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The side-wind loading on a simplified train model at scale 1:25 is investigated by parallel LES with
incompressible solvers from the OpenFOAM package and a novel dynamically adaptive, parallel LES-
type lattice Boltzmann method implemented in our own AMROC framework. It is found that the new
LBM code provides more accurate time-averaged force predictions, while compute times are reduced.
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1. INTRODUCTION

Modern high speed passenger trains are at risk of derailment when operating in strong cross
winds. Most experimental studies utilizing wind tunnel experiments have focused on measuring
integral forces, such as drag and lift coefficients and the overturning moment, e.g. (Baker et al.
2004). Computational fluid dynamics (CFD) on the other hand potentially allows for a much more
detailed understanding of the flow behavior. For larger yaw angles, that is for inflows at an angle
larger 20◦, the flow exhibits unsteady vortex shedding from the roof as well as the underside of the
train and it is vital to employ a turbulence modeling approach that is capable of resolving at least
partially the turbulent dynamics of the flow.

Using a simplified model without inter-car gaps and wheel bogies, Hemida and Krajnovic (2010)
were the first to use large eddy simulations to model the time-dependent cross-wind flow around
train-shaped bodies. Focusing on the influence of nose shape and yaw angle on flow behavior, they
found that the nose of the train renders the flow three-dimensional at least for a distance of up to
3.5 trains heights from the tip of the nose in the direction of the length of the train.

In the current investigation, the more realistic Next Generation Train 2 (NGT2) model (Winter
2013) of the DLR at a scale of 1:25 is investigated by LES. This wind tunnel model consists of the
front car and a streamlined body intended to replicate the aerodynamic influence of following cars.
We concentrate exclusively on a wind impact angle of β = 30◦ and Reynolds number Re = 250, 000
(based on the nominal height of the train) for which experimentally obtained temporally averaged
force measurements on the front car are available (Fragner et al. 2014).

Because of the excessive computational demand typically associated with LES, we have used in
here – beside conventional incompressible LES/DDES Navier-Stokes (NS) solvers from the Open-
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FOAM (OF) package – a novel in-house adaptive lattice Boltzmann method with LES-type model-
ing implemented in the block-based AMROC framework (Deiterding 2011). The LBM is an explicit
time-exact scheme for weakly compressible flows that is based on a Cartesian lattice grid. Complex
boundaries are treated efficiently with an embedded boundary approach. In our implementation,
local mesh adaptation is used to increase resolution around geometric objects such that boundary
layer behavior is correctly represented.

The paper is organized as follows: In Section 2, a brief overview of the employed solvers is given.
Section 3 describes the benchmark setup and the utilized meshes. The results are discussed in
Section 4 in terms of flow topology and calculated force coefficients. The conclusions are given in
Section 5. It is generally found that while the LBM-LES results appear to be more instationary,
the time-averaged LBM force predictions are closer to experimental measurements and the method
is computationally significantly less expensive than pressure-correction based solvers.

2. COMPUTATIONAL METHODS

2.1. OpenFOAM

We employ LES and DDES for turbulence modeling together with the implicit transient solver
pimpleFoam from the OpenFOAM package. In LES, the large eddies are resolved directly and the
influence of small-scale eddies on the large scales is modeled. This is achieved by applying a spatial
filter to the incompressible NS equations, yielding

∂tū + ū · ∇ū = −1

ρ
∇p̄+ ν∇2ū +∇τSGS, ∇ū = 0. (1)

Here, ū and p̄ represent the resolved filtered velocity and pressure, respectively, while τSGS =
ūu − ūū are the sub-grid scale (SGS) stresses. Because of its simplicity, we use the Smagorinsky
model to describe τSGS for the LES simulations as

τSGS
ij = −2νtS̄ij with νt = (Csf∆x)2|S̄|, (2)

where S̄ij is the symmetric part of the strain rate tensor, CS is the Smagorinsky coefficient, ∆x is

the filter width (to be taken as mesh cell size), |S̄| =
√

2SijSij and f ≈ 1− exp
(
−y+

26

)
is the van

Driest damping function, which is used to damp the turbulence length scale next to the wall.
Because of the large resolution requirements in order to properly resolve wall boundary layers

with LES at industry typical Reynolds numbers, hybrid models such as detached eddy simulations
(DES/DDES) have become a popular alternative to LES (Spalart et al. 2006). DDES methods
employ RANS models for τSGS near the wall and transition into LES mode further away by
manipulating the model length scale. We use the Spalart-Allmaras (SA) model as the underlying
RANS model, while the model length scale d entering the SA model, is being modified according
to

d = dW − fd max(0, dW − CDES∆x), fd = 1− tanh[(8rd)
3], rd =

νt + ν

κ2d2
W

, (3)

where dW is the closest distance to the wall, CDES = 0.65 and νt is described by the SA model.
Defined in this way, it can be shown that far away from the wall, the model recovers Eq. (2) for
νt. Inside the wall boundary layer the underlying SA model remains unmodified. In OpenFOAM,
mainly pressure-correction algorithms are available to approximate the incompressible equations.

2



June 7, 2016 International Journal of Computational Fluid Dynamics paper˙non-anonymous

2.2. Lattice Boltzmann method in AMROC

The LBM is based on solving for a distribution function f(x, t,u) the simplified Boltzmann equation
∂t f+u ·∇f = ω(feq−f) in discrete phase space. Partial density distribution functions fα(x, t) are
associated uniquely to transport in a discrete velocity direction eα. The total density distribution
is given as ρ(x, t) =

∑
α fα(x, t) and the macroscopic moments are ρ(x, t)ui(x, t) =

∑
α eαifα(x, t).

The discrete lattice Boltzmann equation reads

fα(x + eα∆t, t+ ∆t) = fα(x, t) + ωL∆t (feqα (x, t)− fα(x, t)) , (4)

where the time step is determined by ∆t = ∆x/
(√

3cs
)

based on the speed of sound cs, which
corresponds to a trivial advection step (aka streaming) of fα in direction of eα by exactly one point
on the uniformly spaced lattice. In this paper, a three-dimensional stencil with 19 distribution
functions, i.e., 19 update equations (4) is used (aka D3Q19). For the right hand collision of (4) we
adopt the equilibrium function

feqα (ρ,u) = ρtα

[
1 +

3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2

]
with t0 =

1

3
, t1,...,6 =

1

18
, t7,...,18 =

1

36
, (5)

for which via a Chapman-Enskog expansion convergence of the method to a solution of the weakly
compressible Navier-Stokes equations

∂tρ+∇ · (ρu) = 0, ∂tu + u · ∇u = −1

ρ
∇p+ ν∇2u (6)

can be shown (Hähnel 2004). Kinematic viscosity ν and discrete collision frequency ωL are con-
nected by the relation ωL = τ−1

L = c2
s/
(
ν + ∆tc2

s/2
)
.

To consider high-Re flows, a large eddy approach is adopted, where it is assumed that the
LBM above provides filtered resolved distributions f̄α and an eddy viscosity model can applied.
The effective viscosity ν? = ν + νt = 1

3

(
τ?/∆t− 1

2

)
∆x2/∆t is used with τ?L = τL + τt =: 1/ω?L

in (4). Like Hou et al. (1996), we apply the Smagorinsky model to evaluate νt as given by (2),
but neglect the van Driest damping function. The filtered strain tensor can be directly expressed

via a second moment as S̄ij =
(
2ρc2

sτ
?
L

)−1∑
a eαieαj(f̄α − f̄eqα ) , from which eventually τt =

1
2

[(
τ2
L + 18

√
2(ρ∆x2/∆t2)−1C2

s∆xS̄
)1/2 − τL] can be derived.

Since the utilization of uniform lattices is not effective for real-world CFD simulations, the
LBM has been incorporated into the AMROC software (Deiterding 2011), which supports block-
structured adaptive mesh refinement (SAMR) algorithms generically. In order to fit smoothly into
the existing, fully parallelized software, we have implemented the LBM cell-based, which makes the
scheme also conservative in ρ and ρui. In the SAMR approach, finite volume cells are clustered with
a special algorithm into non-overlapping rectangular grids. The grids have a suitable layer of halo
cells for synchronization and applying inter-level and physical boundary conditions. Refinement
levels are integrated recursively. Distributions streaming across refinement boundaries during the
recursive temporal update are considered and employed in the collision step of the LBM by a
correction-type algorithm that was especially designed for the SAMR methodology, cf. (Deiterding
and Wood 2015).

In AMROC, geometrically complex, triangulated boundaries are first transformed into a scalar
level set function that stores the distance to the boundary surface. In order to implement non-
Cartesian boundary conditions with the LBM, we have chosen to adopt for now a generic 1st order
accurate ghost fluid approach that was already available in AMROC (Deiterding 2011). Applied
to LBM, this technique adjusts the distributions in embedded ghost cells to consider the boundary
conditions of a non-Cartesian reflective wall, which involves interpolation and mirroring of ρ, u
across the boundary to ρ′ and ū and modification of the macro-velocity in the immersed boundary
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(a) (b)

Figure 1. (a) Global domain. (b) Train coordinate system used for force and moment calculation.

cells to u′ = −ū. From the newly constructed macroscopic values the density distributions in the
embedded ghost cells are simply set to feqα (ρ′,u′) before computing a normal LBM update sweep.

3. SETUP

A sketch of the computational domain is given in Fig. 1. For OpenFOAM we apply a freestream
velocity normal to the inlet patch (red) of u∞ = 33.1 m/s together with zero gradient extrapolation
(ZGE) for the pressure. Further, we adopt a constant molecular viscosity for air of ν = 1.589 ·
10−5 m2/s. The Reynolds number is then calculated as Re = u∞H/ν = 250, 000, where H = 12 cm
is used as reference. For the DDES calculations νt/ν = 102 is applied. For the LBM computations,
we use an inlet velocity of u∞ = 41.93 m/s but adjusted viscosity to obtain the same Reynolds
number. At domain outlet patches (magenta & turquoise) we adopt standard outflow boundary
conditions in both codes. Zero gradient extrapolation boundary conditions are used on side walls
for OF and non-reflective outflow boundary conditions in the LBM. No-slip boundary conditions
are applied at the train and plate surfaces (blue, green, yellow).

As initial data for the OF simulations, we employ results of a RANS computation, which ran for
∼ 10, 000 iterations. For LBM, the initial field of distribution functions is set using the equilibrium
function (5), with the velocity set to (41.93, 0, 0)T m/s and density ρ∞ = 1.13 kg/m3. Integral
force coefficients cf,x/y = Fx,y/q are normalized using q = 1

2u
2
∞ρ∞A, where as reference train

cross sectional area A = 0.016 m2 is set (ρ∞ = 1 for the incompressible OF calculations). The roll
moment coefficient around the train longitudinal axis (cf. Fig. 1, right) is given as cm,x = Mx/(qH).
Time is expressed in units of convective timescales TC = H/u∞.

Hybrid tetrahedra-prism meshes with ∼ 34M and ∼ 220M cells with ad-hoc refinement around
the front car and in the near wake were used for OF. The resolution in the wake is ∆x = 3mm
and ∆x = 1.5mm, respectively. In addition, 20 Prism layers with a growth factor of 1.2 have been
employed around the front car and plate surfaces (cf. Fig. 2, middle). This yields a dimensionless
wall normal distance of the first cell of y+ = 1.7 (y+ = 3.2 for the small mesh) and normalized
wall horizontal cell sizes of z+ = x+ ∼ 140 (z+ = x+ ∼ 313), calculated as x+ = ∆x · y+/∆y and
∆y being the absolute height of the first cell. The OF time steps were dt/TC = 7.5 · 10−4 (low
resolution) and dt/TC = 5.9 · 10−4 (high resolution). This is associated with a maximal Courant
number of Co = |u|∆t/∆x = 50 (based on the smallest cells).

The SAMR-LBM computation applies a resolution of ∆x0 = 14.97 mm on the coarsest level and
five additional levels refined by a factor of 2 near boundary surfaces. Up to 4 refinement levels are
employed in regions of high vorticity based on a criterion evaluated at runtime. A representative
depiction of cuts through the resulting mesh is given in the right graphic of Fig. 2. The corre-
sponding normalized wall normal distance of the first cell near the boundary is y+ ∼ 43, which
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(a) (b) (c)

Figure 2. Mesh used in the OpenFOAM simulations (a,b) versus LBM-SAMR mesh generated by runtime mesh adaptation
in AMROC (c).

Mesh cf,x cf,y cm,x

Wind tunnel - -0.06 -5.28 -3.46
DDES low -0.39 -5.42 -3.59
DDES high -0.44 -5.74 -3.80
LES high -0.43 -6.06 -4.13
LBM - -0.30 -5.09 -3.46

Table 1. Integral force and moment coeffi-

cients.

viscous pressure total

cf,x 0.10 -0.49 -0.39
cf,y -0.04 -5.38 -5.42
cm,x -0.05 -3.54 -3.59

Table 2. Viscous and pressure force

contributions for DDES (low resolu-
tion mesh).

would require wall functions for the correct treatment of the wall boundary layer and calculation
of viscous forces. Forces and moments for the LBM are therefore so far computed only for the
pressure contribution. The time step applied for LBM on the finest level is dt/TC = 2.7 · 10−4,
and hence the time resolution is about a factor of two higher near geometry surfaces than in the
OpenFOAM simulations; however, in regions capturing vortical structures, where a maximum of 4
additional refinement levels are applied, the time resolution is comparable.

4. RESULTS

The OF calculations ran on 280 (80 for the small mesh) Intel-Xeon cores for ∼ 2500 h wall clock
time (∼ 622 h), after which they had reached a total physical runtime of ∼ 37− 40TC (∼ 57TC).
On the other hand, the LBM ran on 200 such cores for ∼ 173 h wall clock time on a final mesh size
of 147 M cells, after which it had reached a total physical runtime of ∼ 35TC . About 20% of the
overall computational time in the LBM code is spent on dynamic mesh adaption. Hence for a fair
comparison we switched off on-the-fly mesh adaption when measuring the performance of AMROC
and restarted the computation with the latest SAMR mesh. In this mode, it takes about 0.003 h
CPU to update 1 M cells with their respective time steps. In contrast, OF takes ∼ 0.05 h CPU
to update 1M cells of the high resolution mesh and ∼ 0.03 h CPU for the low resolution meshes.
Hence, the AMROC-LBM implementation is a factor 15-16 faster on comparable meshes.

Integral forces and moments have been averaged over the last 10 convective timescales for the
OF simulations and 14 for the LBM. Table 1 displays calculated force and moment coefficients with
respect to the coordinate system of Fig. 1, right. Note that the LBM shows only the pressure forces,
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|u|/u∞ |∇ × u| · TC

Figure 3. Left: Instantaneous snapshot of the total pressure isosurface (ptot = 0) with color coding indicating normalized

velocity. Middle and right: Normalized vorticity at three different slices, middle: t = 10TC , right: time averaged profile. Top

row: LBM; lower row: OpenFOAM.

while viscous forces have been neglected. On the other hand, total forces (viscous plus pressure)
are displayed for the OF simulations. Table 2 shows their contributions to the overall force and
moment coefficients in case of the small DDES simulation. It is evident that the viscous portion is
only a small correction to the overturning force and moment coefficient, cf,x and cm,x, respectively.
Comparing to the wind tunnel data, the LBM delivers very accurate results for cf,y and cm,x,
with relative discrepancies of 1% − 3% (adopting the small viscous correction of Table 2). While
the low resolution DDES simulation shows quite accurate predictions as well, the relatively large
difference in the high resolution case (i.e. ∼ 8%) may indicate that it is in general difficult to obtain
mesh convergence with DDES. The drag force coefficient cf,x is overestimated in all simulations
compared to the experiment.

The left column of Fig. 3 shows instantaneous snapshots of the total pressure isosurface for a
value of ptot = p − p∞ + 1

2ρu
2 = 0, while colors indicate the normalized velocity magnitude, i.e.

|u|/u∞. A complex vortex system has formed on the leeward side of the train, where various sub-
structures may be identified. One vortex is triggered at the front nose tip and moves along the
roof/leeward interface of the train. It remains steady and attached to the train surface for a length
of about two train heights measured from the front nose tip. Vortices passing over the front-nose
section of the train seem to spiral in and join this vortex. For OpenFOAM this only seems to occur
at the end of the front nose section, while the LBM shows a continues flux into this vortex over
the entire front nose.

After detachment this vortex becomes highly unstable, breaking up into small turbulent eddies,
as may be seen from the vorticity graphics of Fig. 3. An instantaneous snapshot as well as time
averaged data is displayed. Latter has been averaged over ∼ 12 convective timescales for LBM,
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while averaging over ∼ 5−10TC took place for the high-resolution OF simulation. As may be seen
from Fig. 3 (backend slice), the main vortex originating from the front nose is breaking up entirely
in the LBM simulations, while the vortex core seems to be conserved in the OF simulation. This
may be attributed to the extremely low dissipation of the LBM simulation, thereby allowing small
turbulent eddies to be sustained against numerical diffusion. Also, the LBM simulation employs
about 60% higher spatial resolution in the vortex region compared to the OF simulation. From
the time averaged data, however, the vortex core can still be identified in the LBM simulation,
indicating that a coherent vortex structure manifests itself beyond the turbulent fluctuations.

Besides this major vortex, other smaller vortices, which are also triggered at the front nose of
the train, seem to stay attached to the train surface and move all the way along the roof/leeward
interface. Unsteady vortex shedding is observed from the train underfloor region, where two distinct
sets may be identified in Fig. 3. Interaction with the front bogie cavity causes vortices to be shed
in the streamwise direction, while interaction with the back bogie section causes vortices in the
train longitudinal direction.

5. CONCLUSIONS

For a static nonuniform mesh we have shown that the LBM implementation in AMROC is about a
factor of 16 faster for a time step update than OpenFOAM solvers on meshes of similar cell count.
This result is not particularly surprising as the LBM is explicit, while the implicit algorithms in
OpenFOAM involve solving large linear systems.

We have demonstrated that the LBM delivers very accurate predictions for the overturning force
and moment, cf,y and cm,x respectively, with relative discrepancies to the wind tunnel data of
∼ 3%. The high resolution DDES simulation shows somewhat larger discrepancies, which indicates
that it may be difficult to obtain mesh convergence with DDES. In terms of the flow field, results
between LBM and OF look very similar with only a few differences owing to the higher spatial
resolution and lower dissipation of the LBM method.
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