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The basic concept of Hybrid Active-Passive Constrained Layer Damping (HAPCLD) treat-

ment was proposed by introducing active control to the concept of passive constrained layer 

damping configuration in the 1990s to compensate for weak points in active and passive con-

trols by using their respective merits for more robust and stable control. Since then, combina-

tions of various configurations and applicable control strategies have been proposed and studied 

in many engineering areas. However, there is still a need for a new modelling method to more 

easily establish models of HAPCLD treatment and its validation through control analysis and 

experiment with various structures from beams to curved plates. 

In this thesis, velocity feedback control strategy was applied to cantilever beams with four dif-

ferent configurations of HAPCLD treatment to check their applicability. Moreover, the applica-

tion was expanded to flat and curved plates. Control results with each configuration for flat and 

curved plates were analysed by using self-established MATLAB codes based on the Finite Ele-

ment Method (FEM) with the basic concept of a layer-wise approach for coupling each layer of 

structures and deriving Equivalent Single Layer (ESL) models. This new numerical modelling 

method was established by introducing coupling matrices based on a layer-wise approach to 

combine individual FE mass and stiffness matrices of each layer into one ESL model for a 

whole structure. Furthermore, these numerical models were supported by experiments in a lab. 

All measured data was compared with simulation results and they were confirmed in good 

agreement in general. In addition to this, the relation between mode shapes and control by pie-

zoelectric patches occupying a broader area than an ideal actuator was studied to find the condi-

tions for more stable control of flat and curved plates. 

In conclusion, as discussed for active control with beams, AC/PSOLD treatment, which con-

sists of a piezoelectric actuator directly attached to a base structure and a stand-off layer with a 

viscoelastic core and elastic constraining patch laminated on the piezoelectric actuator, was clar-

ified to give the most efficient and robust active control results for plates regardless of the cur-



 

 

vature of all HAPCLD treatments dealt within this thesis as well. AC/PSOLD treatment could 

give similar reductions with smaller control gain in simulation. And, larger reductions were ob-

tained with measured transfer functions in experiments than other configurations. 
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1 INTRODUCTION 

1.1 Background and motivations 

In order to reduce the vibration of mechanical structures effectively, Passive Control (PC) has 

been used traditionally. For example, in the case of PC by structural modification, equivalent 

mass or stiffness of a whole structure can be changed by adding extra masses to the original 

structures for mass modification, and springs or stiffeners for stiffness modification respectively. 

However, although this kind of structural modification can have an effect at a specific target 

frequency as well as other frequencies in the aspect of modal mass and stiffness, the most domi-

nant effect is expected at the target frequency. This method is usually applied to the system un-

der the excitation at one specific frequency, which matches natural frequencies of the system in 

each degree of freedom. The resultant natural frequency of the structure is moved away from the 

primary exciting frequency of the vibration sources (such as engines, motors and so forth). 

However, when there are other excitation components at different frequencies which can match 

adjusted resonance frequencies of the system, the structural modification can cause a resonance 

problem at other frequencies. Therefore, the structural modification with extra mass and stiff-

ness as an example of PC is effective for a system with vibration sources of single operation 

frequency. As an example, this structural modification is used as a primary measure to void the 

resonance of main equipment with normal operation frequencies of main engine and propulsive 

blades. After checking the resonance frequencies of local areas including equipment, foundation 

and supporting structure, structural modification is performed to move overlapped resonance 

frequency to 10% higher than operating frequencies. In order to control vibration caused by 

broadband or variable frequency sources with this kind of method, the same number of structur-

al modification methods as the one for target frequencies should be applied. Moreover, since 

resonance peaks remain sharp although shifted, shifted resonance frequencies can cause reso-

nance problems with other operation frequencies as mentioned above.  

The addition of more damping is another PC technique, which allows vibration reduction by 

reduction of the resonance peaks. Additional damping is effective and preferable especially in 

the high frequency range, where overall average vibration energy distribution is important rather 

than concentrated energy at each mode. While the increase of mass or stiffness results in the 

change of resonance frequency to avoid the coincidence between the resonance frequency of a 

system and the exciting frequency of the disturbance, the increase in damping results in the re-

duction of modal peaks in vibration. Therefore, the addition of more damping is preferred in 

vibration control with broadband excitation mainly applied in frequency range where initial 
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damping, mainly structural damping, is relatively smaller than added damping [1]. However, in 

order to achieve enough reduction with adding damping, when viscoelastic materials are used 

for this purpose, a treated structure has a tendency to have greater energy dissipation in a higher 

frequency range than in a lower frequency range due to the dynamic characteristics of structure. 

Since a certain ratio of energy dissipation by damping occurs in one cycle of motion and the 

total amount of vibration reduction increases through the repetition of this cycle, more damping 

leading the increase of mass for larger reduction in one cycle of motion is mandatory in lower 

frequency range. As an example of this approach, a Passive Unconstrained Layer Damping 

(PULD) treatment consists of a viscoelastic layer attached to a base structure without any kind 

of constraining layer on it, as shown in Figure 1.1 (a). Despite this, a substantial increase in 

weight is needed to achieve significant vibration reduction, which affects general motion of 

structures, especially in the low frequency range. 

(a)

  

(b)

  

Figure 1.1 (a) Concepts of PULD;  : elastic beam and patch and  : viscoelastic layer and (b) Bending of 

motion in PULD 

Passive Constrained Layer Damping (PCLD) treatment consists of a viscoelastic layer between 

two elastic constraining layers, one of which is a base structure [2], as shown in Figure 1.2. (a). 

This was introduced to maximise the effects of the viscoelastic layer in increasing the damping 

and stiffness of the structures limiting weight addition at the same time [3, 4]. Since the bending 

stiffness of a structure increases according to the distances of face layers from the neutral axis or 

plane of the whole structure, a structure with a constraining layer has increased bending stiff-

ness according to the increasing distance of a constraining layer from the neutral axis of a base 

structure. Weight increase by adding the constraining layer within PULD treatment is smaller 

than weight increase by the thickness increase of the original base structure despite the same 

increase in bending stiffness. In addition, PCLD treatment can give more damping than a simple 

application of PULD treatment. Energy is dissipated only by extensional motion in an uncon-

strained viscoelastic material attached to a base structure in PULD treatment as described in 

Figure 1.1 (b). On the other hand, energy is dissipated by extensional motion as well as shear 

deformation of viscoelastic material, which is caused by an elastic constraining layer attached to 

viscoelastic material and leading the increase of viscous friction in viscoelastic layer, in PCLD 

treatment [1, 5]. Moreover, since the increase of damping in PULD treatment is caused by larger 

extension of viscoelastic layer, viscoelastic layer should locate as far from the neutral axis of 

structure, which is considered as the reference line for axial (beams) or in-plane (plates) exten-
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sion in bending, as possible to obtain more damping [1]. Otherwise, since transverse shear stress, 

which is the greatest at the neutral axis and zero at the outer surface, is used in PCLD treatment 

to increase damping, it can give enough damping with thin structure or even inside structure [1]. 

This PCLD treatment easily can be found in various industrial areas, e.g. shipbuilding industry 

as sound and vibration reduction measures for floors as given in Figure 1.3. 
 

(a) 

 

(b) 

 

Figure 1.2 (a) Concepts of PCLD;  : elastic beam and patch and  : viscoelastic layer and (b) Bending of 

motion in PCLD 

  

Figure 1.3 Examples of PCLD treatment application in industry [www.dae-hyup.com/en_product_02_18.html] 

All passive controls have some disadvantages such as a significant increase in weight for large 

vibration reduction in the low frequency range. Therefore, Active Control (AC) was introduced 

from the need for a lighter but still efficient method for vibration reduction in the low frequency 

range [3, 4]. Brief concepts of PC and AC are shown in Figure 1.4. Figure 1.4 (b) explains the 

control concept of the feedback control as an example of AC. As shown in Figure 1.4 (b), con-

trol force/moment is applied to the system to reduce the motion, i.e. vibration according to the 

reference signal, which is determined by measurement of displacement, velocity or acceleration, 

in AC. The effect of each measured signal in AC was studied in Appendix C. 

(a)

 

(b) 

 

Figure 1.4 Concepts of control methods (a) Passive control (b) Active control 
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Therefore, for PC and PCLD treatment, since vibration reduction completely relies on the 

changes of equivalent material properties in a system due to the application of treatment as de-

scribed in Figure 1.4 (a), the response of treated structures cannot easily be adjusted in operation 

according to users’ requirements. On the other hand, if AC is in use, target frequencies and tar-

get modes can be changed according to requirements and situations by changing the set-up of 

the controller. Moreover, an improvement of control performance can be achieved by the 

change of control gain without the increase of weight in AC. 

However, there are also limits related to the application of AC for vibration reduction. Most of 

all, the application of AC is mainly limited to a low frequency range, where the distinction be-

tween each mode is clear. This condition is necessary for a more effective and efficient control 

in terms of control effort. Due to this, high frequency components contained in a real-time sig-

nal are generally truncated for better control performance. This kind of signal process results in 

instability problems, so called higher frequency spill-over effects, which are liable to degrade 

(control spill-over: actuators give undesirable effects on uncontrolled modes) or even de-

stabilise (observation spill-over: sensors detect the deflection of uncontrolled modes) the re-

sponse of the closed-loop system, especially when active feedback control is implemented [6, 7].  

In order to achieve a more efficient and better control system, the hybrid active-passive con-

strained layer damping (HAPCLD) treatment has been introduced by combining the advantages 

of AC and PCLD treatment, which showed better control performance than a conventional PC. 

The objective of this configuration is to obtain better control performance in broadband fre-

quency range by adding control performance of AC in a low frequency range to control perfor-

mance of PC in a high frequency range. Generally, a piezoelectric actuator replaces the elastic 

constraining layer of PCLD treatment for AC as the simplest configuration of HAPCLD treat-

ment, called Active Constrained Layer Damping (ACLD) treatment. Some researchers included 

a piezoelectric sensor in its configuration for the collocation of the sensor and actuator.  

 

1.2 Objectives of the thesis 

HAPCLD treatments can be categorised into four types according to the type of layers and 

lamination order used in the configurations: (1) ACLD treatment, (2) Active Passive Con-

strained Layer Damping (APCLD) treatment, (3) Active Control/Passive Constrained Layer 

Damping (AC/PCLD) treatment and (4) Active Control/Passive Stand-Off Layer Damping 

(AC/PSOLD) treatment respectively [3]. For a detailed description of the configuration and lit-

erature review, please refer to Figure 2.9 in Section 2.1. Although another configuration called 
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Enhanced ACLD treatment was given in [3], this can be categorised as a kind of ACLD treat-

ment and will not be considered in this thesis. The main reason for exclusion of Enhanced 

ACLD treatment is based on the related literature review and will be explained in Chapter 2. 

The review and assessment of four different types of HAPCLD treatment on beams were con-

ducted in [3]. However, a parameter study related to the thickness of viscoelastic layers and the 

length of HAPCLD treatment was performed only for beams with numerical analysis using FE 

models. A need for experimental assessment remains. 

The applicability of the four types of HAPCLD treatment to more complex structures such as 

flat and curved plates still has to be studied. Moreover, the assessment results for beams in [3] 

should be checked for applicability to flat and curved plates as well. Therefore, four types of 

HAPCLD treatment need to be applied to flat and curved plates to check if the same result for 

beams can be obtained for flat and curved plates as well. In vibration control for flat and curved 

plates, additional in-plane, bending and twisting motions related to the y-axis have to be consid-

ered. 

In the aspect of numerical modelling, there are many studies on laminated structures with 

PCLD or ACLD treatments (see Chapter 2 for a detailed literature review). However, individual 

equations of motions for displacement terms in each layer have been used in these studies. With 

this kind of approach, if more complex configurations than PCLD and ACLD treatments are 

used, their applicability is not guaranteed. Therefore, based on previous studies for viscoelastic 

materials and laminated structures with viscoelastic layers, some new coupling methods to 

combine each layer as one equivalent structure could be studied, which can guarantee applica-

bility of coupling theory. 

The aims of this thesis are to further the numerical modelling of smart viscoelastic layered 

structures and increase understanding of applicability of HAPCLD treatments to beams, flat and 

curved plates. 

When considering the remaining research topics mentioned above, objectives of the thesis can 

be established. 

1. To examine the previous results of assessment and conclusions about various HAPCLD 

treatments obtained only through simulation with a cantilever beam by a control algorithm 

called LQR through simulations as well as experiments using real cantilever beams with 

four different HAPCLD treatments. Different variables such as dimensions of structures 

and treatments, control algorithm, etc. are used in this study to check the versatility of con-

figurations of HAPCLD treatment with different control circumstances. 
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2. To derive Equivalent FE models used for active control by newly established coupling 

methods from a layer-wise approach. In this modelling, analysis of motion for 1-D lami-

nated structures with viscoelastic and piezoelectric layers will be included. Moreover, ac-

tive control including optimal and stable controller design using the kinetic energy of a 

whole structure, the absorbed power by controllers and the Nyquist plot for a controller’s 

open-loop will be studied for active control. 

3. To develop FE modelling and analysis for 2-D laminated structures, i.e. flat and curved 

plates. Although modelling and analysis can be conducted by using commercial numerical 

analysis programs such as ANSYS, PATRAN/NASTRAN and so on, better understanding 

of motions of structures, the mutual relationship between local degree-of-freedoms of each 

layer and dynamic characteristics of viscoelastic materials in time or frequency domain is 

expected by studying related theories, establishing numerical models and analysing mo-

tions of structure with or without active control. In order to derive FE dynamic stiffness 

matrices for each layer of configurations, understanding about equations of motions of 

structures should precede. In addition to this, behavioural characteristics of a viscoelastic 

layer constrained between two elastic layers and mutual relationships between each layer 

should be understood. The establishment of numerical FE models including piezoelectric 

and viscoelastic layers, which can be used more easily for laminated structures, will be an 

aim. Instead of deriving individual equations of motion for a whole structure according to 

the change of configurations, general equations of motion for each layer will be derived 

considering their material properties. They will be combined as an equation of motion for 

the equivalent structure by introducing a coupling matrix. 

4. To ascertain whether the same conclusions on beam control with four different HAPCLD 

treatments can be obtained for flat and curved plates. Simulations using newly established 

numerical models and experiments with five curved plates with different configurations of 

HAPCLD treatments will be developed. 

 

1.3 Contributions of the thesis 

According to the objectives of the thesis explained in the previous section, the following con-

tributions of the thesis were achieved. 

1. A new numerical modelling method was established by introducing coupling matrices 

based on a layer-wise theory to combine the separate FE mass and stiffness matrices of 
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each layer. In this modelling, individual mass and stiffness matrices of base, viscoelastic, 

piezoelectric and elastic constraining layers were composed without deriving equations of 

motion for the whole structure considering mutual motions of neutral axes in each layer. 

Coupling matrices were derived instead by considering mutual motions between neutral 

axes in each layer. After stacking individual mass and stiffness matrices of each layer ac-

cording to the order of lamination, coupling matrices and their transverse matrices were 

multiplied to laminated mass and stiffness matrices to derive equivalent mass and stiffness 

matrices for the whole structure. This modelling method is more useful for expanding the 

application to more complex configurations relatively easily than other previous methods. 

This modelling method was validated by experiments using real structures. 

2. Effectiveness of HAPCLD treatments in differently laminated configurations was verified 

with a velocity feedback control algorithm on a beam through simulation and experiment. 

In [2], Trindade and Benjeddou made a choice for a specific system configuration and a 

control algorithm, LQR, for ease of comparison. Therefore, their conclusion should be val-

idated to be applicable to different cases to show the versatility of the HAPCLD treatments 

used in [2]. Moreover, since the conclusion was obtained only with simulation based on a 

parameter study, it needed to be validated through related experiments. 

3. More complex configurations of HAPCLD treatments than ACLD treatment including 

constraining elastic, piezoelectric and viscoelastic layers were applied for the first time to 

flat and curved plates. Although ACLD treatment has been used for active control of flat 

plates, curved plates or shells including radiated noise control in the inner cavity of struc-

tures, the application of more complex configurations had not yet been found, in spite of 

their better vibration reduction performance. As a conclusion to simulation with estab-

lished FE models using a new numerical modelling method and experiment, AC/PSOLD 

treatment can provide the largest reduction of local vibration of all cases. Furthermore, ac-

tive control with this configuration is stable and more robust in various cases than ACLD 

treatment, which was studied to provide more stable control results than conventional AC 

especially in a high frequency range according to previous studies. 

4. An improved method of stability in active control was proposed considering the phase 

shift by filters such as low-pass filters. When any kind of filter is used to limit the frequen-

cy range of an input signal, phase shift occurs in the filtered signal. Due to this phase shift, 

there is a possibility that the input signal for a controller becomes unstable, though it was 

in a stable region before filtering. Therefore, the method for compensating the effect of 

phase shift in real-time active control in a broadband frequency range was discussed. Ad-

ditionally, for more stable active control, the relationship between the stability of active 
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control and mode shapes of structures was studied. When shakers are used as actuators in 

active control, stable active control can be guaranteed with collocated sensors and actua-

tors according to the location, the relation between input and target signals and so forth. 

However, if piezoelectric actuators are used, since they usually occupy broader space than 

shakers, they apply a distributed control force or moment along edges. Since these forces 

and moments have bilateral symmetry, the relationship between the dynamics of a PZT ac-

tuator and mode shapes of a base structure can have a greater influence on active control. 

Thus, the symmetry of moment generated by a rectangular piezoelectric actuator should be 

considered in relation to the change of mode shapes around the location of the actuator to 

guarantee stable control. 

 

1.4 Structure of the thesis 

Chapter 2 presents the literature review results relating to the main research topics of the thesis. 

The chapter is divided into three sections. The first section is about the active control methods 

using constrained layer damping treatments, mainly ACLD treatment, and a study of their con-

figurations. Another is related to the numerical modelling method, mainly the Finite Element 

Method (FEM), for beams and plates (flat and curved plates). The other relates to recently pub-

lished research results of FE modelling for laminated structures. According to the summary and 

review of previous research, research direction will be given. 

Chapter 3 focuses on the establishment of 1-D numerical modelling for laminated beams using 

the FE method. FE mass and stiffness matrices for elastic base beams, viscoelastic, piezoelectric 

and elastic constraining layers are derived. Elastic base beams, piezoelectric and elastic con-

straining layers are assumed as Euler beams, while the viscoelastic layer is assumed to be a Ti-

moshenko beam considering first-order shear deformation using the GHM method. According 

to the mutual relationships of displacements for each layer, coupling matrices are derived for 

different configurations of HAPCLD treatment based on a layer-wise theory. In this procedure, 

FE modelling for laminated beams, which is mentioned as the first contribution, is used.  

Chapter 4 is related to the validation of FE 1-D models established in Chapter 3 with experi-

mental measurement results. At first, an untreated beam and a beam with PCLD treatment were 

validated by comparison with impact hammer test results. After that, beams for experiments 

were fabricated with four different HAPCLD treatments. Using these four beams, measurements 

of FRFs in two cases of pseudo-random moment excitation with PZT actuators and pseudo-

random force excitation with shakers were conducted. By comparison with simulation results 
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and measured data, the validation of established FE 1-D models was performed. Through this 

validation, the usability of established FE beam models in Chapter 3 and the first contribution 

related to beams are confirmed. 

Chapter 5 discusses active control with HAPCLD treatments of beams based on simulation 

and measured data obtained in the previous chapters. The effects of phase shift on active control 

by a low-pass filter used to limit the range of control frequency up to 3rd mode as done in [3] 

are discussed, and the compensation method of the phase shift is studied by introducing extra 

filters. Finally, control results in [3] are assessed with active control results with the proposed 

filtering method. With these analyses and experiments, the second and forth contributions relat-

ed to a stability improvement method for active control using a filter for this thesis mentioned in 

the previous section are achieved. For the second contribution, simple velocity feedback control 

is used instead of LQR. 

Chapter 6 focuses on the establishment of 2-D numerical modelling for laminated flat plates 

using an FE method to expand the application of HAPCLD treatments discussed in the previous 

chapters. As was done for 1-D structures in Chapter 3, mass and stiffness matrices for each layer 

are derived individually, and converted into an equivalent mass and stiffness matrices by multi-

plying coupling matrices. Base plates, piezoelectric and elastic constraining layers are assumed 

to be Kirchhoff plates ignoring shear deformations, while viscoelastic layers are assumed to be 

Mindlin plates considering first-order shear deformation using the GHM method. Simulation 

results using established FE flat plate models will be validated by experimental results. 

Chapter 7 consists of FE modelling and its validation for laminated curved plates, which is 

mentioned as the first contribution, and study of curvature’s contribution on mode shapes. 

Based on coordinate transfer between a flat and curved plate, FE flat plate models can be 

changed to FE curved plate models. Using FE flat and curved plate models, the change of mode 

shapes due to the curvature will be studied. 

Chapter 8 is related to the validation of 2-D FE models established in Chapter 6 and 7 and 

analysis of active control with HAPCLD treatments of flat and curved plates using the numeri-

cal models and measured data considering mode shapes of structures. Simulation results for ac-

tive control are analysed based on the changes of mode shapes, and the effects of the changes of 

mode shapes on active control are discussed. With the filtering method proposed in Chapter 5, 

active control results, using measured FRFs of curved plates with various HAPCLD treatments, 

are compared, and final conclusions are derived. In this chapter, the third contribution is 

achieved and the forth contributions related to the relationship between active control and mode 

shapes are studied.  
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Chapter 9 includes the summary and conclusions of the results of study conducted in the thesis. 

Moreover, future works are proposed for further study. 



2. LITERATURE REVIEW 

 11   

2 LITERATURE REVIEW 

In this chapter, previous studies which have been conducted into active and passive controls 

using constrained layer damping treatments, and related numerical modelling will be reviewed. 

Firstly, previous studies about passive and active controls using constrained layer damping 

treatments will be reviewed. As a result of review, successive studies by one researcher have a 

tendency to add more variables to their research models with the same configuration. The re-

view of numerical modelling methods related to constrained layer damping treatments will fol-

low. This review will include viscoelastic material modelling methods, and the literature review 

of state-of-the-art FE formulation of laminated structures, mainly focusing on recently published 

journal papers, will follow. 

 

2.1 Passive and active controls with constrained layer 

damping treatment 

Conventional AC, which mainly is conducted at distinctive modes in low frequency range, can 

have limits in control performance as mentioned in Section 1.1 due to instability caused by the 

spill-over effect with the truncation of high frequency components for the efficiency of control. 

Various control methods have been proposed to obtain better and more robust controls. The 

method most obviously related to this work, the combination of PCLD treatment and AC was 

firstly proposed by Plump and Hubbard in 1986 and named ACLD treatment [4]. Plump and 

Hubbard replaced the cover layer of PCLD treatment with a piezoelectric material which acts as 

an actuator in AC. Therefore, this configuration has advantages for both AC and PCLD treat-

ment at the same time and a more efficient control can be achieved. PCLD treatment has a lim-

ited efficient range of application which depends on frequency and temperature. Sufficient vi-

bration reduction due to the increase of damping caused by the frequency response of viscoelas-

tic materials is mainly guaranteed in a mid (transition region) and high frequency range. On the 

other hand, AC has a poor performance at high frequencies, where no individual mode domi-

nates response of system, and good performance in low frequency range, where responses of 

system are dominated by individual modes on resonance frequencies [8]. High frequency com-

ponents are truncated in AC to increase efficiency of control. Therefore, Plump and Hubbard 

proposed to combine AC and PCLD treatments for more efficient control results in the low fre-

quency range as well as in the high frequency range. Low frequency components are controlled 

by a PZT actuator, and mid and high frequency components are reduced by passive damping of 
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a constrained viscoelastic layer. 

ACLD treatment gained widespread recognition through the publications by Baz in the early 

1990s [4]. He proposed an optimum design for its control [9]. In the paper, the obtained results 

emphasize the potential of the optimally designed ACLD treatment as an effective means for 

providing broadband attenuation capabilities over a wide range or operating temperatures as 

compared to PCLD treatments. Since the mechanical properties of viscoelastic material can vary 

from the rubbery (soft) region to the glassy (stiff) region and vice versa according to the change 

of temperature and frequency [10], control effect of PCLD treatments can be affected by it. 

However, the ACLD treatment proposed in [9] showed better control results than PCLD treat-

ment in spite of the change of mechanical properties in viscoelastic materials. When considering 

the change of real viscoelastic material properties at a fixed frequency given in Figure 2.1 [9], 

the performance of ACLD can be less affected by the change of temperature due to the heat 

generated by a piezoelectric actuator with the proper selection of viscoelastic material. Based on 

this reason, the most of studies regarding HAPCLD treatment using piezoelectric materials as a 

actuator and viscoelastic layers as additional damping have not considered the change of me-

chanical properties in viscoelastic layers significantly. Even in experiment to extract the param-

eters for viscoelastic material models, those at a specific temperature were extracted from meas-

ured data [11]. 

 

Figure 2.1 The changes of shear modulus and loss factor versus temperature at 100 Hz of epoxy adhesive (‘3M’ 

9323), typical damping material (‘Dyad’ 606) and silicone elastomer (‘Silastic’ J) [9] 

He used the model described in Figure 2.2. Piezoelectric patches were used as an actuator as 

well as a sensor, located in the same position. By using this kind of configuration, some possible 

problems in active control such as duality (mismatch between error signal and control force, e.g. 

displacement and moment) and collocation (mismatch of location between disturbance, error 

signal measurement and control points) could be avoided. Moreover, Baz used a similar config-

uration of ACLD treatment to the one in Figure 2.2 for boundary control of a cantilever beam 

[12, 13]. He extended the length of ACLD treatment including the piezoelectric sensor to the 
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length of the base beam to cover the whole beam with ACLD treatment, and he derived the 

equation for an equivalent beam with the assumption treating a piezoelectric sensor and a base 

beam as one structure. This resembles the same configuration as the sandwich beam with a vis-

coelastic core given in [2], to compare compliances of PCLD and ACLD treatments. However, 

in this case, there is a limit in that the length of the sensor and base beam should be same. 

 

Figure 2.2 Schematic drawing of the ACLD treatment by Baz and Ro [9];  : elastic beam,  : viscoelastic 

layer and  : piezoelectric patch 

 

The application of ACLD treatment was expanded to different types of structure such as rotat-

ing beams [14], plates [15] and thin cylindrical shells [16] (See figure 2.3 and 2.4). In [14], the 

study for rotating beams demonstrated the applicability of ACLD treatment to vibration control 

of helicopter rotor blades. (This work was funded by the US Army Research Office (Grant 

number DAAH-04-93-G-0202) [14].) Configuration of ACLD treatment was the same as in 

Figure 2.2, and the blade deflection due to rotation, which is dominant at an operation frequency, 

was used as an input signal for the controller. Furthermore, studies related to flat plates in [15] 

and thin cylindrical shells in [16] showed the possibility of ACLD treatment application to more 

complex structures than beams such as flat and curved plates. In [15], applied ACLD treatments 

are attached on both sides of the plate forming a symmetric configuration for the neutral plane 

of the base plate, as shown in Figure 2.3, with the same length of plate, but different width to 

control the free-end deflection of a cantilever structure at the centre line. Moreover, a polyvinyl-

idene fluoride (PVDF), which is generally used in the form of film rather than a solid type, is 

used as a piezoelectric actuator [15]. This inspired the use of various piezoelectric materials as 

actuators for HAPCLD treatment, although it remains uncertain if a PVDF film can give a large 

constraining PCLD treatment effect as a conventional solid type piezoelectric actuator. In [16], 

two ACLD treatments with no piezoelectric sensors are attached inside a pipe as shown in Fig-

ure 2.4. Using this configuration, vibrations at the first two modes of shell were controlled com-

paring control results with PCLD treatment. As mentioned in [16], this study was implemented 

as a basic study for radiated noise control in the inner cavity of a shell, which was related to 

Ray’s later studies. 
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Figure 2.3 Finite element model of a plate treated with ACLD treatment by Baz and Ro [15];  : elastic plate, 

 : viscoelastic layer and  : piezoelectric patch 

 

Figure 2.4 Schematic diagram of the shell (pipe)/ACLD treatment system by Ray et al. [16];  : elastic pipe, 

 : viscoelastic layer and  : piezoelectric patch 

Except [16], ACLD treatments used in Baz’s studies include piezoelectric sensors in the con-

figuration instead of accelerometers for collocation between locations of sensors and actuator, 

and avoidance of the duality problems. Duality can be caused by the mismatch between the con-

trol force and error signal. For example, if moment (control force) is applied to a system to con-

trol out-of-plane deflection (error signal), unstable control results may be obtained due to the 

mismatch between them. Since out-of-plane deflection is caused by force in out-of-plane direc-

tion, negative force in out-of-plane direction should be applied as control force to reduce the 

out-of-plane deflection. 

 

Following the study with a conventional solid piezoelectric actuator [16], Ray introduced a dif-

ferent configuration for ACLD treatment, i.e. vertically reinforced piezoelectric composites with 

piezoelectric fibres in an epoxy matrix as shown in Figure 2.5 [17]. According to [17], this kind 

of configuration has larger applicability to structures than the one with conventional piezoelec-

tric materials. Due to the flexibility of shape, this configuration is applied to pipe structures to 

control vibration of structures for reduction of radiated sound into water. This kind of configura-

tion, using coefficients of piezoelectric materials in 33-direction as a form of fibre moulded in 

epoxy material, had been used for distributed sensors and actuators. Coefficients of piezoelectric 

materials in 33-direction are generally ignored in conventional configurations due to their small 

contribution on control, rather than coefficients in 31-diretion, which are generally used in con-
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ventional configurations. Ray expanded the application of the configuration to distributed sen-

sors and actuators as smart structures with ACLD treatment instead of conventional ACLD 

treatment using monolithic piezoelectric material. 

(a)  (b)

 

Figure 2.5 Schematic representation of a lamina of vertically reinforced 1–3 piezoelectric composite material and 

the cross-sections of a representative volume element (RVE) of the composite by Ray and Pradhan (a) Lamina of 1-3 

Piezoelectric composite and (b) Cross-Sections of an RVE of the 1-3 piezoelectric composite in xz and xy planes [17] 

 

As was done for a conventional piezoelectric patch by Baz, the application of this configura-

tion of ACLD treatment is expanded to plates [18]. In [18], the performance of vertically rein-

forced 1-3 piezoelectric fibre-reinforced composite (PFRC) layers of the patches has been inves-

tigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply 

and antisymmetric angle-ply laminated composite plates into the acoustic cavity with the test 

box as shown in Figure 2.6 (a). The dynamics of ACLD treatment used in [18] can be found in 

Figure 2.6 (b). Since the fundamental mode of the acoustic cavity is related to the fundamental 

mode of wall, the changes in central displacement and Sound Pressure Level at one point of the 

cavity were studied at the fundamental frequency only.  

 

(a)

 

(b)

  

Figure 2.6 (a) Schematic representation of an acoustic cavity with a flexible wall of laminated plate integrated with a 

patch of ACLD treatment and (b) the dynamics of ACLD treatment [18]  

Considering that thin cylindrical shells are usually used as a major building block for many 

critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and mis-

siles rather than flat plates, the vibro-acoustic study in [18] was expanded to cylindrical shells 

[19, 20, 21]. The study in [19] is an expanded version of the study in [18] for a cylindrical shell, 

one end of which is clamped to a wall. Two ACLD treatments were attached on the outer sur-

face of a shell and radiated noise in the cavity was controlled at the first two modes with vibra-
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tion control. In addition to the study result in [19], in order to keep the angle of piezoelectric 

fibres in ACLD treatment perpendicular to the surface of the shell, piezoelectric fibres were 

obliquely arranged considering the curvature of the shell [20]. The result in [20] was adapted in 

[21] with the application to cross-ply and angle-ply laminated composite shells. This study was 

performed for nonlinear vibration of cylindrical shells [22] and a specific shell structure such as 

a carbon nanotube [23]. And, since carbon nanotubes were considered to be beams in [23], their 

structural characteristics were investigated to derive FE formulations for equivalent cantilever 

beams. 

As reviewed above, active control with constrained layer damping treatment has been imple-

mented from beams to flat and curved plates, and it has been done for linear and nonlinear vi-

brations. These studies have shown a tendency to consider more variables (DOFs) and nonlinear 

terms than previous studies. However, they have used the same configurations that were estab-

lished in the early stage of their study. Therefore, space to improve configurations for better 

control performance still remains. 

A brief history relating to the effect of HAPCLD treatment configurations on beams is ex-

plained in [3] and each configuration used in previous studies was categorised as is given in 

Figure 2.7. It focuses mainly on the improvement of configurations for constrained layer damp-

ing treatments with a PZT actuator and a viscoelastic layer to obtain better passive and active 

control results. Configuration improvement has been proposed by additionally introducing an 

elastic constraining layer and changing the lamination order of each layer as shown in Figure 

2.7. 

The first six implementations of Figure 2.7, i.e. from (a) to (f) can be categorised as ACLD 

treatment, which is the standard configuration for hybrid damping treatments [24-36]. In the 

case of (a), optical sensors are used instead of piezoelectric sensors to eliminate the structural 

modification caused by piezoelectric sensors. The use of optical sensors, since they are usually 

used for measurement of velocity or acceleration, can cause duality problems, which can cause 

instability of active control. In other cases, where piezoelectric sensors are used, the possibility 

of duality problems is minimised. However, the addition of piezoelectric sensors leads to possi-

ble changes in the dynamic characteristics of whole structures and HAPCLD treatments. Agnes 

and Napoliano [29], Huang et al. [30] and Yelling and Shen [31] proposed a piezoelectric patch 

to use a sensor and an actuator simultaneously to minimise this problem, but this method re-

quires a complicated signal processing design in the controller. 
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Figure 2.7 Four configurations of HAPCLD treatment [3]; ACLD: Active Constrained Layer Damping, APCLD: Active 

Passive Constrained Layer Damping, AC/PCLD: Active Control/Passive Constrained Layer Damping and AC/PSOLD: 

Active Control/Passive Stand-Off Layer Damping 

 

On the other hand, the next two implementations in (g) and (h) are categorised as APCLD 

treatment, which is a configuration where piezoelectric actuators are attached to PCLD treat-

ments [37, 38, 39]. Since this has an additional elastic constraining layer, increase of stiffness 

can be expected. Moreover, as PCLD treatment can maintain its original configuration during 

active control, passive damping of configurations can remain constant during active control. 

From the configuration of APCLD treatment, although the motions of piezoelectric actuators are 

limited by elastic constraining layers, better control results are obtained by APCLD treatment 

than ACLD treatment in the assessment of [3] and the studies in this thesis. This is because the 

increase of damping and stiffness results in an increase in control gain as clarified in this thesis. 

Moreover, the sizes of piezoelectric actuators are not to be the same for PCLD treatment and 

can be determined according to requirements. Piezoelectric actuators in ACLD treatment should 

have the same sizes of viscoelastic layers. 

In the last two groups, piezoelectric actuators are directly attached to base structures different 

from other configurations mentioned above. Four implementations in the 3rd group are catego-

rised as AC/PCLD treatment [40-43] and the last implementation is categorised as AC/PSOLD 

treatment [44]. AC/PCLD and AC/PSOLD treatments can deliver control force and moment 
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from a piezoelectric actuator to a base structure without any energy loss inside a viscoelastic 

layer. The difference between these two configurations is the location of piezoelectric actuators. 

For AC/PSOLD treatment, a piezoelectric actuator located between a base structure and a visco-

elastic layer act as a spacer layer forming a Stand-Off layer. This Stand-Off layer acts as a strain 

magnifier that amplifies the shear strain in the viscoelastic layer by virtue of increasing the dis-

tance between the viscoelastic layer and the neutral axis of the base structure [45]. According to 

the assessment in [3], AC/PSOLD treatment can give the best control results for four types of 

HAPCLD treatment.  

In addition to the literature review based on the categorization of HAPCLD treatments focus-

ing on configuration improvement, further consideration of the relevant literature regarding 

beam vibration control using HAPCLD treatments in different viewpoints has been undertaken 

as follows. 

Firstly, control result comparison between continuous and segmented treatments was conduct-

ed. Segmented treatments can have advantages in the reduction of added weight with treatments 

and locally controlled vibration considering modes of structures. Lesieutre and Lee [28] showed 

that segmented ACLD treatments can give more robust control results than continuous treatment 

when a whole cantilever beam is covered by ACLD treatments. Because of phasing associated 

with mode shapes, control using a single continuous ACL can be destabilizing. A segmented 

ACL is more robust than a continuous treatment, in that the damping of modes at least up to the 

number of independent patches is increased by control action. However, this configuration re-

quires a more complicated signal processing design of controller to provide correct input signals 

to each segment. Li et al. [46] confirmed that the result of [28] is applicable to partially covered 

ACLD treatment for beams as well. Li et al. [46] showed that the application of two ACLD 

treatments in different positions required a smaller control gain for sufficient vibration reduction 

than the application of one ACLD treatment with the same total covering area through numeri-

cal simulation. Trindade [47] applied segmented piezoelectric actuators to configurations cate-

gorised in [3], while having an extra elastic spacer (stand-off) layer for larger passive damping, 

to improve control effectiveness for beams. After the selection of configuration, optimization of 

active-passive damping treatments was implemented [47], but the effect of configuration change 

from [3] on control results was not mentioned. Studies categorised in this section were based on 

studies relating to the active control performance of ACLD treatment. Similar research has not 

been carried out for more complex configurations such as APCLD, AC/PCLD and AC/PSOLD 

treatments, which should be based on individual research results for each configuration.  

There are also some studies treating the effect of a viscoelastic material layer on active control 

with HAPCLD treatments. Balamurgan and Narayanan [48] studied the effects of the viscoelas-
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tic layer thickness and material properties on the vibration control performance in ACLD treat-

ment with linear quadratic regulator (LQR) for optimal control and the Golla-Hughes-McTavish 

(GHM) method for viscoelastic material modelling as well as doing a control result comparison 

between pure AC, PCLD and ACLD treatments. Trindade et al. [49] compared the Anelastic 

Displacement Fields (ADF) model, the GHM model and a modal strain energy (MSE) based 

iterative model for viscoelastic material modelling. After applying a modal reduction technique 

to each model to reduce the size of the numerical models, viscoelastic material models were 

used for a cantilever beam with ACLD treatments. The parameter study of the viscoelastic layer 

in HAPCLD treatments relating to the effect on passive and active control was implemented in 

[3] as well. The parameter study regarding the viscoelastic layer has already been conducted 

with APCLD, AC/PCLD and AC/PSOLD treatments. Although it is not written in this thesis, 

two different models of viscoelastic materials, i.e. the ADF and GHM models, were used for 

comparison during the study. Since the obtained results using two models did not show signifi-

cant differences, the GHM model, which has been used recently more than the ADF model, was 

selected as a main model for viscoelastic material. 

 

Figure 2.8 Concept of Enhanced ACLD treatment;  : elastic beam, patch and edge element,  : viscoelastic 

layer and  : piezoelectric patch 

 

In order to improve control efficiency, structural adjustment of ACLD treatment has been pro-

posed. Enhanced ACLD treatment with elastic edge elements, the configuration of which is de-

scribed in Figure 2.8, was introduced to reduce energy dissipation in viscoelastic materials and 

maximise control force/moment transfer from piezoelectric actuators to base structures by Liao 

and Wang [50]. The applied boundary elements were modelled as springs connecting the piezo-

electric layer and base beam. By providing the connecting path between the piezoelectric actua-

tor and base beam, dissipated active control energy in the viscoelastic layer can be minimised 

and the active control energy transmission from the actuator to the base beam can be maximised. 

The optimal thickness of viscoelastic layer can be found through parameter study with varying 

the thickness of the layer. The change of passive and active loss factor of each case can be com-

pared and time response of a structure also can be compared. The introduction of AC/PCLD and 

AC/PSOLD treatments explained above related to Figure 2.7 has the same purpose as this, i.e. 

the maximisation of active control energy transmission from the actuator to base structure. 

Moreover, Badre-Alam et al. [51] developed this kind of enhanced ACLD treatment for aero-

mechanical stability augmentation in helicopter flex beams, which connect the rotor and heli-
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copter blade and have a symmetric configuration. Design optimization was also implemented. 

Finally, beams with different structural composition have been targets for the application of 

constrained layer damping treatment.  

Sun and Tong [52] studied the control performance of partially debonded ACLD treatment on 

beams. Their study concluded that edge debonding can lead to a reduction in both passive and 

active damping, and hybrid damping, which can be expressed as the sum of passive and active 

damping and may be more sensitive to the debonding of the damping layer than the passive 

damping. This research can explain poorer control results than expected due to the poor con-

struction of real constrained layer damping treatment. Thus, it can be used to explain the reason 

for poor control performance expected in experiments, and does not seem appropriate as an in-

dividual research topic in this thesis. 

 

Figure 2.9 A cantilever sandwich beam with viscoelastic core and collocated piezoelectric sensor/actuator [53] 

 

Trindade et al. [53] applied collocated piezoelectric treatments to a sandwich cantilever beam 

instead of the study of conventional configuration of hybrid damping treatments as shown in 

Figure 2.9. In this study, a sandwich beam with a viscoelastic layer, as explained in [3], was 

used as a base structure. On two opposite sides of the base beam, the piezoelectric sensor and 

actuator were located at the collocated position. This kind of configuration can be treated as a 

variation of APCLD treatment, especially model (g) in Figure 2.7. Following the study in [53], 

Trindade [54] also tried new configurations based on the configuration given in [53] by chang-

ing the location of the piezoelectric actuator to the viscoelastic core. Due to the patches attached 

on the surface of the base structure, the increase in maximum thickness of the whole structure 

has been an issue for the application of constrained layer damping treatments. This approach is 

understood as a trial to minimise the increase in thickness whilst maintaining passive and active 

control efficiency. This approach is understood to maximise the increase of passive damping 

and shear deformation in the base structure with the change of configuration to a sandwich 

beam as proposed in [2]. However, since the change of base beam structure is unavoidable in 

this approach, it will not be considered in this thesis. 

As reviewed in this section, the application of a more complex configuration for HAPCLD 

treatments such as APCLD, AC/PCLD and AC/PSOLD treatments for 2-D structures, i.e. flat 
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and curved plates have not yet been studied. In order to deal with various research topics about 

HAPCLD treatment mentioned in this section with these kinds of more complex configurations, 

their active control performance for flat and curved plates should be studied first. This is first 

inspiration for the research in this thesis.  

 

2.2 Modelling method for constrained layer damping 

treatment 

As reviewed in the previous section, numerical, especially the Finite Element Method (FEM), 

and analytic models have been used in control performance analysis and parameter studies for 

various constrained layer damping treatments [15, 18, 19, 46]. General FE formulation proce-

dure and equations of motion (analytic models) for PCLD treatments (See figure 1.2) and sand-

wich structures are well known as the Mead-Markus model for beams [2] and the Kantrovich-

Krylov method for plates. In these models, individual in-plane displacements for a constraining 

layer and base structure (for PCLD treatment) or cover layers (for sandwich structures) are in-

troduced. Detailed explanation of these methods is given in Chapters 3 and 6. Many researchers 

have derived equations of motion for their proposed configurations and used these numerical 

analysis methods to validate their usefulness. This section will be divided into three subsections; 

the first section is related to the FE formulation for 1-D structures, i.e. beams, and the second 

one is for 2-D structures, i.e. flat and curved plates. The final section relates to other modelling 

methods than the numerical method such as the derivation of an equivalent SDOF system, the 

Lagrangian formulation of system and spectral element modelling. 

 

2.2.1 FE modelling method for beams with constrained layer damping 

treatment 

There have been some attempts to establish a new FE formulation for constrained layer damp-

ing treatments having more complex configurations, i.e. arbitrarily laminated beams. Vasques et 

al. [55] established FE models for arbitrary active constrained layer damping treatments from 

analytic models considering the first-order shear deformations in each layer. Since the first-

order shear deformation is considered (Timoshenko beam approximation), it is possible to pre-

dict the motion of a constrained layer damping treatment more accurately in a higher frequency 
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range. Trindade et al. [56] proposed FE modelling formulation for a sandwich beam with a vis-

coelastic core (the ADF model) and arbitrarily laminated face layers including a modal reduc-

tion. The assumption for each layer is the same as the one in this thesis; an elastic and piezoe-

lectric layer is assumed to be a Euler beam (shear deformation is negligible), and a viscoelastic 

layer is assumed to be a Timoshenko beam (the first order of shear deformation is considered). 

The more DOFs are considered in FE formulation, the more precise simulation of motions can 

be obtained, especially in a high frequency range. However, in terms of efficiency, the number 

of nodal DOFs at each node in FE models should be determined considering variables such as 

frequency range and number of elements used in analysis as well. In this thesis, since active 

control is mainly conducted for the first two or three modes, i.e. a relatively low frequency 

range, the assumption that the elastic and piezoelectric layers are assumed as a Euler beam (no 

shear deformation), and the viscoelastic layer is assumed as a Timoshenko beam, which has 

pure shear deformation, will be proper to obtain as precise results as practically possible. More-

over, a simpler FE formulation for arbitrarily laminated plates seems to be required than deriva-

tion of equations of motion for each layer as was done in [55]. 

Some researchers have shown an interest in reducing beam model order for more efficient con-

trol simulation. Shi et al. [57] proposed a new model reduction procedure for FE beam models 

with ACLD treatments. An iterative dynamic condensation was performed in the physical space, 

and Guyan condensation was taken as an initial iteration approximation. This resulted in a re-

duced order system of suitable size, though still unobservable and uncontrollable. A robust 

model reduction method was employed in the state space afterwards. Through this procedure, it 

was possible to overcome vibration control problems due to model size and lack of controllabil-

ity and observability in [57]. Moreover, Shi et al. [58] conducted vibration control for the first 

three modes of beams with ACLD treatment with a linear-quadratic Gaussian (LQG) method 

based on the final reduced order model prior to [57]. Moreover, as reviewed in the previous sec-

tion, Trindade et al. [49] applied a modal reduction method to viscoelastic models to reduce the 

size of the constrained layer damping treatment models. In this thesis, mode reduction was used 

to a proper level compared with experimental data during modal analysis as a manner of model 

reduction. 

 

2.2.2 FE modelling method for plates with constrained layer damping 

treatment 

The application of viscoelastic and piezoelectric materials was expanded from 1-D structures 
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to 2-D structures [15, 116], i.e. more complex and general structures. There have been two ap-

proaches. One is the application of smart treatment including a piezoelectric sensor and actuator 

to sandwich plates with a viscoelastic core, i.e. AC is applied to plates with PCLD treatment. 

The other is the application of ACLD treatments to untreated flat plates. 

As in the former case, Araujo et al. [59] attached a piezoelectric sensor and actuator to a sand-

wich plate with a viscoelastic core and conducted analysis by considering a higher order shear 

deformation theory (HSDT) to represent the displacement field of the viscoelastic core and a 

first order shear deformation theory (FSDT) for the displacement field of the adjacent laminated 

anisotropic face layers and exterior piezoelectric layers. Calculated resonance frequencies from 

an established model are more similar to those obtained by ABAQUS than shell elements due to 

more DOFs involved in calculation. However, although the increase of damping by active con-

trol was given for the first five modes, a large reduction was not found in the frequency re-

sponse. Prior to [59], Moita et al. [60] established an FE formulation for sandwich plates with a 

piezoelectric sensor and actuator, but numerical analyses were performed only as beams. In this 

model, the classical plate theory, i.e. the Kirchhoff plate theory was applied for elastic and pie-

zoelectric plates and the Reddy’s third-order shear deformation theory was applied to a viscoe-

lastic plate. However, since the change of base plate from an untreated flat plate to a sandwich 

plate is not to be considered in this thesis, this kind of research remains a possible research topic 

for the future. 

As in the latter case, Chantalakhana and Stanway [61] applied ACLD treatments to a clamped-

clamped plate considering the mode shapes of the plate. As results of active control, large re-

ductions of mobility for the 1st and 2nd modes were obtained. They obtained better results with 

multi-channel control using more than one actuator with one control loop. Kim et al. [62] de-

tailed a 3-D FE model of plates with piezoelectric patches using 20-node solid elements, which 

has no approximation to piezoelectric devices and includes closed loop modelling for plates. 

Moreover, flat plates were also modelled with 9-node shell elements, and 13-node transition 

elements were introduced for transition parts between plates and ACLD treatment [62]. Howev-

er, when considering results in comparison with experimental results, although this model gave 

results which had good agreement with experimental ones, the efficiency of simulation remains 

in doubt compared with the case for 2-D FE model analysis. Varadan et al. [27] expanded the 

FE modelling method developed in [62] to ACLD treatment. Enhanced boundaries in the form 

of box or bench as proposed in [50] for beams were added as a part of a parameter study for 

ACLD treatment. However, in contrast to the result of [50] mentioned in Section 2.1, which said 

that the ACLD treatment with edge elements showed better control results than conventional 

ACLD treatment, conventional ACLD treatment, which has no edge element and is categorised 

as a sandwich type in [50], gave the largest reduction of all the considered cases in [62]. This 
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contrasting result requires further study for clarification, and the study for additional edge ele-

ments has been excluded from the study in this thesis. Baz and Ro’s study [15] and Ray and 

Faye’s study [18] can be categorised in this research area as reviewed in the previous section. In 

FE formulation, mutual relationships between displacements in each layer were reflected in the 

shape functions of each layer [15, 16]. However, as mentioned above, different shape functions 

for each layer should be derived according to the change of configuration in this kind of FE 

formulation. In [16], since the first order shear deformation theory was used for each layer, dif-

ferent rotations were considered for elastic, viscoelastic and piezoelectric plates. In much other 

research, shear deformation was not considered in elastic and piezoelectric layers in spite of 

simulation results in good agreement with experimental results. Therefore, Ray and Fayes’ ap-

proach can result in the increase in size of FE matrices rather than the increase in accuracy of 

control results using an FE model. In this thesis, in spite of various FE plate modelling methods 

reviewed above, the same assumption related to shear deformation for each layer as for beams; 

that is, the assumption that elastic and piezoelectric layers are assumed to behave as a Kirchhoff 

plate, and that a viscoelastic layer is assumed to behave as a Mindlin-Reissner plate with the 

first-order shear deformation, was used considering the efficiency of simulation. Moreover, the 

same FE formulation for arbitrarily laminated flat plates as for laminated beams will also be 

introduced for more convenient FE formulation. 

Furthermore, the application study of viscoelastic materials and smart treatments using piezoe-

lectric materials has been expanded to more complex and general structures than flat plates, i.e. 

curved plates. Similar to flat plates, there have been two ways to study this. One is the applica-

tion of smart treatment including a piezoelectric sensor and actuator to sandwich shells with a 

viscoelastic core. The other is the application of hybrid damping treatments to shells without 

any additional viscoelastic materials. 

As in the former case, Boudaoud et al. [63] established an accurate shell FE formulation to 

model composite shell structures with embedded viscoelastic and piezoelectric layers and an 

integrated active damping control mechanism. As has been done in this thesis, the Kirchhoff 

plate theory was used for elastic and piezoelectric shells (shear deformation was ignored) and 

the first order shear deformation theory (the Mindlin-Reissner plate theory) was used for a vis-

coelastic shell. Used shell elements were triangular in shape. Used configuration is limited to a 

sandwich plate (or shell) with a viscoelastic core and cover layers used as a piezoelectric sensor 

and actuator. This model can be said to be an expanded model of the FE model established in 

[59]. 

As in the latter case, Kumar and Singh [64] demonstrated the utility of the technique for select-

ing the locations of the ACLD treatments to achieve the desired damping characteristics over a 
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broad frequency range. However, in this study, the used piezoelectric sensor was of the same 

size as the one for the actuator. In order to control selected modes, the shape of the actuator, 

which covered a relatively broad part of system, was decided. When considering the results of 

the study by Lesieutre and Lee [28], segmented ACLD treatment is expected to give a better and 

more robust control result than the continuous one used in [64]. The study of Ray et al. [16], 

Ray and Reddy’s study [19], Ray and Pradhan’s study [20, 21], Sarangi and Ray’s study [22] 

and Ray and Batra’s study [23] can be categorised in this research area as well, although they 

did not use a conventional ACLD treatment configuration as reviewed in the previous section. 

Basically, since curved plates are a more general form of flat plates, the same review can be 

applied to curved plates as well. Sandwich structures with a viscoelastic core will not be consid-

ered in this thesis, and the same assumption related to shear deformation will be applied. 

 

2.2.3 Other modelling methods for constrained layer damping treatment 

Various modelling methods for ACLD treatment instead of the FE method have been studied 

to achieve lighter modelling methods than numerical modelling as well.  

Illaire et al. [65] proposed a phenomenological model of active constrained layers using the 

lumped parameter model instead of the FE method. This phenomenological model can be bene-

ficial in saving time and resources for analysis, but different models should be derived for dif-

ferent structures and configurations for constrained layer damping treatment.  

Fung et al. [66] derived the Lagrangian formulation of a rotating beam with ACLD treatment 

in a time domain analysis. In [66], the effects of control gains, shear modulus and loss factor of 

the viscoelastic materials on the dynamic response are also investigated.  

Lee and Kim [67] established spectral element modelling for beams with active constrained 

layer damping instead of FE modelling. According to [67], the spectral ACLD beam element 

model was found to provide very reliable results when compared with the conventional FE 

model. As reviewed here, since analytic models are derived from the equations of motion for 

ACLD treatment, different equations should be derived for different configurations.  

As mentioned above, in order to use this kind of formulation, different equations of motions 

should be derived for different configurations. Thus, it is too hard for it to be applied to arbitrar-

ily laminated structures. Since this formulation is very useful for validation of a relatively sim-

ple configuration such as ACLD treatment, the simulation results of ACLD treatment with an 

established FE beam model have been compared with the results of the phenomenological mod-
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el of Illaire, et al. [65] and it is confirmed that they are in good agreement during the study by 

way of validation. (Results are not included in the thesis.) 

 

2.3 State of the art for FE modelling of laminated struc-

tures  

In addition to the literature review for the modelling method for constrained layer damping 

treatment in Section 2.2, state-of-the-art FE modelling for laminated structures will be discussed 

in this section based on recently published papers.  

According to the literature review, a layer-wise approach and the Zigzag theory, the key idea 

of which is to add a piecewise-linear, zigzag-shaped (i.e., 𝐶𝑧
0 -continuous) contribution to a 

globally linear or cubic through-the-thickness distribution of the in-plane displacements [68], 

are being used to analyse the shear stress distribution in thickness-through direction. Cerracchio 

et al. [69] employed the inverse Finite Element Method (iFEM) and the Refined Zigzag Theory 

(RZT) for displacement and stress monitoring of sandwich plates. In the RZT, zigzag strain 

terms, which are equivalent to shear strain terms in other papers, were introduced in addition to 

in-plane and bending strain terms. The analysis results using this method were compared and 

gave the same results as analytic ones by NASTRAN. Vidal et al. [70] employed a piecewise 

fourth-order Lagrange polynomial of z to deduce the number of unknowns from a classical lay-

er-wise approach for FE modelling of free edge effect. Stress distribution through the thickness 

of composite plates was studied to prevent the failure due to delamination of composite laminat-

ed plates. Plagianakos and Papadopoulos [71] also studied a thickness-through stress distribu-

tion in composite sandwich shells and electric voltages generated by piezoelectric transducers 

attached to the shells. Versino et al. [72] investigated deflections and thickness-through stress 

distribution in laminated shells by using a layer-wise approach. In this study, discontinuous Ga-

lerkin fluxes were used to enforce interlaminar continuity conditions in perfectly bonded lami-

nates. The simulation results were compared with those of various models for laminated struc-

tures. Tian et al. [73] employed a layer-wise approach for stress analysis around cutouts in lam-

inated composite structures. They introduced traction-free surfaces for the reduction of the 

number of unknowns around cutouts and stress distributions through thickness were discussed. 

Zhou et al. [74] also used a layer-wise approach for the motion analysis of microoperation sys-

tems which consist of piezoelectric cantilevers. In analyses, the distribution of thickness-

through stress was investigated. Yuan et al. [75] investigated deformation and stress changes in 

the i-th element of sandwich plates by using a layer-wise approach.  
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A layer-wise approach has been used for static and vibration analysis as well. Yazdani and Ri-

beiro [76] used a layer-wise approach for analysis of the linear modes of vibration of Variable 

Stiffness Composite Laminate plates as well. In this paper, a p-version FE formulation, which is 

related to the employment of a piecewise fourth-order Lagrange polynomial of z in Vidal’s 

study [70], was introduced. Natural frequencies obtained with this formulation were compared 

with results by ABAQUS and layer-wise B-spline FE models. This layer-wise B-spline FE for-

mulation was used by Phung-Van et al. [77], Zuo et al. [78] and Thai et al. [79] as well. Phung-

Van et al. [77] used the model for vibration control in composite structures covered by a piezoe-

lectric sensor and actuator. Zuo et al. [78] adopted a B-spline wavelet to investigate static and 

free vibration of laminated composite plates. Thai et al. [79] employed non-uniform rational B-

spline (NURBS) basis functions in FE formulation. Xu et al. [80] used a layer-wise approach 

and genetic algorithm to calculate first modal loss factors of structures with a viscoelastic mate-

rial layer and optimise the layer position of it in the laminated layer. Thakur and Ray [81] stud-

ied stress distribution through thickness in deep laminated doubly curved shells by using a lay-

er-wise approach. Although a different lamination method was used, the same modelling meth-

od for curved shells was employed as used in Section 7.1 of this thesis. 

Another modelling method for laminated structures is the equivalent single layer (ESL) theory. 

With this theory, although stress distribution through thickness of structures cannot be analysed 

as is done with a layer-wise approach, analysis load with established FE models can be reduced 

due to a decrease in the number of variables, i.e. smaller size of FE matrices. In order to over-

come disadvantages for each theory, Band and Desai [82] used ESL and layer-wise FE models 

in one structure simultaneously. The ESL FE model was used for a global part of the host struc-

ture, and the layer-wise FE model was used for the part of interest. Between two FE models, 

transition elements were introduced to match variables in each model by restraint. The introduc-

tion of transition elements between 2-D and 3-D elements was used by Kim et al. [62] and 

Varadan et al. [27] as well. But, the use of layer-wise FE models is not necessary in the case of 

vibration analysis which does not require the analysis of stress distribution through thickness. 

Carpentieri et al. [83] introduced coupling matrices to derive ESL FE models from local dis-

placement terms based on a layer-wise approach. This approach is similar to the FE modelling 

method proposed in this thesis. However, while the former was applied to laminated composite 

curved beams in [83], the latter was used for straight beams, flat plates and curved plates in the 

thesis.  
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3 FE MODELLING OF BEAMS WITH HAPCLD 

TREATMENTS 

In this chapter, Finite Element (FE) modelling of layered composite beams will be discussed. 

Since elastic and piezoelectric layers are assumed to be thin compared with their length and un-

der small deflection, the Euler beam theory can be utilised for them. In the Euler beam theory, 

the cross-section of a beam remains perpendicular to the neutral axis of deflection. Therefore, 

no shear deformation exists in the cross-section of the elastic and piezoelectric layers. On the 

other hand, in the Timoshenko beam theory, shear deformation is considered. Since viscoelastic 

layers are under pure shear deformation in bending motion, the Timoshenko beam theory would 

be used for the viscoelastic layer. Therefore, firstly, FE modelling of an elastic beam will be 

explained. Next, the description of a piezoelectric beam will follow based again on the Euler 

beam theory, and the constitutive equations of piezoelectric material will be given to explain its 

electro-mechanical characteristics. FE modelling of the viscoelastic layer will be then studied 

using the Timoshenko beam theory and the GHM (Golla-Hughes-McTavish) method to describe 

the shear deformation in the viscoelastic material. Finally, a coupling method based on the lay-

er-wise approach will be used to generate equivalent FE models of the composite layered beams. 

 

3.1 Overview of beams with HAPCLD treatment 

The final objective of FE modelling for beams with HAPCLD treatments is to establish FE 

models for beams described in Figure 1.2. In summary, all configurations of the structures of 

concern in this thesis are given in Figure 3.1. All configurations consist of the combination of 

elastic base beam, viscoelastic layer, elastic constraining layer and piezoelectric layer. In order 

to establish full FE models, FE models of each layer are derived from equations of motions in 

each layer. After this, final FE models of each configuration will be established considering the 

mutual relationships between motions of each layer. 

(a)

 

 (b)

 

(c)

 

(d)

  

Figure 3.1 Configuration of a beam with (a) ACLD treatment, (b) APCLD treatment, (c) AC/PCLD treatment and (d) 

AC/PSOLD treatment;  : elastic beam (Layer 3) and patch (Layer c),  : viscoelastic layer (Layer 2) and 

 : piezoelectric patch (Layer 1) 
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3.2 FE model for an elastic beam 

Here an isotropic elastic beam with a constant cross section is considered. Material properties 

and mechanical characteristics of the beam are constant along the whole structure. The Beam’s 

deflection and the establishment of FE global mass and stiffness matrices, based on the Euler 

beam theory, are briefly explained here. 

 

3.2.1 Definition of a beam’s deformation 

When transverse loads are applied to a beam [84], the line of length dx in the beam, which is 

located along the x-axis in undeformed state, i.e. meaning the neutral axis of the beam, bends 

into a curve whose position relative to the original location is denoted as w(x) as shown in Fig-

ure 3.2. For small deformations, an element dx in the undeformed geometry is assumed to re-

main at coordinate x, but it translates in the z direction by an amount w(x) and rotates in the xz 

plane by an amount given by the slope  of the deflection curve at coordinate x. The basic 

assumption of a Euler beam is that cross sections such as ab in Figure 3.3, which are originally 

normal to the centreline of a beam in the undeformed state, still remain plane and normal to the 

centreline like the line after deformation a'b' in Figure 3.3. Furthermore, in the planes of these 

cross sections, it is assumed that there is no stretching or shortening whatsoever; that is, they are 

assumed to act like rigid surfaces. 

 

Figure 3.2 Deformation of a Euler beam bending under small deflection 

 

 

Figure 3.3 Cross-section change of a Euler beam under deformation 

  

dw

dx
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The axial displacement in the x-direction  at an arbitrary point with a distance z from 

the centreline in a beam is influenced by the slope, i.e., the rotation angle , as 

. (3.1) 

Since the height of beam is very small compared with the length and it is under small deflec-

tion, the neutral axis in y-direction can be assumed to remain at the same position before deflec-

tion even with the Poisson contraction as describe in Figure 3.4 [85]. Therefore, the displace-

ment in the y-direction  can be represented by the one at the neutral axis . 

. (3.2) 

 

Figure 3.4 Poisson contraction of cross section in beams 
 

Since the beam displacement in the z-direction, i.e. the transverse displacement, is the same 

through the thickness of the beam, it is equal to the value at the centreline so that 

. (3.3)  

Therefore, eq. (3.1) can be rewritten as 

. (3.4) 

Eqs. (3.2), (3.3) and (3.4) describe the motion of any beam’s section in the y, z and x-direction 

respectively. 

 

3.2.2 FE formulation of an elastic beam 

Considering eqs. (3.2), (3.3) and (3.4), the potential energy of a Euler beam element of length 

2a, width b, height h, a constant cross section, and uniform and constant material properties, that 

is constant Young’s modulus E and density
 
, can be expressed in terms of strain and stress 

generated inside the beam during deformation as
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, 

where  for isotropic materials and  are the stress and strain re-

spectively,  and  are the displacements and variables in the i-axis (i = x, y and z). Ve de-

notes the volume of each element. 

Since a beam with a constant cross section is considered here, triple integration for element 

volume can be simplified considering the Cartesian coordinate as 

. 

From the definition of strain and stress, 

. 

By applying eq. (3.4) for the axial displacement , 

, (3.5) 

where  denotes the cross sectional area and I is the moment of area (  for a 

rectangular cross section as in the example). 

Similarly, the kinetic energy of a Euler beam element can be derived as 

. (3.6) 

In the case of kinetic energy, the  term is simplified during the integration along the 

thickness of a plate from  to  as is done in eq. (3.5) for the potential energy of a 

beam. Also the  term which is always positive, since the thickness of a Euler beam is 

relatively small compared with the length, is very small and can be neglected.

 
In order to derive element mass and stiffness matrices from eqs. (3.5) and (3.6), the shape 

functions  and the Jacobian matrix  are used. Details of the shape functions and the Jacobi-
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an matrix can be found in Appendix A.1. Firstly, by applying the Jacobian matrix, the coordi-

nate systems of these two equations, eq. (3.5) and (3.6), can be matched from xz-space, the orig-

inal space, to ξz-space, the FE element space. As described in Figure A.2 of Appendix A.1 for 

straight beam elements, ± a and each point between these two end points of actual elements in 

xz-space are matched to ±1 and each related point between these two end points of FE elements 

in ξz –space respectively. With this coordinate matching method, eqs. (3.5) and (3.6) can be re-

written as 

 and 

 (3.7) 

with the Jacobian term J for straight beam elements which is derived from eq. (A.5) in Appen-

dix A.1. 

Secondly, using the shape functions for axial and transverse displacements, the axial and 

transverse displacement and derivative terms in eq. (3.7) can be expressed respectively as 

 and , 

 and , 

where the axial nodal displacement vector of element  and the linear shape function matrix 

for axial displacement  are defined in eqs. (A.1) and (A.2) of Appendix A.1, and the trans-

verse nodal displacement vector of element  and the Hermite cubic shape function matrix for 

transverse displacement  are defined in eqs. (A.3) and (A.4) of Appendix A.1.  

In order to understand the Jacobian and shape functions better, description of FE element ge-

ometry in Figures A.1, A.2 and A.3 of Appendix A can be referred to. Figure A.1 describes a 

basic FE beam element lying on the ξ-axis, which is the FE element space, with the definition of 

nodal DOFs at each node of the element. Figures A.2 and A.3 show the geometry of a single 

axial and bending element and how the element length ratio, 1/a, between 2a of real elements 

and 2 of FE elements, that is, the Jacobian of the 1-D element, is determined. 

   
22 21

2 4 2

1

1 1 1
d

2
e

u w
U EA EI J

J J

 


 


    
     
      


   
 

u  


 

  
  

  

u

e u e

H
u H u

   
 

2 2

2 2

w  


 

  
  

  

w

e w e

H
w H w

e
u

uH

e
w

wH



3. FE MODELLING OF BEAMS WITH HAPCLD TREATMENTS 

 34 

Thus, the kinetic and potential energy equations of a Euler beam element in eqs. (3.5) and (3.6) 

can be expressed in terms of a transformed coordinate system of ξz-space. Using the above 

equations of shape functions for axial and transverse displacements, element mass and stiffness 

matrices can be derived from these changed kinetic and potential energy equations as 

 

    
 

      (3.8) 

and  

 

     
 

     , (3.9) 

where  and  are local nodal velocity and dis-

placement vectors of each element respectively, and  and 

 are FE mass and stiffness matrices of each element respectively. 

Therefore, by composing the global mass and stiffness matrices, as explained in Appendix A.2, 

using mass and stiffness matrices of a beam element in eqs. (3.8) and (3.9), the equation of mo-

tion for an unconstrained beam comprising n elements can be obtained as 

, (3.10) 

where  and  are the global mass matrix and stiffness matrix respectively. In the stiffness 

matrix, the structural damping of the system is considered by using a complex Young’s modulus 
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 where
 

 is the loss factor in scalar form [86].  is a vector of nodal DOFs of the 

whole structure, which can be written as 

, (3.11) 

and  is an external exciting force vector, which is defined as 

, (3.12) 

where ,  and  are the force in the x-axis, the force in the z-axis and the moment re-

spectively. 

In this section, FE mass and stiffness matrices of an elastic beam structure have been derived 

from kinetic and potential energy equations using the Euler beam theory. In the next section, the 

electromechanical effect of piezoelectric materials when the piezoelectric layer is under defor-

mation will be studied in an analogous way. 

 

3.3 FE model for a piezoelectric beam 

In this section, an isotropic piezoelectric beam with a constant cross section is considered as an 

elastic beam was presented in Section 3.2. Since this piezoelectric beam is assumed to behave as 

a Euler beam, the kinetic energy related to the motion of the beam is the same as one for an 

elastic beam in eq. (3.6). However, since a piezoelectric material exhibits an electro-mechanical 

effect which causes conversion between mechanical deformation and electricity generation, that 

is the piezoelectric effect, it should be considered during the derivation of the stiffness matrix. 

 

3.3.1 The constitutive equations of piezoelectric material of a 1D element 

Since a piezoelectric beam is assumed as a Euler beam, the definition of displacement and ge-

ometry of deformation is the same as described in Figures 3.2 and 3.3. The energy conservation 

equation of a piezoelectric beam element can be expressed as  

, (3.13) 

E 1+ ih( ) h q

f
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where T, U and We are the kinetic, potential and electrical energy term of a piezoelectric materi-

al respectively [87]. Some potential energy generated by an exciting force is transformed into 

electrical energy by piezoelectric effect. This electro-mechanical phenomenon can decrease the 

mechanical stiffness of the structure. The mechanical and piezoelectric material properties of a 

piezoelectric beam can be represented by the following constitutive equations [88] 

 
or, in full expression 
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, (3.14) 

where t is the stress vector, S the strain vector, cE the elastic modulus matrix, e the piezoelectric 

stress constant matrix, E the vector of electrical difference between electrodes, D the electric 

displacement vector and d the dielectric constant matrix of a piezoelectric material. 

In a beam which has displacement terms given in eq. (3.2), (3,3) and (3.4) in Section 3.2.1, the 

neutral axis in y-direction can remain on y-axis after deformation as show in Figure 3.4 and all 

related strain components are also null, then 

. (3.15) 

Moreover, assuming  in one-dimensional space where there is no structural defor-

mation in the z-direction, the resulting kinematic assumptions yield 
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. (3.16) 

Thus, by substituting eqs. (3.15) and (3.16) into eq. (3.14), the constitutive equations of a 

beam-shaped piezoelectric layer can be reduced to 
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. (3.17) 

where , ,  and  is the Young’s 

modulus of the material, is the shear modulus,  and  are the piezoelectric stress con-

stants, 
  
dc

11
and 

  
dc

33

*
 are the dielectric constants,  is the extensional stress,  is the shear 

stress,  is the axial electric displacement and  is the transverse electric displacement. 

 

3.3.2 FE formulation of a piezoelectric beam 

The kinetic energy of a piezoelectric beam is the same as that of an elastic Euler beam ex-

pressed in eqs. (3.6) and (3.8) in the Section 3.2.2. However, since electrical displacement re-

lates to strain terms, the potential energy of a PZT beam element with a length of 2a should be 

expressed from eq. (3.17) as 
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Adopting the Euler beam approximation, every shear strain term between longitudinal direc-

tion and transverse direction is neglected, i.e. . Moreover, if the thickness of this layer is 
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plate-shaped structures with d31 mode polarisation (piezoelectric layer polarised in thickness 

direction) can be expressed as [88, 89] 

, , (3.19) 

and, by assuming that the electric potential is constant over the plane of element with equally 

covering electrodes on top and bottom surfaces respectively, eq. (3.18) can be rewritten as [87] 

. (3.20) 

By using the definition of displacement of a Euler beam derived in eq. (3.4) and the definition 

of strain in eq. (3.5) in Section 3.2.2, eq. (3.20) can be expressed in terms of displacement as 

.

 

Integrating the 2nd and 5th terms over the z-axis becomes zero, and leaves 

. 

Using the definition of Ez from eq. (3.19) and integrating over the z-axis give 

. 

In terms of the elemental local coordinate ξ considering the Jacobian matrix between the xz-

plane and ξz-plane, the potential energy becomes 

. (3.21)

 

With the shape functions for axial and transverse displacements, the nodal axial and transverse 

displacement vectors of element and constant electric potential difference  along the beam 

length, eq. (3.21), can be changed into an approximate FE form as 
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     . (3.22) 

Furthermore, the electrical energy can be defined as [88] 
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Since , substituting the strain terms from eq. (3.5) into the above equation gives 
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Integrating over the z-axis and considering eq. (3.15) give 

  

W
e
=

1

2
-f

e

e
31

*

h
p

A
¶u

¶x

æ

èç
ö

ø÷
+

dc
33

*

h
p

2
Af

e

2
æ

è
ç

ö

ø
÷ dx

-a

a

ò . 

In terms of the elemental local coordinate ξ, utilising the Jacobian matrix between the xz-plane 

and ξz-plane, 
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Using the same process as for eq. (3.22), eq. (3.23) can be rewritten in the form of a discrete 

FE equation as 
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Therefore, from eqs. (3.22) and (3.24), the total stiffness matrix of a piezoelectric beam ele-

ment can be obtained by . Finally, the FE equation of a piezoelectric Euler beam motion 

using global mass and stiffness matrices can be derived as  

, (3.25) 

where global mass and stiffness matrices for axial and transverse displacements
 

,
 

,
 

 

and
 

 can derived from matrices for each element
 

,
 

,
 

 and
 

 given in eqs. 

(3.8) and (3.9) considering the changes of material properties and DOF, and the nodal DOF vec-

tor of the whole structure including axial and transverse displacements of structure and electric 

potential  generated by piezoelectric material is  

, (3.26) 

where the axial displacement vector  and transverse displacement vector 

, 

and external exciting force and charge vector is 

, (3.27) 

where the exciting force vector in the x-direction , exciting force 

vector in the z-direction  and electrical charge Q means 

electrical charge. 

In this section, FE mass and stiffness matrices of a piezoelectric beam structure are derived 

from kinetic and potential energy equations using the assumption of the Euler beam theory and 

constitutive equations of piezoelectric materials. In the next section, a method to consider shear 

deformation of viscoelastic materials will be studied based on the Timoshenko beam theory 

when it is in the form of a viscoelastic layer in a sandwich structure. 
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3.4 FE model for a laminated beam with one viscoelastic 

layer 

In this section, FE modelling of a viscoelastic layer constrained between two elastic beams 

will be studied by introducing the Timoshenko beam theory and the GHM method. This layer is 

modelled as a Timoshenko beam model so as to consider the shear deformation. Moreover, a 

viscoelastic model, which can describe the change of elastic properties with temperature and 

frequency, is introduced. Thus, the shear modulus proposed by the GHM method is used. The 

case in which the viscoelastic layer is constrained between two elastic beams, which are as-

sumed to act as Euler beams, will be considered here for simplicity. In this thesis, all the config-

urations of HAPCLD treatments have the viscoelastic layer always constrained between two 

elastic layers. In fact, as seen in the previous section, the piezoelectric layer can be assumed to 

be elastic. 

 

3.4.1 GHM method for viscoelastic material 

In order to understand the dynamic response of viscoelastic materials, the study of viscoelastic 

models is required. Classic viscoelastic models have been used a combination of the basic ele-

ments given in Figure 3.5 to explain the dynamic response of viscoelastic materials [90]. Mate-

rial properties of each model can be adjusted to match the dynamic response of viscoelastic ma-

terials.  

(a)

 

(b)

 

Figure 3.5 Classic viscoelastic element: (a) Maxwell material and (b) Kelvin material 
 

Even if viscoelastic materials are only under shear deformation as in the case of constraining 

layer damping, these elemental viscoelastic models can be used. The relation between shear 

stiffness and shear modulus can be explained by eq. (3.28) for the structure under deformation 

shown in Figure 3.6.
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GA
k

l
 

 

,  (3.28) 

where  is shear modulus,  and  denote shear stress and shear strain respectively. , 

,  and  mean applied force, cross-sectional area, transverse displacement and initial 

length of viscoelastic material respectively.  

 

Figure 3.6 Shear deformation of viscoelastic materials 

Among various viscoelastic models, the GHM method proposed by McTavish and Hughes [91] 

has been widely used for FE modelling of viscoelastic materials. In the GHM method, the vis-

coelastic model is defined by the combination of basic elements as shown in Figure 3.7. Going 

from the dynamic stiffness to the shear modulus gives eq. 3.29 [91]. 

 

, (3.29) 

 

Figure 3.7 GHM model for viscoelastic material 
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where f is the frequency in Hz, s = iω = i2πf.  is the asymptotic value of shear modulus of 

the viscoelastic layer after step change in strain. All the variables ,  and  in eq. (3.29) 

which govern the shape of the modulus function over the complex plane can be obtained by a 

curve fitting from measured data as has been done in [11]. The real part of  represents 

the frequency-dependent shear modulus and the ratio of imaginary values of  over real 

values of  represents the frequency-dependent shear modulus loss factor. Figure 3.8 

shows that such a model captures the change of the shear modulus and loss factor according to 

the change of frequency with the GHM model with three mini-oscillators. The same viscoelastic 

material given in [91] was used in this thesis for simulations and experiments using real struc-

tures. Detailed values for each variable are given in the figure and Table 4.2 in Section 4.1.2. 

 

 

Figure 3.8 Shear modulus and Loss factor of viscoelastic material:  Shear modulus;  Loss factor for = 

0.1633 MPa,
 

= 4.8278,
 

= 14.548,
 

= 40.043,
 

= 22.013,
 

= 3.1275,
 

= 0.6165,
 

= 22.013,
 

= 

3.1275 and
 

= 0.6165 

 

3.4.2 Basic assumptions for a viscoelastic layer constrained between two 

elastic beams 

As shown in Figure 3.1, all viscoelastic layers are constrained between two layers which are 

elastic or piezoelectric. Since the deformation of viscoelastic layer is different in PULD and 

HAPCLD treatments as explained in Section 1.1, only viscoelastic layers constrained between 

two layers will be studied in this section. 
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 If a viscoelastic layer constrained between two elastic beams, as shown in Figure 3.9, is sub-

ject to a bending motion in z-direction, axial displacements ui and transverse displacements wi of 

each layer can be defined along the neutral axes of each layer. In Figure 3.9, subscripts 1, 2 and 

3 denote cover beam, viscoelastic layer and base beam respectively. Each layer has a thickness 

of hi and density ρi. Cover and base beams have Young’s modulus E1 and E3, and the viscoelas-

tic layer has a shear modulus G*, which will be defined by the GHM method. Finally, the cover 

and base beams are assumed to have the same rotation θ. For this structure, the following two 

basic assumptions are proposed [2]: 
 

 

Figure 3.9 Geometric concept of a viscoelastic layer constrained between two elastic beams 

 

 (1) Shear strains in the base and cover beams are negligible:  and , and longi-

tudinal direct strain in the viscoelastic layer is negligible: . 

 (2) Transverse direct strains in the viscoelastic layer, base and cover beams are also neglected, 

so the transverse displacements 𝑤 of all points on the same cross-section of all layers be-

fore deformation are equal: . 

According to these basic assumptions, the shear strain and stress on the centreline line of a vis-

coelastic layer can be defined respectively considering eq. (3.1) as 
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where G* is the complex shear modulus of the viscoelastic layer.  

 

3.4.3 FE formulation of a viscoelastic layer constrained between two elas-

tic beams 

The kinetic energy of a beam element for viscoelastic layer constrained between two elastic 

beams with a length of 2a shown in Figure 3.5 can be defined as 

. 

By transferring the coordinate from the xz-plane to the ξz-plane with the Jacobian term, 

. (3.32) 

If the process for finite element discretisation from the continuous structure equation done in 

Section 3.2.2 is applied again here, eq. (3.32) can be rewritten as 

 

    , (3.33) 

where

 

 are changes in the nodal DOF vector of each FE ele-

ment and 

 

is the mass matrix of each FE element. 

Furthermore, when considering only shear deformation exists in the viscoelastic layer, the po-
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From the definition of shear stress in the viscoelastic layer eq. (3.31), 

 

    

 

. (3.34) 

Thus, eq. (3.34) can be expressed by using the shape functions of a beam element as [92] 

 

 

     
 

     , (3.35) 

where the nodal DOF vector of each FE element

 

 and stiffness 

matrix of each FE element
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Therefore, the FE equation of motion for the whole structure can be derived from eqs. (3.33) 
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, (3.36) 

where the nodal DOF vector of the whole structure is 

 (3.37) 

and the external exciting force vector is 

 

, (3.38) 

where  refers to the shear force acting on the i-th node.  

 

3.4.4 Coupling method for a laminated beam 

All required equations for each layer of HAPCLD treatments have been derived. Therefore, 

coupling terms which can explain possible mutual interaction between axial and transverse mo-

tions of each layer in lamination should be proposed for proper description of HAPCLD treat-

ments’ motions. Although the coupling method which describes the axial displacement of vis-

coelastic layer u2 as half value of difference between axial displacements in cover and base 

beam (u1 and u3) was proposed by Mead and Markus [2], this method is only valid for a three-

layered structure which has a viscoelastic layer as a core layer as in Figure 3.9. Since more 

complex and laminated structures will be taken into account, a layer-wise approach, as proposed 

by Ferreira [93], is used, which can express motions in each layer in terms of motion at the neu-

tral axis of a whole structure. For the layer-wise approach, the introduction of extra shape func-

tions is not necessary. 

For example, the geometrical deformation of the three-layered structure consisting of an elastic 

cover beam, a viscoelastic layer and an elastic base beam, shown in Figure 3.9, can be explained 

again by introducing the neutral axis of a whole structure x0 as in Figure 3.10. Each layer has a 

thickness of h1, h2 and h3 respectively as in Figure 3.5 and local longitudinal axes x1, x2 and x3 

are set up on neutral axes of each layer respectively. Axial displacements u1, u2 and u3 can be 

sif
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determined in terms of the axial displacement on x0-axis, u0, the distances between neutral axes 

xi (i = 1, 2 and 3) and x0-axis, rotation θ and shear deformation of the viscoelastic layer. 

Since transverse displacement and rotation at all points over a cross-section are the same in the 

structure, axial displacement, u, transverse displacement, w, and rotation of the cross section, θ, 

of each layer can be expressed as 
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Figure 3.10 Basic concept of layer-wise approach model for a sandwich beam with a viscoelastic core 
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 , a 

coupling matrix of a three-layered beam explaining the relation between DOFs on the neutral 

axis of a whole system and of each layer can be expressed as 
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 (3.40) 

Similarly, the relationship between local and global force vectors can be expressed using a 

coupling matrix as 
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By multiplying this coupling matrix and the transverse matrix of the coupling matrix in eq. 

(3.39) to mass and stiffness matrices, equivalent mass and stiffness matrices can be derived. 
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and

 
 are mass and stiffness matrices of i-th layer which can be ob-

tained from eq. (3.10) for elastic beams and eq. (3.36) for viscoelastic layers. 
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Moreover, as has been done in this section, the equivalent mass and stiffness matrices of more 

complex and laminated structures can be obtained by considering the geometrical deformation 

and relationship between each layer. 

 

3.5 FE model for a beam with HAPCLD treatment 

Simply by introducing the FE model for a piezoelectric beam explained in Section 3.3 as a 

cover beam to the FE model for a laminated beam with a viscoelastic layer constrained between 

two elastic beams in Section 3.4.3, an FE model for a beam with HAPCLD treatment can be 

obtained. For example, for a beam with active constrained layer damping (ACLD) treatment 

shown in Figure 3.11, in which the cover layer is replaced with a piezoelectric material, matrix 

equations of motion with global mass and stiffness matrices can be expressed from local matri-

ces as follows. 
 

 

Figure 3.11 Configuration of a beam with ACLD treatment;  : elastic beam,  : viscoelastic layer and  : 

piezoelectric patch 

 

The equations of motion in the cover layer (piezoelectric beam) are obtained from eq. (3.25) as 

 

,

 

where  and 

, 

where each term is the same as is used in eq. (3.25). 

 



3. FE MODELLING OF BEAMS WITH HAPCLD TREATMENTS 

 51   

The core layer (viscoelastic material) equations are obtained from eq. (3.36) as 

, 

where  and 

, 

where each term is the same as is used in eq. (3.36). 

 

The base layer (elastic beam) equations are obtained from eqs. (3.8) and (3.9) as 
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where  and 

, 

where each term is the same as is used in eqs. (3.8) and (3.9). 

Therefore, after stacking mass and stiffness matrices for local coordinates into one matrix re-

spectively according to the order of layer, the coupling matrix C can be expressed as follows:  
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By multiplying this coupling matrix and the transverse matrix of the coupling matrix to the 

stacked mass and stiffness matrices, equivalent mass and stiffness matrices can be derived as 

explained in the previous section. 

Finally, the global matrix equation of motion can be obtained by applying boundary conditions 

after multiplying the coupling matrix as 

, (3.42) 

where , , 

 and 

. 

When applying boundary conditions to this kind of structure, which has a small patch covering 

a part of the structure, shear deformation terms which do not exist on nodes where a viscoelastic 

layer does not cover must be eliminated carefully. Since the electrical difference term  is the 

same along all nodes covered by electrodes, it is constant in the whole structure. 

If the elastic constraining patch is added in other configurations as shown in Figure 3.12, mass 

and stiffness matrices of the base layer can be reused by using different coupling matrices. 

(a) (b) (c)

 

Figure 3.12 Configuration of a beam with (a) APCLD treatment, (b) AC/PCLD treatment and (c) AC/PSOLD treatment; 

 : elastic beam and patch,  : viscoelastic layer and  : piezoelectric patch 

Eq. (3.39) is valid only for an ACLD treatment. Continuity of displacement can be written for 

an APCLD treatment as shown in Figure 3.12 (a). If a constraining patch is defined with sub-

script ‘c’ (subscript ‘1’ means piezoelectric patch, ‘2’ viscoelastic layer and ‘3’ elastic base 

beam as ACLD case), axial and transverse displacements and rotations in each case as in Figure 

3.12 (a) can be defined: 
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, , , , 

,         , , , 
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For an AC/PCLD treatment as shown in Figure 3.12 (b), the relationship between displace-

ments of each layer becomes 
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,                                      , ,  and 

,              , , . (3.44) 

 

Finally, for an AC/PSOLD treatment as shown in Figure 3.12 (c), the relationship between 

displacements in each layer becomes 

, , , , 

,        , , , 

,                        , ,  and 

,                                            , , . (3.45) 
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Therefore, coupling matrices for other configurations can be derived from these equations as 

done for eq. (3.40). 

 

3.6 Calculation of FRF using FE beam models 

Mass and stiffness matrices of FE beam models were established to obtain FRFs of beams with 

various HAPCLD treatments. Two methods have been used through the thesis. 

The first method of FRF calculation is the Inverse Matrix Method. When harmonic forces are 

applied to a system, the response of the system is also harmonic. Therefore, the dynamic stiff-

ness matrix can be derived from mass and stiffness matrices with the assumption of harmonic 

excitation and motion as done in eq. (3.41). By multiplying the inverse matrix of the dynamic 

stiffness matrix to eq. (3.41), displacement vector of the system can be obtained. If the dis-

placement at the node of interest is divided by the excitation force at the node of excitation, the 

receptance of the system can be derived.  

The other method is the Modal Matrix Method. As explained in Appendix B.2 with the beam 

theory, modal displacements can be derived with eigenvalues and eigenvectors which can be 

obtained from mass and stiffness matrices established in previous sections of this chapter. Ei-

genvalues and eigenvectors of the system can be obtained with mass matrix and real part of 

stiffness matrix. Then, equation of modal motion can be expressed by multiplying this eigenvec-

tor to complex stiffness matrix as [94] 

, (3.46)  

where 
 
is modal mass, 

 
is modal stiffness, 

 
is modal displacement, 

 
is modal force of 

i-th mode and 
 
is loss factor. Therefore, displacement of the system can be obtained from eq. 

(B.17) as [94]
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where 
 
is eigenvector value at the point of excitation,
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point of interest,  is the mass of the system, 
 
is i-th resonance frequency and 
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In general, both methods have been used through the thesis. However, when quicker calcula-

tion was required by decreasing the sizes of matrices, the Modal Matrix Method was used with 

enough number of modes from the 1st mode to give as similar results as with the Inverse Matrix 

Method within the frequency range of interest. Since some differences can be made in the Mod-

al Matrix Method by residual modes even in low-frequency range [94], enough number of 

modes should be used in calculation to prevent this issue. 

 

3.7 Summary and conclusions 

In this chapter, FE mass and stiffness matrices for each layer of arbitrarily laminated beam 

structures are derived based on the Euler beam theory for elastic and piezoelectric layers and the 

Timoshenko beam theory for viscoelastic layer. By using the constitutive equation for piezoe-

lectric material, the piezoelectric effect happening under mechanical deformation in a piezoelec-

tric layer is considered. For a viscoelastic layer, in order to describe shear deformation of a vis-

coelastic layer, the shear modulus proposed in the GHM method is introduced. Finally, equiva-

lent FE mass and stiffness matrices are derived by a coupling matrix based on a layer-wise ap-

proach to describe mutual effects between each layer of a composite beam and combine separate 

layers into one equivalent beam. 

What has been done in this chapter has been partly done by other researchers. However, to es-

tablish FE models for beams with various HAPCLD treatments is a fundamental step for the 

design of active vibration control with velocity feedback using HAPCLD treatment. Further-

more, a deeper understanding of beam structure and its motion, including modal analysis, was 

obtained. 

In the next chapter, FE models for beams with HAPCLD treatment established in this chapter 

will be validated by experiments such as the impact hammer test and measurement of transfer 

functions when mechanical and electrical signals are applied. 
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4 PARAMETER ESTIMATION OF FE BEAM 

MODELS THROUGH EXPERIMENT 

In this chapter, for parameter estimation of the FE beam models proposed in the previous 

chapter, experimental measurements for various beam models will be compared with simulation 

results using FE models established in Chapter 3. Moreover, using the experimental results, ma-

terial properties, e.g. the Young’s modulus, density and modal loss factors of the base structure 

(an aluminium beam), could be updated to realise the material properties used for FE beam 

models. This update can guarantee more accurate active control results with FE beam models 

later. Material properties of piezoelectric and viscoelastic materials were referred to manufac-

turers’ data and experimental data measured in [11]. Moreover, in order to implement active 

vibration control, the transfer functions need to be clarified. Frequency responses of systems by 

excitation with a shaker and a PZT actuator will be measured and compared with simulated re-

sults of established FE beam models. 

 

4.1 Model update and parameter estimation by impact 

hammer test of beams 

In this section, FE beam models for an elastic beam and a beam with a PCLD patch will be 

updated and their material properties be estimated through impact hammer tests. PCLD treat-

ment is used here as a representative of other HAPCLD treatments to verify if FE modelling 

method described in the previous chapter can explain the motion of constrained structures with 

viscoelastic materials well. The configuration of PCLD treatment used in this section is basical-

ly the same configuration shown in Figure 3.8, but no electric signal was applied to the piezoe-

lectric layer of ACLD treatment in Figure 3.8 and the piezoelectric layer acts as a sort of elastic 

layer generating an electrical signal according to deformation of the layer. Through this experi-

ments, the accuracy of active control simulation using established FE beam models can be guar-

anteed. 

 

4.1.1 Elastic beam model 

For an experiment with FE elastic beam model, an aluminium beam 40 cm long, 3cm wide and 

2.92 mm thick, as shown in Figure 4.1, was used. The beam was suspended by sellotape to a 
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frame to simulate free-free boundary conditions. Prior to impact hammer tests, resonance fre-

quencies of the FE beam model with the same dimensions, boundary conditions and material 

properties given in Table 4.2, which were obtained from the measured data, were compared 

with those of the beam theory explained in Appendix B. The accuracy of resonance frequencies 

of the FE beam model was calculated as given in Table 4.1. 

Table 4.1 Resonance frequency comparison between beam theory and FE beam models 

 
Beam 

Theory 

FE Beam 

(6 elements) 

FE Beam 

(16 elements) 

FE Beam 

(20 elements) 

FE Beam 

(50 elements) 

Mode 1 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz 

Mode 2 94.147 Hz 
91.616 Hz 

(-2.762 %) 

93.758 Hz 

(-0.414 %) 

93.896 Hz 

(-0.267 %) 

94.105 Hz 

(-0.045 %) 

Mode 3 259.512 Hz 
236.903 Hz 

(-9.544 %) 

255.623 Hz 

(-1.521 %) 

257.966 Hz 

(-0.599 %) 

259.100 Hz 

(-0.159 %) 

Mode 4 508.748 Hz 
428.692 Hz 

(-18.675 %) 

492.996 Hz 

(-3.195 %) 

498.385 Hz 

(-2.079 %) 

507.017 Hz 

(-0.341 %) 

Mode 5 840.992 Hz 
639.961 Hz 

(-31.413 %) 

798.007 Hz 

(-5.387 %) 

812.238 Hz 

(-3.540 %) 

836.051 Hz 

(-0.591 %) 

Mode 6 1256.282 Hz 
808.537 Hz 

(-55.377 %) 

1163.153 Hz 

(-8.007 %) 

1192.818 Hz 

(-5.321 %) 

1245.024 Hz 

(-0.904 %) 

 

When these results of beam theory were compared with FE model ones as shown in Table 4.1, 

they are very similar with each other. And, the more elements were used for FE models, the 

more precise analysis results can be obtained as known from Table 4.1. However, since more 

calculation load is required with more FE elements, proper number of FE elements used in FE 

analysis should be determined considering the analysis accuracy. In Table 4.1, results using 50 

FE elements are precise enough up to 6th mode with higher than 99 % accuracy. 

 

   

Figure 4.1 Setup of impact hammer test for an aluminium beam 
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For impact hammer tests, an accelerometer (PCB 352C22) was attached to the lower end. The 

impact point was set to be the same as the accelerometer, but on the other side of the beam to 

get clear anti-resonance peaks and to distinguish each mode distinctly in the point FRF. The 

impact hammer (PCB 086E80) and accelerometer were connected to a signal analyser, and the 

signal from the impact hammer was used as the reference. The sensitivities of the accelerometer 

and impact hammer were calibrated precisely with a suspended mass. The possibility for error, 

which can happen in the measurement of sensitivities of two measurement devices, was mini-

mised by averaging three measured data in high coherence over 90 %. The measurement fre-

quency range was set from 0 to 1600 Hz, and the frequency resolution varied between 0.25, 

0.125 and 0.0625 Hz. In order to prevent double hitting with the impact hammer, a medium soft 

tip was used. The measured signals were inspected carefully in each measurement. 

The measured point accelerances of an elastic beam were compared with the results simulated 

by the numerical (FEM by MATLAB and Patran/Nastran) and analytical (modal analysis) 

methods as explained in Section 3.2 and Appendix B respectively. As shown in Figure 4.2, sim-

ulation results by numerical (FE) and analytical (modal analysis) methods for a free-free thin 

aluminium beam are in good agreement with the measured results. 

(a)

 

(b)

  

Figure 4.2 Input accelerance of a free-free beam (a) Magnitude and (b) Phase:  FEM (MATLAB);  Analytical 

(modal analysis);  Experiment;  FEM (Patran/Nastran)  

 

The material properties used for numerical (FEM by MATLAB and Patran/Nastran) and ana-

lytical (modal analysis) models of an aluminium beam are listed in Table 4.2 according to 

measured data. Since the same aluminium alloy was used for experiment, these material proper-

ties had been used for aluminium base beams in other result comparison between experimental 

and numerical results. The natural frequencies and loss factors  , which are double of damping 

ratios  , of this aluminium beam were obtained by the circle fit method from measured data as 

explained in [94]. These modal loss factors were also used for FE and modal analysis models. In 

order to reduce errors, sufficient sample data were measured for the circle fit method used to 
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determine the natural frequencies and loss factors. Each material property was selected to mini-

mise errors between measurement and simulation results. First of all, the density of beam was 

easily determined by measuring the mass of the beam and the dimensions of the beam. Next, the 

Young’s modulus could be determined by making the estimated natural frequencies match well 

with the measured ones by adjusting the Young’s modulus and using the density calculated 

above. 
 

 

Table 4.2 Material properties and sensitivity of a free-free beam 

Young’s modulus of Beam 68 GPa 

Density of Beam 2700 kg/m3 

Natural frequencies (Loss factor) 

94.15 Hz (0.0118) 

259.51 Hz (0.0034) 

508.75 Hz (0.0042) 

840.99 Hz (0.0029) 

1256.28 Hz (0.0032) 

Sensitivity 
Impact hammer 22.39 mV/N (±10 % error) 

Accelerometer 0.98 mV/ms-2 (±10 % error) 

 

The Young’s modulus and density in Table 4.2 are within the realms of various data provided 

by many other references.  

Since FE and analytical modal analyses used the same dynamic stiffness matrix, the natural 

frequencies and the frequency responses obtained by these methods have to be identical in prin-

ciple. However, there are small differences between two results in Figure 4.2 (a). This is be-

cause the number of modes used in modal analysis is fewer than the one used in the FE model. 

Since each node of the beam structures has three DOFs, the number of modes used in the FE 

model is equal to the total DOFs for the FE model, which must be three times of the total node 

numbers. On the other hand, a reduced number of modes was used for modal analysis for faster 

calculation. Therefore, as some components of higher order modes, other than number of used 

modes, were not included in the modal analysis, this caused small differences at anti-resonance 

frequencies in the relatively high frequency range. This effect can be explained with the results 

in Table 4.1. Since the increase of element used in analysis means the increase of mode in-

volved in analysis, larger improvement of analysis accuracy in higher modes can be found than 

in lower modes in Table 4.1. 
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Measured accelerances are in good agreement with numerical and analytical results as men-

tioned above. However, there are some opposite changes in the phase between results as shown 

in Figure 4.2 (b). This is because of low signal-to-noise ratio at anti-resonance frequencies. At 

these frequencies, an accelerometer becomes very sensitive to noise due to low accelerances. 

Moreover, since the whole structure is light, noise at anti-resonance frequencies could be meas-

ured easily. Therefore, considering this fact, accelerances of three results are in good agreement. 

 

4.1.2 Elastic beam with a layered patch with a PZT and viscoelastic mate-

rial model 

Based on the results for a thin beam, the model update and parameter estimation were expand-

ed to a thin beam with a layered patch with a PZT and viscoelastic material. In this experiment, 

since no electric signal was applied to the PZT patch, this patch acted as an elastic constraining 

layer for PCLD treatment, not an actuating patch for ACLD treatment. However, since the PZT 

patch was open-circuited and generated electricity according to the deformation of the PZT 

patch, the electricity generated by the PZT patch in the real structure and the FE model can be 

compared to validate if the FE model was properly established with material properties given in 

Tables 4.3 and 4.4 as well as the constraining effect of the constraining layer (the PZT layer in 

this case). Since this beam model will be used for active vibration control, this experimental 

validation is important in determining the accuracy of the active control study which will be 

performed later. 

 

   

Figure 4.3 Setup of impact hammer test for an aluminium beam with PZT and viscoelastic layered patch  

 

The left end of the patch, which consists of the 0.5 mm thick PZT patch and the 0.127 mm 

thick viscoelastic layer, is located 148 mm away from the suspension point as shown in Figure 
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4.3. The length and width of the patch are 5 cm and 3 cm respectively. Accelerometer mounting 

and hammer impact points were the same as in the case of the aluminium beam test performed 

above. The PZT layer was connected to the signal analyser via a B&K charge amplifier type 

2635 to measure the electrical signal generated by the PZT layer. The overall setup is shown in 

Figure 4.3. 
 

The gain of the charge amplifier was carefully adjusted for measured signal not to exceed the 

measurement limit value of a signal analyser. Finally, in order to remove any remaining electri-

cal charge in the PZT patch, which can cause noise in the measured data, the PZT patch was 

discharged shortly before measurements were taken. 

The measured results were compared with the simulated ones which were calculated using the 

FE beam model established in Chapter 3. Each parameter used for eq. (3.30) of the GHM meth-

od explained in Section 3.4.1 is given in Table 4.3 for the viscoelastic layer [11, 91]. The shear 

modulus and loss factor in the frequency domain obtained by eq. (3.30) with these given param-

eters are shown in Figure 3.6. 
 

Table 4.3 Parameters used for the GHM method [11] 

(MPa) k    

0.1633 

1 4.8278 22.013 28045 

2 14.548 3.1275 41494 

3 40.043 0.6165 41601 

 

Figure 4.4 shows the accelerances of the beam with PZT and viscoelastic layers. The frequen-

cy response characteristics of the voltage generated by the PZT patch are shown in Figure 4.5. 

(a)

 

(b)

 

(c) 

 

Figure 4.4 Input accelerance of a free-free beam with PZT and viscoelastic layered patch (a) Magnitude, (b) Phase 

and (c) Coherence of measured data:  FEM;  Experiment 
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(a)

 

(b)

 

(c)

  

Figure 4.5 Voltage of a free-free beam with PZT and viscoelastic layered patch (a) Magnitude, (b) Phase and (c) Co-

herence of measured data:  FEM;  Experiment  

Differences can be found at anti-resonance frequencies in Figures 4.4 and 4.5. Since these dif-

ferences may be caused by the dynamic characteristics of PZT patch, the dynamics of PZT 

patch can be studied for various boundary conditions; free, simply supported and clamped for 

edges, as given in Figure 4.6. Since the PZT patch is indirectly connected to the base beam with 

the constrained viscoelastic layer, the differences are not thought to be caused by the dynamics 

of PZT patch. Since the location of PZT patch has some distance from the one of excitation 

point, this is thought as the main reason of the differences. 

(a)

 

(b)

 

(c)

 

Figure 4.6 Dynamics of PZT patch with different boundary conditions; (a) free, (b) simply supported and (c) clamped 

The used material properties of an aluminium beam given in Table 4.2 and the sensitivity of 

the impact hammer and accelerometer are the same as those used for an aluminium beam meas-

urement. The material properties of the viscoelastic material and the PZT are given in Tables 

4.3 and 4.4 respectively. All values in Table 4.4 except modified elastic modulus of PZT, which 

was adjusted to meet the resonance peaks in Figures 4.4 and 4.5, were the same as the manufac-

turers’ data. The natural frequencies and loss factors, which were obtained by the circle fit 

method from the measured data as in the case of an aluminium beam measurement, are provided 

in Table 4.4 as well [94]. Due to the effect of the viscoelastic layer’s shear modulus, the loss 
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factors for this beam model are generally four times larger than those for the aluminium beam 

alone as shown in Tables 4.3 and 4.4. Moreover, as the result of the increased mass by the at-

tachment of patch and the increased stiffness by the constraining effect of the patch, the natural 

frequencies slightly decrease, on average 1.95 %, compared with those of the aluminium beam. 

When considering the effect of increased added mass only, about 3.06% decrease of natural fre-

quencies can be predicted. But, increased stiffness by the constraining layer reduced such an 

effect. 

Table 4.4 Material properties of a free-free beam with PZT and a viscoelastic layered patch 

Density of viscoelastic material 1130 kg/m3 

Density of PZT 7800 kg/m3 

Modified elastic modulus of PZT 62.11 GPa 

Piezoelectric constant of PZT -11.18 C/m2 

Dielectric constant of PZT 9.96×10-9 F/m 

Natural frequencies (Loss factor) 

92.20 Hz (0.0267) 

255.59 Hz (0.0122) 

495.39 Hz (0.0163) 

824.68 Hz (0.0180) 

1235.83 Hz (0.0117) 

Sensitivity 
Impact hammer 22.39 mV/N (±10 % error) 

Accelerometer 0.93 mV/ms-2 (±10 % error) 
 

 
 

4.2 Transfer function measurement of beams with hybrid 

control patches 

In this section, the transfer functions between excitation by a shaker or a PZT actuator and ve-

locities were measured. These measured transfer functions were compared with simulation re-

sults using FE beam models established in Chapter 3. The objective was to validate transfer 

functions which will be used later in the design of the active control system. Explanation of 

each component of the overall system set-up for measurement is given below. 

Firstly, an aluminium cantilever beam with dimensions 40 cm × 3 cm × 2.58 mm was newly 

made as a base structure to apply four types of HAPCLD treatments shown in Figure 3.1 at a 

different point 3.5 cm away from the clamped end as shown in Figure 4.7 (a). Through impact 
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hammer tests, the Young’s modulus and density of the beam were measured as 78.5 GPa and 

3124.8 kg/m3
 respectively by comparing resonance peaks and measuring the mass of a base 

beam. With a changed boundary condition, the modified Young’s modulus of new base beam 

was determined larger than the case of free-free boundary condition in the previous section. 

Moreover, the passive modal loss factors of each test case with four types of HAPCLD treat-

ments were calculated by the circle fit method from the measured data for the impact hammer 

test as given in Figure 4.7 (b) [94]. Only modal loss factors, which are double of damping ratios 

[94], of an aluminium base beam were used in FE models. 

(a)
 

 (b) 

 

Figure 4.7 (a) Base aluminium cantilever beam for beam control experiment and (b) modal loss factors in each case 

Secondly, PZT patches made of PIC255 (5 cm × 3 cm × 0.54 mm, d31 direction polarisation, 

density: 7185.9 kg/m3 by mass measurement) were used for the piezoelectric layer. The viscoe-

lastic material used for the viscoelastic layers was the 3M viscoelastic damping polymer 112P05 

with dimensions 5 cm × 3 cm × 0.127 mm and density 1130 kg/m3. The elastic constraining lay-

ers were aluminium sheet (5 cm × 3 cm × 0.36 mm, density: 2249.7 kg/m3 by mass measure-

ment). HAPCLD treatments which consist of these three materials were located 1 cm away from 

the clamped end of the beam. 

Finally, since a shaker attached at a free end of cantilever beam was observed to constrain the 

motion at the free end, a shaker was located at as close a point to the centre of HAPCLD treat-

ments as possible within the allowance of the system set-up (see figure 4.9). This would be use-

ful later to reduce the possibility of instability of the controller due to collocation problems. 

In the next subsection, measurement of the transfer functions of systems with HAPCLD treat-

ments will be explained. 

 

4.2.1 Measurement of transfer functions of hybrid system 

An active vibration control scheme for beams can be represented by the block diagram as 

shown in Figure 4.8. In this block diagram, Fe is the primary/disturbance exciting force, vs is the 
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measured error velocity at a reference point, vc is the measured velocity at a control target point, 

g is the feedback control gain and Vc is the control voltage determined by multiplying vs by the 

feedback control gain g. Hf
ce is the transfer function between the force at the excitation point, Fe, 

and the velocity at the control target point, vc, and Hf
se is the transfer function between the force 

at the excitation point, Fe, and the velocity at the error sensor point, vs. Hv
c and Hv

s are the trans-

fer functions between the voltage Vc applied to the PZT patch and the velocities measured at the 

control target point, vc, and at the error sensor point, vs, respectively. 

 

Figure 4.8 Block diagram of the system for a general case 

 

Figure 4.9 Schematic diagram of a control system set-up for beams 

Measurement positions were determined considering the base cantilever beam and the position 

of the PZT actuator as shown in Figure 4.9. Generated control moments were applied at the 

edges of the patch. The disturbance excitation was applied at a point 5 cm away from the 

clamped end. In order to compare the performance of different control strategies further, the 

velocities vi at the points Pi (i = 1, 2 and 3), P1: error sensor position at the centre point of the 

hybrid damping treatment to minimise the collocation problem between the error signal and 

control moment (3.5 cm away from the clamped end), P2: centre point of the beam (20 cm away 

from the clamped end) and P3: free end of the beam (40 cm away from the clamped end), were 

also measured as error and monitor signals for the various different control strategies. The error 

signal is used as an input signal to the feedback controller. The monitor signal is used to observe 
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the behaviour of the structure at further points. Velocity v1 was the error signal, and velocity v2 

and v3 were used for monitoring purposes. 

Following determination of error and monitor points, the measurements of transfer functions 

with shaker and PZT patch excitations were conducted. 

Firstly, Hv
s, FRF velocity per unit voltage applied to the PZT patch, were measured. In order to 

analyse and record measured data, a Data Physics Quattro signal analyser was used. A pseudo-

random signal with an rms level of 1/√2 V was applied as an input signal. This input signal was 

sent to a PI E-507 High-Voltage-PZT (HVPZT) piezo amplifier module with a gain factor of 

100 via a KEMO low-pass filter with a cut-off frequency of 2 kHz. Electrically driven rectangu-

lar PZT patches generated resulting opposite bending moments at each tip, and the beam was 

excited by these moments. Accelerations at points P1, P2 and P3 were measured by B&K accel-

erometers types 4344, 4375 and 4374 with B&K charge amplifiers type 2635. Each measured 

acceleration was respectively filtered by the charge amplifiers with a high-pass filter of 10 Hz 

cut-off frequency in order to reduce noise at a low frequency. Considering a pseudo-random 

signal as an input signal, the rectangular window was used. 100 samples were averaged, and the 

measured transfer function of the system was adjusted to eliminate the effects of accelerometers 

(mass) and shaker (mass, stiffness and damping) for a comparison with simulation results after 

the experiment [95]. The experiment setup is shown in Figure 4.10. 

(a)

 

(b)

  

Figure 4.10 Experiment set-up for measurement of FRFs of velocity per unit volt with electric pseudo-random exci-

tation; (a) real system and (b) schematic diagram 
 

In Figure 4.10, the shaker was electrically disconnected, i.e., open-circuited and completely 

unpowered, but mechanically attached to the beam to create as similar a condition to the control 

experiment as possible. The beam was excited by the bending moments generated by the PZT 

patch receiving the pseudo-random signal filtered by the low-pass filter with a cut-off frequency 

of 2 kHz. The shaker, force gauge and accelerometer acted as added mass, stiffness and damp-

ing to the whole structure. 
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Red one-dotted chain lines in Figures 4.12 (a) and (b) show the magnitude and phase of the 

measured FRF: Hv
s. The measurements have been carried out for all four HAPCLD treatments 

as given in Figure 3.1. However, only the measurements for the ACLD treatment are shown 

here as being representative of general behaviour of HAPCLD treatments. The FRF of Hv
s show 

very well separated resonance frequencies at 83.8, 229.0 441.6 and 725.5 Hz for four of the first 

five. The first resonance frequency, 13.8 Hz, which was expected from the modal analysis of the 

FEM model, cannot be seen here due to noise measured by the accelerometer in low frequency 

range. 

Secondly, FRF Hf
se at the error measurement point P1 by pseudo-random force excitation was 

measured. Similar to the piezoelectric excitation case, a pseudo-random signal was applied to 

the shaker through an audio power amplifier (Ariston AX-910), where the signal was adjusted 

to supply current with a maximum of 0.2 A rms into the shaker to avoid the damage on the 

shaker. As in the previous case, the rectangular window was used considering a pseudo-random 

input signal. Moreover, 100 samples were averaged, and the effects of accelerometers (mass), 

force gauge (mass) and shaker (mass, stiffness and damping) were considered [95]. The experi-

mental setup for these measurements is shown in Figure 4.11. The shaker was attached to a 

point 5 cm away from the clamp with a stinger and a PCB force gauge Model 208C01, which 

was not used to measure the applied force as the reference signal for FRF. Instead of the applied 

force, the electrical input current signal to the shaker, which was measured by extra current me-

ter and adjusted to a maximum of 0.2 A rms, was used as the reference signal for FRF to avoid 

the differences in resonance frequencies between two FRFs, Hv
s and Hf

se. The same accelerome-

ters and charge amplifiers were used as for the measurements of FRF Hv
s of velocity, which is 

integrated data of measured acceleration in the signal analyser, per unit volt. In order to obtain 

as similar transfer functions for the system as possible to those used in the control experiment, 

the dynamics of the shaker were included in the measurement. 

(a)

 

(b)

  

Figure 4.11 Experimental set up for measurement of mobilities with shaker excitation; (a) real system and (b) sche-

matic diagram 
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The FRF with pseudo-random force excitation was measured and its magnitude and phase are 

shown in Figures 4.13 (a) and (b) as red one-dotted chain lines. Noise is apparent below 100 Hz, 

especially below 10 Hz. For the measurement of low frequency vibration below 10 Hz, a special 

low frequency accelerometer, which must use “Quiet” electronics for low frequency noise and 

have high sensitivity to overcome monitor noise, were usually used. Since a general accel-

erometer was used in these measurements, noise is thought of as being measured in the low fre-

quency range. 

 

4.2.2 Result comparison of FE models with measured transfer functions 

In order to check the FE beam models established in Chapter 3 adding to the model update and 

parameter estimation performed in the previous section, measured FRFs and phases under two 

different excitations, by shaker and piezoelectric actuator, were compared with those of FEM 

beam models using the following figures for an ACLD treatment case. Measured FRFs and 

phases are generally in good agreement with numerical results obtained by FEM beam models. 

However, there are some differences in phases as seen in Figure 4.12 and 4.13. 

When checking the difference between experimental set-up and FE model, the application of a 

low-pass filter is the main reason of these differences in Figures 4.12 and 4.13. Since the 

KEMO low-pass filter, which is an 8th order Butterworth Filter, is used with the cut-off fre-

quency of 300 Hz in the experiment, such a low-pass filter was included as the form of transfer 

function in the model as well. Results were compared with the measured results in Figure 4.14 

and 4.15. With consideration of a low-pass filter effect, more accurate simulation results are 

obtained for the phase as shown in Figures 4.14 (b) and 4.15 (b). However, amplitudes of FRFs 

are the same as the previous results regardless of a low-pass filter effect. 

(a) (b)

 

Figure 4.12 (a) FRFs of velocity per unit volt at point P1 (Hv
s) and (b) phases of velocity per unit volt at point P1 for a 

beam with ACLD treatment when an electrical signal is applied to a PZT patch;  FE model and  measured 

data 
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(a) (b)  

 

Figure 4.13 (a) Mobility at point P1 (Hf
se) and (b) phases of Mobility at point P1 for a beam with ACLD treatment 

when pseudo-random force is applied;  FE model and  measured data 

(a) (b)  

 

Figure 4.14 (a) FRFs of velocity per unit volt with the effect of a low-pass filter at point P1 (Hv
s) and (b) phases of 

velocity per unit volt with the effect of a low-pass filter at point P1 for a beam with ACLD treatment when an electri-

cal signal is applied to a PZT patch;  FE model and  measured data  

(a) (b)  

 

Figure 4.15 (a) Mobility with the effect of a low-pass filter at point P1 (Hf
se) and (b) phases of Mobility with the effect 

of a low-pass filter at point P1 for a beam with ACLD treatment when a pseudo-random force is applied;  FE 

model and  measured data 
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4.3 Summary and conclusion 

In this chapter, through impact hammer tests and measurement of transfer functions with two 

different excitation cases, i.e. pseudo-random exciting force by a shaker or pseudo-random elec-

trical signal using a PZT patch, simulated and measured results were compared with each other. 

As a result of the comparison, FE beam models established in the previous section were con-

firmed to express the motion of structures with HAPCLD treatments. Hence, simulation results 

can be used for controller design, which requires a repetitive process of optimisation. As can be 

understood from the result comparison, it is clearly shown that, for more accurate simulation 

results, every component of the experimental set-up, including control target structures them-

selves as well as all connected equipment such as an accelerometer, the low-pass filter, etc. 

should be considered in FE models. As explained in Section 4.2.1 and [95], effects of sensors 

such as accelerometers and a force gauge were considered as additional mass. Mass, stiffness 

and damping of the shaker were referred to in the technical measurement report and were added 

to FE models. Phase delay caused by a low-pass filter was also considered according to the filter 

characteristics. 

In the next chapter, the design of optimised controllers, control simulations and experiments 

relating to four different beam structures with a designed controller will be discussed. Moreover, 

through the comparison of each result, the HAPCLD treatment with better control performances 

will be found. 
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5 VELOCITY FEEDBACK HYBRID ACTIVE-

PASSIVE CONTROL OF BEAMS 

In this chapter, the design of active controllers using HAPCLD treatments is considered. One 

of objectives of this chapter is to give design guidelines for the controller to minimise the kinet-

ic energy of the whole structure, or to maximise the energy absorbed by the controller [96]. An-

other guideline is the maximisation of the stability margin of the control. Moreover, applicabil-

ity of the conclusion in [3] to structures having more DOFs than beams will be confirmed with 

different system configurations and a control algorithm in this procedure. The controllers with 

simple velocity feedback control instead of LQR are applied to the FE beam models with differ-

ent types of HAPCLD treatments. Finally, experimental results will be obtained and compared 

to numerical simulations. The bandwidth of the controller and the effect of the low-pass filter 

for alleviating spill-over effects will be discussed.  

 

5.1 Velocity feedback controller design for beams 

Basic study of active control is done in Appendix C. Effect of displacement, velocity and ac-

celeration feedback control is studied with a single-degree-of-freedom (SDOF) system in the 

same appendix. Moreover, many possible problems in active control due to collocation and du-

ality are studied as well.  

In order to design a proper velocity feedback controller for beams, the stability of the control-

ler should be secured by controlling the range of control gain as studied in C.2.3. For an uncon-

ditional stable control, optimal control gain can be determined by considering the kinetic energy 

of a whole structure and the absorbed power by a controller as studied in C.2.3. When active 

control is applied to a system, the motion of a system, which is related to the kinetic energy of a 

structure, will be controlled with energy reduction by the application of active control, which 

will be equal to the absorbed power of the controller. This reduced motion of a system will lead 

to the minimisation of the kinetic energy of a system as expressed in eq. (C.7). 

, (C.7) 

where M is mass of the whole structure, R is the number of measuring points and
 

 is the 

mean square value of the velocity measured by the r-th accelerometer. 
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Moreover, the power spectral density of power absorbed by the control actuator is expressed as 

, (C.8) 

where β is the control gain and
 

 denotes the mean square value of the control velocity. 

In the next section, based on the controller design study, the design process for a controller for 

real systems of beams with HAPCLD treatments will be studied. 

 

5.2 Experimental controller design of a beam with 

HAPCLD treatment 

In this section, the controller design mentioned in the previous section will be applied to real 

beam structures described in Sections 3.5. Various configurations of HAPCLD treatments will 

be considered. In the next subsection, the determination of control gains based on the open loop 

Nyquist plots for each configuration will be studied. 

 
 

5.2.1 Determination of control gain margins 

For the beam structures in the four different configurations of HAPCLD treatments explained 

in Chapter 3, the Nyquist plots for open loops can be obtained. FE beam models established in 

Chapter 3 and experimental data will be used to obtain optimal control gains. Beam structures 

were clamped in a cantilever beam configuration. Beams with the four different HAPCLD 

treatments are shown in Figures 5.1 to 5.4. Copper electrodes were attached to top and bottom 

surfaces of PZT patches to provide electrical signal. 
 

   

Figure 5.1 Beam with ACLD treatment for experiment;  : elastic beam,  : viscoelastic layer and  : 

piezoelectric patch 
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Figure 5.2 Beam with APCLD treatment for experiment;  : elastic beam,  : viscoelastic layer and  : 

piezoelectric patch 

 

   

Figure 5.3 Beam with AC/PCLD treatment for experiment;  : elastic beam,  : viscoelastic layer and  : 

piezoelectric patch 

 

   

Figure 5.4 Beam with AC/PSOLD treatment for experiment;  : elastic beam,  : viscoelastic layer and 

 : piezoelectric patch 

 

The experimental set-up for measurement of FRFs of velocity per unit volt with pseudo-

random excitation by a piezoelectric actuator shown in Figure 4.17 in Section 4.2.2 was adopted. 

The Nyquist plot for the open loop for each configuration can be obtained from the measured 

FRFs of HAPCLD treatments in Section 4.2.2. The FRFs were then measured without or with a 

KEMO low-pass filter to check the effect of a low-pass filter on the control input signal.  

The Nyquist plots for an open loop system without any low-pass filter are shown in Figure 5.5. 

As can be noted from Figure 5.5, for ACLD, APCLD and AC/PSOLD treatments the circles of 

Nyquist plot move from the positive real area to the negative after the third circle and the radius 
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of the circles also increases. This means there is a higher possibility of instability of control at 

the higher frequencies. This is the reason why Trindade and Benjeddou used only the first three 

modes for beam control to avoid potential negative effects of active control in their paper [3]. 

Therefore, for stable control, the introduction of a method to filter high frequency components 

out from the signal is necessary to use only positive real parts of control force. Here, a low-pass 

filter, which can eliminate higher frequency components than a cut-off frequency, was used as a 

filtering method for this purpose. 

(a) 

 

(b) 

 

(c)

 

 (d)

  

Figure 5.5 The Nyquist plots for the open loop of beam structures without a KEMO low-pass filter: (a) ACLD treat-

ment, (b) APCLD treatment, (c) AC/PCLD treatment and (d) AC/PSOLD treatment 

 

A KEMO low-pass filter with an 8 Pole Butterworth filter was applied to the system to use on-

ly positive parts of open loops in Figure 5.5 to minimise the effect of negative parts on control 

stability. The cut-off frequency was set to 300 Hz, which causes higher modes than the 3rd 

mode to be eliminated from the control signal. As a result, the Nyquist plots for open loop were 

changed as shown in Figure 5.6 with the application of the low-pass filter. 

 



 5. VELOCITY FEEDBACK HYBRID ACTIVE-PASSIVE CONTROL OF BEAMS 

 77   

(a)

 

 (b)

  

(c)

 

 (d)

  

Figure 5.6 The Nyquist plots for the open loop of beam structures with a KEMO low-pass filter (Cut-off frequency: 

300 Hz): (a) ACLD treatment, (b) APCLD treatment, (c) AC/PCLD treatment and (d) AC/PSOLD treatment 

 

 

Although the low-pass filter reduces the high frequency components, it also causes a phase 

shift in filtered signals. When a control is implemented for harmonically excited systems, an 

attempt to cancel the phase shift may be tried with an all-pass filter, which adds even more 

phase shift to the signals and finally eliminates the phase shift caused by a low-pass filter by 

rotating the total phase shift over 360. However, for a broadband control like this case, this 

method will only cause larger deformation of the Nyquist plot and make the problem more se-

vere.  

For a broadband control, an ideal low-pass filter shown in Figure 5.7, which can precisely cut 

off the input signal at the cut-off frequency and does not provide the phase shift, is required. 

However, since it is physically impossible to eliminate phase delay, which is caused by time 

delay within filters for signal processing [97], realisation of this ideal low-pass filter may be 

impossible. Therefore, how to compensate this delayed phase for a similar result with an ideal 

low-pass filter can be studied by using various methods such as the introduction of individual 

serial combinations of band-pass filters and all-pass filters in the next subsection. 
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(a)

  

(b)

  

 Figure 5.7 An ideal low-pass filter with 300 Hz cut-off frequency: (a) Frequency response and (b) Phase response  

 

 

If this ideal low-pass filter or other filtering methods with a similar effect to an ideal low-pass 

filter can be applied to the system, the Nyquist plot for the open loop can be changed from Fig-

ure 5.5 to Figure 5.8 with reduced frequency components above a cut-off frequency. Signal 

phase shift is minimised with the application of this ideal low-pass filter.  

 

 

(a)

 

 (b)

  

(c)

 

 (d)

  

Figure 5.8 The Nyquist plots for the open loop of beam structures with an ideal low-pass filter (Cut-off frequency: 

300 Hz): (a) ACLD treatment, (b) APCLD treatment, (c) AC/PCLD treatment and (d) AC/PSOLD treatment 
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Table 5.1 G3dB for each configuration according to the application of a low-pass filter 

 Without filter 
With a KEMO 

low-pass filter 

Ratio to ‘w/o 

filter’ case 

With an ideal 

low-pass filter 

Ratio to ‘w/o 

filter’ case 

ACLD 14.09 261.97 18.59 825.10 58.56 

APCLD 24.58 167.61 6.82 1240 50.45 

AC/PCLD 8.42 61.79 7.34 8.42 1 

AC/PSOLD 4.79 69.77 14.57 1302 271.82 

 
 

In summary, control gains for stable control with a 3 dB gain margin in each case, G3dB, can be 

shown as in Table 5.1. The method used to calculate 3 dB gain margin from a Nyquist plot of 

transfer function is explained in Appendix C.2.3 with an example. Introduction of a low-pass 

filter can give a positive influence on the increase in control gain for stable control. AC/PSOLD 

treatment can provide the largest increase in control gain out of four types and it can result in 

the possible estimation of the best control result with HAPCLD treatment as concluded in [3]. 

When considering the phase shift caused by the inner signal processing procedure of the low-

pass filter circuit, the advantage of an ideal filter is obvious in Table 5.1 and its design for reali-

sation will be explored more in the next subsection.  

 

5.2.2 Study of a realisation method for an ideal low-pass filter by means 

of an all-pass filter or phase compensator 

As mentioned in the previous subsection, in the case of harmonic excitation, an all-pass filter 

is usually used to compensate for the phase shift caused by a low-pass filter. An all-pass filter 

does not affect the amplitude of an input signal, but only the phase up to a cut-off frequency as 

shown in Figure 5.9. If a filtered signal, which went through a low-pass filter and an all-pass 

filter in series, has an additional 360° phase shift in total through a series of filters at a specific 

target frequency, the output signal seems to have no phase shift as a consequence. Therefore, an 

introduction of an all-pass filter is very useful in compensation for phase shift for the control of 

harmonically excited system. 
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Figure 5.9 Frequency response of an all-pass filter from [http://www.uaudio.com/blog/allpass-filters] (a) Magnitude 

Response and (b) Phase 

However, in the case of broadband excitation or multi-mode control, as used in this thesis, the 

introduction of an all-pass filter to compensate for a phase shift at a specific target frequency 

can cause problems in other modes. For example, when the phase shift through a low-pass filter 

at the first mode is compensated for by an all-pass filter, all other frequency components of the 

signal are under the influence of the shifted phase resulting from an all-pass filter as well. 

Therefore, when compensating for the filtered signal at the second mode, a second all-pass filter 

should be designed considering added phase shift resulting from an all-pass filter at the first 

mode. For other modes, this procedure should be repeated to effectively eliminate all phase 

shifts from previously applied all-pass filters from input signal. Thus, the introduction of an all-

pass filter can make a phase shift problem due to a filter more severe in this manner for broad-

band excitation or multi-mode control. 

As a method for minimisation of phase shift, the selection of a lower-order filter, which has a 

smaller phase shift, can be considered. A filter of a lower order generally causes a smaller phase 

shift in the input signal. However, in this case, since the attenuation of amplitude of the signal 

after a cut-off frequency is smaller than when using higher-order filters, reduced trimming effect 

is expected.  

On the other hand, a so-called counter all-pass filter, which has the same frequency response 

but the opposite phase change to a general all-pass filter, could be proposed. Unfortunately, a 

counter all-pass filter does not exist and it would be impossible to realise when considering the 

operational logic of filtering. During the process of signal conversions between time and fre-

quency domains such as FFT and IFFT, the group delay in the signal happens and it results in a 

phase shift. Therefore, since this phase shift is the result of a time gap between unfiltered and 

(a) 

(b) 
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filtered signals [97], it is impossible to eliminate the phase shift itself by adding another filter 

such as a counter all-pass filter.  

However, the efficiency of all-pass filters in phase compensation cannot be ignored, although 

it is valid in narrow band control as mentioned above. In order to overcome this weakness of all-

pass filter in broad band control, the combination of band-pass filters and all-pass filters as 

shown in Figure 5.10 can be proposed as an alternative method of phase compensation and real-

time signal decomposition in a frequency domain. The application of a band-pass filter to a ve-

locity input signal was proposed for stable modal vibration control of non-collocated structures 

in [98]. In the case that sensors and actuators are not collocated, the phases of some modes are 

in out-of-phase status, which can cause the range of control gain for stable control to be limited 

or control itself to be unstable as explained in Sections C.2.2 and C.2.3. However, by applying a 

modal filter consisting of high-pass filters, band-pass filters or low-pass filters according to the 

kind of input signal, i.e. displacement, velocity or acceleration signal for each mode, stable con-

trol can be achieved in each mode. 

 

Figure 5.10 Phase shift minimisation method in real-time active control using a combination of a band-pass filter 

and an all-pass filter 

Each band-pass filter is used for filtering real-time signals within frequency bands around each 

resonance frequency of interest. This means that the centre frequencies of each band-pass filter 

are determined by the resonance frequencies of each mode of interest. Bandwidth of the band-

pass filters can be set to the bandwidth of each mode, i.e. the differences of half-power frequen-

cies of each mode. Additional phase shift can occur during the filtering of a signal around each 

resonance frequency of interest using band-pass filters. This phase shift can be physically elimi-

nated by adding more phase shift using all-pass filters to make a total phase shift of 360 

through the combination of filters. As a result of signal filtering, the effect of phase shift by fil-

ters for mode selection for active control can be physically removed and the possibility of un-

stable control can be minimised. The filtering system described in Figure 5.10 can be a bit 

heavy for the case that there are many modes to be controlled. However, when considering that 
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first some modes are subject of active control in general, the size of system should be efficiently 

determined according to the number of controlled modes. 

In this section, the way to keep the magnitude of a signal the same but can eliminate or mini-

mise the effects of phase shift due to other filters for signal control such as a low-pass filter was 

discussed. The objective of this discussion is to only clarify the active control of velocity feed-

back control with systems used in this thesis regardless of unexpected phase distortion by the 

application of a low-pass filter.  In the next section, the control results using an ideal filter real-

ised by a combination of band-pass filters will be discussed. Measured FRFs of beam structures 

shown in Sections 4.2.2 and 4.2.3 will be used. 

 

5.2.3 Optimal control gains with the proposed ideal filter 

As mentioned at the end of the previous section, estimated control results with the ideal filter 

shown in Figure 5.7 will be discussed in this section. 

Control results and phases with ACLD treatment for three cases, i.e. without filter, with a 

KEMO low-pass filter and with an ideal filter, are obtained as shown in Figure 5.11 and 5.12 

respectively using control gain G3dB with the 3 dB gain margins given in Table 5.1.  

 

 

(a)

 

(b)

 

(c)

 

Figure 5.11 Control results for ACLD treatment on a beam with (a) No filter (G3dB = 14.09), (b) a KEMO low-pass filter 

(G3dB = 261.97) and (c) a proposed ideal filter (G3dB = 825.10);  No control;  with control 

(a) (b)

 

(c)

  

Figure 5.12 Phases for ACLD treatment on a beam with (a) No filter (G3dB = 14.09), (b) a KEMO low-pass filter (G3dB = 

261.97) and (c) a proposed ideal filter (G3dB = 825.10);  No control;  with control 
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The peak values in the uncontrolled case and the changes in those values for each control case 

are summarised in Table 5.2. 

Table 5.2 Change of peak values in the case of active control using ACLD treatment in beams  

 1st mode 2nd mode 3rd mode 

Only with passive control 

effect of ACLD (Peak 

amplitude) 

-24.99 dB -13.62 dB -9.758 dB 

Changes 

by ac-

tive 

control 

using 

G3dB 

w/o filter +0.03 dB -0.27 dB -0.038 dB 

w/ KEMO filter +1.01 dB -5.76 dB +9.036 dB 

w/ ideal filter +2.05 dB -8.12 dB -1.762 dB 

 

As seen in Figure 5.11 and Table 5.2, the ideal filter is advantageous and the vibration of the 

beam at the sensor point is controlled most effectively. Moreover, the active control effect using 

a PZT actuator is dominant for the 2nd mode in the current position. The maximum reduction in 

all cases of active control is obtained at the frequency of the 2nd mode with the ideal filter. Rel-

atively small reduction in the 3rd mode will be discussed with other cases. Control of the 4th 

mode also shows a change of resonance frequency for the related mode as shown in Figure 5.11. 

It was caused by the additional damping added by the active control, which can cause the pin-

ning effect as explained in Appendix C with a very high control gain, with the ideal filter. 

The same simulation was repeated for other configurations. Obtained results are arranged be-

low. Figures 5.13, 5.14 and 5.15 show the results for APCLD, AC/PCLD and AC/PSOLD 

treatments respectively. Phase plots for Figure 5.13, 5.14 and 5.15 can be found in Appendix 

C.2.4. As expected, the most reduction with active control is obtained using AC/PSOLD treat-

ment in all four cases. 

(a)

 

(b)

 

(c)

 

Figure 5.13 Control results for APCLD treatment on a beam with (a) No filter (G3dB = 24.58), (b) a KEMO low-pass 

filter (G3dB = 167.61) and (c) a proposed ideal filter (G3dB = 1240);  No control;  with control 



5. VELOCITY FEEDBACK HYBRID ACTIVE-PASSIVE CONTROL OF BEAMS 

 84 

(a) (b)

 

(c)

 

Figure 5.14 Control results for AC/PCLD treatment on a beam with (a) No filter (G3dB = 8.42), (b) a KEMO low-pass 

filter (G3dB = 61.79) and (c) a proposed ideal filter (G3dB = 8.42);  No control;  with control 

(a)

 

(b)

 

(c)

  

Figure 5.15 Control results for AC/PSOLD treatment on a beam with (a) No filter (G3dB = 4.79), (b) a KEMO low-pass 

filter (G3dB = 69.77) and (c) a proposed ideal filter (G3dB = 1302);  No control;  with control 

As discussed with ACLD treatment, the motion of a PZT patch at the current location on the 

beam as shown in Figures 5.1 to 5.4 is confirmed to affect the 2nd mode most out of the first 

three modes presented in the figures. When considering the difference between ACLD treatment 

and other configurations, the application of an additional constraining layer is assumed to give 

an influence on control results by adding a constraining effect on whole systems even during 

active control. When a piezoelectric layer acts as an actuator during active control, a constrain-

ing effect of the piezoelectric layer is reduced compared with when it is in a passive control 

state. It should be noted that ACLD treatment is the only configuration in which a PZT patch 

has the double role of piezoelectric actuator and constraining layer out of the four configurations 

used in this study. However, since an additional constraining layer maintains a constraining ef-

fect during active control for other configurations, more reduced control results could be ob-

tained from the other three configurations.  

For comparison, vibration control simulations with 3dB control gains for a proposed ideal fil-

ter of each configurations were conducted and the results are shown in Figure 5.16. Due to some 

differences in phase, especially for the third mode, the reduction pattern in the related mode is 

different between measured and simulation results. However, general reduction patterns in two 

cases are similar. The simulation results for phases are given in in Appendix C.2.4. 
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(a) (b) (c) (d)

 

Figure 5.16 Control simulation results with a proposed ideal filter and G3dB for (a) ACLD, (b) APCLD, (c) AC/PCLD and 

(d) AC/PSOLD treatments 

Peak value reductions in each case shown in Figures 5.13 to 5.15 are arranged in Tables 5.3, 

5.4 and 5.5 respectively. As is shown in the tables, the peak value reductions with APCLD and 

AC/PSOLD treatments are larger than with ACLD treatment. Due to the reverse polarization of 

the PZT patch for AC/PCLD treatment, the expected reduction is not achieved. According to the 

results, although the lower peak amplitude change by passive control is measured in the case of 

APCLD treatment, the increase in passive damping by APCLD treatment is not certain since 

different base beams were used in each case. More exact comparison of passive control can be 

found in Figure 4.6 and related discussion is presented in Section 4.2. As can be noticed from 

Figures 5.11, 13, 14 and 15, the reductions in 3rd mode are relatively smaller than other modes. 

When checking the changes in Figure 5.15, modal stiffness and mass of 3rd mode were in-

creased by active control rather than modal damping. The mismatch between input signal, i.e. 

velocity, and control moment generated by the PZT patch, which is called duality problem as 

studied in Appendix C, caused these results. 

Table 5.3 Change of peak values in the case of active control using APCLD treatment in a beam  

 1st mode 2nd mode 3rd mode 

Only with passive control 

effect of APCLD (Peak 

amplitude) 

-30.39 dB -13.62 dB -14.28 dB 

Changes 

by ac-

tive 

control 

using 

G3dB 

w/o filter +0.20 dB -2.24 dB -0.05 dB 

w/ KEMO filter +0.44 dB -4.74 dB +0.41 dB 

w/ ideal filter -4.05 dB -20.92 dB -0.56 dB 
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Table 5.4 Change of peak values in the case of active control using AC/PCLD treatment in a beam  

 1st mode 2nd mode 3rd mode 

Only with passive control 

effect of AC/PCLD (Peak 

amplitude) 

-24.34 dB -12.62 dB -11.04 dB 

Changes 

by ac-

tive 

control 

using 

G3dB 

w/o filter +0.27 dB +6.343 dB +0.21 dB 

w/ KEMO filter -2.64 dB +5.072 dB -1.16 dB 

w/ ideal filter +0.27 dB +6.343 dB +0.21 dB 

 

Table 5.5 Change of peak values in the case of active control using AC/PSOLD treatment in a beam  

 1st mode 2nd mode 3rd mode 

Only with passive control 

effect of AC/PSOLD 

(Peak amplitude) 

-22.19 dB -11.01 dB -9.511 dB 

Changes 

by ac-

tive 

control 

using 

G3dB 

w/o filter -1.02 dB -2.32 dB -0.098 dB 

w/ KEMO filter -8.72 dB -3.21 dB +0.925 dB 

w/ ideal filter -28.08 dB -29.77 dB -6.799 dB 

 

The effectiveness of AC/PSOLD treatment for active control is assured by the tables given 

above as can be noted in Figures 5.13 to 5.15. Therefore, the conclusion about active control 

simulations for the first three modes of a cantilever beam using four different HAPCLD treat-

ments conducted in [3] was confirmed as applicable with different control strategies through 

related experiments and simulations. Since a similar base structure, e.g. cantilever beams with 

different dimensions, and similar configurations were used as was done in [3], the frequency 

responses of PZT actuators were similar. Therefore, used controllers gave a positive effect for 

the first three modes only. However, although simple velocity feedback control was used in this 

study instead of the LQR used in [3], control results were determined by structural relationships 

between a base structure and a controller rather than an applied control strategy, if stability 

problem could be solved by an additional method as explained in this chapter. With this result, 

the application of controllers and a control strategy used for beams in this chapter can be ex-

panded towards more complex structures such as plates. 
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5.3 Summary and conclusions 

In this chapter, active control of a beam structure using HAPCLD treatments has been studied. 

The conclusions by Trindade and Benjeddou [3] related to HAPCLD treatments were validated 

even with a simple velocity feedback, which is different from the one used in [3], Linear Quad-

ratic Regulator (LQR). Although LQR was used as a control algorithm for parameter study in 

[3], other various control algorithms including ‘Proportional and/or Derivative’ and ‘Direct Ve-

locity Feedback’ was used in their references. Thus, a simple control algorithm such as ‘Direct 

Velocity Feedback’ was selected from the control algorithms listed in [3] as a control algorithm 

instead of LQR in this study to verify the applicability of various HAPCLD treatments and their 

applicability for stable control is guaranteed as described in [3].  

In addition to this, the modal decomposition method, which can be implemented in real-time 

active control, without phase shift and minimising the possibility of unstable control caused by 

the application of a filter was investigated. Combined application of band-pass filters and all-

pass filters can eliminate the effect of phase shift in each mode caused by any kind of filters and 

guarantee stable active control.  

As result of the study in this chapter, four types of HAPCLD treatments and velocity feedback 

control strategy have been validated as being applicable to beams and their application to more 

complex structures such as plates can be studied based on this result. Therefore, the application 

of HAPCLD treatments and a velocity feedback control strategy should be studied in the follow-

ing chapters. 

In the next chapter, an FE modelling method for 2-D structures such as plates will be studied 

to establish the foundation of an active control feasibility study with 2-D structures using 

HAPCLD treatments. 
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6 FE MODELLING OF FLAT PLATES 

According to consideration of shear deformation as was carried out for the beam models, two 

kinds of plate models are developed; one is according to the Kirchhoff plate theory and the other 

is the Mindlin-Reissner plate theory. The former ignores the shear deformation of the cross sec-

tion with the assumption of a thin plate, that is, the thickness of the plate is relatively thin com-

pared to the length and width of plate and is subject to a small deflection, while the latter con-

siders the first order of shear deformation. Shear deformation is ignored for elastic and piezoe-

lectric layers, but considered for the viscoelastic layer in this study. The Kirchhoff plate theory 

is then used for elastic and piezoelectric sheets, and the Mindlin-Reissner plate theory is utilised 

for the viscoelastic layer. In order to describe the shear deformation of the viscoelastic layer, the 

shear modulus of the GHM method is expanded to plates. Finally, the coupling method based on 

a layer-wise approach is introduced to plates as well. The objective of the research carried out in 

this chapter is the establishment of FE plate models to verify if the study of FE modelling of 

beams can successfully be expanded to more complex structures, that is, plates. Individual re-

search topics in this chapter have already been studied by other researchers. However, such top-

ics have been used together for the first time here to model complex laminate structures such as 

ACLD, APCLD, AC/PCLD and AC/PSOLD treatments. 

 

6.1 Overview of flat plates with HAPCLD treatments 

The final objective for FE modelling for plates with HAPCLD treatments is to establish FE 

models of plates as was done for beams in Chapter 3. In summary, all configurations of the 

structures are given in Figure 6.1. All configurations consist of a combination of elastic base 

plate, viscoelastic layer, elastic constraining layer and piezoelectric layer. In order to establish 

full FE models, FE models of each layer are derived from equations of motions in each layer. 

After this, final FE models will be established for each configuration considering the mutual 

relations between the motions of each layer. 
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(a)

 

(b) (c) (d)

 

Figure 6.1 Configuration of a plate with (a) ACLD treatment, (b) APCLD treatment, (c) AC/PCLD treatment and (d) 

AC/PSOLD treatment;  : elastic plate and patch,  : viscoelastic layer and  : piezoelectric patch 

 

6.2 FE model of an elastic plate 

Here an isotropic elastic plate with a constant cross section is considered. Deflection of a 

Kirchhoff plate and establishment of FE global mass and stiffness matrices based on the Kirch-

hoff plate theory are explained in this section. 

 

6.2.1 Basic assumption of a Kirchhoff plate 

When a plate is subject to bending deformation, the deflection of the plate can be considered in 

the x and y directions individually as in Figure 6.2. This means that a plate can be treated as a 

beam which is stretched in the x and y directions respectively. Therefore, the basic assumption 

of a Euler beam, where there is no shear deformation in a cross section of the beam, which is 

explained in Section 3.2, can be applied to a plate as well [84]. The concept and assumption for 

small deflection on the x-axis shown in Figures 3.2 and 3.3 in Section 3.2.1 can be applied for 

the x- and y-axes in exactly the same way in this case as shown in Figure 6.2 (b) and (c). 
 

(a) (b) (c)

 

Figure 6.2 (a) The coordinate system of a plate (b) Deflection of plate in the x direction (c) Deflection of a plate in 

the y direction 
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For this reason, eqs. (3.3) and (3.4) for displacement equations of a beam can be expanded for 

a plate element as [84]
 

, (6.1) 

, (6.2) 

. (6.3) 

As explained in Section 3.2, each equation for displacements can describe the bending motion 

of the plate at one point in each axis, and cross sections of the plate element in the x and y-axes 

can remain straight. 

 

6.2.2 FE formulation for an elastic Kirchhoff plate 

Considering eqs. (6.1), (6.2) and (6.3), the potential energy of a Kirchhoff plate element with 

length in the x-direction of 2a, in the y-direction of 2b, thickness of h, a constant cross section 

and constant material properties, that is, constant Young’s modulus E and density  can be ex-

pressed as 

, 

where strain and stress relating to the z-axis can be ignored,  

, , , (6.4) 

ν denotes the Poisson’s ratio and G refers to the Shear modulus of isotropic elastic plate. 

With eq. (6.4) defining the relation between strain and stress of a plate, 

, (6.5) 
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Therefore, by substituting eq. (6.6) into eq. (6.5), eq. (6.5) can be rewritten as 

 

       , (6.7) 

where the extensional stiffness is  and the bending rigidity is . 

In the case of kinetic energy, since , ,  and  

terms can be ignored for the same reason as explained for eq. (3.6) in Section 3.2.2, the kinetic 

energy of a Kirchhoff plate can be defined as 

. (6.8) 

When the definition of displacement for an FE element is expressed with shape functions of 

in-plane and out-of-plane displacements as in eqs. (A.9) and (A.10) in Appendix A.3, the final 

formulas for the kinetic and potential energy of a Kirchhoff plate can easily be derived from eqs. 

(6.7) and (6.8) as has been done in Appendix A.4. The matrix form of equations for each energy 

is same as the final one for beams given in eqs. (3.8) and (3.9) of Section 3.2 respectively. 

Finally, the FE equation of motion for a Kirchhoff plate is derived as 

, (6.9) 

where the nodal DOF vector of the whole structure  is defined as 

,  and 

. 

Moreover, an external exciting force vector  is defined as 

,  and 
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. 

In this section, FE mass and stiffness matrices of an elastic plate structure are derived from ki-

netic and potential energy equations using the assumption of Kirchhoff plate theory. In the next 

section, a method to consider the electromechanical effect of piezoelectric materials in two-

dimensional space will be studied based on the same assumption as this section. 

 

6.3 FE model for a piezoelectric plate 

In this section, an isotropic piezoelectric plate with constant cross section is considered. Since 

this piezoelectric plate is assumed as a Kirchhoff plate model, the kinetic energy related to the 

motion of plate is same as one for an elastic plate. Moreover, by using the constitutive equations 

of a piezoelectric material for 2-D structures, the piezoelectric effect of a piezoelectric plate is 

considered in deriving a stiffness matrix. 

 

6.3.1 The constitutive equations of piezoelectric material for a 2D ele-

ment 

For the same reason explained in Section 3.3.1, the constitutive equations of piezoelectric ma-

terial should be considered to understand the electrical characteristics of piezoelectric plates. 

The general constitutive equations of piezoelectric material are given in eq. (3.14). 

For 2-D structures, y-directional components of strain and stress must not be neglected unlike 

in the case of 1-D elements. However, the assumption regarding the z-axis can be applied to this 

2-D element in xy-space by assuming . The resultant kinematic assumptions yield 

. (6.10) 

Thus, substituting eq. (6.10) into eq. (3.14) leads us to obtain 
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where , , , , 

, ,  and , ,  and  

are elastic moduli of piezoelectric materials, ,  and 
 
are shear moduli of piezoelec-

tric materials, , ,  and  are piezoelectric stress constants of piezoelectric materi-

als, 
  
dc

11
, 

  
dc

22
 and 

  
dc

33

*
 are dielectric constants of piezoelectric materials,  and  are 

extensional stresses, ,  and  are shear stresses, 
 
and

 
 are axial electric dis-

placements and  is the transverse electric displacement. 

 

6.3.2 FE formulation for a piezoelectric Kirchhoff plate 

In this section, only the mechanical and electrical potential energy caused by a piezoelectric 

layer will be discussed as done for the case in Section 3.3.2. Firstly, the mechanical potential 

energy can be determined in the specific form of strain and stress for a 2-D structure from the 

first term of eq. (3.18) as 

. 

By substituting the definition of stress obtained from eq. (6.11), 
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. (6.12) 

Since this model is considered a Kirchhoff plate, every shear strain term between in-plane and 

out-of-plane directions should be neglected, i.e. 
 
and

 
. It is assumed that the 

piezoelectric plate has thickness  and d31 mode polarisation, which means this piezoelectric 

layer is polarised in the thickness direction. The electric difference term between the upper and 

lower surface in the case of flat-rectangular-plate-shaped piezoelectric structures can be ex-

pressed as [88, 89] 

,

  and , (6.13) 

and, by considering that the electric potential is constant over the face of the element, eq. (6.12) 

can be rewritten with eq. (6.13) as 

 

   

 

       

      . 

By integrating in the thickness direction and changing the coordinate system from xyz-space to 

ξηz-space with the Jacobian matrix  in Appendix A.1, 
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      . (6.14) 

Using shape functions in eqs. (A.9) and (A.10) of Appendix A.3 and, since the electric poten-

tial difference  is constant, eq. (6.14) can be changed into the FE approximate form as 
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where the matrix of material constants of a piezoelectric plate 

  and other definitions of each matrix are the same as eq. 

(A.18) in Appendix A.4. 

Furthermore, the electrical potential energy can be defined as [89] 
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By substituting the definition of electrical displacement obtained from eq. (6.13), 
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Applying the assumption of a Kirchhoff plate and eq. (6.13) to eq. (6.16) gives
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By integrating this equation in the thickness direction, i.e. for the out-of-plane displacement z 

from 
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With the Jacobian matrix  in Appendix A.1, the coordinate system is changed from xyz-

space to ξηz-space as 
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As was done for eq. (6.14), eq. (6.17) can be changed to FE discrete form as 
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Therefore, from eqs. (6.15) and (6.18), the effective stiffness matrix of a piezoelectric plate 

can be obtained from . Finally, for a piezoelectric Kirchhoff plate, the electrical charac-

teristics of piezoelectric material should be considered. Such characteristics can be represented 

J

eU W
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by the added state electrical potential difference . The FE equation of a piezoelectric Kirch-

hoff plate can be derived by considering this term as  

, (6.19) 

where the nodal DOF vector of the whole structure including the electrical potential generated 

by the piezoelectric material  is defined as 

,  and 

. 

Moreover, an external exciting force vector  is defined as 

, , 

 

and Q refers to electrical charge. 

 

6.4 FE model for a laminated plate with one viscoelastic 

layer 

In the previous section, FE mass and stiffness matrices of a piezoelectric plate are derived 

from kinetic and potential energy equations using the assumption of Kirchhoff plate theory and 

constitutive equations of piezoelectric materials. In this section, FE modelling considering shear 

deformation of viscoelastic materials when the viscoelastic layer is under deformation in the 

form of a sandwich structure will be studied based on the Mindlin-Reissner plate theory. Here 

the model of a viscoelastic layer constrained between two Kirchhoff plates is considered to de-

scribe the motion of viscoelastic layer used in HAPCLD treatments. Mindlin-Reissner plate as-

sumptions are used for shear deformation. The viscoelasticity of the material is considered by 

introducing the GHM method. 
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6.4.1 Basic assumptions for a viscoelastic layer constrained between two 

elastic plates 

As was done in Section 3.4.1 for a beam, the Mead and Markus model proposed in [2] is 

adopted. The sandwich plate theory provided in [99, 100] is the 2-D expansion of the Mead and 

Markus’s 1-D theory. By using the theory, the equations of motion are derived with FEM mod-

elling. For a sandwich plate with a viscoelastic layer as shown in Figure 6.3, the following as-

sumptions are applied [99, 100]: 

 (1) Shear strains in the base and cover plates are negligible: , ,  and 

, and longitudinal direct strains in the viscoelastic layer are negligible:  

and . 

 (2) Transverse direct strains in the viscoelastic layer, base and cover plates are also neglected; 

so the transverse displacements 𝑤 of all points on the same cross-section of all layers be-

fore deformation are equal: . 

(a) (b)

 

Figure 6.3 Geometric concept of a viscoelastic layer constrained between two elastic plates (a) in the x-axis and (b) 

y-axis 

The shear strains on the centre plane of a viscoelastic layer can be defined like eq. (3.30) in 

Section 3.4.2 as 

 and

 

, (6.20) 
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where ui and vi are the in-plane displacement of any point in the viscoelastic core. Subscript i = 

1 is used for the cover plate. Subscripts 2 and 3 are used for the viscoelastic layer and the base 

plate respectively. Thus, the shear stresses in the viscoelastic layer are 
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where G* is the complex shear modulus of the viscoelastic core which can be obtained by using 

eq. (3.29) in Section 3.4.1 [91]. 

 

6.4.2 FE formulation of a viscoelastic layer constrained between two elas-

tic plates 

If a plate element has a length of 2a and 2b in the x-direction and y-direction respectively, the 

kinetic energy of the plate element for viscoelastic layer constrained between two elastic plates 

can be defined as [99, 100] 

. 

After the coordinate system is changed from the absolute xyz-space to the local ξηz-space with 

the Jacobian matrix  in Appendix A.1, applying shape functions in eqs. (A.9) and (A.10) of 

Appendix A.3 can give 

 

     

     , (6.22) 
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where , 

 

. 

Moreover, when considering only shear deformation exists in the viscoelastic layer, the poten-

tial energy can be defined as [99, 100] 
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where ,  are shear stresses in a viscoelastic layer defined in eq. (6.21) which can lead 

the change of eq. (6.23) as 

. 

After the coordinate system is changed from xyz-space to ξηz-space with the Jacobian matrix 

 in Appendix A.1, applying shape functions in eqs. (A.9) and (A.10) of Appendix A.3 can 
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. 

 

6.4.3 Coupling method for a laminated plate 

In order to calculate displacements of each layer of laminated plates the Kantrovich-Krylov 

method, which is based on the Mead-Markus method [2], was used in [99, 100]. However, as 

explained in Section 3.4.4, this coupling method is valid only for sandwich structures. Thus, for 

more complex configurations of HAPCLD treatment than sandwich structures, the coupling ma-

trix derived by a layer-wise approach will be introduced for a plate as was done for a beam in 

Section 3.4.4. The coupling matrix for a laminated plate can be obtained from the geometric 

relationships between the deformations of each layer. The deformation of a cross section for a 

bending motion described in Figure 3.10 in Section 3.4.4 in the x-direction can be applied to the 

y-direction as well as in Figure 6.4.  

Therefore, the relationship between each displacement component can be derived as 

,
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where subscripts 1, 2, 3 and 0 refer to cover plate, viscoelastic layer, base plate and neutral axis 

of the whole plate respectively. 
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Figure 6.4 Basic concept of a layer-wise approach model for a sandwich plate with a viscoelastic core on the y-axis 

 

From eq. (6.25), the coupling matrix for a laminated plate described in Figures 3.10 and 6.4 

can be obtained as 
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.
 

is coupling the local coordinate components, that is, the in-plane displacements, out-of-

plane displacements and shear deformation of the i-th layer to the related global coordinate 

components to derive equivalent equations of motion. Therefore, by multiplying this coupling 

matrix  and the transverse matrix of the coupling matrix  to mass and stiffness matrices, 

equivalent mass and stiffness matrices can be derived. 

 

6.5 FE model for a plate with HAPCLD treatment 

Simply by introducing the FE model for a piezoelectric plate explained in Section 6.3 to an FE 

model of a laminated plate with a viscoelastic layer, an FE model for a plate with HAPCLD 

treatment can be obtained as was done in Section 3.5 for a beam. For example, for a plate with 

ACLD treatment, as in Figure 6.5, matrix equations of motion, displacement and force vectors 

for each layer can be expressed as before, where cover layer is replaced with a piezoelectric ma-

terial. 

As discussed in Section 3.5, when applying boundary conditions to this kind of structure, 

which has a small patch covering a part of the structure, shear deformation terms, which do not 

exist on nodes where a viscoelastic layer does not cover, must be eliminated carefully. Since the 

electrical difference term  is the same along all nodes, it does not need to be eliminated con-

sidering nodes covered by a patch. If there are more than two patches attached, more electrical 

difference terms generated by each piezoelectric layer should be used as individual displace-

ment terms in the displacement vector. 
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Figure 6.5 Configuration of a plate with ACLD treatment;  : elastic plate,  : viscoelastic layer and  : 

piezoelectric patch 

 

Equations for the cover layer (piezoelectric plate) are given by 

, 

where , , 

, 

 

and 

, , 

, 

, 

where each term is the same as those used in eq. (6.19). 

Equations for the core layer (viscoelastic material) are given by 
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, 

where , , 

, 

and 

, , 

, 

, 

where each term is the same as those used in eqs. (6.22) and (6.24). 

Equations for the base layer (elastic plate) are given by 
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, 

, 

where each term is the same as those used in eqs. (A.16) and (A.18). 

Therefore, after stacking mass and stiffness matrices for local coordinates into one matrix ac-

cording to the order of layer, the coupling matrix C of eq. (6.26) is given by the three sub-

matrices which are same as the three sub-matrices in eq. (6.26) except the coupling term for the 

electrical difference generated by PZT patch. 

Finally, the global matrix equation of motion can be obtained as 

, 

where , , 

, , 

,  

 

and 

, , 

, 

. 

Furthermore, if an elastic constraining patch is added as in the three cases in Figure 6.6, mass 

and stiffness matrices of the base layer can be used for it. The coupling matrices and the equa-

tions of motion for these three cases are derived as explained in Appendix D.  
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(a) (b) (c)

 

Figure 6.6 Configuration of a plate with (a) APCLD treatment, (b) AC/PCLD treatment and (c) AC/PSOLD treatment; 

 : elastic plate,  : viscoelastic layer and  : piezoelectric patch 

 

6.6 Validation of FE flat plate models 

Flat plate models have been validated with the beam experiment results in Section 4.1. The 

beam structures as shown in Figures 4.1 and 4.3 (a free-free beam and a free-free beam with a 

PZT patch and a viscoelastic layer of 40 cm long, 3cm wide and 2.92 mm thick) and with the 

material properties which were modified in the previous comparison were used as given in Ta-

bles 4.2, 4.3 and 4.4 of Section 4.1. These structures can be thought of as narrow plates. Moreo-

ver, since other in-plane displacement in the y-axis was considered in this validation, the equiva-

lent Young’s modulus of structures was adjusted differently from the validation of beam models. 

As done for FE beam models in Section 4.1, resonance frequencies of FE plate models were 

compared with those of beam theory in Table 6.1. According to the comparison, FE plate mod-

els can give more accurate results than FE beam models. Since the effect of deformation in y-

direction which is ignored in the beam theory in general is involved in models with increased 

number of elements in y-direction, higher resonance frequencies are obtained in those FE mod-

els. 

As shown in Figures 6.7, 6.8 and 6.9, FEM and experimental results are in good agreement 

with each other. Figure 6.7 shows an input accelerance comparison for a free narrow plate. In 

Figures 6.8 and 6.9, input accelerances and electric voltage generated by the PZT patch of a free 

narrow plate with a PZT and viscoelastic layered patch are shown respectively. There are some 

changes in phase in Figure 6.7 (b) due to noise measured at anti-resonance frequencies and re-

siduals truncated duirng modal analysis using FE models. Moreover, since more DOFs at each 

node were considered, from three to six in the modal analysis with an FE plate model than in an 

FE beam model and in-plane shear deformation which cannot be considered with an FE beam 

model was also considered as a result of nodal DOF increase, more similar results were obtained 

in the higher frequency range than are shown in Figures 4.2 and 4.4 of an FE beam model in 

Section 4.1. Secondly, results on a free-free beam with a PZT patch and a viscoelastic layer 
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were compared to the numerical model. As shown in Figures 6.8 and 6.9, experimental and nu-

merical results are in good agreement. 
 

Table 6.1 Resonance frequency comparison between beam theory and FE plate models 

 
Beam 

Theory 

FE Plate 

(2×6 elements) 

FE Plate 

(2×16 elements) 

FE Plate 

(2×20 elements) 

FE Plate 

(4×50 elements) 

Mode 1 0 Hz 0 Hz 0 Hz 0 Hz 0 Hz 

Mode 2 94.147 Hz 
93.787 Hz 

(-0.384 %) 

94.121 Hz 

(-0.027 %) 

94.144 Hz 

(-0.003 %) 

94.180 Hz 

(0.035 %) 

Mode 3 259.512 Hz 
256.289 Hz 

(-1.258 %) 

259.277 Hz 

(-0.091 %) 

259.499 Hz 

(-0.005 %) 

259.867 Hz 

(0.137 %) 

Mode 4 508.748 Hz 
497.286 Hz 

(-2.305 %) 

507.774 Hz 

(-0.192 %) 

508.648 Hz 

(-0.020 %) 

510.158 Hz 

(0.276 %) 

Mode 5 840.992 Hz 
810.493 Hz 

(-3.763 %) 

838.262 Hz 

(-0.326 %) 

840.574 Hz 

(-0.050 %) 

844.744 Hz 

(0.444 %) 

Mode 6 1256.282 Hz 
1156.300 Hz 

(-8.647 %) 

1250.227 Hz 

(-0.484 %) 

1255.060 Hz 

(-0.097 %) 

1264.219 Hz 

(0.628 %) 
 

 

(a)

 

(b)

 

Figure 6.7 Input accelerance for a free narrow plate using 2-D FEM (a) Magnitude and (b) Phase:  FEM 

(MATLAB);  Analytic (modal analysis);  Experiment;  FEM (Patran/Nastran) 

(a)  (b)

 

Figure 6.8 Input accelerance for a free narrow plate with PZT and a viscoelastic layered patch using 2-D FEM (a) 

Magnitude and (b) Phase:  FEM;  Experiment 
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(a) (b)

  

Figure 6.9 Voltage of a free narrow plate with PZT and a viscoelastic layered patch using 2-D FEM (a) Magnitude and 

(b) Phase:  FEM;  Experiment 

 

6.7 Summary and conclusions 

In this chapter, FE mass and stiffness matrices for each layer of arbitrarily laminated flat plate 

structures have been derived based on the Kirchhoff plate theory for elastic and piezoelectric 

layers and on the Mindlin-Reissner plate theory for a viscoelastic layer. By using the constitu-

tive equation for a piezoelectric material, the electro-mechanical piezoelectric effect is modelled. 

For a viscoelastic layer, in order to describe shear deformation of a viscoelastic layer caused by 

viscoelasticity, the shear modulus proposed in the GHM method is introduced, as was done for a 

beam, and expanded for 2-D structures. Moreover, equivalent FE mass and stiffness matrices 

are derived by a coupling matrix based on a layer-wise approach to describe mutual effects be-

tween each layer of a composite plate and to combine separate layers into one equivalent beam. 

Finally, established FE plate models were validated through impact hammer tests with real test 

beams used in Chapter 4 for the model updating and response comparison of FE beam models 

subject to the assumption of thin plates. 

FE modelling performed in this chapter is a good foundation for the active vibration control of 

flat plates using HAPCLD treatments, especially using APCLD, AC/PCLD and AC/PSOLD 

treatments later and will be expanded to curved plates with an introduction on curvature in the 

next chapter. The objective of the research carried out in this chapter as described in the intro-

duction, the study of FE modelling of beams, has been successfully expanded to more complex 

structures, namely plates. 

In the next chapter, firstly, FE modelling and its investigation for curved plates will be carried 

out considering the coordinates transfer due to curvature. A comparison between flat and curved 
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plates in terms of mechanical behaviour such as mode shapes and the effects of curvatures on 

control performance in each case will follow. 
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7 FE MODELLING OF CURVED PLATES  

In the previous chapter, FE modelling and its validation of flat plates with HAPCLD treat-

ments were studied. However, when considering applicability to various areas such as aero-

planes and automobiles, curved plates, i.e. shells, are much more generally and commonly used 

than flat plates. For example, outer surfaces of airplanes and cars, structural hull of ships, and 

other many machineries consist of curved plates with various shapes as shown in Figure 7.1. 

Therefore, based on the FE flat plate models established in Chapter 6, FE models for curved 

plates should be studied. 

(a)

 

 

(b)

  

 

(c) 

 

Figure 7.1 Examples of curved  plate application in machinery (a) airplane 

[http://hendrynoya.wordpress.com/2011/04/17/aircraft-load-part-i/], (b) car 

[http://www.boronextrication.com/2011/08/02/2012-audi-a6-body-structure/] and (c) ship 

[http://navyadministration.tpub.com/12966/css/12966_302.htm] 

 

In this chapter, firstly, FE modelling and validation for curved plates will be studied. By intro-

ducing the coordinate transfer methods between flat and curved plates, FE models established 

for flat plates in Chapter 6 will be transformed to FE models for curved plates. Using this meth-

od, the Cartesian coordinates for a flat plate will be changed to the curved coordinates where a 

curved plate is treated like a flat plate in the Cartesian coordinates. The comparison between flat 

and curved plates in terms of mechanical behaviour such as mode shapes in each case will fol-

low this modelling study. The change of each mode according to the increase in curvature and 

the relationship between modes of flat and curved plates will be studied in this chapter. 
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7.1 FE modelling of a slightly curved plate 

The focus for the research topic moves from a flat plate to a curved plate now. In fact, slightly 

curved plates are more commonly used in many cases, such as cars and aeroplanes, than flat 

plates. In this section, a slightly curved plate is treated as a flat plate, but local coordinates are 

set along the curved surface of this structure. A flat plate is a specific example of a curved plate 

with infinite curvatures in the x- and y-directions. Therefore, the coordinate transfer between a 

flat plate and a slightly curved plate will be studied. In the following subsection, the FE model-

ling of a slightly curved plate based on the FE modelling of a plate in Chapter 6 will be dis-

cussed. 

 

7.1.1 Basic assumption for a slightly curved plate 

According to Warburton [101], a slightly curved plate may be regarded as a shallow shell, 

whose smallest radius of curvature at any point is large compared with the largest length meas-

ured along the middle surface of the shell. Alternatively, a slightly curved plate should be a thin-

walled structure with a comparatively small rise above the base plane covered by the structure 

as defined by Vlasov [101]. Therefore, a slightly curved plate can be treated as a thin plate with 

small curvatures compared with its length, and the FE modelling method explained in Section 

6.5 for a laminated flat plate can be used for the FE modelling of a slightly curved plate by con-

sidering coordinate transfer due to these curvatures as described in Figure 7.2. After an FE lam-

inated model is derived in the global coordinates from 2-D FE elements of each layer in local 

coordinates, an FE model of a slightly curved plate can be derived from it by introducing the 

change of coordinates from flat rectangular coordinates to curved coordinates. 

 

Figure 7.2 Change of coordinates for a slightly curved plate from an FE element 

 

A general slightly curved plate can be described as in Figure 7.3. A slightly curved plate is 

bent with the radii of curvatures Rx and Ry in the x- and y-directions respectively, which are con-
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stant along the surface of a slightly curved plate. Arc lengths of Lx and Ly are constant along 

each y- and x-direction as well. Displacement components on the neutral plane of the plate, u 

and v, are in the x- and y-directions respectively, and w is normal to the surface. 

 

Figure 7.3 Basic concept of a slightly curved plate 

 

The strains at a distance z from the neutral plane of a plate are related to the strains on the neu-

tral plane of a plate and changes in curvature with the assumption that the thickness of the plate 

is thin enough comparing with the lengths of the arc [101]. The strains on the neutral plane of a 

plate, allowing for the double curvatures, are expressed considering eqs. (6.1), (6.2) and (6.3) as 

[101, 102] 
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As shown in eq. (7.1), the in-plane strains of a slightly curved plate are derived by combining 

the in-plane and out-of-plane displacements. Therefore, the larger out-of-plane deflections occur 

in the motion of plates, the larger the in-plane strains that there are. 

The changes in curvature and twist are the same as those for flat plate theory as 
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The potential energy of a slightly curved plate can be obtained by substituting eqs. (7.1) and 

(7.2) into the potential energy equation of a flat plate in eq. (6.5). In this case, a and b in eq. (6.5) 

are matched to Lx/2 and Ly/2 in eq. (7.3). 
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where the extensional stiffness is 
21

Eh
C





 and the bending rigidity is 

 

3

212 1

Eh
D





. As 

has been derived from the second equation in eq. (7.3), an increase in potential energy in a 

curved plate due to curvatures is expected. 

The kinetic energy of a slightly curved plate is derived from the equivalent for a flat plate con-

sidering eq. (7.1). 

. (7.4)

 

 

7.1.2 Coordinate transfer and FE modelling 

In order to establish FE models for a slightly curved plate, the interpolation functions for a 

slightly curved plate should be defined based on FE models for a flat plate as explained in Sec-

tion 7.1.1. From the strains of a slightly curved plate in eq. (7.1), the first derivative matrix of 

in-plane displacement can be derived as [103]
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where the linear shape functions 
in

H  for the in-plane displacement and the Hermite cubic 

shape function 
out

H  for the out-of-plane displacement are defined in eqs. (A.9) and (A.10). Eq. 

(7.5) shows the change of in-plane displacement in thickness direction which is caused by the 

curvature. Since the changes in curvature and twist are the same as those for flat plate theory as 

mentioned for eq. (7.2), it is confirmed that the first derivative matrix of out-of-plane displace-

ment 
outB  is the same as that for a flat plate expressed in eq. (A.18) as 
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Since the nodal in-plane displacements calculated by FE models for a slightly curved plate are 

placed along a curved surface and the nodal out-of-plate displacements are normal to a surface, 

these displacements should be defined in terms of Cartesian coordinates instead of curved local 

coordinates. For this, each nodal displacement should be transferred considering the angle from 

the z-axis at one point on a surface. Therefore, by substituting eqs. (7.5) and (7.6) into eqs. (A16) 

and (A.18), the kinetic and potential energy matrices of a slightly curved plate can be derived. 

If a slightly curved plate, which has a single curvature in one direction, that is, it is a cylindri-

cally-curved plate, is divided into N elements and each element is defined as in Figure 7.4, the 

maximum angle of a slightly curved plate can be calculated as 

1cos s c

s

R z

R
   
  

 
, (7.7) 

where Rs is the radius of curvature of a slightly curved plate. Therefore, the angle 𝜑𝑖 between 

radial direction of curved plate, which is the transferred z-axis of curved plate, and the original 

z-axis at the i-th node can be obtained as 
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. (7.8) 

(a)  (b)

 

Figure 7.4 FE model of a slightly curved plate; (a) the relationship between the global coordinates and the local co-

ordinates in a slightly curved plate and (b) rotation of an FE element along the curvature 

Therefore, the transformation matrix of a coordinate corresponding to a rotation of an angle 𝜑𝑖 

from the z-axis for a doubly curved plate including a piezoelectric component, which is derived 

from the one for a cylindrically curved plate given in [96] to have the transfer matrix as given in 

[99] for strain components, can be given as 

 

, (7.9)
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are the rotation angles in x- and y-directions at the i-th node respectively. 

For a doubly curved plate such as a spherically curved plate and an elliptically-curved plate, an 

angle at one node from the z-axis should be calculated by considering angles on the x- and y-

axes together. 

With this transformation matrix Tcoord, the local coordinates located along the curved surface 
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. (7.10)

 

Displacement vectors u , w  and 
z





u
 are defined in Section 6.5 and displacement vectors of 

the curved surface 
nu , 

n
w  and 

z





nu
 are described in Figure 7.4. 

 

7.1.3 Comparison with approximated theoretical results 

In this subsection, the established FE models for a slightly curved plate with double curvature 

will simply be validated by comparing the fundamental frequencies obtained by eq. (7.11) [96] 

and the FE model. 

, (7.11)

 

where
 

 is the fundamental frequency in a bending motion of a simply supported square flat 

plate with side length L in x- and y-directions. Levy-type solutions, which use the Fourier trigo-

nometric functions for displacements of plates, was used in eq. (7.11). This equation is derived 

with the assumption
  

and
 

. Therefore, the maximum rise at the 

centre of curved plates should be limited to meet the ratio with side length. According to [96], 

this assumption and the use of the arc length rather than the chord length can cause small errors, 

≤ 1.2 per cent for  in the frequency ratio
 

 with Poisson’s ration 0.3. 

When a simply-supported aluminium doubly curved plate with a maximum rise of 1mm, 

square arc length of 21cm, 2.58mm thickness and Poisson’s ratio 0.33 is considered, the chang-

es in the fundamental frequency compared with an aluminium flat plate with the same side 

length and thickness is given in Table 7.1. Since similar number of FE elements was used for 

analysis in both cases, the fundamental frequencies of curved plates can be thought to converge 

on a certain steady value as flat plates. Although considering inherent errors caused from the 

basic assumption in eq. (7.11), values obtained by FE models seem a bit larger than those ac-

ceptable from the Warburton’s equation. 
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Table 7.1 Fundamental frequency comparison of flat and curved plates 

Flat plate Slightly doubly curved plate 

Exact FEM (Matlab) 
Warburton’s 

[96] 
FEM (Matlab) 

281.70 Hz 

7×7 14×14 

316.69 Hz 

8×8 12×12 

281.67 Hz 281.70 Hz 358.4 Hz 357.7 Hz 

 
 

In order to check the change of fundamental frequency of doubly curved plates according to 

the increase of curvature, the maximum rise at the centre was changed from 0.1mm to 10.5mm, 

which is the maximum allowable value with the Warburton’s assumption in eq. (7.11), i.e. 

 and the change of fundamental frequencies with the same plate used for Table 7.1 

are obtained as shown in Figure 7.5. 

 

Figure 7.5 Change of fundamental frequency according to the increase of maximum rise at the centre:  War-

burton’s theory;  FEM (Matlab, 8X8);  FEM (Matlab, 12X12) 

The same comparisons were conducted to check the result in Figure 7.5 for the changes of 

second and third resonance frequencies of flat plate according to the increase of curvature. The 

resonance frequency equation for a doubly curved square plate in eq. (7.12) based on the War-

burton’s equation in eq. (7.11) [114] was used for theoretical values of frequencies with the val-

ues of flat plate at (2, 1) and (2, 2) modes which are relevant to the second and third resonance 

frequencies. Results comparison is given in Figure 7.6. 
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(a)

 

(b)

   

Figure 7.6 Change of resonance frequency according to the increase of maximum rise at the centre; (a) second res-

onance frequency and (b) third resonance frequency:  Warburton’s theory;  FEM (Matlab, 8X8);  FEM 

(Matlab, 12X12) 

Since assumptions are used as explained above, eqs. (7.11) and (7.12) are approximate expres-

sions for the resonance frequencies of doubly curved plates. Some differences between the fre-

quency obtained by theoretical equations and the one obtained using the FE model, which also 

involves some assumption, are found in the above results. Therefore, in order to clarify these 

differences, further verification through experiments is required.  

Regardless of the differences, increase in stiffness by the curvature of a slightly curved plate 

results in increase in fundamental frequency from a flat plate. By considering the increase in 

strain in a slightly curved plate caused by the curvature, this effect is considered relatively well 

in the FE modelling of a slightly curved plate. 

 

7.2 Experimental investigation of FE curved plate models 

7.2.1 Impact hammer test with curved plates 

An FE plate model for curved plates was compared with measured results from impact ham-

mer tests as carried out for free-free beams in Chapter 4. For this comparison, a singly curved 

plate was hung to a test rig with strings attached to upper corners of a plate as shown in Figure 

7.7. An accelerometer was attached to the centre of the plate as the most flexible point of the 

whole structure, and the opposite centre point was excited by an impact hammer. 
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Figure 7.7 Impact hammer test for a singly curved plate 

 

The length and width of the plate were 42 cm and 40 cm respectively to avoid the overlap of 

modes in the x- and y-directions. The thickness of the plate was 2 mm and the maximum rise at 

the centre point was 20 mm. The equivalent density of the plate was calculated by measuring 

the mass and dimensions of real curved plates as 2620.4 kg/m3 and the Poisson’s ratio was as-

sumed to be 0.33. The equivalent Young’s modulus for a plate was adjusted to 68 GPa to match 

as many peaks at resonance frequencies of out-of-plane motion as relatively possible by com-

paring resonance frequencies of simulated and measured results. 

(a)

  

(b)

  

Figure 7.8 Result comparison for an impact hammer test between an FE plate model and a real curved plate (a) 

point mobility and (b) phase:  FEM (MATLAB);  Experiment 

The comparison between the point mobilities at the centre of the plate of a curved plate FE 

model (MATLAB) and the measured point mobility by impact hammer test was conducted. The 

result is given in Figure 7.8. As shown in Figure 7.8, there are some differences between the 

two results. The difference in the first peak is understood with results in Figure 7.5. For other 

modes, according to the results in Figure 7.6 which show the accuracy of the FE model, the ir-

regularity of curvature in real plate, which made by a hand roller, is thought as the main reason.  
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7.2.2 Effect of curvature on mode shapes and resonance frequencies with 

FE plate models 

For more accurate discussion, mode shapes of curved plates are compared to mode shapes of a 

flat plate. The mode shapes of a flat and curved plate with the dimensions 42 cm × 40 cm × 2 

mm is studied. The mode shapes for the out-of-plane motion of a free-free flat plate are shown 

in Figure 7.9. The determination of modes for a free-free plate is based on [106]. The mode 

shapes for a free-free curved plate with a maximum rise of 10 mm and 20 mm are shown in 

Figures 7.10 and 7.11 respectively.  

 

Figure 7.9 Mode shapes for a free-free flat plate for out-of-plane motion (a) 1st mode (1, 1) at 49.4305 Hz, (b) 2nd 

mode (2, 0) at 71.4336 Hz, (c) 3rd mode (0, 2) at 92.3491 Hz, (d) 4th mode (2, 1) at 126.20 Hz, (e) 5th mode (1, 2) at 

130.82 Hz, (f) 6th mode (3, 0) at 217.67 Hz, (g) 7th mode (2, 2) at 235.54 Hz, (h) 8th mode (0, 3) at 239.55 Hz and (i) 

9th mode (3, 1) at 253.51 Hz 
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Figure 7.10 Mode shapes for a free-free curved plate with the maximum rise of 10 mm for out-of-plane motion (a) 

1st mode at 52.08 Hz, (b) 2nd mode at 85.08 Hz, (c) 3rd mode at 130.71 Hz, (d) 4th mode at 156.43 Hz, (e) 5th mode 

at 178.84 Hz, (f) 6th mode at 223.47 Hz, (g) 7th mode at 262.84 Hz, (h) 8th mode at 298.48 Hz and (i) 9th mode at 

327.21 Hz 

 

 

Figure 7.11 Mode shapes for a free-free curved plate with the maximum rise of 20 mm for out-of-plane motion (a) 

1st mode at 59.08 Hz, (b) 2nd mode at 102.75 Hz, (c) 3rd mode at 142.46 Hz, (d) 4th mode at 207.35 Hz, (e) 5th 

mode at 218.61 Hz, (f) 6th mode at 239.75 Hz, (g) 7th mode at 278.27 Hz, (h) 8th mode at 393.98 Hz and (i) 9th 

mode at 400.74 Hz 
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After mode shapes were calculated for each case as above, using the Modal Assurance Criteri-

on (MAC) method explained by eq. (7.13) [94], the relationship between modes of a curved 

plate and a flat plate with the same dimensions was studied. 

  

, (7.13) 

where p and x are the modes compared. n denotes the node number for the FEM model.  is 

the mode shape for the i-th mode at the j-th node and  is the conjugate of . Consider-

ing maximum rises of 10 mm and 20 mm, the results, as shown in Figure 7.12, were obtained. 

 

(a) (b)

 

Figure 7.12 The MAC result between a flat plate and (a) a curved plate with 10 mm rise and (b) a curved plate with 

20 mm rise 

 

The 2nd mode of a flat plate is mainly related to the 2nd modes of two curved plates. However, 

due to the curvature, it is partly related to the 5th and 8th modes of a curved plate with a 10 mm 

rise and the 5th and 13th modes of a curved plate with a 20 mm rise respectively. These rela-

tionships of modes between curved plates with 10 mm and 20 mm rises are clear for the 7th 

mode of a flat plate. Moreover, the 8th and 12th modes of a flat plate are mainly related to the 

10th and 13th modes of a curved plate with a 10 mm rise and the 8th modes of a curved plate 

with a 20 mm rise respectively. According to the results, the 10th and 13th modes of a curved 

plate with a 10 mm rise seem related to the 8th mode and one higher than the 15th modes of a 

curved plate with a 20 mm rise respectively. As shown by Figures 7.10 and 7.11, mode shapes 

for the 8th mode of curved plates with 10 mm rises and 20 mm rises are different. This means 

that (m, n) modes in each case are different due to curvature. Especially for modes higher than 

the 10th mode for curved plates, orders of (m, n) modes in two cases are showing larger differ-
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ence from each other. It is because the effect of curvature on stiffness is larger in higher modes 

than in lower modes. 

Based on the MAC results, it is helpful to go back to the point mobility plots at the centre of 

plates, where the largest deflection can be found in lower modes which are main target of active 

vibration control in general, as shown in Figure 7.13. The relationships of modes become clear-

er. As shown by Figure 7.13, the first three peaks of a flat plate change as the curvature of the 

plate increases. Since nodal lines are located at the centre of a plate for other modes, as shown 

by Figure 7.9, the change of other modes according to the increase in curvature is not traceable 

in the point mobility at the centre. 

Figure 7.14 shows the changes in the first three mode shapes of out-of-plane displacement 

shown in Figure 7.13 for a flat plate, a curved plate with a 10 mm rise and a curved plate with a 

20 mm rise. The increase in curvature in the x-direction causes an increase in the bending stiff-

ness in the y-direction. Thus, it results in the change of related mode shapes as illustrated in 

Figure 7.14. 

 

 

 

 

Figure 7.13 The relationship between related modes of plates; Top: a flat plate, Middle: a singly curved plate with a 

1cm rise and Bottom: a singly curved plate with 2cm rise (  with ACLD treatment & no active control,  with 

ACLD treatment & active control using control gain min.KE) 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 7.14 The relation between associated modes of plates with mode shapes for (a) 2nd mode, (b) 3rd mode and 

(c) 7th mode of a flat plate 

 

When changes for each mode are investigated, it is clear that the 2nd mode in a flat plate is the 

most influenced by the curvature. While the out-of-plane motions are generally symmetrical in 

the x- and y-directions for other modes in spite of a single curve in the x-direction, the mode 

shapes for curved plates in Figure 7.14 (a) are asymmetrical due to a single curve in the x-

direction. This means that the 2nd modes of curved plates are under a greater influence from 

curvature than other modes. The first peak in Figure 7.8 is not matched well in spite of other 

peaks being relatively well-matched, with a modified Young’s modulus of theoretical plates, 

due to the irregularity of curvature in real curved plates as explained above. This difference 

should be considered when comparing the results of experiment and simulation. 

In conclusion, using a singly curved plate without any attachment, the FE models for singly 

curved plates were validated. Moreover, the reasons for differences between simulations and 

experimental results were discussed. In the next section, based on this section, control results 

with a controller design and validated FE curved plate models will be discussed. 

 

7.3 Summary and conclusions 

In this chapter, FE curved plate models were derived considering the coordinate transfer due to 

curvature based on the flat plate models established in Chapter 6. By considering the change of 

in-plane strain due to curvatures in a slightly curved plate and angles at one point from the z-
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axis, FE modelling of a slightly curved plate was established. This model was validated and the 

effect of curvature on mode shapes was illustrated by comparing the mode shapes of a flat plate 

and curved plate. This coordinate transfer method explained in this chapter can be applied to FE 

flat plate models with HAPCLD treatments established in Chapter 6 as well for the study in the 

next chapter. 

In the next chapter, from the understanding of flat and curved plates established in Chapters 6 

and 7, active vibration control results will be compared, and control performance for all cases 

will be discussed. Furthermore, from the understanding of flat and curved plates, active vibra-

tion control results will be compared, and control performance for all cases will be discussed. 
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8 HYBRID ACTIVE-PASSIVE CONTROL OF 

PLATES 

In this chapter, by using FE models for flat and curved plates established in Chapters 6 and 7 

respectively and real five curved plates which five different types of HAPCLD treatment are 

individually attached to, the effect of active control by HAPCLD treatments will be studied case 

by case. These five HAPCLD treatments include four HAPCLD treatments and inverse 

AC/PCLD treatment which has a piezoelectric actuator and PCLD treatment on different sides 

from AC/PCLD treatment. While AC/PCLD and inverse AC/PLCD treatments have the same 

effect on a flat plate, they give a different effect with curved plates due to the direction of curva-

ture and this effect will be studied through real curved plate experiments. In addition to this, 

active control results with each HAPCLD treatment obtained from simulation and experiment 

will be compared and studied. Moreover, as studied in the previous chapter, since mode shapes 

change according to the change of curvature, the effect of active control can vary according to 

the change of curvature and configuration. Therefore, the effect of curvature on active control 

will be studied through comparison of each case. 

 

8.1 Numerical study of control applied to FE plate models 

With the validated FE models for curved plates in the previous sections, controllers for active 

control of out-of-plane motions were designed using the method discussed in Chapter 5, and 

control performances were evaluated. In this section, the control results will be studied and in-

fluencing factors, which caused these results, will be discussed. In the following sections, active 

control will be conducted for various cases including different curvatures of plates and configu-

rations of HAPCLD treatments. Obtained control results will be compared, and which factor 

causes the differences in results will be discussed. 

Flat and singly curved plates with HAPCLD treatments as explained in Chapters 6 and 7 are 

shown in Figure 8.1. Damping treatments were attached around the centre of the plates, and the 

error measurement point was set up at the centre point. The primary external exciting force was 

applied at the same point to give the collocated condition, and mobilities at the centre point 

were compared in each case of HAPCLD treatment configurations. 
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Figure 8.1 Configuration of a plate with (1) ACLD treatment, (2) APCLD treatment, (3) AC/PCLD treatment and (4) 

AC/PSOLD treatment;  : elastic plate,  : viscoelastic layer and  : piezoelectric patch 

 

8.1.1 Control results for flat plates 

As described in Figure 8.1, HAPCLD treatments are assumed to be attached on flat plates. A 

result was obtained relating to the change in the kinetic energy of whole structures and the ab-

sorbed power from actuators as explained in Section 5.1.2. 

Firstly, the results of ACLD treatment are given. From the kinetic energy and absorbed power 

results, the optimised control gain of 1667.5 was obtained to minimise the Kinetic energy of a 

whole structure as seen in Figure 8.2. The results were calculated by eqs. C.7 (the kinetic energy 

of a structure) and C.8 (the absorbed power by an actuator) with 9 points equally distributed on 

the plates and control gains from 0 to 3000.  

, (C.7) 

where M is mass of the whole structure, R is the number of measuring points and
 

 is the 

mean square value of the velocity measured by the r-th accelerometer. 

, (C.8) 

where β is the control gain and
 

 denotes the mean square value of the control velocity. 

Since the primary exciting point, the error measurement point and the location of the actuator 

are collocated in this case, stable control was guaranteed within the frequency range of 1000 Hz. 

With this calculated control gain, the following control results and the Nyquist plot with the 

control gain were obtained as shown in Figure 8.3. In Figure 8.3 (a), large reductions can be 

found in most peaks of the point mobility except the first peak, where an increase in peak size is 

found. This increase is caused by the control moment which is related to the small circle marked 

with a red dotted line in Figure 8.3 (b). The reason for the small circle will be discussed in Sec-
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tion 8.1.3 with other control results. In spite of the existence of this circle, optimised control 

gain is determined as Gmin.KE which is smaller than G3dB. 

Furthermore, passive and active loss factors in the system were calculated as given in Table 

8.1. Passive damping is the inherent damping of a structure due to the structure itself and the 

viscoelastic layer. Active damping is additional damping caused by the active control. As shown 

in Figure 8.3 (a), active control gave a negative effect on the first peak. This result will be dis-

cussed and compared with other control results in Section 8.1.3. 

(a)  (b)

 

Figure 8.2 The kinetic energy and absorbed power for a flat plate with ACLD treatment with control gains: (a) 

Change of the kinetic energy of a plate and (b) Change of absorbed power by an actuator  

(a) (b)

 

Figure 8.3 Control result for a flat plate with ACLD treatment (a) Magnitude and phase of point mobility;  no 

control;  with control and (b) the Nyquist plot for a closed loop with the optimised control gain of 1667.5; 

circle with negative effect on active control 

 

Table 8.1 Passive and active loss factors for a flat plate with ACLD treatment 

Peak order 1 2 3 4 5 

Passive 0.0057 0.0057 0.0054 0.0054 0.0057 

Passive & Ac-

tive 
0.0005 0.2255 0.2028 0.0268 0.0980 
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With APCLD treatment, the optimised control gain of 814.7 was obtained from the following 

changes in kinetic energy and absorbed power as shown in Figure E.1 in Section E.1.1. All other 

results for APCLD, AC/PCLD and AC/PSOLD treatments are given in Section E.1 of Appendix 

E. 

With this control gain, the following control results were obtained. Differently from the ACLD 

case, control results for all peaks were positive and all circles in Figure E.2 (b) were rotated by 

about 45 clockwise from those in Figure 8.3 (b). This difference was caused by the increase of 

passive damping by adding an elastic constraining layer which remains in the same shape even 

when a PZT patch is in motion to the ACLD treatment where the constraining effect of PZT 

patch decreases when it is in motions. 

 

Table 8.2 Passive and active loss factors for a flat plate with APCLD treatment 

Peak order 1 2 3 4 5 

Passive 0.0050 0.0060 0.0055 0.0055 0.0059 

Passive & Ac-

tive 
0.0098 0.2190 0.1161 0.0193 0.0591 

 

Control simulations were conducted with AC/PCLD and AC/PSOLD treatments. With 

AC/PCLD and AC/PSOLD treatments, the optimised control gains of 192.7 and 196.8 were ob-

tained respectively. The changes in kinetic energy and absorbed power for each case were cal-

culated as shown in Figures E.3 and E.5. 

Compared with the two other previous cases, although absorbed powers from controllers are 

smaller due to higher structural constraint, the kinetic energies of whole structures are mini-

mised with smaller control gains. This is because such controllers can directly apply a control 

force to the base structure. When it is borne in mind that additional elastic bridges are intro-

duced into ACLD treatment to enhance the transmission of control force as shown in Figure 2.7, 

as Enhanced ACLD treatment, these methods can minimise the dissipation of a control force in 

the viscoelastic layer and give more efficient active control, which is clarified with smaller 

Gmin.KE than in the previous two cases. 

These two HAPCLD treatments have very similar configurations except that a PZT actuator is 

separated from PCLD treatment or not. Thus, the obtained results were very similar as well. As 

the location of a PZT patch is on the opposite sides of the base plate in the two cases, control 

results are expected to be different with the increase in curvature which will cause geometrical 

asymmetry in structures for curved plates. 
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Table 8.3 Passive and active loss factors for a flat plate with AC/PCLD treatment 

Peak order 1 2 3 4 5 

Passive 0.0065 0.0053 0.0052 0.0052 0.0054 

Passive & Ac-

tive 
0.0166 0.1950 0.0979 0.0209 0.0486 

 

Table 8.4 Passive and active loss factors for a flat plate with AC/PSOLD treatment 

Peak order 1 2 3 4 5 

Passive 0.0060 0.0055 0.0053 0.0053 0.0056 

Passive & Ac-

tive 
0.0257 0.1932 0.1002 0.0210 0.0460 

 

 

As shown by Figures 8.3 (a), E.2 (a), E.4 (a) and E.6 (a), a phase drop can be found in the mo-

bility with optimised control gain. This is because the total damping of structures increases in 

each mode with active control using velocity feedback as explained in Section 5.1.1. Due to in-

creased damping, peaks at resonance frequencies were reduced, along with phase drops. 

The control simulation results with a flat plate and four different HAPCLD treatments were 

shown. In the next section, the effects of curvature will be discussed with the control simulation 

results of singly curved plates with maximum rises of 10 and 20 mm. 

 

8.1.2 Control results for singly curved plates 

The same HAPCLD treatments described in Figure 8.3 were applied to singly curved plates as 

well. In this case, there can be two options for attaching damping treatments; one is where a flat 

treatment is used and the other is where a singly curved treatment which has exactly the same 

curvature as a base plate is in use. Here, the latter case is utilised to make the effect of curvature 

on active control results clearer. 

When ACLD treatment is applied to singly curved plates with maximum rises of 10 and 20 

mm, optimised control gains of 1795.5 and 1687.3 are calculated respectively from Figures 8.4 

and 8.5.  

Given the same excitation force but no control force, the kinetic energies of curved plates are 

smaller than those for a flat plate. This means the out-of-plane motion of curved plates is more 
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constrained than the one for a flat plate due to increased stiffness caused by curvature in the x-

direction. In spite of this, the minimum kinetic energies were obtained with larger control gain 

than for a flat plate. This means that controllers are having less effect on the out-of-plane mo-

tion of curved plates. As shown by Figure 8.5, although the absorbed power from the controller 

is larger than in the other two cases, the minimum kinetic energy is a bit lager than in other cas-

es. This is an effect of the increase in stiffness due to the curvature. 

(a)  (b)

 

Figure 8.4 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 10 mm with 

ACLD treatment with control gains: (a) Change of the kinetic energy of a plate and (b) Change of absorbed power by 

an actuator 

 

(a)  (b)

 

Figure 8.5 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 20 mm with 

ACLD treatment with control gains: (a) Change of the kinetic energy of a plate and (b) Change of absorbed power by 

an actuator 

 

With these optimised control gains, the control results shown in Figures 8.6 and 8.7 were ob-

tained. As shown by comparison with Figure 8.3, active control with singly curved plates has a 

positive influence on all peaks up to 1000 Hz. This difference can be explained as the effect of 

curvature on active control. For example, a small circle which can be found in the Nyquist plot 

for a closed-loop in Figure 8.3 (b) does not exist in the Nyquist plots in Figures 8.6 (b) and 8.7 
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(b). As described for Figures 7.12, 7.13 and 7.14, resonance frequencies and related mode 

shapes change according to the change in curvatures. Since the influence of active control de-

pends on the mode shape, especially the change pattern of the mode shapes, the effect of active 

control can change from negative to positive or vice versa. For example, as shown in Figure 

7.14, while the directions of a piezoelectric patch’s bending motion are the same in the x- and y-

directions, the bending directions of a flat plate’s 2nd mode are opposite in the x- and y-

directions. On the other hand, although the bending directions of curved plates’ 2nd modes are 

not symmetrical, the x-directional bending motion of a piezoelectric patch can contribute mainly 

to active control in the y-directional bending motion since curvature in the x-axis increases stiff-

ness in the y-direction and constrains related motion. 

 

(a) (b)

 

Figure 8.6 Control result for a singly curved plate with a maximum rise of 10 mm with ACLD treatment (a) Magni-

tude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for closed loop with 

the optimised control gain of 1795.5 

 

(a) (b)

 

Figure 8.7 Control result for a singly curved plate with a maximum rise of 20 mm with ACLD treatment (a) Magni-

tude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for a closed loop with 

the optimised control gain of 1687.3 
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The effect of changes in curvature on the mode shapes of plates with HAPCLD treatments is 

plotted in Figure 8.8. As can be noted from Figure 8.8 (a), the change in the 2nd mode shape is 

clearly distinguishable from other cases. Only the 2nd mode of a flat plate changes in opposite 

directions in the x- and y-directions. The motions of a rectangular PZT patch, i.e. bending and 

extension motions, have bilateral symmetry at opposite ends of the x- and y-directions respec-

tively. Generated forces and moments by a PZT actuator are also bilaterally symmetric. Howev-

er, since the motion of a base plate is asymmetric in the x- and y-directions, motions in one di-

rection can be amplified by control moments in spite of controlled motions in the other direction. 

Thus, this asymmetry in mode shapes is assumed to cause unstable active control in the case of 

a rectangular PZT actuator. On the other hand, the other mode shapes have the same sign of 

change around the centre point of the plates as shown in Figure 8.8 (b) and (c). These changes 

guarantee the symmetry of modal motions in base structures, and the bending motions of a PZT 

actuator can equally contribute to stable active control in the x- and y-directions. 

 

 (a)

 

 

(b)

 

 

(c)

 

 

Figure 8.8 The change rate for mode shapes in a plate according to curvature for (a) 2nd peak, (b) 3rd peak and (c) 

7th peak 
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tively according to the maximum rises of 10 mm and 20 mm from Figures E.7 and E.9 of Sec-

tion E.2.1. Comparing these results with those from ACLD treatment, the patterns of changes in 

control gain, kinetic energy and absorbed power were different from the case of flat plate in 

Figure E.1. All other study results for APCLD, AC/PCLD and AC/PSOLD treatments are given 

in Section E.2 as done for the case of flat plate. 
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The reason for this difference can be thought of as follows. For example, the changes in con-

trol gain and absorbed power with optimised control gain are arranged in Table 8.5. As shown 

in Table 8.5, absorbed power by an actuator increases regardless of the change in control gain 

with ACLD treatment. On the other hand, absorbed power by APCLD treatment does not 

change as much as by ACLD treatment. This is because of the difference in configurations. 

Since an additional elastic constraining layer is located between the PZT layer and viscoelastic 

layer in APCLD treatment, the change in absorbed power in accordance with the curvature can 

be limited with APCLD treatment more than with ACLD treatment, where the motion of the 

PZT layer is constrained by the viscoelastic layer only.  

With these optimised control gains, control results with APCLD treatments for singly curved 

plates with maximum rises of 10 mm and 20 mm were obtained as shown in Figures E.8 and 

E.10 respectively. As shown by Figure E.8 (b), due to the small negative effect of active control, 

the controlled result of the 3rd peak around 180 Hz in Figure E.8 (a) gets worse than uncon-

trolled results. This can be explained by Figure 8.8 (b). In general, related mode shapes of plates 

have a maximum change in curvature around the centre point as can be noted in Figure 8.8, ex-

cept the 2nd peak without curvature and the 3rd peak with a 10 mm maximum rise. The case of 

the 2nd peak without curvature has already been discussed above. For the 3rd peak with a 10 

mm maximum rise, the change in curvature is not as large as in other cases. Compared with oth-

er cases, the curvature around the centre point in this case is relatively flat. As a result, the bend-

ing moments generated by a rectangular PZT patch can have a negative influence on the active 

control. 

The cases of AC/PCLD and AC/PSOLD treatments were studied as well. Changes in kinetic 

energy and absorbed power with AC/PCLD treatment with maximum rises of 10 mm and 20 

mm were obtained as shown in Figures E.11 and E.14. As can be noted from Figure E.11, a very 

different result from the previous result was obtained with the curvature of 10 mm. This is be-

cause of the circle for the 2nd peak located in the negative region of the Cartesian complex co-

ordinates as marked in Figure E.13 (b). The effect of this circle is basically negative on active 

control as explained for the case of a flat plate with ACLD treatment related to Figure 8.3 (b). 

However, in the previous case, since the location of the circle did not limit the stability of active 

control, large control gain and stable results were obtained. On the other hand, in this case, the 

location of the circle limits the range of control gain for stable active control. Therefore, deter-

mined control gain is relatively small compared to other cases for stable control. This will be 

studied in detail below.  

In the case of AC/PCLD treatment with a 10 mm maximum rise, the control gain is limited to 

41.7 by a 3 dB control gain margin for stability. This value was determined from Figure E.13 (b) 
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to guarantee stable active control as a half value of the control gain of 83.4 with which the small 

circle of the Nyquist plot in Figure E.13 (b) passes the point (-1, 0) in the Cartesian complex 

coordinates. When considering the point mobility in Figure E.13 (a), this circle is related to the 

2nd peak (5th mode) of point mobility at the centre point. If considering mode shapes in Figure 

7.11, the pattern of mode shapes around the centre point for the 2nd mode of a flat plate and the 

5th mode of a curved plate with a 10 mm rise, which have circles in the negative region within 

the Cartesian complex coordinates, can be found to be different from other cases. While nodal 

lines are located at the centre point or the centre point is enclosed by modal lines in other cases, 

there is no nodal line and closed modal line around the centre point in the two cases. Related to 

this issue, more study will be done in Section 8.1.3. While the circle for the 2nd mode of a flat 

plate does not pass the point (-1, 0) which leads the system response saturated at that frequency, 

the one for the 5th mode of a curved plate with a 10 mm rise passes the point (-1, 0). The first 

saturations of kinetic energy and absorbed power, led by the saturation of the system response at 

the 5th mode with a control gain of 83.4, happen around the control gain of 88 as shown in Fig-

ure E.12. On the other hand, the optimised control gain for AC/PCLD treatment with a 20 mm 

maximum rise is determined to be 137.4 from Figure E.14. With these two control gains, the 

control results in Figures E.13 and E.15 were obtained for two different curvatures. As dis-

cussed above, an unstable control result was obtained only at the 2nd peak in the case of a 10 

mm maximum rise due to the negative effect of active control. 

The control simulations with AC/PSOLD treatment for plates with 10 mm and 20 mm maxi-

mum rises were conducted. The optimised control gains of 161.2 and 151.7 were obtained from 

Figures E.16 and E.18. With these control gains, active control results were obtained as in Fig-

ures E.17 and E.19. It can be noticed from Figures E.16 and E.18 that results for curved plates 

with AC/PSOLD treatment are different from the ones with AC/PCLD treatment. These results 

are the same for a flat plate as shown by Figures E.3 and E.5. This will be studied in detail be-

low. 

In contrast to the previous cases, only stable control results were obtained with AC/PSOLD 

treatment. As shown by Figures E.17 (b) and E.19 (b), the control effect of AC/PSOLD treat-

ment is always positive up to 1 kHz. Especially, for the 2nd peak of a curved plate with a 10 

mm rise, while unstable control results were obtained with APCLD and AC/PCLD treatments 

due to the circle in the negative area [107], a stable control result was obtained with AC/PSOLD 

treatment for the same mode shape. This is because of differences in damping and stiffness of 

the different configurations of HAPCLD treatment. The mutual interaction in terms of dis-

placement between the constraining layer, PZT layer, viscoelastic layer and base structure can 

be different according to the order of layering. Thus, it can affect the contribution of the active 

control force generated by the PZT actuator towards the motion of the overall structure. 
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Moreover, as noticed from the relationship between control gains and Nyquist plots for a con-

trolled closed loop, AC/PCLD and AC/PSOLD treatments can give similar control effects to 

ACLD and APCLD treatments with smaller control gains. This is because a PZT patch which 

generates a control bending moment contacts a base structure directly. If a viscoelastic layer is 

located between a PZT patch and a base structure, control energy generated by a PZT patch 

would dissipate in a viscoelastic layer during energy transference from a PZT patch to a base 

structure. In terms of energy dissipation, AC/PCLD and AC/PSOLD treatments are more effec-

tive than the other two configurations. 

 

8.1.3 Summary of control simulation of a plate with HAPCLD treatments 

As has been studied above, considering the effectiveness of active control, AC/PSOLD treat-

ment provided the best result out of four different HAPCLD treatments. AC/PSOLD treatment 

gave similar or larger control effects on a base structure with smaller control gain than other 

HAPCLD treatments. Moreover, it was also shown that the possibility of unstable active control 

could be minimised by the use of AC/PSOLD treatment regardless of base structures which are 

flat or curved. In other cases, peak value increase at a certain mode or conditional stable control 

was found according to the change in curvature in spite of collocation between sensor and ac-

tuator. However, stable active control results were obtained with AC/PSOLD treatment in every 

case. As an example in summary, the changes in control gain and absorbed power with opti-

mised control gain are arranged for all cases in Table 8.5.  

 

Table 8.5 Changes in control gain and maximum absorbed power for all cases according to the change in curvature 

 Flat 10 mm 20 mm 

Control gain 

ACLD 1667.5 1795.5 1687.3 

APCLD 814.7 670.9 720.7 

AC/PCLD 192.7 41.7 (G3dB) 137.4 

AC/PSOLD 196.8 161.2 151.7 

Absorbed power 

with optimised 

control gain (W) 

ACLD  190  210  270 

APCLD  73  80  80 

AC/PCLD  18  12 (G3dB)  30 

AC/PSOLD  18  15  13 



8. HYBRID ACTIVE-PASSIVE CONTROL OF PLATES 

 140 

In order to investigate the relation between control gains and curvature, the change of control 

gains according to the curvature was studied as shown in Figure 8.9. As studied in Chapter 7, 

the control performance of PZT patch is determined in the relation with the change of mode 

shapes of the base plate. Moreover, when the kinetic energy of whole structure is considered, 

the effect of increasing stiffness due to the increase of curvature should be considered. Increas-

ing stiffness can constrain the motion of structure, which is followed by the related change of 

control gain. 

 

Figure 8.9 The change of control gains according to the curvature (ACLD) 

The changes of mobility in each case are summarised in Figure 8.10. The effects of each 

HAPCLD treatment can become clearer through the normalisation by used control gains as 

shown in Figure 8.11. 

(a)

 

(b)

 

(c)

 

Figure 8.10 The changes of mobility in each case for (a) flat plates, (b) singly curved plates with 10mm rise and (c) 

singly curved plates with 20mm rise;   ACLD,  APCLD,  AC/PCLD and  AC/PSOLD 

(a)

 

(b)

 

(c)

 

Figure 8.11 The changes of normalised mobility by control gain in each case for (a) flat plates, (b) singly curved 

plates with 10mm rise and (c) singly curved plates with 20mm rise;   ACLD,  APCLD,  AC/PCLD and  

AC/PSOLD 
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When considering that the reductions in point mobility in each case do not show significant 

difference with Gmin.KE, it becomes clear that AC/PSOLD treatment can give the most efficient 

control result with relatively small control effort, i.e. small control gain and small power absorp-

tion in all four cases as shown in Figure 8.11. The absorbed power by controller increases steep-

ly as control gain increases until the kinetic energy of a whole structure reaches the minimum 

point. After the minimum point of kinetic energy, the efficiency of the controller decreases and 

maintains a constant rate in terms of absorbed power. Moreover, AC/PSOLD treatment gave the 

most robust control result in terms of stability in all four cases; in the other three cases it gave 

an unstable result in a certain situation as summarised in Table 8.6. Negative active control re-

sults in Table 8.6 mean that active control forces increase the motions of related modes (high-

lighted in red colour). In the cases marked as ‘Negative’, a certain mode out of all the modes got 

a negative effect from active control leading to an increase in peak or the saturation of kinetic 

energy in a whole structure with limited stability. As mentioned in relation to Figure 8.8 in Sec-

tion 8.1.2, these negative effects seem to be caused by the relationship between mode shapes (or 

their change rate, i.e. strain) and the location of the PZT actuator.  

Table 8.6 Active control result summary in each case 

Flat 

 
Peaks in mobility (mode) 

1st (2nd) 2nd (3rd) 3rd (7th) 4th 5th 

ACLD Negative Positive Positive Positive Positive 

APCLD Positive Positive Positive Positive Positive 

AC/PCLD Positive Positive Positive Positive Positive 

AC/PSOLD Positive Positive Positive Positive Positive 

10mm 

 1st (2nd) 2nd (5th) 3rd (8th) 4th 5th 

ACLD Positive Positive Positive Positive Positive 

APCLD Positive Negative Positive Positive Positive 

AC/PCLD Positive Negative Positive Positive Positive 

AC/PSOLD Positive Positive Positive Positive Positive 

20mm 

 1st (2nd) 2nd (5th) 3rd 4th (13th) 5th 

ACLD Positive Positive Positive Positive Positive 

APCLD Positive Positive Positive Positive Positive 

AC/PCLD Positive Positive Positive Positive Positive 

AC/PSOLD Positive Positive Positive Positive Positive 
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As discussed in the previous sections, since these negative results were caused by the dynamic 

characteristics of structure (i.e. mode shapes of free plates), the change of damping treatment 

location according to the mode shapes can be a radical solution. However, since the application 

of treatments in different shapes or different positions according to modes was not considered, 

more common method for robust control should be studied. 

The sign of mode shapes around the centre point in each case was studied in Table 8.7. (+) 

sign denotes that a plate deflects upwards and (-) sign means that a plate deflects downwards. 0 

sign means that there is no deflection in the direction. The first sign is for the x-direction and the 

other is for the y-direction.  

As shown by Table 8.7, the main reason for unstable active control is the difference in sign of 

mode shapes around the centre point for each mode. This factor implies the possibility of unsta-

ble active control in the case in which symmetrical control forces or moments are applied to a 

base structure as studied in this thesis. However, as mentioned in the previous section, this pos-

sibility of instability in active control can be mitigated by adding adequate damping to a whole 

structure with some material with high damping properties such as a viscoelastic material. 

Moreover, since HAPCLD treatments considered in this study cause asymmetry in whole 

structures, change in the neutral axis for 1-D structures or neutral plane for 2-D structures hap-

pens as explained in Sections 3.4.4 and 6.4.3. Thus, the effect of control force or moment on a 

base structure can change according to the distance between actuators such as the PZT layer and 

this neutral axis or plane. In general, the larger this distance is, the larger the control force or 

moment becomes. In addition to this, there is an extra movement in the neutral axis or plane 

inside a curved plate due to the curvature. This asymmetry can give an influence on the active 

control of PZT patches attached inside or outside a curved plate as discussed in [108]. Therefore, 

considering the influence of distance from the neutral plane on active control, the effectiveness 

of AC/PSOLD treatment becomes clearer. Considering the configurations in each case, since the 

distance between the PZT actuator and neutral plane of a base plate is largest for APCLD treat-

ment in the four cases, APCLD treatment can generate the largest control force in theory. How-

ever, as shown by Table 8.5, AC/PCLD and AC/PSOLD treatments can give similar vibration 

reduction with APCLD treatment even with much smaller control gain and absorbed power. In 

[109], only the effect of a PZT actuator attached to a base structure according to the curvature is 

studied. When considering the ratio of dissipated energy in a viscoelastic layer to total generated 

energy by a PZT actuator, the efficiency of direct active control on a base structure such as 

AC/PSOLD treatment is verified in this section. 
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Table 8.7 Sign of mode shapes around the centre point for each mode 

Flat 

 
Peaks in mobility (mode) 

1st (2nd) 2nd (3rd) 3rd (7th) 4th 

- (-)/(+) (+)/(+) (+)/(+)  

ACLD (+)/(-) (+)/(+) (+)/(+)  

APCLD (+)/(-) (+)/(+) (+)/(+)  

AC/PCLD (+)/(-) (-)/(-) (-)/(-)  

AC/PSOLD (-)/(+) (+)/(+) (-)/(-)  

10mm 

 1st (2nd) 2nd (5th) 3rd (8th) 4th 

- (-)/0 (-)/(+) (-)/(-)  

ACLD (-)/0 (-)/(+) (+)/(+)  

APCLD (-)/0 (+)/(-) (-)/(-)  

AC/PCLD (+)/0 (-)/(+) (+)/(+)  

AC/PSOLD (+)/0 (-)/(+) (+)/(+)  

20mm 

 1st (2nd) 2nd (5th) 3rd 4th (13th) 

- (-)/0 (-)/(-)  (-)/(-) 

ACLD (-)/0 (+)/(+)  (+)/(+) 

APCLD (+)/0 (-)/(-)  (+)/(+) 

AC/PCLD (-)/0 (+)/(+)  (-)/(-) 

AC/PSOLD (-)/0 (+)/(+)  (+)/(+) 

 

 

In the next section, the effect of curvature on active control in each case will be discussed add-

ing to control experiment results using singly curved plates with a 20 mm rise attached by vari-

ous configurations of HAPCLD treatment in comparison with simulation results. 

 

8.2 Study of plate vibration control with measured FRFs 

and results comparison 

In this section, active control simulation with measured FRFs of a system were conducted with 

singly curved plates with different configurations of HAPCLD treatments attached, for compari-

son, with simulation results discussed in the previous section. While curved HAPCLD treat-

ments were used in simulation, flat ones were used for experiments due to the difficulty of fab-
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rication. However, since the damping treatment patches were relatively narrow enough com-

pared with the curvature of the base plate, the gap between plates and patches, which was well 

filled with epoxy glue, was small enough to be neglected. First of all, passive modal loss factors 

of plates without and with HAPCLD treatments will be estimated through impact hammer tests.  

 

8.2.1 Experimental results from impact hammer test  

Firstly, impact hammer test results for HAPCLD treated plates will be compared with those for 

non-treated plates, which were measured in Section 7.2.1. Moreover, changes in passive damp-

ing in each case with different configurations were measured and compared. Figure E.20 in Sec-

tion E.3 shows changes in FRFs up to 500 Hz when four different types of HAPCLD treatment 

were applied to a curved plate. Impact hammer tests were conducted as explained in Section 

7.2.1. The centre point of plates hung on a test rig with fishing line was hit by an impact ham-

mer, and velocity was measured on the opposite centre point. The inverse AC/PCLD treatment 

in Figure E.20 (e) denotes the configuration where the positions of the PZT patch and PCLD 

treatment were changed from the ones in AC/PCLD treatment to each opposite side of a curved 

plate. This is introduced to check the effect of curvature direction on active control, although it 

is not treated in Chapters 6 and 7 as well as Section 8.1. As noted from Figure E.20, a change in 

passive damping due to additional damping treatments is clear in the over 300 Hz range rather 

than in the low frequency range including the first and second peaks. Moreover, changes in 

modal stiffness and mass for 4th and 5th peaks are observed due to the attachment of damping 

treatments. 

Values of passive modal loss factors, when an active control signal is not applied to each PZT 

actuator, up to the 5th peak in each case were measured by the circle fit method and arranged in 

Table 8.8. In the table, ‘w/o’ and ‘w/’ denote whether a HAPCLD treatment is attached to a 

plate or not. The most noticeable thing is that differences in passive damping increase between 

AC/PCLD and inverse AC/PCLD treatments. Although the same plate was not used for compar-

ison, it means that the effectiveness of AC/PCLD treatment can be improved by only changing 

the position of the attachment, especially the position of a PZT actuator from the inner side of 

the curvature to the outer side and vice versa for the position of PCLD treatment as shown in 

Figure 8.12. This is applicable only for a curved structure, because, when a PZT actuator is at-

tached on the outer side of a curved structure, the neutral axis or layer moves toward the centre 

of curvature and the generated control moment increases as the curvature of the structure in-

creases [108]. In the case of a PZT actuator attached on the inner side, the opposite phenomenon 
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will occur [108]. For flat structures, the effect of this kind of change in configuration cannot 

make any difference to results. 

Table 8.8 Passive modal loss factors up to the 5th peak in each case 

 1st peak 2nd peak 3rd peak 4th peak 5th peak 

#1 plate 

(Bare plate) 
w/o 0.0060 0.0024 0.0027 0.0031 0.0022 

#2 plate 

(ALCD) 

w/o 0.0058 0.0016 0.0024 0.0037 0.0021 

w/ 0.0076 0.0015 0.0066 0.0133 0.0035 

#3 plate 

(APCLD) 

w/o 0.0061 0.0014 0.0026 0.0036 0.0012 

w/ 0.0072 0.0014 0.0116 0.0576 0.0039 

#4 plate 

(AC/PCLD) 

w/o 0.0055 0.0016 0.0024 0.0027 0.0019 

w/ 0.0086 0.0016 0.0049 0.0044 0.0024 

#5 plate 

(AC/PSOLD) 

w/o 0.0056 0.0021 0.0024 0.0022 0.0017 

w/ 0.0074 0.0022 0.0040 0.0066 0.0025 

#6 plate 

(Inverse 

AC/PCLD) 

w/o 0.0059 0.0012 0.0026 0.0051 0.0035 

w/ 0.0094 0.0016 0.0146 0.0205 0.0053 

 

 

Figure 8.12 Configuration of a plate with inverse AC/PCLD treatment;  : elastic plate and patch,  : viscoe-

lastic layer and  : piezoelectric patch 
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8.2.2 Experiment set-up, measurement procedure and and FRF measure-

ment results 

In order to apply free-free boundary conditions to plates, plates were hung on a test rig as 

shown in Figure 7.7. All dimensions and material properties of a plate are the same as explained 

in Section 7.2.1. For measurement of velocity at the centre point, an accelerometer was attached 

to the damping treatment patch at the point as shown in Figure 8.13 (a). Application of a signal 

to the PZT patch was conducted by using electrical copper tapes attached to the PZT patch as 

shown in Figure 8.13 (b). When connecting electrical cables to the PZT patch, they should be 

carefully connected so as not to constrain the motions of free-free plates. Especially, for 

AC/PCLD treatment, since a PZT patch is located on the opposite side of the plate compared to 

other cases, electrical cables should be connected over a test rig as shown in Figure 8.13 (c). 

With this set-up, the measurement of FRFs with a pseudo-random input signal can be conducted 

for all configurations. 

(a)  (b)  (c) 

 

Figure 8.13 Basic connection between accelerometer and electrical cables (a) attachment of accelerometer, (b) 

connection of electrical cables for ACLD, APCLD and AC/PSOLD treatments and (c) connection of electrical cables for 

AC/PCLD treatment 

In order to apply mechanical excitation with a pseudo-random signal, a shaker should be at-

tached to plates properly by connection using a stinger and a force gauge. The shaker should be 

adjusted so it stays perpendicular to the plate surfaces. In order to allow free motion of plates, 

the distance between a shaker and plates should be arranged carefully. Firm attachment of the 

shaker is required to guarantee that the excitation in the out-of-plane direction was obtained. As 

a result, the shaker attachment was implemented as shown in Figure 8.14. 

With the basic set-up as explained above, input signals have been applied to the PZT patch or 

to the shaker. The transfer functions were obtained by measuring FRFs for each case. The ex-
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periment set-up for this was implemented as shown in Figure 8.15. The related schematic dia-

gram for plate control is given in Figure 8.16. 

(a)  (b) 

 

Figure 8.14 Shaker attachment for mechanical pseudo-random excitation for (a) ACDL, APCLD and AC/PSOLD treat-

ments and (b) AC/PCLD treatment 

(a)  (b) 

 

Figure 8.15 Input signal connection for (a) pseudo-random PZT excitation with electrical signal and (b) pseudo-

random mechanical excitation by a shaker 

 

 

Figure 8.16 Schematic diagram of free-free curved plate control 
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The PZT patch was connected to a high voltage amplifier (PI E-507 High-Voltage-PZT 

(HVPZT) piezo amplifier Module), which receives a pseudo-random signal filtered by a low-

pass filter from a signal generator in Figure 8.15 (a). An electrical input signal was sent to a sig-

nal analyser directly. For mechanical excitation, a pseudo-random signal was applied to a shaker 

from a signal generator through an amplifier, which amplifies the signal so as not to exceed 2 

mA. An amplified input signal was sent directly to a signal analyser as a reference signal for 

FRF instead of measured force by an impedance head to eliminate resonance frequency mis-

match between measured force and velocity. An accelerometer was connected to B&K charge 

amplifiers type 2635 for amplification of measured data, filtering of low frequency noise com-

ponents below 10 Hz and signal conversion from acceleration to velocity. All the equipment 

used was the same as that used in section 4.2.1. Therefore, with this experiment set-up, meas-

urements of FRFs with excitations by a shaker and a PZT actuator were conducted. In the next 

subsection, measured data through impact hammer tests for passive loss factor and FRF meas-

urement with excitations by a shaker and a PZT actuator will be analysed with each other and 

other previously measured data. 

Moreover, FRFs with excitation of pseudo-random bending moments generated by a PZT 

patch and pseudo-random force generated by a shaker were measured as well for each configu-

ration. 

Figures 8.17 and 8.18 show measured FRFs and phases for the ACLD case. In particular, 

FRF’s attenuation over 500 Hz with the KEMO low-pass filter, which is an 8th order Butter-

worth Filter and was installed as shown in Figure 8.16, and steeper change in phase with a low-

pass filter up to the cut-off frequency than without any filter are obvious in Figure 8.16. Moreo-

ver, noise in measured data below 50 Hz is clear as well in Figure 8.17. Measurement was re-

peated for other configurations as well and similar results were obtained. 

(a)

 

(b)

 

Figure 8.17 (a) FRFs at the centre with a pseudo-random moment by a PZT actuator and (b) phases of FRFs at the 

centre with a pseudo-random moment by a PZT actuator;  without filter;  with a low-pass filter with a cut-

off frequency of 500 Hz (ACLD treatment on a curved plate) 
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(a)  (b)

 

Figure 8.18 (a) FRF at the centre with a pseudo-random force by a shaker and (b) phase of FRF at the centre with a 

pseudo-random force by a shaker (ACLD treatment on a curved plate) 

 

8.2.3 Active control based on experimental data 

By using these measurement data shown in Section 8.2.2, active control results were simulated. 

Different low-pass filters were considered in order to evaluate the effect of anti-aliasing filters 

on stability. As explained in Section 5.2.1, a low-pass filter, which is introduced to limit the 

control frequency range up to the highest mode in interest, can cause the stability issue in active 

control due to a phase shift in the filtered active control signal. Firstly, with ACLD treatment, 

Nyquist plots, control gain and controlled results were studied. When no filter is connected to 

the control signal, control gain with a 3 dB gain margin for stable control was 870.90 (see the 

Nyquist plot in Figure 8.17 (a)). With this control gain, the control result as shown in Figure 

8.19 (b) was obtained. Since the strength of the control force is determined by the radius of the 

circle in the Nyquist plot for a closed loop and the magnitudes of the control force increase ac-

cording to frequency as shown in Figure 8.19 (a), mobility reductions in the low frequency 

range are relatively small (see figure 8.19 (b)). Similar results are obtained for other cases as 

shown later. 

(a)
 
(b)

 

Figure 8.19 (a) Nyquist plot for a closed loop without filter and (b) controlled result without filter (ACLD treatment) 
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However, a low-pass filter with a cut-off frequency of 500 Hz can be used to trim the input 

control signal. Figure 8.20 shows a control gain with a 3 dB gain margin of 69.35. Circles of the 

Nyquist plot start rotating according to the change of phase and negative control results were 

obtained at some peaks. 

(a)
 
(b)

 

Figure 8.20 (a) Nyquist plot for a closed loop with a low-pass filter with a cut-off frequency of 500 Hz and (b) con-

trolled result with a low-pass filter with a cut-off frequency of 500 Hz (ACLD treatment) 

As studied in section 5.2, if an ideal low-pass filter is used for trimming the signal at a cut-off 

frequency, the results can be changed as shown in Figure 8.21 with control gain with a 3 dB 

gain margin of 1446.7. 

(a)  (b)

 

Figure 8.21 (a) Nyquist plot for a closed loop with an ideal low-pass filter with a cut-off frequency of 500 Hz and (b) 

controlled result with an ideal low-pass filter with a cut-off frequency of 500 Hz (ACLD treatment) 

When the Nyquist plot for a closed loop with ACLD treatment in Figures 8.20 is compared 

with the ones in Figures 8.6 and 8.7, similarity between simulation and experiment results can 

be found. Due to limits in the realisation of the simulation model in the real structure, small dif-

ferences are found between the two results, but the overall trends of the Nyquist plots are in 

good agreement. 

Changes in peak values in each case are summarised in Table 8.9. Values in the ‘w/o control’ 

row refer to the initial peak values of FRF. Other values denote changes in peak values. 
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Table 8.9 Changes in peak values in the case of active control using ACLD treatment in a plate structure 

 1st 2nd 3rd 

w/o active control 

(Peak value) 
-5.12 dB -16.33 dB -7.061 dB 

w/o filter -1.66 dB -9.09 dB -16.979 dB 

w/ KEMO filter -0.183 dB +0.11 dB +6.8136 dB 

w/ ideal filter -2.807 dB -12.20 dB -20.829 dB 

 

As shown in Table 8.9, by trimming off components which can cause instability in active con-

trol, a larger control gain can be obtained and better control results follow. However, when a 

low-pass filter or any other filter is used for trimming unnecessary components off, continuous 

phase shift which is induced by group delay during the filtering process in a filter can lead to 

undesirable control results. As explained in Section 5.2, in the case that only one peak (one 

mode or one component at a specific frequency) should be under active control, the introduction 

of an all-pass filter can solve this phase shift problem. On the other hand, in the case that more 

than one mode should be under active control as was the case in this study, phase delays caused 

by filters should be considered as discussed in Section 5.2. 

The same procedure was repeated for other configurations as well. For all results, refer to Sec-

tion E.4 in Appendix E. Only tables including the changes in peak values for each case are giv-

en in this section for comparison. 

Larger effects of active control were obtained with APCLD, AC/PCLD, AC/PSOLD and in-

verse AC/PCLD treatments than with ACLD treatment. With APCLD treatment, although the 

largest reductions were achieved, the effectiveness of active control was not the best out of all 

configurations considering control gains, which are decided according to the changes in kinetic 

energy and absorbed power, and which are relatively larger than those for other configurations. 

AC/PCLD, AC/PSOLD and inverse AC/PCLD treatments are giving as large reductions in peak 

values as APCLD treatment with one fifth or sixth of the control gain value used for APCLD 

treatment. This effectiveness of active control can be thought of as the result of a direct transfer 

of control force/moment from a PZT patch to a base structure without energy dissipation in a 

viscoelastic layer as explained in the previous section. 
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Table 8.10 Changes in peak values in the case of active control using APCLD treatment in a plate structure 

 G3dB 1st 2nd 3rd 

w/o active control 

(Peak value) 
- -4.51 -16.13 -9.213 

w/o filter 382.38 -6.01 -14.04 -17.027 

w/ KEMO filter 22.26 -0.45 -0.82 +1.473 

w/ ideal filter 943.48 -11.10 -19.99 -24.357 

 

Table 8.11 Changes in peak values in the case of active control using AC/PCLD treatment in a plate structure 

 G3dB 1st 2nd 3rd 

w/o active control 

(Peak value) 
- -4.442 -15.58 -12.67 

w/o filter 218.82 -21.878 -19.92 -25.42 

w/ KEMO filter 4.42 -1.597 +0.96 +5.793 

w/ ideal filter 206.67 -21.418 -19.73 -24.95 

 

Table 8.12 Changes in peak values in the case of active control using AC/PSOLD treatment in a plate structure 

 G3dB 1st 2nd 3rd 

w/o active control 

(Peak value) 
- -6.815 -16.58 -21.05 

w/o filter 175.47 -16.865 -16.22 -13.61 

w/ KEMO filter 5.33 -1.640 +0.74 +5.53 

w/ ideal filter 160.74 -16.195 -15.56 -12.62 

Table 8.13 Changes in peak values in the case of active control using inverse AC/PCLD treatment in a plate structure 

 G3dB 1st 2nd 3rd 

w/o active control 

(Peak value) 
- -4.457 -12.94 -18.87 

w/o filter 216.28 -17.823 -22.12 -18.39 

w/ KEMO filter 12.43 -2.347 +3.362 +5.90 

w/ ideal filter 211.71 -17.663 -22.00 -18.23 

 

On the other hand, the effect of curvature on active control using a PZT patch may be unex-

pected. According to [108], when a PZT patch is attached on the outside of a curved plate, ac-

tive control effect gets larger than on the inside of the plate due to the outward movement of the 

neutral plane from the mid-plane of the plate. However, when checking the curvature around the 

centre on real plates, the curved plate around the centre is flat enough for flat damping treat-
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ments, which were used in the experiment, to be attached only with a small gap between plates 

and treatments. In order to make this effect clearer, a larger PZT actuator such as the one used in 

[80] and [109], which covers the whole surface or broad part of a curved plate with the same 

curvature, might be needed. 

 

8.3 Summary and conclusions 

In this chapter, numerical and experimental results with curved plates and HAPCLD treat-

ments were analysed. As a result of the study, by using HAPCLD treatments consisting of a 

constraining layer, a viscoelastic layer and a PZT layer, much larger reduction of local vibration 

is expected than with the simplest configuration of target configurations, i.e. ACLD treatment. 

Moreover, configurations which can apply control force/moment to a base structure without en-

ergy dissipation in a viscoelastic layer are expected to provide more efficient active control re-

sults. As explained in Sections 8.1.2 and 8.2.3, the decrease in control efficiency due to the en-

ergy dissipation in a viscoelastic layer is greater than the increase in control force due to the in-

creased length of moment arm with the distance between a PZT actuator and neutral axis of a 

base structure. As a result, it is evaluated that AC/PSOLD treatment can give the most efficient 

and robust active control results compared to other cases for plates as well as for beams. How-

ever, for the case of collocation between a sensor and actuator, although AC/PCLD treatment 

can give a similar result with AC/PSOLD treatment for flat structures, the curvature should be 

carefully considered for stable active control in the application of AC/PCLD treatment to curved 

structures. 

Moreover, FE plate models established in Chapter 5, including elastic plates, viscoelastic ma-

terials and piezoelectric materials, were validated by experimental data with impact hammer 

tests. Based on validated FE plate models, active control results were estimated for flat and 

curved plates with different curvatures. Finally, FRFs of real curved plates with various 

HAPCLD treatments were measured with excitation by pseudo-random moments and forces. 

Moreover, active control results were obtained with these measured FRFs and each result was 

analysed. 

In the next chapter, the study in the thesis will be summarised and final conclusions will be de-

rived based on the results of the study with a comment on the unique elements of this thesis as 

explained in Section 1.3. Furthermore, future tasks for further study will be presented. 
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9 CONCLUSIONS AND SUGGESTIONS FOR FU-

TURE WORK 

Four different types of HAPCLD treatments categorised by Trindade and Benjeddou [3] have 

been applied to beams, flat and curved plates respectively in this thesis. For the study, FE mod-

els for each case were established based on a layer-wise approach considering the mutual rela-

tionship between each layer of laminated structures and validated with experimental data. Ac-

tive control was implemented and control results were obtained through simulations and exper-

iments. Discussions of these results were given in every chapter. 

In the next subsection, the whole study in this thesis will be summarised. The conclusions and 

its unique elements will be discussed in Section 9.1.2 based on the summary of study. Moreover, 

based on the conclusions and novelty, future areas of study will be proposed with references in 

Section 9.2. 

 

9.1 Summary 

One of the objectives of this thesis was to confirm the assessment results in [3] for beams with 

four different types of HAPCLD treatment. For this objective, numerical beam models for lami-

nated structures including viscoelastic and piezoelectric materials were established with FEM 

[92, 110] and a layer-wise approach [93] in Chapter 3. Established beam models were validated 

with analytical continuous beam models explained in Appendix B and [111], and measurements 

of FRFs from impact hammer tests and pseudo-random excitation tests with piezoelectric actua-

tors or shakers in Chapter 4. With the validated FE beam models and measured data, active con-

trols of beams were executed with optimised control gains considering the changes in kinetic 

energy of whole structures, absorbed power by actuators according to the changes in control 

gain, which can minimise the kinetic energy or maximise the absorbed power, and stability of 

active control in Chapter 5. Moreover, in order to solve instability problems due to the phase 

shift caused by a low-pass filter, which was used to limit the target control frequency range re-

lated to up to the 3rd mode, a new compensation method to eliminate the effect of phase shift 

was proposed as well in Chapter 5. 

Furthermore, in order to investigate the applicability of HAPCLD treatments for beams to 

more complex structures such as flat and curved plates, which was another objective of this the-

sis, numerical flat and curved plate models for laminated structures including viscoelastic, elas-
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tic constraining and piezoelectric layers were established with FEM [92, 110] and a layer-wise 

approach [93] in Chapters 6 and 7. In Chapters 6 and 7, the established FE flat and curved plate 

models were validated by experimental data such as impact hammer tests and the measurement 

of FRFs under pseudo-random excitation of force or moment with real experimental flat and 

curved plates. In addition to the numerical model validation, active control of flat and curved 

plates was executed with the validated FE flat and curved plate models and the proposed filter in 

Chapter 8. In addition to this control simulation, active control of curved plates using measured 

transfer functions of real curved plates was implemented in Chapter 8. During this study, the 

effect of curvature and induced change of mode shapes in free-free flat and curved plates on 

active control was studied and discussed. 

With this summary of the study in the thesis, the final conclusions and novelty of the thesis 

will be discussed in the next subsection. 

 

9.2 Conclusions 

1. It was experimentally verified that AC/PSOLD treatment can give the most efficient con-

trol results in active control as well as passive control out of four HAPCLD treatments cat-

egorised from configurations used by many researchers in previously published papers. 

Moreover, during the process of verification, the reason why Trindade and Benjeddou [3] 

had used only the first three modes for active control in their study was clarified. With 

HAPCLD treatments located on cantilever beams as shown from Figures 5.18 to 5.21, ac-

tive control moments generated by piezoelectric actuators in HAPCLD treatments can give 

negative effects for over the 4th mode in active control, which can be represented by cir-

cles on Nyquist plots located in an imaginary negative area as shown in Figure 5.22. In or-

der to eliminate these negative influences from over the 4th modes, a mode or frequency 

filtering method should be introduced to limit the target mode range below the 3rd mode. 

Since a simple negative velocity control was used in this study instead of the LQR algo-

rithm used for the controller in [3], a low-pass filter was introduced to limit target frequen-

cy range up to the 3rd mode. However, due to the phase shift, the total amount up to the 

cut-off frequency is decided by the order of a low-pass filter, and the locations of circles 

on Nyquist plots can change from the original locations in non-filtered cases. As a result, 

active control results which were estimated to be positive without the influence of filters 

can be changed so they are negative in real experiments as explained in Section 5.2.1. 

Therefore, in order to eliminate or minimise these undesirable changes in active control, 

additional introduction of filters or signal processing methods is required. In this study, the 
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application of serial band-pass filters for each mode was introduced for this purpose based 

on [98], and expected active control results from simulations using numerical FE models 

were obtained ignoring the effects of a low-pass filter as explained in Section 5.2.3. 

2. The assessment results for HAPCLD treatments were verified for beams and for flat and 

curved plates as well. With four different configurations of HAPCLD treatment attached to 

flat or curved plates, simulations of numerical FE models and measurements of FRFs of 

real structures were conducted. As shown in Sections 8.1.2, 8.1.3 and 8.2.2, the largest re-

ductions at resonance frequencies were obtained with AC/PSOLD treatment of four 

HAPCLD treatment configurations for flat and curved plates as were carried out for beams. 

Thus, this means that the configuration like AC/PSOLD treatment has a possibility of ex-

panded application for more efficient control of vibration in curved plates, which can 

cause structure-borne noise radiated from the surface of a plate, than ACLD treatment, 

which has been mainly used for structure-borne noise control for curved plates by many 

researchers. During this study, the impact of the relationship between mode shapes and 

motions of piezoelectric patches on active control was studied as explained in Section 

8.1.2. Differently from the case for control point force generated by shakers, piezoelectric 

actuators occupy spaces and have their own mode shapes under pseudo-random excitation. 

Thus, the effect of control force or moment generated by piezoelectric actuators on base 

structures rely on dynamic characteristics of piezoelectric actuators according to the mode 

shapes of plates. 

3. Easily composable numerical models for beams, flat and curved plates were established 

using FEM and a layer-wise approach in this study. As explained in Chapters 3 and 6, in-

dividual numerical mass and stiffness matrices for each layer were derived from the ener-

gy conservation equation using potential and kinetic energy of structures without consider-

ation of the relationship between local displacements of each layer. Each mass and stiff-

ness matrix can be shared by layers having the same material properties and dimensions. A 

coupling matrix was derived from the relationships between local displacements of each 

layer from an equivalent neutral axis or plane of laminated structures as explained in Sec-

tions 3.4.3 and 6.4.3. In this process, distances between neutral axes in each layer take on a 

large role in defining the relationship between each displacement term. Equivalent mass 

and stiffness matrices of whole structures can be obtained by simply multiplying the cou-

pling matrix to the stacked mass and stiffness matrices in the order of lamination from top 

to bottom. These numerical models were validated by analytic models and experimental 

measurements as explained in Chapter 4 and Sections 6.6 and 7.2. 

4. More complex configurations than ACLD treatment were applied to flat and curved plates 
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as explained in Section 1.2. The control performances of these HAPCLD treatments ap-

plied to flat and curved plates were studied. As expected from the results of beams, these 

configurations can give much more efficient control results than ACLD treatment can. In 

particular, AC/PSOLD treatment can give more robust active control than other treatments 

regardless of the change in curvature and mode shapes. Therefore, they can be considered 

better for control results in flat and curved plate vibration control, which can be utilised for 

outward sound radiation control and inner cavity noise control in airplanes, automobiles 

and pipelines. 

 

9.3 Suggestions for future work 

1. Some unconsidered factors relating to HAPCLD treatments can be studied. According to 

[3], a piezoelectric actuator can be attached separately from PCLD treatment in AC/PCLD 

treatment. Thus, considering mode shapes and the control contribution of active and pas-

sive control according to frequency, AC and PCLD treatment can be applied to different 

points. AC can be applied to the point where low-frequency components are dominant, and 

PCLD treatment can be applied to the point for higher modes respectively. The control ef-

fect in this case can be compared with the case in which AC and PCLD treatment are ap-

plied as the configuration of AC/PCLD treatment at the same point.  

2. Study with the application of other various boundary conditions, as studied by Huang et al. 

[112], can be investigated using the configurations of HAPCLD treatment attached to flat 

and curved plates as studied in this thesis. Like the study of Wang et al. [99, 100] in which 

the Mead-Markus model for sandwich beams with a viscoelastic core was expanded to 

plates, the study in [112] can also be applied to plates according to Wang et al.’s study to 

begin to know the dynamic characteristics of structures. Moreover, the change in active 

control effects generated by the same actuator type at the same actuator location as done in 

this study could be researched according to the changes in boundary conditions, which are 

strongly related to the mode shapes of structures. 

3. Different shapes of piezoelectric actuator such as a triangle-shaped PZT patch studied by 

Hong et al. [113] could be utilised for active control and HAPCLD treatments. Due to the 

dynamic characteristics of piezoelectric materials, while rectangular piezoelectric actuators 

mainly generate two pairs of bending moments at every edge, triangular piezoelectric ac-

tuators generate vertical force at the most narrow-angled tip of the three tips. In order to 

avoid the duality problem, these kinds of piezoelectric actuators can be used for velocity 
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feedback control instead of rectangular actuators. Moreover, the effects of HAPCLD 

treatment by triangle-shaped piezoelectric actuators can be studied as well. 

4. Solid piezoelectric actuators in HAPCLD treatments can be replaced by polyvinylidene 

fluoride (PVDF) film type actuators based on Zhang et al.’s study [114] for cavity noise 

control. Since these PVDF actuators are more easily bent according to the curvatures of 

curved structures than solid piezoelectric actuators, they are commonly used for vibration 

and radiated sound control of shell structures as in [109] and [114]. However, since the 

constraining effect of solid piezoelectric actuators cannot be expected from PVDF actua-

tors, the dynamic characteristics of PVDF actuators should be studied more in order to ap-

ply them to HAPCLD treatments. Moreover, solid piezoelectric actuators can be replaced 

by active fibre composites as was done in Ray’s studies [16 ~ 23] or different types of pie-

zoelectric composite actuators which are explained in Chopra’s review [115]. 

5. Study about the applicability of HAPCLD treatment for vibro-acoustic problems related to 

vortex induced vibration (VIV) and structure-borne noise of pipelines could be considered. 

As concluded in the previous section, since HAPCLD treatments can give better perfor-

mance in both passive and active controls than conventional active controls, it would be 

useful to utilise them for this kind of control application. When the thickness of HAPCLD 

treatments, which are generally thicker than active control (AC) consisting of a single pie-

zoelectric actuator, can limit the range of application, the usage of PVDF films mentioned 

in the paragraph above can be helpful, if they can generate a large enough power to sup-

press the motions of pipes as solid piezoelectric actuators. 

6. New concepts of controller such as a Lyapunov-based control strategy used by Dadfarnia 

et al. [116] could be introduced for HAPCLD treatments instead of the simple negative ve-

locity feedback control used in this thesis. According to [116], a Lyapunov-based control 

strategy, which replaced a conventional PD control strategy, could give very effective con-

trol results for vibration suppression in a moving robot arm model. Based on these results, 

a new control strategy could be introduced to discover the possibility of more effective and 

efficient control results. 
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APPENDIX A FINITE ELEMENT MODELLING 

METHOD 

A.1 Shape functions and the Jacobian matrix of a 1-D ele-

ment 

In Finite Element Analysis (FEA), since a structure can be assumed to be the sum of its small 

elements, the simple FE elements are usually used for analysis. In the case of a 1-D problem, 

this FE element is a straight beam element with length 2 and has 2 nodes, 3 DOFs at each node 

as shown in Figure A.1. 

 

Figure A.1 FE beam element 

 

The nodes have displacements u and w along the element axis, and a rotation θ. The subscripts 

1 and 2 indicate the numbers of the node. The coordinates ξ = -1 and 1 at nodes 1 and 2 respec-

tively. 

A continuous system is divided into a finite number of 1-D elements, and each element has the 

same nodes and DOFs. 

Shape functions are used to approximate the change of displacement in the element. For the 

axial displacement, the values of displacement change linearly along the length of the element. 

Therefore, the linear shape functions are used for the axial displacement defined as [110] 

   1

1
1

2
H    ,    2

1
1

2
H    . (A.1) 

The geometry of a single axial element is shown in Figure A.2. The origin is set at the half 

point of an element, and if the FE element shown in Figure A.1 is used, the ratio of length be-

tween a real element and an FE element is a. The axial displacement of the element can be ex-

pressed as [92] 
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u eH u . (A.2) 
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Figure A.2 Geometry of a single axial element 

 

On the other hand, for the bending motion of a beam element, the transverse displacement w 

and the rotation angle /w x     should be taken as degrees of freedom at each node. There-

fore, the Hermite cubic shape functions are used for the bending motion. They are defined as 

[110] 
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A single bending element is shown in Figure A.3. The origin is allocated at the half point of an 

element as well, and the ration of length is the same as for a single axial element. The transverse 

displacement and rotation angle of the element can be expressed as [92] 
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 
  

w eH w , (A.4) 

 

Figure A.3 Geometry of a single bending element 

 

where J  is the ratio of the lengths of the element in the x and ξ coordinates, i.e., the Jacobian 

matrix of a 1-D element which will be explained below. 

When an element in the global coordinate (x, y, z) is transformed to the FE element in the local 

coordinates (ξ, η, ζ) through the mapping, since the dimension of the element is changed accord-
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ing to the ratio between two elements, displacement, force, and so on should be changed with 

that ratio. This ratio is called the Jacobian matrix generally defined as [92, 110] 
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Therefore, in the case of a 1-D problem, since the Jacobian matrix relates to the transformation 

between coordinates x and ξ, the Jacobian matrix of a 1-D problem should be the ratio of length 

of the elements in the two coordinate systems. For example, for elements shown in figures A.2 

and A.3, the value of the Jacobian term for straight beam elements should be 

 

 1 1

a ax
J a



 
  
  

. 

 

A.2 Assembly of global matrices of a 1-D element 

In general, in order to calculate the mass and stiffness matrices, numerical integration using the 

Gauss-Legendre method is used. When a function 
 
g x( ) is integrated from -1 to 1, the integral 

of that function can be evaluated as [110] 

   
1

11

d
n

j j

j

g W g  


 , (A.6) 

where 
jW  are the weight coefficients and 

j  are the sampling points. These values are deter-

mined according to how many sampling points are chosen for integration. Detailed information 

about integration points and weight coefficients for the Gauss integration formula is shown in 

Table A.1. 

The mass and stiffness matrices of each element can be obtained through the Gauss integration. 

With these mass and stiffness matrices, the global dynamic stiffness matrix can be obtained. 

Firstly, the vector of global DOFs is defined. If there are n elements in a one-dimensional sys-

tem, there are n+1 FE nodes in that system, and the DOFs of these FE nodes form the vector of 

global DOFs. Therefore, the global mass and stiffness matrices can be assembled as shown in 
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Figure A.4 by inserting the matrices of the individual elements in a position related to the nodal 

DOFs of the element. 

 

Table A.1 Integration points and weight coefficients for the Gauss integration formula 
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Figure A.4 Example of basic global matrix structure 

 

Once the global mass and stiffness matrices are assembled, the equation of motion can be ob-

tained according to d’Alembert’s principle that the sum of the forces acting on the system is 

equal to zero. Therefore, the FE equation of motion can be expressed as 

. (A.7) 
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A.3 Shape functions and the Jacobian matrix of a 2-D ele-

ment 

As explained for a beam element in Appendix A.1, the general 2-D FE element which is used 

for the FE analysis of a plate has the square shape with length 2 on each side, 4 nodes and 5 or 6 

DOFs at each node as shown in Figure 1. DOF can be changed according to the conformity of 

the element. If non-conforming elements are used, each element has 5 DOFs. Otherwise, it has 6 

DOFs which include the twisting term 
2

xyw w x y     added to 5 DOFs shown in Figure A.5. 

 

Figure A.5 2-D FE element 

 

In Figure A.5, the slope 
x  and 

y  can be defined as 

x

w
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





, y

w

x



 


. (A.8) 

The formulation of 2-D FEM is basically the same as that for the 1-D case. For in-plane dis-

placement, i.e. u and v, the linear interpolation functions are used, and for out-of-plane dis-

placement, i.e. w and other slope terms, the Hermite cubic shape functions are used. Therefore, 

eq. (A.2) and (A.4) in appendix A.1 can be applied here as [92]  
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in e
H u

, (A.9) 
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,  (A.10) 

where   
1

1 1
4

in

j j jH       , (A.11) 
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outH , (A.12) 

   31
2 3

4
j j jf        ,    2 31

4
j j jg            and j refers to the nodal 

number of the element in every equation which varies from 1 to 4. 

In eq. (A.12), 
xJ  and 

yJ  are the ratio of a real element and an FE element in the x- and y-

directions respectively. As explained in Appendix A.1, this is called the Jacobian matrix gener-

ally defined as [92, 110] 

d d
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J . (A.13) 

In the case of a 2-D problem, this matrix can be reduced as 
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x x
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J . (A.14) 

However, for a rectangular plane plate, since 
x






 and 

y






are equal to nought, 

x






 and 

y






 can 

be used individually. Therefore, 
x






 is equal to 

xJ  and 
y






 can mean 

yJ  respectively. 

 

Figure A.6 Geometry of a single plate element 

 

If the geometry of a single plate element is the same as that shown in Figure A.10, the values 

for each ratio can be replaced with 
 

 1 1
x

a ax
J a



 
  
  

, 
 

 1 1
y

b by
J b



 
  
  

. 

 

A.4 Composition of global matrices of a 2-D element 

Basically, the composition method for a 2-D element is the same as for 1-D. However, since 2-

D FE elements are not connected with other neighbour elements in the order as is the case for a 

1-D element, each node number for each element has to be memorised in order to be used for 

composition. 

According to [104], the kinetic energy of a single element can be calculated as  
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    . (A.15) 

If eqs. (A.9) and (A.10) are considered, eq. (A.15) can be rewritten as 

 

    
 

    , (A.16) 

where, , 
 
 
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m 0
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0 m
.
 

Furthermore, the potential energy of a single element can be defined as [110] 
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where the matrix of material constants 

 
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0
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0
1 1
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E E
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D  for isotropic ma-

terials, E is the Young’s modulus, ν is the Poisson’s ratio of the material,  

, and . 

Substituting eqs. (A.9) and (A.10) into eq. (A.17) gives 



 APPENDIX A FINITE ELEMENT MODELLING METHOD 

 169   

 
 31 1 1 1

1 1 1 1

,1 1
, d d d d

2 2 12
e x y x y

h
U J J h J J

 
     

   

    
T T T T

e in in e e out out eu B DB u w B DB w  

     
1 1

2 2
 

e e

T T

e in e e out eu k u w k w
 

     
1

2
 T

e e eq k q , (A.18) 
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The Gauss integration formula is applied for the numerical integration in the ξ and η directions 

as in Appendix A.2. However, since the integration is done in both directions, the weight coeffi-

cients have to be multiplied by each other according to the integration points along the ξ and η 

directions. For example, if 9 integration points are used, the integration points and weight coef-

ficients are decided by Table A.1 as shown in Figure A.7. With the integration point and weight 

coefficients in Figure A.7, eqs. (A.17) and (A.18) can be integrated, and local mass and stiffness 

matrices are obtained. 
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Figure A.7 Integration points and weight coefficients for 9-point Gauss integration for a 2-D element 

The global mass and stiffness matrices for 2-D structures can be obtained by inserting these 

local mass and stiffness matrices in a position related to the nodal DOFs of each element as for 

1-D structures in Figure A.4. Since 2-D elements are assembled in the x- and y-directions, an 

element of 2-D structures does not share nodes with other elements as a 1-D element does. 

Therefore, when arranging each component of the local matrices in a global matrix, they should 

be located in the correct positions by carefully considering related nodes.  
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APPENDIX B ANALYTICAL MODELS OF BEAMS 

In this section, the exact solution, the natural frequencies and the mode shape of a Euler beam 

derived from the equation of motion will be discussed. Using this information, the analytical 

analyses using the transfer matrix method and the modal approach will be followed.  

 

B.1 Exact solution of a Euler beam 

When the forces and moments acting on a Euler beam element are considered, those can be 

described as shown in Figure B.1. V is the shear force, M is a bending moment, and p(x) is a 

uniform distributed load acting on a unit length of the beam [111]. 

 

Figure B.1 Forces and moments acting on a Euler beam element 

 

If the forces in the y-direction and the moments acting on the element are considered respec-

tively, the summation of each component can be written as 

 
d

0
d

V
V x V p x x

x
     , (B.1) 

d d
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2 2 d 2 d

x x V x M
V V x M M x

x x

  
       . (B.2) 

From eqs. (B.1) and (B.2), the relationship between the force and moment can be obtained as 

 
d

d

V
p x

x
  , (B.3) 

 
2d 1 d

d 2 d

M V
V x V

x x
     . (B.4) 

If the cross section of the beam is bent as shown in Figure B.2, the moment acting on the sec-

tion can be expressed as 
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Figure B.2 Stress distribution in a bent beam 

 

If the force equilibrium is considered in Figure B.1, the equation can be expressed by using eqs. 

(B.4) and (B.5) as 
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Therefore, the equation of motion for a Euler beam is written as 
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4 2

w w
EI A p
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

 
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 
. (B.7) 

Since the motion of the beam is time-harmonic, expressed as     i, tw x t W x e  , eq. (B.7) 

can be rewritten as 

4 4
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4 4
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EI A W p W p

x x
  

 
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where 

2
4 A

EI


  . 

From eq. (B.8), the equation of transverse displacement and natural frequencies of a beam 

which satisfies eq. (B.8) in the case of free vibration can be derived as 
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where     and i , and l is the length of the beam. 

 

B.2 Modal analysis of a Euler beam 

By applying boundary conditions to eq. (B.9), the dispersion relationship can be obtained. 

Firstly, for free end there is no moment and shear force applied in a free vibration. Therefore, 

the boundary conditions of the free end can be expressed as 
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Secondly, if the end tip is clamped, there is no deflection and strain. Therefore, the boundary 

conditions of a clamped end are like 

0
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. (B.12) 

Finally, when the beam end is simply supported, the end tip of the beam doesn’t move but it is 

free for moments. Therefore, the boundary conditions of a simply supported end can be shown 

as 

0
0

x orl
W


 ,

 

(B.13) 

In the case of a cantilever beam, the boundary conditions for this model are the clamped-free 

conditions. With these conditions and eq. (B.9), the dispersive equation, natural frequencies and 

the modal function are derived as 

cosh cos 1l l    , (B.14) 
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Using natural frequencies and modal function, the modal displacement can be obtained as [53] 
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where ( )n inputx  is the mode shape at the point of input power, ( )n x  is the mode shape at the 

point of output displacement, M is the mass of the beam, ωn refers to the natural frequencies of 

the beam, and ω is the input power frequency. 

 

B.3 Transfer matrix method for analysis of a Euler beam 

Also, by using another form of exact solution 
i ix x x xW Ae Be Ce De        and bound-

ary conditions, the displacement of a beam can be estimated through the transfer matrix method 

expressed as 
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By multiplying the inverse matrix of the transfer matrix of the left side to eq. (B.18), the dis-

placement coefficients at each end tip of the beam can be calculated. These displacement coeffi-

cients are the amplitudes of displacement for each wave component existing in the beam. 
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APPENDIX C BASIC STUDY OF ACTIVE CON-

TROL 

In this section, a different controller will be designed for general cases considering the kinetic 

energy of the whole structure, the absorbed power by the controller and the stability of active 

control as optimising functions. Firstly, in order to study the effects of the control input signal, 

active control using a single degree of freedom (SDOF) system will be considered. Secondly, 

this study will be expanded to a 2 degrees of freedom (DOF) system, which is a slightly more 

complex system than an SDOF system and has potential possibilities for unstable control due to 

the increasing DOF. 

 

C.1 Effect of active control on an SDOF system 

When a control force 
 
is applied to an SDOF system, the equation for mo-

tion of the system is 

 (C.1) 

If harmonic motion is considered, 
 
x t( ) = Xeiwt

 and 
 
f t( ) = Feiwt

, eq. (C.1) can be rewritten 

as 

  
-w 2 m+g( )+ i kh +wb( )+ k +a( )( ) X = F . (C.2) 

Eq. (C.2), the controlled equation of motion, normalised by mass, can be rewritten as 

  

X

X
0

=
1

1+a
n( ) -

w 2

w
n

2
1+g

n( ) + i
w

w
n

2z 1+ b
n( )

, (C.3) 

where X0 is the uncontrolled displacement, ω denotes excitation frequency, ωn the natural fre-

quency, ζ is the damping ratio of the system, mass-normalised control gains  
a

n
= a k , 

n c   and n m  . 

As shown in eq. (C.2), control force alters the effective dynamical properties of the global sys-

tem; mass, damping and stiffness. Control gain of the displacement feedback, α, will have the 

effect of increasing the mass of the system, control gain of the velocity feedback, β, will affect 

the damping, and control gain of the acceleration feedback, γ, will have an influence on the 
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stiffness. When an SDOF system is considered, the frequency responses of the system change as 

in Figure C.1. 

(a) (b) (c)

 

Figure C.1 Change of receptances of a system under control (a) Displacement control, (b) Velocity control and (c) 

Acceleration control;  No control;  , ,  = 1;  , ,  = 10;  , ,  = 100 [Label in x-axis: Frequency 

ratio (𝜔/𝜔𝑛), Label in y-axis: Receptance (dB ref. 1 N/m)] 

 

As shown in Figure C.1 (a), the increase of α results in an increase in total stiffness of the sys-

tem. Therefore, the natural frequency of the system increases, although changes are relatively 

minute due to the small ratio of the inherent stiffness of the structure and additional stiffness by 

displacement control. On the other hand, the increase of γ gives the same effect in terms of in-

creasing the total mass of the system. As a result, the natural frequency of the system decreases. 

In contrast to the former two cases, β affects the damping, hence the peak value at the natural 

frequency. Since the natural frequency is determined by mass and stiffness, the increase in 

damping, i.e. the increase in β, reduces the motion of the system without the change in natural 

frequency. While the main objective of mass or stiffness change is to avoid the overlap in reso-

nance frequency and exciting frequency, an increase in damping results in the reduction of 

modal peaks. Decreasing the frequency responses around resonance frequencies is the main ob-

jective of this research. Therefore, only the velocity feedback control of total damping for the 

system will be used later. 

 

C.2 Optimisation of velocity feedback control 

When a system is under velocity feedback active control, the dynamic motion of a system is 

reduced by control up to a certain level according to the increase in control gain. When control 

gain exceeds a certain threshold, undesirable results can be obtained and the dynamic motion of 

a system increases again with control gain. In fact, control force or moment gives a pinning ef-

fect to the system: that is the control force can constrain the motions of the structure [117].  

As a result of this kind of undesirable control result, the kinetic energy of the whole system 

decreases and increases again after it reaches a minimum point. On the other hand, for the same 
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reason, the absorbed power by a controller keeps increasing until it shows a maximum level. 

After the maximum point, the absorbed power does not increase any more or even decrease. 

Therefore, control gains to minimise the kinetic energy or to maximise the absorbed power can 

be obtained [96]. 

For a system with sensors and actuators which are not collocated in terms of position, that is, 

not attached at the same point, a controller can also have an instability problem in feedback con-

trol in a general manner [118]. In order to guarantee a stable control result for a situation when 

unstable control is expected as is the case when there is a collocation issue, a control gain 

should be limited up to the point within the 3 dB control gain margin from a pole located at (-1, 

0) in a Nyquist plot for Cartesian complex coordinates. From this, control gain to guarantee the 

stability of active control with a 3 dB control gain margin can be obtained. 

The effect of collocation between sensors and control actuators will be briefly studied in the 

next subsection with an example of a 2 DOF system.  

 

C.2.1 Effect of collocation on active control for a 2 DOF system 

If a 2 DOF system, which consists of connected-in-parallel masses m1 and m2 by dampers c1 

and c2, and two springs k1 and k2 as in Figure C.2, is considered, the equation of motion can be 

expressed as 

,(C.4) 

where x1 and x2 are the displacements at each mass, f1 and f2 the forces at each mass which can 

be considered to be exciting forces, and f1
c and f2

c the control forces at mass m1 and m2 respec-

tively. 

 

Figure C.2 General 2-DOF system 
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There are four possible different simple velocity control feedback controls that can be consid-

ered. The normalised equation of motion for an SDOF system, eq. (C.3), can be expanded for a 

2-DOF system considering four cases of velocity control as follows: 

, 

where  is a control gain and 
 
d i - n( ) is the Dirac delta function where n denotes the Case 

numbers from 1 to 4.  

In Cases 1 and 4, the control force is applied to the same mass where the error signal is meas-

ured. For Case 1,  is the error signal and 
 
f

c
 is applied to the mass m1 only, i.e. 

  
f

1

c
 is applied 

to the system as a control force. For Case 4, the error signal  is measured at mass m2 and 
 
f

c
 

is also applied to the mass m2, i.e. 
  
f

2

c
 is applied to the system as a control force.  

On the other hand, the control force is applied to a different mass where the error signal is 

measured in Cases 2 and 3. For Case 2,  is the error signal and 
 
f

c
 (

  
= f

1

c
) is applied to the 

mass m1. For Case 3, the error signal  is measured at mass m1 and 
 
f

c
 (

  
= f

2

c
) is applied to the 

mass m2. 

Therefore, mass-normalised equations of motion for each case can be expressed as 

  

X
1

X
1

0

X
2

X
2

0

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

-
w2

w
1

2
0

0 -
w2

w
2

2

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

+ i2

z
1

w

w
1

1+
c

2

c
1

+ b
1
d i -1( )

æ

è
ç

ö

ø
÷ -z

1

w

w
1

c
2

c
1

- b
1
d i - 2( )

æ

è
ç

ö

ø
÷

-z
2

w

w
2

1- b
2
d i - 3( )( ) z

2

w

w
2

1+ b
2
d i - 4( )( )

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

+
1+

k
2

k
1

-
k

2

k
1

-1 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷

-1

f
1

f
2

ì

í
ï

îï

ü

ý
ï

þï

,

 

where normalised control gains by each damping 

  

b
1
=

b

c
1

 and 

  

b
2

=
b

c
2

, and i means a case 

number from 1 to 4. According to the case number, additional damping by control signal can be 

added to the system damping matrix. 
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A single exciting force is assumed to be applied to mass m2, that is, 
  
f
1
= 0 . Normalised dis-

placements 

  

X
1

X
1

0

 and 

  

X
2

X
2

0

 are shown in Figures C.3, C.4, C.5 and C.6 as the velocity control 

gain β is changed. 
 

(a) (b)

 

Figure C.3 (a) Normalised displacement at mass m1 for Case 1 (b) Normalised displacement at mass m2 for Case 1; 

 No control;   = 1;   =150;   =300 
 

(a)

 

(b)

 

Figure C.4 (a) Normalised displacement at mass m1 for Case 2 (b) Normalised displacement at mass m2 for Case 2; 

 No control;   = 1;   =150;   =300 

 

(a)

 

(b)

 

Figure C.5 (a) Normalised displacement at mass m1 for Case 3 (b) Normalised displacement at mass m2 for Case 3; 

 No control;   = 1;   =150;   =300 
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(a) (b)

 

Figure C.6 (a) Normalised displacement at mass m1 for Case 4 (b) Normalised displacement at mass m2 for Case 4; 

 No control;   = 1;   =150;   =300 

 

In Case 4 (Figure C.6), since the primary force is applied to the mass m2, the disturbance, the 

control force and the error signal are all collocated. As a result of perfect collocation, the best 

control results for all cases are obtained for both of mass m1 and m2. On the other hand, although 

the same error signal is used for control in Case 2, increased responses at the second mode are 

shown due to the control force being applied to the mass m1, which is not collocated. Similar 

results as those in Case 2 are obtained in Case 3. Finally, in Case 1, the effect of control is main-

ly dominant for the 1st mode rather than the 2nd mode as shown by Figure C.3. When consider-

ing that two masses are moving in phase at the 1st mode and moving out of phase at the 2nd 

mode in a 2 DOF system, only the motion at the 1st mode is controlled in Case 1 because the 

control force is applied to the motion of the mass m1 which is induced by the mutual reaction 

between masses m1 and m2. At the 1st mode, since motions of the masses m1 and m2 are in phase, 

control effect in the motion of mass m1 can affect the overall motion of the system. However, 

since two motions are out of phase at the 2nd mode, the control force cannot control the motion 

of mass m2, the primary source of the whole system. Therefore, the importance of collocation in 

active control is confirmed in this study. 

 

C.2.2 Effect of collocation on active control of a beam 

A cantilever beam is taken into account to see the effect of collocation and spill-over on multi-

degrees of freedom systems. When a cantilever beam is considered, each case as explained in 

Figure C.7 can be obtained, if we consider one control force fc, one error signal and one control-

ler with control gain β (see figure C.7). 
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Figure C.7 Control case for 4-element FE cantilever beam mode (a) Case 1 (Collocated), (b) Case 2 (Non-collocated), 

(c) Case 3 (Non-collocated) and (d) Case 4 (Collocated) 

 

Modified transfer functions between a primary exciting force f and velocities measured at the 

centre v1 and tip v2 can be expressed as follows: 
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v f


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
,             (C.5) 

where Hij refers to the transfer functions between i and j (1 denotes the centre and 2 refers to the 

tip), vi is velocities measured at the point i and f denotes the primary exciting force applied to 

the tip of the cantilever beam. Control force fc is determined by velocity feedback as fc = −βvi. 

Changes in velocities with control gain are shown in Figures C.8, C.9, C.10 and C.11. As 

shown in Figure C.11 (b), the most efficient control results are obtained with the collocated case 

of the exciting force, the error signal and the control force. On the other hand, because of insta-

bility issues, increased control results with large control gain may be unrealistic. Changes of 

resonant peaks are seen when control gain becomes very large. In these cases, control force 

gives a ‘pinning effect’ to a system, which refers to the point at which the applied control force 

is pinned. As a result, equivalent stiffness increases and resonance frequencies change. However, 

the effect of the control force is different for every mode according to the point of control force 

application and the error signal. A pinning effect does not happen at some peaks even when it 

happens at other peaks in some cases. For example, a change in peaks in FRF can be found as 

shown by the red dashed circle in Figure C.11 (a). On the other hand, controllable modes are 

limited for the other cases. 
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(a) (b)

 

Figure C.8 (a) Displacement at the centre for Case 1 (b) Displacement at the tip for Case 1;  No control;   = 

1;   = 10;   = 100 

 

(a) (b)

 

Figure C.9 (a) Displacement at the centre for Case 2 (b) Displacement at the tip for Case 2;  No control;   = 

1;   = 10;   = 100 

 

(a) (b)

 

Figure C.10 (a) Displacement at the centre for Case 3 (b) Displacement at the tip for Case 3;  No control;   

= 1;   = 10;   = 100 
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(a) (b)

 

Figure C.11 (a) Displacement at the centre for Case 4 (b) Displacement at the tip for Case 4;  No control;   

= 1;   = 10;   = 100 

 

In this section, theory related to active control with a single actuator applied to simple struc-

tures has been explained. As mentioned above, collocation has an effect also on the stability 

threshold. Moreover, even with stable control, the pinning effect can happen when too large a 

control gain is in use. In conclusion, control gain should be optimised in the aspect of efficiency 

to avoid the pinning effect. In the next section, a method to determine an optimised control gain 

considering these factors will be discussed. 

 

C.2.3 Determination of optimal control gains 

Following the previous section, the determination of an optimised control gain will be ex-

plained in this section. Stability limit for control gain will constitute a boundary to optimisation. 

If the stability of control is guaranteed, the kinetic energy of the whole system or the absorbed 

power by the controller may be considered. Due to the pinning effect explained in the previous 

section, although the motion at the point where an actuator is installed can be controlled com-

pletely by active control, motions in other parts can increase due to the excitation by the actua-

tor when large control forces are applied. Instead, the absorbed power by control reduces to a 

minimum until the point when the pinning effect happens and increases by induced motion in 

other parts of the structure after the pinning effect. A detailed explanation will follow below. 

For the simulation, the control cases and the FEM model of the previous section are used. 

Firstly, the limit of control gain for a 3 dB gain margin will be studied. Nyquist plots for β=1 

for the open loop referred to in eq. (C.5) will be considered. The systems for Figure C.7 are con-

sidered. Modified transfer functions for each case are the same as in eq. (C.5). 
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Therefore, the open loops for a controller, which are the transfer functions between error and 

velocity due to the control force, are given as eq. (C.6). Their Nyquist plots are given in Figure 

C.12. 

Case 1: 11H , Case 2: 21H , Case 3: 12H  and Case 4: 22H . (C.6) 

 

(a) (b)

 

(c) (d)

 

Figure C.12 Nyquist plots for an open loop for (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4 with = 1 up to 1 kHz 

 

From Figure C.12 (a) and (d), controls in Cases 1 and 4 are unconditionally stable in the fre-

quency range considered. The stability for Cases 2 and 3 are, instead, conditionally guaranteed.  

In order to avoid instability of control in the whole frequency range of interest for a 3 dB gain 

margin in Cases 2 and 3, control gain β should be limited to below 0.061. This can mean that in 

non-collocated control cases such as Cases 2 and 3, control is ineffective and limited to a low 

control gain because of stability issues. Control results for Cases 2 and 3 are obtained as shown 

in Figures C.13 and C.14. 
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(a) (b)

 

Figure C.13 (a) Displacement at the centre for Case 2 (b) Displacement at the tip for Case 2;  No control;  

3dB= 0.061 

 

(a) (b)

 

Figure C.14 (a) Displacement at the centre for Case 3 (b) Displacement at the tip for Case 3;  No control;  

3dB= 0.061 

 

On the other hand, for collocated cases, stable control is guaranteed as shown by Figure C.12 

(a) and (d), where circles of the open-loop of a controller are located only in the positive real 

domain, and an infinite control gain could be used. However, due to the pinning effect, it is ac-

tually better for the control gains to be limited. For this optimisation, the kinetic energy of the 

whole system or the absorbed power by an actuator could be considered as a cost function. 

The power spectral density of kinetic energy using velocities at each node is calculated as 

, (C.7) 

where M is the mass of the whole structure, R is the number of measuring points and  is 

the mean square value of the velocity measured by the r-th accelerometer. 

The power spectral density of absorbed power by the control actuator is expressed as 
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, (C.8) 

where β is the control gain and  denotes the mean square value of the control velocity. 

Figure C.15 shows the variation of the power spectrum densities of kinetic energy and ab-

sorbed power for collocated control. These plots can be used to find control gains which can 

minimise the kinetic energy of a whole structure or maximise the absorbed power by an actuator. 

By using eqs. (C.7) and (5.8), the following figures and control gains are obtained for Cases 1 

and 4 respectively as shown in Figure C.15 and Table C.1. 

(a) (b)

 

(c) (d)

 

Figure C.15 Changes in kinetic energy of the whole structure for (a) Case 1 and (b) Case 4, and changes of absorbed 

power by an actuator for (c) Case 1 and (d) Case 4 

Table C.1 Optimised control gains for collocated cases 
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From Figure C.15, the results were obtained as in Table C.1, where 
 
b

min.KE
 is the control gain 

to minimise the kinetic energy of a whole structure and 
 
b

max.AP
 denotes the control gain to max-

imise the absorbed power by an actuator. 

For Case 4, the kinetic energy of a whole structure can be reduced to zero because of the pin-

ning effect. Therefore, since 
 
b

max.AP
 can give the maximum power absorption of motion struc-

ture even with a small control gain, it would be efficient to use 
 
b

max.AP
 instead of 

 
b

min.KE
 which 

can give only approximately 85 % reduced power absorption with infinite control gain from the 

maximum power absorption of 63 W with 
 
b

max.AP
 as shown in Figure C.15.  

For Case 1, while the difference in absorbed power between with 
 
b

max.AP
 and 

 
b

min.KE
 is only 

0.25W, 
 
b

min.KE
 can minimise the motion of the whole structure with a smaller control gain than 

 
b

max.AP
, avoiding the pinning effect. This means that larger control gains than 

 
b

min.KE
 will 

cause the motions of other parts to increase due to the pinning effect. Therefore, 
 
b

min.KE
 could 

give a good enough and efficient enough control result compared with 
 
b

max.AP
.  

Control results for Cases 1 and 4 are shown in Figures C.16 and C.17. When reductions at each 

peak are compared with each other case, the difference in the minimum kinetic energy shown in 

Figure C.15 (a) and (b) can be understood considering some peaks in Case 1 which remained 

uncontrolled. Therefore, when the stability and the efficiency of control are considered simulta-

neously, the collocation between an error signal, the control force and the disturbance is im-

portant for stable and efficient control in the broad band of frequency. 

 

(a) (b)

 

Figure C.16 (a) Displacement at the centre for Case 1 (b) Displacement at the tip for Case 1;  No control;  

max. AP= 59 
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(a) (b)

 

Figure C.17 (a) Displacement at the centre for Case 4 (b) Displacement at the tip for Case 4;  No control;  

min. KE= 4.9 

In this section, the control gain determination process considering stability and efficiency with 

the Nyquist plot for an open loop, the kinetic energy of a whole structure and the absorbed pow-

er by an actuator is discussed. The collocation between an error signal and a control force is the 

most important for the stability of control. Moreover, for more efficient control results, it is rec-

ommended that an error signal and a primary exciting force are collocated. 

 

C.2.4 Phase plots for Figure 5.13, 5.14, 5.15 and 5.16 

(a)

 

(b)

 

(c)

 

Figure C.18 Phases for APCLD treatment on a beam with (a) No filter (G3dB = 24.58), (b) a KEMO low-pass filter (G3dB 

= 167.61) and (c) a proposed ideal filter (G3dB = 1240);  No control;  with control 

(a)

 

(b)

 

(c)

  

Figure C.19 Phases for AC/PCLD treatment on a beam with (a) No filter (G3dB = 8.42), (b) a KEMO low-pass filter (G3dB 

= 61.79) and (c) a proposed ideal filter (G3dB = 8.42);  No control;  with control 
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(a)

 

(b)

 

(c)

  

Figure C.20 Phases results for AC/PSOLD treatment on a beam with (a) No filter (G3dB = 4.79), (b) a KEMO low-pass 

filter (G3dB = 69.77) and (c) a proposed ideal filter (G3dB = 1302);  No control;  with control 

(a) (b) (c) (d)

 

Figure C.21 Phase simulation results with a proposed ideal filter and G3dB for (a) ACLD, (b) APCLD, (c) AC/PCLD and (d) 

AC/PSOLD treatments 

 





APPENDIX D EQUATIONS OF MOTION FOR PLATES WITH HYBRID ACTIVE-PASSIVE 

CONSTRAINED LAYER DAMPING TREATMENTS 

 191   

APPENDIX D EQUATIONS OF MOTION FOR 

PLATES WITH HAPCLD TREATMENTS 

In this appendix, equations for motion of plates with APCLD, AC/PCLD and AC/PSOLD 

treatments are presented. For equations for ACLD treatment, please refer to Section 6.5. 

 

D.1 APCLD treatment 

The configuration of a plate with APCLD treatment is shown in Figure D.1. 

 

Figure D.1 Configuration of a plate with APCLD treatment;  : elastic plate,  : viscoelastic layer and  : 

piezoelectric patch 

 

Equations for the piezoelectric plate are given by 

 , 

where p
z


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T

p

p p p

u
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 and 
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 pQ
p p p

T

p in out sf f f f , , 

, 

, 

where each term is the same as those used in eq. (5.21). 

Equations for the constraining layer (elastic plate) are given by 

 , 

where 

   

q
c
= u

c
w

c

¶u
c
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f

c

ì
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ý
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f
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= f
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f
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Q
c{ }

T

, , 

, 

, 

where each term is the same as those used in eqs. (A.16) and (A.18). 
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Equations for the viscoelastic material are given by 

 , 

where 

  

q
v

= u
v

w
v
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f
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v

Q
v{ }

T

, , 

, 

, 

where each term is the same as those used in eqs. (5.26) and (5.31). 

Equations for the base layer (elastic plate) are given by 

, 

where b
z


 

  
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T

b
b b b

u
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, 

 and 

 bQ
b b b

T

b in out s
f f f f , , 

, 

, 

where each term is the same as those used in eqs. (A.16) and (A.18). 

Therefore, after stacking the mass and stiffness matrices for local coordinates into one matrix 

according to the order of layer, the coupling matrix 
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,

 

 

and

 

,
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Finally, the global matrix equation of motion can be obtained as 
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, 
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D.2 AC/PCLD treatment 

The configuration for a plate with AC/PCLD treatment is shown in Figure D.2. 

 

Figure D.2 Configuration of a plate with AC/PCLD treatment;  : elastic plate,  : viscoelastic layer and 

 : piezoelectric patch 
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Equations for the constraining layer, the viscoelastic layer, the base layer and the piezoelectric 

layer are the same as those given for APCLD treatment. 

After stacking the mass and stiffness matrices for local coordinates into one matrix according 

to the order of layer, the coupling matrix    
T

c v b p
C C C C C  is given by the four sub-
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and .
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 and 

 Q
T

in out s
f f f f , , 

, 

. 

 

D.3 AC/PSOLD treatment 

The configuration of a plate with AC/PSOLD treatment is shown in Figure D.3. 

 

Figure D.3 Configuration of a plate with AC/PSOLD treatment;  : elastic plate,  : viscoelastic layer and 

 : piezoelectric patch 

 

Equations for the constraining layer, the viscoelastic layer, the base layer and the piezoelectric 

layer are the same as those given for APCLD treatment. 

After stacking the mass and stiffness matrices for local coordinates into one matrix according 

to the order of layer, the coupling matrix    
T

c v p b
C C C C C  is given by the four sub-

matrices; 
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and .

 

where 
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Finally, the global matrix equation of motion can be obtained as 
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APPENDIX E RESULTS OF SIMULATION AND 

MEASUREMENT FOR CHAPTER 8 

In this appendix, various figures obtained during the numerical study and experiment, which 

are explained in Chapter 8, are gathered. 

 

E.1 Simulation result for determination of optimal control 

gain and mobility reduction with flat plates 

In this section, numerical study results to determine an optimal control gain and mobility re-

ductions using the optimal control gain with APCLD, AC/PCLD and AC/PSOLD treatments 

attached on flat plates are presented. 

 

E.1.1 APCLD treatment 

(a)  (b)

 

Figure E.1 The kinetic energy and absorbed power for a flat plate with APCLD treatment with control gains: (a) 

Change of the kinetic energy of a plate and (b) Change of absorbed power by an actuator 

(a) (b)

 

Figure E.2 Control result for a flat plate with APCLD treatment (a) Magnitude and phase of point mobility;  no 

control;  with control and (b) the Nyquist plot for a closed loop with the optimised control gain of 814.7 
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E.1.2 AC/PCLD treatment 

(a)  (b)

 

Figure E.3 The kinetic energy and absorbed power for a flat plate with AC/PCLD treatment with control gains: (a) 

Change in the kinetic energy of a plate and (b) Change of absorbed power by an actuator 

(a) (b)

 

Figure E.4 Control result for a flat plate with AC/PCLD treatment (a) Magnitude and phase of point mobility;  no 

control;  with control and (b) the Nyquist plot for a closed loop with the optimised control gain of 192.7 

 

E.1.3 AC/PSOLD treatment 

(a)  (b)

 

Figure E.5 The kinetic energy and absorbed power for a flat plate with AC/PSOLD treatment with control gains: (a) 

Change in the kinetic energy of a plate and (b) Change in the absorbed power by an actuator  
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(a) (b)

 

Figure E.6 Control result for a flat plate with AC/PSOLD treatment (a) Magnitude and phase of point mobility;  

no control;  with control and (b) the Nyquist plot for a closed loop with the optimised control gain of 196.8 

 

E.2 Simulation result for determination of optimal control 

gain and mobility reduction with curved plates 

In this section, numerical study results to determine an optimal control gain and mobility re-

ductions using the optimal control gain with APCLD, AC/PCLD and AC/PSOLD treatments 

attached on curved plates with maximum rises of 10 and 20 mm are presented. 

 

E.1.1 APCLD treatment 

(a)  (b)

 

Figure E.7 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 10 mm with 

APCLD treatment with control gains: (a) Change of the kinetic energy of a plate and (b) Change of absorbed power 

by an actuator 
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(a) (b)

 

Figure E.8 Control result for a singly curved plate with a maximum rise of 10 mm with APCLD treatment (a) Magni-

tude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for a closed loop with 

the optimised control gain of 670.9; circle with negative effect on active control 

(a)  (b)

 

Figure E.9 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 20 mm with 

APCLD treatment with control gains: (a) Change of the kinetic energy of a plate and (b) Change of absorbed power 

by an actuator 

(a) (b)

 

Figure E.10 Control result for a singly curved plate with a maximum rise of 20 mm with APCLD treatment (a) Magni-

tude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for a closed loop with 

the optimised control gain of 720.7 
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E.1.2 AC/PCLD treatment 

(a)  (b)

 

Figure E.11 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 10 mm with 

AC/PCLD treatment with control gains: (a) Change in the kinetic energy of a plate and (b) Change in absorbed power 

by an actuator 

(a)  (b)

 

Figure E.12 Control gains for an unstable result obtained from kinetic energy and absorbed power for a singly 

curved plate with a maximum rise of 10 mm with AC/PCLD treatment with the change in control gain: (a) Change in 

the kinetic energy of a plate and (b) Change in absorbed power by an actuator 

(a) (b)

 

Figure E.13 Control result for a singly curved plate with a maximum rise of 10 mm with AC/PCLD treatment (a) Mag-

nitude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for a closed loop 

with the optimised control gain of 41.7; circle with negative effect on active control 
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(a)  (b)

 

Figure E.14 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 20 mm with 

AC/PCLD treatment with control gains: (a) Change in the kinetic energy of a plate and (b) Change in absorbed power 

by an actuator 

(a) (b)

 

Figure E.15 Control result for a singly curved plate with a maximum rise of 20 mm with AC/PCLD treatment (a) Mag-

nitude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for a closed loop 

with the optimised control gain of 137.4 

 

E.1.3 AC/PSOLD treatment 

(a)

 

 (b)

  

Figure E.16 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 10 mm with 

AC/PSOLD treatment with control gains: (a) Change in the kinetic energy of a plate and (b) Change in absorbed 

power by an actuator 
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(a) (b)

 

Figure E.17 Control result for a singly curved plate with a maximum rise of 10 mm with AC/PSOLD treatment (a) 

Magnitude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for a closed loop 

with the optimised control gain of 161.2 

(a) (b)

  

Figure E.18 The kinetic energy and absorbed power for a singly curved plate with a maximum rise of 20 mm with 

AC/PSOLD treatment with control gains: (a) Change in the kinetic energy of a plate and (b) Change in absorbed 

power by an actuator 

(a) (b)

 

Figure E.19 Control result for a singly curved plate with a maximum rise of 20 mm with AC/PSOLD treatment (a) 

Magnitude and phase of point mobility;  no control;  with control and (b) the Nyquist plot for a closed loop 

with the optimised control gain of 151.7 
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E.3 FRFs of curved plated with HAPCLD treatments in im-

pact hammer test 

(a)

 

(b)

 

 

(c)

 

(d)

  

      (e)

 

Figure E.20 FRFs of curved plated with HAPCLD treatments in impact hammer test;  without damping treat-

ment;  with damping treatment (a) ACLD treatment, (b) APCLD treatment, (c) AC/PCLD treatment, (d) 

AC/PSOLD treatment and (e) inverse AC/PCLD treatment 

 

E.4 Nyquist plot for a measured closed-loop and control 

simulation results for curved plates 

In this section, Nyquist plots for a measured closed-loop and control simulation results using 
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tion 8.2.2. 
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E.4.1 APCLD treatment 

From measured FRFs with pseudo-random moment excitation by a piezoelectric actuator and 

pseudo-random force excitation by a shaker with APCLD treatment, the following Nyquist plots 

and control simulation results are obtained according to applied filters. 

(a)
 
(b)

 

Figure E.21 (a) Nyquist plot for a closed loop without a filter and (b) controlled result without a filter (APCLD treat-

ment, G3dB = 382.3789) 

(a)
 
(b)

 

Figure E.22 (a) Nyquist plot for a closed loop with a low-pass filter with a cut-off frequency of 500 Hz and (b) con-

trolled result with a low-pass filter with a cut-off frequency of 500 Hz (APCLD treatment, G3dB = 22.2564) 

(a)  (b)

 

Figure E.23 (a) Nyquist plot for a closed loop with an ideal low-pass filter with a cut-off frequency of 500 Hz and (b) 

controlled result with an ideal low-pass filter with a cut-off frequency of 500 Hz (APCLD treatment, G3dB = 943.4783) 
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E.4.2 AC/PCLD treatment 

From measured FRFs with pseudo-random moment excitation by a piezoelectric actuator and 

pseudo-random force excitation by a shaker with AC/PCLD treatment, the following Nyquist 

plots and control simulation results are obtained according to applied filters. 

(a)  (b)

 

Figure E.24 (a) Nyquist plot for a closed loop without a filter and (b) controlled result without a filter (AC/PCLD 

treatment, G3dB = 218.8235) 

(a)  (b)

 

Figure E.25 (a) Nyquist plot for a closed loop with a low-pass filter with a cut-off frequency of 500 Hz and (b) con-

trolled result with a low-pass filter with a cut-off frequency of 500 Hz (AC/PCLD treatment, G3dB = 4,4233) 

(a)  (b)

 

Figure E.26 (a) Nyquist plot for a closed loop with an ideal low-pass filter with a cut-off frequency of 500 Hz and (b) 

controlled result with an ideal low-pass filter with a cut-off frequency of 500 Hz (AC/PCLD treatment, G3dB = 

206.6667) 
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E.4.3 AC/PSOLD treatment 

From measured FRFs with pseudo-random moment excitation by a piezoelectric actuator and 

pseudo-random force excitation by a shaker with AC/PSOLD treatment, the following Nyquist 

plots and control simulation results are obtained according to applied filters. 

(a)

 

(b)

 

Figure E.27 (a) Nyquist plot for a closed loop without a filter and (b) controlled result without a filter (AC/PSOLD 

treatment, G3dB = 175.4717) 

(a)  (b)

 

Figure E.28 (a) Nyquist plot for a closed loop with a low-pass filter with a cut-off frequency of 500 Hz and (b) con-

trolled result with a low-pass filter with a cut-off frequency of 500 Hz (AC/PSOLD treatment, G3dB = 5.3278) 

(a)

 

(b)

 

Figure E.29 (a) Nyquist plot for a closed loop with an ideal low-pass filter with a cut-off frequency of 500 Hz and (b) 

controlled result with an ideal low-pass filter with a cut-off frequency of 500 Hz (AC/PSOLD treatment, G3dB = 

160.7407) 
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