

Robert Mawdsley^{1*}, Ivan D. Haigh¹

¹University of Southampton, United Kingdom

Submitted to Journal: Frontiers in Marine Science

Specialty Section: Coastal Ocean Processes

Article type: Original Research Article

Manuscript ID: 181222

Received on: 08 Dec 2015

Revised on: 15 Feb 2016

Frontiers website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

- R. J. Mawdsley conducting the data quality control for all tide gauge sites, before developing and coding the method for extraction of the skew surge. Also was primarily involved in creation of Figures and writing of text.
- I. D. Haigh developed and coded some of the method for skew surge extraction, as well as the chi-squared test to assess tide-surge interaction. Also heavily involved with editing of text.

Keywords

storm surge, extreme sea level, Tide-surge interaction, regional climate, Skew surge

Abstract

Word count: 332

Storm surges and the resulting extreme high sea levels are among the most dangerous natural disasters and are responsible for widespread social, economic and environmental consequences. Using a set of 220 tide gauges, this paper investigates the temporal variations in storm surges around the world and the spatial coherence of its variability. We compare results derived from two parameters used to represent storm surge: skew surge and the more traditional, non-tidal residual. We determine the extent of tide-surge interaction, at each study site, and find statistically significant (95% confidence) levels of tide-surge interaction at 59% of sites based on tidal level and 81% of sites based on tidal-phase. The tide-surge interaction was strongest in regions of shallow bathymetry such as the North Sea, north Australia and the Malay Peninsula. At most sites the trends in the skew surge time series were similar to those of non-tidal residuals, but where there were large differences in trends, the sites tended to have a large tidal range. Only 13% of sites had a statistically significant trend in skew surge, and of these approximately equal numbers were positive and negative. However, for trends in the non-tidal residual there are significantly more negative trends. We identified 8 regions where there were strong positive correlations in skew surge variability between sites, which meant that a regional index could be created to represent these groups of sites. Despite, strong correlations between some regional skew surge indices, none are significant at the 95% level, however, at the 80% level there was significant positive correlation between the north-west Atlantic - south and the North Sea. Correlations between the regional skew surge indices and climate indices only became significant at the 80% level, where Nińo 4 was positively correlated with the Gulf of Mexico skew surge index and negatively correlated with the east Australia skew surge index. The inclusion of auto-correlation in the calculation of correlation greatly reduced their significance, especially in the short time-series used for the regional skew surge indices.

Ethics statement

(Authors are required to state the ethical considerations of their study in the manuscript including for cases where the study was exempt from ethical approval procedures.)

Did the study presented in the manuscript involve human or animal subjects: No

2 **globally**

- 3 R.J Mawdsley 1* and I.D. Haigh 1
- 4 Ccean and Earth Science, National Oceanography Centre Southampton, University of
- 5 Southampton, Southampton, SO14 3ZH, UK
- * Correspondence: Ocean and Earth Science, National Oceanography Centre Southampton,
- 7 University of Southampton, Southampton, SO14 3ZH, UK
- 8 robert.mawdsley@noc.soton.ac.uk
- 9 Keywords: storm surge, extreme sea level, tide-surge interaction, regional climate, skew surge
- 10 Abstract
- Storm surges and the resulting extreme high sea levels are among the most dangerous natural
- disasters and are responsible for widespread social, economic and environmental consequences.
- 13 Using a set of 220 tide gauges, this paper investigates the temporal variations in storm surges around
- the world and the spatial coherence of its variability. We compare results derived from two
- parameters used to represent storm surge: skew surge and the more traditional, non-tidal residual. We
- determine the extent of tide-surge interaction, at each study site, and find statistically significant
- 17 (95% confidence) levels of tide-surge interaction at 59% of sites based on tidal level and 81% of sites
- based on tidal-phase. The tide-surge interaction was strongest in regions of shallow bathymetry such
- as the North Sea, north Australia and the Malay Peninsula. At most sites the trends in the skew surge
- 20 time series were similar to those of non-tidal residuals, but where there were large differences in
- 21 trends, the sites tended to have a large tidal range. Only 13% of sites had a statistically significant
- trend in skew surge, and of these approximately equal numbers were positive and negative. However,
- for trends in the non-tidal residual there are significantly more negative trends. We identified 8
- 24 regions where there were strong positive correlations in skew surge variability between sites, which
- 25 meant that a regional index could be created to represent these groups of sites. Despite, strong
- 26 correlations between some regional skew surge indices, none are significant at the 95% level,
- 27 however, at the 80% level there was significant positive correlation between the north-west Atlantic -
- south and the North Sea. Correlations between the regional skew surge indices and climate indices
- only became significant at the 80% level, where Nińo 4 was positively correlated with the Gulf of
- 30 Mexico skew surge index and negatively correlated with the east Australia skew surge index. The
- 31 inclusion of autocorrelation in the calculation of correlation greatly reduced their significance,
- 32 especially in the short time-series used for the regional skew surge indices. Skew surge improved the
- representation of storm surge magnitudes, and therefore allows a more accurate detection of changes
- on secular and inter-annual time scales.

1 Introduction

- 36 Storm surges and the resulting extreme high sea levels are among the most dangerous events
- influencing the coastal zone, and have been responsible for many devastating natural disasters, both

- in terms of loss of life (e.g. Typhoon Haiyan in November 2013) and economic losses (e.g. Hurricane
- 39 Sandy in October 2012) (Pugh and Woodworth, 2014). The widespread social, economic and
- 40 environmental impacts associated with such events have driven research to better understand their
- 41 generating mechanisms and propagation into shallow coastal areas. However, the large number of
- 42 stochastic processes that influence storm surges over a range of time and space scales, mean that they
- remain difficult to predict over periods longer than a few days. Understanding the risks associated
- with storm surges and how these might change in the future is therefore essential to aid coastal zone
- 45 management and sustainable developmental planning in coastal regions (Wong et al., 2014). Using a
- set of 220 tide gauges, this paper builds on previous studies (e.g. Woodworth and Blackman, 2004;
- 47 Menéndez and Woodworth, 2010) and assesses the regional spatial coherence of storm surges around
- 48 the world and their temporal variations.
- 49 Storm surges are the response of the sea surface to forcing by the atmosphere. Several factors
- influence their generation and propagation into coastal waters, including: meteorological influences
- 51 (i.e. wind speed, direction, persistence and spatial distribution and sea level pressure); oceanographic
- effects (i.e. sea-surface temperature, water density and sea ice cover); and topographic features (i.e.
- water depth, width of continental shelf, as well as sand bars and reefs) (Pugh and Woodworth, 2014).
- 54 These characteristics are non-stationary, with variations occurring on scales from hourly to
- centennial, influenced by both internal natural variability and anthropogenic climate change.
- 56 Climate change could alter the frequency, intensity and tracks of storms thus influencing storm
- surges and extreme sea levels (Church et al., 2013). An increase in the ambient potential intensity,
- 58 caused by high sea surface temperatures, that tropical cyclones move through should shift the
- distribution of intensities upwards (Seneviratne et al., 2012). However, this relationship is
- 60 complicated by uncertainties concerning the response to warming (Vecchi and Soden, 2007), and the
- strength of counteracting mechanisms (Vecchi and Soden, 2007; Emanuel et al., 2008). As such,
- 62 confidence remains low for centennial changes in tropical cyclone activity, even after accounting for
- past changes in observing capabilities (Hartmann et al., 2013). However, in the North Atlantic, it is
- 64 virtually certain that the frequency and intensity of the strongest cyclones has increased since the
- 65 1970's (Kossin et al., 2007). Meanwhile, a net increase in frequency and intensity of extra-tropical
- storms, coupled with a poleward shift in storm tracks has been observed since the 1950s in both the
- North Atlantic and North Pacific (Trenberth et al., 2007).
- The relatively short observational data set of meteorological conditions makes detecting long-term
- 69 changes difficult, because of inter-annual to decadal time variability (Hartmann et al., 2013).
- Therefore, sea level records have been often used as a proxy for storminess (e.g. Zhang et al., 2000;
- Araújo and Pugh, 2008; Menéndez and Woodworth, 2010; Haigh et al., 2010; Dangendorf et al.,
- 72 2014), since some hourly sea level records extend back over 100 years. These studies have generally
- 73 investigated changes in the non-tidal residual (NTR; the component that remains once the
- astronomical tidal component has been removed), or extreme sea levels (ESL; which includes
- 75 changes in all components of sea level, namely, storm surges, mean sea level (MSL) and
- astronomical tide). The most comprehensive of these studies, by Woodworth and Blackman (2004)
- and Menéndez and Woodworth (2010), found that increases in ESL over the 20th century were
- similar to the increases observed in MSL at most sites around the world. Further regional studies of
- 79 the Mediterranean (Marcos et al., 2009), the English Channel (Araújo and Pugh, 2008; Haigh et al.,
- 80 2010), the Caribbean (Torres and Tsimplis, 2013), the U.S. East Coast (Zhang et al., 2000;
- 81 Thompson et al., 2013), the South China Sea (Feng and Tsimplis, 2014), had similar findings. This

- 82 suggests that changes in storm surges, and therefore the meteorological conditions that drive them,
- were not significant over the 20th Century and early part of the 21st Century, at most locations.
- However, Menéndez and Woodworth (2010) did observe significant (at 95% confidence) secular
- 85 trends in the NTR at a few sites. These included: increases in the Caribbean and the Gulf of Mexico;
- and decreases around most of Australia and parts of the east coast of the USA north of Cape Hatteras.
- 87 Grinsted et al. (2012) also observed decreases in storm surge activity along the northeast US coast,
- but Talke et al. (2014) found evidence for an increase in annual maximum storm tide (which includes
- 89 the tidal component) at New York. Significant differences between the trends in ESL and MSL have
- been observed for several other regions, including: the Mediterranean, at Camargue (Ullmann et al.,
- 91 2007), Venice (Lionello et al., 2005) and Trieste (Raicich, 2003); the German Bight (Mudersbach et
- 92 al., 2013); and sites along the western coastline of North America (Bromirski et al., 2003; Cayan et
- 93 al., 2008; Abeysirigunawardena and Walker, 2008).
- Many of the studies mentioned above assessed changes in ESL without separating out the tide and
- 95 non-tidal components. Several recent studies have found significant trends in tidal levels and tidal
- constituents along the coasts of the USA or in the German Bight (e.g. Jay, 2009; Ray, 2009;
- Woodworth, 2010; Mudersbach et al., 2013; Mawdsley et al., 2015), and these changes in the tide
- may have contributed towards the observed changes in ESL at some sites. To determine changes in
- 99 storm surge activity accurately any non-meteorological influence, such as non-meteorological MSL
- fluctuations, tidal variations and tide-surge interactions, should be removed.
- Tide-surge interaction is an important component to consider and occurs for two main reasons
- 102 (Horsburgh and Wilson, 2007). First, wind stress is more effective at generating storm surges at low
- tide, compared to high tide, because of the reduced water depth at low tide. Second, the greater water
- depth present during a positive surge increases the speed of tidal wave propagation, often resulting in
- the observed high water occurring before predicted high water (Wolf, 1981; Pugh and Woodworth,
- 106 2014). Tide-surge interaction has been most studied in the southern North Sea, where the largest
- positive NTR are observed to occur on the rising tide (Horsburgh and Wilson, 2007). Tide-surge
- interactions have also been observed across other continental shelf regions and in shallow water
- areas, including: the English Channel (Haigh et al., 2009; Idier et al., 2012); Canada (Bernier and
- Thompson, 2007); Australia (Haigh et al., 2014); the South China Sea (Feng and Tsimplis, 2014); the
- Bay of Bengal (Antony and Unnikrishnan, 2013); and was observed during Hurricane Sandy off the
- USA east coast (Valle-Levinson et al., 2013). However, the extent to which tide-surge interactions
- occur has not been assessed for large stretches of the world's coastline.
- Recently, several studies have used the parameter 'skew surge', rather than the traditional NTR, to
- assess extreme sea levels in NW Europe (Batstone et al., 2013; Dangendorf et al., 2014), and in the
- USA (Wahl et al., 2015). A skew surge is the difference between the maximum observed sea level
- and the maximum predicted tidal level regardless of their timing during the tidal cycle. There is one
- skew surge value per tidal cycle. A skew surge is thus an integrated and unambiguous measure of the
- storm surge that represents the true meteorological component of sea level (Haigh et al., 2015). For
- the UK, Batstone et al. (2013) found that variations in skew surge heights are independent of the tidal
- level, and therefore by using them, one does not have to consider the complications of non-linear
- tide-surge interactions.
- Whatever parameter is used, understanding changes in storm surge requires analysis of low
- frequency variability, which can have a considerable effect on storm surge conditions. This is often
- done by comparing storm surge parameters to regional climatic variations, by the use of simple

- indices, typically based on sea level pressure (SLP) or sea surface temperature (SST) and gives a
- simplified description of the regional climatic conditions.
- 128 The El Nińo Southern Oscillation (ENSO) has one of the most widespread influences on climate
- variability, stretching across the Pacific and into the Atlantic. For example, the number of hurricanes
- in the Atlantic is known to reduce during strong El Nińo events (Bell and Chelliah, 2006). However,
- Menéndez and Woodworth (2010) found a small positive correlation between the Nińo 3 index and
- the magnitude of the NTR at sites between Cape Hatteras and Cape Cod. In the Caribbean, Torres
- and Tsimplis (2009) found that 2 out of the 5 sites they studied were anti-correlated with ENSO, but
- Menéndez and Woodworth (2010) found no significant relationship. Woodworth & Menéndez (2015)
- found that ESL largely followed the pattern of MSL response to ENSO. By contrast, the tropical west
- Pacific and the coast of Australia showed a negative correlation (Feng et al., 2004). Positive
- 137 correlation was observed between ENSO, the number of storms that make landfall (Feng and
- Tsimplis, 2014) and the magnitude of the NTR (Menéndez and Woodworth, 2010) in China,
- although Feng and Tsimplis (2014) found that neither ENSO nor the Pacific Decadal Oscillation
- 140 (PDO) was an indicator of a change in magnitude of ESL. Elsewhere in the Pacific, increases in ESL
- at sites in British Columbia were attributed to a strong positive trend in the PDO
- 142 (Abeysirigunawardena and Walker, 2008).
- In the North Atlantic, the North Atlantic Oscillation (NAO) is the most dominant regional climate
- signal. Marcos et al. (2009) found that the median and higher percentiles of sea level were both
- strongly correlated with NAO. However, the correlation between NAO and the NTR was weaker.
- Haigh et al. (2010) showed that there was a weak negative correlation to the winter NAO throughout
- the English Channel and a stronger significant positive correlation at the boundary with the southern
- North Sea. This latter finding is supported by Menéndez and Woodworth (2010) who found a
- positive correlation of the Arctic Oscillation (AO) and NAO, for most sites around the UK (but not
- the English Channel) and Scandinavia. In the eastern Atlantic, Talke et al. (2014) and Ezer et al.
- 151 (2014) both observed anti-correlation between NAO and their different measures of ESL.
- 152 In summary, although much research has been conducted to determine the temporal variability of
- storm surge activity on decadal and longer time-scales, the majority of past studies have focused on
- the NTR. Skew surges can quantify the meteorological component of sea level better, by removing
- the impact of phase offsets and tide-surge interactions. However, until now (to our knowledge) they
- have only been used to assess changes in storm surge activity around NW Europe and USA. Little
- research has been conducted into tide-surge interaction in many regions, and therefore it would be
- prudent to identify further regions where this may have an important impact on the magnitude of
- 159 ESL. Furthermore, few studies have examined the spatial coherence in storm surge variability along
- stretches of coastlines and between regions. This is despite the fact that regional climatic variability
- can account for much of the inter-annual and multi-decadal variability in storm surges (Marcos et al.,
- 162 2015; Wahl and Chambers, 2016).
- 163 Therefore, the overall aim of this paper is to assess the spatial and temporal variations in storm surge
- activity (and thus infer changes in storminess) over the 20th century and early part of the 21st century
- at a quasi-global scale, addressing the issues highlighted above. We build on two comprehensive
- 166 global studies undertaken by Woodworth and Blackman (2004) and Menéndez and Woodworth
- 167 (2010) and utilise an updated version of their Global Extreme Sea Level Analysis (GESLA) tide
- gauge dataset (Mawdsley et al., 2015). We have four specific objectives. Our first objective is to
- determine the extent of tide-surge interaction, at each of our 220 study sites, as this determines the

- scale of the differences between skew surge and NTR values. Our second objective is to compare
- how the use of skew surge or NTR, effects the assessment of storm surge activity. Our third objective
- is to assess the extent to which there is spatial coherence in skew surge variability, both locally (i.e.
- between adjacent tide gauge sites) and regionally (i.e. across ocean basins). Our fourth and final
- objective is to compare inter-annual and multi-decadal variations in skew surge with fluctuations in
- 175 regional climate.
- 176 The format of the paper is as follows. The data and methodology are described in Sections 2 and 3,
- 177 respectively. The results for each of the four objectives are presented in Section 4 in turn. Key
- findings are discussed in Section 5 and conclusions are given in Section 6.

179 **2 Data**

- High-resolution (i.e. at least hourly) sea level data is required to analyse storm surge characteristics.
- 181 The most comprehensive high frequency sea level dataset available is the Global Extreme Sea Level
- Analysis (GESLA) database. This dataset was originally collated by staff from the National
- Oceanography Centre (NOC) in the UK and the Antarctic Climate and Ecosystems Cooperative
- 184 Research Centre (ACECRC) in Australia. The GESLA dataset has primarily been used to assess
- changes in ESL (e.g. Woodworth and Blackman, 2004; Menéndez and Woodworth, 2010; Hunter,
- 186 2012; Hunter et al., 2013; Marcos et al., 2015) but has also been used to evaluate changes in the tides
- 187 (Woodworth, 2010; Mawdsley et al., 2015)...
- We have extended the original GESLA dataset, to include additional sites and updated the records to
- the end of 2014 (see Mawdsley et al., 2015 for details). Many records in the GESLA dataset were
- excluded from this analysis by a number of criteria designed to ensure that data were of sufficient
- length and quality for robust analysis. These criteria are detailed in Mawdsley et al. (2015) and
- resulted in 220 eligible sites, the locations of which are shown in Figure 1 (and documented in the
- 193 Supplementary Material). The sites used in this study were determined by the needs of the previous
- study on change in tidal levels (Mawdsley et al., 2015) and hence sites in the Mediterranean and
- Baltic seas have not been used, because the tide was too small to be analysed on an annual basis in
- these areas. We conducted further quality control on all records to ensure any remaining spikes, or
- datum and phase offsets were flagged and excluded from the analysis. Data clearly affected by
- tsunamis were also removed, since the occurrence of these non-climate related events are
- unpredictable and can affect results. Small tsunami signals are difficult to separate from the NTR,
- and therefore some events remain in the dataset. Tide gauge measurements are deemed acceptable if
- 201 they have an accuracy of less than 1 cm, according to the Inter-governmental Oceanographic
- 202 Commission (IOC; 2006). Many modern day instruments are accurate to approximately 3 mm, but all
- instruments used in this study will meet the minimum requirements of the IOC.
- We used 8 climate indices: the Atlantic Multi-decadal Oscillation (AMO), AO, NAO, Nińo 3, Nińo
- 4, North Pacific (NP), PDO, Southern Oscillation Index (SOI). The NAO index was downloaded
- from the Climate Research Unit of the University of East Anglia (http://www.cru.uea.ac.uk/cru). The
- other indices were obtained from the National Oceanic and Atmospheric Administration (NOAA)
- 208 (http://www.cpc.ncep.noaa.gov).

3 Methodology

- 210 At each of the 220 study sites, the observed sea level record was separated into its three main
- component parts for each year: MSL, tide and NTR (Pugh and Woodworth, 2014). We followed the

212 same method as detailed in Mawdsley et al. (2015), and used their technique for extracting the time 213 and magnitude of tidal high waters (HW), from here on described as predicted HW. For every 214 predicted HW at each site, we calculated a skew surge value. Batstone et al. (2013) used a method 215 that identified the maximum predicted and observed water levels between successive low waters. 216 However, we found this approach was not appropriate in mixed tidal regimes, and given the global 217 nature of this study we developed another method that works across all tidal regimes. We calculated 218 skew surges by finding the largest local maxima in the observed sea level, within a ±3 hour window 219 of the time of each predicted HW (Figure 2). Most observed HW occurred within this window, but if 220 no observed HW were found during this window we extended it to ± 6 hours. In a mixed tidal regime, 221 the coupling of each observed HW to each predicted HW is more complicated. Therefore, we 222 introduced two criteria to ensure that the observed HW is primarily caused by the predicted HW to 223 which it is coupled. Firstly, if the predicted HW is between double low tides we do not assign an 224 observed HW. Secondly, if a second predicted HW is closer in time to an observed HW than its 225 coupled predicted HW, we remove the coupling between that predicted and observed HW. These 226 caveats mean that some predicted HW did not have an associated observed HW, but this method 227 captured a mean of 95% of observed HWs at all sites. Two sites (Bunbury and Hoek van Holland) 228 had an observed HW assignment less than 80%, because many observed HWs occurred around 229 double low tides and were removed.

230 We then examined the differences between the skew surge and NTR time series, at each of our 220 231 study sites, and determined the extent of tide-surge interaction. Initially we compared the maximum 232 values of skew surge and NTR from the entire time series, where concurrent values in both time 233 series occur for an event at each site. For example, the maximum NTR at Galveston, USA was 234 generated by Hurricane Ike in September 2008, however, the tide gauge broke just before the 235 predicted HW and no corresponding skew surge value for this particular tidal cycle could be 236 calculated. We also compared the maximum skew surge value with the maximum NTR at high water 237 (if tide-surge interaction is negligible you would expect these two values to be the same). We used 238 the chi-squared (χ 2) test, which was first used for sea level studies by Dixon and Tawn (1994) but 239 was modified by Haigh et al. (2011) to quantify the level of tide-surge interaction at each site. The 240 χ^2 test calculates the probability that the observed dataset is different to an expected dataset. In this 241 case, if the two are different then it demonstrates that tide-surge interaction is significant. Dixon and 242 Tawn's (1994) approach, from here on called the tidal-level method, involved splitting the 243 astronomical tidal range into five equi-probable bands. If the tide and NTR were independent 244 processes, the number of NTR per tidal band would be equal, but if interaction is significant the 245 number of NTR per tidal band would differ. As Haigh et al. (2010) pointed out, this method does not 246 distinguish that interaction tends to be different on the ebb and flood phases of the tide (Horsburgh 247 and Wilson, 2007). Haigh et al. (2011) therefore modified the method to compare the relative timing 248 of the peak NTR to the predicted HW, and this method is from here on called the tidal-phase 249 method,. The tide was divided into 13 hourly bands between 6.5-hours before and after high water. 250 With no tide–surge interaction the expected number of occurrences in each of the 13 bands would be 251 the same. See Haigh et al. (2010) for the mathematical details. We use the same 13 hourly bands to 252 assess tide-surge interaction in the tidal-phase method, but use 6 equi-probable bands for the tidal-253 level. The results from both methods are based on the largest 200 NTR events, where an event is 254 defined by a 72-hour window centred on the peak NTR, to ensure that each NTR peak is 255 independent. Statistical significance for the $\chi 2$ test is given for a p-value <0.05.

Next, we assessed the long-term trends in skew surge time-series, at each site and compared these to trends calculated from the NTR time-series. We used the percentiles method (e.g. Menéndez and

- 258 Woodworth, 2010; Haigh et al., 2010), which ranks the parameter values for each year. The 50th
- 259 percentile of the NTR time-series (the median) approximates to zero, while the 99.9th percentile is
- 260 about the level of the 8th highest hourly sea level value. For skew surges, the tidal regime at each site
- affects the annual number of HWs. In semi-diurnal regimes there are approximately 705 skew surge 261
- 262 values a year, whereas for a diurnal regime an average of 352 skew values would occur. Therefore,
- 263 the 99th percentile represents a value between the 4th and 7th highest values in the skew surge time
- 264 series. Trends were calculated for these percentiles, using linear regression, while standard errors
- 265 were estimated using a Lag-1 autocorrelation function to allow for any serial autocorrelation in the
- 266 time-series (Box et al., 1994). From here on, when we use the term 'significant trends', this signifies
- that the trends are statistically (at 95% confidence level) different from zero. 267
- 268 We chose high percentiles because they represent the largest events at each site, but the inter-annual
- 269 variability present in the higher percentile time-series can obscure the inter-decadal variability and
- 270 secular trends. To assess the extent to which there is spatial coherence in skew surge variability, we
- 271 calculated a correlation coefficient between the skew surge percentile time-series for each pair of
- 272 sites. We identified groups of sites, along a stretch of coastline, where the correlation between them
- 273 was high, and designated them as coherent regions. We created regional skew surge indices by
- 274 calculating the mean of the de-trended and normalised time-series of the 99th percentile of skew
- 275 surge for each site in that area. We only derived regional indices for the period from 1970-2010,
- 276 when there was sufficient overlap of data among sites in each region, but increase the temporal
- 277 comparison by comparing individual long-time series from each region. We filtered the regional
- 278 skew surge indices using a locally regressed least squares (Loess) approach (Cleveland and Devlin,
- 279 1988), which through testing gave the lowest standard error. This non-parametric method combines a
- 280 multiple regression model with a nearest-neighbour model. Each point of the loess curve was fitted
- 281 using local regression, using a 2nd degree polynomial to the points within a 10-year window centred
- 282 on that point. These filtered time-series are used to assess the temporal variations in the regional
- 283 skew surge indices and the correlation of those indices between each other and against the regional
- 284 climate indices, listed in Section 2. The significance of the correlation between the different regional
- 285 skew surge indices and between them and the climate indices, is determined by using the Lag-1
- 286 autocorrelation function (Box et al., 1994).

287 4 **Results**

288

4.1 **Tide-surge interactions**

- 289 Our first objective was to identify any tide-surge interaction, at each of the 220 study sites, and we
- 290 did this using the 4 methods detailed in Section 3. The difference between the maximum skew surge
- 291 value and the maximum NTR over the whole time series, is shown for each site in Figure 3a. We
- 292 expect small differences at sites where tide-surge interaction is negligible. Results shows that the
- 293 difference is predominantly largest in regions surrounded by shallow bathymetry, such as the German
- 294 Bight, Northern Australia, the Gulf of Panama and parts of the east coast of North America.
- 295 However, there are other sites with large differences, including: sites in northern Australia (Port
- 296 Hedland, Broome, Wyndham, Townsville and Bundaberg); Easter and Wake Islands in the Pacific
- 297 Ocean; Funchal on Madeira, Portugal; and Yakutat in Alaska. At 120, 80 and 20 sites, the difference
- 298 is larger than 10 cm, 20 cm and 50 cm, respectively. When we calculate the difference between the
- 299 maximum skew surge and the maximum NTR observed at the time of predicted HW we find that 137
- 300 sites have a value of zero, as shown in Figure 3b. However, sites in the North Sea, the US east coast,

- 301 north-west Australia and a few other individual locations have non-zero values which suggests that in
- these regions the tide-surge interaction shifts the peak in NTR away from predicted HW.
- Figures 3c-d present the magnitude of the χ^2 test statistic as a coloured dot (where p < 0.05) and a
- 304 black dot where no significant difference was found between the observed and expected datasets. The
- results for the tidal-level method are shown in Figure 3c, and show that tide-surge interaction is
- statistically significant (95% confidence) at 130 of the 220 sites (59%). These sites include those
- 307 listed above, which are mainly in shallow regions, but also include sites on the Malay Peninsula and
- along the coast of Washington and Oregon, USA. The results for the tidal-phase method, are shown
- in Figure 3d, and show that tide-surge interaction is statistically significant at 175 of the 220 sites
- 310 (81%). As mentioned earlier, Haigh et al. (2010) modified Dixon and Tawn's (1994) original χ2 test
- 311 statistic as it did not distinguish that interaction tends to be different on the ebb and flood phases of
- the tide. Interestingly, these results show the tidal-phase method identifies a greater number of sites
- at which tide-surge interaction is statistically significant.
- At several sites the differences between the maximum skew surge and NTR values are large, but the
- 315 χ 2 statistic values are small, and this is most often caused by the impact of one large storm. For
- example, at Wake Island, Pacific, it is Typhoon Ioke in 2006 (skew surge = 0.97 m, NTR = 1.45 m),
- at Broome, Australia it is Cyclone Rosito in 2000 (skew surge = 0.82 m, NTR = 2.24 m) and for
- Townsville, Australia it is Cyclone Yasi in 2011 (skew surge = 0.93 m, NTR = 2.10 m). At Easter
- Island, Chile the event in June 2006 is a high frequency signal, similar to seiching, but further
- research is needed to determine its cause (skew surge = 0.51 m, NTR = 1.18 m).
- The difference between skew surges and NTRs at a site can vary considerably between individual
- events as a result of the timing of the peak in the NTR relative to the predicted HW. This is
- 323 illustrated in Figure 4, for 8 selected sites. The scatter sub-plots show the magnitude of the 200
- 324 largest NTR events plotted against the magnitude of the associated skew surge. The histogram sub-
- plots show the time of the peak in NTR for 200 events relative to time of predicted HW. The colours
- on each plot display the maximum NTR (green), the top 10 NTRs (red), the top 25 NTRs (blue) and
- 327 the remainder of the top 200 NTR's (black). At Atlantic City, USA (Figure 4a), Galveston, USA
- 328 (Figure 4d) and Naze in Japan (Figure 4f), the largest skew surge and largest NTR occurred during
- 329 the same event. However, at the other selected sites, the timing of the peak NTR relative to the HW
- means that the largest skew surge and largest NTR are not coincident. For example, at Immingham,
- 331 UK, the maximum NTR occurred 6 hours before predicted high water and because the mean tidal
- range (MTR; as defined by Mawdsley et al. (2015)) is 4.8 m, the magnitude of the skew surge was
- Talige (WTK, as defined by Mawusley et al. (2013)) is 4.8 m, the magnitude of the skew surge was
- only the 56th largest from the top 200 NTR events (Figure 4e). The timing relative to predicted HW
- is less important where MTR is small. At Galveston, USA (MTR = 0.24 m) for example, the largest
- NTR (with the values caused by Hurricane Ike removed) occurred during Hurricane Carla in 1961.
- The peak NTR occurred at the same time as predicted HW, and 7 of the 10 largest events occur
- within 3 hours of predicted HW (Figure 4d).
- As mentioned earlier, tide-surge interaction has been most studied in the southern North Sea, where
- 339 the largest positive NTR tend to occur on the rising tide and not at high water. This pattern can be
- 340 clearly observed in the results for Immingham shown on Figure 4e. However, these distributions vary
- around the world. For example, at Fremantle in Australia (Figure 4c) tide-surge interaction appears to
- lead to most peaks in NTR occurring near the time of predicted HW. For Charleston (Figure 4b) and
- Seattle (Figure 4h) in USA, the majority of peaks in NTR occur on the ebb tide.

344 4.2 Skew Surge and Non-tidal Residual Comparison

- 345 Our second objective was to determine if using skew surge to assess changes in storm surge activity,
- 346 gave different results compared to using the NTR. As we identified in the section above, tide-surge
- 347 interaction is evident at a large proportion of the study sites, suggesting that trends in skew surges
- 348 and NTR may also differ. The trends calculated for the 95th, 99th and 99.9th percentiles of the NTR
- 349 are plotted in Figure 5, against the trends in skew surge time-series for the same three percentiles.
- 350 Given the differences in sampling of the two parameter, as summarized in Section 3, comparisons of
- 351 trends in different percentiles gives an understanding of how to relate the percentiles of the two
- 352 parameters to each other. If the trends were the same between skew surge and NTR, all points would
- 353 lie along the 1:1 ratio line shown on each figure. Trend differences between the skew surge and the
- 354 NTR are generally small, with trends of the same percentiles of skew surge and NTR showing the
- 355 closest comparison (i.e. the closest 1:1 match occurs between the 99th percentile of NTR and the
- 356 99th percentile of skew surge). The colour of each dot in Figure 5 represents the height of MTR at
- 357 that site. Sites with the largest difference between trends in skew surge and NTR typically have a
- 358 large MTR. These sites include Broome, Australia, Ilfracombe, UK and Hoek van Holland,
- 359 Netherlands, and these sites also have a large tide-surge interaction as quantified by the χ^2 test
- 360 statistics (Figure 3b and 3c). At three further sites, Calais, France, Darwin, Australia and Eastport,
- USA, the trend in skew surge is significantly larger than the trend in NTR (i.e. the 95% confidence 361
- 362 intervals of the two trends do not overlap). The trends at Calais and Eastport change from significant
- 363 negative trends (at the 95% level) to positive trends that are significant at the 66% level. The root
- 364 mean squared error (RMSE) between skew surge trends and NTR trends are listed for each plot on
- Figure 5. The RMSEs are largest for the 99.9th percentile, since trends in this percentile can be 365
- 366 affected by individual large events.
- 367 The time-series of the 99th (blue) and 99.9th (red) percentiles of skew surges are presented in
- 368 Figure 6 for selected sites, along with the linear trends in these time-series and the corresponding
- 369 95% confidence intervals. The variability around the 99.9th percentile, which captures only the
- 370 annual maximum of skew surge, is large relative to the magnitude of the linear trend and therefore
- 371 very few significant trends can be detected. Therefore we use the 99th percentile of skew surge
- 372 throughout the rest of the paper. Previous studies, including Menéndez and Woodworth (2010), used
- 373 the 99th percentile of NTR, so our choice allows direct comparison with the results of that study.
- 374 Linear trends calculated for the 99th percentile of skew surge and NTR are shown for each site in
- 375 Figure 7a and 7b respectively. Significant trends are shown with larger dots, with the colour
- 376 representing the magnitude of the trends. Overall there are few significant trends in skew surge time-
- series, with significant negative trends at 18 sites and significant positive trends at 11 sites. For the 377
- 378 NTR there are significant negative trends at 33 sites and significant positive trends at only 5 sites.
- 379 There are 15 sites with negative trends in both parameters, and 4 sites with positive trends in both.
- Trends were calculated at sites with enough years for the last 20, 40, 60 and 80 years, and compared 380
- 381 to the trend of the entire time series. These results are presented in Supplementary material and show
- 382 that the number of positive and negative trends are roughly similar, and low in relation to the number
- 383 of sites. Despite the low numbers of sites with significant trends there are some regions with
- 384 consistent trends between neighboring stations, such as coherent decreases around north Australia
- 385 and the Atlantic coast of southern Europe.

386

4.3 Spatial variability of skew surge

- 387 Our third objective is to assess the extent to which there is spatial coherence in skew surge
- 388 variability, both locally (i.e. between adjacent tide gauge sites) and regionally (i.e. across ocean

- basins). For each site in turn, correlation coefficients were calculated between the unfiltered 99th
- percentile time series at that site and each of the other 219 sites. The results are shown in Figure 8.
- 391 There are distinct regions where strong positive correlations occur among neighbouring sites. These
- include the north-east Pacific, north-west Atlantic and sites in northern Europe. Interestingly, sites on
- 393 the west coast of the US are weakly anti-correlated (at the 66% level) with several sites in northern
- 394 Europe.
- 395 The strong correlation between groups of sites implies that we can create regional skew surge indices
- that represent the average skew surge conditions for a particular region; similar to what other studies
- 397 have done for MSL (e.g. Shennan and Woodworth, 1992; Woodworth et al., 1999, 2009; Haigh et al.,
- 398 2009; Wahl et al., 2013; Thompson and Mitchum, 2014; Dangendorf et al., 2014). We identified 8
- regions, where a large density of sites meant that strong positive correlations existed between them.
- 400 These regions, and the sites of which they are comprised, are detailed in Table 1 and include the:
- 401 north-east Pacific (NEP), Gulf of Mexico (GOM), north-west Atlantic South (NWA-S), north-west
- 402 Atlantic North (NWA-N), North Sea (NS), west Australia (WAUS), east Australia (EAUS) and Japan
- 403 (JAP).
- 404 An example of the creation of a regional index is shown in Figure 9 for the north-east Pacific. The
- de-trended, normalised time-series from each of the 11 selected sites in the region are plotted in
- Figure 9a, with an arbitrary offset. These time series are overlaid in Figure 9b. The thicker red lines
- shows the regional time-series that has been created by averaging the de-trended, normalised time-
- series for each of the 11 sites. The locations of the 11 sites used to calculate the regional index are
- shown in Figure 9c, as red dots. Similar figures for the other 8 regions are shown in the
- 410 supplementary material.
- There is considerable year-to-year variability in the 8 regional indices. To better investigate the inter-
- decadal variability we applied a Loess filter to each of the 8 regional skew surge indices, and the
- filtered time series are shown in Figure 10a. Concurrent peaks in skew surge are observed in multiple
- 414 regions, most notably in 1992-93 in the north-west Atlantic (North and South indices) and the North
- Sea. Peaks in skew surge in the southern North Atlantic throughout the 1990s appear to lag peaks in
- the Gulf of Mexico by approximately one year. Storm seasons for these regions are summer and
- winter respectively and the lag may be a result of this or a delay in the response to changes in
- 418 regional scale climatology.
- 419 Correlations among the 8 regional skew surge indices are shown in Figure 11b. Between many
- regions, there is a strong correlation (r > 0.5), but at the 95% level these are not significant, due
- largely to the reduction in the number of effective observations when autocorrelation is accounted
- for. Strong correlations exist between: the two north-west Atlantic indices (r = 0.65, p = 0.02), the
- Gulf of Mexico and both two north-west Atlantic indices (South: r = 0.37, p = 0.33; North: r = 0.31,
- 424 p = 0.4), the North Sea and north-west Atlantic South (r=0.65, p = 0.12). Therefore, only this last
- 425 correlation is significant at the 80% level.
- The regional skew surge indices were only calculated for the period 1970-2010, because fewer sites
- with valid data outside of this period increases the variability in the indices. To allow longer temporal
- 428 comparisons between regions, we selected individual sites within each region that were both long and
- highly correlated with the regional index. The 8 sites with long records, across the 8 regions, are
- shown in Figure 10b. Note, these time series have also be subjected to the same Loess filter, applied
- 431 to the regional time series. The simultaneous peak in the 1990s, mentioned above, is also present in
- 432 the individual sites. However, a peak in the signal in the filtered time series at Charleston and

- 433 Atlantic City, USA in the 1960s is not clear at Immingham, UK. The reverse is true in the late 1980s,
- 434 where an increase at Immingham is not present at Charleston or Atlantic City.

4.4 Comparison of skew surge to climate indices

- 436 Our fourth objective is to compare inter-annual and multi-decadal variations in skew surge with
- 437 fluctuations in regional climate. Correlation coefficients were calculated between the 8 regional skew
- 438 surge indices and each of the 8 regional climate indices. The results are shown in Figure 12, with
- 439 statistically significant correlations represented by a cross.
- 440 There are no statistically significant correlations at the 95% level, again largely because of the large
- 441 degree of autocorrelation in the filtered time-series. Strong positive correlations (r > 0.5) occur
- 442 between: the North Sea and NAO (r = 0.60, p = 0.28), the Gulf of Mexico and Nińo 4 (r = 0.52, p = 0.58), the Gulf of Mexico and Nińo 4 (r = 0.52, p = 0.58).
- 443 0.19) and western Australian and SOI (r = 0.59, p = 0.31). Strong negative correlations (r < -0.5)
- 444 occur between the north-east Pacific and AO (r = -0.57, p = 0.28) and NAO (r = -0.50, p = 0.40), the
- 445 Gulf of Mexico and AO (r = -0.53, p = 0.32), western Australia and NP (r = -0.56, p = 0.28), and
- eastern Australia and Nińo 4 (r = -0.52, p = 0.19). The correlations detailed above that involve Nińo 4 446
- 447 are the only correlations significant at the 80% level.
- 448 The peak observed in the north-east Pacific index in 1997-98 (Figure 10a), corresponds to one of the
- 449 strongest El Nińo events in the time-series. The peak observed in both the Seattle record and the NEP
- 450 index in 1982-83 corresponds to another strong El Nińo event, however, the El Nińo event of 1972 is
- 451 not evident in the skew surge time series. Also, the typically positive Nińo 3 values observed through
- 452 the early 1990s coincide with a trough in the north-east Pacific index. The presence of a peak in
- 453 north-east Pacific index during only the strongest El Nińo events suggest a complex relationship
- between skew surge and the magnitude of variability in regional climate. 454

455 5 **Discussion**

- 456 One of the key goals of this paper was to determine if different results are obtained when using skew
- 457 surge to assess changes in storm surge activity, compared to the more traditional NTR. As Horsburgh
- 458 and Wilson (2007) showed, while the NTR primarily contains the meteorological contribution termed
- 459 the surge, it may also contain harmonic prediction errors or timing errors, and non-linear interactions,
- 460 which can bias analysis of storm surges. It is for this reason that we wanted to assess the alternative
- 461 use of skew surges. The advantage of using skew surge is that it is an integrated and unambiguous
- 462
- measure of the storm surge (Haigh et al., 2015). Changes in skew surges have only previously been
- 463 assessed (to our knowledge) at sites around the NW Europe (Batstone et al., 2013; Dangendorf et al.,
- 464 2014) and the USA (Wahl et al., 2015). Both of these regions generally display semi-diurnal tidal
- 465 behaviour, but our method works well in all tidal regimes.
- 466 We found that significant tide-surge interaction occurs at 130 of the 220 sites analysed (59%) based
- on the tidal-level method, and 175 sites (81%) based on tidal-phase approach. These sites include 467
- 468 those previously reported, as well as regions not previously identified in the literature, such as the
- 469 Gulf of Panama and the Malay Peninsula. We also found that tide-surge interaction is not limited to
- 470 locations with large adjacent areas of shallow bathymetry. Smaller but still statistically significant
- 471 interactions occur along the Pacific coast of North America, on a number of Pacific Islands and
- 472 around the Iberian Peninsula. The topography of these sites is highly variable. Some sites are in
- 473 shallow water such as Willapa Bay, USA, which is in a large bay, and Astoria, USA, which is
- 474 influenced by the Columbia River. Other sites are on volcanic islands rising steeply from the ocean

- floor, such as Papette, French Polynesia and Pohnpei, the Federated States of Micronesia. For both
- 476 these island sites there is an increased frequency of peaks in NTR around the time of predicted HW, a
- pattern that is also observed at Galveston, USA (Figure 4d).
- In some regions the timing of the peak NTR relative to tidal-phase, and therefore the level of tide-
- surge interaction is site specific. For example, around the UK, peak NTR usually occurs away from
- predicted HW (Horsburgh and Wilson, 2007; Haigh et al., 2010; Olbert et al., 2013), and in the North
- Sea Horsburgh and Wilson (2007) showed that the external surge component will always peak away
- 482 from predicted HW. However, at Larne and Bangor in Northern Ireland, peak NTR most frequently
- 483 occurred at predicted HW (Olbert et al., 2013). These sites have similar tidal conditions and are
- 484 geographically close but highlight that small changes in bathymetry and tidal range can influence the
- 485 extent of tide-surge interaction.
- 486 Individual storm characteristics vary from the average pattern, and where these deviations occur in
- 487 the largest storm surges the difference in skew surge magnitude can be important. At Wake Island in
- 488 the Pacific, Typhoon Ioke generated a NTR of 1.5 m but a skew surge of only 1.0 m, because the
- peak NTR for this event occurred 5 hours before predicted HW (see Figure A3.10 in Supplementary
- Material, Site 434). However, no significant tide-surge interaction is observed at this site and the
- 491 peak NTR for an event like Typhoon Ioke could have occurred at predicted HW. Conversely, at
- Brest, France, where significant tide-surge interaction meant that peaks in NTR usually occurred
- away from predicted HW, the maximum NTR (caused by the so-called Great Storm in October 1987)
- occurs at the same time as predicted HW. Therefore, although the skew surge is a more reliable
- indicator of the average meteorological influence on sea level, individual storm surges may have
- 496 different characteristics. Parameterisation of any physical process aims to use one value to represent a
- complex system, and this must be considered when we use skew surge in ESL calculations. This is
- 498 especially true in regions with small tidal ranges or those affected by tropical cyclones. The rapid
- 499 peak in storm surge associated with tropical cyclones reduces the influence of storm surge on tidal
- 500 propagation, and may lead to a more uniform distribution of peak NTR timing relative to predicted
- 501 HW.
- Although tide-surge interaction is evident at many sites, and there are differences between skew
- surge and NTR values, we found that at most sites, the trends in skew surge are very similar to those
- in NTR. The largest differences in trends are at sites along the north-coast of Australia or the French
- coast of the English Channel, and this results in the reversal of trends at Calais and Darwin. Both
- locations have macro-tidal regimes with significant tide-surge interaction. The general similarity in
- trends means we can compare our results to previous studies which used NTR. Menéndez and
- Woodworth (2010) found more negative trends in NTR than positive trends globally. We also find
- more negative trends in NTR, but no statistically significant difference between the number of
- 510 positive and negative trends in skew surge time-series. Our findings are consistent with those of
- Wahl et al. (2015) for the US, who found a greater number of sites had significant trends in NTR
- 512 compared to skew surge. The number of sites with significant trends in skew surge and NTR may be
- generated from chance, but a formal assessment has not been made here, because of the spatially
- non-homogenous dataset. Methods such as that of Livezey and Chen (1983) could be adapted to
- assess whether the number of trends is statistically significant. Even so, there are a greater number of
- negative trends in NTR than skew surge and this may be caused by timing errors or changes in the
- see the second s
- 517 tide-surge interaction. Timing errors are particular evident in early records that have been digitised
- from paper charts and are often associated with issues with the older mechanical tide gauges (Pugh
- and Woodworth, 2014). Therefore, timing errors are more prevalent in the early part of the tide gauge

- 520 records, and if they are included in the analysis they may introduce a negative bias into the NTR
- 521 time-series. By definition, time-series of skew surges are not influenced by such timing errors.
- Another possible reason for the difference in trends is that the magnitude of the tide-surge interaction
- is changing through time, because of changes in the phase or magnitude of the tide (e.g. Mawdsley et
- al., 2015). Previous studies in the North Sea (Horsburgh and Wilson, 2007) and English Channel
- 525 (Haigh et al., 2010) however, found no significant changes in tide-surge interaction over time. We
- 526 have not investigated this, in this study.
- We found little spatial coherence in the magnitude and sign of trends among sites, mainly because
- 528 the trends are insignificant at most sites. However, in northern Australia a number of sites display
- significant negative trends in skew surge (Figure 7) and in NTR, which is consistent with Menéndez
- and Woodworth (2010), while our findings also support their research showing positive trends at
- sites in the Gulf of Mexico and along the Atlantic coast of Florida. However, most other findings
- vary from those of Menéndez and Woodworth (2010). We find a decrease at sites in southern Europe,
- and an increase at a number of sites in southern Australia. No coherent trend along the north-east
- coast of America is observed in this study, which agrees with Zhang et al. (2000) but contradicts the
- increase found in this region by both Menéndez and Woodworth (2010) and Grinsted et al. (2014).
- 536 Differences between our findings and those of Menéndez and Woodworth (2010) may be the result of
- further quality control, or the inclusion of new data, which along the north-east coast of America
- included large storms surges in 2010 and 2012, generated by Hurricanes Irene and Sandy,
- respectively. Figures A3.1 to 3.4, in the supplementary material, show that trends over the last 20-80
- years change depending on the period studied, and therefore extra data can change results. In other
- studies of ESL, changes may also be caused by the inclusion of tide, such as the increases in New
- York (Talke et al., 2014), western Northern America (Bromirski et al., 2003; Cayan et al., 2008;
- Abeysirigunawardena and Walker, 2008) and the German Bight (Mudersbach et al., 2013. Mawdsley
- et al. (2015) observed significant increases in tidal HW in all these regions, and we speculate that this
- has contributed towards the observed increase in ESL, in other studies, and the lack of trends in skew
- surges identified by this paper in these areas. With the growing literature regarding changes in tide
- 547 (e.g. Jay, 2009; Woodworth, 2010; Pickering et al., 2012; Pelling et al., 2013; Mawdsley et al.,
- 548 2015), it is essential that studies of storm surge use parameters that just relate to meteorological
- changes and identify other drivers of change, such as the tide or tide-surge interaction.
- The number of statistically significant trends is low, in part, because of the large inter-annual
- variability in the high percentiles of skew surges. The creation of filtered regional skew surge indices
- removed the high frequency variability and helped to reveal underlying inter-decadal variability and
- the spatial coherence between regional signals. However, despite strong correlations between some
- regions around the North American coastline and across the Atlantic to the North Sea, none of the
- correlations are significant at the 95% level. Just prior to completing our study, we learnt of a similar
- correlations are significant at the 75% level. Sust prior to completing our study, we learnt of a similar
- 556 investigation by Marcos et al. (2015). Using the GESLA dataset, they showed that the intensity and
- frequency of ESL unrelated to MSL display a regional coherence on decadal time-scales. Their
- finding points towards large-scale climate drivers of decadal changes in storminess (Marcos et al.,
- 559 2015). The string correlations between neighboring sites show that these large scale climatic drivers
- are important, but there significance is difficult to assess in relatively short datasets have a high
- degree of temporal auto-correlation.
- 562 Comparisons of regional storm surge time-series and climate indices have been undertaken in
- numerous past studies. Menéndez and Woodworth (2010) found the Nińo 3 index had a positive
- 564 correlation with the magnitude of NTR in the eastern Pacific and a negative correlation in the western

565 equatorial Pacific. The magnitude of an El Nino appears to influence the north-east Pacific index, 566 with peaks in the index associated with the largest El Nińo events in 1982-83 and 1997-98, but a 567 trough in the index during small but positive values of the Nińo 3 index in the early 1990s. Also in the Pacific the PDO was previously shown to correlate positively with sites in the northeast Pacific 568 569 (Abeysirigunawardena and Walker, 2008), however we do not find any significant correlation. The 570 findings related to the North Sea index supports previous studies (e.g. Haigh et al., 2010) that find a 571 positive correlation with the NAO, although our correlation is not significant. Studies by Ezer et al. 572 (2013) and Talke et al. (2014) found anti-correlation between the NAO and sites on the US east 573 coast, but we find very weak (and non-significant) correlations. Our method of using filtered regional 574 skew surge indices, means that although strong correlations (r > 0.5) are observed between some 575 regional skew surge indices and climate indices, they are not deemed significant at the 95% level. 576 The effect of autocorrelation in the calculation reduces the degrees of freedom (effective 577 observations) from 40 to less than 8 for all correlation calculations, and therefore increases the size of 578 the confidence intervals. The significance of correlations may improve with increased data length or 579 reduced filter size, however, filters are a widely used and during the development of the methodology 580 the 10 year Loess filter was found to give the lowest RMSE. In this study we have correlated skew 581 surge time-series against climate indices, but it would be more appropriate to use wind and pressure 582 datasets, as these are the parameters that directly cause storm surges. In the future, we hope to do this 583 using meteorological re-analysis datasets, like Bromirski et al. (2003), Calafat et al. (2013) and Wahl 584 and Chambers (2015) did to assess storm surge variability in their regional studies.

585 One of the main limitations of this study (and other studies) remains the relatively small number of 586 sites and the limited length of the time-series available. Although the GESLA dataset is probably the 587 most comprehensive collection of hourly sea level data, there are still many under-represented 588 regions in the database. The 8 regional indices we derived all cover data dense regions since this is 589 where the strongest correlations are, but even here the number of datasets longer than 40 years 590 limited the length of the regional skew surge indices. The application of the filter, which is necessary 591 to extract relationships between the datasets, meant that the confidence intervals increased and the 592 significance of the correlations decreased. There is a need for either more sites or better access to 593 data in under-represented areas, especially areas that are prone to large storm surges, such as the 594 Caribbean, the Bay of Bengal and countries around the South China Sea. Conversely, the already 595 global nature of the study does not allow for a detailed understanding of the findings presented here. 596 Further work conducted on a local to regional scale, should be undertaken to assess the mechanisms 597 that are driving the tide-surge interaction, and control its specific signature. Such assessment could 598 consider differences in the tide-surge interaction for tropical and extra-tropical storms, the influence 599 of slope angle or shelf width, or the effect of changes in bathymetry.

6 **Conclusions**

- 601 In this paper, we have used time series of skew surge to assess changes in storm surges on a quasi-602 global scale for the first time. Past studies that have assessed changes in storm surges have tended to 603 focus on the NTR, which includes contributions from non-meteorological generated factors, which 604 may bias results. This study also assessed the spatial and temporal variability in the skew surge, using 605 regional indices.
- 606 First, we determined the extent of tide-surge interaction, at each of the 220 study sites, as this 607 determines the scale of the differences between skew surge and NTR values. Using χ^2 test statistics
- we found statistically significant (95% confidence) levels of tide-surge interaction at 130 of the 220 608

- sites (59%) based on tidal-level and 175 sites (81%) based on tidal-phase. The tide-surge interaction
- 610 is strongest in regions of shallow bathymetry such as the North Sea, north Australia and the Malay
- Peninsula. However, non-standard distributions are also observed at sites on open ocean islands,
- although at these sites the peak in NTR often tended towards the time of predicted HW, rather than
- away from it as experienced in shallow water areas (such as the North Sea).
- Second, we determined if different results are obtained when using skew surges to assess changes in
- storm surge activity, compared to the more traditional NTR. At most sites the trends in skew surge
- are similar to those of NTRs. Where the differences in trends were large, the sites tended to have a
- large tidal range, such as those in northern Australia and northern France. Although at most sites the
- trends in skew surges were not statistically significant, we observed approximately equal numbers of
- positive and negative trends. However, there were more negative trends in the NTR. This suggests
- that skew surge improves the calculation of trends, because phase offsets caused by time errors are
- not present in time series of skew surges.
- Third, we examined the extent to which there is spatial coherence in skew surge variability, both
- locally (i.e. among adjacent tide gauge sites) and regionally (i.e. across ocean basins). We identified
- 8 regions, where there were strong positive correlations among neighbouring sites, and hence derived
- a regional index for each region. We observed a number of strong (r > 0.5) correlations between
- regions, including: positive correlation between the two regions on North American Atlantic coast,
- 627 positive correlation between the north-west Atlantic south and the North Sea; and negative
- 628 correlation between the North Sea and north-east Pacific. However, these trends were not significant
- at the 95% level, since the high degree of autocorrelation in the filtered dataset increased the size of
- 630 the confidence intervals.
- Finally, we compared multi-decadal variations in skew surge with fluctuations in regional climate.
- Again strong correlations were observed, but were not significant at the 95% level. Correlations
- significant at the 80% level included those between the Gulf of Mexico and eastern Australia and the
- Nińo 4 index.

635	Acknowledgments
636	This study was funded by the University of Southampton, School of Ocean and Earth Science and the
637	National Environmental Research Council (NERC). Conversations and feedback from Phillip
638	Woodworth, Neil Wells and Francisco Calafat at the National Oceanography Centre have been
639	invaluable. We thank the reviewers of the paper, whose excellent comments have improved this
640	paper. The GESLA data set was initially collated by staff from the National Oceanography Centre
641	(NOC), Liverpool in the UK and the Antarctic Climate and Ecosystems Cooperative Research Centre
642	(ACE CRC) in Australia. Extensions to the dataset were provided by: University of Hawaii Sea Level
643	Center (UHSLC), National Oceanographic and Atmospheric Authority (NOAA), British
644	Oceanographic Data Centre (BODC), Norwegian Mapping Authority (NMA), Marine Environmental
645	Data Service (MEDS); Bureau of Meteorology (BOM); and Norwegian Mapping Authority (NMA).

647 **References**

657

658

- 648 Abeysirigunawardena, D. S., & Walker, I. J. (2008). Sea Level Responses to Climatic Variability and 649 Change in Northern British Columbia. *Atmosphere-Ocean*, 46(3), 277-296. doi: Doi 650 10.3137/Ao.460301
- Araújo, I. B., & Pugh, D. T. (2008). Sea Levels at Newlyn 1915–2005: Analysis of Trends for Future Flooding Risks. *Journal of Coastal Research*, 203-212. doi: 10.2112/06-0785.1
- Batstone, C., Lawless, M., Tawn, J., Horsburgh, K., Blackman, D., McMillan, A., Worth, D., Laeger, S., Hunt, T. (2013). A UK best-practice approach for extreme sea-level analysis along complex topographic coastlines. *Ocean Engineering*, 71, 28-39. doi: http://dx.doi.org/10.1016/j.oceaneng.2013.02.003
 - Bell, G. D., & Chelliah, M. (2006). Leading Tropical Modes Associated with Interannual and Multidecadal Fluctuations in North Atlantic Hurricane Activity. *Journal of Climate*, 19(4), 590-612. doi: 10.1175/jcli3659.1
- Bernier, N., & Thompson, K. (2007). Tide-surge interaction off the east coast of Canada and northeastern United States. *Journal of geophysical research*, *112*(C6), C06008.
- Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). *Time Series Analysis: Forecasting and Control. 3rd ed.* Upper Saddle River, NJ: Prentice-Hall.
- 664 Bromirski, P. D., Flick, R. E., & Cayan, D. R. (2003). Storminess Variability along the California 665 Coast: 1858–2000. *Journal of Climate*, 16(6), 982-993. doi: 10.1175/1520-666 0442(2003)016<0982:svatcc>2.0.co;2
- Cayan, D. R., Bromirski, P. D., Hayhoe, K., Tyree, M., Dettinger, M. D., & Flick, R. E. (2008).
 Climate change projections of sea level extremes along the California coast. *Climatic Change*,
 87, S57-S73. doi: DOI 10.1007/s10584-007-9376-7
- Cleveland, W. S., & Devlin, S. J. (1988). Locally Weighted Regression: An Approach to Regression
 Analysis by Local Fitting. *Journal of the American Statistical Association*, 83(403), 596-610.
 doi: 10.1080/01621459.1988.10478639
- Dangendorf, S., Calafat, F. M., Arns, A., Wahl, T., Haigh, I. D., & Jensen, J. (2014). Mean sea level variability in the North Sea: Processes and implications. *Journal of Geophysical Research:* Oceans, 119(10). doi: 10.1002/2014jc009901
- Dixon, M. J., & Tawn, J. A. (1994). Extreme sea-levels at the UK A-class sites: site-by-site analyses.
- Emanuel, K. A., Sundararajan, R., & Williams, J. (2008). Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. . *Bulletin of the American Meteorological Society*, 89(3), 346-367.
- Ezer, T., & Atkinson, L. P. (2014). Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. *Earth's Future*, 2(8), 362-382. doi: 10.1002/2014ef000252
- Feng, X., & Tsimplis, M. N. (2014). Sea level extremes at the coasts of China. *Journal of Geophysical Research: Oceans, 119*(3), 1593-1608. doi: 10.1002/2013jc009607
- 685 Grinsted, A., Moore, J. C., & Jevrejeva, S. (2012). Homogeneous record of Atlantic hurricane surge 686 threat since 1923. *Proceedings of the National Academy of Sciences of the United States of* 687 *America, 109*(48), 19601-19605. doi: DOI 10.1073/pnas.1209542109
- Haigh, I., Nicholls, R., & Wells, N. (2009). Mean sea level trends around the English Channel over
 the 20th century and their wider context. *Continental Shelf Research*, 29(17), 2083-2098. doi:
 http://dx.doi.org/10.1016/j.csr.2009.07.013
- Haigh, I., Nicholls, R., & Wells, N. (2009). Twentieth-Century Changes in Extreme Still Sea Levels in the English Channel. *Coastal Engineering 2008, Vols 1-5*, 1199-1209.
- Haigh, I., Wijeratne, E. M. S., MacPherson, L., Pattiaratchi, C., Mason, M., Crompton, R., & George,

- 694 S. (2014). Estimating present day extreme water level exceedance probabilities around the 695 coastline of Australia: tides, extra-tropical storm surges and mean sea level. *Climate* 696 Dynamics, 42(1-2), 121-138. doi: 10.1007/s00382-012-1652-1
- 697 Haigh, I. D., Wadey, M. P., Gallop, S. L., Loehr, H., Nicholls, R. J., Horsburgh, K., Brown, J.M., 698 Bradshaw, E. (2015). A user-friendly database of coastal flooding in the United Kingdom 699 from 1915–2014. [Data Descriptor]. Scientific Data, 2, 150021. doi: 10.1038/sdata.2015.21

700

701

702

703

704

705

706

707

708

709

710

711

714

715

718

719

720

721

722

723

724

725

726

727

728

- Hartmann, D. L., Klein Tank, A., & Rusticucci, M. (2013). Observations: Ocean. In: Climate Chanage 2013: The Physical Scientific Basis. Working Group I Contribution to the Intergovernmental Panel on Climate Change 5th Assessment Report [Hurrell, J., Marengo. J., Tangang. F. and Viterbo. P. (eds.)].
- Horsburgh, K. J., & Wilson, C. (2007). Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. Journal of Geophysical Research: Oceans, 112(C8), C08003. doi: 10.1029/2006jc004033
- Hunter, J. (2012). A simple technique for estimating an allowance for uncertain sea-level rise. Climatic Change, 113(2), 239-252. doi: 10.1007/s10584-011-0332-1
- Hunter, J. R., Church, J. A., White, N. J., & Zhang, X. (2013). Towards a global regionally varying allowance for sea-level rise. Ocean Engineering, 71(0), 17-27. doi: http://dx.doi.org/10.1016/j.oceaneng.2012.12.041
- 712 Idier, D., Dumas, F., & Muller, H. (2012). Tide-surge interaction in the English Channel. *Natural* 713 Hazards and Earth System Sciences, 12(12), 3709-3718. doi: 10.5194/nhess-12-3709-2012
 - Jay, D. A. (2009). Evolution of tidal amplitudes in the eastern Pacific Ocean. Geophysical Research Letters, 36(4), L04603. doi: 10.1029/2008gl036185
- 716 Kossin, J., Knapp, K., Vimont, D., Murnane, R., & Harper, B. (2007). A globally consistent 717 reanalysis of hurricane variability and trends. Geophysical Research Letters, 34(4).
 - Lionello, P., Mufato, R., & Tomasin, A. (2005). Sensitivity of free and forced oscillations of the Adriatic Sea to sea level rise. Climate Research, 29(1), 23-39. doi: Doi 10.3354/Cr029023
 - Marcos, M., Calafat, F. M., Berihuete, Á., & Dangendorf, S. (2015). Long-term variations in global sea level extremes. Journal of Geophysical Research: Oceans. doi: 10.1002/2015jc011173
 - Marcos, M., Tsimplis, M. N., & Shaw, A. G. P. (2009). Sea level extremes in southern Europe. Journal of Geophysical Research: Oceans, 114(C1). doi: 10.1029/2008jc004912
 - Mawdsley, R. J., Haigh, I. D., & Wells, N. C. (2015). Global secular changes in different tidal high water, low water and range levels. Earth's Future. doi: 10.1002/2014ef000282
 - Menéndez, M., & Woodworth, P. L. (2010). Changes in extreme high water levels based on a quasiglobal tide-gauge data set. Journal of Geophysical Research: Oceans, 115(C10), C10011. doi: 10.1029/2009jc005997
- 729 Mudersbach, C., Wahl, T., Haigh, I. D., & Jensen, J. (2013). Trends in high sea levels of German 730 North Sea gauges compared to regional mean sea level changes. Continental Shelf Research, 65(0), 111-120. doi: http://dx.doi.org/10.1016/j.csr.2013.06.016
- Olbert, A. I., Nash, S., Cunnane, C., & Hartnett, M. (2013). Tide-surge interactions and their effects 732 733 on total sea levels in Irish coastal waters. [journal article]. Ocean Dynamics, 63(6), 599-614. 734 doi: 10.1007/s10236-013-0618-0
- 735 Pelling, H. E., Mattias Green, J. A., & Ward, S. L. (2013). Modelling tides and sea-level rise: To 736 flood or not to flood. Ocean Modelling, 63(0), 21-29. doi: 737 http://dx.doi.org/10.1016/j.ocemod.2012.12.004
- Pickering, M. D., Wells, N. C., Horsburgh, K. J., & Green, J. A. M. (2012). The impact of future sea-738 739 level rise on the European Shelf tides. Continental Shelf Research, 35(0), 1-15. doi: 740 http://dx.doi.org/10.1016/j.csr.2011.11.011
- 741 Pugh, D., & Woodworth, P. (2014). Sea-level Science: Understanding Tides, Surges, Tsunamis and

742 *Mean Sea-level Changes*: Cambridge University Press.

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

- Raicich, F. (2003). Recent evolution of sea-level extremes at Trieste (Northern Adriatic). *Continental Shelf Research*, 23(3-4), 225-235. doi: Doi 10.1016/S0278-4343(02)00224-8
- Ray, R. D. (2009). Secular changes in the solar semidiurnal tide of the western North Atlantic Ocean.
 Geophysical Research Letters, 36(19), L19601. doi: 10.1029/2009gl040217
- 747 Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., 748 Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X. 749 (2012). Changes in climate extremes and their impacts on the natural physical environment. 750 In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change 751 Adaptation. [Field, C.B., V. Barros, T.F. Stocker, D. Oin, D.J. Dokken, K.L. Ebi, M.D. 752 Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A 753 Special Report of Working Groups I and II of the Intergovernmental Panel on Climate 754 Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 755 109-230.
 - Shennan, I., & Woodworth, P. L. (1992). A comparison of late Holocene and twentieth-century sealevel trends from the UK and North Sea region. *Geophysical Journal International*, 109(1), 96-105. doi: 10.1111/j.1365-246X.1992.tb00081.x
 - Talke, S. A., Orton, P., & Jay, D. A. (2014). Increasing storm tides in New York Harbor, 1844–2013. *Geophysical Research Letters*, 41(9), 3149-3155. doi: 10.1002/2014gl059574
 - Thompson, P. R., Mitchum, G. T., Vonesch, C., & Li, J. (2013). Variability of Winter Storminess in the Eastern United States during the Twentieth Century from Tide Gauges. *Journal of Climate*, 26(23), 9713-9726. doi: 10.1175/jcli-d-12-00561.1
 - Torres, R. R., & Tsimplis, M. N. (2013). Sea-level trends and interannual variability in the Caribbean Sea. *Journal of Geophysical Research: Oceans, 118*(6), 2934-2947. doi: 10.1002/jgrc.20229
 - Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Solden, B., Zhai, P. (2007). Observations: Surface and atmospheric climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, pp. 235-336.
 - Ullmann, A., Pirazzoli, P. A., & Tomasin, A. (2007). Sea surges in Camargue: Trends over the 20th century. *Continental Shelf Research*, 27(7), 922-934. doi: DOI 10.1016/j.csr.2006.12.001
 - Valle-Levinson, A., Olabarrieta, M., & Valle, A. (2013). Semidiurnal perturbations to the surge of Hurricane Sandy. *Geophysical Research Letters*, 40(10), 2211-2217. doi: 10.1002/grl.50461
 - Vecchi, G. A., & Soden, B. J. (2007). Increased tropical Atlantic wind shear in model projections of global warming. *Geophysical Research Letters*, 34(8). doi: 10.1029/2006gl028905
 - von Storch, H., & Woth, K. (2008). Storm surges: perspectives and options. *Sustainability Science*, *3*(1), 33-43. doi: 10.1007/s11625-008-0044-2
- Wahl, T., & Chambers, D. P. (2015). Evidence for multidecadal variability in US extreme sea level
 records. *Journal of Geophysical Research: Oceans, 120*(3), 1527-1544. doi:
 10.1002/2014jc010443
- Wahl, T., & Chambers, D. P. (2016). Climate controls multidecadal variability in U. S. extreme sea level records. *Journal of Geophysical Research: Oceans*. doi: 10.1002/2015jc011057
- Wahl, T., Haigh, I. D., Woodworth, P. L., Albrecht, F., Dillingh, D., Jensen, J., Nicholls, R.J.,
 Weisse, R., Wöppelmann, G. (2013). Observed mean sea level changes around the North Sea coastline from 1800 to present. *Earth-Science Reviews*, 124, 51-67. doi:
- 789 http://dx.doi.org/10.1016/j.earscirev.2013.05.003

- 790 Wong, P. P., Losada, I. J., Gattuso, J. P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y., 791 Sallenger, A. (2014). Coastal systems and low-lying areas. In C. B. Field, V. R. Barros, D. J. 792 Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, 793 R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea & L. L. 794 White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global 795 and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 796 Intergovernmental Panel of Climate Change (pp. 361-409). Cambridge, United Kingdom and 797 New York, NY, USA: Cambridge University Press.
 - Woodworth, P. L. (2010). A survey of recent changes in the main components of the ocean tide. *Continental Shelf Research*, *30*(15), 1680-1691. doi: http://dx.doi.org/10.1016/j.csr.2010.07.002

798

799

800

801

802

803

804

805

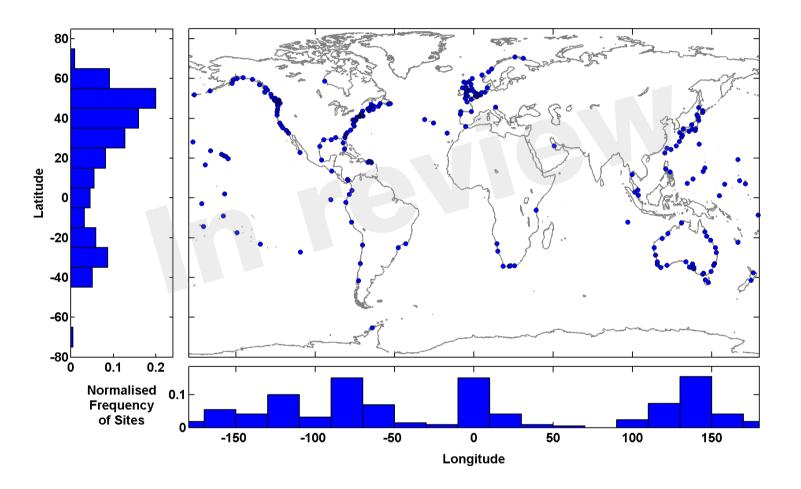
806

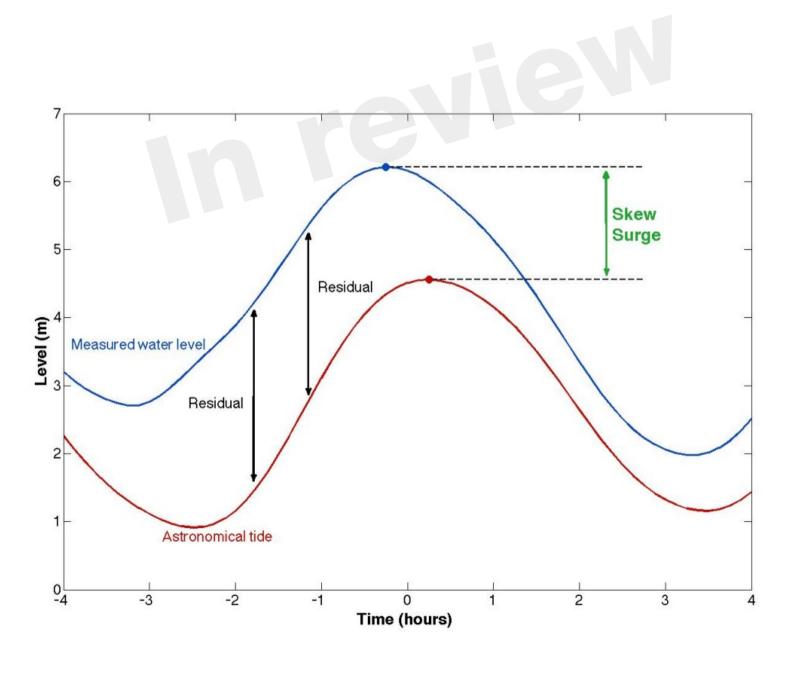
807

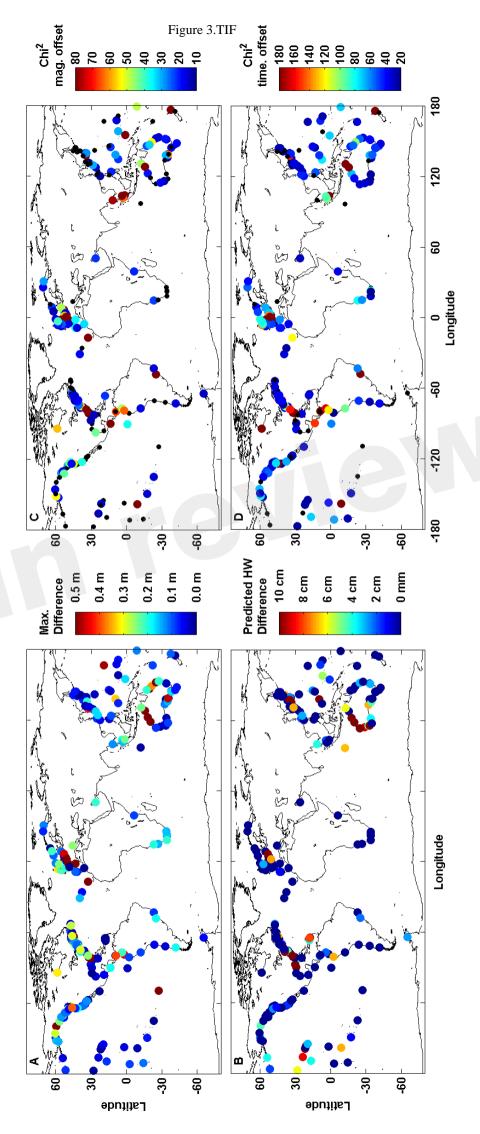
808

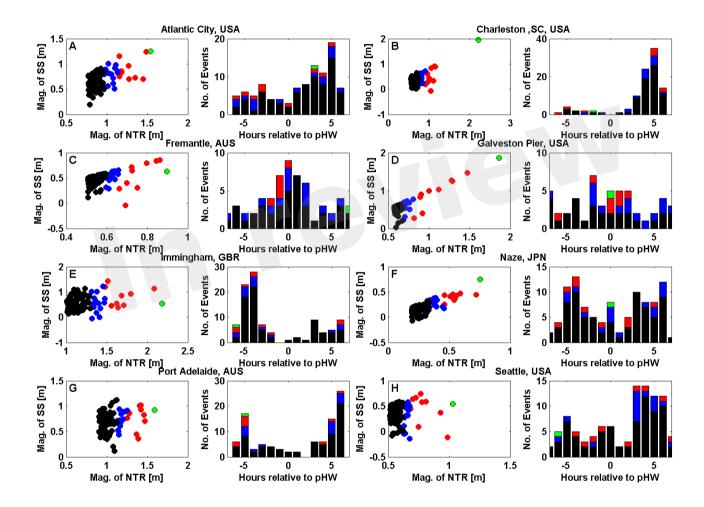
809

- Woodworth, P. L., & Blackman, D. L. (2004). Evidence for Systematic Changes in Extreme High Waters since the Mid-1970s. *Journal of Climate*, *17*(6), 1190-1197. doi: 10.1175/1520-0442(2004)017<1190:efscie>2.0.co;2
- Woodworth, P. L., & Menéndez, M. (2015). Changes in the mesoscale variability and in extreme sea levels over two decades as observed by satellite altimetry. *Journal of Geophysical Research: Oceans, 120*(1), 64-77. doi: 10.1002/2014jc010363
- Woodworth, P. L., Teferle, F. N., Bingley, R. M., Shennan, I., & Williams, S. D. P. (2009). Trends in UK mean sea level revisited. *Geophysical Journal International*, 176(1), 19-30. doi: 10.1111/j.1365-246X.2008.03942.x
- Woodworth, P. L., Tsimplis, M. N., Flather, R. A., & Shennan, I. (1999). A review of the trends observed in British Isles mean sea level data measured by tide gauges. *Geophysical Journal International*, 136(3), 651-670. doi: 10.1046/j.1365-246x.1999.00751.x
- 813 Zhang, K. Q., Douglas, B. C., & Leatherman, S. P. (2000). Twentieth-century storm activity along 814 the US east coast. *Journal of Climate*, *13*(10), 1748-1761. doi: Doi 10.1175/1520-815 0442(2000)013<1748:Tcsaat>2.0.Co;2


Table 1: Details of sites included in each of the regional indices.


Regional Index Name (and abbreviation)	Sites Included in Index
North East Pacific (NEP)	Canada : Bella Bella, Port Hardy, Tofino, Campbell River, Point Atkinson, Vancouver, Bamfield, Victoria, Patricia Bay.
	USA: Seattle, Neah Bay.
Gulf of Mexico (GOM)	USA: Port Isabel, Galveston, Grand Isle, Pensacola, St. Petersburg, Key West.
North-west Atlantic - South (NWA-S)	USA: Fernandina Beach, Mayport, Fort Pulaski, Charleston, Wilmington.
North-west Atlantic - North (NWA-N)	USA: Duck Pier, Chesapeake Bay, Baltimore, Lewes, Cape May, Atlantic City, New York (Battery), New London, Montauk, Newport, Boston, Woods Hole, Portland, Nantucket, Eastport.
North Sea (NS)	Denmark: Esbjerg.
	Netherlands: Delfzijl, Den Helder.
	France: Calais
	UK : Dover, Sheerness, Lowestoft, Immingham, North Shields, Aberdeen, Wick.
Western Australia (WAUS)	Australia: Darwin, Broome, Port Hedland, Carnarvon, Geraldton, Fremantle, Bunbury, Albany,
	Esperance
Eastern Australia (EAUS)	Australia: Wyndham, Thevenard, Port Lincoln, Port Pirie, Port Adelaide, Port Lonsdale, Victor Harbour, Geelong, Williamstown, Burnie, Spring Bay, Fort Denison, Newcastle, Brisbane, Bundaberg, Mackay, Townsville, Cairns.
Japan (JAP)	Japan: Nishinoomote, Aburatsu, Kushimoto, Maisaka, Miyakejima, Mera, Ofunato, Hachinohe, Hakodate


- Figure 1: Location map of 220 selected sites used in the analysis. Normalised frequency histograms
- are plotted along the x-axis for longitude and y-axis for latitude.
- Figure 2: Schematic example of a storm surge event and the different calculation methods for the
- NTR and skew surge.
- Figure 3: Global maps of the 220 selected sites. a) difference between the maximum NTR and the
- maximum skew surge value. b) difference between the maximum skew surge value and the
- 825 maximum NTR occurring at the same time as predicted HW c) χ2 values showing magnitude of tide
- 826 at time of peak NTR for the 200 largest NTR. d) χ2 values showing time of peak NTR relative to
- predicted HW for the 200 largest NTR event. Black dots (c-d) show non-significant values in the chi-
- squared test (based on p-values larger than 0.05).
- Figure 4: For 8 selected sites: a) Atlantic City, USA; b) Charleston, USA; c) Fremantle, Australia; d)
- Galveston, USA; e) Immingham, UK; f) Naze, Japan; g) Port Adelaide, Australia; h) Seattle, USA.
- Left, scatter plot of 200 largest NTR and the associated skew surge value, right histogram of the time
- of the peak NTR relative to predicted high water. Both plots are coloured according to magnitude
- with green showing the maximum NTR, red the top 10 NTR and blue the top 25 NTR, black are the
- remainder of the top 200 NTR.
- Figure 5: Comparison of trends for different percentiles of NTR (on the x-axis) and skew surge (on
- the y-axis). Each point is shaded according to the average mean tidal range at each site. The black
- line shows 1:1 ratio. The root mean squared error value for each plot is the value for the best fit (red
- 838 line).
- Figure 6. Time series plots of annual values of the 99th (blue) and 99.9th (red) percentile for skew
- surge at 8 selected sites: a) Atlantic City, USA; b) Charleston, USA; c) Fremantle, Australia; d)
- Galveston, USA; e) Immingham, UK; f) Naze, Japan; g) Port Adelaide, Australia; h) Seattle, USA.
- Figure 7: Shows the magnitude of the trend in the 99th percentile of (a) skew surge and (b) NTR,
- for the 220 sites analysed. Large dots show that the trend is significant at the 95% level.
- Figure 8: Correlation between each site. Each site is plotted along an imaginary coastline running
- from Alaska down the west and up the east coast of the America, across to the Atlantic to Norway,
- down through Europe around Africa, around the Indian Ocean, up the western Pacific Ocean and then
- across the Pacific Islands to the east. Sites with correlations at the 66% level are shown as bold
- 848 colour.
- 849 **Figure 9:** Creation of regional skew surge index for the north-east Pacific. A) The de-trended time
- series of the 99th percentile for each site from north to south (see Table 1 for site ID), B) All the
- time-series with the mean of all sites plotted in red, and C) the sites that are in this region highlighted
- 852 in red.
- Figure 10: Temporal variability of 8 selected regions as shown by the de-trended normalised and
- 854 then filtered magnitude of skew surge for : A) regional indices; B) selected long site from each
- region, which has a strong correlation with the regional index.


- Figure 11: a) Stacked time series of filtered regional skew surge indices, with arbitrary offset applied, b) Correlation of each filtered regional skew surge index against the others, with significant correlation represented by larger dots.
- Figure 12: Correlation of regional indices of skew surge against key climatic indices. A cross in a box shows that the correlation is significant at the 95% level.

