Figure 6.2) was used to initialise all of the main simulations 

(Section 6.4.7). The initial demand level was below the productive capacity of the landscape, 

allowing for a mixture of high and low intensity farming, and for 757 of the 10,000 cells to go 

unmanaged (Figure 6.2). 
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Figure 6.2: The land-use map used to initialise each simulation. The random distribution of land-
uses results from the independently randomised capital values across the cells.  

 

 

 
 

 

6.4.7 Main simulations 

Demand for services is defined exogenously to CRAFTY, from an assumed non-spatial population. 

The same demand curve was used for every simulation in this study, beginning with 10 years of 

constant demand to allow the pollinator populations and land-use agents to stabilise (this was 

required due to the differences in crop yield in absence of pollination). The 10 years of constant 

demand for food were followed by 50 years of linear annual increases resulting in a 74% increase 

in demand for both livestock and crop produce over the 50 year period (Figure 6.3), matching the 

mean increase projected by Valin et al. (2014) for 2050. The 10 years of constant demand are not 

included in the results since all simulations stabilise during this initial period. Demand for forests 

in the case study encompasses both demand for timber and the protection of forests for 

conservation, and decreases to zero by the end of the 50 year period. This represents a scenario 

in which forest protection is gradually reduced due to the increasing demand for food. It 

therefore assumes that no consideration is made for the natural capital of forests, and the 

ecosystem services they provide.  

 



Chapter 6 

89 

Figure 6.3: Demand levels used for each simulation. Demand for crop and livestock produce 
increase by 74% over 50 years; demand for forestry decreases to zero after 50 years.  

 

 

 

 

 

6.4.8 Measurement of spatial-autocorrelation 

The spatial auto-correlation of high intensity livestock farmers compared to other land-uses was 

measured using Moran’s I statistic. Moran’s I values close to 1 indicate a high level of clustering, 

values close to -1 indicate a high level of dispersion, and a value of 0 indicates a random 

distribution. Both observed and expected values are calculated and then a z-score and p-value are 

computed to test for a statistically significant difference.. Moran’s I values were calculated for the 

final landscape of every simulation, and also for every (annual) landscape for the coupled model 

simulations where crop dependence on pollination was 0.9. 

 

6.5 Results 

Simulation results demonstrated that both the coupled and uncoupled models captured the key 

dynamic of agricultural intensification driving declines in pollinator populations, with decreasing 

crop yield (in absence of pollination) leading to greater intensification and greater loss of 

pollinator populations (Figure 6.4a and b). As expected, the increasing demand for food in 

combination with a decreasing protection of forests led to the intensification and expansion of 

farming. However, this gradual intensification did not result in a steady increase in crop supply; 

instead, severe collapses in supply occurred as crop yield in absence of pollination decreased 

(Figure 6.4c). This decrease in crop supply is due to the decrease in the mean crop capital of high 

intensity crop farms as pollinator populations decline, again becoming more severe as crop yield 
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in absence of pollination decreases (Figure 6.4d). The mean crop capital of low intensity crop 

farms also decreases for every pollination scenario, demonstrating their lack of competitiveness, 

and their marginalisation to lower quality land (Figure 6.4e). The decreasing crop capital, caused 

by loss of pollinators, drives further intensification of the landscape, reducing pollinator habitat 

and driving further decreases in pollinator populations in a positive feedback loop. 
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Figure 6.4: Time-series behaviour of coupled and uncoupled models in terms of a) the 
intensification of crop farms; b) the percentage of suitable cells that are occupied by 
pollinator populations; c) total crop supply; d) mean crop capital of high intensity crop 
farms; and e) mean crop capital of low intensity crop farms. Line colours represent 
crop yield in absence of pollination. The shaded areas around each line represent the 
standard error from 80 simulations. 

 
 

 Coupled model Uncoupled model 

a.) 

 

 

 

b.) 

 

 

 

c.) 

 

 

 

d.) 

 

 

 

e.) 

 

 

Results from the coupled and uncoupled simulations were qualitatively similar, but differed in the 

intensity of responses (Figure 6.4 b, c, d). When crop yield in absence of pollination is high, the 

coupled and uncoupled simulations provide similar outcomes in terms of the final year crop 

supply/demand and pollinator populations (Figure 6.5). As crop yield in absence of pollination 

decreases, the pollinator populations, total crop supply and the mean crop capital of high 
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intensity crop farms all decrease at a faster rate in the coupled simulations than in the uncoupled 

simulations (Figure 6.4). This results in a divergence of final crop supply/demand (Figure 6.5a) 

and, to a lesser extent, the percentage of suitable cells occupied by pollinators (Figure 6.5b). 

Coupled model simulations show an increasingly wide range of final year crop supply/demand 

values as pollination becomes more important (Figure 6.5a). 

 

Figure 6.5: a) The final year crop supply/demand for each simulation and b) the percentage of 
suitable cells occupied by pollinators in the final year for each simulation, each 
grouped by crop yield in absence of pollination and model type. Each box represents 
80 simulations. The ecological parameter variations were still used for the uncoupled 
simulations, but have no effect on the output from CRAFTY. 

 

a) 

 

b) 

 

 

The greater uncertainty shown by the coupled model compared to the uncoupled model (Figure 

6.5a) was partly due to the variations used for ecological parameters (Table 6.1). When crop yield 

in absence of pollination is low (0.1), simulations in which the species has lower maximum 

fecundity and lower carrying capacity result in lower final year crop supply/demand (Figure 6.6). 

The number of cells occupied by pollinator populations was highly reliant on the species 

parameterisation, and had a strong positive correlation with crop supply/demand (Figure 6.7). By 

contrast and as expected, uncoupled simulations showed no differentiation in final year crop 
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supply/demand across the different species parameterisations (Figure 6.6). The inclusion or 

exclusion of long distance dispersal in the coupled model had no effect on crop supply/demand 

gap. 

 

Figure 6.6: The final year crop supply/demand for simulations in which crop yield in absence of 
pollination was at the lowest studied level (0.1), grouped by ecological 
parameterisation and faceted by model type. Each box represents 10 replicates of a 
single parameterisation (see Table 6.1). 

 

 

Moran’s I values for the final year landscape from all simulations (both coupled and uncoupled) 

demonstrated a tendency for spatial-autocorrelation of livestock farmers when crop yield in 

absence of pollination was low (0.1), though there was greater variation in the Moran’s I values 

from coupled simulations (Figure 6.8). This greater variation came from the ecological 

parameterisations, which had no effect in the uncoupled model (Figure 6.9a). Lower maximum 

fecundity and lower carrying capacity resulted in lower Moran’s I values (i.e. less spatial-

autocorrelation of high intensity livestock farmers), but the inclusion or exclusion of long distance 

dispersal had no effect. In the coupled models when crop yield in absence of pollination was low 

(0.1), most spatial aggregation occurred rapidly between simulation years 20 and 25, regardless of 

the ecological parameterisations (Figure 6.9b). After this rapid change, the level of spatial-

autocorrelation diverged towards the values in Figure 6.9a, dependent on parameterisation. 
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Figure 6.7: The number of cells occupied by pollinator populations in the final year in relation to 
crop supply/demand in the final year, crop yield in absence of pollination and 
ecological parameters (maximum fecundity (Rmax); carrying capacity reduction 
factor (K); note: the parameterisation of long distance dispersal is ignored in this 
graph since it had no clear influence on results). 
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Figure 6.8: Moran’s I value for spatial aggregation of high intensity livestock farmers for each final 
year landscape, grouped by crop yield in absence of pollination and model type. The 
red dashed line represents the expected Moran’s I value if the high intensity livestock 
farmers were randomly arranged. b) An example final year landscape, illustrating the 
clustering of high intensity livestock farmers. 

a) 

 

b) 
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Figure 6.9: a) Final year Moran’s I value for spatial aggregation of high intensity livestock farmers 
for simulations in which crop yield in absence of pollination was low (0.1). Each box 
represents 10 replicates of a single ecological parameterisation (see Table 6.1). b) 
Time-series showing change in Moran’s I values for high intensity livestock farmers 
for coupled model simulations in which crop yield in absence of pollination was low 
(0.1). Lines, representing the mean value from 20 replicates (10 with and 10 without 
long-distance dispersal) and shaded regions, representing ±1 standard error are 
grouped by ecological parameterisation. The red dashed line represents the expected 
Moran’s I value if the high intensity livestock farmers were randomly arranged.  

a) 

 

b) 
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6.6 Discussion 

It is believed that the model integration presented in this work is the first example of a socio-

ecological system model which gives equal weighting to both the social and the ecological sub-

systems by using two existing agent-based modelling platforms. The integration of existing 

models has previously been discussed as an option for creating socio-ecological systems models 

(Luus et al., 2013). This study demonstrates that such integration approaches are viable and 

useful.  

 

The hypothetical case study, in which increasing demand for food would require an increasing 

intensification of agriculture, exhibits a decrease in pollinator populations as the land becomes 

dominated by high intensity farms which cannot support populations, a decrease in the average 

output of crop farmers as the pollinator populations fall, resulting in a decrease in the total crop 

supply which acts as a positive feedback on the need for further intensification and expansion of 

farming. These threshold changes occur earlier and become more severe as crop yield in absence 

of pollination decreases, demonstrating the increasing problem of agricultural intensification for 

crops reliant on animal pollinators. A key element of socio-ecological systems is that they can 

exhibit threshold behaviours (Liu et al., 2007). It is important to note that because this study 

utilised an artificial landscape and hypothetical species, specific threshold values have no specific 

relevance to a real-world case study. However, the ability of this integrated model to identify 

threshold behaviours indicates the potential of this approach. 

 

The divergence of coupled and uncoupled model supply/demand ratios as crop yield in absence of 

pollination decreases illustrates the importance of representing species’ ecology in socio-

ecological models. Whilst the range of values for the percentage of cells occupied by pollinators 

remains relatively consistent between coupled and uncoupled models, the associated uncertainty 

is not transferred to crop supply/demand in the uncoupled models. This demonstrates the 

potential problem in assuming that suitable habitat is a reasonable proxy for population presence. 

When the species’ influence on the production of ecosystem services is low (e.g. high crop yield in 

absence of pollination), it may be reasonable to ignore population dynamics, but as their 

influence increases, model results become ever more reliant on the species’ ecology. For the 

specific case study, it has been demonstrated that if the ecology and population dynamics of 

pollinators are not considered, projections may substantially overestimate our ability to meet 

future food demand levels. 
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The level crop yield in absence of pollination drives the strength of the interaction between 

pollinators and land-use agents; as pollination becomes more important, the variability in coupled 

model results widens. This increased variability can be attributed to the ecological parameter 

variations which result in wide differences in final crop supply/demand. The lowest final year crop 

supply/demand occurred for the ecological parameterisation with lower values for both carrying 

capacity and maximum fecundity, whereas the highest final supply/demand occurred for the 

higher values for both parameters. Population size, population growth rates and density-

dependent processes are important factors in population dynamics and viability (Purvis et al., 

2000; Henle et al., 2004), with habitat fragmentation and environmental change also impacting on 

population viability. Lower maximum fecundity and carrying capacity result in fewer cells being 

occupied, less pollination and therefore a lower crop supply/demand ratio. This illustrates the 

importance of the specific details of a species’ ecology when studying socio-ecological systems. 

Due to the long processing time required for the coupled simulations, it was only possible to run 

the limited set of parameter variations presented here. With more time, a greater number of 

parameter variations could be tested, which would allow for a more systematic sensitivity 

analysis. 

 

When crop yield in absence of pollination is low, there is a tendency for high intensity livestock 

farmers to cluster together, a result which is consistent for both coupled and uncoupled 

simulations. Once again, the coupled model exhibited greater sensitivity to ecological parameters. 

A lower maximum fecundity and carrying capacity resulted in less clustering of high intensity 

livestock farmers. The presence of land-uses that neither support nor require pollinators 

decreases the potential sources of foraging pollinators for neighbouring land-uses; this increases 

the likelihood that the productivity of adjacent land-uses reliant on pollination will be reduced, 

decreasing their competitiveness and increasing the likelihood of land-uses not requiring 

pollination taking over. Such a mechanism has the potential for a positive feedback loop similar to 

that demonstrated by Schelling's (1971) model of segregation. A very similar dynamic is at play in 

this more complex system, illustrating the value of agent-based modelling approaches. 

 

There are a number of factors contributing to the reduction in pollinator populations, several of 

which are under ongoing research (e.g. pesticide use (Brittain et al., 2010) and habitat loss (Naug, 

2009)). More generally, there are numerous known impacts of human land use that affect 
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subsequent land-use possibilities and decisions. This study demonstrates a system modelling 

approach that can capture the dynamics between pollinator ecology and agricultural 

intensification, and, in principle, other feedbacks between land use and ecology. Incorporating 

the key mechanisms in pollinator-agriculture relationships will allow future studies to test 

potential land-use and conservation policies, and improve our ability to identify, ex ante, 

unexpected undesirable outcomes. 

 

Future research is increasingly likely to involve the coupling of models to study interacting 

systems. A realistic coupling of models requires that feedback mechanisms are implemented 

between the study systems. A model of animal movement and population dynamics will often 

also require a model of the landscape or environment in which the species moves. The 

environmental modelling requirement can vary greatly depending on the species, and may 

include models of land-use, climate, vegetation, hydrology, or even finer scale environments. 

Such model pairs can be integrated simplistically by creating a sequence of landscapes to be 

loaded in a time-series by spatial models of animal movement. However, a one-way integration 

such as this makes the assumption that the animal has no influence over the landscape upon 

which it exists, an assumption that is rarely, if ever true in reality. As this study has shown, the 

impact of pollinators on crop yield can radically change the speed of agricultural intensification, 

and the spatial configuration of the landscape. Grazing animals interact with vegetation dynamics, 

the presence of endangered or protected species may lead to habitat designation and the 

presence of invasive species can disrupt local biodiversity and vegetation. Such feedbacks 

between animals and their environment require two-way integration of environmental, social and 

ecological models. It is believed that the coupled model described in this study is the first to 

couple two individual-based social and ecological models. Both CRAFTY and RangeShifter are 

case-study independent modelling platforms, so this integrated model has great flexibility for 

applications to other socio-ecological interactions, and with greater detail than the case study 

presented here. 
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Chapter 7: Discussion 

 

This thesis has aimed to investigate approaches for improving species distribution modelling 

methods. A broad range of approaches have been studied, both in the pre-processing and the 

modelling phases of the work. A framework to integrate the approaches presented in this thesis 

would be a significant undertaking, and was not within the scope of this work. Furthermore, the 

advances made in this thesis will not always be required or feasible, and should only be 

incorporated into existing SDM approaches when appropriate for the aims of the study. 

 

Many SDM studies obtain species location data from historical inventories, but this can lead to 

biases since the data is often collated from multiple sources, and different sampling methods may 

have been used. This can make it difficult to account for variability in sampling effort and 

detectability. Chapter 2 demonstrated the potential benefits of utilising a distance sampling 

methodology when collecting species occurrence data. Whilst distance sampling is already an 

established methodology, species and habitat covariates have rarely been used. The lesson from 

Chapter 2 is that when conducting field surveys, it is important to consider the potential impact 

that different habitat types will have on the detectability of the study species. Whilst the 

influence of distance on detectability has been widely discussed, the influence of habitat has 

received far less consideration (but see Sillett et al., (2012)). Future field surveys should collect 

information on habitat at each data collection point to help parameterise the observation model. 

Clearly such a methodology requires a significant amount of fieldwork, an undertaking that is 

rarely possible, particularly over large study regions. However, where feasible, data collection and 

pre-processing should utilise methods that account for errors in observation (in particular, related 

to distance, species and habitat). Where such data is subsequently used in an SDM, a state-space 

or hierarchical modelling approach should be used to ensure that parameters related to 

observability are estimated separately from the parameters related to the processes being 

studied (Royle and Kéry, 2007; Patterson et al., 2008; Kéry and Royle, 2010; Hostetler and 

Chandler, 2014). 

 

Whilst Chapter 2 demonstrated the potential to share information from multiple species to 

improve the modelling of species detectability (prior to inclusion in a SDM), Chapter 3 

demonstrated a potential method for sharing information on multiple competing species within a 
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SDM. Some SDM studies have incorporated the distributions of co-occurring species (Araújo and 

Luoto, 2007; Heikkinen et al., 2007; Sutherst et al., 2007; Hof et al., 2012; le Roux et al., 2012; 

Giannini et al., 2013), but such studies are rare. Although Chapter 3 did not identify improved 

model performance from the inclusion of competing species, this may be due to the limited 

number of species variations used, the focus on only one type of interaction (resource 

competition) and the use of only one species distribution modelling algorithm (MaxEnt). Future 

work on this topic may be able to use a similar methodology over a broader range of biotic 

interactions and spatial scales to identify those factors that influence the suitability of interacting 

species as predictor variables.  

 

Chapter 4 presents the toolbox developed to create the landscape strategies used in Chapter 5. 

This toolbox has flexibility beyond the examples presented in Chapter 4 and Chapter 5, and can 

easily be transferred to other study landscapes and systems. Furthermore, the simulations 

presented in Chapter 5 form only a small subset of the total number of simulation results. Chapter 

5 focussed on a single landscape and two conservative levels of prescribed change; the entire 

dataset includes simulation data from six landscapes and four levels of prescribed change (two 

additional more ambitious levels of prescribed change). Ongoing work is utilising this additional 

data to test for landscape effects on species range shifting ability and climate change adaptation 

strategy success. As discussed in Chapter 4, the STeLMAG toolbox can also be used to generate 

temporal habitat quality transitions. There is often a time-lag between conservation actions and 

the generation of functioning habitat (Morris et al., 2006; Maron et al., 2012), and this can lead to 

a lag in the responses of species that utilise the habitat (e.g. Cosentino et al., 2014). Seed bank 

availability can also be an important factor in the restoration and regeneration of habitat 

(Pakeman and Small, 2005; Metsoja et al., 2014), meaning that the proximity of restoration 

efforts to existing or former habitat  may play a role in the speed of restoration. Future work can 

develop upon the methodology of Chapter 5 to consider the time-lag between the different 

climate change adaptation actions. Whilst Chapter 4 does not directly address SDM methods, no 

landscape simulation tools were identified that were appropriate for the questions addressed by 

Chapter 5. 

 

The methodology used in Chapter 5 does not consider the potential effects of a changing climate 

on species life history or on habitat suitability; the focus of the work is on a mechanistic approach. 

The use of RangeShifter (Bocedi et al., 2014a) allows this chapter to make a number of advances 

over previous studies on the range shifting potential of species, particularly by explicitly 
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accounting for the three stages of dispersal, and the costs associated with dispersal, which have 

rarely been considered in dispersal models (Travis et al., 2012). A number of “hybrid” models exist 

which incorporate process-based ecological processes such as population dynamics and dispersal 

into SDMs (Keith et al., 2008; Engler and Guisan, 2009; Kearney and Porter, 2009; Conlisk et al., 

2013). Whilst RangeShifter can facilitate such an approach by loading habitat suitability maps, this 

approach was not taken since Chapter 5 already makes a number of advances over previous 

studies on range shifting. Furthermore, parameterisation of these hybrid models remains a 

significant challenge (Franklin, 2010; Schurr et al., 2012). In particular, knowledge on how the 

growth rates, fecundity levels and mortality risk of species change under different environmental 

conditions is still limited; without this knowledge, the results from hybrid models must be treated 

with caution. 

 

Chapter 6 incorporates another feature that has rarely been considered in previous SDM studies: 

two-way interactions between social systems and ecological systems. In fact, no other studies 

were found that have modelled both the social and ecological system at an individual level. 

Malawska et al. (2014) also found that no previous studies had integrated an individual-based 

model of farmer decision making with an individual-based model of wildlife responses. Since 

Chapter 6 is so novel, it is still a long way from integration with existing SDM approaches. 

However, the divergence of the coupled and uncoupled model results illustrates the importance 

of considering coupled interactions when modelling the distributions of certain species (i.e. those 

that have a strong link to a social capital). Without coupled interactions, positive feedback 

mechanisms which drive population declines may be underestimated. Whilst some species may 

have little interaction with social or economic systems, many species are fundamentally 

connected to these systems through their interaction with the landscape. Such interactions 

should be considered in future species distribution modelling studies. Such an approach may be 

particularly useful to study the spread of invasive species, and to identify potential policy 

interventions. Furthermore, due to its cross-disciplinary nature, Chapter 6 also highlights the 

importance of the approach for future social system studies. Without consideration of potential 

ecological interactions, social issues such as food security may be underestimated. 

 

Developing a socio-ecological system model can be an enormous challenge, requiring multi-

disciplinary collaborative work (Luus et al., 2013; Malawska et al., 2014). However, as Chapter 6 

demonstrates, the coupling of existing models can be a viable alternative if suitable and 

compatible models exist. The methodology is currently being developed further in preparation for 
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publication. The existing results will remain, but additional simulations are being developed to 

incorporate institutional interventions. The ability to test policies and their potential impacts is a 

key benefit of coupled socio-ecological system modelling (Malawska et al., 2014; Liu et al., 2015). 

Since CRAFTY already allows for the incorporation of institutional agents (Brown et al., 2014), 

policies can be implemented within the existing framework whilst maintaining the mechanistic 

individual-based approach. The planned work will incorporate an institutional agent which can 

provide subsidies to low intensity farmers based on the monitoring of pollinator populations. This 

work can help identify to what extent such policies can alleviate potential food security issues 

related to pollinator population declines. 

 

The research chapters in this thesis do not all directly address whether the approaches taken can 

improve SDM methods. However, all (except Chapter 4 which is a necessary precursor to Chapter 

5) have utilised novel methods which advance the science and with further study may provide 

improvements to existing SDM methods. The use of habitat and species covariates as with the 

distance sampling approach in Chapter 2 is directly applicable to species distribution modelling, 

and could be implemented using a state-space or hierarchical Bayesian approach. The novel 

approach for including species interactions in Chapter 3 is also directly applicable to existing SDM 

methods. Whilst no improvements were found, future work could widen this study to include 

different interactions at different scales. The use of an individual-based model with detailed 

representation of the three stages of dispersal and population dynamics to study range shifting in 

Chapter 5 illustrates the potential of such modelling platforms. Such a methodology could be 

incorporated into existing SDMs with a hybrid model approach. However, such models still have 

many limitations, and so this is left for future work. Finally, the methodology of Chapter 6 

demonstrates the potential importance of including socio-ecological interactions when modelling 

species distributions. Where species are tightly coupled with social systems through a shared 

landscape, future species distribution modelling studies should incorporate an approach such as 

that presented in Chapter 6. 
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Appendix A  

Table A.1: Parameters available in the ExistingPatches tool within the STeLMAG toolbox. 

 

Parameter label Explanation Data 
type 

Output folder The directory location to which all outputs are saved. It is 
recommended that a new directory is used each time a STeLMAG 
tool is run. 

Folder 

Number of 
replicates 

The number of replicate landscapes to create (through the 
stochastic allocation procedure) from this rule set. 

Long 

Land-cover 
raster 

The raster-based study landscape. Raster 
dataset 

Study habitat ID The study habitat ID value (from the study landscape raster) that 
represents the habitat type to be managed. 

Long 

Total 
management 
area (# cells) 

The total number of cells from the raster-based study landscape to 
allocate for management action. 

Long 

Use habitat 
quality 
transition data 

Select this option if temporal habitat quality transitional data 
should be applied to the land management actions. If this option is 
selected, then Habitat quality (CSV file), Habitat transitions (CSV 
file) and Habitat transition strategy name will be required. 

Boolean 

Habitat quality 
(CSV file) 

A comma-separated values (CSV) file which defines the habitat 
quality for each habitat type in the study landscape.  
This file should be of the form: 
 
ID,Quality 
<Habitat ID value>,<quality value> 
... , ...  
 
Habitat ID values should be from the study landscape, quality 
values can be any floating point number. 

File 

Habitat 
transitions (CSV 
file) 

A comma-separated values (CSV) file which defines the temporal 
habitat quality transitions. These transitions should represent the 
change inStudy habitat ID quality as management is applied. 
This file should be of the form: 
 
Year,<strategy name 1>,<strategy name 2>,... 
<year>,<strategy 1 quality value>,<strategy 2 quality value> 
... , ... , ... 
 
Strategy names should be an alpha-numeric string. Any number of 
strategies can be defined in the Habitat transitions file; the specific 
strategy used each time the tool is run is selected from the Habitat 
transition strategy namedrop-down menu. The year values can be 
any integer value, over any interval. Quality values can be any 
floating point number. 
 

File 
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… Table A.1 continued: Parameters available in the ExistingPatches tool within the STeLMAG 

toolbox. 

 

  

Parameter label Explanation Data 
type 

Habitat 
transition 
strategy name 

The strategy name for the temporal habitat quality transitions 
which should be applied to the land management actions. 
Strategies can be selected from a drop-down box, filled with the 
strategy names for temporal habitat quality transitions as defined 
in the Habitat transitions CSV file. 

String 

Region group 
patch 
neighbourhood 
rule 

The region group patch neighbourhood rule used to define habitat 
patch cohesion (default is Moore's 8-cell neighbourhood). 

String 

Existing patch 
minimum size (# 
cells) 

The minimum size (in terms of number of cells) of existing patches 
of the study habitat (as defined by the Study habitat ID parameter) 
which should be considered for management. 

Long 

Existing patch 
maximum size 
(# cells) 

The maximum size (in terms of number of cells) of existing patches 
of the study habitat (as defined by the Study habitat ID parameter) 
which should be considered for management. 

Long 
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Table A.2: Parameters available in the CustomPatches_Adjacent tool within the STeLMAG toolbox. 

Parameter label Explanation Data 
type 

Output folder The directory location to which all outputs are saved. It is 
recommended that a new directory is used each time a STeLMAG tool 
is run. 

Folder 

Number of 
replicates 

The number of replicate landscapes to create (through the stochastic 
allocation procedure) from this rule set. 

Long 

Land-cover 
raster 

The raster-based study landscape. Raster 
dataset 

Study habitat ID The study habitat ID value (from the study landscape raster) that 
represents the habitat type to be created. 

Long 

Total 
management 
area (# cells) 

The total number of cells from the raster-based study landscape to 
allocate for management action. 

Long 

Habitat ID(s) to 
be modified 

The habitat ID value(s) (from the study landscape raster) of habitat 
types in which management actions should take place. 

Multiple 
value 

Use habitat 
quality 
transition data 

Select this option if temporal habitat quality transitional data should 
be applied to the land management actions. 
If this option is selected, then Habitat quality (CSV file), Habitat 
transitions (CSV file) and Habitat transition strategy name will be 
required. 

Boolean 

Habitat quality 
(CSV file) 

A comma-separated values (CSV) file which defines the habitat quality 
for each habitat type in the study landscape.  
This file should be of the form: 
 
ID,Quality 
<Habitat ID value>,<quality value> 
... , ...  
 
Habitat ID values should be from the study landscape, quality values 
can be any floating point number. 

File 

Habitat 
transitions (CSV 
file) 

A comma-separated values (CSV) file which defines the temporal 
habitat quality transitions. These transitions should represent the 
transition of habitat quality as it changes from the Habitat ID(s) to be 
modified to the Study habitat ID. 
This file should be of the form: 
 
year,<strategy name 1>,<strategy name 2>,... 
<year>,<strategy 1 quality value>,<strategy 2 quality value> 
... , ... , ... 
 
Strategy names should be an alpha-numeric string. Any number of 
strategies can be defined in the Habitat transitions file; the specific 
strategy used each time the tool is run is selected from the Habitat 
transition strategy name drop-down menu. The year values can be 
any integer value, over any interval. Quality values can be any floating 
point number. 

File 
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… Table A.2 continued: Parameters available in the CustomPatches_Adjacent tool within the 

STeLMAG toolbox. 

Parameter label Explanation Data 
type 

Habitat 
transition 
strategy name 

The strategy name for the temporal habitat quality transitions which 
should be applied to the land management actions. 
Strategies can be selected from a drop-down box, filled with the 
strategy names for temporal habitat quality transitions as defined in 
the Habitat transitions CSV file. 

String 

Existing patch 
minimum size (# 
cells) 

The minimum size (in terms of number of cells) of existing patches of 
the study habitat (as defined by the Study habitat ID parameter) 
which should be available for expansion by the creation of new 
adjacent habitat patches. 

Long 

Existing patch 
maximum size 
(# cells) 

The maximum size (in terms of number of cells) of existing patches of 
the study habitat (as defined by the Study habitat ID parameter) 
which should be available for expansion by the creation of new 
adjacent habitat patches. 

Long 

New patch 
minimum size (# 
cells) 

The minimum size (in terms of number of cells) of the new adjacent 
patches of the study habitat (as defined by the Study habitat ID 
parameter). 

Long 

New patch 
maximum size 
(# cells) 

The maximum size (in terms of number of cells) of the new adjacent 
patches of the study habitat (as defined by the Study habitat ID 
parameter). 

Long 

Region group 
patch 
neighbourhood 
rule 

The region group patch neighbourhood rule used to define habitat 
patch cohesion (default is Moore's 8-cell neighbourhood). 

String 

Beta 
distribution 
parameters: 
alpha 

The Beta distribution is defined by two positive parameter values: 
alpha and beta. This parameter defines alpha. Alpha must be a 
positive floating point number (default value is 1.5). 

Double 

Beta 
distribution 
parameters: 
beta 

The Beta distribution is defined by two positive parameter values: 
alpha and beta. This parameter defines beta. Beta must be a positive 
floating point number (default value is 5). 

Double 
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Table A.3: Parameters available in the CustomPatches_ExSitu tool within the STeLMAG toolbox. 

Parameter label Explanation Data 
type 

Output folder The directory location to which all outputs are saved. It is 
recommended that a new directory is used each time a STeLMAG tool 
is run. 

Folder 

Number of 
replicates 

The number of replicate landscapes to create (through the stochastic 
allocation procedure) from this rule set. 

Long 

Land-cover 
raster 

The raster-based study landscape. Raster 
dataset 

Study habitat ID The study habitat ID value (from the study landscape raster) that 
represents the habitat type to be created. 

Long 

Total 
management 
area (# cells) 

The total number of cells from the raster-based study landscape to 
allocate for management action. 

Long 

Habitat ID(s) to 
be modified 

The habitat ID value(s) (from the study landscape raster) of habitat 
types in which management actions should take place. 

Multiple 
value 

Use habitat 
quality 
transition data 

Select this option if temporal habitat quality transitional data should 
be applied to the land management actions. 
If this option is selected, then Habitat quality (CSV file), Habitat 
transitions (CSV file) and Habitat transition strategy name will be 
required. 

Boolean 

Habitat quality 
(CSV file) 

A comma-separated values (CSV) file which defines the habitat quality 
for each habitat type in the study landscape.  
This file should be of the form: 
 
ID,Quality 
<Habitat ID value>,<quality value> 
... , ...  
 
Habitat ID values should be from the study landscape, quality values 
can be any floating point number. 

File 

Habitat 
transitions (CSV 
file) 

A comma-separated values (CSV) file which defines the temporal 
habitat quality transitions. These transitions should represent the 
transition of habitat quality as it changes from the Habitat ID(s) to be 
modified to the Study habitat ID. 
This file should be of the form: 
 
year,<strategy name 1>,<strategy name 2>,... 
<year>,<strategy 1 quality value>,<strategy 2 quality value> 
... , ... , ... 
 
Strategy names should be an alpha-numeric string. Any number of 
strategies can be defined in the Habitat transitions file; the specific 
strategy used each time the tool is run is selected from the Habitat 
transition strategy name drop-down menu. The year values can be 
any integer value, over any interval. Quality values can be any floating 
point number. 

File 

 



Appendices 

111 

… Table A.3 continued: Parameters available in the CustomPatches_ExSitu tool within the 

STeLMAG toolbox. 

Parameter label Explanation Data 
type 

Habitat 
transition 
strategy name 

The strategy name for the temporal habitat quality transitions which 
should be applied to the land management actions. 
Strategies can be selected from a drop-down box, filled with the 
strategy names for temporal habitat quality transitions as defined in 
the Habitat transitions CSV file. 

String 

Existing patch 
minimum size (# 
cells) 

The minimum size (in terms of number of cells) of existing patches of 
the study habitat (as defined by the Study habitat ID parameter). Only 
those patches within the given size restrictions will be considered 
when either Minimum distance or Maximum distance are set. 

Long 

Existing patch 
maximum size 
(# cells) 

The maximum size (in terms of number of cells) of existing patches of 
the study habitat (as defined by the Study habitat ID parameter). Only 
those patches within the given size restrictions will be considered 
when either Minimum distance or Maximum distance are set. 

Long 

New patch 
minimum size (# 
cells) 

The minimum size (in terms of number of cells) of the new patches of 
the study habitat (as defined by the Study habitat ID parameter). 

Long 

New patch 
maximum size 
(# cells) 

The maximum size (in terms of number of cells) of the new patches of 
the study habitat (as defined by the Study habitat ID parameter). 

Long 

Minimum 
distance 
between 
existing and 
new habitats 

The minimum distance (in the units of the study landscape) between 
existing study habitat patches (within the size restrictions) and new 
study habitat patches. If left blank, then Minimum distance = 0, i.e. no 
minimum distance. 

Long 

Maximum 
distance 
between 
existing and 
new habitats 

The maximum distance (in the units of the study landscape) between 
existing study habitat patches (within the size restrictions) and new 
study habitat patches. If left blank, there is no Maximum distance 
restriction. 

Long 

Region group 
patch 
neighbourhood 
rule 

The region group patch neighbourhood rule used to define habitat 
patch cohesion (default is Moore's 8-cell neighbourhood). 

String 

Beta 
distribution 
parameters: 
alpha 

The Beta distribution is defined by two positive parameter values: 
alpha and beta. This parameter defines alpha. Alpha must be a 
positive floating point number (default value is 1.5). 

Double 

Beta 
distribution 
parameters: 
beta 

The Beta distribution is defined by two positive parameter values: 
alpha and beta. This parameter defines beta. Beta must be a positive 
floating point number (default value is 5). 

Double 
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Appendix B  

 Tables of RangeShifter parameter values follow on the next pages. 
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Table B.1: RangeShifter parameter values for simulated invertebrate species 

Parameter Invert_D--P++S- Invert_D-P+S- Invert_D-P++S- Invert_D-P++S+ 

Population dynamics 

Reproduction Asexual / female only Asexual / female only Asexual / female only Sexual model (simple) 

Stage structure No No No No 

Intrinsic growth rate (Rmax) 10 25 10 10 

Competition coefficient (bc) 1 1 1 1 

Carrying capacity (K) 50 20 50 50 

Dispersal - emigration 

Emigration probability Density-dependent Density-dependent Density-dependent Density-dependent 

Max. emigration probability (D0) 0.7 0.7 0.7 0.7 

Slope at inflection point (α) 10 10 10 10 

Inflection point (β) 0.5 0.5 0.5 0.5 

Dispersal – transfer 

Movement model SMS SMS Dispersal kernel Dispersal kernel 

Kernel type   Negative exponential Negative exponential 

Mean distance (metres)   100 100 

Perceptual range (metres) 40 120   

Directional persistence 5 8   

Habitat dependent movement costs / per-step mortality 

Improved grassland, arable, water 1000 / 0.1 1000 / 0.1   

Semi improved grassland 100 / 0.05 100 / 0.05   

Coniferous woodland, FMS 25 / 0.01 25 / 0.01   

Dwarf shrub heath 10 / 0.005 10 / 0.005   

Broadleaved woodland 1 / 0 1 / 0   

Dispersal - settlement 

Settle-if Find a suitable patch 
(not the natal one) 

Find a suitable patch 
(not the natal one) 

Die Die 
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Table B.2: RangeShifter parameter values for simulated vertebrate species 

  
Parameter Mam_D-P-S+ Mam_D+P--S+ Bird_D+P-S+ Bird_D++P--S+ 

Population dynamics 

Reproduction Sexual model (simple) Sexual model (simple) Sexual model (simple) Sexual model (simple) 

Stage structure Yes Yes Yes Yes 

Number of stages 2 3 2 2 

Maximum age 4 10 5 8 

Minimum age (stage 2)  2   

Fecundity: juvenile (φ0) 0 0 0 0 

Fecundity: stage 1 (φ1) 4 0 5 3 

Fecundity: stage 2 (φ2)  4   

Development probability: juvenile (γ 0) 1 1 1 1 

Development probability: stage 1 (γ1)  1   

Survival probability: juvenile (σ0) 1 1 1 1 

Survival probability: stage 1 (σ1) 0.6 0.7 0.5 0.5 

Survival probability: stage 1 (σ2)  0.9   

Density-dependence in fecundity Yes Yes Yes Yes 

Strength of dens. dep. in fecundity (1/b) 3 1 5 1.5 

Dispersal – emigration 

Emigration probability Density-dependent Density-dependent Density-dependent Density-dependent 

Stage-dependent Yes Yes Yes Yes 

Juvenile stage (stage 0)     

Maximum emigration probability (D0) 0.55 0.4 0.5 0.5 

Slope at the inflection point (α) 5 2 3 3 

Inflection point (β) 0.5 0.5 0.5 0.5 
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Parameter Mam_D-P-S+ Mam_D+P--S+ Bird_D+P-S+ Bird_D++P--S+ 

Dispersal – transfer 

Movement model SMS SMS SMS SMS 

Perceptual range (metres) 300 400 400 1000 

Directional persistence 10 15 15 50 

Habitat dependent movement costs 

Improved grassland, arable, water 1000 1000 1000 1000 

Semi improved grassland 100 100 100 100 

Coniferous woodland, FMS 25 25 25 25 

Dwarf shrub heath 10 10 10 10 

Broadleaved woodland 1 1 1 1 

Habitat dependent per-step mortality 

Improved grassland, arable, water 0.08 0.08 0.05 0.01 

Semi improved grassland 0.04 0.04 0.025 0.005 

Coniferous woodland, FMS 0.008 0.008 0.005 0.0005 

Dwarf shrub heath 0.004 0.004 0.001 0.0001 

Broadleaved woodland 0 0 0 0 

Dispersal - settlement 

Sex-dependent Yes Yes Yes Yes 

Males settle if Find a suitable patch + 
mating requirements 

Find a suitable patch + 
mating requirements 

Find a suitable patch + 
mating requirements 

Find a suitable patch + 
mating requirements 

Females settle if Find a suitable patch 
(not the natal one) 

Find a suitable patch 
(not the natal one) 

Find a suitable patch 
(not the natal one) 

Find a suitable patch 
(not the natal one) 

FMS - Fen, marsh and swamp 
SMS - Stochastic movement simulator (Palmer et al., 2011)
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Appendix C 

C.1 CRAFTY parameter values 

Table C.1.1: Giving-up and giving-in thresholds of each agent type. 

Agent type Giving-up threshold Giving-in threshold 

Forestry 0 0.01 

High intensity crop farmer 0 0.01 

High intensity livestock farmer 0 0.01 

Low intensity crop farmer 0 0.001 

Low intensity livestock farmer 0 0.001 

 

Table C.1.2: Capital sensitivities and production levels of each agent type. 

Agent type Sensitivity to productivity of: Service production 

Crop Livestock Forestry 

Forestry 0 0 1 1 (Forestry services) 

High intensity crop farmer 1 0 0 1 (Crop) 

High intensity livestock farmer 0 1 0 1 (Livestock) 

Low intensity crop farmer 0.8 0 0 0.5 (Crop) 

Low intensity livestock farmer 0 0.5 0 0.5 (Livestock) 
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C.2 RangeShifter parameter values 

Table C.2.1: RangerShifter parameter values for hypothetical pollinator species. 

Parameter Value 

Population dynamics 

Model type Cell-based 

Reproduction Asexual / female only 

Stage structure No 

Maximum fecundity VARIED: 2; 1.5 

Competition coefficient (bc) 1 

Habitat dependent carrying capacity (K) 

Carrying capacity reduction factor VARIED: 100%; 50% 

High intensity crop farm 0 individuals/ha (an individual represents a colony) 

Low intensity crop farm 1.1 individuals/ha 

High intensity livestock farm 0 individuals/ha 

Low intensity livestock farm 1.1 individuals/ha 

Forest 2.3 individuals/ha 

Unmanaged land 1.4 individuals/ha 

Dispersal - emigration 

Emigration probability Density-dependent 

Max. emigration probability (D0) 0.7 

Slope at inflection point (α) 10 

Inflection point (β)  0.5 

Dispersal - transfer 

Movement model Dispersal kernel 

Kernel type VARIED: negative exponential; double negative 
exponential 

Mean distance I (metres) 500 

Mean distance II (metres) VARIED: 1500 if Kernel type = double negative 
exponential; else null. 

Probability of kernel II VARIED: 10% if Kernel type = double negative 
exponential; else null. 

Dispersal - settlement 

If the arrival cell is unsuitable Die 
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