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Abstract

Integrate-and-express models of synaptic plasticity propose that synapses in-

tegrate plasticity induction signals before expressing synaptic plasticity. By

discerning trends in their induction signals, synapses can control destabilis-

ing fluctuations in synaptic strength. In a feedforward, perceptron framework

with binary-strength synapses for associative memory storage, we have previ-

ously shown that such a filter-based model outperforms other, non-integrative,

“cascade”-type models of memory storage in most regions of biologically-

relevant parameter space. Here, we consider some natural extensions of our ear-

lier filter model, including one specifically tailored to binary-strength synapses

and one that demands a fixed, consecutive number of same-type induction sig-

nals rather than merely an excess before expressing synaptic plasticity. With

these extensions, we show that filter-based models outperform non-integrative

models in all regions of biologically-relevant parameter space except for a

small sliver in which all models encode memories only weakly. In this sliver,

which model is superior depends on the metric used to gauge memory lifetimes

(whether a signal-to-noise ratio or a mean first passage time). After comparing

and contrasting these various filter models, we discuss the multiple mechanisms

and timescales that underlie both synaptic plasticity and memory phenomena,

and suggest that multiple, different filtering mechanisms may operate at single

synapses.
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1 Introduction

Palimpsest models of associative memory store new memories by forgetting

old ones (Nadal et al., 1986; Parisi, 1986), overcoming the catastrophic for-

getting of a Hopfield network at a critical memory loading (Hopfield, 1982).

Palimpsests achieve this by imposing bounds on synaptic strength. Some

limited experimental evidence provides support for binary- (Petersen et al.,

1998; O’Connor et al., 2005) or even ternary-strength synapses (Montgomery

& Madison, 2002, 2004), with such small numbers of strength states automat-

ically limiting synaptic strengths. Several models of palimpsest memory sys-

tems based on binary-strength and more general, discrete, multi-level synapses

exist (for example, Tsodyks, 1990; Amit & Fusi, 1994, Fusi et al., 2005, Leibold

& Kempter, 2006, 2008; Rubin & Fusi, 2007; Fusi & Abbott, 2007; Barrett &

van Rossum, 2008; Huang & Amit, 2010, 2011). These palimpsest models are

typically non-integrative, randomly expressing synaptic plasticity without re-

gard for whether the resulting changes in synaptic strength deleteriously affect

the recall of already-stored memories. The result is that the fidelity of recall of

a memory falls monotonically, often exponentially fast over time. Much effort

has been devoted to slowing down this monotonic decay in order to extend

memory lifetimes.

In order to control destabilising fluctuations in synaptic strength in both a

developmental (Elliott, 2008, 2011a,b; Elliott & Lagogiannis, 2009) and mem-

ory (Elliott & Lagogiannis, 2012; Elliott, 2014) context, we have proposed that
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synapses should integrate synaptic plasticity induction signals before express-

ing synaptic plasticity. In these “integrate-and-express” models, a synapse

seeks to discern the trend in its induction signals before expressing synaptic

plasticity. In doing so, it then tries not to express a change in synaptic strength

that may not be mandated by the recent history of its induction signals. In

a feedforward setting with a single perceptron, we showed that an integrative,

filter-based synapse outperforms non-integrative models in terms of memory

lifetimes in most regions of biologically-relevant parameter space (Elliott &

Lagogiannis, 2012). Furthermore, the ongoing synaptic plasticity induced by

the storage of further memories, leading to the monotonic fall of a memory’s

trace in non-integrative models, actually causes an initial rise in the fidelity of

recall of a memory in our model (Elliott & Lagogiannis, 2012).

Here, we extend our previous work to consider a range of natural extensions

of the particular filter model that we considered before (Elliott & Lagogiannis,

2012), comparing and contrasting various filter-based models in terms of mem-

ory performance. The model that we considered before was not particular to

binary-strength synapses but specifically allowed immediate generalisation to

multi-state synapses. However, a version of the model exists that is tailored

to saturated upper and lower strength states and is thus expected to be best-

suited to binary-strength synapses where there are no intermediate strength

states between the two saturated states. We also consider extensions of this

and our earlier model in which the filter injection protocol is modified in or-

der to gauge the sensitivity of our results to this protocol. All four variants,
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although controlling fluctuations, are nevertheless still subject to them. We

therefore also consider a model that expresses plasticity only after a fixed, con-

secutive number of same-type induction signals arise, rather than some excess

number that can occur in any order as in the other models. Such a consecutive

sequence can arise via a fluctuation, but its probability is vastly suppressed.

Our paper is organised as followed. In section 2 we introduce our general

approach and discuss in some detail our earlier work, which enables us to set

up the machinery required later. We then introduce, in section 3, the five filter

models that we compare. Next, in section 4, we derive the mean memory signal

in all five models, using as general a method as possible. Then we compare

memory lifetimes in all five filter models in section 5. In section 6 we discuss

Lahiri & Ganguli’s (2013) derivation of bounds on memory signal envelopes in

relation to our current work. Finally, in section 7, we discuss our results and

evaluate the overall approach to memory storage based on palimpsests.

2 General Approach and Earlier Results

Before proceeding with a derivation of results for the extensions of the filter

model that we examined earlier (Elliott & Lagogiannis, 2012), for orientation

and to define our general approach, we first provide a detailed summary of our

earlier work. This allows us to set up the basic machinery, of which we will

then make extensive use in later sections.
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2.1 Perceptron Formulation in Continuous Time

A single perceptron with N synapses of binary strengths Si(t) ∈ {−1,+1},

where i = 1, . . . , N indexes the synapses and t is time, is required to store a

sequence of “memories” ξα, α = 0, 1, 2, . . .. The components ξαi take values ±1

with probability 1
2
independent of both i and α, so that the ξαi are uncorrelated

both across synapses and between memories. In a discrete time formalism,

memory α is stored at time t = α. Biologically, however, discrete-time storage

is unrealistic and instead memories are more plausibly stored as a continuous-

time process. The simplest continuous-time process to consider is the Poisson

process, so we shall take the memories to be stored as a Poisson process of rate

r. For the models that we consider here, we may without loss of generality

take r = 1 Hz, as r can be reinstated in formulae with the simple replacement

t → r t, but we retain r in places for the purposes of clarity. Although memories

are stored as a Poisson process, we take the first memory ξ0 always to be stored

at t = 0− s. We use t = 0− s rather than t = 0 s so that we may refer to the

time immediately after the storage of ξ0 as t = 0 s.

The memory ξ0 is the “tracked” memory and we are interested in the fidelity

of recall of this tracked memory by the perceptron as the later memories ξα,

α ≥ 1, are stored. Changes in the synaptic strengths Si(t) induced by this

ongoing, subsequent memory storage will over time degrade and eventually

wash out the tracked memory, ξ0. We gauge the fidelity of recall of ξ0 by

tracking the perceptron’s activation in response to the tracked memory. With
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input x, xi ∈ {−1,+1}, to its N synapses, the perceptron’s activation is of the

standard form,

hx(t) =
1

N

N∑

i=1

xi Si(t). (2.1)

We are interested only in this activation and not its thresholding leading to the

perceptron’s two-level output: we only need to know whether the perceptron is

above or below firing threshold. We define the tracked memory signal to be the

perceptron’s activation upon re-presentation of memory ξ0, so just hξ0(t). We

refer to this for simplicity as just the memory signal and write h(t) = hξ0(t).

With uncorrelated memories and binary strengths ±1, memory ξ0 is still stored

by the perceptron at some later time t provided that h(t) > 0. We are not,

however, interested in the dynamics of h(t) for any particular realisation of the

sequence of memories ξα, α ≥ 0, but rather in the statistics of h(t) averaged

over all possible sequences. We define the mean and variance of h(t) to be

µ(t) = E[h(t)], (2.2)

σ(t)2 = Var[h(t)], (2.3)

where E[·] and Var[·] denote the expectation value and variance, respectively,

and the ratio µ(t)/σ(t) is the signal-to-noise ratio (SNR) of the perceptron’s

activation. We will discuss this definition of the perceptron’s SNR in relation

to the SNR based on the “ideal observer” approach in section 2.3.

The statistics of h(t) may be used to define the lifetime of memory ξ0. Many
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alternative approaches to gauging memory lifetimes exist (see, for example,

Tsodyks, 1990; Amit &Fusi, 1994; Leibold & Kempter, 2006; Huang & Amit,

2010; Elliott, 2014). The SNR µ(t)/σ(t) (Tsodyks, 1990) is in many respects

the easiest to use, but a mean first passage time (MFPT) is superior although

analytically much harder to study (Elliott, 2014). The SNR memory lifetime is

defined as the time τsnr at which the SNR reaches unity, µ(τsnr)/σ(τsnr) = 1, and

because of its simplicity, we shall almost exclusively use this definition here. For

an MFPT definition of memory lifetimes, we consider the first passage time

for any particular realisation of the memory signal h(t) to fall below firing

threshold, which here is taken to be zero. The mean over all such realisations

then defines the MFPT memory lifetime, τmfpt (Elliott, 2014). We shall use

this definition occasionally in order to compare τmfpt and τsnr.

With input x = ξα for some α, the input to the perceptron is of zero

mean and variance 1/N . We may therefore regard a synapse with strength

+1 as a “strong” synapses and one with strength −1 as “weak” (and not as

excitatory and inhibitory) because we can always add an overall constant to

these strengths and change the perceptron’s firing threshold to compensate.

It is not necessary to specify a target perceptron output for memory ξα in

a feedforward framework because we may without loss of generality consider

instead storing −ξα instead of +ξα. With this convention, ξαi is the synaptic

plasticity induction signal to synapse i upon the storage of memory α. With

ξαi = +1, the synapse should potentiate (strengthen) and with ξαi = −1, it

should depress (weaken).

8



2.2 Filter-Based Synaptic Plasticity

We now discuss how synapses response to these synaptic plasticity induction

signals for the specific filter model that we studied earlier (Elliott & Lagogian-

nis, 2012). We proposed that a synapse integrates these signals by modifying

an internal filter state, with synaptic plasticity being expressed only when the

filter reaches threshold. Potentiating induction signals increment the filter

state and potentiation is expressed only when the filter state reaches its upper

threshold, which we denote by +Θ+, with Θ+ > 0. Correspondingly, depress-

ing induction signals decrement the filter state and depression is expressed only

when the filter state reaches its lower threshold, which we denote by −Θ−, with

Θ− > 0. When the filter state reaches threshold, it is returned to the zero state

in this model. For reasons that we will explain in relation to other filter models,

we call this particular filter model the A0 filter. Let filter states be labelled by

letters such as I and J , with I, J ∈ {−(Θ− − 1), . . . ,+(Θ+ − 1)}. We do not

include ±Θ± in this set because when a filter reaches these threshold values,

it immediately leaves them. We may summarise the transitions in filter state

as follows:

ξαi = +1 ⇒





I 7→ I + 1 for I < +(Θ+ − 1),

I 7→ 0 & ⇑ for I = +(Θ+ − 1),

ξαi = −1 ⇒





I 7→ I − 1 for I > −(Θ− − 1),

I 7→ 0 & ⇓ for I = −(Θ− − 1).





(2.4)
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The arrows ⇑ and ⇓ indicate the expression of synaptic plasticity, either po-

tentiation (⇑) or depression (⇓), upon reaching filter threshold. Of course, a

strong synapse cannot express potentiation and a weak synapse cannot express

depression, so in these cases no change in synaptic strength occurs although for

this filter model, the filter state is nevertheless returned to the I = 0 state. Be-

cause we employ balanced, equiprobable induction signals, Prob[ξαi = ±1] = 1
2
,

we may consider only symmetric filters, with the upper and lower thresholds

equidistant from the I = 0 state, or Θ± = Θ, where Θ refers to the com-

mon upper and lower threshold values. Fig. 1A shows a Θ = 4 filter as a

continuous-time Markov process with potentiating and depressing induction

signals arising with rates r±, which here we take to be r± = 1
2
r, i.e. the Pois-

son rate r of memory storage multiplied by Prob[ξαi = ±1] = 1
2
.

Thinking of the filter state as represented by a (2Θ−1)-dimensional vector,

let the (2Θ− 1)× (2Θ− 1) matrix S+ be the matrix that increments the filter

state but without implementing the upper threshold process, and let the matrix

T+ implement only this upper threshold process. For Θ = 3, for example,

S
+ =




0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




and T
+ =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0




.

The matrix S+ is just a shift operator without wrap-around, while T+ sends the

I = +(Θ−1) state to I = 0. Let S− and T− be the corresponding matrices for
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decrementing filter states and implementing only the lower threshold process.

For Θ = 3,

S
− =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0




and T
− =




0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

Clearly S− = (S+)
T
, where the superscript T denotes the transpose, and T−

sends the I = −(Θ− 1) state to I = 0. The joint strength and filter state of a

synapse is represented by a 2(2Θ − 1)-dimensional vector, and we define the

first block of (2Θ− 1) entries of such a vector to correspond to the filter state

when the synapse is weak and the second block of (2Θ−1) entries to correspond

to the filter state when the synapse is strong. Let the 2(2Θ− 1)× 2(2Θ− 1)

matrices M
±
2 implement, respectively, potentiating and depressing steps. We

use a subscript “2” on such 2(2Θ − 1) × 2(2Θ − 1) matrices so that they

are easily distinguished from their (2Θ − 1) × (2Θ − 1) submatrices. Then,

schematically, we have

M
+
2 =




S+ O

T+ S++T+


 and M

−
2 =




S−+T− T−

O S−


 , (2.5)

where O denotes a (2Θ−1)× (2Θ−1) matrix with entries of zero everywhere.

The submatrix T+ in the lower left block of M+
2 indicates a change in strength

from weak to strong via the upper filter threshold process, while its appearance
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in the lower right block indicates an upper filter threshold process but without

a change in strength because the synapse is already strong. Similarly for T−

in M
−
2 .

Let the matrix

M2 =
1
2

(
M

+
2+M

−
2

)
(2.6)

represent a potentiating event with probability Prob[ξαi = +1] = 1
2
and a

depressing event with probability Prob[ξαi = −1] = 1
2
. We have that, schemat-

ically,

M2 =
1

2




S++S−+T− T−

T+ S++S−+T+


 . (2.7)

The matrixM2 averages over both induction signals at any given synapse and is

therefore the relevant matrix for averaging over the later, non-tracked memories

ξα, α ≥ 1. As t → ∞, the joint probability distribution of filter and strength

states approaches the equilibrium (or stationary or asymptotic) distribution

defined by the (right) eigenvector of M2 with unit eigenvalue. Defining first

the (2Θ− 1)-dimensional vector A with components2

AI =
1

Θ2
(Θ− |I|) , (2.8)

then the equilibrium eigenvector of M2, normalised to a probability distribu-

2We index (2Θ−1)-dimensional vector components for convenience accord-

ing to the filter state I = −(Θ−1), . . . ,+(Θ−1). Similarly, (2Θ−1)×(2Θ−1)

matrix elements are also indexed in this way.
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tion, is just, schematically,

A2 =
1
2

(
AT

∣∣AT
)T

, (2.9)

so that both strength states are equiprobable in equilibrium and the probability

distribution of filter states in equilibrium is governed by A regardless of the

strength state. Again, we use a subscript “2” on such 2(2Θ − 1)-dimensional

vectors to distinguish them clearly from the (2Θ−1)-dimensional vectors that

form their first or second blocks of entries.

It is against the background of the equilibrium distribution A2 that the

tracked memory ξ0 is stored at time t = 0− s. For synapses initially expe-

riencing ξ0i = +1, their probability distribution at t = 0 s is M
+
2A2, while

for synapses with ξ0i = −1, their distribution at t = 0 s is M
−
2A2. Let

n = (1, . . . , 1)T be a (2Θ − 1)-dimensional vector with all components unity,

and let Ω2 =
(
−nT

∣∣+nT
)T

represent the vector of synaptic strengths associ-

ated with the joint distribution of filter and strength states. The mean initial

perceptron signal µ(0) is then just

µ(0) = 1
2
ΩT

2

(
M

+
2−M

−
2

)
A2, (2.10)

since Prob[ξαi = ±1] = 1
2
. For the subsequent storage of memories ξα, α ≥ 1,

the joint distribution of filter and strength states evolves according to the

superposed matrix M2. After the storage of memory α, α ≥ 1, ξ0i = ±1
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synapses are distributed as Mα
2 M

±
2A2, where, to be clear, Mα

2 is M2 raised to

the power of α. In discrete time, with t = α only, we would then have

µ(α) = 1
2
ΩT

2M
α
2

(
M

+
2−M

−
2

)
A2, (2.11)

while in continuous time, we have

µ(t) = 1
2
ΩT

2

[
∞∑

α=0

(rt)α

α!
e−rt

M
α
2

]
(
M

+
2−M

−
2

)
A2 (2.12a)

= 1
2
ΩT

2

[
exp (rtG2)

](
M

+
2−M

−
2

)
A2 (2.12b)

= 1
2
ΩT

2 P2(t)
(
M

+
2−M

−
2

)
A2, (2.12c)

where P2(t) = exp (rtG2) is the joint filter and strength state probability

transition matrix over time t, with G2 = M2 − I2, where I2 is the 2(2Θ− 1)×

2(2Θ− 1) identity matrix.

With symmetric filters (for which Θ± = Θ) and equiprobable induction

signals, the two distributions M±
2A2 are mirror images of each other, by which

we mean that the components of M+
2A2 read in reverse order are identical to

the components of M−
2A2 read is standard order. For example, for Θ = 3, we

have

M
+
2A2 =

1
18
(0, 1, 2, 3, 2 | 0, 1, 4, 3, 2)T,

M
−
2A2 =

1
18
(2, 3, 4, 1, 0 | 2, 3, 2, 1, 0)T.
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Defining the matrix R2 to be the operator that reverses the order of the com-

ponents of such vectors,

R2 =




O R

R O


 , (2.13)

where the (2Θ−1)×(2Θ−1) matrix R has entries of unity on the anti-diagonal

rather than the diagonal and zeros elsewhere,

R =




1
. . .

1


 , (2.14)

we have that R2M
+
2A2 = M

−
2A2. Of course, we also have that R2

2 = I2.

Now, the distribution M
+
2A2 arises from synapses experiencing ξ0i = +1, while

M
−
2A2 arises from those experiencing ξ0i = −1. Synapses with ξ0i = +1 con-

tribute positively to h(t) = 1
N

∑N

i=1 ξ
0
i Si(t), while synapses with ξ0i = −1

contribute negatively. For synapses with ξ0i = −1, the roles of strong and

weak synaptic strength states are reversed in h(t). However, the mirror-image

structure of M−
2A2 also ensures that the roles of strong and weak synapses

are reversed, and also filter states are reversed, with upper and lower thresh-

olds swapping around. The reversal of strong and weak synaptic strengths

in their contribution to h(t) for ξ0i = −1 is therefore exactly cancelled out

by the mirror-image structure of M−
2A2 compared to M

+
2A2 for synapses with

ξ0i = +1. Therefore, defining the variables S̃i(t) = ξ0i Si(t), all N variables

S̃i(0) are identically-distributed random variables. We may see this explicitly
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be computing Prob[S̃i(0) = ±1]. For ξ0i = +1, we have

Prob[Si(0) = +1] =
1

2

(
1 +

1

Θ2

)
,

Prob[Si(0) = −1] =
1

2

(
1− 1

Θ2

)
,

so that Prob[S̃i(0) = ±1] = 1
2

(
1± 1

Θ2

)
, while for ξ0i = −1, we have

Prob[Si(0) = +1] =
1

2

(
1− 1

Θ2

)
,

Prob[Si(0) = −1] =
1

2

(
1 +

1

Θ2

)
,

so that Prob[S̃i(0) = ±1] = 1
2

(
1± 1

Θ2

)
, and thus the distribution of S̃i(0) is

independent of the sign of ξ0i , as stated. Moreover, because the same super-

posed transition matrix M2 = 1
2

(
M

+
2+M

−
2

)
is applied to all synapses for the

storage of subsequent memories ξα, α ≥ 1, all N variables S̃i(t) remain for

all times t ≥ 0 identically-distributed random variables. The memory signal

h(t) = 1
N

∑N

i=1 S̃i(t) is therefore the sum over N identically-distributed random

variables, so has mean and variance,

µ(t) = E
[
S̃(t)

]
, (2.15)

σ(t)2 =
1

N
Var

[
S̃(t)

]
+

(
1− 1

N

)
Cov[S̃i(t), S̃j(t)]

=
1

N

[
1− µ(t)2

]
+

(
1− 1

N

)
Cov(t), (2.16)

where E
[
S̃(t)

]
and Var

[
S̃(t)

]
are the mean and variance, respectively, of any
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one of the S̃i(t) variables, and Cov[S̃i(t), S̃j(t)] = Cov(t) is the covariance

between any (distinct) pair of them.

We may see explicitly that µ(t) is the sum over N identically-distributed

random variables by transforming −ΩT
2M

α
2 M

−
2A2 into +ΩT

2M
α
2 M

+
2A2 using

the R2 matrix:

−ΩT
2M

α
2 M

−
2A2 = −ΩT

2 R
2
2 M

α
2 R

2
2 M

−
2A2

= +ΩT
2 R2 M

α
2 R2 M

+
2A2

= +ΩT
2 (R2M2R2)

α
M

+
2A2

= +ΩT
2 M

α
2 M

+
2A2,

where we have used R2Ω2 = −Ω2, R2M
−
2A2 = M

+
2A2, and we have the key

property

R2M2R2 = M2, (2.17)

for M2 =
1
2

(
M

+
2+M

−
2

)
with Prob[ξ0i = ±1] = 1

2
. This crucial property follows

from the fact that potentiation and depression processes are treated identically

and symmetrically for Prob[ξ0i = ±1] = 1
2
, so that both synaptic strength states

and all filter states are treated identically and symmetrically. Thus,

µ(α) = 1
2
ΩT

2M
α
2

(
M

+
2−M

−
2

)
A2 ≡ +ΩT

2M
α
2 M

+
2A2 ≡ −ΩT

2M
α
2 M

−
2A2, (2.18)
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or

µ(t) = 1
2
ΩT

2 P2(t)
(
M

+
2−M

−
2

)
A2 ≡ +ΩT

2 P2(t)M
+
2A2 ≡ −ΩT

2 P2(t)M
−
2A2.

(2.19)

But ±ΩT
2 P2(t)M

±
2A2 ≡ E[S̃(t)], so µ(t) has indeed reduced to the mean of a

single S̃(t) variable from a sum over N of them. This equivalence argument

between synapses with ξ0i = +1 and ξ0i = −1 in terms of their contributions to

the tracked memory signal h(t) when Prob[ξ0i = ±1] = 1
2
means that we may

simply consider ξ0i ≡ +1 ∀i and use only M
+
2 as the transition matrix applied

to the equilibrium distribution A2 for the initial storage of ξ0.

In discrete time, because the induction signals ξαi are uncorrelated between

synapses and across memories, the covariance term in Eq. (2.16) vanishes iden-

tically and we are left with σ(α)2 = [1− µ(α)2] /N at times t = α. However,

in continuous time, despite the ξαi begin uncorrelated, driving memory storage

as a continuous-time random process induces correlations between synaptic

strengths so that in general Cov(t) does not vanish. In order to compute

Cov(t) = E
[
S̃i(t) S̃j(t)

]
− µ(t)2 (2.20)

for any (distinct) pair of synapses i and j, we must employ the probability

transition matrix that describes the joint evolution of the probability distribu-

tion for any pair of synapses. We therefore need the tensor product, and we
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may write this two-synapse transition matrix P2⊗2(t) as

P2⊗2(t) =
∞∑

α=0

(rt)α

α!
e−rt (M2 ⊗M2)

α

= exp [rt (M2 ⊗M2 − I2 ⊗ I2)] . (2.21)

Because P2⊗2(t) 6= P2(t)⊗ P2(t), we have that Cov(t) 6= 0 in continuous time.

In fact, Cov(t) > 0 for t > 0. Driving memory storage in continuous time there-

fore increases σ(t)2 and so decreases the SNR µ(t)/σ(t), although Cov(t) → 0

as t → ∞ so the decreased SNR µ(t)/σ(t) only significantly affects memory

lifetimes when they are short. Nevertheless, Cov(t) > 0 is an important addi-

tional source of noise that is not captured in a discrete time framework.

Before proceeding to summarise our earlier derivation of an explicit formula

for µ(t), we are now in a position to compare our definition of the perceptron

SNR with the ideal observer SNR.

2.3 Perceptron versus Ideal Observer Approach

We have defined the SNR µ(t)/σ(t) on the basis of the perceptron’s activation

when (re-)presented with the tracked memory ξ0,

h(t) =
1

N

N∑

i=1

ξ0i Si(t).

Although driving memory storage as a continuous-time process is, we believe,

more realistic that using a discrete-time process, the non-zero (and positive)
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covariance term in σ(t)2 in continuous time essentially forces us to consider con-

tinuous time, since otherwise we would be led to under-estimate or ignore noise

terms and so over-estimate memory lifetimes in biologically-relevant scenarios.

By focusing on the perceptron’s activation statistics, we are also naturally led

to consider an MFPT definition of memory lifetimes rather than one based on

SNRs (Elliott, 2014). Specifically, we may consider the first passage time for

h(t) to fall below firing threshold for any particular realisation of the memories

ξα, and thus the MFPT, which is averaged over all possible realisations, and

define memory lifetimes accordingly. Such a definition has several advantages

over the SNR µ(t)/σ(t), including the fact that MFPT memory lifetimes are

identical is discrete and continuous time, while SNR memory lifetimes are not

(Elliott, 2014).

In the ideal observer approach, it may appear that a different viewpoint is

taken. We follow the elegant and exceptionally clear presentation by Lahiri &

Ganguli (2013), but adapted to our own notation here. Upon the storage of

ξ0 at time t = 0− s, there is an “ideal” set of synaptic strengths, call them

Ŝi, corresponding to Ŝi = +1 for those synapses experiencing a potentiating

induction signal and Ŝi = −1 for those experiencing a depressing induction

signal. Letting Ŝ and S(t) be vectors with components of the ideal strengths

Ŝi and the actual strengths at some later time Si(t), respectively, then the

overlap Ŝ ·S(t) measures the “quality” of the storage of the memory ξ0, where

the dot “·” denotes the dot product. The SNR in the ideal observer approach
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is then defined, in discrete time, by

SNR(α) =
E
[
Ŝ · S(α)

]
− E

[
Ŝ · S(∞)

]
√

Var
[
Ŝ · S(∞)

] , (2.22)

where Si(∞) means the equilibrium strength, i.e. limt→∞ Si(t). Here, because

we take balanced processes, Prob[ξ0i = ±1] = 1
2
, we have that E[Si(∞)] = 0, but

in general E[Si(∞)] 6= 0 for unbalanced processes with Prob[ξ0i = ±1] = g±,

where g++g− = 1. Of course, a continuous-time form of Eq. (2.22) can be

written down, simply as

SNR(t) =
E
[
Ŝ · S(t)

]
− E

[
Ŝ · S(∞)

]
√

Var
[
Ŝ · S(∞)

] . (2.23)

Lahiri & Ganguli (2013) then show that

SNR(t) = 2g+g−
√
N ΩT

2

[
exp (rtG2)

] (
M

+
2−M

−
2

)
A2, (2.24)

where the denominator in the SNR has been replaced by
√
N . Note carefully

the structural similarity of Eq. (2.24) to µ(t) in Eq. (2.12b). For g± = 1
2
, we

have precisely that SNR(t) =
√
N µ(t).

This near-equivalence is, in fact, hardly surprising. Critically, the ideal

strengths Ŝi are precisely equal to the induction signals ξ0i , so that Ŝ ≡ ξ0.
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Thus,

E
[
Ŝ · S(t)

]
= E

[
ξ0 · S(t)

]

= E

[ N∑

i=1

ξ0i Si(t)
]

≡ N E
[
h(t)

]

= Nµ(t). (2.25)

The signal numerator in Eq. (2.23) is therefore, up to the overall factor of N ,

just µ(t)− µ(∞), and we can rewrite Eq. (2.23) as

SNR(t) =
E[h(t)]− E[h(∞)]√

Var[h(∞)]
=

µ(t)− µ(∞)√
[1− µ(∞)2] /N

, (2.26)

expressed purely in terms of the perceptron’s mean activation in response to

the tracked memory. The numerator µ(t) − µ(∞) is just the perceptron’s

excess mean activation above its baseline or equilibrium mean activation. For

g± = 1
2
, µ(∞) = 0 and Var[h(∞)] = [1− µ(∞)2] /N ≡ 1/N , so for balanced

potentiation and depression, SNR(t) =
√
Nµ(t) holds exactly. For unbalanced

processes,

µ(t) = ΩT
2

[
exp (rtG2)

](
g+M

+
2−g−M

−
2

)
A2, (2.27)

and, following Lahiri & Ganguli’s derivation of SNR(t), we obtain

µ(t)− µ(∞) = 2g+g−Ω
T
2

[
exp (rtG2)

](
M

+
2−M

−
2

)
A2, (2.28)
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which leads precisely to Eq. (2.24) when the variance σ(∞)2 is replaced by 1/N .

For such unbalanced processes, in an MFPT approach, we would naturally be

led to consider the MFPT for h(t) to reach µ(∞) or some threshold in excess

of µ(∞).

Because our SNR µ(t)/σ(t) (for balanced processes) or [µ(t)− µ(∞)] /σ(t)

(for unbalanced processes) and the ideal observer SNR, SNR(t), are ratios,

overall scale factors are irrelevant as they cancel out. We can then redefine the

ideal observer SNR as

SNR(t) =
µ(t)− µ(∞)

σ(∞)
. (2.29)

We thus see the principal difference between our SNR, [µ(t)− µ(∞)] /σ(t), and

the ideal observer SNR, [µ(t)− µ(∞)] /σ(∞): we use the noise in the current

signal while the ideal observer approach uses the noise in the equilibrium sig-

nal. Asking which is correct is meaningless because we may make definitions

however we wish, but we may certainly ask which is more useful, which gener-

alises more readily, and which captures more naturally and faithfully the key

dynamics limiting memory lifetimes? We have that σ(t) → 1/
√
N as t → ∞

and for all but short memory lifetimes, we may safely replace σ(t) by 1/
√
N ,

whether in discrete time or in continuous time. Thus, pragmatically speaking,

the difference between [µ(t)− µ(∞)] /σ(t) and [µ(t)− µ(∞)] /σ(∞) is largely

moot, in terms of defining memory lifetimes. In principle, however, both h(t)

and h(∞) are subject to noise and we wish to determine whether µ(t) can

be discriminated from µ(∞) at, say, the level of one standard deviation. In
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continuous time there is always more noise in h(t) than in h(∞), because

Cov(t) > 0. Therefore, σ(t) provides a stronger level of discrimination than

σ(∞): the use of [µ(t)− µ(∞)] /σ(∞) may lead us to conclude that µ(t) can be

discriminated from µ(∞), i.e. that µ(t) > µ(∞)+σ(∞), when in fact the use of

[µ(t)− µ(∞)] /σ(t) may lead us to conclude that µ(t) cannot be discriminated

from µ(∞), i.e. that µ(t) < µ(∞) + σ(t). On these grounds, it appears better,

and safer, to use [µ(t)− µ(∞)] /σ(t) rather than [µ(t)− µ(∞)] /σ(∞). Fur-

thermore, by thinking in terms of the current signal statistics rather than the

equilibrium signal statistics, we are naturally led to consider generalising the

SNR [µ(t)− µ(∞)] /σ(t) to an MFPT approach to memory lifetimes. Since

we have shown that SNR(t) is basically just the perceptron’s activation, it

makes sense to think in terms of a perceptron’s current activation because the

perceptron does not have access to its equilibrium state. Indeed, the equilib-

rium state itself may drift as the perceptron’s input statistics drift over time,

in which case the only dynamical quantity available is h(t) and its relation

to firing threshold. Moreover, with multi-level synapses with more than two

strength states, our perceptron-based SNR (or MFPT) generalises immediately

while for an ideal observer, it is unclear how Ŝ should be defined: should Ŝi

be set at its upper or lower limit depending on the sign of ξ0i ; or should it be

incremented or decremented after initialising from a random distribution, and

by how many steps; or should it be defined in some other way? Such issues

do not arise when we work purely with the perceptron’s activation h(t). Over-

all, then, we consider that the SNR [µ(t)− µ(∞)] /σ(t) is theoretically better
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motivated, sounder and more natural than [µ(t)− µ(∞)] /σ(∞), and affords

greater scope for generalisation.

2.4 Renewal Theory Approach to µ(t)

We may now turn to a recapitulation of the calculation of µ(t) for the filter

model studied earlier (Elliott & Lagogiannis, 2012). We have that

µ(t) = ΩT
2 P2(t)M

+
2A2, (2.30)

where P2(t) = exp (rtG2). In principle, the calculation of P2(t) as a matrix

exponential is straightforward and we may, if necessary, resort to numerical

matrix methods. Unfortunately, for Θ > 2 the stochastic matrix M2 (and

therefore G2 = M2 − I2) is defective, so that it lacks a complete basis of

eigenvectors. We cannot therefore compute exp (rtG2) by a standard eigen-

expansion of G2, although we could use generalised eigenvectors and the Jordan

normal form. Furthermore, because M2 is not a simple, tridiagonal matrix, its

spectrum is not, in general, easy to compute analytically.

We may circumvent these problems associated with a direct attack on P2(t)

by instead using renewal theory (Cox, 1962). First, we decompose P2(t) into

the sub-blocks

P2(t) =




P−|−(t) P−|+(t)

P+|−(t) P+|+(t)


 , (2.31)

where the submatrices are (2Θ− 1)× (2Θ− 1), and the indices A and B on
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PA|B(t) with A,B ∈ {−,+} denote a change in strength state from strength B

to strength A. The elements of these submatrices are p
A|B
I|J (t), where the lower

indices indicate a change in filter state from state J to state I. Thus, p
A|B
I|J (t)

is the probability of a transition from strength state B and filter state J to

strength state A and filter state I in a time t. Writing,

M
+
2A2 =

(
B− T

∣∣B+T
)T

, (2.32)

and recalling that ΩT
2 =

(
− nT

∣∣+ nT
)
, we have that

µ(t) = nT
[
P
+|+(t)− P

−|+(t)
]
B+ + nT

[
P
+|−(t)− P

−|−(t)
]
B−. (2.33)

If we denote the (transposed) rows of the submatrices PA|B(t) by the vectors

p
A|B
I (t), which carry a filter index I labelling the matrix row, then we may

instead write

µ(t) =
∑

I

{[
p
+|+
I (t)− p

−|+
I (t)

]
·B+ +

[
p
+|−
I (t)− p

−|−
I (t)

]
·B−

}
, (2.34)

because the nT in Eq. (2.33) merely sums over the final filter state I. We shall

use this result below.

We may explicitly compute the two terms in µ(t) in Eq. (2.34) by de-

composing the transitions PA|B(t) into those in which filter thresholds are not

reached in time t and those in which they are. Consider, therefore, transitions

in filter state without reaching either threshold. Such a process is a random
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walk between two absorbing boundaries, because if any particular realisation

of the process reaches a threshold, it is removed from the ensemble. Let fI|J(t)

denote the probability of a transition between initial filter state J and final

filter state I in time t without touching the absorbing boundaries at ±Θ. We

define

S = 1
2

(
S
++S

−
)
, (2.35)

and write J = S− I, where I is the (2Θ− 1)× (2Θ− 1) identity matrix. Then

if F(t) is the matrix with elements fI|J(t), we have

F(t) = exp
(
rt J

)
. (2.36)

Because escape through the filter thresholds is inevitable, we must have that

F(t) → O as t → ∞. Consider also the densities for reaching the two filter

thresholds, starting from filter state J , in time t. We denote these densities by

G+
J (t) and G−

J (t) for the upper (+Θ) and lower (−Θ) thresholds, respectively.

They satisfy the equation

dG±
J (t)

dt
= 1

2
r
[
G±

J+1(t) +G±
J−1(t)

]
− r G±

J (t), (2.37)

subject to the absorbing boundary conditions G+
−Θ(t) = 0 and G+

+Θ(t) = δ(t)

for G+
J (t), and G−

−Θ(t) = δ(t) and G−
+Θ(t) = 0 for G−

J (t); δ(t) is the Dirac delta

function. Let the Laplace transform of a function g(t) be denoted by ĝ(s) with

transformed variable s. Then, Laplace transforming Eq. (2.37), we have the
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recurrence relation

Ĝ±
J+1(s)− 2(1 + s/r)Ĝ±

J (s) + Ĝ±
J−1(s) = 0, (2.38)

using G±
J (0) ≡ 0 for |J | < Θ, with solutions

Ĝ±
J (s) =

[
Φ+(s)

]Θ±J −
[
Φ−(s)

]Θ±J

[
Φ+(s)

]2Θ −
[
Φ−(s)

]2Θ , (2.39)

where

Φ±(s) = (1 + s/r)±
√

(1 + s/r)2 − 1. (2.40)

The sum G+
J (t)+G−

J (t) is the probability density function for escaping through

either threshold, starting from state J , at time t. The probability

HJ(t) = 1−
∫ t

0

dτ
[
G+

J (τ) +G−
J (τ)

]
(2.41a)

is therefore the probability of having not escaped through either threshold,

starting from state J , in time t. The sum
∑+(Θ−1)

I=−(Θ−1) fI|J(t) is also the prob-

ability that starting from state J , the system has not escaped through either

threshold in time t, so we must also have

HJ(t) =

+(Θ−1)∑

I=−(Θ−1)

fI|J(t), (2.41b)

which will be useful later. Finally, we note that, say, f+(Θ−1)|J(t) is the proba-

bility of reaching state +(Θ− 1) from state J in time t. A single, potentiating
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step of rate 1
2
r will take the system from +(Θ−1) to Θ and thus escape through

the upper boundary. Thus, we have that

G±
J (t) =

1
2
rf±(Θ−1)|J(t), (2.42)

which we shall use below.

With the transition probabilities fI|J(t) and escape densities G±
J (t) in hand,

we may now write down the system of renewal equations for p
A|B
I|J (t) governing

the evolution of states in the filter model studied earlier (Elliott & Lagogiannis,

2012):

p
+|+
I|J (t) = fI|J(t) +

∫ t

0

dτ
[
p
+|+
I|0 (t− τ)G+

J (τ) + p
+|−
I|0 (t− τ)G−

J (τ)
]
, (2.43a)

p
−|+
I|J (t) =

∫ t

0

dτ
[
p
−|+
I|0 (t− τ)G+

J (τ) + p
−|−
I|0 (t− τ)G−

J (τ)
]
, (2.43b)

p
+|−
I|J (t) =

∫ t

0

dτ
[
p
+|+
I|0 (t− τ)G+

J (τ) + p
+|−
I|0 (t− τ)G−

J (τ)
]
, (2.43c)

p
−|−
I|J (t) = fI|J(t) +

∫ t

0

dτ
[
p
−|+
I|0 (t− τ)G+

J (τ) + p
−|−
I|0 (t− τ)G−

J (τ)
]
. (2.43d)

The first equation, for p
+|+
I|J (t), contains an inhomogeneous term fI|J(t) cor-

responding to a filter transition without any escape process and therefore

without any (possible) change in strength. The homogeneous term captures

the two possible first-escape processes in the dynamics. For example, the

p
+|+
I|0 (t− τ)G+

J (τ) term represents a first-escape process through the upper fil-

ter threshold at time τ ∈ (0, t). Following this first-escape process, the filter

is reset to zero, but because the initial strength is already +1, no change in
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strength is possible due to saturation. In the remaining time t− τ , the system

must evolve from the zero filter state and strength +1 to filter state I and

strength +1, accounting for the p
+|+
I|0 (t− τ) factor multiplying G+

J (τ). As τ is

arbitrary, we average over the first-escape time by integrating over the density.

The p
+|−
I|0 (t−τ)G−

J (τ) term represents a similar process, but with a first-escape

process through lower filter threshold, a change in strength from +1 to −1 and

resetting the filter to zero; the remaining dynamics are then the p
+|−
I|0 (t − τ)

transition. The other three equations have similar interpretations. However,

for p
−|+
I|J (t) and p

+|−
I|J (t), there are no inhomogeneous terms because the required

changes in strength from +1 to −1 or vice versa are impossible without filter

threshold processes.

Because the integrals in Eqs. (2.43a–d) are just Laplace convolutions, we

take Laplace transforms, obtaining

p̂
+|+
I|J (s) = f̂I|J(s) + p̂

+|+
I|0 (s) Ĝ+

J (s) + p̂
+|−
I|0 (s) Ĝ−

J (s), (2.44a)

p̂
−|+
I|J (s) = p̂

−|+
I|0 (s) Ĝ+

J (s) + p̂
−|−
I|0 (s) Ĝ−

J (s), (2.44b)

p̂
+|−
I|J (s) = p̂

+|+
I|0 (s) Ĝ+

J (s) + p̂
+|−
I|0 (s) Ĝ−

J (s), (2.44c)

p̂
−|−
I|J (s) = f̂I|J(s) + p̂

−|+
I|0 (s) Ĝ+

J (s) + p̂
−|−
I|0 (s) Ĝ−

J (s). (2.44d)

By setting J = 0, we may explicitly compute p̂
A|B
I|0 (s) and then obtain p̂

A|B
I|J (s)

purely in terms of f̂I|J(s) and Ĝ±
J (s). We may then compute p̂

+|±
I|J (s)− p̂

−|±
I|J (s),

needed in Eq. (2.34), and so determine µ̂(s). We defer the details of these cal-

culations until the section 4, where we will perform a single, general calculation
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for all the filter models discussed in the next section rather than just the filter

model that we examined earlier (Elliott & Lagogiannis, 2012).

Before turning to these other filter models and the general calculation, we

prove that the matrix elements p
A|B
I|J (t) defined by the system of renewal equa-

tions above, Eqs. (2.43a–d), are a solution of the matrix differential equation

dP2(t)

dt
= r P2(t)G2, (2.45)

and thus satisfy P2(t) = exp (rtG2). We first note that, for example,

p
+|+
I|0 (t− τ)G+

J (τ) =
1
2
r p

+|+
I|0 (t− τ) f+(Θ−1)|J(τ)

= 1
2
r
∑

K,L

p
+|+
I|K (t− τ) δK,0 δL,+(Θ−1) fL|J(τ)

= 1
2
r
∑

K,L

p
+|+
I|K (t− τ)

(
T

+
)
KL

fL|J(τ)

= 1
2
r
[
P
+|+(t− τ)T+

F(τ)
]
IJ
, (2.46)

where we have used
(
T±

)
KL

= δK,0 δL,±(Θ−1), with δI,J being the Kronecker

delta function, and with the matrices T± being defined above. Thus, we may
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write the four renewal equations, Eqs. (2.43a–d), as

P
+|+(t) = F(t) + 1

2
r

∫ t

0

dτ
[
P
+|+(t− τ)T+ + P

+|−(t− τ)T−
]
F(τ), (2.47a)

P
−|+(t) = 1

2
r

∫ t

0

dτ
[
P
−|+(t− τ)T+ + P

−|−(t− τ)T−
]
F(τ), (2.47b)

P
+|−(t) = 1

2
r

∫ t

0

dτ
[
P
+|+(t− τ)T+ + P

+|−(t− τ)T−
]
F(τ), (2.47c)

P
−|−(t) = F(t) + 1

2
r

∫ t

0

dτ
[
P
−|+(t− τ)T+ + P

−|−(t− τ)T−
]
F(τ). (2.47d)

Defining the matrices

F2(t) =




F(t) O

O F(t)


 and T2 =

1

2




T− T−

T+ T+


 (2.48)

and combining the submatrices PA|B(t) into the full matrix P2(t), we may

rewrite Eqs. (2.47a–d) to obtain the single 2(2Θ − 1) × 2(2Θ − 1) matrix

renewal equation

P2(t) = F2(t) + r

∫ t

0

dτ P2(t− τ)T2 F2(τ). (2.49)

We now differentiate this equation with respect to t. As dF(t)/dt = r JF(t) =

r F(t)J from Eq. (2.36), we define the matrix S2 by

S2 =




S O

O S


 , (2.50)
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and also define J2 = S2−I2 in analogy with J = S−I, so that F2(t) = exp (rt J2)

and thus dF2(t)/dt = r J2 F2(t) = r F2(t) J2. Then, differentiating Eq. (2.49),

we have

dP2(t)

dt
= r F2(t) J2 + rT2 F2(t) + r

∫ t

0

dτ
dP2(t− τ)

dt
T2 F2(τ)

= r F2(t) J2 + rT2 F2(t)

− r
[
P2(t− τ)T2 F2(τ)

]∣∣∣∣
τ=t

τ=0

+ r
[
P2(t)− F2(t)

]
J2, (2.51)

where we have used dP2(t − τ)/dt = −dP2(t − τ)/dτ and then integrated by

parts, replacing the resulting integral with P2(t)− F2(t). Thus,

dP2(t)

dt
= r P2(t)

(
S2 + T2 − I2

)
≡ r P2(t)G2, (2.52)

since

G2 = M2 − I2 =
1

2




S++S−+T− T−

T+ S++S−+T+


−




I O

O I


 , (2.53)

or M2 = S2+T2. Thus, P2(t) defined by the renewal equations in Eqs. (2.43a–

d) does indeed satisfy the backward equation dP2(t)/dt = r P2(t)G2, which

has solution P2(t) = exp (rtG2), and so also satisfies the forward equation

dP2(t)/dt = rG2P2(t).
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3 Variations on Synaptic Filtering

The filter model that we studied earlier (Elliott & Lagogiannis, 2012), and de-

scribed above in section 2 and depicted in Fig. 1A, is defined by three principal

characteristics:

1. a one-step random walk on filter states between two boundaries, at upper

and lower filter thresholds;

2. both boundaries are absorbing, with the filter resetting or injection dy-

namics being independent of synaptic strength and, in particular, inde-

pendent of whether or not synaptic plasticity can actually be expressed,

because of possible saturation;

3. injection upon threshold is always to the zero filter state.

The first two characteristics are embodied by the step matrices S± and thus

by F(t) and specifically by F2(t) in Eq. (2.49). The third characteristic is

captured by the threshold matrices T± and so by T2 in Eq. (2.48). Because

this filter model is essentially defined as a random walk between two absorbing

boundaries with injection into the zero filter state, we refer to it as the A0

filter model, with “A” for absorbing and “0” for zero injection.

We can vary the A0 model in a variety of different ways. Specifically, we

can modify the nature of the thresholds, the filter injection or resetting pro-

cess upon reaching threshold, and even the underlying one-step random walk

itself. Before motivating and describing extensions of the A0 model, we first
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generalise our earlier definitions of the S± and T± matrices. Previously, S±

were defined as shift operators without wrap-around, incrementing or decre-

menting the filter state but without considering the threshold processes. Their

components satisfy
(
S±

)
KL

= δK,L±1. We now define the two matrices S±(ρ±)

as having components

[
S
±(ρ±)

]
KL

= δK,L±1 + ρ± δK,±(Θ−1) δL,±(Θ−1), (3.1)

for parameters ρ± ∈ {0, 1}, so that S+(ρ+) has ρ+ as the last entry on its

diagonal and S−(ρ−) has ρ− as the first entry on its diagonal. For example,

for Θ = 3,

S
+(ρ+) =




0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 ρ+




and S
−(ρ−) =




ρ− 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0




.

Of course, S±(0) ≡ S±. However, the matrix S+(1) increments all filter states

but implements a reflecting boundary at threshold +Θ, so that the state I =

+(Θ− 1) is reflected from the boundary and stays at +(Θ− 1). Similarly, the

matrix S−(1) decrements all filters states but implements a reflecting boundary

at threshold −Θ, reflecting I = −(Θ − 1) back to −(Θ− 1). The parameters

ρ+ and ρ− therefore control the nature of the upper and lower thresholds,

respectively, with ρ = 0 giving an absorbing boundary and ρ = 1 a reflecting

boundary. Analogous to the definition of S, we now also define the generalised
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form,

S(ρ+, ρ−) =
1
2

[
S
+(ρ+) + S

−(ρ−)
]
. (3.2)

For the matrices T±, we previously had
(
T±

)
KL

= δK,0 δL,±(Θ−1). These matri-

ces determine how the filter state is reset or injected when a threshold process

occurs. The presence of δK,0 indicates that injection is always to the K = 0

filter state; the presence of δL,±(Θ−1) indicates that threshold processes can only

occur if the filter is in the ±(Θ− 1) states, otherwise further plasticity induc-

tion signals are required. We generalise these matrices so that they depend on

the (2Θ− 1)-dimensional vector σ,

[
T

±(σ)
]
KL

= σK δL,±(Θ−1), (3.3)

so that the injection process is defined by σ, with n · σ = 1, with σK being

the probability for injection into filter state K upon threshold. Schematically,

we may write

T
+(σ) =




| | |
0 · · · 0 σ

| | |


 and T

−(σ) =




| | |
σ 0 · · · 0

| | |


 ,

showing the columns of T±(σ), being either the vector σ or the (2Θ − 1)-

dimensional zero vector, 0. We define the vector ∆ to have components ∆K =

δK,0 and the vector m = n/(2Θ − 1), so that mK = 1/(2Θ − 1). Below we

will be particularly interested in the two injection distributions σ = ∆ and
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Filter name Boundary types Injection type Step type

A0 Absorbing + Absorbing Zero Single

Ar Absorbing + Absorbing Random Single

R0 Absorbing + Reflecting Zero Single

Rr Absorbing + Reflecting Random Single

S Absorbing + Absorbing Zero Variable

Table 1. The five alternative filter models, characterised by their boundary

types, injection type and step type.

σ = m.

3.1 Model Versions and the Distributions A2 and M+A2

The various models that we discuss continue to be defined by the matrix re-

newal equation in Eq. (2.49),

P2(t) = F2(t) + r

∫ t

0

dτ P2(t− τ)T2 F2(τ), (2.49)

where the matrices F2(t) = exp [rt (S2 − I2)] and T2 will be suitably modified

for each version. In Table 1 we provide a convenient summary of the five filter

models that we will consider here and that we now discuss.
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3.1.1 A0 Model

For completeness, we collect together here the defining properties of the A0

model in terms of the generalised matrices S±(ρ±) and T±(σ). We have that

S2 =




S(0, 0) O

O S(0, 0)


 and T2 =

1

2




T−(∆) T−(∆)

T+(∆) T+(∆)


 , (3.4)

with M2 = 1
2

(
M

+
2+M

−
2

)
= S2 + T2 and the matrix M

+
2 is just twice the

potentiating part of M2. The equilibrium distribution, satisfying M2A2 = A2,

is A2 =
1
2

(
AT

∣∣AT
)T

, with

AI =
Θ− |I|
Θ2

. (3.5)

The vectors B± defined by M
+
2A2 =

(
B− T

∣∣B+T
)T

and required in Eq. (2.34)

have components

B−
I = 1

2
AI−1, (3.6a)

B+
I = 1

2

[
AI−1 + 2A+(Θ−1)∆I

]
. (3.6b)

The presence of AI−1 in both B±
I indicates the action of the step operator

S+(0) on states, while the remaining term in B+
I arises because of the two

threshold processes due to the action of the upper threshold matrix T+(∆).
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3.1.2 R0 Model

The A0 model generalises immediately to any model in which synapses may

take any number of discrete values of synaptic strength and not just binary

strengths. We may, however, also consider an alternative filter model specific

to binary-strength synapses. If a binary-strength synapse is strong (weak) and

reaches the upper (lower) filter threshold, the A0 filter will inject to the zero

filter state but a change in synaptic strength is not possible because of satura-

tion. Instead, we may suppose that a filter threshold changes from absorbing

to reflecting under these circumstances. That is, a strong (weak) synapse that

reaches the upper (lower) filter threshold is returned or reflected back to filter

state I = +(Θ− 1) [I = −(Θ− 1)] because no change in strength is possible.

Such a filter is shown in Fig. 1B, where we have explicitly shown for clarity the

transitions between and within both strength states. We stress, however, that

there is still only a single filter per synapse: only the nature of the boundary

states change, in a strength-dependent manner. Because changes in strength

are still associated with injection into the zero filter state, we refer to this filter

as the R0 filter, with “R” for reflecting. The R0 filter constitutes a random

walk between an absorbing boundary and a reflecting boundary, where these

boundaries swap around under a change in synaptic strength.

For the R0 model, for a weak synapse the relevant step operator is S(ρ+, ρ−)

with ρ+ = 0 (upper threshold is absorbing) and ρ− = 1 (lower threshold is

reflecting), while for a strong synapses these thresholds must be reversed so
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we have ρ+ = 1 (upper threshold is reflecting) and ρ− = 0 (lower threshold is

absorbing). Thus, the two defining matrices are

S2 =




S(0, 1) O

O S(1, 0)


 and T2 =

1

2




O T−(∆)

T+(∆) O


 , (3.7)

and the matrices M±
2 are therefore

M
+
2 =




S+(0) O

T+(∆) S+(1)


 and M

−
2 =




S−(1) T−(∆)

O S−(0)


 . (3.8)

The matrix T2 contains only O submatrices in its upper left and lower right

sub-blocks because the absorbing boundary dynamics have been replaced by

the reflecting boundaries present in S2. Because the two non-zero sub-blocks

in S2 differ, we write

F2(t) =




F+(t) O

O F−(t)


 , (3.9)

where F+(t) = exp {rt [S(0, 1)− I]} and F−(t) = exp {rt [S(1, 0)− I]}, and

F+(t) refers to transitions in filter state without escape through the upper

threshold (the lower one being reflecting for weak synapses) and F−(t) refers

to transitions in filter state without escape through the lower threshold (the

upper one being reflecting for strong synapses). We denote the components of

F±(t) by f±
I|J(t). The equilibrium distribution for the R0 model is strength-
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dependent, so we write

A2 =
1
2

(
A− T|A+T

)T
, (3.10)

with A± being the (conditional) filter probability distributions for strong and

weak synapses, with n · A± = 1. Because of the underlying symmetry, how-

ever, A± are mirror images, with A+
+J = A−

−J or RA+ = A−. By explicitly

computing the equilibrium eigenvector of M2, we find that

A+
I =

2

Θ(3Θ− 1)
×





Θ for I ≥ 0

Θ + I for I < 0

, (3.11)

and the vectors B± have components

B−
I = 1

2
A−

I−1 ≡ 1
2
A+

−I+1, (3.12a)

B+
I = 1

2

[
A+

I−1 + A−
+(Θ−1)∆I + A+

+(Θ−1)δI,+(Θ−1)

]

≡ 1
2

[
A+

I−1 + A+
−(Θ−1)∆I + A+

+(Θ−1)δI,+(Θ−1)

]
, (3.12b)

where the δI,+(Θ−1) term in B+
I is due to the reflection rather than absorption

process at the upper filter threshold. We have used the symmetry A−
+J = A+

−J

to express these distributions purely in terms of A+.
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3.1.3 Ar and Rr Models

Injection into the zero filter state upon reaching filter threshold is a very pre-

cise requirement for filter dynamics that may not be achievable in a biological

setting where filter states may be encoded in the conformational configurations

or phosphorylation states of perhaps rather small ensembles of large macro-

molecules (Elliott, 2011a). It is possible, for example, that the injection upon

threshold could be smeared around the zero state according to some distribu-

tion. For simplicity and to avoid excessive parameter dependence, we consider

the worst case scenario: injection upon threshold is completely random, so that

the synapse injects into any filter state with probability 1/(2Θ − 1). Thus,

we consider versions of the A0 and R0 filters that we refer to as the Ar and

Rr filters, with “r” for random injection. Considering such extreme cases per-

mits us to determine to what extent the results for the A0 and R0 filters are

dependent on precise injection processes.

The various defining matrices for the Ar and Rr models are identical to

those for the A0 and R0 models above except that the zero injection distribu-

tion σ = ∆ is replaced by the random injection distribution σ = m. Thus, in

Eqs. (3.4) and (3.7) above, we merely replace T±(∆) by T±(m) in the two def-

initions of T2. As for the A0 model, the equilibrium distribution A2 of the Ar

model can be written symmetrically as
(
AT

∣∣AT
)T

, and as for the R0 model,

we must write the equilibrium distribution of the Rr model as
(
A− T

∣∣A+T
)T

,

where again A± are mirror images. Explicit computation of the equilibrium
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eigenvector of M2 for the Ar model shows that

AI =
3 (Θ2 − I2)

Θ (4Θ2 − 1)
, (3.13)

with the vectors B± given by

B−
I = 1

2
AI−1, (3.14a)

B+
I = 1

2

[
AI−1 + 2A+(Θ−1)mI

]
. (3.14b)

These forms for B±
I differ from those for the A0 model in Eq. (3.6) only in

having mI in place of ∆I for the injection distribution. For the Rr model, its

equilibrium distribution is given by

A+
I =

3(Θ + I)(3Θ− 1− I)

2Θ(2Θ− 1)(4Θ− 1)
, (3.15)

and the vectors B± have components,

B−
I = 1

2
A−

I−1 ≡ 1
2
A+

−I+1, (3.16a)

B+
I = 1

2

[
A+

I−1 + A−
+(Θ−1)mI + A+

+(Θ−1)δI,+(Θ−1)

]

≡ 1
2

[
A+

I−1 + A+
−(Θ−1)mI + A+

+(Θ−1)δI,+(Θ−1)

]
. (3.16b)

Again, the forms for these components for the Rr model differ from those for

the R0 model in Eq. (3.12) only in having mI in place of ∆I .
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3.1.4 S Model

The four filter types discussed above are essentially defined by symmetric

one-step random walk processes between absorbing or reflecting boundaries.

Although such mechanisms suppress fluctuation-induced changes in synaptic

strength, such changes are still possible. For example, starting from the zero

filter state and with Θ = 5, a sequence of nine potentiating induction signals

and four depressing induction signals in any order will drive the filter to its

upper threshold and a change in strength if the synapse is weak. Although a

minimum of Θ induction signals of the same type is required to drive a filter to

threshold from the zero state, these same-type signals are not required to be

consecutive. If a different-type signal is interposed in this minimal sequence,

then a further same-type signal is required to reverse its effect. We therefore

also consider a much stronger filtering process than those considered above.

This stronger process requires Θ consecutive same-type induction signals from

the zero state to reach filter threshold. Specifically, if the filter is in a posi-

tive (negative) state and a depressing (potentiating) induction signal occurs,

then the filter is returned to the zero state. This enforces the requirement of

a minimum of Θ consecutive same-type induction signals to reach threshold.

We call this type of filter a super or S filter and show its transitions in Fig. 1C.

Technically, it is defined by a variable-step random walk between two absorbing

boundaries, with zero injection. In principle we could consider the four obvious

versions, of either absorbing or reflecting boundaries as appropriate, and either
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zero or random injections. Clearly, random injections undermine the principle

of demanding a minimum number of consecutive same-type induction signals,

so we do not consider them. We could consider a binary-synapse-specific re-

flecting boundary version of the super filter, but in the interests of simplicity,

we examine only the absorbing boundary form. The S filter considered here is

therefore to be viewed as a variable-step version of the one-step A0 filter. In

fact, for the specific cases Θ = 1 and Θ = 2, the A0 and S filters are identical.

The step matrices S± for the A0 and Ar models must be modified to take

into account the fact that filter states are set to zero if an induction signal

occurs that is opposite in sign to the current filter state. We denote these

modified matrices by S
±
, which we may think of as rectifying shift operators.

They have components given by

(
S
+)

KL
=





δK,L+1 for L ≥ 0

δK,0 for L < 0

, (3.17)

(
S
−)

KL
=





δK,0 for L > 0

δK,L−1 for L ≤ 0

. (3.18)

For Θ = 3, for example, we have explicitly,

S
+
=




0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0




and S
−
=




0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0




. (3.19)
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With S = 1
2

(
S
+
+ S

−)
, the S model is then defined by the two matrices

S2 =




S O

O S


 and T2 =

1

2




T−(∆) T−(∆)

T+(∆) T+(∆)


 . (3.20)

The equilibrium eigenvector of M2 is symmetric in weak and strong states, and

a direct computation shows that

AI =
2Θ−1−|I|

3× 2Θ−1 − 2
. (3.21)

The vectors B± have components given by

B−
I =





0 for I < 0,

1
2

∑
J<0 AJ for I = 0,

1
2
AI−1 for I > 0,

(3.22a)

B+
I =





0 for I < 0,

1
2

[(∑
J<0 AJ

)
+ 2A+(Θ−1)

]
for I = 0,

1
2
AI−1 for I > 0.

(3.22b)

The AI−1 terms for I > 0 indicate that M+
2 for the S filter is a standard step

operator on positive filter states. On negative filter states, it sends them to

the zero filter state, so the distributions B± vanish on these states. The term

∑
J<0 AJ in B±

0 is due to this sending of negative filter states to the zero state.
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3.1.5 Examples of Equilibrium Distributions

Having defined all five filter models, we may now compare their equilibrium

distributions graphically. In Fig. 2, we plot AI or A±
I against I for all five

models, for the specific choice Θ = 8. We see that the equilibrium distributions

for the A0 and Ar filters are quite similar, as is the case for the R0 and

Rr equilibrium distributions. Random rather than zero injection somewhat

smooths out the equilibrium distributions. However, even if we considered

random injection for the S filter, its equilibrium distribution would still be

very strongly peaked around the zero filter state as it is for zero injection,

because of the number of non-threshold processes that return the S filter to

the zero state.

We note that for all the various AI and A±
I above for the different filter

models, we define A±Θ ≡ 0 or A±
±Θ ≡ 0 when the expressions above do not

automatically satisfy these requirements. We shall use this convention below.

3.2 Escape Densities and Non-Escape Transition Prob-

abilities

We must derive expressions for the escape densities G±
J (t) and non-escape

transition probabilities fI|J(t) or f
±
I|J(t) for the five filter models. For the three

models with two absorbing boundaries (A0, Ar and S filters), the two densities

G+
J (t) and G−

J (t) refer to the two escape processes through the upper and lower

filter thresholds, respectively, in either strength state. Similarly, the relevant
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non-escape transition probability is fI|J(t) as this is independent of synaptic

strength for these three models. The probability HJ(t) of not having escaped

through either filter threshold from state J in time t in the presence of two

absorbing boundaries is given by the two alternative forms in Eqs. (2.41a,b),

HJ(t) = 1−
∫ t

0

dτ
[
G+

J (τ) +G−
J (τ)

]
=

+(Θ−1)∑

I=−(Θ−1)

fI|J(t).

For the R0 and Rr models there is only one escape process because the filter

has only one relevant, absorbing threshold, with the other being reflecting.

For these two models, the density G−
J (t) and transition probability p−

I|J(t) refer

to processes in the presence of an escape process at the lower filter threshold

and so are the relevant quantities for strong synapses. Conversely, G+
J (t) and

f+
I|J(t) refer to processes involving the upper filter threshold and so are relevant

to weak synapses. In the presence of a single absorbing boundary, we define

the probabilities H±
J (t) via the two alternatives,

H±
J (t) =





1−
∫ t

0

dτ G±
J (τ), (3.23a)

+(Θ−1)∑

I=−(Θ−1)

f±
I|J(t), (3.23b)

which are the equivalents of Eqs. (2.41a,b) for two absorbing boundaries. Be-

cause all four filter models A0, Ar, R0 and Rr are defined by one-step processes,

we can derive a single, generic expression for G±
J (t) by using the parameters ρ±

to control the type of boundary. However, because the S model is rectifying,

48



we must derive its escape densities via a different method. We set r = 1 Hz

throughout to avoid unnecessary factors of r in equations.

3.2.1 Derivation for One-Step Filters A0, Ar, R0 and Rr

For convenience we consider a standard symmetric random walk on the states

{1, . . . , n} with boundaries at 0 and n+ 1. We will move back to filter indices

at the end of the calculation. The parameters ρ+ and ρ− will still control the

upper (n + 1) and lower (0) boundary types, respectively. The random walk

between the two boundaries is defined by the system of equations

df1|j
dt

= 1
2

(
ρ−f1|j + f2|j

)
− f1|j , (3.24a)

dfi|j
dt

= 1
2

(
fi−1|j + fi+1|j

)
− fi|j for 1 < i < n, (3.24b)

dfn|j
dt

= 1
2

(
fn−1|j + ρ+fn|j

)
− fn|j , (3.24c)

where we drop the argument on fi|j(t) for convenience. Taking Laplace trans-

forms, we obtain

(1 + s)f̂1|j − δ1,j =
1
2

(
ρ−f̂1|j + f̂2|j

)
, (3.25a)

(1 + s)f̂i|j − δi,j =
1
2

(
f̂i−1|j + f̂i+1|j

)
for 1 < i < n, (3.25b)

(1 + s)f̂n|j − δn,j =
1
2

(
f̂n−1|j + ρ+f̂n|j

)
, (3.25c)

where we have again dropped the argument on the Laplace transform f̂i|j(s)

for convenience. We define the generating function Hj(z, t) =
∑n

i=1 fi|j(t) z
i
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and sum over Eq. (3.25b) multiplied by zi, taking into account the boundary

forms in Eqs. (3.25a) and (3.25c). We obtain

Ĥj(z, s) = z
(1− ρ−z)f̂1|j(s) + zn(z − ρ+)f̂n|j(s)− 2 zj

z2 − 2(1 + s)z + 1
, (3.26)

where the boundary terms f̂1|j(s) and f̂n|j(s) explicitly appear. Now, analogous

to Eq. (2.42), we have that Ĝ−
j (s) = 1

2
f̂1|j(s) when the lower boundary is

absorbing and Ĝ+
j (s) =

1
2
f̂n|j(s) when the upper boundary is absorbing. Thus,

we may write,

Ĥj(z, s) = 2 z
(1− ρ−z)Ĝ

−
j (s) + zn(z − ρ+)Ĝ

+
j (s)− zj

z2 − 2(1 + s)z + 1
. (3.27)

To determine Ĝ±
j (s), we observe thatH(z, t) is by definition a finite polynomial

in z of degree n with non-negative coefficients. Analyticity therefore requires

that the zeros in the denominator of H(z, t) are cancelled by zeros in its nu-

merator (Cox & Miller, 1965). The zeros in the denominator of Ĥ(z, s) are

at the two locations z = Φ±(s), where Φ±(s) were defined in Eq. (2.40) (with

r = 1 Hz). We therefore deduce that

Ĝ+
j =

Φj−1
+ (ρ− − Φ+)− Φj−1

− (ρ− − Φ−)

Φn−1
− (ρ+ − Φ−)(ρ− − Φ−)− Φn−1

+ (ρ+ − Φ+)(ρ− − Φ+)
, (3.28)

Ĝ−
j =

Φn−j
+ (ρ+ − Φ+)− Φn−j

− (ρ+ − Φ−)

Φn−1
− (ρ+ − Φ−)(ρ− − Φ−)− Φn−1

+ (ρ+ − Φ+)(ρ− − Φ+)
. (3.29)
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Finally, by writing z2 − 2(1 + s)z + 1 = (1− Φ+z) (1− Φ−z) and expanding

the denominator of Ĥ(z, s) in a power series in z, we can explicitly determine

f̂i|j(s). We obtain

f̂i|j = 2

(
Φi

+ − Φi
−

Φ+ − Φ−

− ρ−
Φi−1

+ − Φi−1
−

Φ+ − Φ−

)
Ĝ−

j − 2
Φi−j

+ − Φi−j
−

Φ+ − Φ−

χi≥j, (3.30)

where χi≥j = 1 if i ≥ j and 0 otherwise. In fact, fi|j(t) = fj|i(t) for all

four choices of ρ±, so we can make this symmetry explicit by rewriting the

expression for f̂i|j in terms of 1
2

(
f̂i|j + f̂j|i

)
.

We move back to filter indices and ranges by setting n = 2Θ − 1 and

writing, for example, J = j −Θ. For the A0 and Ar models, for which ρ+ = 0

and ρ− = 0, we of course obtain identical expressions for Ĝ±
J (s) already stated

in Eq. (2.39), we which reproduce here from completeness:

Ĝ±
J (s) =

[
Φ+(s)

]Θ±J −
[
Φ−(s)

]Θ±J

[
Φ+(s)

]2Θ −
[
Φ−(s)

]2Θ . (2.39)

For the R0 and Rr models, we set either ρ+ = 0 and ρ− = 1 for Ĝ+
J (s) or

ρ+ = 1 and ρ− = 0 for Ĝ−
J (s). We obtain

Ĝ±
J (s) =

[
Φ+(s)

]Θ−1±J[
1− Φ+(s)

]
−

[
Φ−(s)

]Θ−1±J[
1− Φ−(s)

]
[
Φ+(s)

]2Θ−1[
1− Φ+(s)

]
−

[
Φ−(s)

]2Θ−1[
1− Φ−(s)

] . (3.31)

We note that Ĝ+
−J(s) = Ĝ−

+J(s) for both forms of Ĝ±
J (s) in Eqs. (2.39) and (3.31),

i.e. for all four filters A0, Ar, R0 and Rr. This symmetry reflects the underly-

ing symmetry between the positive and negative filter states for the A0 and Ar
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models and the underlying symmetry between the positive and negative filter

states and the strong and weak synaptic strengths in the R0 and Rr models.

3.2.2 Derivation for Super Filter

We now consider the S filter. Using standard filter indices, it satisfies the

system of equations

dfI|J
dt

= 1
2
fI−1|J − fI|J for I > 0, (3.32a)

df0|J
dt

= 1
2

∑

K 6=0

fK|J − f0|J , (3.32b)

dfI|J
dt

= 1
2
fI+1|J − fI|J for I < 0, (3.32c)

or Laplace transforming,

(1 + s)f̂I|J − δI,J = 1
2
f̂I−1|J for I > 0, (3.33a)

(1 + s)f̂0|J − δ0,J = 1
2

∑

K 6=0

f̂K|J , (3.33b)

(1 + s)f̂I|J − δI,J = 1
2
f̂I+1|J for I < 0, (3.33c)

Unfortunately we cannot use a generating function to solve the system of equa-

tions in Eq. (3.33) because of the presence of
∑

K 6=0 f̂K|J in Eq. (3.33b). For-
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tunately, we can directly solve this system. We observe that

∑

K 6=0

f̂K|J =
∑

K

f̂K|J − f̂0|J

= ĤJ − f̂0|J

=
1

s

(
1− Ĝ+

J − Ĝ−
J

)
− f̂0|J

=
1

s

[
1− 1

2
f̂+(Θ−1)|J − 1

2
f̂−(Θ−1)|J

]
− f̂0|J , (3.34)

so we may write Eq. (3.33b) as

(
3
2
+ s

)
f̂0|J − δ0,J =

1

2 s

[
1− 1

2
f̂+(Θ−1)|J − 1

2
f̂−(Θ−1)|J

]
. (3.35)

We may use the simple, one-step recurrence relations in Eq. (3.33) for I > 0

and I < 0 to express f̂+(Θ−1)|J and f̂−(Θ−1)|J in terms of f̂0|J :

[2(1 + s)]Θ−1 f̂+(Θ−1)|J = f̂0|J + 2 [2(1 + s)]|J |−1 χJ>0, (3.36a)

[2(1 + s)]Θ−1 f̂−(Θ−1)|J = f̂0|J + 2 [2(1 + s)]|J |−1 χJ<0. (3.36b)

Hence, we deduce that

f̂0|J(s) =
[2(1 + s)]Θ−1 (1 + 2 s δ0,J) + [2(1 + s)]|J |−1 (δ0,J − 1)

1 + [2(1 + s)]Θ−1 s (3 + 2 s)
, (3.37)
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and Ĝ±
J (s) =

1
2
f̂±(Θ−1)|J(s) are given by

Ĝ±
J (s) =

1

[2(1 + s)]Θ−1

{
[2(1 + s)]|J |−1 χJ≷0 +

1
2
f̂0|J(s)

}
. (3.38)

We may now also write down f̂I|J(s) in general, but we only require Ĝ±
J (s).

We note again the symmetry Ĝ+
−J(s) = Ĝ−

+J(s), so that in fact all five filter

models considered here respect it.

3.3 Mean Escape Times

Determining the mean escape times for the filter escape process enables us to

gauge how strongly a filter controls fluctuations. The stronger the dependence

on Θ, the stronger the control of fluctuations. Because the Laplace transform of

a random variable is, up to an overall sign, just its moment generating function

(MGF), the functions Ĝ±
J (s) computed above are therefore the MGFs for the

escape densities through the upper and lower filter thresholds. Expanding as

a power series in s generates all the moments of the escape processes. For

the A0, Ar and S filters, we are interested in the total escape process through

either filter threshold process, so we require the sum Ĝ+
J (s) + Ĝ−

J (s). For the

R0 and Rr filters, there is only one threshold through which to escape, and

by symmetry we need only consider, say, Ĝ+
J (s). We therefore write either

Ĝ+
J (s) + Ĝ−

J (s) = 1 − s τJ + O(s2) or Ĝ+
J (s) = 1 − s τJ + O(s2), where the

leading O(s0) term of unity reflects the inevitability of escape and τJ is the
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mean time to escape starting from filter state J . We find that

τJ =





Θ2 − J2 for A filters,

(Θ− J)(3Θ + J − 1) for R filters,

3
(
2Θ−1 − 2|J |−1

)
+
(
3× 2|J |−1 − 2

)
δJ,0 for S filter.

(3.39)

We are particularly interested in the mean escape time from the zero filter state

(for the injection distribution σ = ∆) and in the average mean escape time,

averaged over all filter states (for the injection distribution σ = m). Writing

τ as a vector containing the components τJ , the relevant mean escape times

are ∆ · τ and m · τ . For ∆ · τ , we immediately have

∆ · τ =





Θ2 for A filters,

Θ(3Θ− 1) for R filters,

3× 2Θ−1 − 2 for S filter,

(3.40)

while for m · τ , we obtain

m · τ =





1
3
Θ(2Θ + 1) for A filters,

2
3
Θ(4Θ− 1) for R filters,

3× 2Θ−1(2Θ− 3) + 4

(2Θ− 1)
for S filter.

(3.41)

In the A0/Ar and R0/Rr filters, fluctuations are quadratically suppressed as

a function of Θ. However, we see that in the S filter, fluctuations are expo-

nentially suppressed as a function of Θ, indicating that the requirement of
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Θ consecutive same-type induction signals is very strong. However, this vast

suppression of fluctuations comes at a considerable price, discussed below. In

Fig. 3, we plot ∆ · τ for the A0, R0 and S filters and m · τ for the Ar and

Rr models, so that we plot the mean escape times averaged over the relevant

initial filter injection σ distribution for the specific model (for r = 1 Hz). We

see that the average mean escape times for the A0 and Ar models are quite

similar, and that those for the R0 and Rr models are extremely similar. For

Θ ≥ 7, the S model has the largest average mean escape time, while for Θ ≤ 6,

the R0 model has. For smaller Θ, therefore, reflecting boundary filters provide

a stronger control of fluctuations, while for larger Θ, the rectifying dynamics

of the S filter are stronger and become vastly more so as Θ increases. We will

see later that memory lifetimes in these five filter models respect this ordering

of average mean escape times.

4 Derivation of µ̂(s)

We may now derive expressions for µ̂(s) in the various models. We initially

proceed as generally as possible, deriving a single, general expression for µ̂(s).

We may then reduce this expression to the form required for any one of the

various filter models considered here.
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4.1 General Results

With the help of the matrix renewal equation in Eq. (2.49), we first write down

a set of general equations that cover all the filter models considered here. For

two absorbing boundaries, we had

T2 =
1

2




T−(σ) T−(σ)

T+(σ) T+(σ)


 ,

while for one absorbing boundary,

T2 =
1

2




O T−(σ)

T+(σ) O


 ,

where σ is the injection distribution. We therefore introduce a parameter β,

where β = 1 for a filter with two absorbing boundaries and β = 0 for a filter

with one absorbing boundary, and write

T2 =
1

2




β T−(σ) T−(σ)

T+(σ) β T+(σ)


 . (4.1)

This enables us to consider both classes of filter simultaneously. We also write

F2(t) =




F+(t) O

O F−(t)


 = exp rt

(
S2 − I2

)
, (4.2)
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with the understanding that if β = 1, then we set F±(t) = F(t), and that

f±
I|J(t) or fI|J(t), G±

J (t), and H±
J (t) or HJ(t) are the appropriate functions

for the particular filter model under consideration. Eq. (2.49) then applies to

all the filter models considered above. Of course, we can Laplace transform

Eq. (2.49) and directly obtain

P̂2(s) =
[
(s+ 1)I2 − S2 − T2

]−1
, (4.3)

or equivalently, P2(t) = exp [rt (S2 + T2 − I2)], but we still must compute either

the matrix inverse or the matrix exponential.

We do not, in fact, need the full form of P2(t), but instead just the two sums

∑
I

[
p
+|±
I (t)−p

−|±
I (t)

]
appearing in Eq. (2.34), where the vectors p

A|B
I (t) were

defined earlier as the (transposed) rows of the matrices PA|B(t). Unpacking

Eq. (2.49) and writing out the four Laplace-transformed equations equivalent

to Eqs. (2.44a–d), we obtain

p̂
+|+
I|J (s) = f̂−

I|J(s) + β σ · p̂+|+
I (s) Ĝ+

J (s) + σ · p̂+|−
I (s) Ĝ−

J (s), (4.4a)

p̂
−|+
I|J (s) = β σ · p̂−|+

I (s) Ĝ+
J (s) + σ · p̂−|−

I (s) Ĝ−
J (s), (4.4b)

p̂
+|−
I|J (s) = σ · p̂+|+

I (s) Ĝ+
J (s) + β σ · p̂+|−

I (s) Ĝ−
J (s), (4.4c)

p̂
−|−
I|J (s) = f̂+

I|J(s) + σ · p̂−|+
I (s) Ĝ+

J (s) + β σ · p̂−|−
I (s) Ĝ−

J (s). (4.4d)

The interpretation of these equations is straightforward. As before, the (trans-

formed) densities Ĝ±
J (s) signal a first escape process through the indicated
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threshold, with β controlling whether or not that threshold is actually ab-

sorbing; if not, that term is absent. Following the first escape process, the

filter state is reset with probability distribution σ. Specifically, σ · p̂A|B
I (s) =

∑
K σK p̂

A|B
I|K (s), so such terms represent subsequent transitions from injection

site K, weighted according the probability of injection into that site σK , to the

final filter state I over the remaining time, summed over K.

We define the two vectors Γ±(t) =
∑

I

[
p
+|±
I (t) − p

−|±
I (t)

]
, which have

components Γ±
J (t) =

∑
I

[
p
+|±
I|J (t)−p

−|±
I|J (t)

]
. Subtracting Eq. (4.4b) from (4.4a)

and Eq. (4.4d) from (4.4c), and summing over I, we obtain the two equations

Γ̂+
J (s) = +Ĥ−

J (s) + β σ · Γ̂+(s) Ĝ+
J (s) + σ · Γ̂−(s) Ĝ−

J (s), (4.5a)

Γ̂−
J (s) = −Ĥ+

J (s) + σ · Γ̂+(s) Ĝ+
J (s) + β σ · Γ̂−(s) Ĝ−

J (s), (4.5b)

where we have used H±
J (t) =

∑
I f

±
I|J(t). We now take the dot product of these

two equations with the injection distribution σ in order to obtain explicit ex-

pressions for σ · Γ̂±(s). Let G±(t) and H±(t) be vectors with components

G±
J (t) and H±

J (t), respectively. Because G±
+J = G∓

−J for any filter model con-

sidered here, if the injection distribution is symmetric about the zero filter

state (i.e. any distribution for which σ = Rσ), then σ ·G+(t) ≡ σ ·G−(t) and

similarly for H±(t). We may therefore just write σ · G(t) and σ · H(t) for

symmetric injection distributions. The two injection distributions σ = ∆ and

σ = m that we consider are certainly symmetric, but our results will apply to
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any symmetric injection distribution σ. From Eq. (4.5) we therefore obtain

σ · Γ̂±(s) = ± σ · Ĥ(s)

1 + (1− β)σ · Ĝ(s)
. (4.6)

We can then rewrite Eqs. (4.5a,b) as

Γ̂+
J (s) = +Ĥ−

J (s) +
[
β Ĝ+

J (s)− Ĝ−
J (s)

] σ · Ĥ(s)

1 + (1− β)σ · Ĝ(s)
, (4.7a)

Γ̂+
J (s) = −Ĥ+

J (s) +
[

Ĝ+
J (s)− β Ĝ−

J (s)
] σ · Ĥ(s)

1 + (1− β)σ · Ĝ(s)
. (4.7b)

Since µ̂(s) = B+ · Γ̂+(s) + B− · Γ̂−(s) from Eq. (2.34), we have the general

result, for any of the filter models considered here,

µ̂(s) =
[
B+ · Ĥ−(s)−B− · Ĥ+(s)

]

+
[(
βB+ +B−

)
· Ĝ+(s)−

(
B+ + βB−

)
· Ĝ−(s)

]

× σ · Ĥ(s)

1 + (1− β)σ · Ĝ(s)
. (4.8)

For two absorbing boundaries, β = 1, this reduces to

µ̂(s) =
(
B+ −B−

)
· Ĥ(s) +

(
B+ +B−

)
·
[
Ĝ+(s)− Ĝ−(s)

]
σ · Ĥ(s), (4.9)
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and for a reflecting boundary, β = 0, we have

µ̂(s) =
[
B+ · Ĥ−(s)−B− · Ĥ+(s)

]

−
[
B+ · Ĝ−(s)−B− · Ĝ+(s)

] σ · Ĥ(s)

1 + σ · Ĝ(s)
. (4.10)

4.2 Specific Forms

With these general results in hand, we now reduce them to the specific forms

for each filter model. We rewrite Eqs. (4.9) and (4.10) in terms of the relevant

equilibrium distributions A or A±, and make use of G±
+J = G∓

−J , H
±
+J = H∓

−J ,

A+J = A−J and A±
+J = A∓

−J . We then obtain for the A0 and Ar filters,

µ̂ = σ · Ĥ
[
AΘ−1 +

∑

I>0

(
AI−1 − A−I−1

)(
Ĝ+

I − Ĝ−
I

)]
, (4.11)

and for the S filter,

µ̂ = σ · Ĥ
[
AΘ−1 +

∑

I>0

AI−1

(
Ĝ+

I − Ĝ−
I

)]
, (4.12)

which is structurally identical to the result for the A0 and Ar filters, save for

the absence of the A−I−1 term in the sum. For the R0 and Rr filters, writing

the result purely in terms of G−, H− and A+ (so for the strong rather than
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weak strength state), we have

µ̂ =
1

2

[
A+

−Θ+1σ · Ĥ−+ A+
Θ−1Ĥ

−
Θ−1 −

∑

I

(
A+

I+1 − A+
I−1

)
Ĥ−

I

]

− 1

2

σ · Ĥ−

1 + σ · Ĝ−

[
A+

−Θ+1σ · Ĝ−+ A+
Θ−1Ĝ

−
Θ−1 −

∑

I

(
A+

I+1 − A+
I−1

)
Ĝ−

I

]
.

(4.13)

Using the explicit results for the equilibrium distributions, we then obtain, for

the A0, Ar and S filters,

µ̂ = AΘ−1 σ · Ĥ
[
1 +

∑

I>0

cI

(
Ĝ+

I − Ĝ−
I

)]
, (4.14)

where

cI =





2 for A0 filter

4 I/(2Θ− 1) for Ar filter

2Θ−1−I for S filter

, (4.15)

and where of course AΘ−1 and σ are the appropriate value and distribution,

respectively, for the required model. For the R0 filter, we get

µ̂R0 = A+
−Θ+1

{[
ΘĤ−

Θ−1 −
∑

I<0

Ĥ−
I

]
− Ĥ−

0

1 + Ĝ−
0

[
Θ Ĝ−

Θ−1 −
∑

I<0

Ĝ−
I

]}
, (4.16)
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and finally, for the Rr filter,

µ̂Rr = A+
−Θ+1

{[
ΘĤ−

Θ−1 +
1

2Θ− 1

∑

I

I Ĥ−
I − (Θ− 1)m · Ĥ−

]

− m · Ĥ−

1 +m · Ĝ−

[
Θ Ĝ−

Θ−1 +
1

2Θ− 1

∑

I

I Ĝ−
I − (Θ− 1)m · Ĝ−

]}
.

(4.17)

Using the different forms of Ĝ±
J (s) and equilibrium distributions derived earlier,

we may explicitly compute the sums in the various forms of µ̂. The calculations

are tedious but routine. We eventually obtain the following results:

µ̂A0 =
2

Θ2

Φ+ (1 + Φ+)

(1− Φ+)
3

(
1− ΦΘ

+

)3

(1 + Φ2Θ
+ ) (1 + ΦΘ

+)
, (4.18)

µ̂Ar =
6

Θ(2Θ + 1)(2Θ− 1)2
Φ+ (1 + Φ+)

(1− Φ+)
5

×
[
2Θ (1− Φ+)

(
1 + Φ2Θ

+

)
− (1 + Φ+)

(
1− Φ2Θ

+

)]2

(1− Φ4Θ
+ )

, (4.19)

µ̂R0 =
4

Θ(3Θ− 1)

[
Φ+

(1− Φ+)
2 + 2

Φ2
+

(1− Φ+)
3

(
1− ΦΘ−1

+

)

(1 + ΦΘ
+)

− 2Θ
(1 + Φ+)

(1− Φ+)
2

Φ2Θ
+(

1 + Φ3Θ−1
+

)
(1 + ΦΘ

+)

]
, (4.20)

µ̂Rr =
6

Θ(4Θ− 1)

Φ+ (1 + Φ+)

(1− Φ+)
3

×
[
1− 2ΘΦ2Θ−1

+ + (2Θ− 1)Φ2Θ
+

] [
(2Θ− 1)− 2ΘΦ+ + Φ2Θ

+

]
[
(2Θ− 1) (1− Φ4Θ

+ )− 2(Θ− 1)Φ+

(
1− Φ4Θ−2

+

)] ,

µ̂S =
1

(3× 2Θ−1 − 2)
Ĥ0(s)

{
1 +

1

s

[
1− 1

(1 + s)Θ−1

]}
(4.21)

=
1

(3× 2Θ−1 − 2)

1

s


1− (1 + 2 s)

{1 + [2(1 + s)]Θ−1s (3 + 2 s)}




×
{
1 +

1

s

[
1− 1

(1 + s)Θ−1

]}
, (4.22)
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with the form for µ̂A0 having been given before (Elliott & Lagogiannis, 2012).

The function Φ+, or the functions Φ± with Φ− = 1/Φ+ defined in Eq. (2.40)

here with r = 1 Hz, appear in all the forms for µ̂ above except that for µ̂S.

This is because the S filter dynamics do not take the form of a standard,

single-step random walk, for which the functions Φ± naturally arise. We have

given an intermediate form in Eq. (4.21) for µ̂S involving Ĥ0(s) because we will

approximate Ĥ0(s) in order to obtain a simple expression for memory lifetimes

in the S filter model.

The Laplace transforms µ̂A0, µ̂Ar and µ̂R0 may be inverted analytically.

However, µ̂Rr and µ̂S cannot in general be inverted analytically because the

locations of the poles of the Laplace transforms are not available, although good

approximations exist. In these two cases, we determine the poles’ locations

numerically and then invert. For the other three cases, the inversion is routine

using the methods described elsewhere (Elliott & Lagogiannis, 2012). In brief,

we must find the locations of the poles in s in the expressions above for µ̂A0(s),

µ̂Ar(s) and µ̂R0(s). By inspection, we can essentially just read off the locations

of the poles as functions of Φ+(s) rather than functions of s. But because

Φ+(s) Φ−(s) = 1 and Φ+(s) + Φ−(s) = 2(1 + s), if Φ+(s) = ω and Φ+(s) = ω∗

are a pole and its complex conjugate in Φ+, then

Φ+(s)

[Φ+(s)]
2 − (ω + ω∗) Φ+(s) + 1

=
1

2

1

s+ 1− 1
2
(ω + ω∗)

, (4.23)

so a pole and its complex conjugate in Φ+ combine to create a simple pole in s at
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s = 1
2
(ω + ω∗)−1. Thus, complex conjugate pairs of poles in Φ+(s), which can

be read off, combine to create a simple pole in s, and the corresponding residue

at the simple s pole can be easily computed. In this way, even eventually obtain

µA0(t) =
1

Θ3

Θ−1∑

l=0

cot2 (2 l+1)π
4Θ

exp
{
−t

[
1− cos (2 l+1)π

2Θ

]}

− 4

Θ3

⌊
Θ−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2Θ

exp
{
−t

[
1− cos (2 l+1)π

Θ

]}
, (4.24)

µAr(t) =
3

2Θ2(2Θ + 1)(2Θ− 1)2

×
2Θ∑

l=1

{ [
1− (−1)l

]
cot4 l π

4Θ
− 4Θ2

[
1 + (−1)l

]
cot2 l π

4Θ

}

× exp
[
− t

(
1− cos l π

2Θ

)]
, (4.25)

µR0(t) =
4

(3Θ− 1)2

⌊
3Θ−2

2

⌋
∑

l=0

(−1)l cot (2 l+1)π
2(3Θ−1)

cos (2 l+1)π
2(3Θ−1)

cos (2 l+1)Θπ

2(3Θ−1)

× exp
{
−t

[
1− cos (2 l+1)π

(3Θ−1)

]}

− 4(Θ + 1)

Θ2(3Θ− 1)

⌊
Θ−1

2

⌋
∑

l=0

cot2 (2 l+1)π
2Θ

exp
{
−t

[
1− cos (2 l+1)π

Θ

]}
,

(4.26)

where ⌊x⌋ is the floor function. The result for µA0(t) has been given before

(Elliott & Lagogiannis, 2012).

Below we will require a simple approximation for µS(t) for the S filter. If we

examine numerically the location of the poles of Ĝ0(s) for the S filter, which

gives us Ĥ0(s) =
[
1− 2 Ĝ0(s)

]
/s in Eq. (4.21), then we find one real negative

pole very close to s = 0 with the remaining poles very nearly lying on a circle in

the complex s plane and having more negative real parts than the pole near s =
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0. The pole close to s = 0 gives the slowest decay mode and is well separated

from the other poles, so we can safely discard the other poles. Let −s0 < 0

be the location of this pole. We find that s0 ≈ AΘ−1 = 1/
(
3× 2Θ−1 − 2

)
.

Since 2G0(t) corresponds to a probability density function, we must write

G0(t) ≈ 1
2
s0 exp(−s0 t) in this approximation and hence H0(t) ≈ exp(−s0 t) or

Ĥ0(s) ≈ 1/(s + s0). The residue at s = −s0 in Eq. (4.21) is then immediate,

and since s0 ≪ 1, we may write

µS(t) ≈
Θ

(3× 2Θ−1 − 2)
exp(−s0 t), (4.27)

where the other poles, associated with s = −1 in Eq. (4.21), have also been

discarded as they also correspond to transients that decay much more rapidly

than the mode associated with the −s0 pole.

5 Comparison of Memory Lifetimes

We may now use our results above to examine perceptron memory lifetimes

in the five filter models discussed above. We shall also compare these models

to the “cascade” model (Fusi et al., 2005). We have previously derived an

expression for µ̂(s), call it µ̂C(s), in the cascade model (Elliott & Lagogiannis,

2012), so we do not reproduce those analytical results here. The expression for

µ̂C(s) cannot be inverted analytically because the locations of its poles cannot

be determined analytically. As with µ̂Rr(s) and µ̂S(s), we therefore locate the

poles of µ̂C(s) numerically and then perform the Laplace inversion. A cascade
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of size n has 2n states, while a filter with threshold Θ has 2Θ−1 states. Taking

into account a state for its binary-valued strength, a synapse with a filter of

threshold Θ requires 2Θ states to represent both strength and filter states. We

may therefore directly compare a filter with threshold Θ to a cascade of size

n = Θ, since they have identical numbers of states.

The SNR memory lifetime τsnr, the solution of µ(τsnr)/σ(τsnr) = 1, will

mostly be determined analytically. Although we determined µ̂(s) analytically

in the previous section for all five filter models, and can either analytically

or numerically invert the Laplace transforms to obtain µ(t), it is very hard

to determine σ(t)2 analytically except for very small values of Θ. However,

provided memory lifetimes are acceptably large, it is usually the case that we

can just approximate σ(t)2 by 1/N , which is what we do below. When we do

require the exact value of σ(t)2, we use numerical matrix methods to compute

it.

We confirm our analytical results above for µ̂(s) and therefore µ(t) and our

numerical matrix methods for computing σ(t)2 by comparing them to simula-

tion results. Full details of our simulation protocols may be found elsewhere

(Elliott & Lagogiannis, 2012). By averaging over a sufficiently large number

of individual simulations, we can obtain agreement between simulations and

analytical results as close as we like. We stress that our analytical results are

exact: we have not needed to perform mean-field approximations or 1/N ex-

pansions to obtain them. Our results hold even for N = 1 or N = 2 synapses,

and we have only to average over a very large ensemble of simulations to obtain
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agreement at any desired level. We therefore we do not show simulation results

for the statistics of h(t) here. We employ simulations also to determine MFPT

memory lifetimes, τmfpt, where required. Details of those simulation protocols

may also be found elsewhere (Elliott, 2014). Because exact analytical results

are not available for τmfpt for the models considered here, we can show only

the simulation results for τmfpt.

First, in Fig. 4, we show µ(t) as a function of t for all models, for six different

choices of Θ (or n). For all five filter models, we see that µ(t) rises, reaches

a maximum, and then falls. We have previously observed and explained these

dynamics for the A0 filter model (Elliott & Lagogiannis, 2012). The storage

of the tracked memory biases those synapses that experienced a potentiating

(depressing) induction signal to potentiate (depress) or remain strong (weak)

if already strong (weak). This bias leads directly to the memory signal rise.

As the bias is removed, the memory signal reaches a maximum. It then starts

to fall as the synaptic strengths return to their equilibrium distribution. For

all choices of Θ, we see that µR0(t) and µRr(t) are very similar. This similarity

reflects the fact that the equilibrium distributions of filter states are also very

similar for these two models, as we saw in Fig. 2, and that their mean escape

times are also very similar, as in Fig. 3. We also see that µA0(t) and µAr(t)

approach each other quite closely at larger times, although they are somewhat

different at smaller times. This difference reflects the differences in the two

models’ equilibrium distributions: although of the same qualitative shape, the

distribution for Rr is somewhat slightly less pronounced around the zero filter
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state and somewhat higher at states closer to thresholds compared to the

distribution for R0. Overall, the similarity between the dynamics of µ(t) for

zero injection and random injection processes indicates that the precise details

of the injection process upon reaching filter threshold are not too important.

Comparing the initial memory signals µ(0) for the filter models, we have

that µA0(0) = 1/Θ2, µAr(0) = 3/[Θ(2Θ + 1)], µR0(0) = 2/[Θ(3Θ − 1)],

µRr(0) = 3/[Θ(4Θ − 1)], and µS(0) = 1/
(
3× 2Θ−1 − 2

)
. For large enough

Θ, the four one-step filter models have initial memory signals, in descending

order, of {µAr(0), µA0(0), µRr(0), µR0(0)} ∼ {3/2, 1, 3/4, 2/3}/Θ2. The R0 and

Rr filters therefore have lower initial signals than the A0 and Ar filters. Con-

versely, µR0(t) and µRr(t) are sustained for longer compared to µA0(t) and

µAr(t). This is as expected. By reflecting a filter back to just below threshold

rather than injecting it to the zero state, a reflecting boundary filter makes a

synapse’s saturated strength states more stable. We can see this explicitly by

comparing the slowest decaying modes in µA0(t) and µR0(t). For µA0(t), the

slowest decay rate is governed by 1− cos π
2Θ

≈ π2

8Θ2 , while for µR0(t), we have

instead 1− cos π
(3Θ−1)

≈ π2

2(3Θ−1)2
≈ π2

18Θ2 , where the approximate forms follow

for Θ large enough. The slowest mode for the R0 filter therefore decays at a

rate 4/9 times more slowly than that for the A0 filter.

For the S filter, its initial signal is exponentially suppressed as a function

of Θ. Despite this small initial signal, µS(t) rises and is strongly sustained,

exhibiting plateau-like dynamics over orders of magnitude of time. This is

true even for the larger values of Θ in Fig. 4, although µS(t) remains under
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the cut-off of 10−3 for µ(t) used to plot these figures: such low values of µ(t)

are biologically irrelevant because any biologically realistic value of N cannot

be large enough to generate an adequate SNR. Nevertheless, were we to show

values of µ(t) < 10−3, we would see in all cases µS(t) sustained high enough

for long enough that it would always eventually exceed the memory signals

associated with the four one-step filter models, A0, Ar, R0 and Rr. As with

the one-step filters, the S filter exhibits a multiplicative rise in its memory

signal from its initial value to its peak value that is of order Θ. In summary,

as a model, to be biologically useful the S filter must have a reasonably small

filter threshold, perhaps not in excess of 10.

Although the cascade model is designed to have a high initial memory signal

µC(0) = 2/n, we see from Fig. 4 that all the one-step filters quickly surpass the

cascade’s signal as it drops monotonically and theirs rise to their peaks. This

occurs by at most t ≈ 10/r s, and usually much sooner, from the data in these

figures for different Θ or n. Even the S filter, with its initially very suppressed

signal, catches up with the cascade, for example in Fig. 4C, although somewhat

later. Moreover, the filters’ memory signals remain higher than the cascade’s

over ranges of µ(t) that are biologically relevant.

Having examined the first-order statistic µ(t) in Fig. 4, we now examine

the second-order statistic σ(t)2 and the SNR µ(t)/σ(t) in Fig. 5. In this figure,

we do not approximate σ(t)2, but rather compute it using numerical matrix

methods. The covariance between pairs of synapses’ strengths contributes to

σ(t)2, as can be seen in Eq. (2.16). This rather counter-intuitive covariance
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arises because synaptic modifications are driven by a continuous-time stochas-

tic (here Poisson) process (Elliott & Lagogiannis, 2012). In Figs. 5A, C and E,

we plot this covariance (or rather its square root) against time for Θ (or n)

equal to 4, 7 and 10, respectively. We have not shown results for the Ar and

Rr filters to avoid clutter and because they are very similar to those for the

A0 and R0 filters. As we have observed before (Elliott & Lagogiannis, 2012),

the cascade’s covariance peaks for t ≈ 1/r s, and the amplitude of this peak

is relatively insensitive to the choice of n. This is because of the presence

of cascade states with high probabilities for making strength transitions. In

contrast, the filters’ covariances scale down rapidly as Θ increases. There is

a minimum in any filter’s covariance due to the peak in µ(t), and therefore

two peaks in the covariance either side of this minimum. While the one-step

filter models’ two covariance peaks are of similar amplitudes, the second peak

in that for the S filter is increasingly suppressed relative to its first peak as Θ

increases. This suppression of the second peak serves to reduce the impact of

the S filter’s covariance on SNRs and therefore on SNR memory lifetimes.

In Figs. 5B, D and F we show the SNRs for the parameters corresponding

to Figs. 5A, C and E, respectively, including those for the Ar and Rr filters, for

N = 104 synapses. The cascade model’s SNR is significantly undermined by

its initially very high variance due to the high probability states that increase

the model’s initial signal (Elliott & Lagogiannis, 2012). For the parameters

used in this figure, the one-step filter models’ SNRs exceed that for the cascade

by a time at most t ≈ 1/r s, and for smaller Θ, much more quickly. Thus, the

71



cascade model’s initially high µ(t) is swamped by its initially high σ(t). The

SNR µ(t)/σ(t) is not shown below unity on these graphs because SNR memory

lifetimes are defined by the (possibly largest) solutions of µ(t)/σ(t) = 1. We

can read off or compare memory lifetimes for different models by observing

where the lines for µ(t)/σ(t) intercept the abscissae on these graphs. The

SNRs for the R0 and Rr filters are extremely similar and for larger times

almost indistinguishable. These two filters always have higher SNRs for larger

times than the A0 and Ar filters, and so have larger (and almost identical) SNR

memory lifetimes than the A0 and Ar filters. The A0 and Ar filters have similar

but not identical SNR profiles, with the A0 filter having a larger SNR memory

lifetime than the Ar filter in these figures. For Θ = 7 and with N = 104, in

Fig. 5D, the S filter only just has the largest SNR memory lifetime. Because

of the S filter’s memory signal dynamics, whether its SNR ever reaches unity

and exceeds that of the other filters depends very strongly on the choice of N .

In the Θ–N or n–N plane, in Fig. 6, we indicate which of the six models

(the five different filters and the cascade) has the largest SNR memory lifetime,

using σ(t)2 ≈ 1/N for convenience. For SNR lifetimes in excess of t ≈ 10/r s,

this approximation is good: for longer memory lifetimes, the covariance has

died away and does not contribute significantly to σ(t)2, and the µ(t)2 term in

the non-covariance contribution to σ(t)2 is usually negligible. In the blacked-

out region, SNRs never exceed unity for all six models. We see that the filter

models are superior to the cascade model in all regions of parameter space

except higher Θ and n and smaller N (N under around 700 for n = 20). Re-
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flecting boundary filters are superior to one-step double absorbing boundary

filters, except in a small sliver of parameter space. The apparent transition

from R0 to Rr for fixed Θ as N increases is somewhat misleading: the SNR

memory lifetimes of both filters are, as we have seen above, extremely simi-

lar, so although the transition is real, both filters’ memory performances are

essentially identical and any difference is entirely marginal. For a range of Θ

between 6 and 12 inclusive and for N large enough, the S filter is superior to

the Rr (and R0) filter. These large values of N are required to overcome the

S filter’s suppressed memory signal. If we were not to consider the S filter in

Fig. 6, the Rr filter would have the largest SNR memory lifetimes in the region

occupied by the S filter, except for a single line for n = 11 and N in excess of

approximately 850,000, where the cascade would have only a very marginally

larger SNR memory lifetime than the Rr filter. Of course, values of N that

high are not, in any event, biologically plausible.

We take cross-sections through the plane in Fig. 6 by plotting SNR memory

lifetimes for fixed Θ or n as a function N in Fig. 7. We see in all cases that the

R0 and Rr filters’ memory lifetimes are virtually identical, except for small N ,

where small differences in the onsets of lifetimes exist. The sudden onset of

(or bifurcation in) filters’ memory lifetimes as N increases is due to encoding

failure for small N : the SNR does not ever exceed unity, so according to the

SNR memory lifetime definition, there is no solution for τsnr. The S filter

requires the largest value of N for the onset of its SNR memory lifetimes.

Indeed, for Θ = 13 in Fig. 7D, the S filter’s results are only just visible for N

73



very close to 106. We see that there are regimes, for Θ or n equal to 10 or 13

in these figures, in which the cascade’s memory lifetimes exceed those for the

A0 and Ar filters but are lower than those for the R0 and Rr filters, for larger

values of N . If we showed results for n = 11, there would be a small region

for N ' 850, 000 in which the cascade’s lifetimes would exceed those of the Rr

filter, but would be under those of the S filter.

Fig. 6 indicated a sliver of parameter space in which the cascade model

has the highest SNR memory lifetimes, above the blacked-out region where

all models fail to encode the tracked memory adequately but below the sliver

of parameter space in which the A0 filter has the highest SNR memory life-

times. From the cross-sections in Fig. 7 we see, however, that for small N

in those regions where the cascade model apparently outperforms the various

filter models, the cascade’s SNR memory lifetimes are in fact minuscule, of

order τsnr ≈ 1/r s. With an increase in N and the onset of filters’ SNR mem-

ory lifetimes, they essentially jump immediately to substantially higher values

than the cascade’s. Even for Θ = 20 or n = 20, at N ≈ 700 at the transi-

tion between the cascade model and the A0 filter model in Fig. 6, the cascade

model’s SNR memory lifetime is only τsnr ≈ 3/r s while the A0 filter’s lifetime

is nearly τsnr ≈ 200/r s. The entire region, then, occupied by the cascade in

Fig. 6 corresponds to extremely weak memory encoding and very short SNR

memory lifetimes. It is true that for smaller N , at the onset of (bifurcation in)

SNR memory lifetimes for filter models, the bifurcation point corresponds to

a single time point at which the memory signal peak just reaches an SNR of
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unity. However, even a small increase in N will create more significant regions

in time in which the SNR exceeds unity, giving rise to very rapid increases in

SNR memory lifetimes. There are no such bifurcation dynamics for the cascade

model because its memory signal falls monotonically.

We can derive approximate expressions for τsnr in the filter models by con-

sidering only the slowest decaying modes in the expressions for µ(t) and then

solving µ(τsnr) = 1/
√
N . We do this only for the zero injection models. For

the A0, R0 and S filters, we obtain

τA0
snr ≈

4Θ2

π2
loge

256

π4

N

Θ2
, (5.1a)

τR0
snr ≈

(3Θ− 1)2

π2
loge

256

3π2

N

(3Θ− 1)2
, (5.1b)

τSsnr ≈
3

4
2Θ loge

4

9

Θ2N

22Θ
, (5.1c)

where strictly these expressions are valid only for large Θ but in practice they

give good approximations even for small Θ. We have used the approximate

form for µS(t) in Eq. (4.27) in deriving τSsnr. These analytical results agree

extremely closely with the results shown in Fig. 7, being essentially perfect for

larger values of N . There are discrepancies only for smaller N in the vicinities

of the onsets of memory lifetimes because these simple analytical results do

not exhibit bifurcations as N increases. Nevertheless, pseudo-bifurcations are

present in the sense that we demand that τsnr > 0, so we must demand that the

arguments of the logarithms exceed unity. Thus, we require NA0 > 0.38Θ2,

NR0 > 0.12 (3Θ − 1)2 and NS > 2.25 × 22Θ/Θ2. For Θ in excess of around 7,
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NS in fact gives an extremely good approximation to the location of the real

bifurcation. We may turn these limits around and regard them as limits on

filter sizes. If we take the maximum number of synapses possible in real neurons

to be around 250,000, then maximum filter sizes for these three models are

ΘA0 / 810, ΘR0 / 490 and ΘS / 12. For the A0 and R0 filters, the biological

upper limits on Θ are likely to be very much lower than these theoretical

extremes.

Previously we have observed that SNR memory lifetimes can give a very

misleading indication of memory performance for small N (Elliott, 2014).

While SNR lifetimes suggest a minimum value of N for successful memory

encoding, we found that with MFPT memory lifetimes, such was not that

case. Only by taking an asymptotically valid, large N form for MFPT mem-

ory lifetimes is it possible to observe a minimum value of N similar to that

seen for SNR memory lifetimes. However, such a form is by definition valid

only for large N , and any such minimum value of N is purely an artifact of the

approximation and is not seen in the full form. These results were derived for

the simplest possible model of synaptic plasticity applied to memory storage,

but they are likely to generalise to the more complicated models considered

here. In Fig. 8, we therefore examine MFPT memory lifetimes for the specific

choice of Θ or n equal to 10. This figure is therefore analogous to Fig. 7C,

although we have run simulations for Fig. 8 only up to N = 105. In Fig. 8A,

we show the MFPT memory lifetimes for all six models. We do not see any

regions of encoding failure. All filter models have MFPT memory lifetimes
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even for N = 100, including the S filter model. Indeed, the S filter model has

for all plotted N a very large τmfpt, broadly consistent with its τsnr in Fig. 7C

for larger N . The R0 and Rr filter MFPT memory lifetimes are extremely

similar, and the A0 and Ar filter MFPT lifetimes are also similar, although

not so similar as R0 and Rr. These qualitative features are precisely as in

Fig. 7C for SNR lifetimes. To facilitate comparison, we plot τmfpt and τsnr in

Fig. 8B for the A0 and R0 filters and for the cascade model; the other filters

are not plotted to avoid clutter. The numerical values for the filters’ mem-

ory lifetimes according to both metrics are very similar, except for smaller N

where SNR lifetimes would indicate memory encoding failure. There appear

to be differences between the cascade model’s two memory lifetimes, but the

numerical differences are not large and are merely magnified in a log-log plot

when the absolute values are small. We see that although according to the

SNR metric, the cascade model outperforms the filter models in the small N

region (although its SNR memory lifetimes are minuscule here), according to

the MFPT metric, it is the filters that outperform the cascade in this small N

region, despite the cascade being designed to operate well in such regions by

having a large initial signal.

What accounts for these differences between SNR and MFPT memory life-

times for small N? The mean memory signal µ(t) is precisely that: the mean of

the random variable h(t). The random variable h(t) has a distribution around

its mean µ(t). While
√
N µ(t) (the approximated SNR) may be below unity

at t = 0 s and stay below unity for all time, some realisations of h(t) will
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strongly encode the initial memory while others will not. A first passage time

memory lifetime will assign a lifetime of 0 s to those realisations in which the

initial memory is not strongly encoded while those realisations in which it is

strongly encoded will be associated with non-zero lifetimes. The MFPT mem-

ory lifetime is, by definition, an average over all these possibilities. While an

SNR memory lifetime essentially collapses the distribution of h(t) to a single

point, an MFPT memory lifetime takes into account the stochasticity in the

dynamics of h(t) over all possible realisations. However, if strong encoding of

the initial memory becomes increasingly improbable as N decreases, then we

would expect the variance in first-passage-time-defined memory lifetimes to in-

crease. We confirm this in Fig. 8C, in which we plot τmfpt and the one standard

deviation region around it. We do this only for the R0 filter model and the

cascade model, although we obtain similar results for the other filter models.

We see explicitly that for smaller N , τmfpt is swamped by its variance while for

larger N and stronger encoding, τmfpt can be distinguished from zero at the one

standard deviation level. Interestingly, we see that the cascade model’s τmfpt

requires a higher value of N to be distinguishable from zero than the R0 filter’s

τmfpt, and this is true for all the one-step filter models. This is despite the fact

that according to an SNR criterion for n = 10, the cascade has non-zero SNR

memory lifetimes (and thus successful, strong encoding) over the entire range

of N considered here. For the S filter, the standard deviation in τmfpt swamps

it over the entire range of displayed N . This is hardly surprising, given the

very weak encoding of the initial memory by the S filter even for sizeable N .
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6 Lahiri & Ganguli’s “Memory Frontier”

Lahiri & Ganguli (2013) adopt a very powerful and extremely interesting ap-

proach to the problem of memory lifetimes in models such as those considered

here. They perform a general analysis, argued to be valid for any model of

synaptic plasticity, that seeks to establish an upper bound on the SNR enve-

lope SNR(t) and that can therefore in principle provide a theoretically optimal

SNR memory lifetime. Their SNR is SNR(t) rather than our µ(t)/σ(t), but

as we saw above in section 2.3, with the approximation that σ(t) ≈ 1/
√
N ,

these two SNRs are identical and, up to the overall factor of
√
N , just the

perceptron’s (perhaps excess) mean activation.

They establish two bounds on SNR(t), given by

SNR(0) ≤
√
N, (6.1a)

∫ ∞

0

dtSNR(t) ≤ 1
r

√
N(M − 1), (6.1b)

where M is the dimensionality of the state vectors describing synapses’ full

states, so that, equivalently, the full state transition matrices are M ×M . For

our models, M = 2(2Θ − 1) and for the cascade model, M = 2n. The first

bound is on the initial SNR and the second bound is on the area under the

SNR curve. Discarding the overall scale factor
√
N and setting r = 1 Hz for

convenience and without loss of generality, we may alternatively write these

bounds in terms of the excess mean perceptron activation, defined to be η(t) =

79



µ(t)− µ(∞), as

η(0) ≤ 1, (6.2a)

A =

∫ ∞

0

dt η(t) ≤ M − 1, (6.2b)

which defines A. We note that the first bound is essentially trivial: µ(t) ≤ 1 by

the definition of h(t) and we maximise the difference µ(t)−µ(∞) for balanced

processes with g± = 1
2
for which µ(∞) ≡ 0. Thus, η(0) = µ(0)− µ(∞) ≤ 1 is

essentially automatic, when viewed from our perceptron formulation. We also

observe that

lim
s→0

η̂(s) = lim
s→0

∫ ∞

0

dt η(t) exp(−s t) =

∫ ∞

0

dt η(t) ≡ A, (6.3)

so that in the limit s → 0, the Laplace transform of η(t) reduces identically

to the area under the (rescaled) SNR curve. For balanced processes, we have

that A ≡ lims→0 µ̂(s). Laplace transforming Eq. (2.28) (with r = 1 Hz), we

have for a general model that

η̂(s) = 2g+g−Ω
T
2

[
(1 + s) I2 −M2

]−1(
M

+
2−M

−
2

)
A2. (6.4)

We cannot just set s = 0 in this equation because the matrix I2 −M2 = −G2

is not invertible due to the existence of the equilibrium eigenvector of M2.

However, we may expand
[
(1 + s) I2 −M2

]−1
as a power series in M2, which

amounts to defining the matrix exponential in Eq. (2.28) via its power series.
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We may then set s = 0 to give

lim
s→0

η̂(s) = 2g+g−Ω
T
2

∞∑

α=0

M
α
2

(
M

+
2−M

−
2

)
A2. (6.5)

The sum is convergent because Mα
2 → A2 as α → ∞, where A2 is a matrix all

of whose columns are the equilibrium distribution A2, or A2 = A2

(
nT

∣∣nT
)
.

Following Lahiri & Ganguli, we may write M+
2−M

−
2 = dG2/dg+ because G2 =

g+M
+
2 + (1 − g+)M

−
2 − I2, and then use G2A2 = 0 to write (dG2/dg+)A2 =

−G2 dA2/dg+. We then have

lim
s→0

η̂(s) = −2g+g−Ω
T
2

∞∑

α=0

M
α
2

(
M2 − I2

)dA2

dg+
≡ 2g+g−Ω

T
2

dA2

dg+
, (6.6)

which is Lahiri & Ganguli’s result for A, on which they then obtain the bound

in Eq. (6.2b).3 Finally, for an arbitrary model, dropping the subscript “2” for

3It may appear that we have written
∑∞

α=0 M
α
2 as the inverse of I2 −M2 in

Eq. (6.6), but the sum is not convergent and the inverse does not exist because

of the unit eigenvalue of M2. Rather, we must strictly regard
∑∞

α=0 M
α
2

(
M2 −

I2
)
as always acting on vectors, and then (absolute) convergence is assured.
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convenience just in this set of inequalities, we note that

A = 2g+g−Ω
T dA

dg+

≤ 2g+g−

M∑

i=1

∣∣∣∣
dAi

dg+

∣∣∣∣

= 2g+g−

{[
M−1∑

i=1

∣∣∣∣
dAi

dg+

∣∣∣∣

]
+

∣∣∣∣∣
M−1∑

i=1

dAi

dg+

∣∣∣∣∣

}

≤ 4g+g−

M−1∑

i=1

∣∣∣∣
dAi

dg+

∣∣∣∣

≤ (M − 1) 4g+g− max
i∈{1,...,M}

∣∣∣∣
dAi

dg+

∣∣∣∣

≤ (M − 1) sup
g+∈[0,1]

max
i∈{1,...,M}

∣∣∣∣4g+(1−g+)
dAi

dg+

∣∣∣∣ , (6.7)

where, in the third line, we have used the fact that
∑M

i=1 dAi/dg+ ≡ 0 to

express any one component (which we took as dAM/dg+) in terms of the others.

Whether it is possible to obtain a bound on the expression in the last line via

elementary methods remains to be determined, but we have at least the critical

dependence on M − 1 in Eq. (6.2b) via elementary methods.

By performing an eigen-expansion of the matrix G2, Lahiri & Ganguli write

η(t) in the form

η(t) =
∑

a

Ia exp(−t/τa), (6.8)

where λa = −1/τa are the eigenvalues of G2 and the coefficients Ia can be

computed from Eq. (2.28) in terms of the left and right eigenvectors of G2.
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The two bounds in Eq. (6.2) then imply the two constraints,

∑

a

Ia ≤ 1, (6.9a)

∑

a

Iaτa ≤ M − 1. (6.9b)

They seek to maximise η(t) at any given time with respect to the parameters

Ia and τa subject to these two constraints, although they acknowledge that the

constraints are likely not complete, in the sense that some choices of Ia and

τa that satisfy these constraints may not in fact be realisable for any actual

synaptic model. That is, they maximise η(t) essentially ignoring the fact that

the λa = −1/τa are the eigenvalues of a generating matrix G2 of a stochastic

process and that the Ia are determined from its left and right eigenvectors.

They obtain a theoretical bound on η(t) at each point in time that arises from

precisely one non-zero value for some Ia, so that η(t) is at each time point

just a single exponential. By comparing this theoretical bound on η(t) to real

models via numerical optimisation or hand searches, they find that their bound

on η(t) can be achieved at very small times (rt ≪ 1) and at large times, but

that their search does not find actual models that can achieve or indeed even

come close to their bound at intermediate times (see their Fig. 4).

Saturation of their bound near t = 0 s is essentially trivial because the

bound η(0) ≤ 1 is itself essentially trivial, as we saw above. In addition,

saturation of their bound at large times is inevitable because η(t) → 0 as

t → ∞ and the slowest decaying mode in η(t), as we have exploited above in
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section 5, always takes over, leaving a single mode present in η(t) for t large

enough. These two extremes of small and large t are not especially informa-

tive. In many respects, the dynamics of η(t), or µ(t), at intermediate times are

precisely those that are of the greatest interest. As we have seen in our own

filter models, in these intermediate time regimes, the memory signal need not

even be monotonic decreasing, but instead can rise and fall. Unfortunately,

it is precisely in this intermediate time regime that Lahiri & Ganguli fail to

achieve their theoretical bound in actual, realisable models, and they them-

selves concede that their bound is likely not achievable in this regime because

their two constraints in Eq. (6.9) likely do not bite strongly enough.

Much more important, however, in terms of attempting to apply Lahiri and

Ganguli’s results to our models, is the major assumption made in the eigen-

expansion of G2, leading to Eq. (6.8). They have assumed that the matrix G2

is not defective, i.e. they have assumed that G2 possesses a complete set of

eigenvectors. This is not a valid assumption in general, however. For example,

the A0 and S filter models considered above possess defective generating ma-

trices. In general, then, we would need to employ generalised eigenvectors and

use the Jordan normal form, and thus we would expect the expansion coeffi-

cients Ia in Eq. (6.8) not to be constants but rather to be polynomials in t with

their degrees determined by any degeneracy in the eigenvalues of G2. Despite

this expectation, it is striking that the form for µA0(t) in Eq. (4.24) is pre-

cisely of the form given in Eq. (6.8) [with µ(∞) = 0 so that η(t) ≡ µ(t)], even

though the A0 filter model’s generating matrix is defective for Θ > 2. How-
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ever, we notice that some of the Ia are negative. Indeed, it is necessarily the

case that in a model with a non-monotonic memory signal, some of the Ia are

negative: all the Ia being non-negative would entail only monotonic-decreasing

η(t). This is in fact true in all five filter models. It is unclear whether Lahiri

& Ganguli have implicitly assumed that all the Ia are non-negative in their

optimisation search. The assumption of a non-defective G2 is not, however,

the only assumption in writing down Eq. (6.8). Another major assumption is

that the eigenvalues λa are real. Of course, µ(t) or η(t) must be real, but the

eigenvalues λa and therefore the expansion coefficients Ia need not be. Indeed,

if we explicitly examine the S filter, then we find that not only is its generating

matrix defective, but also it possesses some complex eigenvalues. For example,

for Θ = 3, we find that µS(t) takes the form

µS(t) =
[
a1 cos(γ1t) + b1 sin(γ1t)

]
exp(γ2 t)

+ c1 exp(λ3 t) +
(
d1 + e1t

)
exp(−t),

where the various exponents involve the roots of a cubic and the coefficients

involve the roots of a sextic. We see not only the appearance of a first-order

polynomial in t due to the defective nature of G2, but we also see the pres-

ence of its complex eigenvalues indicated by the appearance of trigonometric

functions. Further, these oscillatory components, while very rapidly decaying

and minuscule, are superimposed on the overall rise and fall of the memory

signal µS(t). Such oscillations are perhaps to be expected in the presence of the
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rectifying behaviour present in the S model. With a non-defective matrix G2,

the constraints in Eq. (6.9) must remain valid even in the presence of complex

eigenvalues λa = −1/τa and complex coefficients Ia, but then the optimisation

search for models that achieve the bounds in Eq. (6.2) should be extended to

include not only the possibility of negative coefficients Ia but also complex

eigenvalues λa and complex coefficients Ia. However, with a defective matrix

G2, the eigen-expansion in Eq. (6.8) must be modified to permit the appearance

of polynomial coefficients and therefore the constraint in Eq. (6.9b) requires

modification. The constraint in Eq. (6.9a) remains essentially unchanged if we

interpret Ia to mean the polynomials evaluated at t = 0.

These considerations lead us to suspect that Lahiri & Ganguli’s SNR en-

velope bound at intermediate times is of limited utility because it is almost

certainly not achievable by any actual model. Furthermore, we have seen that

the assumptions involved in the implementation and indeed formulation of

their constraints in Eq. (6.9) are not general enough and do not apply to our

filter models. Nevertheless, for the sake of completeness, it is interesting to

examine lims→0 µ̂(s) = A in the five filter models above, and in the cascade
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model. We find that,

lim
s→0

µ̂(s) =





Θ for A0 model,

1
3
(2Θ + 1) for Ar model,

(2Θ−1)(7Θ−1)
3(3Θ−1)

for R0 model,

3Θ(2Θ−1)
4Θ−1

for Rr model,

Θ for S model,

n2−n+2
2n

for cascade model,

(6.10)

and if we divide through by M = 2 (2Θ − 1) or M = 2n and take the limit

of large Θ or n, we obtain the normalised areas, in order of the models listed

in Eq. (6.10), of 1
4
= 0.25, 1

6
≈ 0.167, 7

18
≈ 0.389, 3

8
= 0.375, 1

4
= 0.25,

and 1
4
= 0.25. The R0 model therefore has the largest normalised area, with

the Rr model following closely behind. The theoretical bound, according to

Eq. (6.2b), is unity. It is interesting, however, to compare the A0 and S models,

both of which have A = Θ, while their initial signals µA0(0) = 1/Θ2 and

µS(0) = 1/(3× 2Θ−1 − 2) are in general vastly different. That the S model has

the same SNR area as the A0 model despite its vastly suppressed initial signal

indicates that its memory signal is sustained for very much (indeed, vastly)

longer than that for the A0 model. In general, then, the S model has a (vastly)

longer SNR memory lifetime (albeit requiring absurdly large values of N) than

the A0 model. It therefore appears that the interaction between µ(0) [or η(0) in

general] and A can be very counter-intuitive, especially in the presence of non-

monotonic and strongly-sustained memory signals. A consideration of the SNR
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envelope and its associated area appears predicated on the tacit assumption

that the SNR can only fall monotonically.

7 Discussion

We have proposed in earlier work that synapses may implement plasticity

induction signal filtering mechanisms that control fluctuations in synaptic

strength driven by ongoing synaptic plasticity (Elliott, 2008). These integrate-

and-express mechanisms powerfully control fluctuations in developmental pro-

cesses that destabilise developmentally-relevant patterns of synaptic connectiv-

ity (Elliott & Lagogiannis, 2008; Elliott, 2011a,b). In the context of the storage

of memories, these mechanisms lead to enhanced memory lifetimes and a rise

in the initial memory signal, actually driven by ongoing synaptic plasticity,

that is in radical contrast to related but non-integrative models of synaptic

plasticity (Elliott & Lagogiannis, 2012). As binary-strength synapses auto-

matically provide the limits on synaptic strengths than turn memory systems

into palimpsests (Nadal et al., 1986; Parisi, 1986), many models of memory

storage use binary-strength synapses (see, for example, Willshaw et al., 1969;

Tsodyks, 1990; Fusi et al., 2005), although multi-level, discrete-state synapses

also naturally provide such limits (see, for example, Barrett & van Rossum,

2008; Huang & Amit, 2011). In our earlier work on memory lifetimes with

integrate-and-express models, we therefore used binary-strength synapses, but

we specifically employed a filter mechanism that was independent of synaptic
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strength, so that it would generalise immediately to any number of states of

synaptic strength (Elliott & Lagogiannis, 2012).

Here, we have compared and contrasted a variety of different filtering mech-

anisms in the context of memory lifetimes, with some of these mechanisms

being tailored to specifically binary-strength synapses. Filters with two ab-

sorbing boundaries (A0, Ar and S) generalise to discrete state (and effectively

unbounded state) synapses immediately. However, filters with an absorbing

boundary and a reflecting boundary are suited to synapses with saturated

strength states and best suited to binary-strength synapses. Although a reflect-

ing boundary can always be employed by a general, discrete-state synapse at its

upper and lower strength limits, the presence of the reflecting boundaries will

exert the greatest influence on synaptic dynamics for binary-strength synapses.

If a discrete-state synapse has many (and perhaps even a dynamically variable

number of) states of strength, we consider it unlikely that the plasticity signal

integration mechanism would be sensitive to a synapse’s current strength state,

and specifically whether the synapse is saturated. However, if a discrete-state

synapse possesses only a few states of strength (perhaps only two or three),

then it is entirely possible that the integrative- and strength-change-processes

become strongly coupled together in order to optimise functioning.

Considering for the moment only zero injection processes, the R0 filter

model is nearly everywhere in parameter space superior to the A0 filter model

in terms of SNR memory lifetimes. The reflecting boundaries make weak

(lower) and strong (upper) strength states more stable because the escape
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times through the absorbing boundaries from just below the reflecting bound-

aries are longer than the escape times through the absorbing boundaries from

the zero filter state. This difference in stability is seen even in the escape

times from the zero filter state, with the R0 filter taking nearly three times

longer on average to reach an absorbing threshold compared to the A0 filter

[see Eq. (3.40)]. For the mean memory signal, the slowest decaying mode with

the R0 filter has a rate governed, approximately, by π2/(18Θ2), while for the

A0 filter, the slowest mode has a rate governed by around π2/(8Θ2). This

difference does not translate directly into a roughly 2.25-fold difference in SNR

memory lifetimes because of differences in the initial and peak memory sig-

nals between the two models, but for larger N , the ratio in SNR lifetimes is

a little under 2. For more general, discrete-state synapses, we would expect

this enhanced stability of the saturated strength states also to be apparent

in enhanced memory lifetimes compared to purely absorbing boundaries, but

the impact of the saturated states would be expected to be progressively di-

luted as the total number of strength states increases. In that sense, reflecting

boundary filters are expected to be have the greatest impact on binary-strength

synapses.

The A0 filter is superior to the R0 filter in terms of SNR memory lifetimes

only in a thin sliver of parameter space for small N . Just like the cascade

model’s sliver of superior parameter space, the A0 filter is better than the R0

filter only because, from an SNR perspective, it encodes memories somewhat

more strongly than the R0 filter. This arises directly because the equilibrium
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distributions of the R0 filter states are shifted somewhat towards the reflecting

boundaries and away from the absorbing boundaries. It is the probability of

occupation of filter states just below absorbing boundaries that determines the

initial memory signal, and hence the strength of the initial encoding. This

difference is specific to the SNR memory lifetime metric. With an MFPT

memory lifetime metric, the R0 filter is always superior to the A0 filter.

With random rather than zero injection, we found that the R0 and Rr

models are virtually identical in terms of their memory performance, whether

determined by SNRs or by MFPTs, with any differences between these two

filters being entirely marginal. For the A0 and Ar models, differences are dis-

cernible but they perform very similarly. Specifically, for larger times, their

memory signals converge and for larger N , their SNR memory lifetimes also

converge. We considered random injection as a worst-case-scenario, avoiding

excessive parameter dependence, in order to determine how robust filtering

mechanisms are against the possibility of noise in the zero injection process at

filter threshold. It is rather striking that the precise details of the injection

process at filter threshold appear to make relatively little and indeed in some

cases hardly any difference to memory performance. How can such insensi-

tivity be explained? Provided that the injection distribution is symmetrically

distributed around the zero filter state and not skewed towards an absorbing

threshold, we would expect that contributions from filter states equidistant

from the zero filter state will, roughly speaking, average out to a contribution

similar to that from the zero filter state. For example, for a strong synapse,
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a filter at I = −1 will escape slightly more quickly through the lower bound-

ary than it would from I = 0, but conversely, a filter at I = +1 will escape

slightly more slowly than it would from I = 0. The contributions from I = −1

and I = +1 will, roughly speaking, average out to that from the I = 0 state.

The details of the injection process upon symmetric injections around the zero

filter state should not, therefore, be too important. However, if targeting the

zero state upon injection exhibits a systematic bias towards the upper or lower

filter threshold, then we should expect more sensitivity to the details of the

injection process.

The four one-step filters, although controlling fluctuations in synaptic st-

rength, are still subject to them. We might describe these filters as lacking

intentionality: they are not “looking” for a particular sequence of induction

signals as the cue on which to express synaptic plasticity, but rather will ex-

press plasticity when there is a certain excess of induction signals of one sign

compared to the other sign. How this excess is arranged in the overall sequence

of induction signals is irrelevant, provided that boundaries are not hit in the

meantime. The super or S filter, however, may be described as intentional: it

insists on a sequence of Θ consecutive induction signals of the same sign; a

signal with the opposite sign will reset the filter to the zero state. Essentially,

the S filter counts the number of consecutive same-sign induction signals and

expresses plasticity if this number reaches Θ. Of course, such a sequence of Θ

same-type induction signals can arise purely as a fluctuation, but only with the

vastly suppressed probability of 2−Θ for balanced potentiation and depression.
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This suppression is reflected in the mean escape time from the zero filter state

given in Eq. (3.40) and in the slowest decay mode in the mean memory signal,

whose approximate form is given in Eq. (4.27), where the rate is controlled

by the factor 1/
(
3× 2Θ−1 − 2

)
. Even for relatively small Θ, a plateau-like

feature sustained over several orders of magnitude in time is present in the

mean memory signal. Furthermore, the second peak in the S filter’s covariance

is strongly suppressed, even compared to the overall suppression of all filters’

covariances with increasing Θ. This suppression further helps to sustain the

plateau-like feature in the S filter’s SNR. This strong, sustained feature can

increase memory lifetimes compared to the other filter models. Unfortunately,

however, the S filter’s initial memory signal, and its peak memory signal, are

also suppressed, because of the strong and inevitable clustering of the S fil-

ter’s equilibrium distribution of filter states around the zero state. Although

strongly sustained, the S filter’s memory signal is therefore initially rather weak

compared to the other filters’ signals, at least until those filters’ signals have

decayed below the S filter’s sustained signal. The S filter’s rather weak signal

therefore requires large N for its SNR to exceed unity. Imposing a maximum,

biologically plausible limit on N of around 250,000, we saw that the S filter re-

quires Θ under approximately 12 for plausibility. For Θ above this, the model

cannot generate a memory signal strong enough to be of use in a real, biologi-

cal system. In contrast, the other, one-step filters can operate with Θ of order

several hundred, although in practice it is likely that this vastly overestimates

the available pool of large macromolecules available at single synapses for in-

93



stantiating any putative synaptic filter (see, for example, Harris & Stevens,

1989; Nusser et al., 1998; Bagal et al., 2005; Miller et al., 2005; Asrican et al.,

2007).

We have also compared the various filter models to the cascade model of

synaptic plasticity (Fusi et al., 2005). Filters are superior in almost all regions

of biologically-relevant parameter space, by which we essentially mean N un-

der somewhere between 105 and 106: Purkinje cells may have up to perhaps

around 2.5 × 105 synapses (Napper & Harvey, 1988) although most neurons

have considerably fewer synapses, on the order of 103 or 104. The cascade

model is apparently superior only for larger n and small N , but in practice its

SNR memory lifetimes in this region are minuscule. Furthermore, its MFPT

memory lifetimes in this region are both small and dominated by their vari-

ance, and in fact smaller than the filter models’ MFPT memory lifetimes in

this region. In this region, no model performs well and comparison is mean-

ingless. Overall, however, the cascade model fails in its own terms. Its state

transitions are designed to ensure a high initial memory signal and a sustained

memory signal. But, as we have shown before (Elliott & Lagogiannis, 2012),

the very states that are introduced into the model to ensure a high initial signal

are precisely the same states that induce a large covariance between synapses’

strengths, significantly reducing the SNR for earlier times. The high initial

signal is therefore swamped by the variance. The sustained signal for longer

memory lifetimes is inferior to the signals from filter dynamics in biologically-

relevant regions of parameter space. The cascade model only starts to compete
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with filters for values of n that are so large that the cascade model’s memory

signal is well below any biologically-relevant level, or correspondingly, requires

implausibly large values of N (i.e. N > 106) to lift the SNR above unity.

Finally, although filter-based models generalise immediately to discrete, multi-

level synapses, even with reflecting boundaries, the structure of the cascade

model appears wedded to binary-strength synapses and does not appear to

generalise easily.

Real memory systems are organised in a spectacularly complicated fashion

(Eichenbaum & Cohen, 2001) and even the paradigmatic CA3–CA1 hippocam-

pal synapse is of almost infinite complexity compared to modellers’ idealisa-

tions of it (Andersen et al., 2007). Synaptic plasticity and memory phenomena

exhibit processes occurring on multiple timescales, from seconds to minutes to

hours to days, with the former believed to provide the mechanistic underpin-

nings and therefore explanation of the latter (Roberson et al., 1996; Heisen-

berg, 2003; Reymann & Frey, 2007). Synaptic plasticity is organised into at

least three separate phases, with short-term plasticity, early-phase plasticity

and late-phase plasticity, being characterised by their dependence on kinase

and phosphatase activity or their dependence on protein synthesis (Roberson

et al., 1996; for models of the transition to late-phase synaptic plasticity, see

Clopath et al., 2008, Barrett et al., 2009, Päpper et al., 2011). Moreover,

memory, even in single systems, is under executive control with the integrative

actions of adenylyl cyclase and its dependence on neuromodulatory activity

being of pivotal importance in providing regulatory information from central
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systems (see, for example, Davis, 2005; Hawkins et al., 2006; Reymann & Frey,

2007).

Memory is not, therefore, organised as the simple, freely-running, au-

tonomous process of transients written on top of equilibrium distributions that

many models assume. This assumption essentially emerged out of the attempt

to overcome the Hopfield model’s (Hopfield, 1982) catastrophic forgetting dy-

namics by imposing bounds on synaptic strength, leading to palimpsest models

in which newer memories are stored by overwriting older ones (Nadal et al.,

1986; Parisi, 1986). This approach leads directly to the notorious plasticity

versus stability dilemma (Abraham & Robins, 2005). Existing non-integrative

models of associative memory storage exhibit a monotonically falling memory

signal, and the thrust of research has essentially been to delay this decline

by dilating time via appeals to sparse coding and stochastically (that is, com-

pletely randomly) expressing only a small fraction of synaptic plasticity events.

Nevertheless, the underlying problem remains: the memory signal falls mono-

tonically as the initial memory signal transient is wiped out by ongoing synaptic

plasticity, leading to a return, slowed down or otherwise, to equilibrium. The

cascade model does attempt to include memory signal dynamics on multiple

timescales, perhaps suggesting an attempt to take the multiple timescales of

real synaptic plasticity seriously (Fusi et al., 2005). However, the inclusion of

multiple timescales in a single, autonomous process, ignoring the regulatory

control of real biochemical cascades in real synapses, leads to disaster: the

initial memory signal is dominated by its variance. The attempt to sever the
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Gordian knot that ties the initial memory signal to memory lifetimes in these

non-integrative models fails. A more recent, far more elaborate incarnation

of the original cascade model (Benna & Fusi, 2015) does not appear funda-

mentally to address these issues. First, the memory signal continues to fall

monotonically. Second, slow and fast variables continue to be used to transfer

memories from more labile to less labile synaptic states (rather than from one

memory system to another, as in biological systems), but these less labile states

will inevitably continue to degrade the initial SNR. Third, there is no attempt

to capture or represent the executive or regulatory control of memory storage

and consolidation processes that is represent in real memory systems. Fourth,

results are often presented for N in excess of one billion synapses, which is

around four orders of magnitude too large for real neurons. Finally, the model

appears to possess favourable memory signal dynamics only for these very large

values of N , like the original cascade model, because these dynamics only set in

when the memory signal is very small. Although this more recent incarnation

appears to have several computational advantages over the original cascade

model, it appears not to be possible to regard it as a model of the organisation

of real memory systems in biological organisms (Eichenbaum & Cohen, 2001).

To some degree, integrative, filter-based models do sever the Gordian knot

tying the initial SNR to memory lifetimes, but only partially. The rise in the

initial memory signal is driven precisely by ongoing synaptic plasticity due

to the storage of later memories. In other, non-integrative models, this on-

going storage always degrades the tracked memory. Nevertheless, even the
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peak memory signal in a filter-based model is constrained by the initial mem-

ory signal, and as the S filter shows, a strongly sustained memory signal is

necessarily associated with an overall weak memory signal, even if it initially

rises. Fundamentally, while the dynamics of the transient are radically differ-

ent, filter-based synapses still store memories by inducing a transient on an

equilibrium distribution in the absence of any executive control and without

considering multiple timescales for plasticity or memory phenomena. There

are hints that multiple timescales may emerge naturally in a filter-based ap-

proach (Elliott & Lagogiannis, 2012), perhaps providing a partial account of

the spacing effect in the transition to late-phase plasticity (Carew et al., 1972;

Tully et al., 1994; Beck et al., 2000; Sutton et al., 2002), but neuromodula-

tory processes are a critical component in this effect (Huang & Kandel, 1995;

Sajikumar & Frey, 2004). Even with the repeated presentation of the same

memory, whether spaced apart in time or massed together, in the absence of

any other mechanisms the memory trace would still relax back to equilibrium

in a filter-based model.

Of course, we have not sought to integrate multiple timescales into a sin-

gle synaptic process and we have not explicitly considered the transition from

early-phase to late-phase synaptic plasticity that would sustain the memory

trace essentially indefinitely. Intriguingly, however, the comparative study of

the different filter-based models considered here suggests that perhaps the mul-

tiple timescales associated with synaptic plasticity may arise due to different

filter sizes [as we have suggested before (Elliott & Lagogiannis, 2012)], but
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perhaps more radically, due to entirely different types of synaptic filter. It

appears that we must not seek to integrate multiple timescales into a single,

unified synaptic process, and indeed the experimental evidence clearly indi-

cates that multiple biochemical pathways operate in parallel. Thus, it seems

to be necessary to consider multiple filter-like processes operating in concert at

single synapses. We could therefore imagine an A0- or R0-like filter operating

at a single synapse to provide a strong initial signal that is sustained during

early-phase plasticity. In parallel, an S-like filter could also operate, providing

an initially much weaker but growing and more strongly sustained, longer-

lived signal that perhaps underlies the transition to late-phase plasticity. Of

course, such a signal is still merely a transient in the absence of any other

mechanism. But perhaps the strongly tetanising stimulus that characterises

late-phase rather than early-phase plasticity specifically targets an S-like filter

rather than an A0- or R0-like filter, and the expression of synaptic plastic-

ity based on S-like filter threshold processes leads to locked states of synaptic

strength. Whether the interactions between multiple filters operating in par-

allel as single synapses could lead, for example, to a full understanding of the

spacing effect is unclear, but it will be fascinating to pursue these various ideas

in later work.
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Figure Captions

Figure 1: The three principal (zero injection) synaptic filtering variants con-

sidered here. Synaptic filter states are represented by the circled numbers.

Transitions between states labelled r+ ↑ (r− ↓) indicate potentiating (depress-

ing) induction signals of Poisson rate r+ (r−) that lead to changes in the filter

state as indicated. Transitions labelled r+ ⇑ (r− ⇓) indicate the expression

of synaptic plasticity, leading to an increase (decrease) in synaptic strength if

possible. For simplicity, we have depicted filters with Θ = 4, so that synapses

may exist in filter states I = −3, . . . ,+3, with the states I = ±4 being bound-

ary states. (A) The standard, doubly absorbing filter, A0. Induction signals

increment or decrement the filter state. A potentiating (depressing) induction

signal in state I = +Θ − 1 (I = −Θ + 1) leads to the filter state being reset

to I = 0 and a change in synaptic strength being expressed, if possible. (B) A

filter with one reflecting boundary and one absorbing boundary, R0. Induction

signals increment or decrement the filter state, as for the standard, absorbing

filter. We have denoted the filter transitions in each strength state (S = +1 for

strong and S = −1 for weak; each strength state denoted by a gray rectangle)

for clarity, but there is nevertheless only a single synaptic filter, regardless of

the strength state. When a synapse is strong (weak), a potentiating (depress-

ing) induction signal in filter state I = +Θ − 1 (I = −Θ + 1) cannot lead to

a change in synaptic strength for a binary-strength synapse. In these cases,

instead of resetting the filter to I = 0, the synapse remains in its current fil-
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ter state (i.e. the boundaries reflect the transition). However, when a synapse

is weak (strong), a potentiating (depressing) induction signal in filter state

I = +Θ− 1 (I = −Θ+ 1) can lead to a change in synaptic strength. In these

cases, the boundaries absorb the transition, the filter is reset to I = 0, and a

change in strength is expressed. (C) A super or S filter is a doubly absorb-

ing filter, but the transitions between filter states associated with induction

signals differ from those of the standard, A0 absorbing filter. A potentiating

(depressing) induction signal in non-negative (non-positive) filter states leads

to an increment (decrement) in filter state, as usual. However, a potentiating

(depressing) induction signal in negative (positive) filter states immediately

resets the filter to the state I = 0.

Figure 2: Equilibrium distributions of synaptic filter states, for Θ = 8. The

upper two figures show the distributions for the standard, doubly absorbing

filters A0 and Ar; the middle two figures show them for the reflecting boundary

filters R0 and Rr; the lower two show them for the super or S filter. Distribu-

tions for both strength states are shown, as indicated, but for the A0, Ar and

S filters, the distributions are independent of synaptic strength. Solid lines

show the distributions for the zero injection filters (A0 and R0), while dashed

lines show them for the random injection filters (Ar and Rr). We have not

shown the distributions for the S filter with random injections because they

are virtually indistinguishable from the zero injection version.

108



Figure 3: Mean filter escape times ∆ · τ or m · τ as a function of filter size,

Θ. For the A0, R0 and S filters, we show ∆ · τ = τ0, the mean escape time

starting from the zero filter state, into which these three filters are injected

upon threshold. For the Ar and Rr filters, we show m · τ , the mean escape

time averaged over all filter states, since these two filters are injected randomly

(uniformly) into any filter state upon threshold.

Figure 4: Mean memory signal as a function of time for the various models,

as indicated, for different of choices of Θ (filter size) or n (cascade size), as

indicated in each separate figure. In the legends, “A0” (“Ar”) denotes an ab-

sorbing filter with zero (random) injections; “R0” a reflecting filter with zero

(random) injections; “S” a super filter (only with zero injections); “C” the

cascade model. We do not plot µ(t) below 10−3 because such small values

would require (roughly) N > 106 synapses for a corresponding SNR in excess

of unity. If (E) and (F), lines for the S filter are absent because its memory

signal does not exceed this limit. In (D), the line for the S filter is only just

visible above the rt-axis.

Figure 5: Covariance between pairs of synapses’ strengths and the SNR

µ(t)/σ(t) for the tracked memory as a function of time for the various models,

as indicated, for different choices of Θ (filter size) or n (cascade size), as indi-

cated in each separate figure. Legends are as in Fig. 4. (A), (C) and (E) show

the covariance for Θ (or n) = 4, 7 and 10, respectively. We have not shown
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results for the random injection variants for clarity, because they are extremely

similar to the zero injection versions. (B), (D) and (F) show the corresponding

SNRs for the same parameter choices in (A), (C) and (E), respectively. These

SNRs are generated for N = 104 synapses. In (F), the SNR for the S filter

remains below unity. A larger value of N would be required to bring its SNR

above unity.

Figure 6: The Θ–N (or n–N) plane, indicating which model has the largest

SNR memory lifetime. In each enclosed and labelled region (same conventions

as Fig. 4), the indicated model has the largest SNR memory lifetime. In the

blacked-out region, all models’ SNRs do not exceed unity, so SNR memory life-

times do not exist in this region. In almost all regions of biologically-relevant

parameter space, synaptic filters out-perform the cascade model. The cascade

out-performs filters only for smaller N , but only because filters do not success-

fully encode memories for such small N , at least according to an SNR criterion.

Figure 7: Cross-sections through the Θ–N (or n–N) plane in Fig. 6 for fixed

Θ (or n), as indicated in each separate figure, explicitly plotting SNR memory

lifetimes rτsnr against N , for the various models. Legends are as in Fig. 4. SNR

memory lifetimes for the reflecting boundary filter with either zero or random

injections (R0 and Rr filters) are nearly indistinguishable, except for smaller

N . Although the cascade model out-performs filter models for very small N

for Θ (or n) greater than 7, we see that in fact its SNR memory lifetimes in
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this parameter region are minuscule. No model performs well in this small N

region, at least according to an SNR criterion.

Figure 8: Mean first passage time memory lifetimes for Θ or n equal to 10.

Legends are as in Fig. 4. (A) MFPT lifetimes for the various models, showing

non-zero lifetimes for small N . (B) A direct comparison of SNR and MFPT

memory lifetimes for three models. (C) MFPT memory lifetimes and the

one standard deviation regions around them. We have displaced the cascade

model’s error bars slightly rightwards so that they can be clearly distinguished

from the R0 filter model’s error bars. In these figures, data are obtained in

simulations by averaging over a total of 108/N simulations. For larger N there

is more self-averaging so we need not average over as many simulations in order

to obtain good statistics.
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