Accepted Manuscript

Evolution of structural, mechanical and tribological properties of Ni–P/MWCNT coatings as a function of annealing temperature

Qianzhi Wang, Mauro Callisti, Alberto Miranda, Brian McKay, Ioanna Deligkiozi, Tatjana Kosanovic Milickovic, Alexandros Zoikis-Karathanasis, Kostas Hrissagis, Luca Magagnin, Tomas Polcar

PII: S0257-8972(16)30502-3
DOI: doi: 10.1016/j.surfcoat.2016.06.011
Reference: SCT 21253

To appear in: Surface & Coatings Technology

Received date: 7 April 2016
Revised date: 30 May 2016
Accepted date: 5 June 2016

Please cite this article as: Qianzhi Wang, Mauro Callisti, Alberto Miranda, Brian McKay, Ioanna Deligkiozi, Tatjana Kosanovic Milickovic, Alexandros Zoikis-Karathanasis, Kostas Hrissagis, Luca Magagnin, Tomas Polcar, Evolution of structural, mechanical and tribological properties of Ni–P/MWCNT coatings as a function of annealing temperature, Surface & Coatings Technology (2016), doi: 10.1016/j.surfcoat.2016.06.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Evolution of structural, mechanical and tribological properties of Ni-P/MWCNT coatings as a function of annealing temperature

Qianzhi Wang\textsuperscript{a*}, Mauro Callisti\textsuperscript{a}, Alberto Miranda\textsuperscript{b}, Brian McKay\textsuperscript{b}, Ioanna Deligkiozi\textsuperscript{c}, Tatjana Kosanovic Milicković\textsuperscript{d}, Alexandros Zoikis-Karathanasis\textsuperscript{d}, Kostas Hrissagis\textsuperscript{d}, Luca Magagnin\textsuperscript{e}, Tomas Polcar\textsuperscript{a}

\textsuperscript{a} National Centre for Advanced Tribology at Southampton, Department of Mechanical Engineering, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK

\textsuperscript{b} Institute of Materials and Manufacturing, Brunel University, London UB8 3PH, UK

\textsuperscript{c} Centre for Technology Research and Innovation, Limassol 3106, Cyprus

\textsuperscript{d} Centre for Research and Technology Hellas (CERTH/IRETETH), Trikala GR42100, Greece

\textsuperscript{e} Dip. Chimica, Materiali e Ing. Chimica Giulio Natta, Politecnico di Milano, Milano 20131, Italy

Abstract: The structural, mechanical and tribological properties of Ni-P/MWCNT coatings annealed at various temperatures (350-500°C) were investigated using XRD, SEM, nanoindentation and tribometer to determine the optimal annealing temperature for their enhanced tribological properties. The results showed that the annealed coatings comprised a hard Ni$_3$P phase, and consequently presented a higher hardness (from 7.0±0.3 to 8.2±1.4 GPa) than the as-plated sample (6.0±0.9 GPa). With the annealing temperature increasing from 350 °C to 500 °C, the crystallinity of coating was enhanced with larger crystal grains of Ni and Ni$_3$P, which led to a decline in hardness (from 8.2 to 7.0 GPa) due to the Hall-Petch effect. Owing to the lubrication effect of H$_3$PO$_4$ arising from the tribochemical reaction of Ni$_3$P with ambient environment, the annealed samples exhibited lower friction coefficients (0.71~0.86) compared to the as-plated coating (0.87). A combination of low surface roughness and the reduction of oxides on wear track contributed to the lowest friction coefficient of Ni-P/MWCNT annealed at 400 °C. However, the decomposition of amorphous carbon in MWCNT over 380 °C produced less dense coatings (for annealing temperatures 400-500 °C), and their incompact structure led to a higher wear rate (2.9-3.0×10$^{-5}$ mm$^3$/Nm) compared to the as-plated sample (2.4×10$^{-5}$ mm$^3$/Nm). In contrast, Ni-P/MWCNT

* Corresponding author. Tel.: +44-23-8059-4438.

E-mail address: jxwqz1985@allyun.com; qz.wang@nuaa.edu.cn
coating annealed at 350 °C (< 380 °C) exhibited a better wear resistance (4.3×10⁻⁶ mm³/Nm). Thus, 350 °C was found to be the optimal annealing temperature to lower the friction coefficient and enhance the wear resistance of Ni-P/MWCNT coatings.

**Keywords:** Nickel-phosphorus; MWCNT; Electrodeposition; Tribology; Annealing.

### 1. Introduction

Owing to their excellent resistance to both wear and corrosion, electroplated hard chrome coatings are one of the widely used surface treatments in the aerospace, automotive and shipping industries [1-3]. Nevertheless, with a growing awareness on environment protection and human health, researchers are looking for viable alternative to hard chrome coatings to avoid the hazardous Cr⁶⁺ (a genotoxic carcinogen) in electrolytic baths [4-7].

In order to minimise additional costs for plating industry, researchers have concentrated their attention on Ni-P coatings using existing equipment. Consequently, several studies investigated the influence of pH value [8], surfactant [9], bath parameters [10] and post-treatment [11, 12] in order to optimise the structural and tribological properties of Ni-P coatings. Nevertheless, the low hardness of the as-plated Ni-P coatings (400-500 HV0.025) still stands in its way of a wide application in tribology field, where hardness is deemed as a vital property. Therefore, various reinforcing particles have been introduced into Ni-P coatings to increase their hardness and as a consequence enhance their tribological properties.

Amongst SiC [13], TiN [14], TiO₂ [15], SiO₂ [16, 17], WC [18], Al₂O₃ [19], B₄C [20] and CNT [21-23] reinforcing particles, SiC and MWCNT incorporations demonstrated a greater enhancement in hardness (ΔH>260 HV0.01). Compared with SiC, CNT has shown an extremely high Young’s modulus up to 1.0 TPa and a high tensile strength around 60 GPa [24]. Moreover, CNT is expected to provide superior lubrication effect than SiC due to its integrated molecule, in
which the carbon atoms are bonded with sp² hybrid [24]. For instance, Chen et al. [25] found that Ni/CNT composite coatings exhibited a lower friction coefficient (0.075) than Ni/SiC coatings (0.130). Tu et al. [26, 27] pointed out that MWCNT co-deposition reduced the friction coefficient of Ni-P coatings down to 0.063 compared to 0.124 for SiC reinforced ones. A similar result was also reported in Ref. [28] as listed in Table 1. However, in current literature, only a few studies have focused on the role of heat treatment in determining the tribological properties of Ni-P/MWCNT coatings [23, 25, 27, 29, 30]. More importantly, the coatings in the above studies were all deposited using electroless technique, whilst the chosen interval of annealing temperature was too large (200 °C) to help us understand the tendencies from 200 to 400 °C and from 400 to 600 °C. Thus, it is of paramount importance to study the detailed evolution of the tribological properties for annealed Ni-P/MWCNT coatings with a small interval of temperature, especially for the coatings fabricated by using electrodeposition.

In this present study, electrodeposited Ni-P/MWCNT coatings annealed at four different temperatures (350, 400, 450 and 500 °C) as well as the as-plated coating (50 °C) were compared in order to study the effect of heat treatment on their tribological properties. The correlation between annealing temperature, microstructure, mechanical and tribological properties of Ni-P/MWCNT coatings was subsequently elucidated.

2. Experimental details

2.1 Composite coatings electroplating and annealing

Multi-walled carbon nanotubes (MWCNTs) with 3-15 walls (Inner diameter 2-6 nm and outer diameter 5-20 nm) and length of 1-10 µm were selected as reinforcing particles (supplied by EMFUTUR Technologies). In order to evaluate the quality of MWCNTs, a Renishaw inVia
confocal Raman microscope with an excitation energy of 2.54 eV and a Raman shift from 800 to 2000 cm\(^{-1}\) was used. In addition, a simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis at a heating rate of 10 °C/min was conducted in a He atmosphere (40 mL/min) to assess the thermal stability of MWCNTs up to 900 °C (NETZCH STA 409 PC Luxx). After being dispersed in 10 ml of ethanol in an ultrasonic bath for 2 minutes, two drops of the MWCNTs suspension were pipetted onto a 400 # Cu grid, and then naturally dried under ambient condition prior to the observation by using transmission electron microscope (TEM) operated at 80 kV (JEOL 2100 FEG). To remove surface contaminants on the substrates, the carbon steel plates with dimensions of 4×6 cm\(^2\) were anodized in NaOH (1.25 M) and immersed in HCl (1:8) consecutively. Afterwards, they were covered by galvanic tape (3M 470 Electroplating and Anodizing Vinyl Tape) leaving an exposed area of 4×4 cm\(^2\). Suzuki et al. [31] and Li et al. [32] found that the Ni-P/MWCNT composite coatings with a lower concentration of CNT (0.7% mass) exhibited superior tribological properties. Thus, 1 g/L of MWCNT was loaded into the electrolytic bath in this study to keep a low concentration of MWCNT in Ni-P/MWCNT coatings. The plating electrolyte contained nickel sulphate as nickel source, phosphorous acid as P source and nickel chloride to support the dissolution of Ni-S anode. Based on the hardness and surface roughness (\(R_a\)) of Ni-P/MWCNT coatings as a function of current density (5, 10, 15 and 20 A·dm\(^{-2}\)) in our previous work, Ni-P/MWCNT coating (4.9 wt% P and 60 µm thick) electroplated at 20 A·dm\(^{-2}\) is chosen as the subject in this paper. In order to ensure a uniform electrolyte solution, a magnetic stirring at 300 rpm was applied during the entire electroplating process. The deposition parameters for the preparation of the composite coatings are listed in Table 2.

Using an electric furnace, the as-plated Ni-P/MWCNT coatings (50 °C) were annealed at 350, 400, 450 and 500 °C, and hereafter denoted as Ni-P/MWCNT-50, Ni-P/MWCNT-350,
Ni-P/MWCNT-400, Ni-P/MWCNT-450 and Ni-P/MWCNT-500. During heat treatment, a constant heating rate of 5 °C/min was maintained until the target temperature was reached. After a holding time of 1 h, samples were cooled naturally to room temperature. In order to remove the surface oxides by heat treatment, all of the specimens were mechanically polished using 0.3 μm Al₂O₃ suspension for 5 minutes.

2.2 Microstructure and mechanical properties of composite coatings

The morphology of the Ni-P/MWCNT coatings after mechanical polishing was observed by scanning electron microscope (SEM) (JEOL-JSM-6500F), and their chemical composition was analyzed by energy dispersive spectroscopy (EDS) equipped on SEM (FEI Quanta 200). By using X-ray diffraction (XRD) with a Cu-Kα radiation (Siemens D-5000), the phase conditions of the as-plated and annealed coatings were characterized within a 2θ range from 20° to 100° at a scanning rate of 5 °/min and a step size of 0.05°. To investigate the mechanical properties of the Ni-P/MWCNT coatings, nanoindentation (Micromaterials) under a penetration depth of 500 nm (<10% of the coatings thickness) was carried out. In order to ensure the reliability of data, 10 nanoindentations were conducted for each coating. The surface roughness (Ra) of coatings after polishing was measured using a 3D optical microscope (Infinite Focus).

2.3 Evaluation of tribological properties

The friction and wear behavior of Ni-P/MWCNT coatings under ambient condition was evaluated by using a reciprocating tribometer (TE77, Phoenix Tribology, Ltd.). Since the potential application of Ni-P/MWCNT coatings on crankshaft, 52100 steel balls (Ø 6 mm), as a common material for linkage, was selected as counterpart in this study. In order to achieve the friction coefficient within the steady period, which appears after running-in period and before the failure of coatings, the stroke length, frequency and applied load of the tribotest were kept at 10 mm, 5 Hz
and 10 N respectively for a duration of 1 hour. All of the tribotests were repeated twice to ensure the reliability of data, with a third test necessary if the relative error of friction coefficient was over 5 %.

A 3D optical microscope (Infinite Focus) was subsequently used to analyze the contours of wear tracks. Accordingly, the wear volume of coatings can be determined from the product of cross-section area (A) and wear length (L). In addition, the morphology of wear tracks were observed by SEM (JEOL-JSM-6500F), and their corresponding chemical compositions were analyzed using EDS (Inca Energy 350).

3. Results and discussions

3.1 Characterization of MWCNT and Ni-P/MWCNT composite coatings

The TEM images of MWCNT under different magnifications are shown in Fig.1a and 1b. It is clear that the MWCNTs used in this study are of various diameters as stated in experimental details. The XRD spectrum of MWCNT in Fig.1c demonstrates its common crystallinity whilst the Raman spectrum in Fig.1d indicates the presence of amorphous carbon (a-C) [33]. Consequently, as seen in Fig.2, two endothermic peaks around 420 °C and 500 °C in DSC trace are closely associated with the decomposition of a-C. As a result, a sharp weight loss is observed in TGA diagram from 380 °C to 500°C. It is in contrast to pure MWCNT (i.e. without any amorphous carbon), which should remain stable up to 2800 °C [34].

As seen in Fig.3a, the XRD spectrum of the Ni-P/MWCNT-50 coating exhibits two broad peaks at 44.5° and 97.8°, which are related to Ni (111) and Ni (222) (JCPDS 00-004-0850). However, the crystallinity of Ni is significantly enhanced after annealing, and continues to increase with increasing annealing temperature. In addition, new diffraction peaks (around 42.8°, 43.6°, 60.2°, 74.9° and etc.) are observed in XRD spectra after heat treatment, which were identified as
Ni$_3$P crystal (JCPDS 01-089-2743) by DIFFRAC.EVA software (Siemens Energy and Automatization, Inc.). The size evolution of Ni (111) and Ni$_3$P (231) grains as a function of annealing temperature was calculated according to the Scherrer’s equation [35], and the results are presented in Fig. 3b. It is obvious that the crystal grains of Ni (111) and Ni$_3$P (231) grow from 6 nm to 50 nm and from 34 nm to 59 nm, respectively, as the annealing temperature increases. Note that no MWCNT was detected in diffractograms of Ni-P/MWCNT coatings because of a very low incorporation amount (1.9 wt%).

The surface morphology and individual roughness (Ra) of the Ni-P/MWCNT coatings after polishing are shown in Fig. 4. The Ni-P/MWCNT-50 coating exhibits the highest Ra of 7.9±0.5 µm with obvious agglomeration structure. In contrast, few agglomeration structures are evident in the annealed coatings and the Ni-P/MWCNT-400 coating exhibits the lowest Ra of 6.7±0.2 µm. This lower asperity has a beneficial effect on its friction behavior, which will be discussed elsewhere (in section 3.3).

3.2 Characterization of mechanical properties

The hardness (H) and reduced elastic modulus ($E_r$) of each coating were obtained from loading-unloading curves by applying the Oliver and Pharr method [36], whilst the recovery of elasticity ($R_e$) was calculated via maximum ($h_{\text{max}}$) and residual ($h_i$) depths. As listed in Table 3, all of the annealed specimens exhibit a higher hardness (7.0±0.3-8.2±1.4 GPa) than the as-plated one (6.0±0.9 GPa) due to the formation of a hard intermetallic Ni$_3$P crystalline phase [37]. Nevertheless, the increasing grain size of Ni (111) and Ni$_3$P (231) with increasing temperature leads to a reduction in hardness from 8.2 to 7.0 GPa based on the Hall-Petch effect. Since elastic modulus has an equal role as hardness in determining tribological properties, some researchers have suggested using the ratios of $H/E_r$ and $H^2/E_r^2$ for tribology prediction, as they are proportional to the resistance to elastic
strain and plastic deformation, respectively [38]. Moreover, coatings with a superior $R_e$ should encounter lower plastic deformation. Thus, according to the values in Table 3, the Ni-P/MWCNT-350 coating is expected to present the best tribological performance due to a combination of the highest $H/E_r$, $H^2/E_r^2$ and $R_e$, followed by the Ni-P/MWCNT-400 coating.

3.3 Evaluation of friction

Fig. 5 shows the friction behavior of Ni-P/MWCNT coatings as a function of sliding time. It is clear that the friction coefficient of all the samples decreases gradually from its original value to a steady state value after a specific ‘running-in’ period. Due to a relatively rougher surface with a higher $Ra$ (Fig.4a&b), the Ni-P/MWCNT-50 and Ni-P/MWCNT-350 coatings encounter a longer ‘running-in’ period - more time is needed to remove large asperities [39]. In contrast, the Ni-P/MWCNT-450 and Ni-P/MWCNT-500 coatings exhibit a shorter ‘running-in’ period due to a lower $Ra$ (Fig.4d&e). Interestingly, the Ni-P/MWCNT-400 coating presents the longest ‘running-in’ period (around 2100 s) even with the smoothest morphology. In principle, surface quality largely determines the length of the ‘running-in’ period, but hardness is another important factor that needs to be considered. As listed in Table 3, the Ni-P/MWCNT-400 coating exhibits the highest hardness (8.2 GPa), which contributes to a low rate of asperity removal. As a result, the friction coefficient of Ni-P/MWCNT-400 coating takes more time to reach a steady state; a similar phenomenon was reported in Ref. [37]. Furthermore, it is worth noting that the smoothest morphology of the Ni-P/MWCNT-400 coating contributes to a steady friction behavior during the entire tribotest. In contrast, dramatic fluctuations of the friction coefficient are observed on the friction behavior of the other coatings.

By averaging the friction coefficient attained during steady state, the mean-steady friction coefficient of each coating is illustrated in Fig. 6a. Obviously, all of the annealed coatings exhibit a
lower friction coefficient (0.71±0.031–0.86±0.042) than the as-plated condition (0.87±0.055). This discrepancy is attributed to the different tribochemical reactions during the tribotest as described below [40]:

\[
4\text{Ni} + 3\text{O}_2 = 2\text{Ni}_2\text{O}_3 \tag{1}
\]

\[
\Delta G^{298}_f = -287.6 \text{kJ} \cdot \text{mol}^{-1}
\]

\[
2\text{Ni}_3\text{P} + 7\text{O}_2 = 3\text{Ni}_2\text{O}_3 + \text{P}_2\text{O}_5 \tag{2}
\]

\[
\Delta G^{298}_f = -1364.7 \text{kJ} \cdot \text{mol}^{-1}
\]

\[
\text{P}_2\text{O}_5 + 3\text{H}_2\text{O} = 2\text{H}_3\text{PO}_4 \tag{3}
\]

\[
\Delta G^{298}_f = -144.1 \text{kJ} \cdot \text{mol}^{-1}
\]

According to the standard Gibbs free energy [41-43], tribochemical reactions (1-3) can occur spontaneously. Incongruent with the tribochemical reaction of the Ni-P/MWCNT-50 coating (Eq. (1)), the oxidation of Ni$_3$P in annealed coatings (Eqs. (2) and (3)) generates not only Ni$_2$O$_3$ but also P$_2$O$_5$, which is extremely unstable in air. Subsequently, the generated P$_2$O$_5$ absorbs the moisture from its ambient environment to form orthophosphoric acid ($\text{H}_3\text{PO}_4$). It has been reported that, in $\text{H}_3\text{PO}_4$ environment, a lubricant gel containing Fe-P-O and electrical double layer effect contributed to a drop in friction coefficient. Hence, all the annealed samples exhibit a lower friction coefficient than the as-plated coating in this study.

It is worth noting that the Ni-P/MWCNT-400 coating exhibits the lowest friction coefficient of 0.71±0.031 amongst the annealed samples. Except for the lubrication effect of $\text{H}_3\text{PO}_4$ as mentioned above, there are two reasons contributing to such a outcome. One is the smoothest morphology ($R_a=6.7±0.2 \mu\text{m}$), which offers an even contact interface between coatings and balls at the beginning stage of tribotest. This favorable condition has a lasting effect during the whole friction behavior, because a lower $R_a$ helps obtain a lower mean-steady friction coefficient [44-46]. The
other reason is the amount of oxides formed during the tribotest. In principle, the formation of oxides should decrease friction coefficient due to their softness under dry friction condition. However, the adhesion and accumulation of oxides could increase the roughness of wear track, thus leading to a higher friction coefficient due to mechanical interlock. As seen in Fig.7, EDS analyses indicate that the wear track on the Ni-P/MWCNT-400 coating contains the lowest concentration of oxygen (3.6 wt%). Therefore, a lower amount of oxides (Ni$_2$O$_3$ and FeO$_x$) was generated in the wear track resulting in a relatively smoother sliding interface, which contributed to a lower friction.

3.4 Evaluation of wear

Analyzing the coatings wear rate in Fig.6b and the hardness in Table.3, it is found that the wear resistance of Ni-P/MWCNT coatings is not proportional to their hardness. For instance, the coatings annealed at 400, 450 and 500 °C are harder but present higher wear rates (2.9-3.0×10$^{-5}$ mm$^3$/Nm) than the as-plated condition (2.4×10$^{-5}$ mm$^3$/Nm). Furthermore, even with the same hardness (8.2 GPa), the Ni-P/MWCNT-350 and Ni-P/MWCNT-400 coatings exhibit a big difference in wear rate with one order of magnitude (4.3×10$^{-6}$ mm$^3$/Nm and 2.9×10$^{-5}$ mm$^3$/Nm). These results imply that there is another key factor determining their wear resistance.

According to the TGA and DSC shown in Fig.2, the decomposition of amorphous carbon in MWCNTs takes place around 380 °C. Hence, during the heat treatment, Ni-P/MWCNT-400, Ni-P/MWCNT-450 and Ni-P/MWCNT-500 coatings suffered the decomposition of amorphous carbon, which deteriorated their compact structure. In contrast, only a limited decomposition of amorphous carbon occurred during the annealing at 350 °C, i.e. the Ni-P/MWCNT-350 coating was still compact and dense after annealing. Therefore, the decomposition of amorphous carbon in MWCNT is the key factor significantly limiting the wear resistance of Ni-P/MWCNT coatings. Consequently, Ni-P/MWCNT-400, Ni-P/MWCNT-450 and Ni-P/MWCNT-500 coatings exhibit a
higher wear rate than the softer Ni-P/MWCNT-50 coating, whilst Ni-P/MWCNT-350 coating exhibits the lowest value (4.3×10⁻⁶ mm³/Nm).

4. Conclusions

Ni-P/MWCNT composite coatings were electroplated on carbon steel plates followed by annealing at various temperatures (350-500 °C). The evolution of their microstructure, mechanical and tribological properties as a function of annealing temperature was investigated. Conclusions are drawn as follows:

(1) With increasing annealing temperature, the crystallinity of Ni in the Ni-P/MWCNT coatings increased, and a Ni₃P phase was formed.

(2) Owing to the presence of the hard Ni₃P phase, annealed samples exhibited a higher hardness (7.0-8.2 GPa) than the as-plated sample (6.0 GPa). However, the increasing grain size led to a drop in hardness from 8.2 GPa to 7.0 GPa due to the Hall-Petch effect.

(3) The Ni-P/MWCNT-400 coating exhibited the lowest friction coefficient of 0.71±0.03 due to a combination of the lubricious effect of H₃PO₄ from tribochemical reaction, a smoother original contact surface and fewer oxides formed on the wear track.

(4) The decomposition of amorphous carbon in MWCNTs (T > 380 °C), rather than the hardness, was the key factor to the wear resistance of Ni-P/MWCNT coatings. Thus, the Ni-P/MWCNT coatings annealed at 400, 450 and 500 °C exhibited a poor wear resistance (wear rate: 2.9-3.0×10⁻⁵ mm³/Nm) while the Ni-P/MWCNT coating annealed at 350 °C presented the strongest wear resistance (wear rate: 4.3×10⁻⁶ mm³/Nm).
Acknowledgement

This work has been supported by the collaborative research project Hardalt (Grant No. 606110) funded by the EU’s seventh framework programme.

References

[12] J.D. Lin, C.L. Kuo, Effects of hydrogen plasma treatment on microstructure evolution and


[38] N.A. Sakharova, J.V. Fernandes, M.C. Oliveira, J.M. Antunes, Influence of ductile interlayers on mechanical behaviour of hard coatings under depth-sensing indentation: a numerical study on


Fig. 1 (a) (b) TEM images (c) XRD and (d) Raman spectra of MWCNT
Fig. 2 Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of MWCNT under a He atmosphere
Fig. 3 (a) XRD spectra and (b) crystalline sizes of Ni (111) and Ni₃P (231) of Ni-P/MWCNT coatings annealed at different temperatures.
Fig. 4 Morphology of the polished (a) Ni-P/MWCNT-50 (b) Ni-P/MWCNT-350 (c) Ni-P/MWCNT-400 (d) Ni-P/MWCNT-450 and (e) Ni-P/MWCNT-500 coatings
Fig. 5 Friction behavior of Ni-P/MWCNT coatings annealed at different temperatures sliding against 52100 balls.
Fig. 6 (a) Mean-steady friction coefficient and (b) wear rate of Ni-P/MWCNT coatings annealed at different temperatures.
Fig. 7 Morphology, contours and the corresponding EDS analyses of wear tracks on Ni-P/MWCNT coatings annealed at different temperatures
<table>
<thead>
<tr>
<th>Reference</th>
<th>Coatings</th>
<th>Particles</th>
<th>Hardness</th>
<th>Friction coefficient</th>
<th>Wear depth or mass loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al. [25]</td>
<td>Ni</td>
<td>SiC</td>
<td>725 HV0.025</td>
<td>0.130</td>
<td>11.2 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNT</td>
<td>865 HV0.025</td>
<td>0.075</td>
<td>6.6 µm</td>
</tr>
<tr>
<td>Tu et al. [26, 27]</td>
<td>Ni-P</td>
<td>SiC</td>
<td>550 HV0.05</td>
<td>0.124</td>
<td>8.5 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MWCNT</td>
<td>520 HV0.05</td>
<td>0.063</td>
<td>6.2 mg</td>
</tr>
<tr>
<td>Chen et al. [28]</td>
<td>Ni-P</td>
<td>SiC</td>
<td>725 HV0.025</td>
<td>0.147</td>
<td>5.7 mg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MWCNT</td>
<td>946 HV0.025</td>
<td>0.122</td>
<td>3.0 mg</td>
</tr>
</tbody>
</table>
Table 2 Electro-deposition conditions of Ni-P/MWCNT coatings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>50±2 °C</td>
</tr>
<tr>
<td>pH</td>
<td>1±0.2</td>
</tr>
<tr>
<td>MWCNT load</td>
<td>1 g/L</td>
</tr>
<tr>
<td>Current density</td>
<td>20 Adm²</td>
</tr>
<tr>
<td>Substrate</td>
<td>Steel platelet</td>
</tr>
<tr>
<td>Anode</td>
<td>Nickel (S)</td>
</tr>
</tbody>
</table>
Table 3 Mechanical properties of Ni-P/MWCNT coatings at different annealing temperatures

<table>
<thead>
<tr>
<th>Coatings</th>
<th>$H$ (GPa)</th>
<th>$E_r$ (GPa)</th>
<th>$H/E_r$</th>
<th>$H^3/E_r^2$ (GPa)</th>
<th>$R_e$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-P/MWCNT-50</td>
<td>6.0±0.9</td>
<td>156±6</td>
<td>0.038</td>
<td>0.009</td>
<td>14.7±1.8</td>
</tr>
<tr>
<td>Ni-P/MWCNT-350</td>
<td>8.2±1.4</td>
<td>190±14</td>
<td>0.043</td>
<td>0.015</td>
<td>16.6±1.9</td>
</tr>
<tr>
<td>Ni-P/MWCNT-400</td>
<td>8.2±0.6</td>
<td>209±7</td>
<td>0.039</td>
<td>0.013</td>
<td>15.2±0.9</td>
</tr>
<tr>
<td>Ni-P/MWCNT-450</td>
<td>7.4±0.3</td>
<td>224±14</td>
<td>0.033</td>
<td>0.008</td>
<td>12.8±1.0</td>
</tr>
<tr>
<td>Ni-P/MWCNT-500</td>
<td>7.0±0.3</td>
<td>213±4</td>
<td>0.033</td>
<td>0.008</td>
<td>12.6±0.6</td>
</tr>
</tbody>
</table>
Highlights

- Annealing improved the crystallinity of Ni and promoted the formation of Ni$_3$P.
- All annealed coatings exhibited a higher hardness since the formation of Ni$_3$P.
- H$_3$PO$_4$ from tribochemical reaction of Ni$_3$P decreased friction of annealed coatings.
- 350 °C was the optimal annealing temperature to enhance tribological properties.
- Decomposition of amorphous carbon in MWCNT was the key factor to wear resistance.