The University of Southampton
University of Southampton Institutional Repository

Diode laser pumped solid state lasers

Diode laser pumped solid state lasers
Diode laser pumped solid state lasers
This thesis deals with the development of diode laser pumped solid state lasers. The earliest work presented enabled 125W peak power, single frequency Q-switched pulses to be obtained from a 100mW diode laser pumped Nd:YAG laser. Using a 500mW diode laser as a pump source for C.W. Nd:YAG and Nd:YLF oscillators an Yb:Er fibre laser was pumped, producing 0.75mW C.W. power at a wavelength of 1.56µm.

Acousto-optic mode-locking techniques were used to provide C.W. mode-locked pulse durations in Nd:YAG and Nd:YLF of 55ps and 18ps respectively, at repetition rates of 240MHz. Frequency modulation mode-locking was shown to be a superior technique, giving pulse durations of 11.5ps and 10ps in diode laser pumped Nd:YAG and Nd:YLF oscillators respectively. FM operation of diode laser pumped Nd:YAG lasers was investigated, yielding a maximum FM bandwidth of 70GHz. Spatial hole burning was considered to be an important factor in this result.
Using a 1W diode laser to pump a mode-locked and Q-switched Nd:YLF oscillator peak power levels of 70kW were obtained at a wavelength of 1.047µm. Frequency doubling this output in MgO:LiNbO3 with an energy conversion efficiency of 47% enabled other tunable lasers to be pumped using the second harmonic. Firstly, a synchronously pumped rhodamine 6G dye laser is described which is capable of producing 3.2ps mode-locked pulses in a Q-switched envelope with peak powers of around 10kW. Secondly, a synchronously pumped doubly resonant optical parametric oscillator tunable between 983nm and 1119nm is described. Lastly, a Ti:Sapphire laser producing 400ns pulses with peak powers of 3W at a wavelength of 755nm is demonstrated. This oscillator could be wavelength tuned between 746nm and 838nm.

A highly efficient method of frequency doubling C.W. mode-locked lasers was developed. Using an external resonant cavity a frequency doubling energy conversion efficiency of 61% to 532nm was achieved, giving 87mW average power in 8.5ps pulses.
University of Southampton
Maker, Gareth Thomas
22f696b6-c92a-4957-8f4f-fba430001e95
Maker, Gareth Thomas
22f696b6-c92a-4957-8f4f-fba430001e95
Ferguson, A.I.
7764759c-2b56-4e74-ad3d-fc8b666853c3

Maker, Gareth Thomas (1990) Diode laser pumped solid state lasers. University of Southampton, Optoelectronics Research Centre, Doctoral Thesis, 287pp.

Record type: Thesis (Doctoral)

Abstract

This thesis deals with the development of diode laser pumped solid state lasers. The earliest work presented enabled 125W peak power, single frequency Q-switched pulses to be obtained from a 100mW diode laser pumped Nd:YAG laser. Using a 500mW diode laser as a pump source for C.W. Nd:YAG and Nd:YLF oscillators an Yb:Er fibre laser was pumped, producing 0.75mW C.W. power at a wavelength of 1.56µm.

Acousto-optic mode-locking techniques were used to provide C.W. mode-locked pulse durations in Nd:YAG and Nd:YLF of 55ps and 18ps respectively, at repetition rates of 240MHz. Frequency modulation mode-locking was shown to be a superior technique, giving pulse durations of 11.5ps and 10ps in diode laser pumped Nd:YAG and Nd:YLF oscillators respectively. FM operation of diode laser pumped Nd:YAG lasers was investigated, yielding a maximum FM bandwidth of 70GHz. Spatial hole burning was considered to be an important factor in this result.
Using a 1W diode laser to pump a mode-locked and Q-switched Nd:YLF oscillator peak power levels of 70kW were obtained at a wavelength of 1.047µm. Frequency doubling this output in MgO:LiNbO3 with an energy conversion efficiency of 47% enabled other tunable lasers to be pumped using the second harmonic. Firstly, a synchronously pumped rhodamine 6G dye laser is described which is capable of producing 3.2ps mode-locked pulses in a Q-switched envelope with peak powers of around 10kW. Secondly, a synchronously pumped doubly resonant optical parametric oscillator tunable between 983nm and 1119nm is described. Lastly, a Ti:Sapphire laser producing 400ns pulses with peak powers of 3W at a wavelength of 755nm is demonstrated. This oscillator could be wavelength tuned between 746nm and 838nm.

A highly efficient method of frequency doubling C.W. mode-locked lasers was developed. Using an external resonant cavity a frequency doubling energy conversion efficiency of 61% to 532nm was achieved, giving 87mW average power in 8.5ps pulses.

Text
Maker 1990 thesis 1580T - Version of Record
Restricted to Repository staff only

More information

Published date: September 1990
Organisations: University of Southampton

Identifiers

Local EPrints ID: 397281
URI: http://eprints.soton.ac.uk/id/eprint/397281
PURE UUID: d52863d2-f680-42d5-927d-eeab99755f5d

Catalogue record

Date deposited: 28 Jun 2016 17:21
Last modified: 15 Mar 2024 01:11

Export record

Contributors

Author: Gareth Thomas Maker
Thesis advisor: A.I. Ferguson

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×