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Abstract. In this paper we derive necessary and sufficient homological and

cohomological conditions for profinite groups and modules to be of type FPn

over a profinite ring R, analogous to the Bieri-Eckmann criteria for abstract
groups. We use these to prove that the class of groups of type FPn is closed

under extensions, quotients by subgroups of type FPn, proper amalgamated

free products and proper HNN-extensions, for each n. We show, as a conse-
quence of this, that elementary amenable profinite groups of finite rank are of

type FP∞ over all profinite R. For any class C of finite groups closed under

subgroups, quotients and extensions, we also construct pro-C groups of type
FPn but not of type FPn+1 over ZĈ for each n. Finally, we show that the nat-

ural analogue of the usual condition measuring when pro-p groups are of type
FPn fails for general profinite groups, answering in the negative the profinite

analogue of a question of Kropholler.

Introduction

An abstract group G is of type FPn over an abstract ring R if the R[G]-module R
with trivial G-action has a projective resolution which is finitely generated for the
first n steps; Bieri ([1, Theorem 1.1.3]) gives necessary and sufficient homological
and cohomological conditions, the Bieri-Eckmann criteria, for an R-module to be
of type FPn, and hence conditions for G to be of type FPn over R.

Analogously, for G and R profinite, there is a profinite group ring RJGK, and G
is of type FPn if R has a projective resolution by RJGK-modules which is finitely
generated for the first n steps. Some results are known when G and R are pro-p:
Symonds and Weigel [11, Proposition 4.2.3] give a necessary and sufficient condi-
tion for (virtually) pro-p groups to be of type FPn. However, this has never been
studied before for profinite groups. We show in this paper that whether a profinite
group is of type FPn is measured by whether its homology or cohomology groups
commute with direct limits, in a certain sense. Explicitly, we consider certain direct
systems of profinite modules whose direct limits as topological modules have under-
lying abstract modules that are isomorphic, but may not have the same topology.
Applying homology or cohomology to these and then comparing the direct limits
which result gives criteria for the FPn type of G, a trick which allows us to forget
the topologies of our systems without losing too much information. In this sense
our Theorem 2.2 is the analogue of [1, Theorem 1.1.3]. We call these equivalent
conditions Bieri-Eckmann criteria, by analogy with the abstract case.
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We describe the structure of this paper. Section 1 describes the mathematical
objects, categories and functors we will be using in the rest of the paper, along
with some basic results on the relations between them. The natural coefficient
category for profinite group cohomology is that of discrete torsion modules, but this
turns out not to contain enough information. Instead, we use profinite modules as
coefficients. These do not have enough injectives, but we can define our Ext functors
using projectives in the first variable.

In Section 2, we prove all the main technical results. For abstract rings and
modules, the Ext functors commute with direct limits in the second variable, and
the Tor functors commute with direct products in the second variable, if and only
if the first variable is of type FP∞. The idea here is to show that for profinite
modules the Ext functors (with profinite coefficients) and the Tor functors commute
with direct limits in the second variable if and only if the first variable is of type
FP∞; the obstruction is that direct limits of profinite modules in the category of
topological modules are not necessarily profinite. Thus we take derived functors to
functor categories over a small category I which corresponds to a directed poset,
and take direct limits afterwards, as described above. This allows us to obtain the
Bieri-Eckmann criteria for profinite modules.

In Section 3 we collect known results about the FPn type of profinite groups,
and apply the conclusions of Section 2 to prove new results, giving Bieri-Eckmann
criteria for groups and allowing us to build new groups of type FPn from old ones,
as promised in the abstract. Then in Section 4 we define the class of elementary
amenable profinite groups (which contains the soluble groups) and use the results
of the previous section to show that elementary amenable profinite groups of finite
rank are of type FP∞ over all profinite R; we also construct groups of type FPn
but not FPn+1 over certain completions of Z, mirroring the construction in [1,
Proposition 2.14].

Finally, Section 5 explores an alternative finiteness condition FP′n, and shows
that, though it is equivalent to being of type FPn for pro-p groups, it is not equiv-
alent for profinite groups. The conditions FPn and FP′n are two different ways to
generalise the pro-p condition [11, Proposition 4.2.3] mentioned above. As promised
in the abstract, we consider [9, Open Question 6.12.1], a question about homolog-
ical finiteness conditions for pro-p groups, which correspondingly has two possible
ways of generalising to profinite groups: we show that the answer to one of these
two questions is no.

1. Abstract and Profinite Modules

Let R be a commutative profinite ring, and Λ a profinite R-algebra. We define
the categories PMod(Λ), DMod(Λ) and TMod(Λ) to be the categories of profinite,
discrete and topological left Λ-modules, respectively, with continuous Λ-module
homomorphisms as their morphisms. We require for all of these that the Λ-action
be continuous. We also define Mod(Λ) to be the category of (abstract) left Λ-
modules. The corresponding categories of right Λ-modules can and will be identified
with categories of left Λop-modules.

It is well known that PMod(Λ), DMod(Λ) and Mod(Λ) are abelian categories,
that PMod(Λ) and Mod(Λ) have enough projectives, and that DMod(Λ) and
Mod(Λ) have enough injectives (see [9, Proposition 5.4.2, Proposition 5.4.4]). So
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we can apply the results of [4] to additive functors, and their derived functors, on
these categories.

We write HomΛ(A,B) for mor(A,B), where A,B ∈ TMod(Λ). Note that
HomΛ(A,B) is naturally an R-module. In addition, it will often be given the
compact-open topology: we define the sets

OK,U = {f ∈ HomΛ(A,B) : f(K) ⊆ U}
to be open, whenever K ⊆ A is compact and U ⊆ B is open. Then the OK,U form
a subbase for the topology. Note that HomΛ(A,B) is discrete for A ∈ PMod(Λ),
B ∈ DMod(Λ), and profinite for A ∈ DMod(Λ), B ∈ PMod(Λ) – see [9, Lemma
5.1.4].

We say A is of type FPn over Λ, n ≤ ∞, for A ∈ PMod(Λ), if it has a projective
resolution which is finitely generated for the first n steps, and write PMod(Λ)n
for the full subcategory of PMod(Λ) whose objects are of type FPn. So A ∈
PMod(Λ)0 if and only if A is finitely generated. We let PMod(Λ)−1 = PMod(Λ).
If A ∈ PMod(Λ)0, B ∈ PMod(Λ), HomΛ(A,B) is profinite by [11, (3.7.1)].

We can now define the main functors which will be needed in this paper. All are
additive.

First, the forgetful functor

U : PMod(Λ)→Mod(U(Λ))

which forgets the topology but retains the algebraic structure; we will also write U
for the same forgetful functor PMod(R)→Mod(U(R)). This U is clearly exact.

Second, the completed tensor product

⊗̂Λ : PMod(Λop)× PMod(Λ)→ PMod(R)

– see [9, Chapters 5.5, 6.1] for definitions and properties of this right-exact functor
– and its derived functors

TorΛ
∗ : PMod(Λop)× PMod(Λ)→ PMod(R).

We will also need the standard tensor product of abstract modules

⊗U(Λ) : Mod(U(Λop))×Mod(U(Λ))→Mod(U(R)).

The definition of completed tensor products says that there is a unique canonical
continuous middle linear map

B ×A→ B⊗̂ΛA,

and continuous middle linear maps are clearly middle linear in the abstract sense,
so by the universal property of abstract tensor products

U(B ×A)→ U(B⊗̂ΛA)

factors canonically (and uniquely) as

U(B)× U(A)→ U(B)⊗U(Λ) U(A)→ U(B⊗̂ΛA).

The map

U(B)⊗U(Λ) U(A)→ U(B⊗̂ΛA)

induces a transformation of functors

U(−)⊗U(Λ) → U(−⊗̂Λ−)

which is natural in both variables, by the universal property of ⊗U(Λ).
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Lemma 1.1. Suppose A ∈ PMod(Λ), B ∈ PMod(Λop).

(i) If A is finitely generated and projective, the canonical map

U(B)⊗U(Λ) U(A)→ U(B⊗̂ΛA)

is an isomorphism.
(ii) If A is finitely generated,

U(B)⊗U(Λ) U(A)→ U(B⊗̂ΛA)

is an epimorphism.
(iii) If A is finitely presented,

U(B)⊗U(Λ) U(A)→ U(B⊗̂ΛA)

is an isomorphism.

Similar results hold for B.

Proof. (i) First suppose A is finitely generated and free. Then the result follows
from [9, Proposition 5.5.3 (b),(c)] that B⊗̂ΛΛ ∼= B and B⊗̂Λ− is additive, so
that U(B⊗̂ΛΛn) and U(B)⊗U(Λ)U(Λn) are both isomorphic to U(Bn). Since
projectives are summands of frees, the result follows for A finitely generated
and projective as well.

(ii) Consider the short exact sequence 0 → K → F → A → 0 with F free and
finitely generated. We get a commutative diagram

· · · // U(B)⊗U(Λ) U(F ) //

∼=
��

U(B)⊗U(Λ) U(A) //

��

0

· · · // U(B⊗̂ΛF ) // U(B⊗̂ΛA) // 0,

and the result follows by the Five Lemma.
(iii) Consider the short exact sequence 0 → K → F → A → 0 with F free and

finitely generated, and K finitely generated. We get a commutative diagram

· · · // U(B)⊗U(Λ) U(K) //

����

U(B)⊗U(Λ) U(F ) //

∼=
��

U(B)⊗U(Λ) U(A) //

��

0

· · · // U(B⊗̂ΛK) // U(B⊗̂ΛF ) // U(B⊗̂ΛA) // 0,

and the result follows by the Five Lemma.
�

The third and final functor we will need is

HomΛ(−,−) : PMod(Λ)× PMod(Λ)→Mod(U(R)).

If A ∈ PMod(Λ)0, we may also think of HomΛ(−,−) as a functor

PMod(Λ)0 × PMod(Λ)→ PMod(R),

using the compact-open topology. In either case, we can take left derived functors
of HomΛ(−, B). Explicitly, we can define

Ext∗Λ(−, B) : PMod(Λ)→Mod(U(R)),



BIERI-ECKMANN CRITERIA FOR PROFINITE GROUPS 5

and when considering the case where the first variable is of type FP∞, we can
endow the resulting R-modules with a profinite topology to give

Ext∗Λ(−, B) : PMod(Λ)∞ → PMod(R).

By [4, Proposition 3.4], the ExtnΛ(−,−) are bifunctors

PMod(Λ)× PMod(Λ)→Mod(U(R)),

and we get long exact sequences in each variable. We will also need the standard
Hom-functor of abstract modules, which we will write

homU(Λ)(−,−) : Mod(U(Λ))×Mod(U(Λ))→Mod(U(R)).

There is a canonical natural transformation

HomΛ(−,−)→ homU(Λ)(U(−), U(−))

with each
HomΛ(A,B)→ homU(Λ)(U(A), U(B))

given by the inclusion of the group of continuous homomorphisms into the group
of abstract homomorphisms (after forgetting the topology if we are considering
HomΛ(A,B) as a topological R-module).

Lemma 1.2. Suppose A ∈ PMod(Λ), B ∈ PMod(Λ). If A is finitely generated,
the canonical map

HomΛ(A,B)→ homU(Λ)(U(A), U(B))

is an isomorphism.

Proof. See [12, Lemma 7.2.2]. �

2. Direct Systems of Profinite Modules

Let I be a directed poset : a poset with the property that for any i1, i2 ∈ I
there is some i ∈ I such that i ≥ i1, i2. It is easy to check that if I and J are
directed posets, I × J is again directed, when we define (i1, j1) ≤ (i2, j2) if and
only if i1 ≤ i2 and j1 ≤ j2. We can define a category I ′ whose objects are the
elements of I and which has a single morphism i → j whenever i ≤ j. Then a
covariant functor from I ′ to some other category C is exactly the same thing as a
direct system in C indexed by I – and similarly contravariant functors correspond
to inverse systems. Henceforth, directed posets and direct systems will be identified
with the corresponding categories and functors.

In the terminology of [4], given a category C and a small category I, we can
define the functor category CI as the category of functors I → C and natural
transformations between them. We can also define, for a functor F : C → D,
the exponent functor F I : CI → DI : given f ∈ CI , set F I(f)(i) = F (f(i)), and
similarly for morphisms. Henceforth, given any functor F and small category I,
F I will denote this exponent functor. In this paper we will be interested in the
functor category PMod(Λ)I when I is a directed poset, and in the exponents of
the functors defined in the previous section.

In particular we have the functor

U I : PMod(Λ)I →Mod(U(Λ))I

which forgets the topology on each module in a directed system in PMod(Λ)I .
Now U is exact, so U I is also exact, by [4, Lemma 1.9]. Second, we have the
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direct limit functor lim−→ which sends a directed system of (abstract) Λ-modules to

their colimit in the category of (abstract) Λ-modules. It is well known that for
a directed poset I lim−→ is an exact additive functor Mod(U(Λ))I → Mod(U(Λ))

and Mod(U(R))I → Mod(U(R)). So we can compose these two exact functors; it
follows that their composition

lim−→U I : PMod(Λ)I →Mod(U(Λ)),

which forgets the topology on a direct system of modules and then takes its direct
limit, is exact. Thus we can compose this (composite) functor with a homological
δ-functor to get another homological δ-functor, because long exact sequences are
preserved.

By [4, Proposition 3.3], we have a long exact sequence in each variable of the
exponent homological δ-functor

TorΛ,I×J
∗ : PMod(Λop)I × PMod(Λ)J → PMod(R)I×J ,

for any posets I and J . By [4, Proposition 3.5], we have a long exact sequence in
each variable of

Ext∗,I×JΛ : PMod(Λ)I × PMod(Λ)J →Mod(U(R))I×J .

When J consists of a single element we may write TorΛ,I
∗ and Ext∗,IΛ ; similarly in

the other variable.
We can now start proving some results. For our main result of the section, we

need this preliminary lemma, whose proof is an easy adaptation of [10, Lemma 2].

Lemma 2.1. For every profinite module B ∈ PMod(Λop), there is a direct system
{Bi} of finitely presented modules in PMod(Λop) with a collection of continuous
compatible maps Bi → B such that the induced map

lim−→U(Bi)→ U(B)

is an isomorphism.

Proof. Let F be the free profinite right Λ-module with basis B. By the universal
property of free modules, the identity mapB → B extends to a canonical continuous
homomorphism of profinite modules F → B. Consider the set of all pairs (FS , V )
where S is a finite subset of B, FS is the free profinite submodule of F generated by
S and V is a finitely generated profinite submodule of F such that the composite

V ↪→ FS → B

is the zero map. Define a partial order on this set by

(FS , V ) ≤ (FT ,W )⇔ S ⊆ T and V ⊆W.

This is clearly directed, so we get a direct system of finitely presented profinite
modules FS/V with the canonical continuous module homomorphisms between
them, and canonical compatible continuous module homomorphisms FS/V → B.
Forgetting the topology by applying U , we get a direct system of abstract modules
with a compatible collection of module homomorphisms

fS,V : U(FS/V )→ U(B),

and hence a module homomorphism

f : lim−→U(FS/V )→ U(B).
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We claim f is an isomorphism. Given b ∈ B, b is in the image of

f{b},0 : U(F{b})→ U(B),

and hence it is in the image of f . So f is surjective. Given x in the kernel of
f , take a representative x′ of x in one of the U(FS/V ), so fS,V (x′) = 0, and a
representative x′′ of x′ in U(FS). Now suppose V is generated by x1, . . . , xn. Let
V ′ be the profinite submodule of FS generated by x1, . . . , xn, x

′′, so that V ′ is
finitely generated. Note that the composite

V ′ ↪→ FS → B

is the zero map, and that (FS , V ) ≤ (FS , V
′). Finally, note that the image of x′

in FS/V
′ is 0, and hence the image of x′ in lim−→U(FS/V ) is 0, so x = 0. So f is

injective. �

Note that this result is weaker than saying that B can be written as a direct limit
of finitely presented profinite modules; indeed, taking the direct limit in TMod(Λop)
of the system of profinite modules described above will not in general give a profi-
nite module. This will be a recurring theme throughout the paper: that we are
required to consider certain direct systems of profinite modules whose direct limits
as topological modules have underlying abstract modules that are isomorphic, but
may not have the same topology. It is in this way that the following theorem is the
profinite analogue of [1, Theorem 1.1.3].

Theorem 2.2. Suppose A ∈ PMod(Λ). The following are equivalent:

(i) A ∈ PMod(Λ)n.
(ii) If I is a directed poset, and B,C ∈ PMod(Λop)I , with a morphism f : B → C

such that

lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism, then the induced maps

lim−→U I TorΛ,I
m (f) : lim−→U I TorΛ,I

m (B,A)

→ lim−→U I TorΛ,I
m (C,A)

are isomorphisms for m < n and an epimorphism for m = n.
(iii) For all products

∏
Λ of copies of Λ, (ii) holds when C has as each of its

components
∏

Λ, with identity maps between them, for some B with each
component finitely presented.

(iv) If I is a directed poset, and B,C ∈ PMod(Λ)I , with a morphism f : B → C
such that

lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism, then the induced maps

lim−→U I Extm,IΛ (f) : lim−→U I Extm,IΛ (A,B)

→ lim−→U I Extm,IΛ (A,C)

are isomorphisms for m < n and a monomorphism for m = n.
(v) (iv) holds when C has 0 as each of its components, for some B with each

component finitely presented.
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Proof. (i) ⇒ (ii): Take a projective resolution P∗ of A with P0, . . . Pn finitely gen-
erated. Then for each i ∈ I we get a diagram

· · ·
di1 // U(Bi)⊗U(Λ) U(P1)

di0 //

αi1

��

γi1

((

U(Bi)⊗U(Λ) U(P0) //

αi0

��

γi0

((

0

· · ·
ei1 // U(Ci)⊗U(Λ) U(P1)

ei0 //

βi1

��

U(Ci)⊗U(Λ) U(P0) //

βi0

��

0

· · ·
d′i1 // U(Bi⊗̂ΛP1)

d′i0 //

δi1

((

U(Bi⊗̂ΛP0) //

δi0

((

0

· · ·
e′i1 // U(Ci⊗̂ΛP1)

e′i0 // U(Ci⊗̂ΛP0) // 0

where all the squares commute. By Lemma 1.1, αi0, . . . , α
i
n, β

i
0, . . . , β

i
n are isomor-

phisms. Now apply lim−→. Since ⊗U(Λ) commutes with direct limits, we have a
commutative diagram

· · ·
lim−→ di1// (lim−→U(Bi))⊗U(Λ) U(P1)

lim−→ di0 //

lim−→αi1

��

lim−→ γi1

))

(lim−→U(Bi))⊗U(Λ) U(P0) //

lim−→αi0

��

lim−→ γi0

))

0

· · ·
lim−→ ei1 // (lim−→U(Ci))⊗U(Λ) U(P1)

lim−→ ei0 //

lim−→ βi1

��

(lim−→U(Ci))⊗U(Λ) U(P0) //

lim−→ βi0

��

0

· · ·
lim−→ d′i1 // lim−→U(Bi⊗̂ΛP1)

lim−→ d′i0 //

lim−→ δi1

))

lim−→U(Bi⊗̂ΛP0) //

lim−→ δi0

))

0

· · ·
lim−→ e′i1 // lim−→U(Ci⊗̂ΛP1)

lim−→ e′i0 // lim−→U(Ci⊗̂ΛP0) // 0.

Then as before we have that lim−→αi0, . . . , lim−→αin, lim−→βi0, . . . , lim−→βin are isomorphisms.

By hypothesis lim−→U(Bi) = lim−→U(Ci), so that lim−→ γi0, . . . , lim−→ γin are isomorphisms.

Hence lim−→ δi0, . . . , lim−→ δin are, and the result follows after taking direct limits over J ,
and then taking homology.

(ii) ⇒ (iii) trivial.
(iii) ⇒ (i): Induction on n. First suppose n = 0: we want to show A ∈

PMod(Λ)0. Consider the case where each Ci is a direct product of copies of Λ
indexed by X,

∏
X Λ, for some set X such that there is an injection ι : A → X.

Note that we could just use the set A itself here, but in Lemma 2.3 below we will
make use of the fact that we only need (iii) to hold for some X with an injection
ι : A → X to deduce (i), rather than all X, as claimed in the statement of the
theorem. Now B ∈ PMod(Λop)I1, so by (i) ⇒ (ii) of Lemma 1.1,

lim−→U I(B⊗̂IΛA) = lim−→(U I(B)⊗IU(Λ) U(A))

= lim−→(U I(B))⊗U(Λ) U(A)

= U(
∏
X

Λ)⊗U(Λ) U(A),

where ⊗̂IΛ and ⊗IU(Λ) are the exponent functors of ⊗̂Λ and ⊗U(Λ), respectively. By

hypothesis,

lim−→U I(f⊗̂IΛ−) : lim−→U I(B⊗̂IΛA) = U(
∏
X

Λ)⊗U(Λ) U(A)

→ lim−→U I(C⊗̂IΛA) = U(
∏
X

Λ⊗̂ΛA) = U(
∏
X

A)
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is an epimorphism, so there is a

c ∈ U(
∏
X

Λ)⊗U(Λ) U(A)

such that

lim−→U I(f⊗̂IΛ−)(c)

is the ‘diagonal’ element of U(
∏
X A) whose ι(a)th component is a, for each a ∈ A.

Now c has the form
m∑
k=1

(
∏
x∈X

λxk)⊗ ak

for some λxk ∈ Λ and ak ∈ A, so

lim−→U I(f⊗̂IΛ−)(c)

has ι(a)th component
m∑
k=1

λ
ι(a)
k ak = a.

So a1, . . . , am generate A.
For n > 0, suppose (iii) ⇒ (i) holds for n − 1. We get A finitely generated as

before, and an exact sequence

0→ K → F → A→ 0,

with F free and finitely generated. Then, using our long exact sequence in the
second variable, we get the diagram

· · · // lim−→U I TorΛ,I
n (B,F ) //

∼=
��

lim−→U I TorΛ,I
n (B,A) //

����

lim−→U I TorΛ,I
n−1(B,K)

��
· · · // U TorΛ

n(
∏

Λ, F ) // U TorΛ
n(
∏

Λ, A) // U TorΛ
n−1(

∏
Λ,K)

// lim−→U I TorΛ,I
n−1(B,F ) //

∼=
��

lim−→U I TorΛ,I
n−1(B,A) //

∼=
��

· · ·

// U TorΛ
n−1(

∏
Λ, F ) // U TorΛ

n−1(
∏

Λ, A) // · · ·

whose squares commute; it follows by the five lemma that the map

lim−→U I TorΛ,I
m (B,K)→ U TorΛ

m(
∏

Λ,K)

is an isomorphism for m < n− 1, and an epimorphism for m = n− 1, for all direct
products of copies of Λ. So by hypothesis K is of type FPn−1, so A is of type FPn.

(i) ⇒ (iv): Take a projective resolution P∗ of each A with P0, . . . Pn finitely
generated. Then for each i ∈ I we get a diagram
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0
di1 // HomΛ(P0, B

i)
di0 //

αi1

��

γi1

))

HomΛ(P1, B
i) //

αi0

��

γi0

))

· · ·

0
ei1 // HomΛ(P0, C

i)
ei0 //

βi1

��

HomΛ(P1, C
i) //

βi0

��

· · ·

0
d′i1// homU(Λ)(U(P0), U(Bi))

d′i0 //

δi1

))

homU(Λ)(U(P1), U(Bi)) //

δi0

))

· · ·

0
e′i1 // homU(Λ)(U(P0), U(Ci))

e′i0 // homU(Λ)(U(P1), U(Ci)) // · · ·

where all the squares commute. By Lemma 1.2, αi0, . . . , α
i
n, β

i
0, . . . , β

i
n are iso-

morphisms. Now apply lim−→. Since homU(Λ) commutes with direct limits in the

second argument when the first argument is finitely generated and projective (by
[1, Proposition 1.2]), we have a commutative diagram

0
lim−→ di1// lim−→HomΛ(P0, B

i)
lim−→ di0 //

lim−→αi1

��

lim−→ γi1

**

lim−→HomΛ(P1, B
i) //

lim−→αi0

��

lim−→ γi0

**

· · ·

0
lim−→ ei1 // lim−→HomΛ(P0, C

i)
lim−→ ei0 //

lim−→ βi1

��

lim−→HomΛ(P1, C
i) //

lim−→ βi0

��

· · ·

0
lim−→ d′i1// lim−→ homU(Λ)(U(P0), U(Bi))

lim−→ d′i0 //

lim−→ δi1

**

lim−→ homU(Λ)(U(P1), U(Bi)) //

lim−→ δi0

**

· · ·

0
lim−→ e′i1 // lim−→ homU(Λ)(U(P0), U(Ci))

lim−→ e′i0 // lim−→ homU(Λ)(U(P1), U(Ci)) // · · · .

By hypothesis lim−→U(Bi) = lim−→U(Ci), and so lim−→αi0, . . . , lim−→αin, lim−→βi0, . . . , lim−→βin
and lim−→ δi0, . . . , lim−→ δin are all isomorphisms. It follows that lim−→ γi0, . . . , lim−→ γin are,
and the result follows after taking cohomology.

(iv) ⇒ (v) trivial.
(v)⇒ (i): Induction on n. First suppose n = 0: we want to show A ∈ PMod(Λ)0.

Consider the case where B is the direct system {A/A′}, where A′ ranges over the
finitely generated submodules of A, with the natural projection maps between them.
We claim that lim−→A/A′ = 0. For this, we need to show that for all x ∈ A, there is

some A′ such that the image of x under the projection A
π−→ A/A′ is 0. So take A′

to be the submodule of A generated by x, and we are done. Hence

lim−→Ext0
Λ(A,A/A′) = lim−→HomΛ(A,A/A′) = 0;

in particular, there is some A′ for which the projection

A
π−→ A/A′

is 0. So A = A′ is finitely generated.
For n > 0, suppose (v) ⇒ (i) holds for n − 1. We get A finitely generated as

before, and an exact sequence

0→ K → F → A→ 0,

with F free and finitely generated. Then, using our long exact sequence in the first
variable, it follows that

lim−→ExtmΛ (K,Bi) = 0

for m ≤ n− 1, whenever lim−→Bi = 0. So by hypothesis K is of type FPn−1, so A is
of type FPn. �
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In fact the proof shows slightly more. Given A ∈ PMod(Λ)n−1, n ≥ 0, pick an
exact sequence

0→M → Pn−1 → · · · → P0 → A→ 0

with P0, . . . , Pn−1 finitely generated and projective, and let X be a set such that
there is an injection ι : M → X.

Lemma 2.3. Let I be a directed poset, let C ∈ PMod(Λop)I have
∏
X Λ for all its

components with identity maps between them, let B ∈ PMod(Λop)I1 such that

lim−→U I(B)→ U(
∏
X

Λ)

is an isomorphism, with B → C given by the canonical map on each component.
Then A ∈ PMod(Λ)n if and only if

lim−→U I TorΛ,I
n−1(B,A)→ U TorΛ

n−1(
∏
X

Λ, A)

is an isomorphism and

lim−→U I TorΛ,I
n (B,A)→ U TorΛ

n(
∏
X

Λ, A)

is an epimorphism.

Corollary 2.4. Suppose A ∈ PMod(Λ). Then

A is of type FP1 ⇔ U(C)⊗U(Λ) U(A) ∼= U(C⊗̂ΛA)

for all C ∈ PMod(Λop).

Proof. ⇒: Lemma 1.1. ⇐: Let C be any product of copies of Λ,
∏

Λ, which is
free, so

TorΛ
m(

∏
Λ, A) = 0

for m ≥ 1. Hence for any direct system B of modules in PMod(Λop) and any map

B → C = (
∏

Λ)i∈I

such that
lim−→U I(B)→ lim−→U I(C)

is an isomorphism,

lim−→U I TorΛ
m(B,A)→ lim−→U I TorΛ

m(C,A)

must be an epimorphism. Then our hypothesis gives that

lim−→U I TorΛ
0 (B,A)→ lim−→U I TorΛ

0 (C,A)

is an isomorphism, so A is of type FP1 by (iii) ⇒ (i) of the theorem. �

Remark 2.5. (a) Ribes-Zalesskii claim in [9, Proposition 5.5.3] that A being finitely
generated is enough for

U(B)⊗U(Λ) U(A)→ U(B⊗̂ΛA)

to be an isomorphism for all B. (Their notation is slightly different.) If this
were the case, then by Corollary 2.4 every finitely generated A would be of
type FP1, and hence by an inductive argument would be of type FP∞ (see
Lemma 2.9 below). In other words Λ would be noetherian, in the sense of [11],
for all profinite Λ. But this isn’t true: we will see in Remark 3.5(a) that for
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a group G in certain classes of profinite groups, including prosoluble groups,
if G is infinitely generated then Ẑ is of type FP0 but not FP1 considered as a
ẐJGK-module with trivial G-action, giving a contradiction.

(b) A similar claim to the one in (a) is made by Brumer in [3, Lemma 2.1(ii)], where
‘profinite’ is replaced by ‘pseudocompact’. Since profinite rings and modules are
pseudocompact, the argument of (a) shows that Brumer’s claim also produces
a contradiction.

Corollary 2.6. If 1 ≤ n <∞, the following are equivalent for A ∈ PMod(Λ):

(i) A ∈ PMod(Λ)n.
(ii) If I is a directed poset, B,C ∈ PMod(Λop)I , with a morphism f : B → C

such that
lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism, and each component of C is a product of copies of Λ with
identity maps between them, then

lim−→U I(B⊗̂IΛA)→ U(
∏

Λ⊗̂ΛA) = U(
∏

A)

is an isomorphism and

lim−→U I TorΛ,I
m (B,A) = 0

for 1 ≤ m ≤ n− 1.
(iii) A ∈ PMod(Λ)1 and

lim−→U I TorΛ,I
m (B,A) = 0

for 1 ≤ m ≤ n− 1.

Proof. Use (i)⇔ (iii) from Theorem 2.2. Then (iii) from the theorem⇔ (ii) because

U TorΛ
m(

∏
Λ, A) = 0,

for all m > 0, and (ii) ⇔ (iii) by Corollary 2.4. �

As in Lemma 2.3, suppose we have A ∈ PMod(Λ)n−1, n ≥ 0, pick an exact
sequence

0→M → Pn−1 → · · · → P0 → A→ 0

with P0, . . . , Pn−1 finitely generated and projective, and let X be a set such that
there is an injection ι : M → X. Let I be a directed poset, let C ∈ PMod(Λop)I

have
∏
X Λ for all its components with identity maps between them, let B ∈

PMod(Λop)I1 such that

lim−→U I(B)→ U(
∏
X

Λ)

is an isomorphism, with B → C given by the canonical map on each component.

Corollary 2.7. Assume in addition that n ≥ 1. Then A ∈ PMod(Λ)n if and only
if

lim−→U I TorΛ,I
n−1(B,A)→ U TorΛ

n−1(
∏
X

Λ, A)

is an isomorphism. For n ≥ 2, A ∈ PMod(Λ)n if and only if

lim−→U I TorΛ,I
n−1(B,A) = 0.

Proof. U TorΛ
n(
∏
X Λ, A) = 0, for all n > 0. �
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Now analogues to other results in [1, Chapter 1.1] follow directly from this.

Corollary 2.8. Suppose A′� A� A′′ is an exact sequence in PMod(Λ). Then:

(i) If A′ ∈ PMod(Λ)n−1 and A ∈ PMod(Λ)n, then A′′ ∈ PMod(Λ)n.
(ii) If A ∈ PMod(Λ)n−1 and A′′ ∈ PMod(Λ)n, then A′ is of type FPn−1.

(iii) If A′ and A′′ are ∈ PMod(Λ)n then so is A.

Proof. This follows immediately from the long exact sequences in TorΛ,I
∗ . �

Lemma 2.9. Let A ∈ PMod(Λ) be of type FPn, n <∞, and let

Pn−1 → · · · → P1 → P0 → A→ 0

be a partial projective resolution with P0, . . . , Pn−1 finitely generated. Then the
kernel ker(Pn−1 → Pn−2) is finitely generated, so one can extend the resolution to

Pn → Pn−1 → · · · → P1 → P0 → A→ 0,

with Pn finitely generated as well.

Proof. See [1, Proposition 1.5]. �

Corollary 2.10. Suppose A ∈ PMod(Λ). The following are equivalent:

(i) A ∈ PMod(Λ)∞.
(ii) If I is a directed poset, B,C ∈ PMod(Λop)I , with a morphism f : B → C

such that

lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism, and each component of C is a product of copies of Λ with
identity maps between them, then

lim−→U I(B⊗̂IΛA)→ U(
∏

Λ⊗̂ΛA) = U(
∏

A)

is an isomorphism and

lim−→U I TorΛ,I
m (B,A) = 0

for all m ≥ 1.
(iii) A ∈ PMod(Λ)1 and

lim−→U I TorΛ,I
m (B,A) = 0

for all m ≥ 1.
(iv) If I is a directed poset, and B ∈ PMod(Λ)I such that lim−→U I(B) = 0, then

lim−→U I Extm,IΛ (A,B) = 0

for all m.

Proof. (i) ⇒ (ii) ⇒ (iii) follows immediately from Corollary 2.6; for (iii) ⇒ (i),
Corollary 2.6 shows that A ∈ PMod(Λ)n, for all n < ∞, and then Lemma 2.9
allows us to construct the required projective resolution of A. (i) ⇒ (iv) follows
from Theorem 2.2, which also shows that (iv) ⇒ A ∈ PMod(Λ)n, for all n < ∞,
and then Lemma 2.9 tells us that this implies (i). �
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3. Profinite Group Homology and Cohomology over Direct Systems

Let R be a commutative profinite ring and G a profinite group. See [9, Chapter
5.3] for the definition of the complete group algebra RJGK. Then for I a small
category, A ∈ PMod(RJGKop)I , B ∈ PMod(RJGK)I , we define the homology groups
of G over R with coefficients in A by

HR,I
n (G,A) = TorRJGK,I

n (A,R),

and the cohomology groups with coefficients in B by

Hn,I
R (G,B) = Extn,IRJGK(R,B),

where R is a left RJGK-module via the trivial G-action.
If R is of type FPn as an RJGK-module, we say G is of type FPn over R. Note

that R is finitely generated as an RJGK-module, so all groups are of type FP0 over
all R. Note also that since RJ{e}K = R, R is free as an RJ{e}K-module, so the
trivial group is of type FP∞.

Now Theorem 2.2 and Corollary 2.6 translate to:

Proposition 3.1. Let I be a directed poset. The following are equivalent for n ≥ 1:

(i) G is of type FPn over R.
(ii) Whenever we have B,C ∈ PMod(RJGKop)I , with a morphism f : B → C

such that

lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism, then

lim−→U IHR,I
m (G,B)→ lim−→U IHR,I

m (G,C)

are isomorphisms for m < n and an epimorphism for m = n.
(iii) G is of type FP1, and for all products

∏
Λ of copies of RJGK, when C has

as each of its components
∏

Λ, with identity maps between them, for some B
with each component finitely presented,

lim−→U IHR,I
m (G,B) = 0

for all 1 ≤ m ≤ n− 1.
(iv) Whenever we have B,C ∈ PMod(RJGK)I , with a morphism f : B → C such

that

lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism, then

lim−→U IHm,I
R (G,B)→ lim−→U IHm,I

R (G,C)

are isomorphisms for m < n and a monomorphism for m = n.
(v) When C has 0 as each of its components, for some B with each component

finitely presented,

lim−→U IHm,I
R (G,B) = 0

for m ≤ n.

Similar results hold for n =∞, by Lemma 2.9.
Corollary 2.7 translates to:
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Lemma 3.2. Suppose G is of type FPn−1, n ≥ 1, and we have an exact sequence

0→M → Pn−1 → · · · → P0 → R→ 0

of profinite left RJGK-modules with P0, . . . , Pn−1 finitely generated and projective.
Let I be a directed poset, let C ∈ PMod(RJGKop)I have

∏
X RJGK for all its compo-

nents with identity maps between them, for a set X such that there is an injection
ι : M → X, let B ∈ PMod(RJGKop)I1 such that

lim−→U I(B)→ U(
∏
X

RJGK)

is an isomorphism, with B → C given by the canonical map on each component.
Then G is of type FPn if and only if

lim−→U IHR,I
n−1(G,B)→ UHR

n−1(G,
∏
X

RJGK)

is an isomorphism.
For n ≥ 2, G is of type FPn if and only if

lim−→U IHR,I
n−1(G,B) = 0.

Lemma 3.3. Suppose H is an open subgroup of G. Then H is of type FPn over
R, n ≤ ∞, if and only if G is. In particular, if G is finite, it is of type FP∞ over
R.

Proof. H open ⇒ H is of finite index in G. It follows from [9, Proposition 5.7.1]
that RJGK is free and finitely generated as an RJHK-module, and hence that a
finitely generated projective RJGK-module is also a finitely generated projective
RJHK-module (because projective modules are summands of free ones). So an
RJGK-projective resolution of R, finitely generated up to the nth step, shows that
H is of type FPn.

For the converse, suppose H is of type FPn, and suppose we have a finitely
generated partial RJGK-projective resolution

(∗) Pk → · · · → P0 → R→ 0,

for k < n. Then since (∗) is also a finitely generated partial RJHK-projective
resolution, ker(Pk → Pk−1) is finitely generated as an RJHK-module, by Lemma
2.9. So it is finitely generated as an RJGK-module too. So we can extend the
RJGK-projective resolution to

Pk+1 → Pk → · · · → P0 → R→ 0,

with Pk+1 finitely generated. Iterate this argument to get that G is of type FPn. �

We now observe that if a group G is of type FPn over Ẑ, it is of type FPn over
all profinite R (see [9, Lemma 6.3.5]). Indeed, given a partial projective resolution

Pn → Pn−1 → · · · → P0 → Ẑ→ 0

of Ẑ as a ẐJGK-module with each Pk finitely generated, apply −⊗̂ẐR: this is exact

because the resolution is Ẑ-split. Trivially Ẑ⊗̂ẐR
∼= R. Now ẐJGK⊗̂ẐR = RJGK by

considering inverse limits of finite quotients, and it follows by additivity that each
Pk⊗̂ẐR is a finitely generated projective RJGK-module, as required.

For a profinite group G, we write d(G) for the minimal cardinality of a set of

generators of G. For a profinite ẐJGK-module A, dẐJGK(A) is the minimal cardinality
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of a set of generators of A as a ẐJGK-module. Similarly for abstract groups – except
that we count abstract generators instead of topological generators.

We define the augmentation ideal IẐJGK to be the kernel of the evaluation map

ε : ẐJGK→ Ẑ, g 7→ 1,

and IZ[G] similarly for abstract groups. In the abstract case, d(G) is finite if and
only if dZ[G](IZ[G]) is, and more generally groups are of type FP1 over any ring
if and only if they are finitely generated, by [1, Proposition 2.1]. Similarly pro-p
groups are of type FP1 over Zp if and only if they are finitely generated, by [9,
Theorem 7.8.1] and [11, Proposition 4.2.3]. The following proposition shows this is
no longer the case for profinite groups.

Proposition 3.4. Let G be a profinite group. Then the following are equivalent.

(i) G is finitely generated.
(ii) There exists some d such that for all open normal subgroups K of G,

d(G/K) ≤ dZ[G/K](IZ[G/K]) + d,

and G is of type FP1 over Ẑ.

Proof. We start by noting:

(a) d(G) = supK d(G/K) by [9, Lemma 2.5.3];
(b) dẐJGK(IẐJGK) = supK dZ[G/K](IZ[G/K]) by [5, Theorem 2.3].

(i) ⇒ (ii): For a finitely generated abstract group G,

(∗) d(G) ≥ dZ[G](IZ[G]).

Indeed, if G is generated by x1, . . . , xk, then one can check that IZ[G] is generated
as a Z[G]-module by x1 − 1, . . . , xk − 1. Write G as the inverse limit of {G/K},
where K ranges over the open normal subgroups of G. Then applying (∗), for each
K

d(G/K) ≥ dZ[G/K](IZ[G/K]);

hence

d(G) = sup
K
d(G/K) ≥ sup

K
dZ[G/K](IZ[G/K]) = dẐJGK(IẐJGK),

and hence G is of type FP1 over Ẑ. Now set d = d(G): for each K,

d(G/K) ≤ d ≤ dZ[G/K](IZ[G/K]) + d.

(ii) ⇒ (i): First note that by Lemma 2.9, since G is of type FP1, dẐJGK(IẐJGK) is

finite. By (a) and (b),

d(G) ≤ dẐJGK(IẐJGK) + d,

and the result follows. �

Remark 3.5. (a) When, for example, G is prosoluble or 2-generated, it is known
that the condition

d(G/K) ≤ dZ[G/K](IZ[G/K]) + d

for all open normal K holds with d = 0 – see [6, Proposition 6.2, Theorem 6.9].
Since pro-p groups are pronilpotent, this holds for all pro-p groups. By the
Feit-Thompson theorem, it holds for all profinite groups of order coprime to 2.
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(b) There are profinite groups G for which the difference between d(G/K) and
dZ[G/K](IZ[G/K]) is unbounded as K varies. The existence of a group of type

FP1 over Ẑ that is not finitely generated is shown in [5, Example 2.6].
(c) Let π be a set of primes. In fact the proof of [5, Theorem 2.3] that

dẐJGK(IẐJGK) = sup
K
dZ[G/K](IZ[G/K]),

and hence the proof of Proposition 3.4, go through unchanged if G is a pro-π
group and we replace Ẑ with Zπ̂, or more particularly if G is pro-p and we use
Zp. Thus, applying (a), we recover in a new way the fact that pro-p groups are
finitely generated if and only if they are of type FP1 over Zp.

Corollary 3.6. Suppose G is prosoluble or 2-generated profinite. Then G is of
type FP∞ over Ẑ if and only if it is finitely generated and whenever B,C ∈
PMod(ẐJGKop)I , with a morphism f : B → C such that

lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism, and each component of C is a product of copies of ẐJGK with
identity maps between them,

lim−→U IHR,I
n (G,B) = 0

for all n ≥ 1.

Proof. Proposition 3.1 and Proposition 3.4. �

We have, for HR,I
∗ , a Lyndon-Hochschild-Serre spectral sequence for profinite

groups.

Theorem 3.7. Let G be a profinite group, K a closed normal subgroup and suppose
B ∈ PMod(RJGKop)I . Then there exists a spectral sequence (Etr,s) with the property
that

E2
r,s
∼= HR,I

r (G/K,HR,I
s (K,B))

and
E2
r,s ⇒ HR,I

r+s(G,B).

Proof. [9, Theorem 7.2.4] and [4, Corollary 2.5]. �

Theorem 3.8. Let G be a profinite group and K a closed normal subgroup. Suppose
K is of type FPm over R, m ≤ ∞. Suppose n ≤ ∞, and let s = min{m,n}.

(i) If G is of type FPn over R then G/K is of type FPs over R.
(ii) If G/K is of type FPn over R then G is of type FPs over R.

Proof. For simplicity we prove the case m =∞. The proof for m finite is similar.
Since K is of type FP∞, by Proposition 3.1 we have that, whenever B,C ∈

PMod(RJGKop)I , with a morphism f : B → C such that

lim−→U I(f) : lim−→U I(B)→ lim−→U I(C)

is an isomorphism,

lim−→U IHR,I
n (K,B)→ lim−→U IHR,I

n (K,C)

is an isomorphism for all n; hence, when the components of C are products of copies
of RJGK with identity maps between them,

lim−→U IHR,I
n (K,B)→ lim−→U IHR,I

n (K,
∏

RJGK) = U(
∏

HR
n (K,RJGK))
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is an isomorphism for all n; RJGK is a free RJKK-module by [9, Corollary 5.7.2], so
this is 0 for n ≥ 1, and for n = 0 it gives

lim−→U I(B⊗̂IRJKKR) = U(
∏

RJGK⊗̂RJKKR) = U(
∏

RJG/KK)

by [9, Proposition 5.8.1]. So the spectral sequence from Theorem 3.7 collapses to
give an isomorphism

(∗) HR,I
r (G/K,B⊗̂IRJKKR) ∼= HR,I

r (G,B).

By Lemma 2.9, it is enough to prove the theorem for n <∞. We use induction
on n. Note that G and G/K are always both of type FP0, so we may assume the
theorem holds for n−1. Suppose G and G/K are of type FPn−1, and that we have
exact sequences

0→M → Pn−1 → · · · → P0 → R→ 0

of profinite left RJGK-modules with P0, . . . , Pn−1 finitely generated and projective,
and

0→M ′ → P ′n−1 → · · · → P ′0 → R→ 0

of profinite left RJG/KK-modules with P ′0, . . . , P
′
n−1 finitely generated and projec-

tive. Choose a set X such that there are injections ι : M → X and ι′ : M ′ → X.
Let I be a directed poset, let C ∈ PMod(RJGKop)I have

∏
X RJGK for all its com-

ponents with identity maps between them, let B ∈ PMod(RJGKop)I1 such that

lim−→U I(B)→ U(
∏
X

RJGK)

is an isomorphism, with B → C given by the canonical map on each component.
Finally, note that

B⊗̂IRJKKR ∈ PMod(RJG/KKop)I1 :

for each Bi, there is an exact sequence

F1 → F0 → Bi → 0

with F0 and F1 free and finitely generated RJGK-modules, so by the right exactness

of −⊗̂IRJKKR there is an exact sequence

F1⊗̂
I
RJKKR→ F0⊗̂

I
RJKKR→ Bi⊗̂IRJKKR→ 0

with F0⊗̂
I
RJKKR and F1⊗̂

I
RJKKR free and finitely generated RJG/KK-modules by [9,

Proposition 5.8.1]. Therefore G is of type FPn if and only if

lim−→U IHR,I
n−1(G,B)→ UHR

n−1(G,
∏
X

RJGK)

is an isomorphism (by Lemma 3.2) if and only if

lim−→U IHR,I
n−1(G/K,B⊗̂IRJKKR)→ UHR

n−1(G/K,
∏
X

RJG/KK)

is an isomorphism (by (∗)) if and only if G/K is of type FPn (by Lemma 3.2). �

Let C be a non-empty class of finite groups, i.e. a collection of groups that
is closed under isomorphism. Then we can define pro-C algebraic structures as
profinite ones all of whose finite quotients are in C – see [9] for details. Suppose R
is a pro-C ring. Then being of type FPn over R as a pro-C group is exactly the same
as being of type FPn over R as a profinite group, so working in the pro-C universe
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instead of the profinite one gives nothing new. On the other hand, amalgamated
free pro-C products of pro-C groups are not the same as amalgamated free profinite
products of pro-C groups, and pro-C HNN-extensions of pro-C groups are not the
same as profinite HNN-extensions of pro-C groups – essentially because, in the pro-
C case, we take a pro-C completion of the abstract amalgamated free product or
abstract HNN-extension, rather than taking a profinite completion of them. Thus,
by working over a class C, we can achieve more general results.

In the abstract case, Bieri uses his analogous results to give conditions on the FP-
type of amalgamated free products and HNN-extensions of groups using the Mayer-
Vietoris sequence on their homology. His approach does not entirely translate to
the pro-C setting, but we obtain some partial results.

See [9, 9.2] for the definition of amalgamated free products in the pro-C case,
and [9, 9.4] for HNN-extensions. We say that an amalgamated free pro-C product
G = G1qHG2 is proper if the canonical homomorphisms G1 → G and G2 → G are
monomorphisms. Similarly, we say that a pro-C HNN-extension G = HNN(H,A, f)
is proper if the canonical homomorphism H → G is a monomorphism.

Suppose, for the rest of the section, that C is closed under taking subgroups,
quotients and extensions. For example, C could be all finite groups, or all finite
p-groups – or, for example, all finite soluble π-groups, where π is a set of primes.
Suppose R is a pro-C ring.

Proposition 3.9. Let G = G1 qH G2 be a proper amalgamated free pro-C product
of pro-C groups. Suppose B is a profinite right RJGK-module. Then there is a long
exact sequence of profinite R-modules

· · · → HR
n+1(G,B)→ HR

n (H,B)→ HR
n (G1, B)⊕HR

n (G2, B)

→ HR
n (G,B)→ · · · → HR

0 (G,B)→ 0,

which is natural in B.

Proof. See [9, Proposition 9.2.13] for the long exact sequence. Naturality follows
by examining the maps involved. �

Proposition 3.10. Let G = G1qHG2 be a proper amalgamated free pro-C product
of pro-C groups. Suppose B ∈ PMod(RJGKop)I . Then there is a long exact sequence
in PMod(R)I

· · · → HR,I
n+1(G,B)→ HR,I

n (H,B)→ HR,I
n (G1, B)⊕HR,I

n (G2, B)

→ HR,I
n (G,B)→ · · · → HR,I

0 (G,B)→ 0,

which is natural in B.

Proof. This follows immediately from the naturality of the long exact sequence in
Proposition 3.9. �

We can now give a result analogous to the first part of [1, Proposition 2.13 (1)].

Proposition 3.11. Let G = G1qHG2 be a proper amalgamated free pro-C product
of pro-C groups. If G1 and G2 are of type FPn over R and H is of type FPn−1 over
R then G is of type FPn over R.

Proof. Take C as in Proposition 3.1 to have as each component a product of copies
of RJGK, with identity maps between the components. Apply Proposition 3.1 to
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the long exact sequence in Proposition 3.10. Then the Five Lemma gives the result,
by Proposition 3.1. �

See [9, Chapter 3.3] for the construction and properties of free pro-C groups.

Corollary 3.12. Finitely generated free pro-C groups are of type FP∞ over all
pro-C rings R.

Proof. Unamalgamated free pro-C products are always proper by [9, Corollary
9.1.4]. �

For proper profinite HNN-extensions of profinite groups, we also have a Mayer-
Vietoris sequence which is natural in the second variable – see [9, Proposition 9.4.2].
It immediately follows in the same way as for Proposition 3.10 that we get a long
exact sequence over a functor category.

Proposition 3.13. Let G = HNN(H,A, f) be a proper pro-C HNN-extension of
pro-C groups. Suppose B ∈ PMod(RJGKop)I . Then there is a long exact sequence
in PMod(R)I

· · · → HR,I
n+1(G,B)→ HR,I

n (A,B)→ HR,I
n (H,B)

→ HR,I
n (G,B)→ · · · → HR,I

0 (G,B)→ 0,

which is natural in B.

From this, we can get in exactly the same way as for free products with amalga-
mation a result for HNN-extensions, corresponding to the first part of [1, Proposi-
tion 2.13 (2)].

Proposition 3.14. Let G = HNN(H,A, f) be a proper pro-C HNN-extension of
pro-C groups. If H is of type FPn over R and A is of type FPn−1 over R then G
is of type FPn over R.

4. Applications

Example 4.1. We show that torsion-free procyclic groups are of type FP∞ over R.
See [9, Chapter 2.7] for the results on procyclic groups that will be needed in this
paper. Any procyclic group G is finitely generated, so of type FP1 by Proposition
3.4. If G is torsion-free, its Sylow p-subgroups are all either 0 or isomorphic to Zp,
so (assuming G 6= 1) it is well-known that G has cohomological dimension 1 – see
[9, Theorem 7.3.1, Theorem 7.7.4]. Consider the short exact sequence

0→ ker ε→ RJGK ε−→ R→ 0,

where ε is the evaluation map defined earlier. The kernel ker ε is finitely generated
by Lemma 2.9. We claim that it is projective – and hence that our exact sequence
is a finitely generated projective resolution of R, showing G is of type FP∞. To
see this, let A be any profinite right RJGK-module, and consider the long exact
sequence

· · · → Tor
RJGK
1 (A,R)→ Tor

RJGK
0 (A, ker ε)

→ Tor
RJGK
0 (A,RJGK)→ Tor

RJGK
0 (A,R)→ 0.

Since RJGK is free as an RJGK-module, we get

TorRJGK
n (A,RJGK) = 0



BIERI-ECKMANN CRITERIA FOR PROFINITE GROUPS 21

for all n ≥ 1, and so

TorRJGK
n (A, ker ε) ∼= Tor

RJGK
n+1 (A,R)

for all n ≥ 1. Now G has cohomological dimension 1, so

Tor
RJGK
n+1 (A,R) = HR

n+1(G,A) = 0

for n ≥ 1, so ker ε is projective.

We can now use this example to construct some more groups of type FP∞.
It is known in the abstract case that polycyclic groups are of type FP∞ over

Z ([1, Examples 2.6]). In the profinite case, it has not been known whether poly-

procyclic groups are of type FP∞ over Ẑ. A result was known for pro-p groups:
poly-(pro-p-cyclic) groups are shown to be of type FP∞ over Zp in [11, Corollary
4.2.5]. This proof uses that, for a pro-p group G, Hn

Zp(G,A) is finite for all finite

A ∈ DMod(ZpJGK) if and only if G is of type FP∞ over Zp. Indeed, one might
expect a similar result to be true for profinite G which only have finitely many
primes in their order, but an obstruction to using this method for general profinite
groups is that there are infinitely many primes, so one cannot build up to these
groups from pro-p ones using the spectral sequence finitely many times. Similarly,
although we showed directly that torsion-free procyclic groups are of type FP∞ over
R, there are procyclic groups which are not even virtually torsion-free, in contrast
to the pro-p case, as for example the group

∏
p prime Z/pZ.

We now define a class of profinite groups: the elementary amenable profinite
groups. The definition is entirely analogous to the hereditary definition of elemen-
tary amenable abstract groups given in [7]. Let X0 be the class containing only
the trivial group, and let X1 be the class of profinite groups which are (finitely
generated abelian)-by-finite. Now define Xα to be the class of groups G which
have a normal subgroup K such that G/K ∈X1 and every finitely generated sub-
group of K is in Xα−1 for α a successor ordinal. Finally, for α a limit define
Xα =

⋃
β<α Xβ . Then X =

⋃
α Xα is the class of elementary amenable profinite

groups. For G ∈X we define the class of G to be the least α with G ∈Xα.
Note that soluble profinite groups are clearly elementary amenable.

Proposition 4.2. Suppose G is an elementary amenable profinite group of finite
rank. Then G is of type FP∞ over any profinite ring R.

Proof. By [9, Theorem 2.7.2], every procyclic group is a quotient of Ẑ by a torsion-

free procyclic group; Ẑ and torsion-free procyclic groups are of type FP∞ by Exam-
ple 4.1. Therefore procyclic groups are of type FP∞ by Theorem 3.8, and finitely
generated abelian groups are a finite direct sum of procyclic groups by [12, Propo-
sition 8.2.1(iii)], so we get that finitely generated abelian groups are of type FP∞
by applying Theorem 3.8 finitely many times.

Now use induction on the class of G. If G ∈ X1, take a finite index abelian
H ≤ G. We have shown H is of type FP∞, so G is too by Lemma 3.3. The case
where G has class α is trivial for α a limit, so suppose α is a successor. Choose
some KCG such that every finitely generated subgroup of K is in Xα−1 and G/K
is in X1. Since G is of finite rank, K is finitely generated, so it is in Xα−1. By
the inductive hypothesis we get that K is of type FP∞, and G/K is too so G is by
Theorem 3.8. �
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We spend the rest of Section 4 constructing pro-C groups of type FPn but not of
type FPn+1 over ZĈ for every n <∞, for C closed under subgroups, quotients and
extensions, as before. King in [8, Theorem F] gives pro-p groups of type FPn but
not of type FPn+1 over Zp, but as far as we know the case with ZĈ has not been
done before for any other class C. Our construction is analogous to [1, Proposition
2.14].

Given a profinite space X, we can define the free pro-C group on X, FC(X),
together with a canonical continuous map ι : X → FC(X), by the following universal
property: for any pro-C group G and continuous φ : X → G, there is a unique
continuous homomorphism φ̄ : FC(X)→ G such that φ = φ̄ι. For a class C closed
under subgroups, quotients and extensions, FC(X) exists for allX by [9, Proposition
3.3.2].

Fix n ≥ 0. Let 〈xk, yk〉 be the free pro-C group on the two generators xk, yk, for
1 ≤ k ≤ n, and write Dn for their direct product (D0 is the empty product, i.e.
the trivial group). Let FZĈ

be the free pro-C group on generators {al : l ∈ ZĈ},
given the usual pro-C topology. We define a continuous left Dn-action on FZĈ

in
the following way. For each k, we have a continuous homomorphism 〈xk, yk〉 → ZĈ
defined by xk, yk 7→ 1. Now this gives a continuous Dn → ZnĈ . Composing this

with n-fold addition

ZnĈ → ZĈ , (a1, . . . , an) 7→ a1 + · · ·+ an

gives a continuous homomorphism

f : Dn → ZĈ .

Now we can define a continuous action of Dn on ZĈ by

Dn × ZĈ
f×id−−−→ ZĈ × ZĈ

+−→ ZĈ .

Finally, by [9, Exercise 5.6.2(d)], this action extends uniquely to a continuous action
on FZĈ

.
Now we can form the semi-direct product An = FZĈ

oDn, and by [9, Exercise
5.6.2(b),(c)] it is a pro-C group. We record here the universal property of semi-
direct products of pro-C groups; it is a direct translation of the universal property
of semi-direct products of abstract groups from [2, III.2.10, Proposition 27 (2)],
which we will need later.

Lemma 4.3. Suppose we have pro-C groups N , H and K, with continuous homo-
morphisms σ : H → Aut(N) (with the compact-open topology), f : N → K and
g : H → K such that, for all x ∈ N and y ∈ H,

g(y)f(x)g(y−1) = f(σ(y)(x)).

Then there is a unique continuous homomorphism

h : N oH → K

such that

f = h ◦ (N → N oH)

and

g = h ◦ (H → N oH).
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Proof. By [2, III.2.10, Proposition 27 (2)] we know there is a unique homomorphism
h : N o H → K satisfying these conditions, except that we need to check h is
continuous. The proof in [2] constructs h as the map (x, y) 7→ f(x)g(y); this is the
composite of the continuous maps (of sets)

N ×H → K ×K → K,

where the second map is just multiplication in K. �

We need two more results about the An before we can prove the main proposition.
Let 〈xn〉 be the free pro-C group generated by xn.

Lemma 4.4. For each n > 0, FZĈ
o〈xn〉 is the free pro-C group on two generators.

Proof. We will show that this group satisfies the requisite universal property. We
claim that it is generated by a0 and xn. Clearly allowing xn (and x−1

n ) to act on a0

gives al, for each l ∈ Z. Now {al : l ∈ ZĈ} (abstractly) generates a dense subgroup
H of FZĈ

; {al : l ∈ Z} is dense in {al : l ∈ ZĈ}, so it (abstractly) generates a dense
subgroup K of H; by transitivity of denseness, K is dense in FZĈ

, so {al : l ∈ Z}
topologically generates FZĈ

.
It remains to show that given a pro-C K and a map

f : {a0, xn} → K

there is a continuous homomorphism

g : FZĈ
o 〈xn〉 → K

such that f = gι, where ι is the inclusion {a0, xn} → FZĈ
o 〈xn〉. Observe, as in

[9, p.91], that by the universal property of inverse limits it suffices to check the
existence of g when K is finite.

To construct g, we first note that f |xn extends uniquely to a continuous homo-
morphism

g′ : 〈xn〉 → K.

Now we define a continuous map of sets

f ′ : {al : l ∈ ZĈ} → K

by
f ′(al) = g′(l · xn)f(a0)g′(l · xn)−1,

where we write l · xn for the image of l under the obvious isomorphism ZĈ ∼= 〈xn〉;
f ′ extends uniquely to a continuous homomorphism

g′′ : FZĈ
→ K.

Finally, by the universal property of semi-direct products, Lemma 4.3, we will have
the existence of a continuous homomorphism g satisfying the required property as
long as

g′(y)g′′(x)g′(y)−1 = g′′(σ(y)(x)),

for all x ∈ FZĈ
and y ∈ 〈xn〉, where σ is the continuous homomorphism 〈xn〉 →

Aut(FZĈ
). This is clear by construction. �

By Corollary 3.12, FZĈ
o 〈xn〉 is now of type FP∞ over ZĈ ; hence, by Theorem

3.8,
An−1 o 〈xn〉 = (FZĈ

o 〈xn〉) oDn−1

is too.
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The next lemma is entirely analogous to [1, Proposition 2.15].

Lemma 4.5. If a pro-C group G is of type FPn over ZĈ then H
ZĈ
m (G,ZĈ) is a

finitely generated profinite abelian group for 0 ≤ m ≤ n.

Proof. Take a projective resolution P∗ of ZĈ as a ZĈJGK-module with trivial G-

action, with P0, . . . , Pn finitely generated. Then H
ZĈ
∗ (G,ZĈ) is the homology of the

complex ZĈ⊗̂ZĈJGKP∗, for which

ZĈ⊗̂ZĈJGKP0, . . . ,ZĈ⊗̂ZĈJGKPn

are finitely generated ZĈ-modules. Now ZĈ is procyclic, hence a principal ideal do-
main, which implies by standard arguments that ZĈ is noetherian in the sense that

submodules of finitely generated Ẑ-modules are finitely generated, and the result
follows: finitely generated pro-C abelian groups are exactly the finitely generated
pro-C ZĈ-modules. �

Proposition 4.6. (i) An is of type FPn over ZĈ.
(ii) An is not of type FPn+1 over ZĈ.

Proof. (i) n = 0 is trivial. Next, we observe that An can be thought of as the pro-
C HNN-extension of An−1 o 〈xn〉 with associated subgroup An−1 and stable
letter yn, since the universal properties are the same in this case. It is clear
that this extension is proper.

We can now use induction: assume An−1 is of type FPn−1 over ZĈ (which
we already have for n = 0). Then An−1 o 〈xn〉 is of type FP∞, so the result
follows from Proposition 3.14.

(ii) By Lemma 4.5, it is enough to show that, for each n, H
ZĈ
n+1(An,ZĈ) is not

finitely generated. We prove this by induction once more. Exactly as in [9,
Lemma 6.8.6],

H
ZĈ
1 (A0,ZĈ) = FZĈ

/[FZĈ
, FZĈ

],

i.e. the pro-C free abelian group on the set ZĈ , not finitely generated. As be-
fore, An is the pro-C HNN-extension of An−1o 〈xn〉 with associated subgroup
An−1 and stable letter yn, and we get the Mayer-Vietoris sequence

· · · → H
ZĈ
n+1(An−1 o 〈xn〉,ZĈ)→ H

ZĈ
n+1(An,ZĈ)→ H

ZĈ
n (An−1,ZĈ)

→ H
ZĈ
n (An−1 o 〈xn〉,ZĈ)→ · · ·

By Lemma 4.5H
ZĈ
n+1(An−1o〈xn〉,ZĈ) andH

ZĈ
n (An−1o〈xn〉,ZĈ) are finitely

generated; by hypothesis H
ZĈ
n (An−1,ZĈ) is not finitely generated. Hence

H
ZĈ
n+1(An,ZĈ) is not finitely generated, as required.

�

5. An alternative finiteness condition

According to [9, Open Question 6.12.1], Kropholler has posed the question: “Let
G be a soluble pro-p group such that Hn(G,Z/pZ) is finite for every n. Is G poly[-
pro]cyclic?”. Now, we know by [11, Corollary 4.2.5] that requiring Hn(G,Z/pZ) to
be finite for every n is equivalent to requiring that G be of type p-FP∞, and by [11,
Proposition 4.2.3] equivalent to requiring that Hn(G,A) is finite for every n and
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every finite ZpJGK-module A. Also, by [12, Proposition 8.2.2], G is poly-procyclic
if and only if it has finite rank. So there are two possible profinite analogues of this
question, either of which, if the answer were yes, would imply [9, Open Question
6.12.1].

Question 5.1. Let G be a soluble profinite group such that Hn(G,A) is finite for

every n and every finite ẐJGK-module A. Is G of finite rank?

Question 5.2. Let G be a soluble profinite group of type FP∞ over Ẑ. Is G of
finite rank?

We will show that the answer to the first of these questions is no. Question 5.2
remains open.

In this section, all modules will be left modules.
By analogy to the pro-p case, we define profinite G to be of type FP′n (over Ẑ) if,

for all finite ẐJGK-modules A, m ≤ n, Hm
Ẑ (G,A) is finite. This definition extends

in the obvious way to profinite modules over any profinite ring. Clearly, by the
Lyndon-Hochschild-Serre spectral sequence [9, Theorem 7.2.4], being of type FP′n
is closed under extensions. In the same way as [11, Proposition 4.2.2], FPn ⇒ FP′n
for all n ≤ ∞; in this section we will see that the converse is not true.

Lemma 5.3. If G is pronilpotent of type FP1, the minimal number of generators
of its p-Sylow subgroups is bounded above.

Proof. For G pronilpotent, by [9, Proposition 2.3.8], G is the direct product of its
(unique for each p) p-Sylow subgroups. If G is finitely generated, pick a set of
generators for G; then their images in each p-Sylow subgroup under the canonical
projection map generate that subgroup. Hence the minimal number of generators of
the p-Sylow subgroups of G is bounded above. We know G is a fortiori prosoluble,
so by Proposition 3.4 and Remark 3.5(a) G is of type FP1 if and only if it is finitely
generated, and the result follows. �

Lemma 5.4. Suppose A is a finite G-module whose order is coprime to that of G.
Then Hn

Ẑ (G,A) is 0 for all n > 0.

Proof. By [9, Corollary 7.3.3], cdp(G) = 0 for p - |G|. In particular,

Hn
Ẑ (G,A)p = 0 for all p | |A|, n > 0.

On the other hand, by [9, Proposition 7.1.4],

Hn
Ẑ (G,A) =

⊕
p||A|

Hn
Ẑ (G,Ap) =

⊕
p||A|

Hn
Ẑ (G,A)p = 0.

�

Proposition 5.5. Let G be pronilpotent. Then G is of type FP′n if and only if
every p-Sylow subgroup is of type FP′n.

Proof. Suppose every p-Sylow subgroup is of type FP′n. Suppose A is a finite

ẐJGK-module. Now A is finite, so only finitely many primes divide the order of A.
Suppose p1, . . . , pm are the primes for which pi | |A|, and write π for the set of primes
without p1, . . . , pm. Write G again as the direct product of its p-Sylow subgroups,
G =

∏
p Sp. By the Lyndon-Hochschild-Serre spectral sequence ([9, Theorem 7.2.4])∏m

i=1 Spi is of type FP′n. Thus, applying the spectral sequence again, Hr+s

Ẑ
(G,A)
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is a sequence of extensions of the groups Hr
Ẑ(
∏m
i=1 Spi , H

s
Ẑ(
∏
p∈π Sp, A)), which by

Lemma 5.4 collapses to give Hr+s

Ẑ
(
∏m
i=1 Spi , A

∏
p∈π Sp), finite.

Conversely, if some Sp is not of type FP′n, there is some Sp-module A and some
k ≤ n such that Hk

Ẑ(Sp, A) is infinite. All groups are of type FP0 and hence of type

FP′0, so we have k > 0. Then by Lemma 5.4 we have that

Hk
Ẑ(Sp, A) =

⊕
p′||A|

Hk
Ẑ(Sp, Ap′) = Hk

Ẑ(Sp, Ap)

is infinite, and so we may assume A = Ap. Then we can make A a G-module by
having every Sp′ , p

′ 6= p, act trivially on A, and the spectral sequence together with
Lemma 5.4 gives that

Hk
Ẑ(G,A) = Hk

Ẑ(Sp, A
∏
p′ 6=p Sp′ ) = Hk

Ẑ(Sp, A),

which is infinite, and hence G is not of type FP′n. �

Finally, as promised, we will answer Question 5.1 by constructing a soluble (in
fact torsion-free abelian) profinite group of type FP′∞ which is not finitely gener-
ated, and hence not of type FP1 by Proposition 3.4 and Remarks 3.5(a), and not
of finite rank.

Example 5.6. Write pn for the nth prime, and consider the abelian profinite group
G =

∏
n(
∏n
i=1 Zpn). By Lemma 5.3, G is not of type FP1. By Example 4.1, and

the Lyndon-Hochschild-Serre spectral sequence, the pn-Sylow subgroup
∏n
i=1 Zpn

of G is of type FP∞ for each n, and hence of type FP′∞. So by Proposition 5.5, G
is of type FP′∞.
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