
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Automated Algorithmic Trading:

Machine Learning and Agent-based

Modelling in Complex Adaptive

Financial Markets

by

Ash Booth

Supervisors: Dr. Enrico Gerding & Prof. Frank McGroarty

Examiners: Prof. Alex Rogers & Prof. Dave Cliff

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Business and Law

Southampton Management School

Faculty of Physical Sciences and Engineering

Electronics and Computer Science

Institute for Complex Systems Simulation

April 2016

http://www.soton.ac.uk
mailto:ash.booth@soton.ac.uk
https://www.southampton.ac.uk/faculties/faculty_business_law.html
http://www.southampton.ac.uk/management
http://www.southampton.ac.uk/engineering
http://www.ecs.soton.ac.uk
http://www.icss.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Business and Law

Southampton Management School

Faculty of Physical Sciences and Engineering

Electronics and Computer Science

Doctor of Philosophy

by Ash Booth

Over the last three decades, most of the world’s stock exchanges have transitioned to

electronic trading through limit order books, creating a need for a new set of models for

understanding these markets. In this thesis, a number of models are described which

provide insight into the dynamics of modern financial markets as well as providing a

platform for optimising trading and regulatory decisions.

The first part of this thesis proposes an autonomous system that uses novel machine

learning techniques to predict the price return over well documented seasonal events and

uses these predictions to develop a profitable trading strategy. The DAX, FTSE 100 and

S&P 500 are explored for the presence of seasonality events before an automated trading

system based on performance weighted ensembles of random forests is introduced and

shown to improve the profitability and stability of trading such events. The performance

of the models is analysed using a large sample of stocks and the results show that the

system described in this section produces superior results in terms of both profitability

and prediction accuracy compared with other ensemble techniques.

The second part of this thesis explores price impact. For many players in financial mar-

kets, the price impact of their trading activity represents a large proportion of their

transaction costs. This section of the thesis proposes an adaptation of the system in-

troduced in the first part for predicting the price impact of order book events. The

system’s performance is benchmarked using ensembles of other popular regression algo-

rithms including: linear regression, neural networks and support vector regression using

depth-of-book data from the BATS Chi-X exchange. The results show that recency-

weighted ensembles of random forests produce over 15% greater prediction accuracy on

out-of-sample data, for 5 out of 6 timeframes studied, compared with all benchmarks.

Finally, a novel procedure for extracting the directional effects of features is proposed

and used to explore the features most dominant in the price formation process.

The final part of this thesis addresses the requirement for testing algorithmic trading

strategies laid out in the Markets in Financial Instruments Directive (MiFID) II by

describing an agent-based simulation. Five types of agent operate in a limit order market

http://www.soton.ac.uk
https://www.southampton.ac.uk/faculties/faculty_business_law.html
http://www.southampton.ac.uk/management
http://www.southampton.ac.uk/engineering
http://www.ecs.soton.ac.uk
mailto:ash.booth@soton.ac.uk

iv

producing a model that is able to reproduce a number of stylised market properties

including: clustered volatility, autocorrelation of returns, long memory in order flow,

concave price impact and the presence of extreme price events. The model is found to

be insensitive to reasonable parameter variations. Finally, the model is used to explore

how trading strategy affects the implementation shortfall of trading a large order. A

number of execution strategies with various order types, are evolved and evaluated in the

agent-based market. It is shown that the evolved strategies outperform the simple, well-

known strategies significantly, suggesting that execution strategy plays an important

role in determining the implementation shortfall of trading large orders.1

1This work was supported by an EPSRC Doctoral Training Centre grant (EP/G03690X/1).

For my family

v

Contents

Nomenclature xv

Acknowledgements xx

1 Introduction 1

1.1 Research Aims . 6

1.2 Contributions . 7

1.3 Outline of Report . 9

2 Literature Review 11

2.1 Background - Limit Order Books . 11

2.2 Forecasting Price Returns . 14

2.2.1 Artificial Neural Networks . 15

2.2.1.1 The Perceptron . 15

2.2.1.2 The Multi-Layer Perceptron 17

2.2.1.3 Applications in Price Prediction 17

2.2.1.4 A Note on Deep Learning 19

2.2.2 Support Vector Machines . 20

2.2.2.1 The Margin . 21

2.2.2.2 Kernels . 22

2.2.2.3 Applications in Price Prediction 22

2.2.3 Evolutionary Learning . 24

2.2.3.1 Chromosomal Representation 25

2.2.3.2 Fitness Functions . 25

2.2.3.3 Selecting Parents . 26

2.2.3.4 Producing Offspring . 26

2.2.3.5 Applications in Price Prediction 28

2.2.4 Predicting with Ensembles . 29

2.2.4.1 Boosting . 29

2.2.4.2 Random Forests . 31

2.2.4.3 Applications in Price Prediction 33

2.2.5 Precautions for Data Mining . 35

2.3 The Statistical Properties of Limit Order Markets 37

2.3.1 Fat-tailed Distribution of Returns 37

2.3.2 Volatility Clustering . 37

2.3.3 Autocorrelation of Returns . 38

2.3.4 Long Memory in Order Flow . 39

vii

viii CONTENTS

2.3.5 Long Memory in Returns . 39

2.3.6 Extreme Price Events . 39

2.4 Market Microstructure: Understanding Order Book Dynamics 41

2.4.1 Price Impact . 41

2.4.2 Optimal Trade Execution . 43

2.5 Modelling Limit Order Books . 45

2.5.1 Stochastic Order Book Models . 45

2.5.2 Agent Based Models . 46

2.5.2.1 Applications in Finance and Economics 48

2.6 Summary . 52

3 Explorations in Forecasting Price Returns - Daily Equities Data 53

3.1 The Data . 54

3.2 Seasonality Effects and Feature Selection 56

3.2.1 Explorations in Seasonality . 57

3.2.2 Features . 58

3.2.3 Feature Selection . 59

3.3 Trading Model . 61

3.3.1 Layer 1: The Random Forest Prediction Algorithm 61

3.3.2 Layer 2: Expert Weighting - An Ensemble of Ensembles 63

3.3.3 Layer 3: Signal Filtering and Risk Management 64

3.4 Experiments & Empirical Results . 65

3.4.1 The Base Learning Algorithm . 66

3.4.2 Explorations of Ensembles . 70

3.4.3 Trading System Performance . 72

3.4.4 The Effect of Seasonality . 73

3.5 Summary . 73

4 Predicting Equity Market Price Impact Using Market Depth Data 77

4.1 The Data . 78

4.2 Feature Selection . 80

4.3 The Model . 81

4.3.1 The Base Learner . 82

4.3.2 An Ensemble of Ensembles . 82

4.4 Experiments . 84

4.5 Results . 85

4.5.1 Parameter Grid Search . 86

4.5.2 The Base Learner . 87

4.5.3 Ensembles . 88

4.5.4 Comparative influence of features 89

4.5.4.1 Feature importance . 89

4.5.4.2 Direction of feature influence 90

4.6 Summary . 92

5 An Agent-Based Order Book Model for Automated Trading Algo-
rithms 93

5.1 The Model . 94

CONTENTS ix

5.2 Results . 100

5.2.1 Sensitivity analysis . 100

5.2.2 Fat Tailed Distribution of Returns 103

5.2.3 Volatility Clustering . 104

5.2.4 Autocorrelation of returns . 104

5.2.5 Long Memory in Order Flow . 107

5.2.6 Concave Price Impact . 107

5.2.7 Extreme Price Events . 109

5.3 Summary . 112

6 Conclusions 113

6.1 Implications and Limitations . 114

6.2 Future Work . 115

A Addition details for Chapter 3 117

A.1 Inputs . 117

A.2 Technical Indicators . 118

B Addition details for Chapter 4 121

B.1 Stock Descriptives . 121

B.2 Inputs . 123

Bibliography 125

List of Figures

2.1 An illustration of limit order book (LOB) structure and dynamics. 12

2.2 A simplified example of how a trader would view the limit order book
shown in Figure 2.1. We can see that the spread is $104.99-105.02 and
the the volume available at the best prices are 8 on the bid book and 5
on the ask book. 13

2.3 An example perceptron network comprising a set of inputs (grey circles)
connected to a set of McCulloch and Pitts Neurons (white circles) with
weighted connections. 16

2.4 The margin - the largest region that can separate the classes without
points falling inside. 21

2.5 Example of a regression tree for predicting price of cars built in 1993.
Both the target and the features have been standardised to have zero
mean and unit variance. 32

2.6 An illustration of the price impact through time. We can see that impact
is instantaneous upon the arrival of an order before a partial recovery of
the temporary impact. 42

3.1 QQ-plot of the distribution of returns of the GOOG stock from 01/01/2000
to 01/01/2009. The downward curvature on the left hand side and the
upward curvature on the right are indicative of the kind of fat-tailed dis-
tribution often found in financial data. 55

3.2 The difference in the consistency of the weekend effect and the turn-of-
month effect between months over the period of 2000-2010 58

3.3 Plot of root-mean-square error (RMSE) for each round of the feature
elimination algorithm. It can be seen that, as features are removed, there
is an initial, slight improvement in performance before a rapid decline. . . 61

3.4 Diagrammatic representation of the layered workings of the expert trading
system. First the inputs described in Table A.1 on page 117 are generated
and used as inputs to an ensemble of random forests. The predictions of
each of the forests are combined using the performance weighting method
described in Section 3.3.2. Next, risk management s performed to elimi-
nate weak signals before a trade is initiated. 62

3.5 Heat map showing results of the cross validation gridsearch for the performance-
weighted random forest ensemble. 68

4.1 Plot of RMSE for each round of the feature elimination algorithm. It can
be seen that, as features are removed, there is an initial, slight improve-
ment in performance before a rapid decline. 81

xi

xii LIST OF FIGURES

4.2 An overview of the prediction system. The inputs given in Table B.3 are
used to train three new random forests (experts) every fifteen minutes.
Each expert makes a prediction about the price change after an event and
the expert weighting layer aggregates these predictions using the method
described in Section 4.3.2. 83

4.3 Heat map showing results performance of our ensemble model over the
gridsearch space. Higher values represent better performance. 86

4.4 The relative directional influence (FPRD) of the five most important fea-
tures for price impact calculated using Algorithm 7. 91

5.1 Heatmap of the global variance sensitivity. 104

5.2 Kurtosis by timescale for our model and for the empirical data (in mil-
liseconds). 106

5.3 Volatility clustering by timescale . 106

5.4 Log-log price impact function for our model and for the Chi-X data. . . . 108

5.5 The price impact function with different liquidity consumer parameteri-
sations. Each line represents a different setting for hmax 109

5.6 Price impact for various values for the probability of the high frequency
traders acting. 109

5.7 Flash crash example . 110

5.8 Relative numbers of crash/spike events as a function of their duration . . 111

5.9 Flash crash occurrence with various values for the probability of the high
frequency traders acting. 111

List of Tables

3.1 Table showing the percentage of times that each of the following sea-
sonality effects was observed in the Deutsche Borse Ag German Stock
Index (DAX), Financial Times Stock Exchange 100 index (FTSE 100)
and Standard & Poor’s 500 index (S&P 500) for the period of 2000-2010:
turn-of-the-month, exchange holiday, weekend effect. These figures should
be compared to the percentage of upward market movements for all days. 57

3.2 The hyper-parameters for each models and the various paramterisations
explored in the exhaustive grid search. 67

3.3 Blah . 67

3.4 Description of the performance measures reported in Table 3.7 69

3.5 A comparison of the performance of linear regression, regression trees,
multi-layer feed forward neural network (MLNN), support vector regres-
sion (SVR) and random forest algorithms in predicting the return of a
stock over a seasonality event. Asterisks denote a statistical significance
compared to the Random Forest model of p < 0.02. For each dataset, the
best performing algorithm is highlighted in grey. 69

3.6 A comparison of the performance of various methods for generating en-
semble predictions as well as a single random forest. Asterisks denote a
statistical significance compared to our RW random forest (RF) ensem-
ble model of p < 0.02. For each dataset, the best performing algorithm
is highlighted in grey. For offline models predictors are only created in
the training phase, while for online models new predictors are added
throughout all phases in an online fashion. A specific description of each
model is given in Table 3.9. 70

3.7 A comparison of model performance metrics. Asterisks denote a statistical
significance compared to the RW RF ensemble model of p < 0.02. The
best performing model in each phases is shaded grey. A description of
each model is given in Table 3.9. 72

3.8 A comparison of RW RF ensemble performance when trading only over
seasonal events vs. trading every day. Asterisks denote a statistical sig-
nificance of p < 0.02 . 73

3.9 A description of the models whose results are described in Table 3.7 . . . 75

4.1 Summary of the seven possible types of event along with the correspond-
ing symbol. 79

4.2 Summary statistics for the stocks, showing the probability of each of the
events described in Table 4.1. The first row shows the probability of each
event happening averaged across all 25 stocks. The second row shows the
standard deviation of these probabilities. 79

4.3 Blah . 86

xiii

xiv LIST OF TABLES

4.4 A comparison of the performance of various regression algorithms in pre-
dicting the relative change in asset price t = 1, 5, 10, 60 and 600 after
an event. Asterisks signify a statistical significance compared to the RF
algorithm. 87

4.5 A comparison of the performance of various ensembles of regression mod-
els and a single random forests algorithm in predicting the relative change
in asset price t = 1, 5, 10, 60 and 600 after an event. Asterisks signify a
statistical significance compared to our model of p < 0.05. Outputs of all
regression algorithms are combines as described in section 4.3.2 88

4.6 The five most important features at the end of the test period as ranked
by Equation (4.6). 90

4.7 The five most important features averaged across the entire training, vali-
dation and test period. The importances are calculated at the end of each
day. Both the mean and standard deviation are provided for comparison. 90

5.1 Parameter ranges for global sensitivity analysis 103

5.2 Optimal parameter values . 105

5.3 Return autocorrelation statistics . 107

5.4 Order sign statistics . 107

5.5 Flash crash statistics . 110

A.1 A list of all features considered for input to the prediction model. Those
shaded grey are used in the experiments reported in Section 3.4. 117

A.2 A description of the technical indicators with parameters shown in paren-
theses. 119

B.1 Table percentage of market share of BATS (BXE) and Chi-X (CXE)
across various indices. 121

B.2 Table percentage of market share of BATS (BXE) and Chi-X (CXE)
across various markets. 122

B.3 Table describing features used for the model ensemble of random forests
model. Price features are all normalised by the price preceding an event,
while spread features are normalised by the minimum price increment
allowable in the book. 123

List of Algorithms

1 The basic summary of an MLNN algorithm using backpropagation 17

2 The general Adaboost algorithm (Freund and Schapire, 1997). xi corre-

sponds to the input features of instance i; yi is the binary label to be

predicted; Wt
i is the weight at time t of instance i; and sign(Ft(x)) is the

prediction at time t. 30

3 The general Logitboost algorithm (Friedman et al., 2000). xi corresponds

to the input features of instance i; yi is the binary label to be predicted;

Wt
i is the weight at time t of instance i; and sign(Ft(x)) is the prediction

at time t. 31

4 The random forest algorithm. 33

5 Our feature elimination algorithm based on the feature importance rank-

ing method first proposed by Breiman (2001). 60

6 The experimental procedure . 85

7 The feature partition response differencing algorithm. 91

8 Simulation logic - rand() represents a function that generates a uniformly

distributed floating point number in the interval [0,1]. 95

9 Market Maker logic. 96

10 Liquidity Consumer logic. 97

11 Momentum Trader logic. 98

12 Mean Reversion Trader logic. 98

13 Noise Trader logic. 100

xv

Nomenclature

D A data set

N The number of data-points in a data set

M The number of features in a data set

X The complete feature space

xi The feature vector of datapoint i

Y The complete target variable space

yi The variable to be predicted

Wi The weight vector of datapoint i

h(x) A weak prediction rule that maps x to y

F (x) A strong prediction rule that maps x to y

σ2
t The variance at time t

Λ Decay factor for exponential moving average calculation of variance

rg,t Rate of return of g at time t

VaRt Value at risk at time t

νt The VaR scaling factor at time t

VIj The importance of feature j in a single random forest (RF)

Vij The importance of feature j in the multiple RF model

eθ,j The RMSE of tree θ before permuting feature j

eθ,πj The RMSE of tree θ after permuting feature j

Θ The number of trees in a random forest

I The number of random forests in an ensemble

Imax The maximum number of random forests allowed in an ensemble

σ̂ The standard deviation of the differences between eθ,j and eθ,πj

Si,t The prediction of random forest i at time t

ki,t The historical performance of random forest i at time t

λ A smoothing parameter for controlling the recency weighting of experts

wi,t The weight of expert i at time t

Pg,t The combined prediction of all experts for stock g at time t

nt The total number of experts at time t

Buyt The fraction of experts that suggest buying at time t

Sellt The fraction of experts that suggest selling at time t

Dt The difference between Buyt and Sellt

xvii

xviii NOMENCLATURE

α0 Threshold for ruling out weak predictions

dg,t The maximum drawdown of the algorithm in stock g at time t

dt The vector of maximum drawdowns for the algorithm for all stocks

Φg,t Size of an order in stock g at time t

qg,t The size of the algorithm’s position in stock g at time t

Ct The algorithm’s dollar wealth at time t

ηi,t−1 The RMSE of the last prediction made by RF i at time t− 1

LO0 A limit order at the current best price

LO′ A limit order within the best prices

MO0 A market order whose volume < outstanding volume at the best price

MO′ A market order whose volume ≥ outstanding volume at the best price

CA0 A cancellation within the best price queue

CA′ A cancelation at the best price that removes all available volume

MN A modification of an existing order at the best price.

τ Agent type.

δτ Probability of agent τ acting.

mm Market maker agent.

lc Liquidity consumer agent.

mr Mean reversion agent.

mt Momentum trading agent.

nt Noise trader agent.

Φ Volume available at the opposing best price.

vmin Min. volume for market maker.

vmax Max. volume for market maker.

v Opposing volume.

hmin Min. volume for liquidity consumer.

hmax Max. volume for liquidity consumer.

nr Momentum length.

κ ROC threshold.

vmr Order volume for mean reversion traders.

PB Probability of buying

λm Market order probability

λl Limit order probability

λc Cancel order probability

µmo, σmo market order size distribution parameters

µlo, σlo limit order size distribution parameters

λcrs crossing limit order probability

λinspr inside-spread limit order probability

λspr spread limit order probability

λoffspr off-spread limit order probability

Declaration of Authorship

I, ASH BOOTH, declare that the thesis entitled

AUTOMATED ALGORITHMIC TRADING: MACHINE LEARNING AND

AGENT-BASED MODELLING IN COMPLEX ADAPTIVE FINANCIAL

MARKETS

and the work presented in the thesis are both my own, and have been generated by me

as the result of my own original research. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree

at this University.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is clearly attributed.

• Where I have quoted from the work of others, the source is given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

Signed,

xix

Acknowledgements

A slab of incredible good fortune fell right out of the sky and landed on my head when

I was accepted for a place on the Institute for Complex Systems Simulation Doctoral

Training Programme. First and foremost, I owe many thanks to my supervisors, Prof.

Frank McGroarty and Dr. Enrico Gerding, for their expert advice and guidance through-

out this project. Their continued support and passion for interdisciplinary research has

been an inspiring force over the last few years.

It takes an entire village to keep an early career scientist’s self-worth stoked (or in check,

as appropriate). I could not have asked for more patient and supportive partisans than

my parents, Sally and Phil Booth, nor would I have survived without the remarkable

patience, positivity and passion of my phenomenal partner Jazmin Curzon.

Thanks also to friends near and far - there are too many of you to name but I wouldn’t

have made it through without you all.

Finally, I am extremely thankful for the depth-of-book data that was provided by G-

Research and the insightful comments provided by various reviewers. I am also extremely

grateful to all of the folks at the Institute of Complex Systems Simulation for providing

a strong research foundation. In particular, Nicki Lewin, Jason Noble and Seth Bullock

have been invaluable sources of support.

xx

http://www.gresearch.co.uk/
http://www.gresearch.co.uk/

Abbreviations

ADT alternating decision tree

ABM agent-based model

ANN artificial neural network

ARIMA autoregressive integrated moving average

AI artificial intelligence

CDA continuous double auction

CFTC Commodity Futures Trading Commission

CME Chicago Mercantile Exchange

CV cross validation

DAX Deutsche Borse Ag German Stock Index

DE differential equation

DJIA Dow Jones Industrial Average

DMA direct market access

EC European Commission

ECN electronic communication network

EMA exponential moving average

ESMA European Securities and Markets Authority

ETF exchange-traded fund

EU European Union

FIFO first-in first-out

FPRD feature partition response differencing

xxi

xxii NOMENCLATURE

FTSE 100 Financial Times Stock Exchange 100 index

FSA Financial Services Authority

GA genetic algorithm

HFT high frequency trading

IPO initial public offering

KOSPI Korea Composite Stock Price Index

KPSS Kwiatkowski, Phillips, Schmidt and Shin

LOB limit order book

MAPE mean absolute percentage error

MBC market-based control

MD max drawdown

MiFID Markets in Financial Instruments Directive

MLNN multi-layer feed forward neural network

MSE mean square error

MAD mean absolute deviate

MTF multi-lateral trading facilities

NYSE New York Stock Exchange

PLAT Penn-Lehman Automated Trading

RF random forest

RMSE root-mean-square error

RSI relative strength index

S&P 500 Standard & Poor’s 500 index

SEC Securities and Exchange Commission

SVM support vector machine

SVR support vector regression

TAC Trading Agent Competition

UAV unmanned aerial vehicles

NOMENCLATURE xxiii

VaR value at risk

ZI Zero-Intelligence

ZIP Zero-Intelligence-Plus

Chapter 1

Introduction

The primary role of financial markets is to enable transactions between those that wish

to buy and sell the same good and thus provide liquidity. As such, markets act as a

means of price formation, taking into account all relevant information and determining

prices for assets. The liquidity and price formation are emergent properties of the low

level interactions of the buyers and sellers that make up the market.

The field of market microstructure research is dedicated to understanding the process by

which the interaction of market participants leads to both liquidity and price formation.

Specifically, in microstructure analysis, quantitative models of the trading process are

devised in order to improve the efficiency of the allocation of goods, via financial markets,

in the economy. The merit of microstructure analysis was highlighted in 1994 when

Christie and Schultz (1994) found that the bid-ask spreads (the difference between the

best bid and ask prices for a particular security) on the NASDAQ stock exchange were

larger than was statistically likely, putting forward that dealers were colluding to widen

them. A subsequent study confirmed this observation, leading to a lawsuit against

NASDAQ and the introduction of new trading regulations. One such initiative, in the

US, was regulation ATS, which permitted electronic communication networks (ECNs)

- alternative off-exchange trading platforms - the option of either registering as stock

exchanges or being regulated under a separate standard. In the EU, MiFID followed

suit, sowing the seed for ECNs and multi-lateral trading facilities (MTF) to pop up

across Europe. This was the beginning of a climatic shift in the landscape of global

equity markets, reducing transaction costs and increasing competition.

Consequently, over the last two decades, trading mechanisms and regulation have evolved

at a considerable pace. Computer technology has revolutionised financial markets, with

trading moving from pits full of traders to warehouse-like data centres packed with

racks of co-located servers running programs to process market data and submit orders

in fractions of a second. As a result, financial exchanges have become more cost effective,

leading to improved spreads, execution times and brokerage commissions (Chordia et al.,

1

2 Chapter 1 Introduction

2008; Angel et al., 2011). In addition, it has become possible to implement a range of

trading strategies using completely automated algorithmic computer systems (so called

“robot traders”). Such electronic trading now dominates most major financial markets.

Although the anonymity of most platforms makes figures hard to glean, it is estimated

that the volume of software executed trades in US equity markets has risen from 16%

in 2000 to 82% in 2009 (Joyce et al., 2010) and continues to increase.

Although regulations and costs are the same for all traders, the explosion of computer

technology has led to a diversification and specialisation of their strategies. Such rapid

evolution has lead to a somewhat disjointed vocabulary for describing computer driven

trading activities and, for the sake of clarity, we will adhere to the definitions recently

laid out by the European Commission (EC).

In 2011, after advice from the European Securities and Markets Authority (ESMA),

the EC published proposals to amend MiFID and recast it as a new directive MiFIDII.

Intense political debate and a number of drafts and revisions meant that agreement

between the European Union (EU) institutions was not reached until February 2014,

with the final text published in June 2014 (European Union, 2014a).

MiFIDII came to be as a result of of increasing fears that algorithmic trading had

the potential to cause market distortion over unprecedented timescales. Particularly,

there were concerns over increased volatility, high cancelation rates and the ability of

algorithmic systems to withdraw liquidity at any time. Thus, MiFIDII introduces tighter

regulation over algorithmic trading, imposing specific and detailed requirements over

those that operate such strategies. This increased oversight requires clear definitions of

the strategies under regulation.

MiFIDII defines algorithmic trading as the use of computer algorithms to automatically

determine the parameters of orders, including: trade initiation, timing, price and mod-

ification/cancelation of orders, with no human intervention. This definition specifically

excludes any systems that only deal with order routing, order processing, or post trade

processing where no determination of parameters is involved.

The level of automation of algorithmic trading strategies varies greatly. Brokers and

large sell side institutions tend to focus on optimal execution, where the focus of the

algorithmic trading is to minimise the market impact of orders. These algorithms fo-

cus on order slicing and timing. Other institutions, often quantitative buy-side firms,

attempt to automate the entire trading process. These algorithms may have full discre-

tion regarding their trading positions and encapsulate: price modelling and prediction

to determine trade direction, initiation, closeout and monitoring of portfolio risk. This

type of trading tends to occur via direct market access (DMA) or sponsored access.

Under MiFIDII, high frequency trading (HFT) is considered a subset of algorithmic trad-

ing. The EC defines HFT as any computerised technique that executes large numbers

Chapter 1 Introduction 3

of transactions in fractions of a second using:

• Infrastructure designed for minimising latencies, such as proximity hosting, colo-

cation or DMA.

• Systematic determination of trade initiation, closeout or routing without any hu-

man intervention for individual orders; and

• High intra-day message rates due to volumes of orders, quotes or cancellations.

Such strategies seek opportunities on very small timescales, from milliseconds to seconds.

Many high-frequency algorithms adopt a market-maker strategy, attempting to keep a

relatively neutral position, providing liquidity (most of the time) while taking advantage

of price discrepancies. Many other strategies exist, often invoking methods from time-

series analysis, machine learning or artificial intelligence (AI) to predict movements and

isolate trends. For HFT, monitoring the overall inventory risk and incorporating this

information into pricing/trading decisions is vital.

The transition to electronic trading using limit order books (LOBs) and the subsequent

rise of the computerised methodology listed above has created the need for a new breed

of quantitative models to describe such markets. In particular, for large players that

regularly transact in these markets, the price impact of their trading activity represents

a large proportion of their transaction costs which are in turn considered a substantial

determinant of investment performance (Guobuzaite et al., 2004). As well as affecting

the performance of an active investment strategy, they also affect how rapidly assets may

be converted into cash. As such, it is vital that firms are able to quantify and predict the

potential impact of their trading activity; this is an integral part of algorithmic trading.

Although it began over thirty years ago, automated and algorithmic trading is by no

means fully accepted or understood in an academic context. Since its introduction,

recurring periods of high volatility and extreme stock price behaviour have plagued

the markets. Such periods have been linked to trading algorithms, and their frequent

occurrence has undermined investors’ confidence in the current market structure and

regulation (SEC and CFTC, 2010). So called “Flash Crashes” are becoming ever more

frequent with evidence of over 18, 000 of them occurring between 2006 and 2011 in

various stocks (Johnson et al., 2013). One of the more well know incidents of market

turbulence is the Flash Crash of the 6th May 2010.

At 14:32, began a trillion dollar stock market crash that lasted for a period of only 36

minutes (Kirilenko et al., 2014). Particularly shocking was not the largest ever intra-

day loss of the Dow Jones but the sudden rebound of most securities to near their

original values. This breakdown resulted in the second-largest intraday point swing ever

witnessed, at 1,010.14 points. A mere two weeks after the crash, the Securities and

Exchange Commission (SEC) and Commodity Futures Trading Commission (CFTC)

4 Chapter 1 Introduction

released a joint report that did little but quash rumours of terrorist involvement. During

the months of silence that followed, there was a great deal of speculation about the events

on May 6th with the identification of a cause made particularly difficult by the increased

number of exchanges, use of algorithmic trading systems and speed of trading. Finally,

the SEC and CFTC released their report on September 30th concluding that patient

zero was a single algorithmic order that executed a large sale of futures contracts in

an extraordinarily short amount of time from fund management firm Waddell & Reed

(W&R) (SEC and CFTC, 2010).

The report was met with mixed responses. Though some studies seemed to agree with

the report, stating that HFTs did not initiate the Flash Crash and that their responses

to the unusually large selling pressure may simply have exacerbated market volatility

(Kirilenko et al., 2014), others vehemently disagreed. Eric Hunsader, of Nanex LLC,

a firm specialising in the distribution and analysis of high frequency data, has openly

voiced his issues with the report:

“Based on interviews and our own independent matching of the 6,438 W&R

executions to the 147,577 Chicago Mercantile Exchange (CME) executions

during that time, we know for certain that the algorithm used by W&R

never took nor required liquidity. It always posted sell orders above the

market and waited for a buyer; it never crossed the bid/ask spread. That

means that none of the 6,438 trades were executed by hitting a bid. It is

widely believed that the ‘sell program’ refers to the algo selling the W&R

contracts. However, based on the statements above, this cannot be true.

The sell program must be referring to a different algo, or Kirilenko’s analysis

is fundamentally flawed, because the paper incorrectly identifies trades that

hit the bid as executions by the W&R algo.” (Hunsader, 2012).

A number of established academics also disagree with the SEC’s report. Menkveld

and Yueshen (2013) analysed W&R’s orderflow and identified an alternative narrative.

They did not conclude that the crash was simply the price W&R were required to

take for demanding immediacy in the S&P 500. Instead, they found that cross-market

arbitrage, which provided e-mini sellers with increased liquidity from S&P 500 buyers

in other markets, broke down minutes before the crash. As a result of the breakdown,

W&R were forced to find buyers only in E-mini and so they decelerated their selling.

An extreme response (in terms of price and selling behaviour) then resulted in W&R

paying a disproportionately high price for demanding liquidity.

Easley et al. (2011) show that major liquidity issues were percolating over the days that

preceded the Flash Crash. They note that immediately prior to the large W&R trade,

volume was high and liquidity was low. Using a technique developed in previous research

(Easley et al., 2010), they suggest that, during the period in question, order flow was

Chapter 1 Introduction 5

becoming increasingly toxic. They go on to demonstrate how, in a high-frequency world,

such toxicity may cause market makers to exit - sowing the seeds for episodic liquidity.

Of particular note, the authors express their concern that an anomaly like this is highly

likely to occur, once again, in the future.

Another infamous crash occurred on the 23rd March 2012 during the initial public of-

fering (IPO) of a firm called BATS. The stock began trading at 11:14 a.m. with an

initial price of $15.25. Within 900 milliseconds of opening, the stock price had fallen to

$0.28 and within 1.5 seconds, the price bottomed at $0.0007. Yet another technological

incident was witnessed when, on the 1st August 2012, the new market-making system of

Knight Capital was deployed. Knight capital was a world leader in automated market

making and a vocal advocate of automated trading. The error occurred when testing

software was released alongside the final market-making software. According to Knight’s

official statement:

“Knight experienced a technology issue at the open of trading. . . this issue

was related to Knight’s installation of trading software and resulted in Knight

sending numerous erroneous orders in NYSE-listed securities. . . which has

resulted in a realised pre-tax loss of approximately 440 million [dollars].”

This 30 minutes of bogus trading brought an end to Knight’s 17 year existence, with

the firm subsequently merging with a rival.

The all-too-common flash crashes are a dramatic consequence of the growing complexity

of modern financial markets and have not gone unnoticed by the regulators. In Novem-

ber 2011, the European Union (2011) made proposals for a revision of the Markets

in Financial Instruments Directive (MiFID). Although this directive only governs the

European markets, according to the World Bank (2012) (in terms of market capitalisa-

tion), the EU represents a market around two thirds of the size of the US. In the face

of declining investor confidence and rapidly changing markets, a draft of MiFID II was

produced. After nearly three years of debate 1, on the 14th January 2014, the European

Parliament and the Council reached an agreement on the updated rules for MiFID II,

with a clear focus on transparency and the regulation of automated trading systems

(European Union, 2014b).

Specifically, MiFID II introduces rules on algorithmic trading in financial instruments.

Any firm participating in algorithmic trading is required to ensure it has effective controls

in place, such as circuit breakers to halt trading if price volatility becomes too high.

Also, any algorithms used must be tested and authorised by regulators. We find the last

1Many of the articles in the original draft of the MiFID II proposal were met with accusations
of tokenistic politics from both industry and academia (see http://www.bankingtech.com/81761/

mifid-ii-is-a-dogs-dinner-says-former-uk-government-advisor/).

http://www.bankingtech.com/81761/mifid-ii-is-a-dogs-dinner-says-former-uk-government-advisor/
http://www.bankingtech.com/81761/mifid-ii-is-a-dogs-dinner-says-former-uk-government-advisor/

6 Chapter 1 Introduction

requirement particularly interesting as MiFID II is not specific about how algorithmic

trading strategies are to be tested.

From the arms race in trading technology and the rapidly changing regulatory landscape

arises a complexity that presents enormous challenges for understanding, analysis and

prediction in this brave new market. How do changes in the order book affect price

impact? What drives price movement? How do we quantify and predict liquidity?

Fortunately, electronic markets also generate vast amounts of data.

Traditionally, such problems have been approached using differential equation (DE)

models. Such models have a deep-rooted history in the social sciences, from business

cycles (Samuelson, 1939) and innovation diffusion (Bass, 1969) to epidemiology (Ander-

sson and Britton, 2000) and options pricing (Black and Scholes, 1973). The DE class

of models is broad, encompassing a wide range of feedback effects but, for the sake of

mathematical tractability, typically aggregating agents into a relatively small number of

states. Importantly, agents within each compartment are assumed to be homogeneous

and well mixed with the transitions among states modelled as their expected value. In

finance, such assumptions are rarely true.

Contrastingly, in agent-based models (ABMs), the model consists of a set of agents that

encapsulate the behaviours of the various individuals that make up the system, and

execution consists of emulating these behaviours (Parunak et al., 1998). Thus, ABMs

explore heterogeneity of agents and the network structure of their interactions. In such

a new, ill-explored and data-rich complex system, an agent-oriented approach, with its

emphasis on autonomous actions and interactions, is an ideal method for addressing

theses questions. Specifically, in such systems, a constituent agent is capable of local

decision making with only incomplete and imperfect knowledge of the environment.

The market system, viewed as the interacting of various autonomous agents, behaves as

a computational ecosystem in which the agents interact and strategically compete for

resources.

1.1 Research Aims

Against this background, our aims are threefold. First, we aim to investigate whether

it is possible to utilise novel machine learning methods to understand and predict daily

market price movements. It should be noted that we are not trying to develop a state-

of-the-art trading system. Instead, we aim to identify the minimum elements necessary

to produce an autonomous trading system and to use the system to further our un-

derstanding of the drivers of market dynamics. Such a trading system must: generate

signals indicating whether to buy, sell or hold an asset (trading signals) while efficiently

managing its risk. We approach the first of these tasks by developing time series analysis

and machine learning techniques for finding trends or indicators in historical data. A

Chapter 1 Introduction 7

risk management layer separates the decision to trade from the trading recommenda-

tions made by the machine learning layer. This risk management layer will evaluate the

strength of the machine learning layer given current market conditions and, if it deems

necessary, stop the agent from trading further or even unwind its position (sell if it is

holding assets or buy back if it is short).

Second, we wish to explore whether the methods described above can be successfully

applied to high-frequency market-depth data to help quantify how changes in order flow

affect the price impact. We devise an adaptation of the system used for daily price

prediction to explore the effects of incoming orders on market dynamics.

Finally, given the shift in structure and participant behaviour in modern financial market

and the clear need for an environment for analysing automated trading strategies, it is

likely that the simple statistical models of old will no longer suffice. We therefore

propose an interactive agent-based modelling environment to understand the effects of

various trading behaviours and strategies on the dynamics of the limit order book (LOB).

Such a model must include agents that represent common market behaviours and must

accurately reproduce empirically observed values for the well known stylised facts of

limit order markets. Such abilities are a crucial step towards a viable platform for the

testing of trading algorithms as outlined in MiFIDII.

1.2 Contributions

To address the challenges involved in understanding and explaining financial market

phenomena, we present novel algorithms in Chapters 3 and 4 that provide the ability to

make predictions about a number of financial metrics. In Chapter 5 we develop a novel

agent-based modelling environment for understanding algorithmic interactions in limit

order book markets.

In more detail, in Chapter 3, we describe an automated trading system that, for the

first time, uses performance-weighted ensembles of random forests to predict the price

return during well documented seasonality events. While others have investigated the

performance of ensemble systems and random forest algorithms for predicting using

unfiltered daily stock prices, as yet, no study has explored the use of ensembles of

random forests for building expert systems for trading empirical regularities in stock

markets. Specifically, this section makes the following contributions to the state of the

art:

• We present the first ensemble learning system for trading seasonal trends and

demonstrate its effectiveness on equity market data.

• The highly active fields of online ensemble generation and random forest predic-

tors are fused to produce a novel expert system for stock trading formed from

8 Chapter 1 Introduction

performance weighted ensembles of random forests.

• Using experiments based on real data, we show that our recency biased performance-

weighted ensembles of random forests, used for trading seasonal events, outper-

forms other ensemble methods. These include cumulative weighting systems, sim-

ple averaging of regressors as well as a number of non-ensemble regression tech-

niques.

These contributions are described in the following paper:

A. Booth, E. Gerding, and F. McGroarty. Automated trading with per-

formance weighted random forests and seasonality. Expert Systems with

Applications, 41(8):3651–3661, 2014a

In Chapter 4, we present an empirical model for predicting the short term price impact

in a limit order book of events that alter the best available prices in the book. Such

events include any market orders or limit orders at the current best prices, as well as

cancelations that remove all volume at the best quoted price. Specifically, we develop

a model, based on performance weighted ensembles of random forests, to forecast the

relative change in price 1, 5, 10, 60 and 600 seconds after an event. While other studies

have investigated the predictive power of more tradition regression techniques, currently,

no study has explored the use of performance weighted ensemble to predict the short

term price impact of order book events. We demonstrate that an ensemble of recency-

biased, performance-weighted random forests is able to predict the price impact of events

more consistently and with greater accuracy than linear regression, neural networks,

support vector regression as single algorithms or combined as ensembles. Also, a novel

methodology for extracting the directional effects of features in random forest ensembles

is proposed and used to explore the most important features in the price formation

process. This work is described in full in the following papers:

A. Booth, E. Gerding, and F. McGroarty. Predicting equity market impact

with performance weighted ensembles of random forests. In IEEE Sym-

posium on Computational Intelligence for Financial Engineering and Eco-

nomics, pages 1–8. IEEE, 2014c

A. Booth, E. Gerding, and F. McGroarty. Performance-weighted ensembles

of random forests for predicting price impact. Quantitative Fiance, (ahead-

of-print):1–13, 2014b

Finally, in Chapter 5, we describe, for the first time, an agent-based simulation environ-

ment that is realistic and robust enough for the analysis of algorithmic trading strate-

gies. In detail, we describe an agent-based market simulation that centres around a fully

functioning LOB and populations of agents that represent common market behaviours

and strategies: market makers, fundamental traders, high-frequency momentum traders,

Chapter 1 Introduction 9

high-frequency mean reversion traders and noise traders. We demonstrate that the model

accurately reproduces empirically observed values for: the auto-correlation, volatility

clustering, kurtosis and variance of price return and order-sign time series; the price

impact function and the occurrence of extreme price events.

The model described in this chapter includes agents that operate on different timescales

and whose strategic behaviours depend on other market participants. The decoupling

of actions across timescales combined with dynamic behaviour of agents is lacking from

previous models and is essential in dictating the more complex patterns seen in high-

frequency order-driven markets. Consequently, this chapter presents a model that repre-

sents more trading behaviours and is able to replicate more of the empirically observed

empirical regularities than any previous work. Such abilities provide a crucial step to-

wards a viable platform for the testing of trading algorithms as outlined in MiFID II.

The work described in this chapter is described in the following paper, which is currently

under review:

A. Booth, E. Gerding, and F. McGroarty. A brave new model for a brave

new market. European Journal of Finance, (Under-Review), 2015

1.3 Outline of Report

In Chapter 2 we cover some background on LOBs and summarise the current literature

on machine learning for predicting daily price changes in equity markets, the current

state of the art for modelling price impact in LOBs, as well as the key research on

the agent-based modelling of LOBs. In Chapter 3 we describe an automated trading

system that uses performance-weighted ensembles of random forests to predict the price

returns during well documented seasonality events. Chapter 4 then goes on to propose an

adaptation of the random forest ensemble algorithm for predicting the short term price

impact in a LOB of events that alter the best available prices. Chapter 6 concludes and

proposes future work develop and agent-based modelling environment for understanding

LOB dynamics.

Chapter 2

Literature Review

The nature of interdisciplinary research is such that ideas and terminology from a variety

of disciplines must be called upon. Thus, although this review may appear to cover a

broad spectrum of topics, each provides a relevant background to the research question.

This chapter begins with an introduction to limit order books before outlining the cur-

rent state of the art in terms of predicting daily price returns using machine learning

algorithms. Next, we address the market microstructure literature before discussing the

current state of the art in agent-based modelling of financial markets.

2.1 Background - Limit Order Books

For many years, the majority of the worlds financial markets have been driven by a style

of auction, very similar to the basic process of haggling, known as the continuous double

auction (CDA). In a CDA a seller may announce an offer or accept a bid at any time

and a buyer may announce a bid or accept an offer at any time. This continuous and

asynchronous process does away with any need for a centralised auctioneer, but does

need a system for recording bids and offers and clearing trades. In modern financial

markets, this function is performed by a uniform trading protocol known as the limit

order book (LOB), whose universal adoption was a major factor in the transformation

of financial exchanges (Jain, 2005).

The most common type of order submitted to a LOB is the limit order - an instruction

to buy or sell a given quantity of an asset, that specifies a limit (worst acceptable)

price which cannot be surpassed. Upon receiving a limit order, the exchange’s matching

engine compares the order’s price and quantity with opposing orders from the book. If

there is a book order that matches the incoming order then a trade is executed. The

new order is termed aggressive (or marketable) because it initiated the trade, while the

existing order from the book is deemed passive. If, on the other hand, there are no

11

12 Chapter 2 Literature Review

matches for the incoming order it is placed in the book along with the other unmatched

orders, waiting for an opposing aggressive order to arrive (or until it is cancelled). A

visualisation of the structure and mechanism of a LOB is given in Figure 2.1.

10
5.

01

10
5.

03

10
5.

02

10
5.

04

10
5.

05

10
4.

99

10
5.

00

10
4.

98

10
4.

92

10
4.

93

10
4.

94

10
4.

95

10
4.

96

10
4.

97

10
5.

06

10
5.

07

10
5.

08

10
5.

09
Price

Q
u

an
ti

ty

- bid

- offer

asset at 104.93 arrives

A marketable order to sell 3 assets at 104.99

A passive buy order for 1

arrives and matches with 3 passive orders to buy.
A trade executes at 104.99 and the buy
orders are removed from the book

Figure 2.1: An illustration of LOB structure and dynamics.

The details of order matching vary across exchanges and assets classes. However, most

modern equity markets operate using a price-time priority protocol. That is, the lowest

offers and highest bids are considered first, while orders of the same price are differenti-

ated by the time they arrive (with priority given to orders that arrive first). Thus, limit

orders with identical prices form a first-in first-out (FIFO) queue.

Most LOB-driven exchanges offer many more order types than the simple limit order.

Another particularly common order type is the market order, which ensures a trade

executes immediately at the best available price for a given quantity. As a result, market

orders demand liquidity and risk uncertainty. Many more order types are available that

allow control over whether an order may be partially filled, when an order should become

active and how visible the order is. Such order types include: conditional orders, hybrid

orders, iceberg orders, stop orders and pegged orders, but the intricacies of these order

types are beyond the scope of this report.

Traders interact with a screen-based LOB that summarises all of the “live” (outstanding)

bid and offers that have not yet been cancelled or matched. The LOB has two sides: the

Chapter 2 Literature Review 13

ask book and the bid book. The ask book contains the prices of all outstanding asks,

along with the quantity available at each price level, in ascending order. The bid book,

on the other hand shows the corresponding information for bids but in descending order;

this way traders see the “best” prices at the top of both books. A simplified example of

what a trader may see when looking at a LOB is given in Figure 2.2.

Stock ABC

Bids Asks

8 104.99 5 105.02

3 104.98 6 105.03

Figure 2.2: A simplified example of how a trader would view the limit order book

shown in Figure 2.1. We can see that the spread is $104.99-105.02 and the the volume

available at the best prices are 8 on the bid book and 5 on the ask book.

The amount of information available about the LOB at any given time depends on

the needs and resources of the traders. Usually the only information that is publicly

available (in real time) is the last traded price or the mid-price (the point between the

current best prices). Professional traders may chose to subscribe to receive information

on the price and size for the best prices, along with the price and size of the last

recorded transaction, of an asset of interest; this is known as “level 1” market data. The

most informative information, “level 2” or “market depth” data, includes the complete

contents of the book (except for certain types of hidden orders) but this comes at a

premium. For individual subscribers, the current cost of receiving real time level 2 data

for equities from just the New York Stock Exchange (NYSE) exchange is $5000/month

(NYSE EURONEXT, 2013). For a complete picture, One may also want to subscribe

to the 15 other US national stock exchanges currently listed with the SEC 1.

At first glance, the rules of limit order trading seem simple but trading in a LOB is a

highly complex optimisation problem. Traders may submit buy and/or sell orders at

different times, prices, quantities and - in today’s highly fragmented markets - often

to multiple order books. Orders may also be modified or cancelled at any time. The

complexity of LOB strategies presents significant challenges for those attempting to

model, understand and predict behaviours. Nonetheless, the well-defined framework

and the vast volumes of data generated by the use of LOBs presents an exciting and

valuable opportunity for computational modelling.

1A list of the stock exchanges registered with the SEC is available at http://www.sec.gov/

divisions/marketreg/mrexchanges.shtml.

http://www.sec.gov/divisions/marketreg/mrexchanges.shtml
http://www.sec.gov/divisions/marketreg/mrexchanges.shtml

14 Chapter 2 Literature Review

2.2 Forecasting Price Returns

As we touched upon in the introduction, though an interesting endeavour, our goal

here is not to create the world’s foremost automated trading system. Instead, we aim to

produce a simple, viable and consistently profitable system that enables us to unpick the

elements that are important in driving price formation. Thus, we take a data scientist’s

approach, using novel methods from machine learning to build predictive models and

then to analyse those models in order to improve our understanding of the system being

forecast. Before proposing a predictive model, we first summarise a number of popular

predictive methods from machine learning an discuss their previous applications to the

prediction of price returns.

Many attempts have been made to devise a consistently profitable autonomous trading

system. Inspiration for such trading systems comes from a variety of fields, ranging from

fundamental analysis and econometric modelling to evolutionary computation, machine

learning and even news mining (Nuij et al., 2013). The trading and execution algorithms

that we will discuss in the next section are intrinsically reactive, purely responding, using

predefined rules, to market conditions. In order to be used effectively, such trading

algorithms must be combined with advanced techniques that are able to deal with the

sudden unexpected shifts that can occur in highly volatile markets. Machine learning

offers the opportunity for short term prediction of many market variables in volatile

markets. It effectively seeks to find and verify relationships and/or trends and as such

the majority of these techniques are entirely statistical in nature.

In this report we will focus on the literature surrounding the use of machine learning

to generate trading rules using technical analysis, which uses statistically notable short-

term opportunities captured by technical indicators, such as momentum and trending.

However, the absence of a solid mathematical foundation for technical analysis has

meant that its presence in the academic literature is very limited. Furthermore, during

the 1960s, trading rules based on technical indicators were studied and found not to

be profitable (Fama and Blume, 1966; Alexander, 1961). It was this work that led no-

table academics to dismiss technical analysis and support the efficient market hypothesis

(Fama, 1970). However, the major problem with the early studies of technical analysis

was the ad hoc specifications of the trading rules that suggested the use of data dredg-

ing.2 Despite this, profitable technical trading strategies for inter-day trading in the

S&P 500 have been found using genetic algorithms, although the strategies did not fair

any better than simple buy and hold strategies (where the asset is bought at the start of

the test period and sold at the end) when presented with out of sample data (Allen and

Karjalainen, 1999). More recently, there has been a surge in work generating trading

strategies by using technical indicators as inputs to machine learning models. Below we

2Data dredging represents the statistical bias that arises from the misuse of statistics. It implies the
deliberate inappropriate use of statistics to uncover misleading relationships in data.

Chapter 2 Literature Review 15

review some of the wide ranging machine learning techniques used to formulate trading

strategies.

2.2.1 Artificial Neural Networks

Neural networks have been a particularly popular field of study originating from the

desire to better understand the human brain. The field is generally considered to have

began with McCulloch and Pitts’s (1943) mathematical model of the basic processing

unit of the brain - the nerve cells known as neurons. Their model of a neural consists of

three simple parts:

Weighted inputs, wi - that corespond to synapses in the brain.

An Adder - that sums all input signals. This is analogous to the membrane of a

neuron, wich collects electrical charge.

An Activation function - that determines whether a neuron fires for a given set of

inputs.

The analogy suggests that each of the inputs, xi, represents the output of other neurons

and that each of those neuronal firings flowed along synapses of different strengths. The

strength of a synapse is thus captured by its weight, wi. Now, as all signals arrive into a

neuron they are summed to determine if there is enough signal strength to make it fire.

This was captured mathematically by McCulloch and Pitts (1943) as:

y = 1

(∑
i

wixi > Θ

)
(2.1)

for some threshold Θ. Thus, the McCulloch and Pitts neuron is a binary threshold

device. Though this is a very simple model, Rosenblatt (1958) suggested the perceptron

learning algorithm as a way to estimate the weights of a McCulloch and Pitts neuron.

2.2.1.1 The Perceptron

The Perceptron is simply a set of McCulloch and Pitts neurons and the associated

weights that bind each input to each neuron. An illustration of a toy example of a

perceptron is given in Figure 2.3. In this example, the number of inputs is equal to the

number of neurons but this needn’t be the case. It is worth noting that neurons in a

perceptron act completely independant of one another. That is, each neuron multiplis

the inputs by its own weights before summing the result and comparing it to its own

threshold. Training a perceptron is therefore an exercise in enabling a perceptron to

16 Chapter 2 Literature Review

learn to reproduce a particular output for a given input. The learning rule laid out by

Rosenblatt (1958) is as follows:

wi,j ← wi,j + η(tj − yj) · xi (2.2)

Where wi,j is the weight that feeds input i to neuron j, tj is the target output of neuron

j (the output that we were hoping for from neuron j), yj is the actual output from

neuron j, xi is the value of the input, and η is the learning rate that determines how

fast the network learns.

x3

-1

x3,1

x3,3

x3,4

x3,2

x3,5

Inputs Outputs

Figure 2.3: An example perceptron network comprising a set of inputs (grey cir-
cles) connected to a set of McCulloch and Pitts Neurons (white circles) with weighted

connections.

In a particularly thorough study by Minsky and Papert (1969), it was shown that what

a perceptron learning algorithm does is to find a straight line (or plane or hyperplane)

that best separates data where the neurons fire on one side of the line but not the other.

Such a line is often referred to as a decision boundary or a discriminant function. Unfor-

tunately, linear models, with no hidden layers, have very limited predictive capabilities

and, as such, this greatly reduced interest in this field of study.

Chapter 2 Literature Review 17

2.2.1.2 The Multi-Layer Perceptron

In order to make a neural network more powerful, one can add hidden layers of neurons to

enable the approximation of any smooth functional mapping forming a MLNN. However,

training networks with hidden layers is much more difficult than with the Perceptron.

It was a couple of decades before Rumelhart et al. (1986) discovered how to solve the

problem using the backpropagation algorithm 3. Backpropagation is a form of gradient

decent where we compute the gradient of the error s with respect to the weights of the

network so that we can adjust the weights and minimise the error function. As this

differentiation cannot be done directly, the chain rule of differentiation is used. This

produces an update function for each layer, which are applied backwards through the

network. The full MLNN algorithm is given in Algorithm 1 below. It was this algorithm

which sparked a decade of intense interest in neural network models.

Algorithm 1 The basic summary of an MLNN algorithm using backpropagation

Initialisation
Initialise all weights to small random values

Training
while learning do

for each input vector do
Forwards Phase

Compute the activation of each neuron in the hidden layer(s)
Work through the network and calculate the output activations

Backwards Phase
Compute the error at the output
Compute the error in the hidden layers
Update the output layer weights
Update the hidden layer weights

end for
Randomise the order of the input vectors

end while
Recall

Use the Forwards phase described above

2.2.1.3 Applications in Price Prediction

Artificial neural networks (ANNs) are likely the most commonly studied approach to

predicting financial time series. They have been used for over two decades for this

purpose. ANNs were first applied to stock prediction in 1988 when a feed forward

network was used to analyse daily stock returns of IBM (White and Diego, 1988). Since

then, a plethora of research has attempted to find predictive rules for US (Refenes

et al., 1995; Enke and Thawornwong, 2005), Japanese (Kamijo and Tanigawa, 1990)

3In fact, a solution to this problem was already known by Bryson et al. (1979) and Werbos (1974)
but they were not aware that this was a problem in neural networks

18 Chapter 2 Literature Review

and many other stock prices. Neural network prediction has by no means been limited

to stock price prediction; predicting stock indices (Chenoweth et al., 1995; Kulkarni,

1996; Fernández-Rodŕıguez, 2000), bonds (Dunis and Morrison, 2004), FX (Dunis et al.,

2011; Sermpinis et al., 2012), futures (Trippi and DeSieno, 1992; Kim, 2004; Witkowska

and Marcinkiewicz, 2005) and options (Meissner and Kawano, 2001; Mitra, 2006) have

also been popular areas of research.

A particularly prominent early study of forecasting price returns with neural networks

was performed by Kimoto et al. (1990). Several technical and economic indicators were

used as inputs to a modular neural network prediction system. Using an adaptation

of backpropagation termed ’supplementary learning’ and a stand feed forward neural

network with one hidden layer, predictions were found accurate enough to generate

consistent profit.

Chenoweth et al. (1995) were among the first to use technical indicators as inputs to an

artificial neural network (ANN). They used two distinct ANNs that were trained with

either upward or downward trending data of the S&P 500 index and suggested that their

prediction system could yield an annual return of approximately 15%.

Throughout the early nineteen nineties, neural network applications in finance for such

tasks as pattern recognition, classification, and time series forecasting dramatically in-

creased. In a noteworthy reflection of the popularity of neural network prediction at

the time, Kaastra and Boyd (1996) provided an eight-step procedure to design a neural

network forecasting models including a discussion of the tradeoffs faced in parameter

selection, some common pitfalls, and points of disagreement among practitioners.

Of course, ANNs may be combined with other learning techniques. Lebaron (1998) ap-

plied bootstrapping to capture arbitrage opportunities in the foreign exchange market,

and then used an ANN where its network architecture was determined through an evolu-

tionary process. The inputs for LeBaron’s network were based on technical indicators -

they were: two price/moving average ratios (15 and 5 days); a lag of the interest adjusted

return series; a local average of squared returns (10 days) as a volatility estimate; the

interest differential at each time step; and the interest rate differential less its 30 week

moving average. It was found that the combination of methods used clearly dominated

some simpler forecasting methods, and random walk guessing.

In another study combining ANNs and evolutionary learning, Kuo et al. (2001) developed

a genetic algorithm based fuzzy neural network to generate fuzzy inference rules com-

bining qualitative effects (such as social and political) and technical indicators. Running

simulations on the Taiwan stock market, they found that the neural network considering

both the quantitative and qualitative factors outperformed the neural network consider-

ing only the quantitative factors both in the identification of buying-selling points and

buying-selling performance.

Chapter 2 Literature Review 19

More recently, Menezes and Nikolaev (2006) devised a neural network architecture

termed Polynomial Genetic Programming based on the polynomial neural network first

developed by Ivakhnenko (1971). The model used genetic algorithm to estimate ANN

parameters including starting polynomials and weight estimation demonstrating superior

results compared with standard multi-layer perceptrons over a number of timescales.

Guresen et al. (2011) performed a particular thorough comparison of ANN methodologies

including: multi-layer perceptrons, dynamic artificial neural networks, and hybrid neural

networks which use generalized autoregressive conditional heteroscedasticity (GARCH)

to extract new input variables. Interestingly, using mean square error (MSE) and mean

absolute deviate (MAD) to measure performance on daily data from the NASDAQ

stock index, they found that classical multi-layer perceptrons significantly outperformed

dynamic nets and GARCH-hybrids.

Wang et al. (2011) proposed a novel method for forecasting stock prices using a wavelet

de-noising-based backpropagation neural network. Using monthly closing price data

from the Shanghai Composite Index over a period from 1993 to 2009, they show sig-

nificantly improved performance compared to a standard multi-layer perceptron. They

attribute the improved performance to de-noising and preprocessing using wavelet trans-

forms.

Using daily market prices and technical indicators as inputs, Ticknor (2013) used a novel

method of Bayesian regularized artificial neural networks to predict the one day future

closing price of individual stocks. In experiments using daily data on Microsoft and

Goldman Sachs stock, they found that their model performs as well as more complex

models but without the need for preprocessing of data, seasonality testing, or cycle

analysis. They attribute this to the assignment of probabilistic network weights, allowing

the network to automatically penalize complex models and reduce the potential for

overfitting and overtraining.

2.2.1.4 A Note on Deep Learning

Continuing the theme of biologically inspired learning, it is thought that a great many

processes in the human brain involve many layers of processing with each level learning

features at a great level of abstraction (Hubel and Wiesel, 1965). In the visual cortex,

for example, it is thought that the brain first identifies edges, followed by patches, then

surfaces and finally objects (Serre et al., 2005; Kandel et al., 2000). This observation,

along with the discovery by Hinton (2002) of a method for training with deep networks

by training one layer at a time in unsupervised mannor, has spawned a resurgence in

neural network learning over the last few years (Bengio, 2009).

Recently, there has been an explosion of interest in deep learning in both academia and

industry, with Google’s acquisition on London-based Deepmind and IBM’s acquisition

20 Chapter 2 Literature Review

of AlchemyAPI standing as telling examples. The peaked interest has been attributed

to considerable progress in training deep networks due to: improved optimization tech-

niques, e.g. Martens (2010); innovation in learning algorithms (Bengio, 2009); the adop-

tion of GPU computing (Cirean et al., 2010); improved techniques for weight initiation

(Bengio, 2012); and a technique termed generative pre-training which initialises the

parameters of a network through with unsupervised learning (Glorot and Bengio, 2010).

Deep learning has demonstrated fantastic results in fields such as: feature extraction

(Lee et al., 2009; Chen et al., 2010), autoencoding (Krizhevsky and Hinton, 2011),

handwriting recognition (Hinton et al., 2006), speak recognition (Hinton et al., 2012),

sentiment analysis (Glorot et al., 2011), and even playing the Atari (Mnih et al., 2013).

However, we will not document nor explore the application of deep learning to forecasting

market return as our goal is to create a simple, transparent system for exploring the

underlying drivers of market dynamic. Though powerful, deep learning techniques are

far too complex and opaque for our needs.

Although the studies discussed in this section indicate that neural networks are able

to outperform relevant benchmarks, the ANNs approach has a number of significant

problems:

• Neural networks are inherently unstable. That is, small changes in training data

can causes substantial changes in the model generated and thus its ability to

generalise (Cunningham et al., 2000).

• ANNs are a bit of a black box when it comes to interpretation. Often neural

networks are too complex to be analysed mathematically and it can be difficult to

relate network weights to physical parameters, should this be a requirement.

• It has been shown that in order to overcome their tendency to overfit, a particularly

large volume of training data is required to capture the underlying structure of

the data(Hippert et al., 2001).

• Large, effective neural nets require intense compute power and as such, the use

of distributed computing using GPUs is often required to train networks in a

reasonable timescale (Krizhevsky et al., 2012).

These drawbacks suggest that neural networks may not be the ideal model for exploring

market dynamics. Below, we discuss support vector machines (SVMs), which use the

concept of a margin to attempt to overcome problems with overfitting.

2.2.2 Support Vector Machines

The support vector machine was first described by Boser et al. (1992). While SVMs

provide similar prediction accuracy to neural networks, thanks to their convex objective

Chapter 2 Literature Review 21

function, they are much easier to train. The birth of the SVM gave rise to a decade of

intense study of kernel methods.

2.2.2.1 The Margin

Like multi layer perceptrons, SVMs make use of the insight that data can be more easily

separated when it is mapped into higher dimensions. In addition, SVMs leverage the

concept of optimal separation. Specifically, and SVM classifier aims to maximise the size

of the largest region, known as the margin, that separates classes without their being any

points inside. An example for a two dimensional dataset is given in Figure 2.4, in three

dimensions the margin is a cylindrical and in greater dimensions is a hypercylinder.

x1

x2

Figure 2.4: The margin - the largest region that can separate the classes without
points falling inside.

The datapoints that sit closest to the separating line are known as the support vectors.

Given that the most effective classifier is the one that goes through the center of the

margin, we can make two arguments: firstly, we should aim to maximise the margin, and

second we should be most interesting the the support vectors as these are most likely

to be incorrectly classified. More formally, SVMs adopts a structural risk minimization

principle of function estimation by minimizing an upper bound of the generalization

error (Vapnik, 1999).

The mathematical formalisation of the maximisation of the margin with soft constrains

and the subsequent optimisation problem are beyond the scope of the review. Instead,

let us discuss the next important concept of SVMs.

22 Chapter 2 Literature Review

2.2.2.2 Kernels

Now, although the concept of a margin may enable us to find a decision boundary that

is superior to that identified by a perceptron, we still need a method for overcoming the

dependance on linear separability. SVMs use a basis function to map the data into higher

dimensions such that they can be separated by a hyperplane. Thanks to the kernel trick

SVMs avoid the computationally expensive process of computing the dot products of all

the extended basis vectors and instead simply compute the dot product of the orignial

vectors. These kernels are the basis for why support vector machines work. Although

they transform the data into a higher dimensional space, the datapoints only appear

inside those inner products and so there’s no need to actually perform any computation

in the higher dimensional space.

Choosing an appropriate kernel and the parameters for it is a difficult problem that

ideally requires in-depth domain knowledge to create the best transform. Though there

are techniques for identifying a kernel (Blumer et al., 1989), many researchers tend to

identify a kernel function through experimentation. Although, in theory, any symmetric

function that is positive definite can be used as a kernel, there are three particularly com-

monly used basis functions that have mathematically friendly kernels that correspond

to them:

Polynomials of degree s in the elements xk of the input vector with the kernel:

K(x,y) = (1 + x · y)s (2.3)

Radial Basis Function expansions of the xks with parameter σ and kernel:

K(x,y) = e
−(x−y)2

2σ2 (2.4)

Sigmoid Functions of the xks with parameters κ and δ, and kernel:

K(x,y) = tanh(κx · y − δ) (2.5)

2.2.2.3 Applications in Price Prediction

Since their inception, SVMs have been used in many studies that have used closing

prices as inputs for forecasting prices and shown them to outperform ANNs (Huang

et al., 2005; Chen and Shih, 2006).

Tay and Cao (2001) used lagged closing prices as well as moving averages to predict the

next day’s closing price for five futures contracts on the Chicago Mercantile Market. In

comparison with neural networks they found that the SVMs produced better forecasts.

Chapter 2 Literature Review 23

In 2002 they modified their original SVM model to by using a C-ascending SVM (Tay and

Cao, 2002). This SVM variant contains a modified regularised risk function, whereby the

recent errors are penalised more heavily than the distant ones. This procedure was based

on the idea that, in the non-stationary financial time series, the dependency between

input variables and output variable gradually changes over the time. Specifically, they

thought that recent past data could provide more important information than the distant

past data. They found that C-ascending SVMs consistently forecast better than the

standard SVMs and that they also used fewer support vectors than those of the standard

SVMs, resulting in a sparser representation of solution.

Kim (2003) used 12 technical indicators, including ROC, Williams’ %R, A/D oscillator,

stochastic D%, stochastic K%, stochastic slow D%, momentum, disparity5, disparity10,

OSCP, CCI and RSI, as inputs for an SVM to predict the direction of change of the

daily Korea Composite Stock Price Index (KOSPI). It was found that SVMs outper-

formed back-propagation neural networks and case based reasoning. Kim suggested

that the results could be attributed to the fact that SVMs implement the structural risk

minimisation principle, which leads to better generalisation than the two alternative

techniques. It was also noted that the SVM was highly sensitive to the upper bound

and kernel parameters and that finding optimal parameter values is essential.

In a comparative study, Kumar and Thenmozhi (2005) analysed the performance of

SVMs and random forests in predicting daily price fluctuations in the S&P 500. Using

the sam technical indicators as Kim (2003), they found the SVM to outperform both

neural networks and random forests. Further comparative experiments investigated the

performance of autoregressive integrated moving average (ARIMA), random forests,

ANNs and SVMs in a live trading experiment finding that, in the short term, the SVM

model outperformed all other models in the study.

Kara et al. (2011) compare the ability of SVM and ANN classification techniques in

predicting the direction of daily movement in the Istanbul Stock Exchange (ISE) Na-

tional 100 Index. Using just 10 technical indicators as inputs, their experiments found

the average prediction accuracy of the SVM model to be only 71.52% compared the the

neural networks performance accuracy of 75.74%.

More recently, Kao et al. (2013) use a novel feature extraction method named nonlinear

independent component analysis to extract features that serve as inputs to a SVM for

forecasting the price returns of two of the major Asian stock markets: the Shanghai

Stock Exchange Composite (SSEC) and Nikkei 225 stock indexes. They compare their

novel approach with more traditional preprocessing methods including: linear ICA and

principal component analysis finding their nonlinear independent component analysis to

improve prediction accuracy all other methodologies studied.

Kazem et al. (2013) proposed a predictive model based on SVMs, chaotic mapping and

the firefly algorithm for predicting changes in stock prices. Their model consisted of

24 Chapter 2 Literature Review

three stages. In the first, phase space dynamics are constructed using a delay coor-

dinate embedding method, from this, a chaotic firefly algorithm is used to optimize

the hyperparamters of an SVM. Finally, the tuned SVM is used to forecast the price

returns of a number of stocks that trade on the NASDAQ. The model was compared

with ANNs, adaptive neuro-fuzzy inference systems, genetic algorithm-based SVMs,

and firefly-based SVMs and found to outperform all models in term of mean absolute

percentage error (MAPE) and MSE.

Though they have clearly been demonstrated to be powerful, SVMs may not be the

perfect approach for improving our understanding. Unfortunately, the complex data

transformations that occur in training an SVM and multi-dimensional boundary planes

that result are very difficult to interpret. This is why they are often referred to as a

black box. This is in contrast to general linear models and decision trees which are very

easy to interpret. Also, SVMs are particularly sensitive to the scale of the features and,

often, with datasets that contain very heterogenous features, it is much easier to use a

decision tree based model where there is no concern for feature scaling. Next, we discuss

some less opaque techniques for modelling price returns.

2.2.3 Evolutionary Learning

In a recurring theme, computer scientists treated evolution in much the same way that

they did neuroscience, by cherrypicking some interesting ideas and filling in the blanks

with computation techniques so as to create useful learning methodologies. Evolution,

as a process, may be viewed as a search problem, with organisms competing with one

another to further their survival. Evolution occurs in environments that bias ‘fitter’

organisms. That is, organisms that are better suited to an environment and are able to

live longer are moer attractive and have a better chance of producing offspring.

The genetic algorithm (GA), first developed by Holland (1975), models the process that

gives rise to evolution. Specifically, it models: mutation, where individual characteristics

have some probability of changing slightly through time; and sexual reproduction, where

parents can mix genetic information to produce offspring. In most biological instances,

each parent has a 50% chance of passing a given chromosome to their offspring and so

only one allele (chromosomal variation) will be inherited (Agrawal, 2001). Coupled with

random mutations that occur during the copying process Kondrashov (1988), offspring

share traits with their parents while also displaying new phenotypes.

In order to create a computational approximation to the process of evolution, a number

of conditions must be met. First, solutions to problems must be abe to be represented

in the form of a chromosome. Second, for each potential solution, it must be possible

to compute its fitness. Next, a method for selecting parent solutions must be described.

Finally, a process for introducing variation into chromosomes is required. Solutions to

Chapter 2 Literature Review 25

these requirements are discussed in the sections below.

2.2.3.1 Chromosomal Representation

Before anything, individuals must be represented in analogy to a chromosome. Tradi-

tionals claim that true GAs must use a string representation with each element of the

string (the chromosome) represented by a letter from some alphabet yet, in practice, a

variety of string representations may be used (Wright, 1991). Examples of applications

and their associated chromosomal representations include:

• The travelling salesman problem (Goldberg and Lingle, 1985; Braun, 1991; Larrañaga

et al., 1999). Here, cities are represented by letters and routes are easily repre-

sented as strings of those letters, e.g. BHGADCEF.

• Finding solutions to a function optimisation problem (Deb et al., 2000; Houck et al.,

1995; Goldberg and Richardson, 1987). If the function takes binary arguments,

string representations are trivial, e.g. 00101110101000010111.

• Learning weights in a neural network (Leung et al., 2003; Whitley et al., 1990).

Here, real variables make up the chromosome. e.g. 3 fully connected nodes =

9 weights (with self connections) - [0.01, 1.24, 3.42, -0.91, -2.03, 1.71,-0.08, 4.22,

1.11]

• Computer programs (Koza, 1992; Miller and Thomson, 2000). This is known as

genetic programming and involves representing computer programs as trees. The

LISP language leds itself well to this field, e.g. (div (+ 2 a) (sin (* - a 2) b)))

Not matter the application, the goal is to create a set of random chromosomal represen-

tations to act as an initial population. Note, these representations do not, in themselves,

tell us whether the solution is good or even feasible. To determine feasibility, it is nec-

essary to provide a way to quantify how well each individual solves the problem, known

as the fitness of the individual.

2.2.3.2 Fitness Functions

Put simply, the fitness function takes an individual (genome, string, etc.) as an input

and outputs a value that represents the goodness of fit for that individual. This is the

only part of a genetic algorithm that is application specific. For a fitness function, the

best possible individual should have the highest fitness and fitness should diminish as

individuals do less well as solutions to a problem. For the travelling salesman problem,

the fitness may simply be the length of the tour; while for a neural network, the fitness

may be the prediction accuracy of the model on a given problem. In general, fitness

should always be a positive function (Whitley, 1994).

26 Chapter 2 Literature Review

2.2.3.3 Selecting Parents

For each generation individuals are selected to generate new offspring. The idea is

to exploit the current population by selecting strings that are fit compared with their

peers. Specifically, individuals are chosen with a probability than is proportional to their

fitness. There are a number of methods commonly used to select parents:

Truncation Selection - Pick top fraction f of the population and discard the rest. If,

for example, f = 0.2, the fittest 20% of the population are put into the mating pool

and chosen with equal probability. Note, this limits the exploration potential of a

GA and biases the algorithm towards exploitation (Alba and Dorronsoro, 2005).

Rank Based Selection - Individuals are chosen with a probability proportional to

their rank.

Fitness Proportionate Selection - Here individuals are chosen with a probability

that is proportional to their fitness. Formally:

pα =
Fα∑
β Fβ

(2.6)

where Fα is the fitness of individual α.

Boltzmann Selection - If fitness is not always positive then Boltzmann selection may

be used to make them so:

pα =
esFα∑
β Fβ

(2.7)

where s is a parameter that controls the selection strength (de la Maza and Tidor,

1993).

Tournament Selection - Picking k individuals and returning the individual with the

greatest fitness. Though tournament selection can ensure that good solutions

are not lost, it has been shown to encourage premature convergence Miller and

Goldberg (1995).

Once a method is chosen for selecting parents, all that is left is to identify a method for

producing offspring.

2.2.3.4 Producing Offspring

After selecting the parents for creating the next generation, a process is required for

combining their chromosomes to generate offspring. This is the genetics part of the

algorithm and two more concepts are borrowed from biology: crossover and mutation.

These concepts are discussed below.

Chapter 2 Literature Review 27

Crossover

With pairs of parents selected, we must generate offspring using genetic material (e.g.

individual letters, bits, nodes, weights or numbers) from each parent in a pair. One

very common method for achieving this is known as single point crossover (Deb and

Agrawal, 1995). Here, a point in the chromosome is chosen randomly and all alleles

before this crossover point come from parent one and all alleles after come from parent

two. Of course, this only creates one offspring and the other offspring receives all the

genetic material before the crossover point from parent two and after from parent one. A

logical extension of the crossover process is multi-point crossover where the chromosome

is split at a greater number of points (De Jong and Spears, 1992). In the extreme, we

find uniform crossover where each allele is randomly selected from one of the parents.

Crossover is the element of the GA that performs global explorations. The hope is that

it may take good traits from each parent solution and produce an offspring with greater

numbers of good traits that were previously not seen in one individual. Now, we can also

expect bad traits to come together but individuals with lower fitness will be less likely

to be selected for reproduction in the next generation. Thus the GA aims to combine

and amplify traits that increase fitness.

Mutation

The mutation operation is the portion of the GA that performs local search Srinivas

and Patnaik (1994). It enables the exploitation of good solutions while exploring local

areas of the fitness landscape. For mutation, the value of each allele is altered with a

small probability, p, where often p = 1
L where L is the number of alleles in the genome.

In genomes that are represented as an alphabet of binary string, mutation is a simple

bit flip, while with real numbers the mutation operation tends to either add or subtract

a random number from the allele. This form of local search trades off the refinement of

good solutions with the possibility of disrupting them.

The genetic operators described above are arguable the most powerful elements of the

genetic algorithm and form a fundamental part of the building block hypotheis that

describes why GAs work (Fogel, 1994). Generally, genetic algorithms work well on

problems where good solutions intuitively come from putting together lots of smaller

solutions such different sections of the genome assemble a separate building block, with

crossover assembling building blocks to produce a final solution. As such, GAs have

been successfully applied across a number of domains including: scheduling (Gonçalves

et al., 2005; Cheng et al., 1996), multi-objective optimisation (Horn et al., 1994; Deb

et al., 2000), hardware design (Yang et al., 2008; Robinson et al., 2002) and even the

optimisation of poker strategies (Noble, 2002; Barone and While, 1999).

28 Chapter 2 Literature Review

2.2.3.5 Applications in Price Prediction

When applied to price prediction, GAs are generally used to generate evolving trading

rules. The rules tend to be represented as binary trees where the leaves are technical

indicators and the non-leaves are Boolean functions. Together they represent simple

decision functions. Shin et al. (1998) followed this approach and used genetic algorithms

to mine trading rules from 9 technical indicators for KOSPI 200 futures. The GA used

the technical indicators to create a set of five rules for each trading day that determined

whether a buy or sell signal was produced. They reported substantial profits generated

in simulated experiments even while the underlying index hit a 58% downturn.

Mahfoud and Mani (1996) developed a novel GA based system for predicting quarterly

stock returns based on 15 technical and fundamental attributes. Their algorithms dif-

fered from traditional GAs, which perform optimisation, in that it performed inductive

machine learning. They compared their system with neural networks and found GAs

to outperform neural networks (5.47% relative return versus 4.40%). In addition, they

explored a hybrid GA-ANN system and found a 21% improvement over GA only system.

In an experiment using 67 years of daily data from the S&P 500 index, Allen and

Karjalainen (1999) attempted to use a GA to find profitable technical trading rules.

They found that, after transaction costs, the rules generated did not create any excess

returns over a simple buy-and-hold strategy in the out-of-sample test periods. It was

stated, however, that the rules learned by GAs could also be tested on liquid markets

with low transaction costs, e.g. financial futures, commodities, and foreign exchange

markets. They suggested that the methodology could be developed further as the genetic

algorithm used was a relatively simple one.

Dempster et al. (2001) compared four methods for foreign exchange trading (reinforce-

ment learning, GAs, Markov chain linear programming, and a simple heuristic) and

found that a combination of technical indicators using a GA leads to better profit based

performance than using only individual indicators for the foreign exchange market. They

found that, although all of the methods were able to generate significant in-sample and

out-of-sample profits when transaction costs were zero, none of the methods produced

significant profits at realistic transaction costs.

A hybrid model for predicting stock indices was proposed by Asadi et al. (2012). The

model proposed is a combination of various preprocessing techniques combined with a

genetic algorithm and the LevenbergMarquardt algorithm for learning the weights of a

feed forward neural network. Through training and testing on a number of global stock

indices, they find their approach to maintain steady returns through periods of high

volatility and to yield consistently strong prediction accuracy. The authors attribute the

successof their model to the ability of the GA to traverse the complex space parameter

space and of the neural network to model the complex relationships between the technical

Chapter 2 Literature Review 29

indicators and the index.

Bodas-Sagi et al. (2013) also address the optimisation of parameter values for technical

indicators. They describe a novel method of Multi-Objective Evolutionary Algorithms

to identifying the optimal parameter settings for a collection of technical indicators.

The results showed that their technique was able to discover parameters settings that

weremore profitable than those suggested as standard in the literature. Furthermore,

they showed that evolution learning techniques lend themselves well to parallelisation

and that considerable runtime speed increases can be achieved.

In a move away from optimising technical indicators, Sun et al. (2013) proposed an

evolutionary morphological-rank-linear method for adjusting the time phase distortions

that can appear when modeling financial time series. The method presented is a hybrid

approach whereby a modified genetic algorithm is used to identify the optimal parame-

ters of the morphological-rank-linear filter. In an experiment comparing the forecasting

power of their technique to multi-layer perceptrons and time-delay added evolutionary

forecasting, they find their method to give improved predictions across a number of

stocks and markets.

2.2.4 Predicting with Ensembles

Ensemble learning is built upon the idea that predicting with lots of models that each

get slightly different results on a dataset and combining their predictions, produces

significantly better results than any one model on its own.

With ensemble learning, there are three main questions to consider: what kind of models

should we use, how can we ensure that they learn different things, and how should we

combine their predictions? Ensuring that the underlying models learn different things

is the primary difference between the various types of ensemble algorithms.

In recent years, the ensemble approach has been applied with great success in expert

learning systems such as decision trees (Breiman, 1996) and ANNs (Hansen and Salamon,

1990). Ensembles of expert systems have already been successfully applied in many areas

such as face recognition (Gutta and Wechsler, 1996), character recognition (Mao, 1998)

and medical diagnosis (Zhou et al., 2002) among others.

2.2.4.1 Boosting

One of the more well-studied ensemble techniques is known as boosting. Boosting came

about through the desire to turn a collection of weak classifiers into a strong ensemble

committee. It is a method for improving the performance of any traditional learning

algorithm. Schapire (1990) first proposed boosting in the computational learning theory

30 Chapter 2 Literature Review

literature before Freund and Schapire (1997) went on to solve many of the practical

difficulties of earlier boosting algorithms with the creation of the general discriminative

learning algorithm Adaboost.

Adaboost

Adaboost works by repeatedly applying a simple learning algorithm, termed the weak

or base learner, to various weightings of the same training set. The elementary form of

Adaboost is intended for binary classification problems in which a training set consists

of paired data (x1, y1), (x2, y2), . . . , (xm, ym), where xi represents the features of the

training data and yi ∈ {−1,+1} corresponds to the binary label to be predicted. A

weighting of the training examples represents the assignment of a non-negative real

value wi to each example (xi, yi).

On iteration t of boosting, the weak learner is applied to the training set with a set of

weights Wt
1,Wt

2, . . . ,Wt
m and generates a prediction rule ht that maps x to {0, 1}. It

is required that the weak learner for ht(x) has a small but significant correlation with

the labels y using the current weighting. Once a weak prediction rule is generated, the

weights are then changed such that the predictions ht(x) and the example labels y are

decorrelated. The process is then repeated as the weak learner is applied to the same

training examples with the new weights. Once the process has been repeated several

times, all of the prediction rules h1−t(x) are combined into a single strong rule using

a weighted majority vote. It can be shown that so long as the weak prediction rules

generated at each iteration are all somewhat correlated with the labels, the the strong

rule will have very high correlation with the labels.

One way to view the entire process is to think of a function F (x) that approximates the

mapping of an feature space X to the target variable Y and is repeatedly improved by

adding to it small corrections from the new weak prediction functions. Continuing with

this notation, we describe Adaboost in Algorithm 2. The strong prediction rule that

Adaboost generates is defined as sign(F (x)).

Algorithm 2 The general Adaboost algorithm (Freund and Schapire, 1997). xi corre-
sponds to the input features of instance i; yi is the binary label to be predicted; Wt

i is
the weight at time t of instance i; and sign(Ft(x)) is the prediction at time t.

F0(x) ≡ 0
for t = 1→ T do
Wt
i = e−yiFt−1(xi)

Use weak learner to generate ht

αt = 1
2 ln

∑
i:ht(xi)=1,yi=1Wt

i∑
i:ht(xi)=1,yi=−1Wt

i

Ft+1 = Ft + αht
end for

Chapter 2 Literature Review 31

A particularly interesting feature of Adaboost is that the test error4 of the strong rule

tends to continue to fall after the training error5 sinks to zero. Schapire et al. (1998)

relates this to the concept of a margin, that is: while y · F (x) ≥ 0 denotes a correct

prediction6, yF (x) > b > 0 represents a confident prediction and the confidence will

increase in line with b.

Logitboost

Friedman et al. (2000), shortly followed by Collins et al. (2000), described a modification

of Adaboost, called Logitboost. Logitboost has an alternative method for calculating

the weights that means it can be interpreted as a step-wise logistic regression algorithm;

it is described in Algorithm 3.

Algorithm 3 The general Logitboost algorithm (Friedman et al., 2000). xi corresponds
to the input features of instance i; yi is the binary label to be predicted;Wt

i is the weight
at time t of instance i; and sign(Ft(x)) is the prediction at time t.

F0(x) ≡ 0
for t = 1→ T do
Wt
i = 1

1+e−yiFt−1(xi)

Use weak learner to generate ht

αt = 1
2 ln

∑
i:ht(xi)=1,yi=1Wt

i∑
i:ht(xi)=1,yi=−1Wt

i

Ft+1 = Ft + αht
end for

2.2.4.2 Random Forests

The random forest (RF) is a nonparametric and nonlinear classification and regression

algorithm first proposed by Ho (1995) and further developed by Breiman (2001). As the

name suggests, an RF is an ensemble of many classification or regression trees designed

to produce accurate predictions that do not overfit the data (Breiman, 2001). Regression

trees use a tree structure to recursively partition a feature-space until the subsets of that

feature-space are manageable enough to fit simple models to. The tree model therefore

has two parts: the recursive partition and a simple model for each cell of the partition.

Each of the terminal nodes (leaves) of a tree represents a small subset of the feature

space, and is attached to a simple model which applies only to that subset. The cell

to which a datapoint belongs is identified by starting at the root node of the tree, and

answering a sequence of questions about the feature values. An example of the structure

of a regression tree is given in Figure 2.5.

4The test error represents the fraction of mistakes made on unseen data examples.
5The training error is the percentage of mistakes made on the training data.
6remember that we are predicting the binary variable yi ∈ {−1,+1}, so a correct prediction is made

when y = 1 ∧ F (x) ≥ 0

32 Chapter 2 Literature Review

Horsepower

Wheelbase Horsepower

Horsepower Price = -0.15 Price = 1.2 Wheelbase

Price = -1.6 Price = 0.42Price = -0.89 Price = 0.055

>0.2<0.2

>0.6

>0.08 <0.08

>-0.07<-0.07

>-1.3<-1.3

<0.6

Figure 2.5: Example of a regression tree for predicting price of cars built in 1993.
Both the target and the features have been standardised to have zero mean and unit

variance.

In training an RF, bootstrap samples are drawn from the training data to construct

multiple regression trees, where each tree is grown using a randomised subset of features.

Specifically, we produce forests of regression trees using the procedure below, where

the training set consists of feature vectors, x, and targets, y, and is defined as D =

{(x1, y1), . . . , (xN , yN)}. The aim of the RF is to find a function F : X → Y , where X

is the feature space and Y is the output space.

In growing each tree without pruning, and selecting the best split among a random subset

at each node, RFs maintain prediction strength while inducing diversity among trees.

Furthermore, the random selection of features reduces correlation among the unpruned

trees and keeps overall model bias low. With an ensemble of such trees, variance is also

reduced.

Now, for any new observation, the RF produces an overall prediction by taking the

average of the predictions of the individual trees in the forest. A formalisation of the

RF algorithm is given in Algorithm 4.

Compared with other prediction algorithms, RFs have been shown to be less prone to

overfitting (Breiman, 2001) and as such have proved successful in a number of domains

including image classification (Bosch et al., 2007), ecological prediction (Prasad et al.,

2006) and microarray data classification (Dı́az-Uriarte and Alvarez De Andrés, 2006).

Chapter 2 Literature Review 33

Algorithm 4 The random forest algorithm.

Training
for θ = 1 to Θ do

Select n observations from D with replacement to form a bootstrap sample.
Grow a regression tree Tθ on the bootstrap sample by recursively following:
for each terminal node do

Randomly select m << M variables.
Pick the best split among the m as measured by the sum of squares eror.
Split the node into two child nodes according to the best split.

end for
end for
Output the ensemble of trees.
Recall
The prediction, Si = 1

Θ

∑Θ
θ=1 tθ(x)

2.2.4.3 Applications in Price Prediction

In relation to financial markets, an ensemble of ANNs was investigated by Abdullah

and Ganapathy (2000) as a method for classifying trends of the Kuala Lumpur Stock

Exchange composite index. They compared three relatively simplistic methods of com-

bining the classifiers - max, average and median - finding that median produced the

higher classification score and mean return per trade. Chen et al. (2007) used a similar

approach of combining the outputs of an ensemble of ANNs but instead used particle

swarm optimisation to determine the weight that each predictor was given.

In a similar vein, Chun and Park (2005) used an ensemble of case-based-reasoning models

to predict the daily movement of the KOSPI. They found that choosing the expert

with the best historical performance gave the best out-of-sample results, significantly

outperforming a random walk model with p < 0.01.

In a particularly extensive study, Tsai et al. (2011) used classifier ensembles to forecast

stock returns. Specifically, they compared the hybrid methods of majority voting and

bagging finding that, although multiple classifiers outperformed single ones in terms

of prediction accuracy and returns on investment, there was no significant difference

between majority voting and bagging. Furthermore, performance using ‘homogeneous’

ensembles (e.g. an ensemble of neural networks) and ‘heterogeneous’ ensembles (e.g.

an ensemble of neural networks, decision trees and logistic regression) was analysed to

find that heterogeneous ensembles offered slightly better performance than homogeneous

ones.

With similar goals in mind, Creamer and Freund (2010) used an alternating decision

tree (ADT) learning algorithm, which was implemented with Logitboost, to generate

buy and sell signals for a multitude of stocks in the S&P 500 index. Additionally,

they implemented an on-line learning layer to combine the output of several ADTs and

suggests a short or long position. They found that their algorithm was able to generate

34 Chapter 2 Literature Review

consistently positive returns and the the online layer enabled the algorithm to constantly

adapt in line with the market.

Rodŕıguez and Sosvilla-Rivero (2006) used Adaboost with decision tree learning algo-

rithms to find direction-of-change patterns for the S&P 500 index with daily prices

from 1962 to 2004. They found that periods characterised by high first-order serial

correlation in stock returns allowed both in and out-of-sample direction-of-change pre-

dictability. However, it was noted that functions induced in periods with a lack of

autocorrelation in stock returns were able to obtain in-sample predictability but failed

to detect out-of-sample predictability.

Creamer and Freund (2010) used an alternating decision tree (ADT) learning algorithm,

which was implemented with Logitboost, to generate buy and sell signals for a multitude

of stocks in the S&P 500 index with high frequency data from 2003-2005. Their algo-

rithm predicts by taking an average of the predictions of all the ADTs weighted by their

training error. Their formula for the exponential weights is derived from a weighted

majority algorithm introduced by Littlestone and Warmuth (1989). Logitboost enables

their algorithm to select the best combination of rules derived from well-known technical

analysis indicators and is used to select the best parameters of the technical indicators

themselves. Additionally, they implemented an on-line learning layer to combine the

output of several ADTs and suggests a short or long position. They found that their

algorithm was able to generate abnormal returns during the test period and their exper-

iments showed that the boosting approach was able to improve the predictive capacity

when indicators were aggregated as a single predictor. Also, the combination of indica-

tors of different stocks was able to to reduce the need for computational power, while

still maintaining adequate predictive capacity.

Creamer and Freund (2004) used random forests to successfully predict performance of

companies and to measure corporate governance risk in Latin American banks. In their

study, the performance of RFs was compared to logistic regression and Adaboost, finding

that RFs consistently produced superior results. The merits of RFs in financial predic-

tion were also demonstrated by Lariviere and Vandenpoel (2005) who demonstrated that

random forest regression could be used for exploring both customer retention and prof-

itability. They analysed a sample of 100,000 customers using data from a large European

financial services company finding that RF techniques provided better prediction results

for the validation and test samples compared to linear regression and logistic regression

models.

More recently, there has been a surge in interest in he use of RFs for stock market

prediction. Maragoudakis and Serpanos (2010) used a method called Markov Blanket

random forest to make predictions on the direction of stock markets. They report

their proposed strategy to outperform a simple buy-and-hold investment strategy by an

average of 12.5% to 26% for the initial period and from 16% to 48% for the remainder,

Chapter 2 Literature Review 35

as well as outperforming linear regression, SVMs and ANNs. With similar goals in

mind, Qin et al. (2013) used gradient boosted random forests to make predictions on

the direction of the Singapore Exchange. Using boosting to weight the individual trees

of the forest and a forgetting factor to address market changes, their empirical results

showed that their proposed methods were able to generate excess returns compared to a

buy-and-hold strategy. Also, Zbikowski and Grzegorzewski (2013) used a novel online-

adaptation method to allow RFs to adapt to non-stationary financial time series, while

Xu et al. (2013) demonstrated the RF algorithmss ability to select features for trend

prediction in stock prices.

The impressive out-of-sample results reported in these studies form the basis of our

decision to use random forests as a baseline expert predictor as it is clear that RFs are

the most appropriate approach for applications with large, noisy datasets. Although

many of the trading models mentioned above are shown to produce an acceptable risk-

return behaviour on recent historical data, there is no guarantee that such systems will

continue generating the same returns through all market phases in the future without

higher level adaptation. Algorithms that are unable to adapt to the changing market

conditions will not succeed in the long run. To this end, we propose a novel approach

that sees the online training of random forests to produce an ensemble of experts that

is able to produce accurate predictions in non stationary financial time series data.

2.2.5 Precautions for Data Mining

Zemke (2002) provides an excellent review of the potential pitfalls to consider when

using financial data for prediction. This report highlights the importance of rigorous

preprocessing and, in particular, the need for: sufficient good quality data, outlier de-

tection; and adjustments for missing data. Another import issue is that of overfitting.

In essence this refers to fitting the model so closely to the training data that the out of

sample performance is reduced dramatically.

After models are fitted, relationships must be checked to ensure they conform to com-

mon/economic thought. Particularly, high correlation and R2 do not imply a causal

relationship. Leinweber (2007), demonstrates this danger by fitting the S&P 500 re-

turns, butter production in Bangladesh and the sheep population of both countries with

an R2 of 0.99.

Throughout this section we’ve seen a number of models that have demonstrated solid

prediction accuracy across a number of financial markets. However, let us take a step

back and consider our motives for selecting a model: transparency. We aim to build

a predictive model so as to greater improve our understanding of the drivers of price

dynamics. As such, many of the more ‘black box’ techniques (e.g. neural networks and

support vector machines) will make it more challenging to deconstruct those drivers.

36 Chapter 2 Literature Review

Before we go on to formulate a model, we first examine the statistical properties of limit

order markets than will enable us to explore the validity of our models.

Chapter 2 Literature Review 37

2.3 The Statistical Properties of Limit Order Markets

The empirical literature on LOBs is very large and several non-trivial regularities, so-

called “stylised facts”, have been observed across different asset classes, exchanges, levels

of liquidity and markets. These stylised facts are particularly useful as indicators of the

validity of a model (Buchanan, 2012). For example, Lo and MacKinlay (2001) show the

persistence of volatility clustering across markets and asset classes, which disappears

with a simple random walk model for the evolution of price time series, as clustered

volatility suggests that large variations in price are more likely to follow other large

variations.

2.3.1 Fat-tailed Distribution of Returns

Across all timescales, distributions of price returns have been found to have positive kur-

tosis, that is to say they are “fat-tailed” (Officer, 1972; Nelson, 1991). An understanding

of positively kurtotic distributions is paramount for trading and risk management as

large price movements are more likely than in commonly assumed normal distributions.

Fat tails have been observed in the returns distributions of many markets including:

the American Stock Exchange by Plerou and Stanley (2008a), Euronext by Chakraborti

et al. (2011), the LSE by Plerou and Stanley (2008b), NASDAQ by Gopikrishnan et al.

(1998), the NYSE by Gopikrishnan et al. (1998), the Paris Bourse by Plerou and Stanley

(2008a), the S&P 500 index by Cont (2001) and the Shenzhen Stock Exchange (Gu et al.,

2008) but the precise form of the distribution varies with the timescale used. Gu et al.

(2008) found that across various markets, the tails of the distribution at very short

timescales are well-approximated by a power law with exponent α ≈ 3.

Drozdz et al. (2007) found tails to be less heavy (α > 3) in high-frequency data for

various indices from 2004 to 2006, suggesting that the specific form of the stylised facts

may have evolved over time with trading behaviours and technology. Both Gopikrishnan

et al. (1998) and Cont (2001) have found that at longer timescales, returns distributions

become increasingly similar to the standard normal distribution.

2.3.2 Volatility Clustering

Volatility clustering refers to the long memory of absolute or square mid-price returns

and means that large changes in price tend to follow other large price changes. Liu et al.

(1997), Cont (2001), and Stanley et al. (2008) found this long memory phenomenon to

exist on timescales of weeks and months while its existence has been documented across

the NYSE by Cont (2005), Paris Bourse by Chakraborti et al. (2011), S&P 500 index

38 Chapter 2 Literature Review

futures by Cont (2001), the Shenzhen Stock Exchange by Gu and Zhou (2009) and the

USD/JPY currency pair by Cont et al. (1997).

Lillo and Farmer (2004) formalise the concept as follows. Let X = X(t1), X(t2), . . . , X(tk)

denote a real-valued, wide-sense stationary time series. Then, we can characterise long

memory using the diffusion properties of the integrated series Y:

Y (l) =
l∑

i=1

X(ti) (2.8)

Furthermore, let

V (l) = V ar(Y (ti + 1), Y (ti + 2), . . . , Y (ti + l)) (2.9)

for some i ∈ {0, 1, . . . , l}. Given this, in the limit l→∞, if X is a short-memory process,

then V (l) scales as O(l), whereas if X is a long-memory process, then V (l) scales as

O(l2H), for some H ∈ (0.5, 1). The exponent H is known as the Hurst exponent.

In the empirical research studies outlined above, the values of the Hurst exponent varied

from H ≈ 0.58 on the Shenzhen Stock Exchange to H ≈ 0.815 for the USD/JPY

currency pair. There are a number of potential explanations for volatility clustering and

Bouchaud et al. (2009) suggest the arrival of news and the splicing of large orders by

traders.

2.3.3 Autocorrelation of Returns

Stanley et al. (2008) and Chakraborti et al. (2011) observed that, across a number of

markets, returns series lacked significant autocorrelation, except for slightly negative

autocorrelation on very short timescales. This includes: Euronext (Chakraborti et al.,

2011), FX markets (Cont et al., 1997), the NYSE (Cont, 2005; At-Sahalia et al., 2011)

and the S&P500 index (Gopikrishnan et al., 1999). Cont (2001) explains the absence

of strong autocorrelations by proposing that, if returns were correlated, traders would

use simple strategies to exploit the autocorrelation and generate profit. Such actions

would, in turn, reduce the autocorrelation such that the autocorrelation would no longer

remain.

Evidence suggests that the mild negative correlation found on short time-scales has dis-

appeared more quickly in recent years, perhaps an artefact of the new financial ecosys-

tem. Bouchaud and Potters (2003) report that from 1991 to 1995, negative autocorre-

lation persisted on timescales of up to 20-30 minutes but no longer for the GBP/USD

currency pair. For Euronext, Chakraborti et al. (2011) found autocorrelation not to

Chapter 2 Literature Review 39

persist in timescales over 1 minutes during 2007-2008. Moreover, Cont et al. (2013),

discovered no significant autocorrelation for timescales of over 20 seconds in the NYSE

during 2010.

2.3.4 Long Memory in Order Flow

The probability of observing a given type of order in the future is positively correlated

with its empirical frequency in the past. In fact, analysis of the time series generated by

assigning the value +1 to incoming buy orders and -1 to incoming sell orders has been

shown to display long memory on the NYSE (Lillo and Farmer, 2004), the Paris Bourse

(Biais et al., 1995; Bouchaud et al., 2004) and the Shenzhen Exchange (Gu and Zhou,

2009). Study of the LSE has been particularly active, with Lillo and Farmer (2004),

Mike and Farmer (2008), and Bouchaud et al. (2009) reporting similar results for limit

order arrivals, market order arrivals and order cancellations, while Axioglou and Skouras

(2011) suggest that the long memory report by Lillo and Farmer (2004) was simply an

artefact caused by market participants changing trading strategies each day.

2.3.5 Long Memory in Returns

The long memory in order flow discussed above has lead some to expect long memory

in return series, yet has not been found to be the case. Studies on the Deutsche Bourse

(Carbone et al., 2004), the LSE (Lillo and Farmer, 2004) and on the Paris Bourse

(Bouchaud et al., 2004) have all reported Hurst exponents of around 0.5, i.e. no long

memory. Bouchaud et al. (2004) have suggested that this may be due to the long

memory of market orders being negatively correlated with the long memory of price

changes caused by the long memory of limit order arrival and cancelation.

2.3.6 Extreme Price Events

Though the fat-tailed distribution of returns and the high probability of large price

movements has been observed across financial markets for many years (as documented

in Section 2.3.1), our brave new marketplace has introduced a particularly extreme kind

of price event.

Since the introduction of automated and algorithmic trading, recurring periods of high

volatility and extreme stock price behaviour have plagued the markets. Johnson et al.

(2013) define these so called flash crashes as an occurrence of a stock price ticking down

[up] at least ten times before ticking up [down] and with a price change exceeding 0.8%

of the initial price. Remarkably, they found 18, 520 crashes and spikes with durations

less than 1500ms to have occurred between January 3rd 2006 and February 3rd 2011 in

40 Chapter 2 Literature Review

various stocks. One of the many aims of recent regulation such as MiFID II and the

DoddFrank Wall Street Reform and Consumer Protection Act is to curtail such extreme

price events.

Chapter 2 Literature Review 41

2.4 Market Microstructure: Understanding Order Book

Dynamics

The discipline of market microstructure is devoted to shedding light on the processes

by which the interactions of market players leads to price formation. In particular,

quantitative models of the trading process are proposed in order to improve the efficiency

of the allocation of goods, through financial markets, in the economy.

2.4.1 Price Impact

Understanding price impact presents one of the most dominant questions of market mi-

crostructure analysis, i.e. how trading activity leads to price changes. The early market

microstructure literature describes this concept with a focus on specialist markets. In

such markets, prices are quoted by a centralised market maker who receives orders from

brokers and updates her quoted prices according to the incoming order flow that she

witnesses. From the viewpoint of the broker, the price impact of his orders is a cost paid

to the market maker for her continued obligation to accept his orders (Demsetz, 1968),

i.e. a cost for immediacy. From the viewpoint of the market-maker, some information

about the future prices of assets is inferred from the order flow of the brokers. This

information is then captured in the market maker’s quotes in a process reflected by the

permanent price impact (Kyle, 1985). The difference between the price that an order

obtains and the best prevailing quote is termed the immediate price impact and is an

increasing function of order size. The temporary price impact is then defined as the

difference between the immediate and permanent impact of an order. A visualisation of

the two kinds of price impact is given in Figure 2.6.

Although specialist markets, with their centralised market maker, have mainly been

replaced with electronic LOBs, the same price impact terminology is still used. However,

due to the decentralised nature of LOBs, it is much harder to disentangle temporary

and permanent price impact.

In an LOB, we may also consider the impact of an event on the entire state of the

LOB. This type of impact is termed market impact. Often, the terms ‘price impact’

and ‘market impact’ are used interchangeably to refer changes in the best prices, though

Hautsch and Huang (2012) have shed light on how the actions of traders can affect

the depths available at many price levels, suggesting that the two notions should be

separated. Bouchaud et al. (2009) provide a great review of studies of both price and

market impact.

A Great deal of research has investigated the impact or individual orders, and has

conclusively found that impact follows a concave function of volume. That is, the impact

increases more quickly with changes at small volumes and less quickly at larger volumes.

42 Chapter 2 Literature Review

Price

Time

Permanent Impact

Temporary Impact

Order Arrives

Figure 2.6: An illustration of the price impact through time. We can see that impact
is instantaneous upon the arrival of an order before a partial recovery of the temporary

impact.

However, the detailed functional form has been contensted and varies across markets and

market protocols (order priority, tick size, etc.).

Some of the earliest literature found strongly concave functions though did not attempt

to identify a functional form (Hasbrouck, 1991; ?). In a study of the NYSE, Lillo et al.

(2003) analysed the stocks of 1000 companies and divided them into groups according to

their market capitalisation. Fitting a price impact curve to each group, they found that

the curves could be collapsed into a single function that followed a power law distribution

of the following form:

∆p =
ηvβ

λ
(2.10)

where ∆p is the change in the mid-price caused by a trader’s action, v is the volume

of the trade, η takes the value −1 in the event of a sell and +1 in the event of a buy

and λ allows for adjustment for market capitalisation. They found the exponent β to

be approximately 0.5 for small volumes and 0.2 for large volumes. After normalising for

daily volumes, λ was found to vary significantly across stocks with a clear dependence

on market capitalisation M approximated by M ∼ λδ, with δ in the region of 0.4.

Good approximations of the value for the exponent β have also been found by Farmer and

Lillo (2004) on the London Stock Exchange and Hopman (2007) on the Paris Bourse to

fall in the range 0.3−0.4. Consequently, all explorations have identified strongly concave

impact functions for individual orders but find slight variations in functional form owing

to differences in market protocols.

The square-root impact law, on the other hand, concerns the impact of a parent (or

meta) orders. Thus, this definition is particularly pertinent as most trades are far too

Chapter 2 Literature Review 43

large to be executed with a single order and, instead, need to be fragmented into many

small orders that are executed gradually. This is the domain of optimal trade execution

and is discussed in the next section. The square impact law of parent orders has been

shown to be very universal having been reported by a number of groups across a variety

of markets, timescales, trading strategies, microstructures and execution styles (Tóth

et al., 2011).

2.4.2 Optimal Trade Execution

One very important implementation of models of price impact lies in optimal trade

execution. This is the problem of finding a strategy for buying or selling a large quantity

of assets while managing price uncertainty within a limited timeframe. The size of

the total trade (‘parent order’) tends to be far larger than the volume of limit orders

available at the best price of the LOB at any given time. Thus, the parent order is sliced

into a sequence of smaller ‘child orders’ that are submitted to the exchange over time.

The optimisation of order execution strategies is interesting from both a practical and

regulatory standpoint. In the majority of modern markets, regulations require broker-

dealers to provide their clients with ‘best execution’. There is no concrete definition of

best execution 7 and only recently has there been developments in the quantification

and and evaluation of trade execution strategies.

There are many models of the optimal execution problem that each differ in their as-

sumptions on price impact, price dynamics and trading mechanism. The seminal paper

of this field is often considered to that by Bertsimas and Lo (1998) where a mean

execution cost is minimised using dynamic programming. Later this formulation was

supplemented by Almgren and Chriss (2001) by including a penalty for the risk inherent

in price fluctuations over the course of the execution period. This was the first nod

towards the traders’ dilemma; where an aversion to price uncertainty presses a trader

to trade faster while the cost of immediacy drives her to trade slower. Thus, an opti-

mal execution strategy must balance the risk of future price uncertainty with the price

impact cost. This is an interesting problem that has motivated a cast number of studies.

In order to prevent the possibility of arbitrage, price manipulation and erratic strategy

behaviours, many restriction have been placed on price impact models. Such restrictions

include linearity of the permanent price impact function (Huberman and Stanzl, 2004)

and the rate of temporary impact decay (Gatheral, 2010).

The practical applicability of trade execution models have lead to a range of studies

attempting to link the models to order placement decisions. However, many of these

studies introduce restrictive assumption on strategies and market dynamics. One of the

7The Financial Services Authority (FSA) describe this as “...taking all reasonable steps to obtain
the ‘best possible result’ for their clients.”. See http://www.fsa.gov.uk/about/what/international/

mifid/background/key-topics/best-execution

http://www.fsa.gov.uk/about/what/international/mifid/background/key-topics/best-execution
http://www.fsa.gov.uk/about/what/international/mifid/background/key-topics/best-execution

44 Chapter 2 Literature Review

more popular approaches restricts strategies to using only marketable orders and explic-

itly computes the cost of these orders by integrating a density function that represents

the orders at the top of the LOB (Obizhaeva and Wang, 2013; Predoiu et al., 2011).

In such models, the cost is determined by the initial impact as well as the speed of the

recovery. This approach is an improvement compared to previous models, though its

restriction to only marketable orders is limiting.

Recent research has proposed optimal execution strategies that allow passive limit or-

ders (Bayraktar and Ludkovski, 2011). In this methodology, limit order executions are

modelled using a point process where the density is a function of the distance between

the limit order price and the current best prices. As this distance is under the control of

a trader, the execution problem, under this formulation, may be solved using stochastic

control methodologies. There are three major problems with this formulation. Firstly,

it is necessary to specify a joint process of price and limit order book dynamics. Sec-

ond, even with very strong assumptions the resulting formulations are often intractable.

Lastly, only very basic details of order placement are included in the formulation. This

ignores important information regarding the general state of the LOB that are known

to be important for order placement decisions.

In summary, the problem of optimal order placement in limit order book markets re-

mains a complex optimisation problem where today’s state-of-the art relies on intractable

systems of equations and/or unrealistic assumptions about market dynamics. As such,

there is room for for improved models of order book dynamics that incorporate the

complete state of the LOB and provide a platform for optimising trade execution.

Chapter 2 Literature Review 45

2.5 Modelling Limit Order Books

The financial community has expressed an active interest in developing models of

LOB markets that are realistic, practical and tractable (Avellaneda and Stoikov, 2008;

Obizhaeva and Wang, 2013; Predoiu et al., 2011). The literature on this topic is divided

into four main streams: theoretical equilibrium models from financial economics, sta-

tistical order book models from econophysics, stochastic models from the mathematical

finance community, and ABMs from complexity science.

Financial economics models tend to be built upon the idea of liquidity being consumed

during a trade and then replenished as liquidity providers try to benefit. ? and ?,

for example, describe theoretical models of LOB markets finite levels of resilience in

equilibrium depending mainly on the characteristics of the market participants. In these

models, the level of resilience reflects the volume of hidden liquidity. Many models are

partial equilibrium in nature. taking the dynamics of the limit order book as given. For

example, ? provide a framework that allows discrete orders and more general dynamics,

while ? implement general but continous limit order books. In order to operate in a

full equilibrium setting, models have to heavily limit the se of possible order-placement

strategies. ?, for example, allows only orders of a given size, while ? only explore

single-shot strategies. Though these simplifications enable the models to more precisely

describe the tradeoffs presented by market participants, it comes at the cost of unrealistic

assumptions and simplified settings. It is rarely possible to estimate the parameters

of these models from real data and their practical applicability is limited. Statistical

models, on the other hand, tend to fit the data well but often lack economic rigour

and typically involve the tuning of a number of free parameters. Consequently, their

practicability is questioned. Given the lack of practical applicability of purely theoretical

and statistical models, this report will focus on stochastic and ABMs of LOBs.

2.5.1 Stochastic Order Book Models

Stochastic order book models attempt to balance descriptive power and analytical

tractability. Such models are distinguished by their representation of aggregate order

flows by a random process, commonly a Poisson process (Cont et al., 2010; Farmer et al.,

2005). Given this representation, order books are viewed as a stochastic queuing system

in which orders randomly arrive and are cancelled. This modelling approach attempts to

circumvent the issue of making detailed assumptions about traders’ utilities and strate-

gies by instead making assumptions on the (more easily measured) statistical properties

of aggregate order flows. Such a method makes it easier to calibrate against LOB data,

is more flexible than economic equilibrium models, and possesses more structure than

descriptive statistical models.

The stochastic modelling of LOBs is founded on a rich literature of queuing theory and

46 Chapter 2 Literature Review

as such has proved useful in practical applications. Notably, it has been found that it

is effective to submit aggressive orders when the probability of an adverse price change

is high (Stoikov and Waeber, 2012). Such probabilities are easily calculated in these

models using Laplace transforms (Huang and Kercheval, 2012) and analytical results

can also be derived from scaling approximations. In another example, a queuing LOB

model is used in a heavy-traffic regime to estimate the distribution of durations between

price changes (Cont and De Larrard, 2011). The study found that micro-level price

changes in a queueing LOB model result in Brownian motion at a larger scale, and that

volatility is a function of the average order queue size and the order arrival rate.

Further empirical studies of level 2 market data with trader identifiers (Kirilenko et al.,

2014; Baron et al., 2012) have highlighted the presence of complex interactions and

feedback effects between different kinds of market participants. Although the queueing

models highlighted above describe the behaviour of order flows from all participants

in a limit order book, stochastic models are not able to cope with interactions and

dependancies between participants.

One branch of the stochastic modelling literature - the multi-class queuing literature - has

made a step towards addressing interaction by introducing systems with heterogenous

participants. In these models, differences between agents are expressed by assigning each

class of participant a distinct distribution (Jennings and Reed, 2012). Although multi-

class queuing models can capture some of the differences between market participants,

they do not fully capture the interactions between participants, nor do they account for

agents that act on different timescales - a features common to modern financial markets

(Hasbrouck and Saar, 2013).

Thus, the high level statistical description of participant behaviour inherent in stochastic

order book models ignores important complex interactions between market participants

and fails to explain many phenomena that arise. As such, a richer bottom-up modelling

approach is needed to enable the further exploration and understanding of limit order

markets.

2.5.2 Agent Based Models

Agent-based modelling (ABM) is a modelling tool used to simulate the interaction of

elements in complex systems. Complex systems are those composed of a number of

elements that react and adapt to the environment that they create. Examples of such

elements include cells in an immune system, neurones in a brain, or ions in a spin

glass, and they react to chemical signals, neighbouring cell activations, or local magnetic

moments. The evolution of the system through time plays an important role as the

elements react, systemic changes emerge and elements react afresh.

ABMs are ideally suited to modelling complex systems as the agents are represented by

Chapter 2 Literature Review 47

autonomous computer software that are embedded in a virtual environment that they

can sense and act upon. Agents often maintain internal beliefs and/or desires, reason

about the state of their environment, and may bargain or negotiate (Jennings et al.,

1998). This movement is said to have evolved from early AI research. The agent-based

mind-set is rooted in the school of decentralised AI, which focuses on collaborative so-

lutions to problems with distributed group of entities (Demazeau and Müller, 1990).

Fundamentally, AI concerns itself with building intelligent artefacts that sense and in-

teract in an environment and thus can be considered to be dealing with agents (Russell

and Norvig, 1995).

Though there are clear ties with early AI research, ABM research can be traced further

back. One of the earliest and most poignant applications of the ABM was Schelling’s

(1971) model of segregation. The model takes the from of a two-dimensional grid of cells

that represents an urban area, upon which households are placed at random. Each cell

on the grid may contain only one household at a time and a large number of the cells

are empty at any given time. There are two distinct kinds of agents, let’s say “red” and

“blue”. At each timestep, the following occurs:

• Each household observes the eight cells surrounding it, it’s neighbours, and iden-

tifies the fraction of households that are of the other colour.

• If the observed fraction is greater than some tolerance threshold that house declares

itself ‘unhappy’ and relocating to a a random vacant cell on the grid.

In the next timestep, this newly relocated household may tip the balance of colour in

the area causing some of its neighbours to become happy. This can cause cascades of

relocation across the grid. Schelling found that a randomly initialised set of households

would segregate int batched of red and blue for any tolerance threshold of 0.3 or above.

He interpreted this as indicating that even very slight racial prejudices could lead to the

types go ghettoisation observes in many U.S. cities in the nineteen seventeen.

In the early eighties, Axelrod and Hamilton (1981) peaked interested in the prisoner’s

dilemma with his book that described a tournament he had organised in which aca-

demics could enter strategies into an N step prisoner’s dilemma game with memory. In

the prisoners dilemma, you and an accomplice have committed a crime and been appre-

hended. You are both being detained in separate cells and are unable to communicate

with each other. Both of you are offered the same deal by the police:

• If your accomplice confesses and you deny the crime, you go to prison for ten years

and your accomplice walks.

• If you confess and you accomplice denies the crime the you walk and your accom-

plice gets ten years.

48 Chapter 2 Literature Review

• If you both confess then you will both server six years.

• If you both deny then youll both receive six months.

In the iterated version of the game, the two players play more than once with a memory

of their accomplice’s previous action and the ability to change their strategy. Axelrod

found that, in large iterated games, altruist strategies tended to success and pure greedy

strategies did not fair so well. He proposed this as an addendum to natural selection

to explain the evolution of altruistic behaviour from initially selfish mechanisms. His

work on the prisoner’s dilemma made waves in a number of fields including economics,

politics and evolutionary biology.

Towards the end of the 1980s, Reynolds (1987) developed some of the first agent-based

models for biology to contain social characteristics. His work explored the an approach

to simulating flocking behaviour as an elaborate particle system. Each bird was simu-

lated as a individual agent that makes directional decisions based on its interaction with

its environment. The emergent motion of the flock was found to be the result of tightly

coupled interactions between the simple behaviours of the simulated bird. Through

experimentation, Reynolds found that a significant property of accurate flocking be-

haviour was it’s unpredictability over anything more than medium timescales. At very

short timescale, say one second, it is trivial to predict the motion of a bird - approxi-

mately the same speed and direction. However, prediction at greater timescale is akin to

that of chaotic systems. This property is typical of complex systems and falls somewhere

between ordered behaviour, which is easily predictable, and chaotic behaviour, which is

not predictable of short of long timescales.

As well as the pioneering papers discussed above, ABMs have broken ground in a number

of field including from population dynamics (Caplat et al., 2008), ecological modelling

(Grimm et al., 2005), and tissue formation (Tang et al., 2011) through to traffic man-

agement (Erol et al., 2000), wireless sensor networks (Niazi and Hussain, 2011), and

organisational management (Hughes et al., 2012).

2.5.2.1 Applications in Finance and Economics

Naturally, complex systems arise across economics and finance. Agents such as banks,

funds, brokers, or traders, constantly adjust portfolios, trading strategies and forecasts

to the landscape that these actions create. However, unlike immune cells of the body,

which always react in a simple way to their local chemical environment, economic agents

react with strategic behaviour, considering outcomes that might result as a consequence

of their behaviour. This results in a layer of complexity not found in the physical and

natural sciences.

Chapter 2 Literature Review 49

Perhaps in owing to the financial crisis, the popularity of ABMs as tools for economic

modelling has increased rapidly. The power of ABMs lies in their freedom from assump-

tions of equilibrium and representative agents. Instead, they consist of heterogeneous

populations of agents with independent behaviours that may even learn over time. Their

bottom up approach allows room for emergent phenomena such as bubbles and crashes

to bubble out of the local interactions between agents (Tesfatsion and Judd, 2006). A

number of highly respected academics have voiced their opinions that ABMs hold the

key to representing a complex economy while at the same time building a models based

on microfoundations (Farmer and Foley, 2009).

While interest may have peaked of late, a handful of economists in the early 1990s

found a use for autonomous agents as a model for human behaviour in complex, real-

world systems - so called agent-based modelling. Rust et al. (1992) document a series

of CDA tournaments in which autonomous computer agents play the roles of buyers

and sellers in a CDA. They found that even with the decentralised nature of the CDA

and the self interest of the agents, price trajectories typically converged to competitive

equilibrium. Also, they showed that the best performing agent was among the most

simple of strategies with a simple rule-of-thumb outperforming many complex agents

that incorporated machine learning and statistics prediction models of future prices.

That simple strategy was devised by Todd Kaplan and, as such, has since become

widely known as “Kaplan’s Sniper”.

A few years later, in a particularly famous paper, Gode and Sunder (1993) used a com-

bination of autonomous software agents and human subjects to replicate and further

a series of experiments first conducted by Smith (1962) in a field later dubbed experi-

mental economics. Gode and Sunder’s aim was to investigate how much of the efficient

properties of the CDA could be attributed to the structure of the auction itself, rather

than the behaviour of the humans that participated in it. Their experiments lead them

to believe that it was the structure and rule set of the CDA alone and not the behaviour

of agents that lead to the high allocative efficiency even citing Adam Smith’s “invisible

hand”. This was later debunked in a rigorous mathematical treatment by Cliff and

Bruten (1997).

Following his confuting of Gode and Sunders hypothesis, Cliff (1997) set out to find

the simplest possible agent that could explain human bargaining behaviours. This ex-

perimentation gave birth to the Zero-Intelligence-Plus (ZIP) algorithm for trading in

periodic CDAs which used a simple machine learning algorithm, Widrow-Hoff with

momentum, to adapt the agents margin to prevailing market conditions. Aside from

demonstrating realistic market dynamics, the ZIP algorithm, along with a modified GD

algorithm (Gjerstad and Dickhaut, 1998), was later shown to consistently outperform

human traders (Das et al., 2001).

The excitement surrounding an algorithm that could beat human traders lead to a

50 Chapter 2 Literature Review

flurry of research into algorithms for trading in real global financial markets. In the

academic sphere, this manifested itself in the development of a number of simulation

environments for algorithmic trading strategies including the Penn-Lehman Automated

Trading (PLAT) (Kearns and Ortiz, 2003) and the UCL Algorithmic Trading competi-

tion though both lacked any real model of market impact.

The agent-based economics explored by Gode, Sunder, and Cliff were the first studies

to demonstrate the effectiveness of ABMs for investigating complex financial systems

and the power of relaxing some of the unrealistic assumptions required for theoretical

models. This seminal literature has lead to a number of prominent ABMs that have

proven themselves particularly useful for understanding, e.g. the interactions between

trading algorithms and human traders (De Luca et al., 2011), empirical regularities in

the inter-bank foreign exchange market Chakrabarti (2000), and the complexities of

systemic risk in the wider economy (Geanakoplos et al., 2012).

In a particularly interesting piece of work, Thurner et al. (2012) build an ABM of lever-

aged asset purchases with margin calls. They find that downward price fluctuations

during boom times (where firms are highly leveraged) can cause a chain reaction of

margin calls leading to clustered volatility, power-law tails and trend-following. They

contrast this with previous explanations of fat tails and clustered volatility which are

dependant on irrational behaviour from agents. They note that a common risk con-

trol policy among banks (whereby leverage limits are based on volatility) exacerbates

liquidity problems causing extreme price fluctuation.

A huge win for the field came from the work of Darley and Outkin (2007) who worked

with Nasdaq to help understand the effects of decimalising its tick size. Many expressed

opinions that decimalisation would enable buyers and sellers to communicate in more

precise terms, improving spreads, while others were concerned about inefficiencies or

loopholes that may be introduced as result of the change. The team from Santa Fe

described a sizeable model that involved the detailed replication of the behaviours of

a number of market participants including: casual investors, day traders, institutional

investors and market makers. Their model suggested that decimalisation would likely

lead to impaired price discover and wider spreads. As Nasdaq decimalised,Darley and

Outkin’s (2007) predictions rang true but enabled Nasdaq to better prepare for the

effects of a reduced tick size.

The effectiveness of ABMs has also been demonstrated with LOBs. The first ABMs

of LOBs assume the sequential arrival of agents and the emptying of the LOB after

each time step (see e.g. Foucault (1999)). Unfortunately, Smith et al. (2003) notes that

approaches such as this fail to appreciate the function of the LOB to store liquidity for

future consumption. More recently, ABMs have begun to closely mimic true order books

and successfully reproduce a number of the statistical features described in Section 2.3.

To this end, Cont and Bouchaud (2000) demonstrate that in a simplified market where

Chapter 2 Literature Review 51

trading agents imitate each other, the resultant returns series fits a fat-tailed distribution

and clustered volatility. Furthermore, Chiarella and Iori (2002) describe a model in

which agents share a common valuation for the asset traded in a LOB. They find that

the volatility produced by in their model is far lower than is found in the real world

and there is no volatility clustering. They thus suggest that significant heterogeneity is

required for the properties of volatility to emerge.

Farmer and Joshi (2002) use a method of price formation based on a simulated market

maker to explore the price dynamics generated by a number of commonly applied trading

strategies. They find that certain combinations of strategies give rise to amplified noise

and excess volatility. In a later model, Challet and Stinchcombe (2003) note that most

LOB models assume that trader parameters remain constant through time and explore

how varying such parameters through time affected the price time series. They find that

time dependance results in the emergence of autocorrelated mid-price returns, volatility

clustering and the fat-tailed distribution of mid-price changes and they suggest that

many empirical regularities might be a result of traders modifying their actions through

time.

Correspondingly, Preis et al. (2006) reproduced the main findings of the state-of-the-art

stochastic models using an ABM rather than and independent Poisson process, while

Preis et al. (2007) digs deeper and explores the effects of individual agents in the model.

They found that the Hurst exponent of the mid-price return series depends strongly on

the relative numbers of agent types in the model.

At a slightly lower level, Mastromatteo et al. (2014) use a dynamical-systems / agent-

based approach to understand the non-additive, square-root dependence of the impact of

meta-orders in financial markets. Their model finds that this function is independent of

epoch, microstructure and execution style. Although their study lends strong support to

the idea that the square-root impact function is both highly generic and robust, Johnson

et al. (2013) notes that it is somewhat specialised and lacks some of the important agent-

agent interactions that give rise to spikes and crashes in price that have been seen to

regularly occur in LOB markets.

Similarly, Oesch (2014) describes an ABM that highlights the importance of the long

memory of order flow and the selective liquidity behaviour of agents in replicating the

concave price impact function of order sizes. Although the model is able to replicate

the existence of temporary and permanent price impact, its use as an environment for

developing and testing trade execution strategies is limited. In its current form, the

model lacks agents whose strategic behaviours depend on other market participants.

52 Chapter 2 Literature Review

2.6 Summary

This chapter has outlined why reliable models of price and order book dynamics are

so important. It has also provided a detailed overview of the current state-of-the-art

methodologies for predicting inter-day price movements, forecasting price impact in

LOBs, and modelling LOB dynamics.

Specifically, the studies of ensemble learning techniques described in Section 2.2.4 demon-

strate the ability to avoid overfitting compared to single expert systems. Against this

background, we develop an automated system for predicting the price return during the

seasonal regularities in stock prices that are described in the Section 3.2. The system

is composed of an ensemble of performance-weighted random forests where new experts

are trained on the previously unseen data. These experts are then added to the ensem-

ble in an online fashion to allow the algorithm to adapt to changing market regimes.

A risk management layer is implemented to prevent the large drawdowns commonly

seen in many systems. This novel technique of online generation of random forests and

combining predictions in a recent-performance weighted average draws on the proven

capabilities of random forests and ensemble approaches to avoid overfitting.

Correspondingly, the ability of modern machine learning approaches to capture complex

interaction within data lend themselves perfectly to isolating patterns in high-frequency

limit order book (LOB) data and overcoming many of the simplifications and assump-

tions that are inherent in the models discussed in Section 2.4. Thus, in Chapter 4, we

propose an adaptation to the system specified in Chapter 3 for the application of a per-

formance weighted ensemble of random forests to predicting price impact. Specifically,

we address the potential overfitting problem common to financial data by using random

forests and tackle the non-stationary element of data by generating random forests in

an online fashion.

With regards to modelling LOBs, though each of the models described in Section 2.5.2

are able to replicate or explain one or two of the stylised facts reported in Section2.3,

no one model exists that demonstrates all empirically observed regularities — a clear

requirement of a model intended for real-world validation. Also, no paper has yet pre-

sented agents that operate on varying timescales. Against this background, we propose a

novel modelling environment that includes a number of agents with strategic behaviours

that act on differing timescales as it is these features, we believe, that are essential in

dictating the more complex patterns seen in high-frequency order-driven markets.

Chapter 3

Explorations in Forecasting Price

Returns - Daily Equities Data

In this chapter, we introduce an expert system for trading stocks that uses performance-

weighted ensembles of random forests to predict the price return during well documented

seasonality events. Although these seasonal regularities are consistent enough to be used

as a stand-alone strategy1, rates of return are highly volatile (Hong and Yu, 2009). To

address this problem, we propose an expert system that captures the current state of

the market in its inputs and uses this information to both predict the profitability of a

seasonality trade and act upon this information. In doing so, the system performs risk

management while opening and closing trading positions in an attempt to improve the

profit and reduce the volatility over a basic seasonality trading strategy.

Specifically, we develop an autonomous system for the trading of stocks over seasonality

events. To that end, a recency-biased performance-weighted ensemble of random forests

is used to predict the expected profit of a seasonality trade given the prevailing market

conditions. The random forests are trained and added to the ensemble over time, in an

online fashion, so as to capture various phases of the market. A prediction is generated

as a weighted average of the predictions of all random forests and is passed through a

risk management layer before trades are initiated. Again, let us note, we are not aiming

to build the world’s most profitable, accurate and stable prediction system. Instead we

hope to build the simplest possible model that generates consistant profitability so that

we can explore drivers of market dynamics.

Before describing such a system, we first investigate the Deutsche Borse Ag German

Stock Index (DAX), Financial Times Stock Exchange 100 index (FTSE 100) and Stan-

dard & Poor’s 500 index (S&P 500) for the following regularities: upward biases at

1A simple seasonality strategy involves buying (selling) an asset before seasonal events that have
historically been seen to produce temporary upward (downward) price trends. As we will demonstrate
shortly, such events include weekends, turn-of-the-month and exchange holidays.

53

54 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

the turn-of-the-month and over exchange holidays, as well as a downward bias over the

weekend.

This chapter is structured as follows. In Section 3.1 we analyse the structure of the

data while in Section 3.2 we explore the persistence and reliability of the aforementioned

seasonality effects before proposing a number of features and a feature selection method.

Section 3.3 describes the trading algorithm itself. In Section 3.4 the results are presented

while Section 3.5 provides a summary.

3.1 The Data

The dataset used in this chapter involves daily open, close, high, low and volume

data of stocks from the DAX, FTSE 100 and S&P 500 stock indices over the period

of 01/01/2000 - 01/01/2013. This particular choice of markets is insignificant due to the

similarity of daily time series data across markets.

Before conducting experiments, the data set is split into three non-overlapping sets:

Training - 2000-2008 This data is used for the exploratory analysis in Sections 3.1

and 3.2 and also for the training phase of our ensemble model. During this phase,

no positions are taken in the market. In fact, no predictions are made by the

ensemble as a whole, this phase is purely use for the staggered training of new

random forest and their addition to the ensemble.

Validation - 2008-2010 During the validation phase, the complete ensemble model

produces predictions that go on to influence trading decisions. Grid searches of

the parameter space are performed on this dataset to enable the optimisation of

the model’s free parameters.

Test - 2010-2012 - No parameters are tuned using this set of data. One ensemble

model, with the set of parameters found to perform best during the validation

phase is used to make predictions and influence trading decisions using the test

set to produce a true out-of-sample test of performance.

Non-normality

As well as its widely demonstrated ability to generalise, our choice of the non-parametric

RF algorithm as the basis of our prediction system has been driven by the non-Gaussian

nature of financial data. Figure 3.1 shows a commonly used gauge of normality (Wilk

and Gnanadesikan, 1968), the Q-Q plot of the returns series of a typical actively traded

stock.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 55

-3 -2 -1 0 1 2 3

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.1: QQ-plot of the distribution of returns of the GOOG stock from 01/01/2000
to 01/01/2009. The downward curvature on the left hand side and the upward curvature
on the right are indicative of the kind of fat-tailed distribution often found in financial

data.

We can see from Figure 3.1 that the distribution of stock returns deviates substantially

from Gaussian. The left end of the pattern falling far below the line y = x and the right

end laying far above indicates a substantially long tailed distribution that is typical of

financial data. We can confirm the departure from normality with a Shapiro-Wilk test

(Shapiro and Wilk, 1965), which produces a test statistic of W = 0.93 with a p-value

< 2× 10−16. This allows us to reject the null hypothesis of normally distributed data.

Non-stationarity

Financial time-series are notoriously non-stationary and have means, variances and co-

variances that change over time. We can demonstrate this by performing a Kwiatkowski,

Phillips, Schmidt and Shin (KPSS) test on the price time series of stocks (Shapiro and

56 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

Wilk, 1965). With the KPSS test, we assume there is no trend and form a null hy-

pothesis that the data is stationary and an alternative hypothesis that that the data

generating process is stochastic with unit root.

Taking the same example as above, we perform the KPSS test on the price time series

of the GOOG stock from 01/01/2000 to 01/01/2009. This yields a KPSS Level of 1.005,

a truncation lag parameter of 7 and a p-value < 0.01. As our null was that the data

follows a straight line time trend with stationary errors, we may reject it at the usual

5% level.

Many traditional prediction and machine learning models rely on stationary data to

make predictions. Thus, to enable effective prediction, we propose the use of an online

learning layer to enable our system to adapt and continue to produce viable predictions

after the training of the initial models. The online learning layer is described fully in

Section 3.3.

3.2 Seasonality Effects and Feature Selection

Many seasonalities and empirical regularities of financial markets have been documented

in the literature with events including turn-of-the month, weekends effects and exchange

holidays. In the following we discuss these events in full.

In more detail, turn-of-the-month effects were first documented by Ariel (1987) who

found that the return for the latter half of the average month is negative and that

positive returns occur in the first part of the month. This result was further explored

by Lakonishok and Smidt (1988). Using a 90-year series for the Dow Jones Industrial

Average (DJIA), they showed that the returns for the four days around the turn of the

month, starting with the last day of the prior month, is 0.473 percent with the average

return for any four-day period being 0.0612 percent.

The first study of weekend effects in security markets appeared in 1931. In this study,

Fields (1931) examined the pattern of the DJIA for the period 1915-1930 to see if the

unwillingness of traders to carry their holdings over weekends lead to a liquidation of

long accounts and a consequent decline of security prices. He compared the closing price

of the DJIA for Saturday with the closing prices on the adjacent Friday and Monday.

He found that, in fact, prices tended to increase on Saturdays. Since then, numerous

studies have reinforced Fields’ findings, confirming that asset prices tend to be lower on

Mondays than the preceding Fridays (Cross, 1973; French, 1980; Rogalski, 1984).

In French’s investigation of weekend effects he also looked at the price behaviour after

exchange holidays, finding no empirical regularities. However, in another very early

study, Fields (1934) found that the DJIA showed a high proportion of positive returns

one day prior to holidays. These results were confirmed by Ariel (1990) who looked

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 57

Event Percentage of times trend was observed (%)
DAX FTSE 100 S&P 500

Turn-of-month 62.6 61.1 54.0
Holiday 73.2 57.2 58.1
Weekend 67.5 56.7 51.9

Percentage of total days in
which upward price movement
occurred

52.4 52.3 51.1

Table 3.1: Table showing the percentage of times that each of the following seasonality
effects was observed in the DAX, FTSE 100 and S&P 500 for the period of 2000-2010:
turn-of-the-month, exchange holiday, weekend effect. These figures should be compared

to the percentage of upward market movements for all days.

at the returns on the days that surrounded exchange holidays during 1963-1982. It

was found that the mean return on the preholidays was significantly greater than other

days; a results that has been further supported by others (Cadsby and Ratner, 1992;

Lakonishok and Smidt, 1988).

In the following section, we explore the persistence and reliability of the aforementioned

seasonality effects.

3.2.1 Explorations in Seasonality

We analyse data from the DAX, FTSE 100 and S&P 500 over the years 2000 to 2010

to explore the existence and reliability of the regularities described above. We test the

hypothesis that these events lead to an average positive or negative return for the index.

We perform these investigations to ensure that the seasonality effects have not been

arbitraged away following the publishing of the studies above. To do this we measure

returns over a particular event, reporting the percentage of times the expected trend was

observed from: the third week of a month to the first week of the next month; the day

before exchange holiday until the day after; Friday to the following Monday. Results are

given in Table 3.1. We can see that all of the aforementioned regularities are apparent in

the DAX data with holiday effect being particularly consistent. In both the FTSE 100

and the S&P 500 the seasonality effects are far weaker and thus, from here on in, we

will focus on the DAX.

In order to make a seasonality trading strategy more robust, it seems appropriate to

investigate whether these regularities are consistent through time or whether they are

more pronounced at particular times. For this we have calculated the percentage of

time that the index has followed the seasonality effect during each month over the entire

dataset the result is shown in Figure 3.2. The percentage for each month includes all

events (weekend, turn-of-month or exchange holiday) that occurred within that month

58 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

while events that span two months are included in the month during which the event

began.

0

20

40

60

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

R
eg

ul
ar

ity
 O

bs
er

ve
d

(%
)

Regularity
turn-of-month

weekend

Figure 3.2: The difference in the consistency of the weekend effect and the turn-of-
month effect between months over the period of 2000-2010

As Figure 3.2 demonstrates, there are significant differences in the consistency of the

regularities between months. It is evident that the regularities hold strong during both

the first and last few months of each year. However, following a simple seasonality

strategy would be highly unprofitable during the middle third of the year.2 Thus, in

order to generate a consistently profitable trading strategy based on seasonality trading,

it is important to take into account the month of the year and the type of event in

question. To this end, we explore the relative importance of various criteria on predicting

the price change over a seasonality event.

3.2.2 Features

We propose a number of features (see table A.1 in Appendix A) to capture the state of

the market, as best we can, at a given time. First, the three seasonality events discussed

above are included: the exchange holidays, turn-of-the-month, and the weekend. Addi-

tionally, the open, high low, and close values of the day before the event are explored,

as well as a number of technical indicators, with various parameterisations, which are

described in Table A.2 on page 119.

As well as the aforementioned technical indicators we include the current month, the

2When referring to a “simple seasonality strategy” we mean always adhering to the following: buy a
stock in the third week of the month and sell in the first week of the next, sell stock on Friday and buy
it back the proceeding Monday and buy stock the day before an exchange holiday selling it back the day
after.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 59

close price of the index to which the stock belongs, and our own risk-based indicator.

For the latter, we take a concept from the value-at-risk (VaR) literature to engineer a

feature that signals whether it is likely to be a particularly risky time to trade. The idea

of this is to equip the prediction algorithm with a feature that acts in a self regulatory

way, indicating when the market is acting in an unusual way. To do this, we calculate a

parametric VaR of a buy-and-hold strategy on the asset we are trading. Specifically, we

assume that the daily price changes of an asset are drawn from a Gaussian distribution,

the variance of which we estimate with an exponentially weighted moving average:

σ2
t = Λσ2

t−1 + (1− Λ)r2
g,t (3.1)

where σ2
t is the variance at time t, rg,t is the return of stock g, and Λ is the decay factor.

We set Λ to 0.94. Once we have an estimate of the variance, a standard 95 percent VaR

is estimated as 1.96 times the square root of the variance. This value can be interpreted

as follows: on any given day there is a 5% chance that the buy-and-hold strategy will

lose more that the VaR estimate. However, the standard VaR does not cope well with

the heteroscedasticity inherent in financial returns data. To overcome this, we introduce

a VaR scaling factor. Each day that a VaR break occurs (a drawdown exceeding our

95% VaR) we add one to the VaR scaling factor while each day that a VaR break does

not occur we multiply the VaR scaling factor by Λ. Thus, the VaR is calculated as

follows:

VaRt = 1.96νt

√
σ2
t (3.2)

where the VaR scaling factor, νt, is calculated as:

νt =

{
νt−1 + 1 if a VaR break occurred at t− 1

Λνt−1 otherwise
(3.3)

This violent reaction of the VaR scaling factor to any unusual event and the gradual

settling down afterwards is what allows our measure to cope with heteroscedasticity.

3.2.3 Feature Selection

In order to select only the most effective features, we eliminate those features that have

little or no impact on the performance of the predictive model. To this end, we use a

method of feature importance ranking, first suggested by Breiman (2001).

In particular, to rank the features, a single random forest (as described on page 31 of

Section 2.2.4) is trained using the training data. In doing so, the root-mean-square

error (RMSE) on the out-of-bag portion of the data3 is recorded for each tree. This is

repeated after randomly permuting the values of each of the features. The difference in

3Given that each tree in a random forest is constructed using a unique bootstrap sample of about
60% of the data, the rest of the data can be used to generate unbiased error estimates.

60 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

error between the permuted and non permuted trees are then averaged and normalised

by the standard deviation of the differences. To this end, the importance of feature j,

VIj , is calculated as:

VIj =

∑Θ
θ=1 (eθ,j − eθ,πj)

Θ · σ̂
(3.4)

where Θ is the total number of trees in the forest, eθ,j is the RMSE of tree θ before

permuting j, eθ,πj is the RMSE of that tree after permutation of j, and σ̂ is the standard

deviation of the differences between eθ,j and eθ,πj . A feature that produces a large VI
value is considered more important than a feature with a lower VI.

To select the features to be used in our expert system, we propose a backwards elimi-

nation method. We do so as it has been shown that such methods provide a stronger

feature subset than similar alternatives (Guyon and Elisseeff, 2003). The feature selec-

tion method that we use is described fully in Algorithm 5.

Algorithm 5 Our feature elimination algorithm based on the feature importance rank-
ing method first proposed by Breiman (2001).

1: Train a random forest using the training data with all J features
2: Compute the average RMSE of the model on validation data
3: Rank the features according to performance as described by equation 3.4
4: for each subset of variables Ji = J − 1, J − 2, . . . 1 do
5: Train a new forest using Ji features with the highest VI
6: Compute the average RMSE of model on validation set
7: Rerank the features
8: end for
9: Determine which Ji yielded the smallest RMSE

The dataset used in this chapter involves 30 stocks from the DAX stock index over

the period of 01/01/2000 - 01/01/2013. Before conducting experiments, the data set is

divided into training, cross validation (CV) and test sets as follows: 2000-2008 training,

2008-2010 validation and 2010-2012 test. Algorithm 5 is applied to the training data and

a plot of the RMSE at each stage of the elimination is given in Figure 3.3. It is evident

that there is a initial increase in performance (decrease in RMSE) as the unnecessary

features are dropped. Following this, there is a rapid decline in performance as features

that are essential for prediction are eliminated. The feature selection algorithm yields

the optimal set of 23 features shaded grey in table listed in Table A.1 in Appendix A.

Note that all continuous valued inputs are taken as logs and normalised with the stock’s

closing price.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 61

0.5

0.6

0.7

0.8

0.9

1.0

10 15 20 25 30
Number of features used

R
M
S
E

Figure 3.3: Plot of RMSE for each round of the feature elimination algorithm. It
can be seen that, as features are removed, there is an initial, slight improvement in

performance before a rapid decline.

3.3 Trading Model

The trading system discussed in this chapter is designed to trade stocks and consists of

three layers: random forest prediction, expert weighting and risk management. While

each of these layers is discussed in greater detail below, an overview of the system is

given in Figure 3.4.

3.3.1 Layer 1: The Random Forest Prediction Algorithm

The role of the prediction layer is to generate a random forest (RF) every d days to form

an ensemble of RFs that predicts the amount of profit that would be realised from buying

a stock the day before a seasonality event and selling it two days after (a seasonality

trade).

Specifically, we build random forests from an ensemble of regression trees as described

on page 31 in Section 2.2.4. Each RF, i, at time t produces the prediction Si,t using

the features given in Table A.1 as inputs. In our study, the goal of the prediction layer

is to generate RFs in an online fashion that each represent a function of the inputs

for predicting the dollar profit from a seasonality trade. The outputs of all RFs are

combined using a performance weighted system described in the next section.

62 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

or
de

rs

Signal Filtering

RF RF

RF RF

technical
analysis

H
is

to
ric

al

D
ai

ly
 D

at
a

Prediction
bu

y/
se

ll
si

gn
al

Expert Weighting

pr
ofi

t
pr

ed
ic

tio
n

RF

MARKET

Risk Management

Elimination of Worst Performers

Trade Sizing

Figure 3.4: Diagrammatic representation of the layered workings of the expert trading
system. First the inputs described in Table A.1 on page 117 are generated and used
as inputs to an ensemble of random forests. The predictions of each of the forests are
combined using the performance weighting method described in Section 3.3.2. Next,

risk management s performed to eliminate weak signals before a trade is initiated.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 63

3.3.2 Layer 2: Expert Weighting - An Ensemble of Ensembles

The previous section describes the process of generating and predicting with a single

RF. We now improve the performance of the prediction system by creating multiple

RFs and adding an online learning feature. Here, a new expert RF is trained every d

days on a moving window of training data to form an ensemble of experts (RFs). The

outputs of all of the RFs are then combined using expert weighting to produce a buy, sell

or hold signal before passing the signal through to the risk management layer described

in Section 3.3.3.

The expert weighting algorithm described in this chapter is derived from a previous

algorithm suggested by Creamer and Freund (2010) and described on page 31 of Sec-

tion 2.2.4. We explore two variants of an expert weighting system, the one proposed by

Creamer and Freund (2010) and one introduced in this thesis, that both centre around

an exponential weighting of performance.

In more detail, the historical performance of RF i at time t is denoted by ki,t with

more weight given to experts with higher values of ki,t. Two methods for measuring this

performance are investigated:

1. The original cumulative performance measure:

ki,t =
t∑

s=ti+1

ri,s (3.5)

where t1 = 0, ti is the time step at which expert i was added to the ensemble and

ri,s is the abnormal return on investment for expert i at time s.

2. Our novel exponentially-weighted performance measure:

ki,t = λri,t−1 + (1− λ)ki,t−1 (3.6)

where ri,t is the abnormal return for expert i at time t and λ is a smoothing

parameter that allows us to control the recency weighting of the performance

measure.

As mentioned earlier, more weight is given to experts that have a higher ki,t as, in both

cases, this represents better historical performance. To this end, we use the exponential

weighting algorithm described by Creamer and Freund (2010) to generate the weights

for each expert. Specifically, the weight of the first expert is given by:

w1,t = exp

(
k1,t−1√

t

)
(3.7)

64 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

The weight of all future experts at time t is:

wi,t = Ii · ramp(t− ti) · exp

(
ki,t−1√
t− ti

)
(3.8)

where Ii is the initial weight assigned to a new expert and is the mean of all of the current

experts weights; ramp(t− ti) = min
(

t−ti
ti+1−ti , 1

)
brings the new expert in gradually; and

ti+1 is the time the next expert is added.

The combined output of the ensemble of experts at time t is then the weighted average

of the predictions of each expert at time t:

Pg,t =

∑I
i=1 Si,twi,t∑I
i=1wi,t

(3.9)

where Si,t is the prediction of expert i at time t, I is the total number of experts and

Pg,t is a prediction of the profit that would result from buying stock g the day before a

seasonality event and selling it two days after.

3.3.3 Layer 3: Signal Filtering and Risk Management

Once a potential profit has been predicted, appropriate risk management is of vital

importance to prevent large drawdowns. To this end, our algorithm evaluates the pre-

diction, considering market factors, before making an investment decision.

To rule out weak signals we also calculate the difference between the fraction of experts

that suggested buying the asset and those that suggested selling as follows:

Dt = Buyt − Sellt (3.10)

where:

Buyt =

∑
i:Sit>0wi,t∑
iwi,t

(3.11)

and Sellt = 1−Buyt. As the value of Dt is normalised between fully short (-1) and long

(+1), weak signals may be eliminated by ruling out predictions where |Dt| falls below a

threshold α0.

Also, it cannot be assumed that predictions will be accurate for all assets at all times.

Thus, we follow Creamer and Freund (2010) and monitor the performance of the algo-

rithm on each stock g using the maximum drawdown:

dg,t = max(rg,tx − rg,ty |t0 ≤ tx ≤ ty ≤ t) (3.12)

where rg,tx and rg,ty are the return of stock g from time t0 to tx and ty respectively. The

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 65

maximum drawdown represents the maximum possible loss in a certain period of time

and the vector of maximum drawdowns for all stocks is represented as dt. If dg,t < λ1

for thirty days the system hold its current position and if dg,t−1 = min(dt−1), the system

liquidates the position in that stock.

The final output of this layer, Φg,t, is a buy or sell order whose size is determined by the

magnitude of the profit prediction, Pg,t. Specifically, more is invested in stocks where a

large price movement is forecast:

Φg,t =


−1 · qg,t if

(Pg,t > 0 ∧ qg,t < 0)∨
(Pg,t < 0 ∧ qg,t > 0)

Ct ∗ Pg,t∑
g |Pg,t|

otherwise

(3.13)

where qg,t is the size of the current position in stock g and Ct is the total dollar wealth

at time t. Thus, if the order size, Φg,t is positive, this refers to a buy order; if this is

negative, it refers to a sell order.

3.4 Experiments & Empirical Results

A single experimental run proceeds as follows:

• 15 stocks are randomly selected from the DAX with equal probability.

• Features are generated from the data using the the extraction techniques outlined

in section.

• The model iterates through the training set, generating three new random forest

experts every 50 days each with moving windows of size 50, 100 and 200 days.

• The prediction performance of each expert is monitored and the performance

weights are updated after every event according to Equation 3.8.

• When the model reaches the validation data it generates a performance weighted

ensemble prediction for each event using Equation 3.9. If this prediction passes

through the risk management layer then the model takes a long, short or hold

position.

• At the end of the validation period the performance of the model is reported as

cumulative abnormal return and Sharpe Ratio. Simulated transaction costs are

incorporated in to each trade at a value of We tested our results with transaction

costs of $0.003 per stock. This value is in line with the current NASDAQ pricing

policy.

66 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

We use the experimental procedure outlined above to find explore the performance of a

number of well studied prediction algorithms and to identify the optimal parameterisa-

tion of the models, using only the training and validation data.

3.4.1 The Base Learning Algorithm

Before exploring the performance of our performance-weighted ensemble, we first justify

our choice of base regression algorithm. To this end, we compare the predictive per-

formance of a number of well studied regression algorithms in predicting the return of

stocks over a seasonality event given the inputs in Table A.1. The following predictive

techniques are explored:

Linear Regression Simple ordinary least squares linear regression that attempts to

generate a hyperplane that best minimizes the residual sum of squares between

observed target, and the responses predicted by the model.

Regression Tree Simple CART regressions tress proposed by ? where at each node

the feature is chosen that best minimises the sum or squares error.

Multi-layer Perceptron Simple feed-forward neural network with back propagation.

Support Vector Regression (SVR) Standard epsilon-Support Vector Regression.

Random Forest Regressor Where each tree is built from a bootstrap. When split-

ting a node during the construction of the tree, the split that is chosen is the best

split among a random subset of the features.

In order to ensure that we maximisate the generalisation ability of each model we per-

form a exhaustive grid-search of the hyperparameters for each model. We define the

hyperparameters as any parameter that is not directly learned by a model. Specifi-

cally, we exhaustively generate all possible parameterization of each model from the

hyper-parameter grids listed in Table 3.2.

The model variants are all trained on the training data and validated using the validation

data. For each point in parameter space we perform 100 experiments as defined above

to generate an average annualised return. The parameterisation of the best performing

variant of each model type is given in Table 3.3 and it is this parameterization that is

used in all experiments henceforth.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 67

Hyper-
parameter

Description Grid Values

Multi-layer Perceptron

hn
The number of hidden layers in the net-
work

[1,2,3]

nhn
The number of neurones in each hidden
layer

[1 .. 100]

α
The Learning rate that controls the
magnitude of weight changes during
training

[0, 1] intervals of 0.02

m
Momentum: the fraction of the previ-
ous weight update added to the current
one

[0, 1] intervals of 0.02

Support Vector Regression

Kernel The kernel type
[linear, polynomial, RBF, sig-
moid]

C
The penalty parameter of the error
term

[0.01, 0.05, 0.1, 0.5, 1.0, ..
1000]

γ
The kernel coefficient for RBF, polyno-
mia and sigmoid kernels

[0.0001, 0.0005, 0.001, 0.005,
.. 10]

Random Forest

ntrees The number of trees in each forest [2 .. 500]

m
The size of the random subset of fea-
tures to consider when splitting a node

[1 .. N]

Table 3.2: The hyper-parameters for each models and the various paramterisations
explored in the exhaustive grid search.

Model Parameterisation

Multi-layer Perceptron hn = 1, nhn = 31, α = 0.32, m = 0.84
Support Vector Regression kernel: RBF, C = 50, γ = 0.05
Random Forest ntrees = 200, m = 18

Table 3.3: Blah

There are only two parameters to consider for the random forests themselves: the number

of trees in each forest (ntrees) and the size of the random subset of features to consider

when splitting a node (m). For the former, we found the larger the better. However, we

use ntrees = 200 as we find no improvement in performance beyond this value. Generally,

lower values of m lead to a reduction of variance in random forest models but also an

increase in bias.

As well as finding optimal values for the hyperparameters of the various base-layer

prediction models, we use cross validation to explore values of λ in Equation 3.6. Recall

that this value controls the recency bias of the performance metric for each of the experts.

As above, we perform an exhaustive grid-search of the parameter space.

68 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

0.05

0.10

0.15

0.20

5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

number of features (m)

re
ce

nc
y

bi
as

 (λ
)

Figure 3.5: Heat map showing results of the cross validation gridsearch for the
performance-weighted random forest ensemble.

A visual representation of the results of two dimensions of the random forest grid search

is provided in Figure 3.5. It can be seen that the best parametrisation for the recency-

weighted model lies in the vicinity of λ = 0.90 − 0.95 and m = 18. This value for m is

equivalent to using all possible features for each node split, and it has been shown that

such a parametrisation is often optimal for random forest regression (Liaw and Wiener,

2002). The optimal value of λ is also interesting as it is a very commonly used value

for exponential moving averages and is also used by the financial risk management firm

RiskMetricsTM for their moving average estimation of volatility.

With the optimal parametrisation for each model identified, we explore the relative

performance of each class of model. Experiments were conducted as described above

and results are averaged over 50 runs for each model. We measure the mean absolute

percentage error (MAPE) and the root-mean-square error (RMSE). For both the MAPE

and RMSE, a lower value means better forecasting accuracy of the model. A description

of these measures is given in Table 3.4. Table 3.5 shows the performance of each of the

regression algorithms.

From Table 3.5 the ability of support vector regression (SVR) to tightly fit high-

dimensional data is clear from its superior error statistics on the training data. However,

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 69

Statistical measure Description

Annualised Return RA = (
∏n
i=1(1 + ri))

1
n − 1

Sharpe ratio S = E[rm−rb]
σ

Maximum drawdown MD = max
τ∈(0,T)

[
max
τ∈(t,τ)

Xt −Xτ

]
Mean abs. % error MAPE = 1

n

∑n−1
i=0 |

rs−r̂s
rs
|

rmse rmse =
√

1
n

∑n−1
i=0 (rs − r̂s)2

Where ri is the return in year i; rm is the model’s return; rb is
return of the DAX (the benchmark); X(t is the return at time
t; rs is the return of stock s over a seasonality event and r̂s is
the predicted return over that event.

Table 3.4: Description of the performance measures reported in Table 3.7

Model MAPE RMSE

Training Phase

Linear regression 0.018* 0.022*
Single regression tree 0.015* 0.017*
MLNN 0.008 0.015*
SVR 0.008 0.013
Random Forest 0.009 0.013

Validation Phase

Linear regression 0.020* 0.023*
Single regression Tree 0.019* 0.020*
MLNN 0.022* 0.023*
SVR 0.026* 0.037*
Random Forest 0.011 0.015

Test Phase

Linear regression 0.021* 0.024*
Single regression Tree 0.019* 0.019*
MLNN 0.021* 0.024*
SVR 0.030* 0.041*
Random Forest 0.010 0.013

Table 3.5: A comparison of the performance of linear regression, regression trees,
multi-layer feed forward neural network (MLNN), support vector regression (SVR) and
random forest algorithms in predicting the return of a stock over a seasonality event.
Asterisks denote a statistical significance compared to the Random Forest model of

p < 0.02. For each dataset, the best performing algorithm is highlighted in grey.

70 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

Model MAPE RMSE

Training Phase

Single RF (offline) 0.009* 0.013*
Simple RF ensemble (offline) 0.007* 0.009*
Simple RF ensemble (online) 0.007* 0.009*
CW RF ensemble (online) 0.004* 0.007*
RW RF ensemble (online) 0.003 0.005

CV Phase

Single RF (offline) 0.011* 0.015*
Simple RF ensemble (offline) 0.010* 0.013*
Simple RF ensemble (online) 0.008* 0.010*
CW RF ensemble (online) 0.004 0.007
RW RF ensemble (online) 0.004 0.007

Test Phase

Single RF (offline) 0.01* 0.013*
Simple RF ensemble (offline) 0.008* 0.011*
Simple RF ensemble (online) 0.006* 0.010*
CW RF ensemble (online) 0.004 0.008*
RW RF ensemble (online) 0.004 0.006

Table 3.6: A comparison of the performance of various methods for generating en-
semble predictions as well as a single random forest. Asterisks denote a statistical
significance compared to our RW RF ensemble model of p < 0.02. For each dataset,
the best performing algorithm is highlighted in grey. For offline models predictors are
only created in the training phase, while for online models new predictors are added
throughout all phases in an online fashion. A specific description of each model is given

in Table 3.9.

in both the validation and test data the random forest (RF) produce far superior pre-

diction accuracy; testament to its ability to generalise. Thus we confirm the suggestions

laid out in Section 2.2.4, that RFs have superior out of sample performance. As such,

we proceed to use the RF as the base learner for our prediction system.

3.4.2 Explorations of Ensembles

Next, the merit of ensembles and associated methodologies is explored. To this end,

Table 3.6 shows the prediction performance and profitability of a single RF compared

with ensembles of the models explored above, trained using the online method described

at the beginning of this section. The results represent the average performance of each

model over 50 experimental runs. A description of the various models is given in the

first section of Table 3.9. Again, for the MAPE and RMSE, a lower output means a

better the forecasting accuracy for the model.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 71

We note that our recency-weighted RF ensemble (RW RF ensemble) outperformed all

other models in terms of prediction accuracy. A clear advantage of even the simplest of

ensembles can been seen when comparing the results of a single RF to the simple RF

ensemble (offline). Combining the outputs of several random forests, even when the

ensemble is only generated on the training data, reduces the out-of-sample RMSE from

0.008 to 0.006 with a statistical significance at p < 0.02.

It is also worth noting that moving from an offline system (where the RFs are only gen-

erated during the training phase) to an online one (where RFs are continually generated

through all phases of the experiment) produces a clear advantage in out of sample data.

Online learning systems clearly provide an advantage in non-stationary financial data.

72 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

Model
Annualised

return
Sharpe
ratio

MD

Training Phase

Buy & Hold 0.023* 0.96* -22.2*
Basic Seasonality 0.059* 0.67* -18.5*
CW RF ensemble 0.14* 1.60* -13.2*
RW RF ensemble 0.17 1.65 -12.8

CV Phase

Buy & Hold -0.13* -0.63* -30.1*
Basic Seasonality 0.061* 0.68* -17.6*
CW RF ensemble 0.13* 1.52 -13.9
RW RF ensemble 0.14 1.60 -12.9

Test Phase

Buy & Hold -0.012* -0.82* -27.9*
Basic Seasonality 0.057* 0.68* -18.2*
CW RF ensemble 0.12* 1.44* -14.1
RW RF ensemble 0.15 1.64 -12.3

Table 3.7: A comparison of model performance metrics. Asterisks denote a statistical
significance compared to the RW RF ensemble model of p < 0.02. The best performing
model in each phases is shaded grey. A description of each model is given in Table 3.9.

3.4.3 Trading System Performance

We now proceed to test the CW RF ensemble and RW RF ensemble methods as trading

systems using the trade sizing and risk management techniques proposed in Section 3.3.3.

We remind the reader: this is not an attempt to identify the world’s foremost trading

algorithm and, as such, we do not compare the our methodology to any cited in the

literature. Instead, we wish to identify a simple yet robust prediction model that is

transparent enough to allow us to explore it’s behaviour. Thus, we compare our method

to a simple buy and hold strategy and a basic seasonality strategy (to ensure it is

worthwhile) and we explore the most reliable method for weighting experts predictions.

A detailed description of the strategies used is given in Table 3.9. We measure MD,

for which a lower output is preferable, a well as annualised return and Sharpe ratio, for

which a higher output is better. A description of all statistical measures is given in Table

3.4. From Table 3.7, we can see that our recency-weighted random forest ensemble (RW

RF ensemble) outperformed all other models in terms of both profitability and risk-

adjusted return. It produces significantly higher annualised return and Sharpe ratio

than the ensemble that is weighted using cumulative returns (CW RF ensemble). In

out-of-sample data, our RW RF ensemble model produced an average annualised return

of 15% compared with the 12% achieved by the CW RF ensemble model.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 73

3.4.4 The Effect of Seasonality

As a matter of interest, we investigate the effect of focussing only on seasonality events by

comparing the performance of the RW RF ensemble model over seasonality events only

(as in the experiments reported in Table 3.7) with its performance when predicting and

trading every day that the markets are open. The results of the comparison are shown

in Table 3.8 where it can be seen that the RW RF ensemble model is more profitable,

has greater prediction accuracy and produces small drawdowns when used only during

seasonality events.

Model
Annualised

return
Sharpe
ratio

MD MAPE RMSE

Training Phase

Daily 0.13 1.42 -14.5 0.005 0.008
Seasonal 0.16 1.66 -12.8 0.003 0.006

CV Phase

Daily 0.14 1.47 -18.9 0.006 0.009
Seasonal 0.14 1.59 -13.0 0.004 0.008

Test Phase

Daily 0.11 1.36 -23.0 0.006 0.010
Seasonal 0.15 1.63 -12.7 0.003 0.007

Table 3.8: A comparison of RW RF ensemble performance when trading only over
seasonal events vs. trading every day. Asterisks denote a statistical significance of

p < 0.02

3.5 Summary

In this chapter we apply performance weighted ensembles of random forests to the pre-

diction of price returns during known seasonality events with stocks from the DAX.

This approach consists of three layers: expert generation, expert weighting, and risk

management. In more detail, in the first layer, random forests are continually generated

and make predictions about the magnitude of stock price changes. Then, the expert

weighting layer generates an overall prediction by averaging the prediction of all forests

weighted based on their recent performance. Finally, the risk management layer rules

out weak signals and liquidates positions in stocks that are proving difficult to pre-

dict. This approach is then benchmarked against constant-weight random forests, a solo

random forest, a näıve seasonality strategy and a buy-and-hold strategy. The models

are trained during a period from 2000-2008, cross-validated from 2008-2010 and tested

out-of-sample from 2010-2012. We also explore and compare two variants for expert

weighting: cumulative performance of an expert and recency weighted performance.

74 Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data

In out-of-sample trading simulations, both forms of performance-weighted random for-

est ensembles outperform all other models in terms of both prediction accuracy and

profitability. At the same time, we found that, using a recency weighting of experts’

performance, as opposed to the cumulative performance, resulted in over a 10% im-

provement in risk adjusted return, as well as decreased drawdowns and prediction error.

This demonstrates that the ability of the online-generated ensemble to capture differ-

ent phases of the market allow both approaches of random forest ensemble to excel in

forecasting compared with static ensemble approaches. This is because using a moving

average of performance to compare experts, allows the prediction algorithm to adjust

more swiftly to changing market conditions and hence improve prediction accuracy and

profitability.

In addition to the increased performance, the constant training of new experts for the

performance weighted random forest ensemble approach has a number of other advan-

tages. First of all, new experts can be added rapidly with minimal training time, a

very desirable quality for a quantitative trading application. Secondly, each random

forest, and thus the entire ensemble, exists as a human readable decision tree. Thus, our

strategy is not a ‘black box’ and, as such, analysis and simulation can give managers

and regulators insight into the risks involved in such a trading strategy. Specifically, the

human readable nature of the random forest ensemble ensures that, at any given time,

a risk manager is able to ascertain exactly what the system will do and what decisions

it will make. That said, the complexity of an RF ensemble of this size would certainly

affect its opacity.

Chapter 3 Explorations in Forecasting Price Returns - Daily Equities Data 75

Model Description

Buy & Hold A long position in the stocks is taken at the beginning of the
test period and closed out at the end.

Basic Seasonality Positions are taken in line with the empirical regularities dis-
cussed in section 3.2, e.g., always take a short position in a
stock over a weekend.

Single RF A single random forest with 200 trees and m = 17 is used to
predict the return of a stock over a seasonality event.

Simple RF ensemble (offline) An ensemble of random forests is generated by training a new
random forest every 50 days throughout the training phase only.
A prediction for the return of a stock is generated by taking
an average of the predictions of all of the random forests in the
ensemble.

Simple RF ensemble (online) An ensemble of random forests is generated in an online fashion
by training a new random forest every 50 days throughout all
phases of the experiment. A prediction for the return of a stock
is generated by taking an average of the predictions of all of the
random forests in the ensemble.

PW RF ensemble Performance-Weighted Random Forest ensemble. As above ex-
cept that the performance of each random forest in the en-
semble is monitored as its cumulative return, as described in
equation 3.7, such that the final prediction of the ensemble is a
performance-weighted average of the experts.

RW RF ensemble Recency-Weighted Random Forest ensemble. As above, except
that, instead of the cumulative return, an exponential moving
average of returns, as in equation 3.8, for each expert is used for
the performance weighted-prediction.

Table 3.9: A description of the models whose results are described in Table 3.7

Chapter 4

Predicting Equity Market Price

Impact Using Market Depth Data

The previous chapter explored the use of online ensemble learning methods for predicting

daily financial returns. In this chapter, we focus on our target domain, the order book,

by applying methods honed in the previous chapter to high-frequency limit order book

(LOB) data. Now, although both daily and tick-level data series are known for their

non-normality and non-stationarity, high-frequency data is known to have even fatter

tailed distributions, be highly non-stationary and exhibit clustered volatility. Each of

these traits poses a serious challenge for making predictions in this environment.

As discussed in Section 2.4.1, there is a growing need for an understanding of the im-

pact of trading in limit order books. To address this challenge, this chapter presents an

empirical model for predicting the short term price impact in LOBs of events that alter

the best available prices in the book. Such events include any market orders or limit

orders at the current best prices, as well as cancelations that remove all volume at the

best quoted price. Henceforth, we refer to such situations simply as “events”. Specifi-

cally, we develop a model, based on the performance-weighted methodology proposed in

Chapter 3, to forecast the relative change in price 1, 5, 10, 60 and 600 seconds after an

event. The model is trained and tested on 100 days of full depth of book data from the

BATS Chi-X exchange. The model is later used as a proxy for assessing the importance

of various parameters in predicting price impact.

While other studies have investigated the predictive power of more tradition regression

techniques, currently, no study has explored the use of performance-weighted ensemble

to predict the short term price impact of order book events (e.g. see Section 2.4). We

demonstrate that an ensemble of recency-biased, performance-weighted random forests

is able to predict the price impact of events more consistently and with greater accuracy

than linear regression, neural networks, support vector regression as single algorithms or

combined as ensembles. More interestingly, we propose a novel method for identifying

77

78 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

the importance of features in our model and find that increases in the volume at the

best price and the number of recent order arrivals is found to cause a decrease in price

impact, while increases in the average price increment, spread and event size cause an

increase.

Against the background of the literature described in Section 2.4, we propose an adapta-

tion to the system specified in Chapter 3 for the application of a performance-weighted

ensemble of random forests to predicting price impact. Specifically, we address the po-

tential overfitting problem common to financial data by using random forests and tackle

the non-stationary element of data by generating random forest in an online fashion.

The chapter is structured as follows. Section 4.1 describes the data used in the chapter,

Section 4.2 introduces the features and the feature selection algorithm used to refine the

inputs to the model while Section 4.3 describes the prediction algorithm itself. In Sec-

tions 4.4 and 4.5 the experiments are described and results summarised while Section 4.6

gives concluding remarks.

4.1 The Data

The analysis in this chapter is based on historical depth-of-book data from the BATS

Chi-X exchange using the 25 most actively traded stocks over 100 days of trading from

12th February 2013 to 3rd July 2013. This choice of market is due to the difficulty and

expense of obtaining level 2 data. However, we believe that this particular choice of

market is insignificant and, given the similarity of financial time series across markets

and asset classes, we believe that our results could be verified in other markets. For a

more detailed breakdown of the market share of BATS and Chi-X see Section B.1 of the

Appendix.

Although 100 days of data may, at first, not seem significant, the high-frequency nature

of today’s limit order markets must not be overlooked. For the top 5 most liquid stocks,

it is not uncommon to see over 1, 000, 000 order book events in a given day. Thus, for

all stocks considered in this study, we have tens of millions of data points available for

training, validation and testing.

Prior to conducting experiments, the data is split into training, validation and test sets

as follows: 60 days training, 20 days validation and 20 days testing. It should be noted

that no parameters are tuned using the test set. This set is used only to report the

performance of the model found to perform best on the validation data.

We consider only the regular trading time between 9:30 - 16:00, and all other periods

are discarded. This raw data contains details on all actions in the book, that is: order

arrivals, executions, modifications and cancellations, with each item timestamped to

the millisecond. We use the term “event” for any action the modifies the best bid or

Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data 79

Symbol Event Description

LO0 A limit order at the current best price

LO′ A limit order within the best prices

MO0 A market order whose volume < outstanding volume at the
best price

MO′ A market order whose volume ≥ outstanding volume at the
best price

CA0 A cancellation within the best price queue that only affects
the volume available

CA′ A cancelation at the best price that removes all available
volume and changes the best price

MN A modification of an existing order that alters the volume
available at the best price

Table 4.1: Summary of the seven possible types of event along with the corresponding
symbol.

Statistic P(LO0) P(LO′) P(MO0) P(MO′) P(CA0) P(CA′) P(MN)

Mean 0.451 0.082 0.046 0.037 0.344 0.042 0.009

SD 0.102 0.087 0.006 0.033 0.069 0.051 0.007

Table 4.2: Summary statistics for the stocks, showing the probability of each of
the events described in Table 4.1. The first row shows the probability of each event
happening averaged across all 25 stocks. The second row shows the standard deviation

of these probabilities.

ask prices or the volumes quoted at these prices. We do not attempt to describe any

potential impact of actions that occur deeper in the LOB. Moreover, we are mindful

that liquidity is fragmented across many exchanges and that the stocks in this study are

traded on many other platforms. This trading activity will also affect the impact of the

events we observe.

Specifically we define seven events that cause changes at the best price in a LOB and a

definition of the these events along with their notation is provided in Table 4.1.

Table 4.2 provides a summary of the probability of the different events and some basic

statistics. The standard deviation values show that there is a fairly large deviation in

the probabilities across different stocks. In fact, we find that for stocks whose spread is

almost always equal to one tick there is a relatively low probability of events that change

the best price (approximately 4%). With stocks whose spread is typically greater than

one tick, we find that this probability is much greater (up to 25%). Thus, the probability

of theses events varies greatly between stocks and we are conscious of this throughout

the remainder of our study, training a separate model for each stock.

80 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

4.2 Feature Selection

In order to make meaningful predictions we wish to capture the state of the LOB at

a given time with a number of features. These features then form the input to the

prediction system. There is a far richer variety of information available in LOBs than

with daily stock price data, including data on: order sizes, arrival times, cancelations

and modifications. Given this abundance of information, we propose the exploration of

a great number of features that can be broadly divided into three categories:

Incoming event This group of features describes the attributes of incoming events:

its type (P(LO0),P(MO0)), etc.) and its size, side and price.

Price These features provide information about the log-normalised best bid/ask price

series. This includes various technical analysis indicators such as: exponential

moving averages (EMAs) of the last n prices before a trade, price oscillators and

the relative strength index (RSI) over the last N price changes.

Spread These features aim to provide information about relative changes in the bid/ask

spread. Again, many technical analysis indicators are used here, with time series

data normalised by the minimum allowable price increment for a particular stock.

Liquidity These features contain information about the apparent liquidity of the book.

E.g. relative depth of each side of the book, order arrival and cancelation rates,

and modal order price relative to best bid/ask price.

Clearly, not all features will have the same predictive power. Thus, in the interests of

dimensionality reduction and computation, we wish to eliminate those features that have

little or no impact on the performance of our random forest based prediction model. One

simple method for selecting features is to choose the subset of features that is most highly

correlated to the target variable. However, this is likely to generate a highly collinear

feature space and impair the performance of the learning algorithm. As a result, we use

a method of feature importance ranking, first suggested by Breiman (2001), to eliminate

irrelevant variables.

Specifically, we use the same feature elimination method described in Algorithm 5 in the

previous chapter. Recall from Section 3.2.3 that a single random forest is trained on the

training portion of the data so as to calculate the relative importance of each feature j,

VIj , as follows:

VIj =

∑Θ
θ=1 (eθ,j − eθ,πj)

Θ · σ̂
(4.1)

where Θ is the number of trees in the forest, eθ,j is the RMSE of tree θ without permuting

j, eθ,πj is the RMSE of that tree after permutation of j, and σ̂ is the standard deviation

Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data 81

of the differences between eθ,j and eθ,πj . Features that produce larger VI values are

considered more important than features that produce smaller values.

Thus, for feature selection, we use the backwards elimination method described in Al-

gorithm 5. The algorithm was applied to the training portion of the data and a plot

of the RMSE at each stage of the elimination is shown in Figure 4.1. As this figure

shows, there is a slight initial increase in performance (decrease in RMSE) as features

are eliminated. Following this, there is a swift decline in performance as features that

are essential for prediction are eliminated (from right to left). The algorithm yields the

optimal set of 80 features listed in Table B.3 in Appendix B.

0.5

0.6

0.7

0.8

0.9

1.0

30 60 90
Number of features used

R
M
S
E

Figure 4.1: Plot of RMSE for each round of the feature elimination algorithm. It
can be seen that, as features are removed, there is an initial, slight improvement in

performance before a rapid decline.

4.3 The Model

This section describes an adaptation of the predictive system proposed in Chapter 3 for

predicting daily changes in stock prices. Our modified system consists of an ensemble

of models, that is used to predict the price impact of events that alter the best bid/ask

prices. The price impact is measured by taking the price changes at 1, 5, 10, 60 and 600

seconds after the event normalised by the pre-event price. A separate ensemble is used

82 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

for the prediction of each time interval. An overview of the model structure is given in

Figure 4.2.

To that end, the prediction system described in this section is based on an ensemble

of random forest regressors that are, as before, referred to as experts. Specifically,

every fifteen minutes, three new experts are trained on the previous 1, 2 and 3 hours of

data and added to the ensemble in an online fashion. That is, new experts are trained

and introduced into the ensemble continuously, even during out of sample tests. The

ensemble is capped to a maximum number of experts, Imax, and once the maximum

number is reached the poorest performing expert is dropped upon each new addition.

4.3.1 The Base Learner

Each expert in the ensemble is represented by a random forest regression algorithm.

In this chapter, a random forest is an ensemble of many regression trees designed to

produce accurate predictions without overfitting the training data (Breiman, 2001). We

use the same method laid out in Section 3.3.1. In the rest of this chapter, this prediction

is denoted by Si,t, where i is the random forest, and t is the time of the observation.

The features given in Table B.3 form the input to the random forest prediction algorithm.

In our study, the goal of the random forest is to generate a function of the features that

predicts the relative price change at particular intervals after an order book event that

alters the best bid/ask price.

4.3.2 An Ensemble of Ensembles

The previous section describes the process of training and predicting with a single (ran-

dom forest) expert. In order to improve performance of the prediction system, we explore

the method of online ensemble generation proposed in the previous chapter. Here, three

experts are trained every fifteen minutes on a moving window of 1, 2 and 3 hours of

training data to generate an ensemble of experts. The outputs of all of the experts are

then combined using an expert weighting algorithm to generate a prediction about the

price change after an event.

The expert weighting method used in this chapter is an adaptation of that laid out

in Chapter 3. Specifically, instead of defining the historical performance ki,t of expert

i at time t as an exponential moving average of returns (ri,t), we instead define it as

an exponential moving average of the reciprocal of that experts RMSE (1
ηi,t

). This

maintains the ability to assign more weight to experts with larger values of ki,t. We now

define ki,t as:

ki,t = λ/ηi,t−1 + (1− λ)ki,t−1 (4.2)

Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data 83

Random
Forest

Random
Forest

Random
Forest

Random
Forest

Pr
ed

ic
tio

ns
 fr

om
 e

ac
h

fo
re

st

Expert Weighting

Random
Forest

Random
Forest

Random
Forest

Regression
Tree Regression

Tree
Regression

Tree Regression
Tree

Random
Forest

Fi
na

l
Pr

ed
ic

tio
n

Figure 4.2: An overview of the prediction system. The inputs given in Table B.3 are
used to train three new random forests (experts) every fifteen minutes. Each expert
makes a prediction about the price change after an event and the expert weighting layer

aggregates these predictions using the method described in Section 4.3.2.

84 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

where ηi,t−1 is the RMSE of the last prediction made by expert i at time t−1 and λ is a

smoothing parameter that allows us to control the recency weighting of the performance

measure.

As mentioned previously, a greater weight is given to experts that have a higher ki,t as

this represents better historical performance. As such, we use the exponential weighting

algorithm described in Chapter 3 for generating weights for each expert. In detail, the

weight of the expert trained first is given by:

w1,t = exp

(
k1,t−1√

t

)
(4.3)

The weight of all following experts is then defined as:

wi,t = Ii · ramp(t− ti) · exp

(
ki,t−1√
t− ti

)
(4.4)

where Ii is the weight assigned to a newly generated expert and is the mean of all current

experts’ weights; ramp(t − ti) = min
(

t−ti
ti+1−ti , 1

)
allows new experts to be brought in

cautiously; and ti+1 is the time at which the next expert will be added.

The combined output of the ensemble of random forests at time t is then a weighted

average of the predictions of all expert at time t:

Pg,t =

∑I
i=1 Si,twi,t∑I
i=1wi,t

(4.5)

where Si,t is the prediction of expert i at time t, I is the total number of experts at time

t and Pg,t is a prediction of the relative price change.

4.4 Experiments

The experimental procedure outlined in Algorithm 6 is used to determine the optimal

parameterisation of our model, as well as the benchmarks, using only the training and

validation data sets. Once the optimal parameterisations are found, the performance on

test set is reported. For the RFs themselves, there are only two parameters of interest:

the number of trees grown in each forest (ntrees) and the number of features randomly

chosen when splitting a node (m). It is generally thought that lower values of m lead

to a reduction of variance but also an increase in bias. We thus use cross validation to

find optimal values for this parameter.

In addition to finding optimal values for m, cross validation is used to explore values of

the recency bias, λ, for the performance metric described in Equation 4.2. To asses the

Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data 85

Algorithm 6 The experimental procedure

1: for all parameter settings do
2: for all stocks do
3: Generate features from data as described in Section 3.1.
4: Iterate through training set generating three new experts every 15 minutes
5: with a moving windows of data sized 1, 2 and 3 hours.
6: Monitor the prediction performance of each expert, updating the weights after
7: every event according to Equation (4.4).
8: Upon reaching the CV data, an ensemble prediction is made for each
9: event using Equation 4.5.

10: At the end of the CV period, store the average RMSE of prediction across
11: the CV set for current stock.
12: end for
13: CV performance is reported as the average RMSE of the model across all
14: 25 stocks.
15: end for
16: The model with the best CV performance for each stock is kept and run on the

corresponding stock over the test set.

performance of these variables we perform an exhaustive grid-search of the parameter

space. The experimental procedure above is performed for each point in the parameter

space to generate an average RMSE across all stocks for each parameterisation.

As the benefits of this method of expert weighting have been demonstrated in Chapter 3

we explore the effectiveness of random forests (RFs) as the basis of the prediction system.

To this end, we compare the predictive performance of the system described above with

a multitude of base learners including: random forests, ordinary least squares regression,

multi-layer feed-forward neural networks with backpropagation and support vector re-

gression (SVR). The parameters of each of the base learning algorithms optimised using

multi-dimensional grid search on the validation data sets. Results are reported as the

performance on the previously unused test set.

4.5 Results

In this section we begin by tuning the parameters of the model proposed in Section 4.3

for both the BATS and the Chi-X exchange before exploring the performance of the

RF base learner and the advantages of ensemble methods. We go on to assess the

performance of our trading system compared to buy-and-hold, basic seasonality and

the current state-of-the art. Finally we explore which features the model finds to be

most important in predicting price impact. Unless otherwise stated, reported results are

averaged across the two exchanges.

86 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

Model Parameterisation

Multi-layer Perceptron hn = 1, nhn = 25, α = 0.39, m = 0.90
Support Vector Regression kernel: Gaussian, C = 50, γ = 0.1
Random Forest ntrees = 250, m = 78

Table 4.3: Blah

4.5.1 Parameter Grid Search

As in Section 3.4, we perform an exhaustive grid-search of the parameter sets listed in

Table 3.2. The parameter grid-search yielded the same values for both the BATS and

Chi-X data and the results are shown in Table 4.3.

Figure 4.3. It can be seen that the best parametrisation for the recency-weighted model

lies in the vicinity of λ = 0.85 and m = 78. This value for m is equivalent to using all

possible features for each node split, and it has been shown that such a parametrisation is

often optimal for random forest regression (Liaw and Wiener, 2002). A value of λ = 0.88

is also interesting as it is a very commonly used value for exponential moving averages.

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80
number of features (m)

re
ce

nc
y

bi
as

 (λ
)

0.0

0.1

0.2

Accuracy

Figure 4.3: Heat map showing results performance of our ensemble model over the
gridsearch space. Higher values represent better performance.

Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data 87

Model

Chi-X BATS

RMSE at t = RMSE at t =

1 5 10 60 600 1 5 10 60 600

Training Phase

Linear regression 0.24* 0.30* 0.32* 0.48* 0.49 0.26* 0.31* 0.33* 0.49* 0.50

Neural Network 0.19* 0.23* 0.28 0.28* 0.47 0.20* 0.24* 0.29 0.32 0.48

SVR 0.19* 0.24* 0.26* 0.32* 0.45 0.20* 0.26* 0.27* 0.32 0.46

Single RF 0.21 0.27 0.30 0.33 0.42 0.23 0.28 0.30 0.32 0.42

CV Phase

Linear regression 0.30* 0.36* 0.38* 0.47* 0.51* 0.30* 0.37* 0.40* 0.48* 0.50*

Neural Network 0.26* 0.35* 0.37* 0.49* 0.51* 0.27* 0.38* 0.37* 0.48* 0.53*

SVR 0.29* 0.34* 0.38* 0.46* 0.48 0.30* 0.34* 0.42* 0.47* 0.50

Single RF 0.23 0.27 0.32 0.35 0.43 0.24 0.28 0.32 0.34 0.44

Test Phase

Linear regression 0.30* 0.42* 0.40* 0.50* 0.51* 0.29* 0.41* 0.42* 0.51* 0.49*

Neural Network 0.31* 0.43* 0.44* 0.48* 0.50* 0.32* 0.41* 0.47* 0.50* 0.53*

SVR 0.28* 0.37* 0.45* 0.45* 0.50* 0.31* 0.38* 0.45* 0.43* 0.52*

Single RF 0.18 0.31 0.32 0.34 0.44 0.19 0.30 0.30 0.35 0.47

Table 4.4: A comparison of the performance of various regression algorithms in pre-
dicting the relative change in asset price t = 1, 5, 10, 60 and 600 after an event. Asterisks

signify a statistical significance compared to the RF algorithm.

4.5.2 The Base Learner

As in Chapter 3, before exploring the performance of our proposed ensemble predictor,

we first investigate the validity of our choice of the RF as a base learning algorithm.

Accordingly, Table 4.4 displays the performance of a number of regression algorithms

in predicting the price of stocks at various time points after the best-price-altering

events listed in Table 4.1 using the inputs in Table B.3. Experiments were conducted as

described above and results report the root-mean-square error (RMSE) averaged across

the 25 stocks.

It is clear from Table 4.4 that, in out-of-sample test data, the random forest (RF)

algorithm outperforms the alternative regression models in terms of minimising root-

mean-square error (RMSE). Upon closer inspection, it is evident the ability of the

neural network and SVR algorithms to accurately describe that training data leads to

superior performance on the training set. However, there is evidence of overfitting in

both of these algorithms due to their poor performance in both the cross validation (CV)

and test sets. Also, we note that the performance of all regression algorithms is very

similar for both the BATS and Chi-X data. Thus, from this point forward we will present

results averaged across the two datasets.

88 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

Model
RMSE at t =

1 5 10 60 600

Training Phase

Single RF 0.22* 0.28* 0.29 0.33 0.43

Linear regression ensemble 0.18* 0.22* 0.26 0.34* 0.49*

Neural Network ensemble 0.13* 0.19* 0.23* 0.31* 0.41*

SVR ensemble 0.13* 0.18* 0.20* 0.31* 0.40*

RF ensemble 0.15 0.20 0.26 0.32 0.40

CV Phase

Single RF 0.23* 0.28* 0.31* 0.35 0.44

Linear regression ensemble 0.21* 0.26* 0.32* 0.38* 0.50*

Neural network ensemble 0.22* 0.29* 0.31* 0.40* 0.45*

SVR ensemble 0.24* 0.29* 0.35* 0.36* 0.42*

RF ensemble 0.15 0.22 0.25 0.33 0.40

Test Phase

Single RF 0.19* 0.30* 0.31* 0.35 0.46*

Linear regression ensemble 0.24* 0.27* 0.31* 0.42* 0.59*

Neural network ensemble 0.24* 0.28* 0.31* 0.37* 0.50*

SVR ensemble 0.40* 0.39* 0.39* 0.45* 0.47*

RF ensemble 0.15 0.23 0.24 0.34 0.40

Table 4.5: A comparison of the performance of various ensembles of regression models
and a single random forests algorithm in predicting the relative change in asset price t =
1, 5, 10, 60 and 600 after an event. Asterisks signify a statistical significance compared
to our model of p < 0.05. Outputs of all regression algorithms are combines as described

in section 4.3.2

4.5.3 Ensembles

The previous chapter demonstrated the gain in predictive power achieved by moving from

single RFs to ensembles as well as the advantage of online model generation. Thus, in

this section we explore the power of ensembles of models versus single models and the

predictive performance of ensembles of RFs versus ensembles of linear regression models,

neural networks and support vector machines.

Table 4.5 shows the results of the comparative performance of the various base learners

outlined above in predicting the price of stocks at various time points after best-price-

altering events. The inputs for all algorithms are those listed in Table B.3. Experiments

were performed as described above with results averaged across all stocks.

It can be seen that our recency-weighted random forest (RF) ensemble outperforms all

other models on out-of-sample data. While the random forest based ensemble produces

higher error values on the training data, the proven ability of random forests to avoid

Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data 89

overfitting allows the ensemble of random forests to produce significantly superior out of

sample results to all other models on 4 out of 5 time intervals. A distinct advantage of

online ensemble generation can be seen when comparing the results of a single random

forest to the ensemble of random forest. Introducing online training of experts improves

the performance of the model across all 5 time periods, with 4 of 5 results proving

significant at p = 0.05

4.5.4 Comparative influence of features

The power of random forests lies not only in their ability to make predictions with little

overfitting but also in their relative transparency. Thus, this section seeks to extract

knowledge about the comparative influence of the considered features. Specifically, we

explore the relative importance and direction of influence of each of the features in order

to gain an increased understanding of the price formation process.

4.5.4.1 Feature importance

Given the effectiveness of our model as demonstrated in the previous section, we now

explore which features are found to be most important in predicting the price impact of

events. To this end, we apply Algorithm 5, our feature selection algorithm, described in

Section 3.2.3 of Chapter 3 to our ensemble learning model to gain insight into the which

features are most influential in forming a prediction.

In detail, each time a new RF is trained (every 15 mins in our experiments) Algorithm 5

(see section 4.2) is applied when training the RF to generate a relative importance

ranking for the features of that RF. At the end of the test period, we calculate the

importance of each feature by taking a weighted arithmetic mean of its importance

ranking in each of the forests in the ensemble using the same weights used for making

predictions and described in Equations (4.3) and (4.4). The importance of feature j for

the entire ensemble model, Vij , is thus calculated as follows:

Vij =

∑I
i=1wi,tVIi,j∑I

i=1wi,t
(4.6)

Where VIi,j is the importance of feature j for RF i and is calculated using Equation 4.1

and wi,t is the current weight assigned to RF i, as calculated by Equations (4.3) and (4.4).

We use Equation 4.6 to rank the relative importance of the features at the end of the

test period and the top five highest ranked features are given in Table 4.6

To explore how the relative importance of the features changes through time, we calcu-

late the importance of the variables, as above, at the end of each day of the training,

90 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

Feature Rank

Event size 1

EMA of spread 2

EMA of volume at best price 3

Mean price increment between order prices 4

Number of quotes arrived in the last n observations 5

Table 4.6: The five most important features at the end of the test period as ranked
by Equation (4.6).

Feature Mean rank SD rank

Event size 2.3 1.9

EMA of volume at best price 4.5 3.2

Mean price increment between order prices 4.8 3.6

EMA of spread 5.6 4.4

Event type 7.5 5.8

Table 4.7: The five most important features averaged across the entire training, val-
idation and test period. The importances are calculated at the end of each day. Both

the mean and standard deviation are provided for comparison.

validation and test periods. The results of this investigation are presented in Table 4.7

where we can see the mean and standard deviation of the relative importance of the five

highest ranked features.

4.5.4.2 Direction of feature influence

As well as exploring the relative importance of the features, we aim to identify the

directional relation to the response variable. For this purpose we propose a method

which we shall refer to as feature partition response differencing (FPRD).

The basic idea of FPRD is that the direction of influence of a feature can be determined

by comparing the differences between the response variable (price impact in our case)

values for each of the two subspaces created by at the nodes of the regression trees.

That is, for each node that contains feature j in all trees of all forests in our model, we

separately calculate the mean price impact for all data that falls into the low j partition

(where a data-point’s value for j is less than and the threshold determined by a particular

node)and for the high j partition. We then calculate the percentage difference of these

means relative to the low j mean before averaging all of these differences across all nodes

in our model that pertain to feature j. A single value is then obtained for each feature

that describes the relative directional relationship with the price impact. Formally, we

Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data 91

Figure 4.4: The relative directional influence (FPRD) of the five most important fea-
tures for price impact calculated using Algorithm 7.

calculate the FPRD using Algorithm 7

Algorithm 7 The feature partition response differencing algorithm.

1: for all Random Forests do
2: for all Trees in Forest do
3: Calculate:
4:

ir,t =
1
n

∑
Pk:Pk+

1
n

∑
Pk:Pk−

− 1

where P k+ is the set of all price impacts in the higher partition
5: and P k− those that fall into the lower partition.
6: end for
7: end for
8: Calculate the FPRD as the average of the difference over all trees in all forests.

To compare the directional influence of the five features found to be most important

in Table 4.6, we perform FPRD for each feature before normalising across each of the

percentage differences. The output is presented in Figure 4.4. The output from the

FPRD and the bar chart in Figure 4.4 the magnitude of the relative influence aligns

with our findings in Section 4.5.4.1. We also find that increases in the volume at the

best price and the number of recent order arrivals is found to cause a decrease in price

impact, while increases in the average price increment, spread and event size cause an

increase 1.

1An obvious question concerns whether indications of relative directional importance provide similar
information as the true relationships between variables. This has been confirmed using artificial data.

92 Chapter 4 Predicting Equity Market Price Impact Using Market Depth Data

4.6 Summary

In this chapter we apply performance weighted ensembles of random forests to the

prediction of the price impact of order book events. In more detail, random forest

regressors are continually generated, at fixed time intervals, and added to an ensemble

of such experts. Upon the occurrence of an event that alters the best prices of the LOB

(limit order at the best price, market order, cancellation or modification), each expert

makes a prediction and an expert weighting system averages the predictions of all experts

weighted by their recent performance. A separate ensemble is used to predict the price

change at t = 1, 5, 10, and 60 seconds after an event. The performance of random forest

ensembles is then benchmarked against ensembles of linear regression, neural networks

and support vector models as well as single random forests. The models are trained

using 60 days of data, cross-validated using 20 and tested using 20. Reported results

are an average over the 25 most liquid stocks from the BATS Chi-X exchange.

In out-of-sample simulations, the performance-weighted random forest ensemble outper-

forms all other models across all time intervals. Specifically, our model outperforms all

other models by around 20% when predicting the price change at 1, 5, and 10 seconds.

Above this, performance of all models fall substantially. This demonstrates the ability

of the online-generated ensemble to make predictions in the highly non-stationary order

book environment.

In addition, we identified the primary drivers of market impact which conform to and

supplement the existing literature in the field. Firstly, we find the most dominant

feature to be the size of an incoming event and this is well documented throughout the

microstructure literature (Lillo et al., 2003; Eisler et al., 2012; Potters and Bouchaud,

2003; Plerou et al., 2002). Secondly, we see both the volume at the best prices and the

mean price increment to ply an important role in the determination of market impact.

Specifically, we see that higher volumes of orders at the best price on one side of the

book significantly dampens market impact and that smaller average increments between

passive limit orders have the same effect - this supports more recent empirical and

simulations Farmer et al. (2013). Additionally, we found that the rate of arrival or new

orders to the book had a significant impact on price impact though we are unable to

identify any literature that supports this.

For those in the trading industry, these results should be of particular interest. Volumes

at the best prices, quote arrival rate, and mean price increments of orders should be

closely monitored for abnormalities or large swings that may lead to liquidity vacuums

or, alternatively, buffer the book and provide a cost effective period for unloading orders

and minimizing price impact.

Chapter 5

An Agent-Based Order Book

Model for Automated Trading

Algorithms

Previous chapters have explored the use of machine learning algorithms in forecasting

price movements and impact in limit order books. Such techniques are useful in under-

standing the codependencies of LOB features and as inputs for optimal trade execution

algorithms. However, the regulators require more than this.

As Chapter 1 describes in detail, the all-too-common flash crashes are a dramatic con-

sequence of the growing complexity of modern financial markets and have not gone

unnoticed. In November 2011, the European Union (2011) made proposals for a revi-

sion of the Markets in Financial Instruments Directive (MiFID). Although this directive

only governs the European markets, according to the World Bank (2012) (in terms of

market capitalisation), the EU represents a market capitalisation around two thirds of

the size of the US. In the face of declining investor confidence and rapidly changing

markets, a draft of MiFID II was produced. After nearly three years of debate 1, on the

14th January 2014, the European Parliament and the Council reached an agreement on

the updated rules for MiFID II, with a clear focus on transparency and the regulation

of automated trading systems (European Union, 2014b).

Specifically, MiFID II introduces rules on algorithmic trading in financial instruments.

Any firm participating in algorithmic trading is required to ensure it has effective controls

in place, such as circuit breakers to halt trading if price volatility becomes too high.

Also, any algorithms used must be tested and authorised by regulators. We find the last

requirement particularly interesting as MiFID II is not specific about how algorithmic

1Many of the articles in the original draft of the MiFID II proposal were met with accusations
of tokenistic politics from both industry and academia (see http://www.bankingtech.com/81761/

mifid-ii-is-a-dogs-dinner-says-former-uk-government-advisor/).

93

http://www.bankingtech.com/81761/mifid-ii-is-a-dogs-dinner-says-former-uk-government-advisor/
http://www.bankingtech.com/81761/mifid-ii-is-a-dogs-dinner-says-former-uk-government-advisor/

94 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

trading strategies are to be tested.

Given the clear need for robust methods for testing these strategies in such a new,

relatively ill-explored and data-rich complex system, an agent-oriented approach, with

its emphasis on autonomous actions and interactions, is an ideal approach for addressing

questions of stability and robustness. As such we hope to build on the work of Rust et al.

(1992), Darley and Outkin (2007), and Mastromatteo et al. (2014) outlined in Chapter 2

by exploring and agent based model that includes important agent-agent interactions

that have been shown to give rise to spikes and crashes in price that have but have been

missing from previous studies.

Thus, in this chapter, we describe an agent-based simulation environment that is realistic

and robust enough for the analysis of algorithmic trading strategies. In detail, we de-

scribe an agent-based market simulation that centres around a fully functioning LOB and

populations of agents that represent common market behaviours and strategies: market

makers, fundamental traders, high-frequency momentum traders, high-frequency mean

reversion traders and noise traders. We demonstrate that the model accurately repro-

duces empirically observed values for: the autocorrelation, volatility clustering, kurtosis

and variance of price return and order-sign time series; the price impact function and

the occurrence of extreme price events as described in Section 2.3.

The model described in this chapter includes agents that operate on different timescales

and whose strategic behaviours depend on other market participants. We find the de-

coupling of actions across timescales combined with dynamic behaviour of agents to be

essential in dictating the more complex patterns seen in high-frequency order-driven

markets. Consequently, this chapter presents a model that is represents more trading

behaviours and is able to replicate more of the empirically observed empirical regulari-

ties than any other study. Such abilities provide a crucial step towards a viable platform

for the testing of trading algorithms as outlined in MiFID II.

This chapter is structured as follows. Section 5.1 provides a description of the model

structure and agent behaviours in detail. In Section 5.2 the results are summarised while

Section 5.3 gives concluding remarks.

5.1 The Model

This chapter describes a model that implements a fully functioning limit order book as

used in most electronic financial markets (see Section 2.1 for a detailed description). The

model does not concern itself with a representation of time with any marked relation to

real time steps. Instead, the model is stated in pseudo-continuous time. That said, a

simulated day is divided into T = 300, 000 periods (approximately the number of 10ths

of a second in an 8.5 hour trading day) and during each period there is a possibility

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 95

for each agent to act — a close approximation to reality. This unit free model of time

enables us to steer clear of unnecessary (over)calibration of the model in order for it

results to be compared to real-word timelines and instead to focus on relative difference

of the timescales upon which agents act and the emergent dynamics that occur as a

result.

The model comprises of 5 agent types: Market makers, liquidity consumers, mean re-

version traders, momentum traders and noise traders that are each presented in detail

later in this section. To replicate the mismatch in the timescales upon which market

participants can act (as highlighted by Johnson et al. (2013)), during each period every

agent is given the opportunity to act based on probability, δτ , that is determined by

their type, τ , (market maker, trend follower, etc.). In more detail, to represent a high-

frequency trader’s ability to react more quickly to market events than, say, a long term

fundamental investor, we assigned a higher delta providing a higher chance of being cho-

sen to act. Importantly, when chosen, agents are not required to act. This facet allows

agents to vary their activity through time and in response the market, as with real-world

market participants. A more formal treatment of the simulation logic is presented in

Algorithm 8:

Algorithm 8 Simulation logic - rand() represents a function that generates a uniformly
distributed floating point number in the interval [0,1].

1: for t = 0 to T do
2: for all agents do
3: if rand() < δτ then
4: Agent may submit, modify or cancel an order or do nothing.
5: end if
6: All agents update their internal states.
7: end for
8: end for

The probability of a member of each agent group acting is denoted δmm for market

makers, δlc for liquidity consumers, δmr for mean reversion traders, δmt for momentum

traders and δnt for noise traders. If an agent is chosen to act, that agent is asked whether

it wishes to perform an action. If it wishes to submit an order, it will communicate an

order type, volume and price determined by that agent’s internal logic. The order is

then submitted to the LOB where it is matched using price-time priority (for a detailed

explanation see Section 2.1). Although the model contains a fair number of free parame-

ters, those parameters are determined through experiment (see Section 5.2.1) and found

to be relatively insensitive to reasonable variation. Table 5.2 lists the parameters of the

model along with their default values. Below we define the 5 agent types.

96 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

Market Makers

Market makers represent market participants who attempt to earn the spread by sup-

plying liquidity on both sides of the LOB. In traditional markets, market makers were

appointed but in modern electronic exchanges any agent is able to follow such a strategy
2. These agents simultaneously post an order on each side of the book, maintaining an

approximately neutral position throughout the day. They make their income from the

difference between their bids and offers. If one or both limit orders is executed, it will be

replaced by a new one the next time the market maker is chosen to trade. In this study

we implement an intentionally simple market making strategy based on the liquidity

provider strategy described by Oesch (2014). Each round, the market maker generates

a prediction for the sign of the next period’s order using a simple w period rolling-mean

estimate. When a market maker predicts that a buy order will arrive next, she will set

her sell limit order volume to a uniformly distributed random number between vmin and

vmax and her buy limit order volume to v−. An algorithm describing the market makers

logic is given in Algorithm 9.

Algorithm 9 Market Maker logic.

1: if rand() < δmm then
2: Cancel any existing orders
3: if predicts next order is buy then
4: Submit sell at best price with volume = U(vmin, vmax)
5: Submit buy at best price with volume = v−

6: else
7: Submit buy at best price with volume = U(vmin, vmax)
8: Submit sell at best price with volume = v−

9: end if
10: end if
11: Update buy/sell prediction with w-period rolling mean

Liquidity Consumers

Liquidity consumers represent large slower moving funds that make long term trading

decisions based on the rebalancing of portfolios. In real world markets, these are likely to

be large institutional investors. These agents are either buying or selling a large order of

stock over the course of a day for which they hope to minimise price impact and trading

costs. Whether these agents are buying or selling is determined with equal probability.

The initial volume h0 of a large order is drawn from a uniform distribution between hmin

and hmax. To execute the large order, a liquidity consumer agent looks at the current

volume available at the opposite best price, Φt. If the remaining volume of his large

2Although, at present, any player in a LOB may follow a market making strategy, MIFiD II is likely
to require all participants that wish to operate such a strategy to register as a market maker. This will
require them to continually provide liquidity at the best prices no matter what.

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 97

order, ht, is less than Φt the agent sets this period’s volume to vt = ht. Otherwise, he

takes all available volume at the best price vt = Φt. For simplicity liquidity consumers

only utilise market orders. An algorithm describing the Liquidity Consumer’s logic is

given in Algorithm 10.

Algorithm 10 Liquidity Consumer logic.

1: if Start of day then
2: if rand() < 0.5 then
3: Buying
4: else
5: Selling
6: end if
7: Initial order volume, h0 = U(hmin, hmax)
8: end if
9: if rand() < δlc then

10: if ht ≤ Φt then
11: Submit market order with volume vt = ht
12: else
13: Submit market order with volume vt = Φt

14: end if
15: end if
16: ht = ht − vt

Momentum Traders

This group of agents represents the first of two types of high frequency traders. Also

known as trend followers, they invest based on the belief that price changes have inertia

— a strategy known to be widely used (Keim and Madhavan, 1995). A momentum

strategy involves taking a long position when prices have been recently rising, and a

short position when they have recently been falling. Specifically, we implement simple

momentum trading agents that rely on calculating a rate of change (roc) to detect

momentum, given by:

roct =
pt − p(t−nr)

p(t−nr)
(5.1)

where pt is the price of an asset at time t. When roct is greater than some threshold κ

the momentum trader enters buy market orders of a value proportional to the strength

of the momentum. That is, the volume of the market order will be:

vt = |roct| ∗Wa,t (5.2)

where Wa,t is the wealth of agent a at time t. A complete description of the momentum

trader’s logic is given in Algorithm 11.

98 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

Algorithm 11 Momentum Trader logic.

1: if rand() < δmt then
2: if roct ≥ κ then
3: Submit buy market order with vt = |roct| ∗Wa,t

4: else if roct ≤ −κ then
5: Submit sell market order with vt = |roct| ∗Wa,t

6: end if
7: end if
8: Update ROC using Equation 5.1

Mean Reversion Traders

The second group of high-frequency agents are the mean-reversion traders. Again, this is

a well documented strategy (Serban, 2010) in which traders believe that asset prices tend

to revert towards an historical average (although this may be a very short term average).

They attempt to generate profit by taking long positions when the market price is below

the historical average price, and short positions when it is above. Specifically, we define

agents that, when chosen to trade, compare the current price to an exponential moving

average of the asset price, emat, at time t calculated as:

emat = ema(t−1) + α(pt − ema(t−1)) (5.3)

where pt is the price at time t and α is a discount factor that adjusts the recency bias.

If the current price, pt, is k standard deviations above emat the agent enters a sell limit

order at a single tick size improvement of the best price offer, and if it’s k standard

deviations below then he enters a buy. The volume of a mean reversion trader’s order

is denoted by vmr. An algorithm describing the mean reversion traders’ logic is given in

Algorithm 12.

Algorithm 12 Mean Reversion Trader logic.

1: if rand() < δmr then
2: if pt − emat ≥ kσt then
3: Submit sell limit just inside best ask with vt = vmr
4: else if emat − pt ≥ kσt then
5: Submit buy limit just inside best bid with vt = vmr
6: end if
7: end if
8: Update emat using Equation 5.3

Noise Traders

These agents are defined so as to capture all other market activity and are modelled

very closely to the agents introduced by Cui and Brabazon (2012). There parameters

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 99

are fitted using empirical order probabilities. The noise traders are randomly assigned

whether to submit a buy or sell order in each period with equal probability. Once

assigned, they then randomly place either a market or limit order or cancel an existing

order according to the probabilities λm, λl and λc respectively.

When submitting an order, the size of that order, vt, is drawn from a log-normal distri-

bution described by:

vt = exp(µ+ σuv) (5.4)

where µ and σ represent the mean and standard deviation of the vt’s natural logarithm

and uv is a uniformly distributed random variable between 0 and 1. If a limit order is

required, on the other hand, the noise trader faces 4 further possibilities:

• With probability λcrs the agent crosses the spread and places a limit order at the

opposing best ensuring immediate (but pottentially partial) order fulfilment. If

the order is not completely filled, it will remain in the order book.

• With probability λinspr the agent places a limit order at a price within the bid and

ask spread, pinspr, that is uniformly distributed between the best bid and ask.

• With probability λspr the agent places a limit order at the best price available on

their side of the book.

• With probability λoffspr the agent will place a limit order deeper in the book, at a

price, poffspr, distributed with the power law:

xminoffspr ∗ (1− u0)
− 1
β−1 (5.5)

where u0 is a uniformly distributed random variable between 0 and 1 while xminoffspr

and β are parameters of the power law that are fitted to empirical data.

The sum of these probabilities must equal one (λcrs + λinspr + λspr + λoffspr = 1). To

prevent spurious price processes, noise traders’ market orders are limited in volume such

that they cannot consume more than half of the total opposing sides available volume.

Another restriction is that noise traders will make sure that no side of the order book

is empty and place limit orders appropriately. The full noise trader logic is described in

Algorithm 13.

100 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

Algorithm 13 Noise Trader logic.
1: if rand() < δnt then
2: if rand() < 0.5 then
3: Selling
4: else
5: Buying
6: end if
7: Generate U(0, 1) to determine action, λm, λl and λc.
8: switch action do
9: case Submit Market Order

10: Submit market order with volume calculated by Equation 5.4

11: case Submit Limit Order
12: Generate U(0, 1) for action, λcrs, λinspr, λspr & λoffspr.
13: switch Limit Order do
14: case Crossing limit order
15: Submit limit order at opposing best price using Equation 5.4

16: case Inside spread limit order
17: Generate a random value, pinsprd = U(BetBid,BestAsk)
18: Submit limit order at price pinsprd using Equation 5.4

19: case Spread limit order
20: Submit limit order at the best price using Equation 5.4

21: case Off-spread limit order
22: Generate a random value, rpoffsprd using Equation 5.5
23: Submit order at a price rpoffsprd outside of spread using Equation 5.4.

24: case Cancel Limit Order
25: Cancel the oldest order previously submitted.

26: end if

5.2 Results

In this section we begin by performing a global sensitivity analysis to explore the in-

fluence of the parameters on market dynamics and ensure the robustness of the model.

Subsequently, we explore the existence of the following stylised facts in depth-of-book

data from the Chi-X exchange compared with our model: fat tailed distribution of

returns, volatility clustering, autocorrelation of returns, long memory in order flow,

concave price impact function and the existence of extreme price events.

5.2.1 Sensitivity analysis

In this section, we asses the sensitivity of the agent-based model described above. To

do so, we employee an established approach to global sensitivity analysis known as

variance-based global sensitivity (?).

In variance-based global sensitivity analysis, the inputs to an agent-based model are

treated as random variables with probability density functions representing their as-

sociated uncertainty. The impact of the set of input variables on a model’s output

measures may be independent or cooperative and so the output f(x) may be expressed

as a finite hierarchical cooperative function expansion using an analysis of variance

(ANOVA). Thus, the mapping between input variables x1, . . . , xn and output variables

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 101

f(x) = f(x1, . . . , xn) may be expressed in the following functional form:

f(x) = f0 +
∑
i

fi(xi) +
∑
i<j

fi,j(xi, xj) + . . .+ f1,2,...,n(x1, x2, . . . , xn) (5.6)

where f0 is the zeroth order mean effect, fi(xi) is a first order term that describes the

effect of variable xi on the output f(x), and fi,j(xi, xj) is a second order term that

describes the cooperative impact of variables xi and xj on the output. The final term,

f1,2,...,n(x1, x2, . . . , xn) describe the residual nth order cooperative effect of all of the

input variables. Consequently, the total variance is calculated as follows:

D =

∫
(f(x)− f0)2ρ(x)dx (5.7)

where ρ(x) is the probability distribution over input variables. Partial variances are

then defined as:

Di1...,is =

∫
f2
i1...,is(xi1 , . . . , xis)ρ(x)dx (5.8)

Now, the total partial variances Dtot
i for each parameter xi, i = 1, n, is computed as

Dtot
i =

∑
〈i〉

Di1,...,is ; 1 ≤ s ≤ n, (5.9)

where 〈i〉 refers to the summations over all D that contains i. Once the above is com-

puted, the total sensitivity indicies can be calculated as:

Stoti =
Dtot
i

D
; 0 ≤ Stoti ≤ 1, (5.10)

It follows that the total partial variance for each parameter xi is

Dtot
i = D − V ar(E(f |x−i)) ≡ E(V ar(f |x−i)) (5.11)

In this study, twenty three input parameters and four output parameters are consid-

ered. The input parameters include: The probabilities of each of the five agent groups

performing an action (δmm, δlc, δmr, δmt, δnt), the market makers’ parameters (w, the

period length of the rolling mean, and vmax, the max order volume for limit order), the

upper limit of the distribution from which liquidity consumers’ order volume is drawn

(hmax), the momentum traders’ parameters (nr, the lag parameter of the ROC, and κ,

the trade entry point threshold), as well as the following noise trader parameters:

102 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

• Probability of submitting a market order, λm

• Probability of submitting a limit order, λl

• Probability of cancelling a limit order, λc

• Probability of a crossing limit order λcrs

• Probability of a inside-spread limit order λinspr

• Probability of a spread limit order λspr

• Probability of a off-spread limit order λoffspr

• Market order size distribution parameters, µmo and σmo

• Limit order size distribution parameters, µlo and σlo

• Off-spread relative price distribution parameters, xminoffspr and βoffspr

The following output parameters are monitored: the Hurst exponent H of volatility

(as calculated using the DFA method described by Peng et al. (1994)), the mean au-

tocorrelation of mid-price returns R(m), the mean first lag autocorrelation term of the

order-sign series R(o), and the best fit exponent β of the price impact function as in

Equation 2.10.

As our model is stochastic (agents’ actions are defined over probability distributions),

there is inherent uncertainty in the range of outputs, even for fixed input parameters.

In the following, ten thousand samples from within the parameter space were generated

with the input parameters distributed uniformly in the ranges displayed in Table 5.1.

or each sample of the parameters space, the model is run for 300000 trading periods

to approximately simulate a trading day on a “high-frequency” timescale. The global

variance sensitivity, as defined in Equation 5.11 is presented in Figure 5.1.

The global variance sensitivities clearly identify the upper limit of the distribution from

which liquidity consumers’ order volume is drawn (hmax) and the probabilities of each of

the agent groups acting (particularly those of the high-frequency traders, δmr and δmt)

as the most important input parameters for all outputs. The biggest influence of each of

these parameters was on the mean first lag autocorrelation term of the order-sign series

R(o) followed by the exponent of the price impact function β.

To find the set of parameters that produces outputs most similar to those reported in

the literature and to further explore the influence of input parameters we perform a

large scale grid search of the input space. This yields the ‘optimal’ set of parameters

displayed in Table 5.2. With this set of parameters we go on tho explore the model’s

ability to reproduce the various statistical properties outlines in Section 2.3.

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 103

Parameter Symbol Setting
Probability of Market Makers acting δmm [0.05, 0.95]
Probability of Liquidity Consumers acting δlc [0.05, 0.95]
Probability of Momentum Traders acting δmr [0.05, 0.95]
Probability of Mean Reverters acting δmt [0.05, 0.95]
Probability of Noise Traders acting δnt [0.05, 0.95]

Market maker (mm) parameters
Max order volume vmax [103, 106]
Rolling mean period w [10, 103]

Liquidity consumer (lc) parameters
Max order volume hmax [103, 106]

Momentum trader (mt) parameters
ROC lag nr [1, 100]
Trade entry threshold κ [10−6, 10−1

Noise trader (nt) parameters
Market order probability λm [0, 1]
Limit order probability λl [0, 1]
Cancel order probability λc [0, 1]
Market order size µmo [2, 10]
Market order size σmo [0, 1]
Limit order size µlo [2, 10]
Limit order size σlo [0, 1]
Off-spread relative price xminoffspr [0, 1]
Off-spread relative price βoffspr [0, 1]
Crossing limit order λcrs [0, 1]
Inside-spread limit order λinspr [0, 1]
Spread limit order λspr [0, 1]
Off-spread limit order λoffspr [0, 1]

Table 5.1: Parameter ranges for global sensitivity analysis

5.2.2 Fat Tailed Distribution of Returns

Figure 5.2 displays a side-by-side comparison of how the kurtosis of the mid-price return

series varies with lag length for our model and an average of the top 5 most actively

traded stocks on the Chi-X exchange in a period of 100 days of trading from 12th

February 2013 to 3rd July 2013. A value of 1000 on the x-axis mean that the return was

taken as log(pt+1000)− log(pt). In our LOB model, only substantial cancelations, orders

that fall inside the spread, and large orders that cross the spread are able to alter the

mid price. This generates many periods with returns of 0 which significantly reduces

the variance estimate and generates a leptokurtic distribution in the short run, as can

be seen in Figure 5.2(a).

Kurtosis is found to be relatively high for short timescales but falls to match levels of

the normal distribution at longer timescales. This not only closely matches the pattern

of decay seen in the empirical data displayed in Figure 5.2(b) but also agrees with the

findings of Cont (2001) and Gu et al. (2008).

104 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

H R
(m

)

R
(o

)

β

δmm
δlc
δmr
δmt
δnt

w
vmax
hmax
nr

κ
λm
λl
λc

λcrs
λinspr
λspr

λoffspr
µmo
σmo
µlo
σlo

xminoffspr
βoffspr

Figure 5.1: Heatmap of the global variance sensitivity.

5.2.3 Volatility Clustering

To test for volatility clustering, we compute the Hurst exponent of volatility using the

DFA method described by Peng et al. (1994). Figure 5.3 details the percentage of simu-

lations runs with significant volatility clustering — defined as 0.6 < H < 1. Once again,

in the shortest time lags volatility clustering seems to be present at short timescales in

all the simulations but rapidly disappears for longer lags in agreement with Lillo and

Farmer (2004).

5.2.4 Autocorrelation of returns

Table 5.3 reports descriptive statistics for the first lag autocorrelation of the returns

series for our agent based model and for the Chi-X data. In both instances, there is a

very weak but significant autocorrelation in both the mid-price and trade price returns.

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 105

Market parameters Setting
Initial Price 100
Initial Spread 0.05
Tick Size 0.01

Agent group Action probability
δmm 0.10
δlc 0.10
δmr 0.40
δmt 0.40
δnt 0.75

Market maker (mm) parameters Setting
vmin 1
vmax 200,000
v 1
w 50

Liquidity consumer (lc) parameters Setting
hmin 1
hmax 100,000

Mean reversion (mr) parameters Setting
vmr 1
α 0.94

Momentum trader (mt) parameters Setting
nr 5
κ 0.001

Noise trader (nt) parameters Setting
Buy or sell probability 0.5
Market order probability λm = 0.03
Limit order probability λl = 0.54
Cancel order probability λc = 0.43
market order size µmo = 7 σmo = 0.1
limit order size µlo = 8 σlo = 0.7
off-spread relative price xminoffspr = 0.005 βoffspr = 2.72
NT limit order types Probability
crossing limit order λcrs = 0.003
inside-spread limit order λinspr = 0.098
spread limit order λspr = 0.173
off-spread limit order λoffspr = 0.726

Table 5.2: Optimal parameter values

The median autocorrelations of mid-price returns for the agent-based model and the Chi-

X data were found to be -0.0034 and -0.0044, respectively. Using a non-parametric test,

the distributions of the two groups were not found to differ significantly (MannWhitney

U = 300, P > 0.1 two-tailed).

This has been empirically observed in other studies (see Section 2.3.3) and is commonly

thought to be due to the refilling effect of the order book after a trade that changes the

best price. The result is similar for the trade price autocorrelation but as a trade price

will always occur at the best bid or ask price a slight oscillation is to be expected and

is observed.

106 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

0 500 1000 1500 2000 2500

Time-scale

0

10

20

30

40

50

K
u
r
t
o

si
s

(a) Model Kurtosis

0 500 1000 1500 2000 2500

Time (miliseconds)

0

10

20

30

40

50

K
u
r
t
o

si
s

(b) Empirical Kurtosis

Figure 5.2: Kurtosis by timescale for our model and for the empirical data (in mil-
liseconds).

0 500 1000 1500 2000 2500

Time-scale

0

20

40

60

80

100

%
R

u
n
s

w
it

h
v
o

l
a
t
il

it
y

c
l
u
st

e
r
in

g

Figure 5.3: Volatility clustering by timescale

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 107

Stats Min. 1st Q. Median 3rd Q. Max.

Agent-based model

AC mid-price returns -0.0208 -0.0071 -0.0034 0.0090 0.0366
AC trade price returns 0.5734 0.6029 0.6200 0.6209 0.6476

Empirical data

AC mid-price returns -0.0233 -0.0169 -0.0044 0.0081 0.0436
AC trade price returns 0.5287 0.5353 0.5678 0.6000 0.6346

Table 5.3: Return autocorrelation statistics

Stats Min. 1st Q. Mean 3rd Q. Max.

Agent-based model

AC order signs 0.1983 0.2059 0.2079 0.2104 0.2172
H order signs 0.6734 0.7029 0.7115 0.7209 0.7476

Empirical data

AC order signs 0.2000 0.2544 0.2629 0.2701 0.3013
H order signs 0.7681 0.8053 0.8444 0.8780 0.8849

Table 5.4: Order sign statistics

5.2.5 Long Memory in Order Flow

As presented in Table 5.4, we find the mean first lag autocorrelation term of the order-

sign series for our model to be 0.2079 which is close to that calculated for the empirical

data and those reported in the literature. Most studies find the order sign autocorrelation

to be between 0.2-0.3 (see Lillo and Farmer (2004) for example). In Table 5.4, H Order

signs shows a mean Hurst exponent of the order signs time series for our model of ≈ 0.7

which indicates a long-memory process and corresponds with the findings of previous

studies and with our own empirical results (see Lillo and Farmer (2004) and Mike and

Farmer (2008)).

5.2.6 Concave Price Impact

Figure 5.4(a) illustrates the price impact in the model as a function of order size on a

log-log scale. The concavity of the function is clear. The shape of this curve is very

similar to that of the empirical data from Chi-X shown in Figure 5.4(b). The price

impact is for the model is found to be best fit by the relation ∆p ∝ v0.28, while the

empirically measured impact was best fit by ∆p ∝ v0.35. Both of these estimates of the

exponent of the impact function agree with the findings of Lillo et al. (2003), Farmer

and Lillo (2004) and Hopman (2007) but the model is sensitive to the volume provided

by the market makers. When the market makers order volume is reduced, the volume

at the opposing best price reduces compared to the rest of the book. This allows smaller

trades to eat further into the liquidity stretching the right-most side of the curve.

108 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

102 103 104 105 106

Volume

10−4

10−3

P
r
ic

e
S
h
if

t

(a) Model Price Impact

102 103 104 105

Volume

10−4

10−3

10−2

P
r
ic

e
S
h
if

t

(b) Empirical Price Impact

Figure 5.4: Log-log price impact function for our model and for the Chi-X data.

Figure 5.5 demonstrates the effects of varying the liquidity consumers’ volume parameter

hmax on the price impact curve. This parameter appears to have very little influence on

the shape of the price impact function. However, it does appear to have an effect on the

size of the impact. Although hmax is relatively insensitive to minor changes, when the

volume traded by the liquidity consumers is reduced dramatically, the relative amount

of available liquidity in the market increases to the point where price impact is reduced.

Very similar results are seen as the market makers’ order size (vmax) is increased.

Figure 5.6 shows the effects on the price impact function of adjusting the relative prob-

abilities of events from the high frequency traders. It is clear that strong concavity

is retained across all parameter combinations but some subtle artefacts can be seen.

Firstly, increasing the probability of both types of high frequency traders equally seems

to have very little effect on the shape of the impact function. This is likely due to the

strategies of the high frequency traders restraining one another. Although the momen-

tum traders are more active — jumping on price movements and consuming liquidity at

the top of the book — they are counterbalanced by the increased activity of the mean

reversion traders who replenish top-of-book liquidity when substantial price movements

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 109

0 200000 400000 600000 800000 1000000

Order Volume

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

P
r
ic

e
Im

p
a
c
t

hmax = 100000

hmax = 75000

hmax = 50000

Figure 5.5: The price impact function with different liquidity consumer parameteri-
sations. Each line represents a different setting for hmax

0 200000 400000 600000 800000 1000000

Order Volume

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

P
r
ic

e
Im

p
a
c
t

δmt = 0.4 δmr = 0.4

δmt = 0.6 δmr = 0.6

δmt = 0.6 δmr = 0.2

Figure 5.6: Price impact for various values for the probability of the high frequency
traders acting.

occur. In the regime where the probability of momentum traders acting is high but

the probability for mean reversion traders is low (the dotted line) we see an increase in

price impact across the entire range of order sizes. In this scenario, when large price

movements occur, the activity of the liquidity consuming trend followers outweighs that

of the liquidity providing mean reverters, leading to less volume being available in the

book and thus a greater impact for incoming orders.

5.2.7 Extreme Price Events

We follow the definition of Johnson et al. (2013) and define an extreme price event as an

occurrence of a stock price ticking down [up] at least ten times before ticking up [down]

and with a price change exceeding 0.8% of the initial price. Figure 5.7 shows a plot the

mid-price time-series provides with an illustrative example of a flash crash occurring in

110 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

20 40 60 80 100 120 140

Time +1.123×105

96.5

97.0

97.5

98.0

98.5

P
r
ic

e

Figure 5.7: Flash crash example

Stats Min. Median Mean Max.

Events per day in ABM 0 1 0.8286 3

Events per day in Chi-X 0 1 1.0066 6

Table 5.5: Flash crash statistics

the simulation. During this event, the number of sequential down ticks is 11, the price

change is 1.3%, and the event lasts for 12 simulation steps.

Table 5.5 shows statistics for the number of events for each day in the Chi-X data and

per simulated day in our ABM. On average, in our model, there are 0.8286 events per

day very close to the average number observed in empirical data.

Upon inspection, we can see that such events occur when an agent makes a particularly

large order that eats through the best price (and sometimes further price levels). This

causes the momentum traders to submit particularly large orders on the same side,

setting off a positive feedback chain that pushes the price further in the same direction.

The price begins to revert when the momentum traders begin to run out of cash while

the mean reversion traders become increasingly active.

Figure 5.8 illustrates the relative numbers of extreme price events as a function of their

duration. The event duration is the time difference (in simulation time) between the

first and last tick in the sequence of jumps in a particular direction. It is clear that these

extreme price events are more likely to occur quickly than over a longer timescale. This

is due to the higher probability of momentum traders acting during such events. It is

very rare to see an event last longer than 35 time steps.

Figure 5.9 shows the relative number of crash and spike events as a function of their

duration for different schemes of high frequency activity. The solid line shows the result

Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms 111

0 10 20 30 40 50

Event Duration

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l
a
t
iv

e
#

o
f

e
v
e
n
t
s

Figure 5.8: Relative numbers of crash/spike events as a function of their duration

0 10 20 30 40 50

Event Duration

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l
a
t
iv

e
#

o
f

e
v
e
n
t
s

δmt = 0.4 δmr = 0.4

δmt = 0.6 δmr = 0.6

δmt = 0.6 δmr = 0.2

Figure 5.9: Flash crash occurrence with various values for the probability of the high
frequency traders acting.

with the standard parameter setting from Table 5.2. The dashed line shows results from

a scheme with an increased probability of both types of high frequency trader acting.

Here, we see that there is an increased incidence of short duration flash events. It seems

that the increased activity of the trend follows causes price jumps to be more common

while the increased activity of the mean reverts ensures that the jump is short lived. In

the scenario where the activity of the momentum followers is high but that of the mean

reverts is low (the dotted line) we see an increase in the number of events cross all time

scales. This follows from our previous analogy.

112 Chapter 5 An Agent-Based Order Book Model for Automated Trading Algorithms

5.3 Summary

The agent-based simulation proposed in this chapter is designed to allow practitioners

and academics to better understand the behaviour of automated algorithmic trading

strategies. It is able to replicate a number of well-known statistical characteristics of

financial markets including: clustered volatility, autocorrelation of returns, long memory

in order flow, concave price impact and the presence of extreme price events. This

supports prevailing empirical findings from microstructure research.

Perhaps the most intersting observation is the emergence of flash crash-like behaviour

without explicit modelling of trading strategies to generate such behaviour. Though the

well-known trading strategies outlined above have been modelled in previous studies,

the addition of the ability for agents to act on differing timescales gives rise to previ-

ously undocumented flash crash-like behaviour. Note, then, that we find extreme price

events to occur not due to malicious behaviours that seek to disrupt the market and

benefit from the aftermath but instead to emerge as a happenstance of the interactions

of otherwise benign trading strategies. As such, policy makers should take note that

focussing efforts on the prevention of malicious behaviours and guiding regulation in this

direction may prove not to be fruitful. Instead, regulators should focus on understanding

how the interactions of market participants can lead to unexpected systemic behaviours

as demonstrated here.

In this vein, a number of interesting facets are explored. Firstly, we find that increasing

the total number of high frequency participants has no discernible effect on the shape of

the price impact function while increased numbers do lead to an increase in flash crash

events. We also find that the balance of trading strategies is important in determining

the shape of the price impact function. Specifically, excess activity from aggressive

liquidity-consuming strategies leads to a market that yields increased price impact.

Chapter 6

Conclusions

This thesis has focused on predicting and modelling financial systems. Specifically, a

novel random forest (RF) based online ensemble learning system was proposed for pre-

dicting both daily price returns and intra-day price impact. In Chapter 3 we described

the specific methodologies of this system and showed that RFs were able to produce

superior out-of-sample prediction accuracies when forecasting daily price returns. We

also showed that introducing our novel method for online generation and combination of

multiple RFs outperformed other state-of-the-art methodologies. Finally, it was demon-

strated that taking advantage of season regularities in the data produced both better

prediction accuracy and greater risk adjusted returns than simply trading every day.

Thus we achieved our first aim of developing a completely autonomous trading system

that captures the state of the market in its inputs, makes predictions about price move-

ments, manages risk and generates profit in the face of realistic transaction costs. The

academic development and study of such systems is a step closer to understanding the

new, highly computerised financial ecosystem.

In Chapter 4, we apply the algorithms mentioned above to the prediction of price impact

in limit order books (LOBs). In more detail, upon the occurrence of an event that alters

the best prices of the LOB (limit order at the best price, market order, cancellation or

modification), each RF in an ensemble makes a prediction before an expert weighting

system averages the predictions of all RFs weighted by their recent performance. A

separate ensemble is used to predict the price change at t = 1, 5, 10, and 60 seconds after

an event. This performance of the RF ensemble is then explored using 100 days of market

depth data on the 25 most liquid stocks on the BATS Chi-X exchange. Our system is

benchmarked against ensembles of linear regression, neural networks and support vector

models as well as single random forests and show to produce superior performance than

all other models across all timeframes. We also explore the importance of the features

used to predict price impact, finding that the drivers of impact vary through time.

As outlined in Section 2.4.1 models of price impact are particularly important for in-

113

114 Chapter 6 Conclusions

stitution traders as an integral part of an optimal order execution model. More than

that, models such as that outlined in Chapter 4 provide us with an insight into impor-

tant issues like how changes in the order book affect price impact and what drives price

movement across various timescales.

In light of the requirements of the forthcoming MiFID II regulations, Chapter 5 describes

an interactive simulation environment for analysing trading algorithms. Not only does

such a model allow regulators to understand the effects of algorithms on the market

dynamics it also allows trading firms to optimise proprietary algorithms.

The strategic interaction of the agents and the differing time-scales on which they act

are, at present, unique to this model and crucial in dictating the complexities of high-

frequency order-driven markets. As a result, this thesis presents the first model capable

of replicating all of the aforementioned stylised facts of limit order books, an impor-

tant step towards an environment for testing automated trading algorithms. Such an

environment not only fulfils a requirement of MiFID II, more than that, it makes an

important step towards increased transparency and improved resilience of the complex

socio-technical system that is our brave new marketplace.

6.1 Implications and Limitations

This thesis has used machine learning and agent-based modelling techniques to explore

the drivers of market price dynamics. Chapter 4 suggested that the most influential

features that affect price movements in limit order books are the volume at the best

price and the number of recent order arrivals, which are found to inversely relate to

price movements, and average price increment, spread and event size, which are directly

related. Chapter 5 takes a different, bottom-up, approach, finding that an increase in

the total number of high frequency strategies has no discernible effect on the shape of

the price impact function though do lead to an increase in flash crash events. It was also

found that the balance of trading strategies is important in determining the shape of the

price impact function. Specifically, excess activity from aggressive liquidity-consuming

strategies lead to a markets with increased price impact.

Although there is a need for improved understanding and stability in electronic limit or-

der book markets, such markets represent complex adaptive systems where small micro-

level changes can give rise to large (often unforeseen) consequences. Thus, regulators

may wish to tread carefully. Our research suggests the following:

• Standard models of LOB dynamics are not adequate for capturing the complex

interactions of agents and time varying nature of the features that affect the mar-

kets.

Chapter 6 Conclusions 115

• Agent-based models are able to provide a simulation environment where market

dynamics are emergent phenomena that arise from the interactions of behaviours

that occur across differing timescales.

• Regulation of algorithmic trading is not a simple matter of yes or no. Stable

markets can arise from environments dominated by high-frequency algorithmic

strategies — it is the interactions of these strategies that is particularly important.

However, the extent to which specific policy recommendations might be made is re-

stricted by the limitations of the model. Below, we present a discussion of these limita-

tions and their importance.

Conceptualising Agents

By definition, ABMs consider systems at a decentralised level. Such a level of detail

involves the description of a number of agent attributes and behaviours and their inter-

action with the environment. While we have explored agents that learn and demonstrate

strategic behaviours, the agents used in the our work are a dramatic simplification of

reality. Real-world market participants have been seen to display irrational behaviour,

subjective choices, and complex psychology. However, our agents were still able to

generate realistic macro-level stylised facts. Constructing such agents requires a very

different kind of data from traditional top-down, mathematic models. We need to know

how market participants behave, interact, form relationships and make decisions.

Market Interdependencies

The models in Chapters 4 and 5 are based around a single exchange. In reality, there

are significant and important interdependencies in price and liquidity across exchange

platforms. Particularly, many algorithmic trading strategies seek to arbitrage between

venues and seek liquidity across the now highly fragmented marketplace. However, our

model was kept intentionally simple so as to isolate important features and assess the

effect of agents acting across differing timescales. Although this was successfully demon-

strated, future work into multiple competing exchanges would provide an interesting line

of inquiry.

6.2 Future Work

Research into the understanding and prediction of agent behaviour and price dynam-

ics in complex electronic marketplaces is increasingly gathering pace. Furthermore, as

trading technology and the regulatory landscape in which it operates is ever changing,

116 Chapter 6 Conclusions

additional research is need in order to improve current modelling techniques and bet-

ter inform regulatory decisions. Thus, while this thesis makes significant steps towards

an understanding of the determinants of price formation in limit order markets, there

are a number of areas that require further work. Below we highlight some of the most

important of them:

• In the first part of this thesis, we develop a model for forecasting highly non-

stationary time-series. Because predicting with online generation of models proved

to be so much more effective than traditional static methods, we it would be of

particular interest to look in more detail at how various phases of the market can

be identified and leveraged for greater prediction accuracy.

• An interesting direction for future research would be the integration of an en-

semble based price impact prediction model into an algorithmic trading strategy.

Furthermore, the analysis of such a strategy could be performed in the simulation

environment developed in the latter part of this thesis.

• While our simulation environment has been shown to accurately produce a number

of order book dynamics, the intra-day volume profile has not been examined.

It is proposed that the exploration of the relative volumes traded throughout a

simulated day and extensions made so as to replicate the well known U-shaped

volume profiles (see Jain and Joh (1988); McInish and Wood (1992)).

• It is proposed as future work that the use of intelligent, time-adaptive agents are

investigated. Given that real-world firms change strategies over time, it would be

interesting to see the effect that adding such an ability has on the behaviour of

the model. For example, we might expect that firms that are able to adapt their

strategies over time live longer on average or are more profitable, since they may

be better equipped to respond to a changing environment.

With the growing popularity and need for improved regulation of electronic order-driven

markets, we envisage much future work in this area. To this end, we believe this thesis

highlights the pertinent areas of research and makes advances the state of the art for

limit order book modelling.

Appendix A

Addition details for Chapter 3

A.1 Inputs

Features Variants

Month
Closing price at t− 1
Highest price on day t− 1
Lowest price on day t− 1
Volume traded on day t− 1
Index closing price at t− 1
Simple moving average of closing prices
Exponential moving average of closing prices n = 10, 16 and 22
Bollinger bands
Momentum
Acceleration n = 24
Rate of change n = 10 and 16
MACD s = 24 and 30
MACD signal s = 24
Relative strength index n = 14 and 20
FAST%K n = 24
FAST%D
SLOW%K
SLOW%D
Chaikin volatility
Accumulation distribution line
On balance volume
Chaikin Oscillator
VaR-breaks measure (see equation 3.2)

Table A.1: A list of all features considered for input to the prediction model. Those
shaded grey are used in the experiments reported in Section 3.4.

117

118 Appendix A Addition details for Chapter 3

A.2 Technical Indicators

Indicator Description Calculation

EMAc
t(n)

Exponential moving average of the

last n observations of series pc

EMA(pc, n) = λ
∑∞
s=0(1− λ)spct−s

λ = 2
n+1

where n = 10, 16 and 22

SMAc
t(n)

Simple moving average of the last n

observations of pc
SMAt(p

c, n) = 1
n

∑n−1
s=0 p

c
t − s

where n = 10, 16 and 22

Bollut (n, s) and

Bolldt (n, s)

The Bollinger bands are calculated as

a function of s standard deviations

from the reference SMAc
t(n). When

the price crosses above the upper

Bollinger band, it is a sign that the

market is overbought and vice versa.

Bollut (n, s) = SMAc
t(n) + sσ2

t (n)

Bolldt (n, s) = SMAc
t(n)− sσ2

t (n)

where s = 2, n = 20, 26 and 32

Momentum Indicators

MOMt(n)

Momentum represents the price

change over the last n periods. If it

is above (below) zero, it indicates the

the market is trending up (down).

pct − pct−n
where n = 12, 18 and 24

ACCt(n)
Acceleration represents the change in

momentum.

MOMt(n)−MOMt−1(n)

where n = 12, 18 and 24

ROCt(n) The rate of change of a time series pct .
100.

pct−pct−n

pct−n

where n = 10, 16 and 22

MACDt(s, f)

The moving average convergence di-

vergence is the difference between two

moving average of varying periods

(s, f).

EMAt(p
c, s)− EMAt(p

c, f)

where f = 12

and s = 18, 24 and 30

MACDSt(s, f, n)

The MACD signal is the moving aver-

age of the MACDt(s, f) of the last n

periods. Usually a buy signal is gen-

erated when the MACDt(s, f) crosses

the signal line

EMAt(MACDt(s, f), n)

where f = 12, n = 9

and s = 18, 24 and 30

RSIt(n)

The relative strength index compares

the days that a price finishes up with

those that it finishes down. Normally

a buy signal occurs when RSIt(n)

crosses below a lower band of 30 and

a sell signal occurs when it crosses an

upper band of 70

100− 100/
(

1 +
SMAt(pupn ,n1)

SMAt(pdnn ,n1)

)
where n = 8, 14 and 20

FAST%Kt(n)

The fast stochastic K represents a

percent measure of the last close price

in relation to the highest high and the

lowest low of the last n periods

puct −min(pln)

max(phn)−min(pln)

where n = 12, 18 and 24

FAST%Dt(n) Moving average of the FAST%Kt(n). SMAt(FAST%Kt(n), 3)

SLOW%Kt(n) Moving average of the FAST%Dt(n). SMAt(FAST%Dt(n), 3)

SLOW%Dt(n) Moving average of the SLOW%Kt(n). SMAt(SLOW%Kt(n), 3)

Volatility Indicators

Appendix A Addition details for Chapter 3 119

CHVt(n, n1)

The Chaikin volatility evaluates the

breadth of the range between high

and low prices. It also calculates the

ROC of the moving average of the

difference between the high and low

prices. Often a very fast increase (de-

crease) of this indicator is a signal

that the bottom (top) of the market

is near.

EMAt(ph−pl,n)

EMAt−n1
(ph−pl,n)

− 1

where n1 = 10

Volume Indicators

ADLt

The accumulation/distribution line

was also developed by Chaikin. It

is calculated using the close location

value (CLV). This indicator compares

the close with the range of prices from

the same period. A positive value in-

dicates a buying pressure and a nega-

tive the opposite.

∑n
t=1 CLVt.VOLt

where CLVt =
2puct−plt−pht

pht −plt

OBVt

The on balance volume evaluates the

impact of positive and negative vol-

ume flows. It adds the volume when

the close has increased and subtracts

it when the close has decreased.

if pct > pct−1:

then OBVt = OBVt−1 + VOLt

if pct < pct−1:

then OBVt = OBVt−1 −VOLt

CHOt

The Chaikin oscillator is the MACD

of the ADL. It represents the dif-

ference between a short and long

EMAt(ADL, n). This indicator is

to be interpreted similarly to the

MACD.

EMAt(ADL, n1)− EMAt(ADL, n2)

where n1 = 3, and n2 = 10

Table A.2: A description of the technical indicators with parameters

shown in parentheses.

Appendix B

Addition details for Chapter 4

B.1 Stock Descriptives

Notional Value Volume

Index BXE Book CXE Book Combined BXE Book CXE Book Combined

CHERI Pan Europe 8.20% 20.34% 28.55% 9.30% 19.40% 28.70%

CHERI Eurozone 3.28% 15.08% 18.37% 9.29% 17.80% 27.08%

CHERI Pan Europe 60 3.33% 15.50% 18.83% 8.14% 19.75% 27.89%

STOXX Europe 50 3.57% 15.76% 19.33% 8.44% 21.38% 29.83%

EURO STOXX 50 3.21% 14.58% 17.79% 8.53% 18.25% 26.78%

CHERI Euro 40 3.51% 14.63% 18.14% 9.13% 17.79% 26.92%

FTSE 100 3.76% 16.51% 20.27% 8.54% 22.72% 31.26%

CAC 40 3.05% 16.56% 19.61% 8.01% 22.66% 30.67%

DAX 4.40% 17.49% 21.89% 9.00% 23.54% 32.55%

FTSE MIB 3.44% 9.62% 13.06% 8.31% 14.78% 23.09%

IBEX 35 1.07% 7.09% 8.16% 7.20% 14.35% 21.55%

AEX 3.98% 15.12% 19.10% 9.29% 20.33% 29.63%

CHERI Nordic 4.33% 14.94% 19.27% 10.86% 20.19% 31.05%

OMXS30 4.16% 14.01% 18.17% 10.11% 19.81% 29.92%

FTSE 250 3.47% 11.28% 14.75% 8.09% 17.87% 25.96%

BEL20 2.69% 16.73% 19.42% 8.01% 23.20% 31.21%

MDAX 4.37% 12.92% 17.29% 10.06% 23.38% 33.44%

FTSERIOB 1.10% 8.29% 9.39% 6.03% 10.83% 16.86%

CAC Next20 2.98% 13.56% 16.54% 8.22% 20.91% 29.14%

OBX 2.31% 14.94% 17.26% 6.54% 18.01% 24.54%

OMXH25 3.90% 14.18% 18.08% 10.05% 20.34% 30.39%

OMXC20 3.09% 12.69% 15.78% 8.49% 17.72% 26.21%

PSI20 1.95% 6.55% 8.50% 5.90% 7.99% 13.89%

AMX 1.91% 11.85% 13.76% 6.68% 14.84% 21.52%

ATX 1.66% 8.22% 9.89% 7.19% 13.40% 20.59%

ISEQ 20 3.60% 3.17% 6.76% 8.64% 7.27% 15.91%

Table B.1: Table percentage of market share of BATS (BXE) and Chi-X (CXE) across

various indices.

121

122 Appendix B Addition details for Chapter 4

Notional Value Volume

Market BXE Book CXE Book Combined BXE Book CXE Book Combined

London 8.69% 22.54% 31.23% 8.12% 19.82% 27.94%

Frankfurt 9.26% 22.72% 31.98% 9.58% 21.34% 30.92%

Paris 7.48% 22.98% 30.46% 7.52% 21.95% 29.48%

Milan 8.54% 14.79% 23.33% 8.43% 13.69% 22.11%

Madrid 6.91% 14.93% 21.85% 6.51% 13.15% 19.67%

Amsterdam 8.46% 19.49% 27.95% 7.72% 17.72% 25.44%

Stockholm 10.07% 20.52% 30.58% 10.16% 20.42% 30.58%

Brussels 7.35% 23.14% 30.49% 7.41% 19.86% 27.27%

Oslo 8.45% 19.76% 28.22% 7.18% 16.46% 23.64%

Helsinki 9.15% 21.51% 30.66% 9.56% 18.30% 27.86%

Copenhagen 8.71% 17.78% 26.49% 8.08% 14.14% 22.22%

Lisbon 6.27% 12.06% 18.33% 6.22% 8.57% 14.79%

Vienna 6.39% 13.81% 20.19% 7.51% 13.70% 21.21%

Dublin 6.89% 8.20% 15.09% 8.93% 7.18% 16.11%

Total 8.46% 20.91% 29.37% 7.78% 16.23% 24.01%

Table B.2: Table percentage of market share of BATS (BXE) and Chi-X (CXE) across

various markets.

Appendix B Addition details for Chapter 4 123

B.2 Inputs

Indicator Parameters

Incoming event features

Event type -

Event side (the bid book or the offer book) -

Event size -

Event price -

Price features

Exponential moving average of the last n observations of best prices n = 16

Bollinger bands of the last n observations of best prices n = 32

Momentum of the best prices over the last n observations n = 12, and 24

Acceleration of the best prices over the last n observations n = 18

The rate of change of the best prices over the last n observations n = 22

The MACD of the best prices f = 12, s = 24

The relative strength index of the best prices over the last n observations n = 20 and 32

The fast stochastic K of the best prices over the last n observations n = 12 and 18

The Chaikin volatility of the best prices over the last n observations n = 10

The accumulation/distribution line -

The Chaikin oscillator n1 = 3, and n2 = 10

Spread features

Exponential moving average of the last n observations of spread n = 10

Momentum of the spread over the last n observations 18

The rate of change of the spread over the last n observations n = 10, 16 and 22

The MACD of the spread f = 12, s = 30

The relative strength index of the spread over the last n observations n = 14

The fast stochastic K of the spread over the last n observations n = 12 and 24

Liquidity features

Exponential moving average of bid/ask book volume over the last n observations n = 22

Exponential moving average of volume at best bid/ask price over the last n observations n = 12 and 36

Momentumof bid/ask book volume over the last n observations n = 12, 24 and 36

Number of price improvements in the last n observations n = 25, and 50

Number of trades in the last n observations n = 50

Number of bid/ask quotes arrived in the last n observations n = 50

Number of bid/ask cancellations in the last n observations n = 50

Current modal bid/ask price relative to best bid/ask price -

Current mean price increment between order prices -

Table B.3: Table describing features used for the model ensemble of random forests
model. Price features are all normalised by the price preceding an event, while spread

features are normalised by the minimum price increment allowable in the book.

Bibliography

M. Abdullah and V. Ganapathy. Neural network ensemble for financial Trend Prediction.

In TENCON Proceedings. IEEE, volume 2, pages 157–161. Ieee, 2000. ISBN 0-7803-

6355-8.

a. F. Agrawal. Sexual selection and the maintenance of sexual reproduction. Nature,

411(6838):692–695, 2001.

E. Alba and B. Dorronsoro. The exploration/exploitation tradeoff in dynamic cellular

genetic algorithms. Evolutionary Computation, IEEE Transactions on, 9(2):126–142,

2005.

S. S. Alexander. Price movements in speculative markets: Trends or random walks.

Industrial Management Review, 2(2):7–26, 1961.

F. Allen and R. Karjalainen. Using genetic algorithms to find technical trading rules.

Journal of Financial Economics, 51(2):245–271, 1999.

R. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal of Risk,

3:5–40, 2001.

H. Andersson and T. Britton. Stochastic epidemic models and their statistical analysis.

Springer Lecture Notes in Statistics, 2000.

J. J. Angel, L. E. Harris, and C. S. Spatt. Equity trading in the 21st century. Quarterly

Journal of Finance, 1(1):1–53, 2011.

R. A. Ariel. A monthly effect in stock returns. Journal of Financial Economics, 18(1):

161–174, 1987.

R. A. Ariel. High stock returns before holidays: Existence and evidence on possible

causes. Journal of Finance, 45(5):1611–1626, 1990.

S. Asadi, E. Hadavandi, F. Mehmanpazir, and M. M. Nakhostin. Hybridization of

evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock

market prediction. Knowledge-Based Systems, 35:245–258, 2012.

Y. At-Sahalia, P. A. Mykland, and L. Zhang. Ultra high frequency volatility estimation

with dependent microstructure noise. Journal of Econometrics, 160(1):160–175, 2011.

125

126 BIBLIOGRAPHY

M. Avellaneda and S. Stoikov. High-frequency trading in a limit order book. Quantitative

Finance, 8(3):217–224, 2008.

R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science, 211(4489):

1390–1396, 1981.

C. Axioglou and S. Skouras. Markets change every day: Evidence from the memory of

trade direction. Journal of Empirical Finance, 18(3):423–446, 2011.

M. Baron, J. Brogaard, and A. Kirilenko. The trading profits of high frequency traders.

Technical report, Working paper, 2012.

L. Barone and L. While. An adaptive learning model for simplified poker using evolution-

ary algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-

CEC99 (Cat. No. 99TH8406), pages 153–160, 1999. ISBN 0-7803-5536-9.

F. M. Bass. A new product growth for model consumer durables. Management Science,

15(5):215–227, 1969.

E. Bayraktar and M. Ludkovski. Optimal trade execution in illiquid markets. Mathe-

matical Finance, 21(4):681–701, 2011.

Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends in Machine

Learning, 2(1):1–127, 2009.

Y. Bengio. Practical recommendations for gradient-based training of deep architectures.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 7700 LECTU:437–478, 2012.

D. Bertsimas and A. W. Lo. Optimal control of execution costs. Journal of Financial

Markets, 1(1):1–50, apr 1998.

B. Biais, P. Hillion, and C. Spatt. An empirical analysis of the limit order book and the

order flow in the Paris Bourse. Journal of Finance, 50(5):1655–1689, 1995.

F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of

Political Economy, 81(3):637–654, 1973.

A. Blumer, a. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the

Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

D. J. Bodas-Sagi, P. Fernandez-Blanco, J. I. Hidalgo, and F. J. Soltero-Domingo. A

parallel evolutionary algorithm for technical market indicators optimization. Natural

Computing, 12(2):195–207, 2013.

A. Booth, E. Gerding, and F. McGroarty. Automated trading with performance weighted

random forests and seasonality. Expert Systems with Applications, 41(8):3651–3661,

2014a.

BIBLIOGRAPHY 127

A. Booth, E. Gerding, and F. McGroarty. Performance-weighted ensembles of random

forests for predicting price impact. Quantitative Fiance, (ahead-of-print):1–13, 2014b.

A. Booth, E. Gerding, and F. McGroarty. Predicting equity market impact with perfor-

mance weighted ensembles of random forests. In IEEE Symposium on Computational

Intelligence for Financial Engineering and Economics, pages 1–8. IEEE, 2014c.

A. Booth, E. Gerding, and F. McGroarty. A brave new model for a brave new market.

European Journal of Finance, (Under-Review), 2015.

A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and

ferns. In IEEE 11th International Conference on Computer Vision, pages 1–8. Ieee,

2007.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A Training Algorithm for Optimal Mar-

gin Classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational

Learning Theory, pages 144–152, 1992. ISBN 089791497X.

J.-P. Bouchaud, J. D. Farmer, and F. Lillo. How markets slowly digest changes in

supply and demand. In Handbook of Financial Markets: Dynamics and Evolution,

pages 57–160. 2009.

J.-P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart. Fluctuations and response in

financial markets: The subtle nature of ‘random’ price changes. Quantitative Finance,

4(2):176–190, 2004.

J.-P. Bouchaud and M. Potters. Theory of financial risk and derivative pricing: From

statistical physics to risk management. Cambridge university press, 2003.

H. Braun. On solving travelling salesman problems by genetic algorithms. In Parallel

Problem Solving from Nature, pages 129–133. Springer, 1991.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

A. E. Bryson, Y.-C. Ho, and G. M. Siouris. Applied optimal control: Optimization,

estimation, and control. IEEE Transactions on Systems, Man, and Cybernetics, 6(9):

366–367, 1979.

M. Buchanan. It’s a (stylized) fact! Nature Physics, 8(1):3, 2012.

C. B. Cadsby and M. Ratner. Turn-of-month and pre-holiday effects on stock returns:

Some international evidence. Journal of Banking & Finance, 16(3):497–509, 1992.

P. Caplat, M. Anand, and C. Bauch. Symmetric competition causes population oscilla-

tions in an individual-based model of forest dynamics. Ecological Modelling, 211(3-4):

491–500, 2008.

128 BIBLIOGRAPHY

A. Carbone, G. Castelli, and H. E. Stanley. Time-dependent Hurst exponent in financial

time series. Physica A: Statistical Mechanics and its Applications, 344(1):267–271,

2004.

R. Chakrabarti. Just another day in the inter-bank foreign exchange market. Journal

of Financial Economics, 56:2–32, 2000.

A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: I.

Empirical facts. Quantitative Finance, 11(7):991–1012, 2011.

D. Challet and R. Stinchcombe. Non-constant rates and over-diffusive prices in a simple

model of limit order markets. Quantitative finance, 3(3):155–162, 2003.

B. Chen, B. M. Marlin, and J.-a. Ting. Deep Learning of Invariant Spatio-Temporal

Features from Video. NIPS Workshop, (August):1–9, 2010.

W.-h. Chen and J.-y. Shih. Comparison of support vector machines and back propagation

neural networks in forecasting the six major asian stock markets. European Journal

Of Operational Research, 1(1):49–67, 2006.

Y. Chen, B. Yang, and A. Abraham. Flexible neural trees ensemble for stock index

modeling. Neurocomputing, 70(4-6):697–703, jan 2007.

R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop scheduling problems

using genetic algorithmsI. Representation. Computers & industrial engineering, 30(4):

983–997, 1996.

T. Chenoweth, Z. Obradovic, and S. Lee. Technical trading rules as prior knowledge

to a neural network prediction system for the S&P 500 Index. In IEEE Technical

Applications Conference and Workshops, pages 111–116, 1995.

C. Chiarella and G. Iori. A simulation analysis of the microstructure of double auction

markets. Quantitative Finance, 2(5):346–353, 2002.

T. Chordia, R. Roll, and A. Subrahmanyam. Liquidity and market efficiency. Journal

of Financial Economics, 87(2):249–268, 2008.

W. G. Christie and P. H. Schultz. Why do NASDAQ market makers avoid odd-eighth

quotes? The Journal of Finance, 49(5):1813–1840, dec 1994.

S.-H. Chun and Y.-J. Park. Dynamic adaptive ensemble case-based reasoning: appli-

cation to stock market prediction. Expert Systems with Applications, 28(3):435–443,

apr 2005.

D. C. Cirean, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep, big, simple

neural nets for handwritten digit recognition. Neural computation, 22(12):3207–3220,

2010.

BIBLIOGRAPHY 129

D. Cliff. Minimal-intelligence agents for bargaining behaviors in market-based environ-

ments. Technical report, HP Laboratories Bristol, 1997.

D. Cliff and J. Bruten. More than zero intelligence needed for continuous double-auction

trading. Technical report, Hewlett Packard, 1997.

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaBoost and Bregman

distances. Engineering, 48(3):158–169, 2000.

R. Cont. Empirical properties of asset returns: Stylized facts and statistical issues.

Quantitative Finance, 1(2):223–236, 2001.

R. Cont. Long range dependence in financial markets. In Fractals in Engineering, pages

159–179. Springer, 2005.

R. Cont and J.-P. Bouchaud. Herd behavior and aggregate fluctuations in financial

markets. Macroeconomic Dynamics, 4(2):170–196, 2000.

R. Cont and A. De Larrard. Order book dynamics in liquid markets: Limit theorems

and diffusion approximations. Available at SSRN 1757861, 2011.

R. Cont, A. Kukanov, and S. Stoikov. The price impact of order book events. Journal

of Financial Econometrics, 12(1):47–88, 2013.

R. Cont, M. Potters, and J.-P. Bouchaud. Scaling in stock market data: Stable laws and

beyond. In Scale invariance and beyond, pages 75–85. Springer, Berlin Heidelberg,

1997.

R. Cont, S. Stoikov, and R. Talreja. A stochastic model for order book dynamics.

Operations research, 58(3):549–563, 2010.

G. Creamer and Y. Freund. Predicting performance and quantifying corporate gover-

nance risk for latin american adrs and banks. Financial Engineering and Applications,

MIT, Cambridge, 2004.

G. Creamer and Y. Freund. Automated trading with boosting and expert weighting.

Quantitative Finance, 4(10):401–420, 2010.

F. Cross. The behavior of stock prices on fridays and mondays. Financial Analysts

Journal, 29(1):67–69, 1973.

W. Cui and A. Brabazon. An agent-based modeling approach to study price impact.

In 2012 IEEE Conference on Computational Intelligence for Financial Engineering &

Economics (CIFEr), pages 1–8. Ieee, mar 2012. ISBN 978-1-4673-1803-7.

P. Cunningham, J. Carney, and S. Jacob. Stability problems with artificial neural net-

works and the ensemble solution. Artificial Intelligence in Medicine, 20:217–225, 2000.

130 BIBLIOGRAPHY

V. Darley and A. V. Outkin. A NASDAQ Market Simulation: Insights on a Major

Market from the Science of Complex Adaptive Systems. 2007. ISBN 9789812700018.

R. Das, J. E. Hanson, J. O. Kephart, and G. Tesauro. Agent-human interactions in the

continuous double auction. In The Proceedings of the International Joint Conferences

on Artifi- cial Intelligence (IJCAI), 2001.

K. A. De Jong and W. M. Spears. A formal analysis of the role of multi-point crossover

in genetic algorithms. Annals of mathematics and Artificial intelligence, 5(1):1–26,

1992.

M. de la Maza and B. Tidor. An analysis of selection procedures with particular attention

paid to proportional and Boltzmann selection. In Proceedings of the 5th International

Conference on Genetic Algorithms, pages 124–131. Morgan Kaufmann Publishers Inc.,

1993.

M. De Luca, C. Szostek, J. Cartlidge, and D. Cliff. Studies of interactions between

human traders and algorithmic trading systems. UK Government Foresight Project,

2011.

K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space.

Complex systems, 9(2):115–148, 1995.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sort-

ing genetic algorithm for multi-objective optimization: NSGA-II. Lecture notes in

computer science, 1917:849–858, 2000.

Y. Demazeau and J.-P. Müller. Decentralized AI, volume 2. Elsevier, 1990.

M. A. H. Dempster, T. W. Payne, Y. Romahi, and G. W. P. Thompson. Computational

learning techniques for intraday FX trading using popular technical indicators. IEEE

Transaction on Neural Networks, 12(4):744–754, 2001.

H. Demsetz. The cost of transacting. Quarterly Journal of Economics, 82:33–53, 1968.

R. Dı́az-Uriarte and S. Alvarez De Andrés. Gene selection and classification of microarray

data using random forest. BMC Bioinformatics, 7(1):3, 2006.

S. Drozdz, M. Forczek, J. Kwapien, P. Oswiecimka, and R. Rak. Stock market re-

turn distributions: From past to present. Physica A: Statistical Mechanics and its

Applications, 383(1):59–64, 2007.

C. L. Dunis, J. Laws, and G. Sermpinis. Higher order and recurrent neural architectures

for trading the EUR/USD exchange rate. Quantitative Finance, 11(4):615–629, apr

2011.

C. L. Dunis and V. Morrison. The economic value of advanced time series methods for

modelling and trading 10-year government bonds. European Journal of Finance, 21

(5):333–352, 2004.

BIBLIOGRAPHY 131

D. Easley, M. de Prado, and M. OHara. Measuring flow toxicity in a high frequency

world. Technical report, unpublished Cornell University working paper (October),

2010.

D. Easley, M. M López De Prado, and M. O’Hara. The Microstructure of the ”Flash

Crash”: Flow Toxicity, Liquidity Crashes, and the Probability of Informed Trading.

Journal of Portfolio Management, 37(2):118–128, 2011.

Z. Eisler, J.-P. Bouchaud, and J. Kockelkoren. The price impact of order book events:

market orders, limit orders and cancellations. Quantitative Finance, 12(9):1395–1419,

sep 2012.

D. Enke and S. Thawornwong. The use of data mining and neural networks for fore-

casting stock market returns. Expert Systems with Applications, 29(4):927–940, nov

2005.

K. Erol, R. Levy, and J. Wentworth. Application of agent technology to traffic simula-

tion. 2000.

European Union. Proposal for a directive of the European Parliment and of the council

on markets in financial instruments repealing Directive 2004/39/EC of the European

Parliament and of the Council (Recast). Official Journal of the European Union, 2011.

European Union. Directive 2014/65/EU of the European Parliament and of the Coun-

cil of 15 May 2014 on markets in financial instruments and amending Directive

2002/92/EC and Directive 2011/61/EUNo Title. Technical report, 2014a.

European Union. Markets in Financial Instruments (MiFID): Commissioner Michel

Barnier welcomes agreement in trilogue on revised European rules. Memo, 2014b.

E. F. Fama. Efficient capital markets: A review of theory and emperical work. Journal

of Finance, 25(2):383–417, 1970.

E. F. Fama and M. E. Blume. Filter rules and stock-market trading. Journal of Business,

39(1):226–241, 1966.

J. D. Farmer and D. Foley. The economy needs agent-based modelling. Nature, 460:

685–686, 2009.

J. D. Farmer, A. Gerig, F. Lillo, and H. Waelbroeck. How efficiency shapes market

impact. Quantitative Finance, 13(11):1743–1758, nov 2013.

J. D. Farmer and F. Lillo. On the origin of power-law tails in price fluctuations. Quan-

titative Finance, 4(1):7–11, 2004.

J. D. Farmer, P. Patelli, and I. I. Zovko. The predictive power of zero intelligence in

financial markets. Proceedings of the National Academy of Sciences of the United

States of America, 102(6):2254–9, feb 2005.

132 BIBLIOGRAPHY

J. Farmer and S. Joshi. The price dynamics of common trading strategies. Journal of

Economic Behavior & Organization, 49(2):149–171, 2002.

F. Fernández-Rodŕıguez. On the profitability of technical trading rules based on artificial

neural networks: Evidence from the Madrid Stock Market. Economics Letters, 69(1):

89–94, 2000.

M. J. Fields. Stock prices: A problem in verification. The Journal of Business of the

University of Chicago, 4(4):415–418, 1931.

M. J. Fields. Security prices and stock exchange holidays in relation to short selling.

The Journal of Business of the University of Chicago, 7(4):328–338, 1934.

D. B. Fogel. An introduction to simulated evolutionary optimization. Neural Networks,

IEEE Transactions on, 5(1):3–14, 1994.

T. Foucault. Order flow composition and trading costs in a dynamic limit order market.

Journal of Financial Markets, 2(2):99–134, 1999.

K. R. French. Stock returns and the weekend effect. Journal of Financial Economics, 8

(1):55–69, 1980.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1):

119–139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical

view of boosting. Annals of Statistics, 28(2):337–407, 2000.

J. Gatheral. No-dynamic-arbitrage and market impact. Quantitative Finance, 10:749–

759, 2010.

J. Geanakoplos, R. Axtell, J. Farmer, P. Howitt, B. Conlee, J. Goldstein, M. Hendrey,

N. Palmer, and C.-Y. Yang. Getting at systemic risk via an agent-based model of the

housing market. 2012.

S. Gjerstad and J. Dickhaut. Price formation in double auctions. Games and Economic

Behavior, 22(1):1–29, 1998.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward

neural networks. AISTATS, 9:249–256, 2010.

X. Glorot, A. Bordes, and Y. Bengio. Domain Adaptation for Large-Scale Sentiment

Classification: A Deep Learning Approach. Proceedings of the 28th International

Conference on Machine Learning, (1):513–520, 2011.

D. Gode and S. Sunder. Allocative efficiency of markets with zero-intelligence traders:

Market as a partial substitute for individual rationality. Journal of Political Economy,

101(1):119–137, 1993.

BIBLIOGRAPHY 133

D. E. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman problem. In

Proceedings of the first international conference on genetic algorithms and their ap-

plications, pages 154–159. Lawrence Erlbaum Associates, Publishers, 1985.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal

function optimization. In Genetic algorithms and their applications: Proceedings of

the Second International Conference on Genetic Algorithms, pages 41–49. Hillsdale,

NJ: Lawrence Erlbaum, 1987.

J. F. Gonçalves, J. J. de Magalhães Mendes, and M. G. C. Resende. A hybrid ge-

netic algorithm for the job shop scheduling problem. European journal of operational

research, 167(1):77–95, 2005.

P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley. Scaling

of the distribution of fluctuations of financial market indices. Physical review. E,

Statistical physics, plasmas, fluids, and related interdisciplinary topics, 60(5):5305–

5316, 1999.

P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley. Inverse cubic law for the

distribution of stock price variations. The European Physical Journal B-Condensed

Matter and Complex Systems, 3(2):139–140, 1998.

V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.-H.

Thulke, J. Weiner, T. Wiegand, and D. L. DeAngelis. Pattern-oriented modeling of

agent-based complex systems: lessons from ecology. Science (New York, N.Y.), 310

(5750):987–91, nov 2005.

G. F. Gu, W. Chen, and W. X. Zhou. Empirical distributions of Chinese stock returns at

different microscopic timescales. Physica A: Statistical Mechanics and its Applications,

387(2):495–502, 2008.

G.-F. Gu and W.-X. Zhou. Emergence of long memory in stock volatility from a modified

Mike-Farmer model. EPL (Europhysics Letters), 86(4):48002, 2009.

R. Guobuzaite, K. Byrne, and A. Freyre-Sanders. A review of trading cost models. The

Journal of Investing, 13(3):93–115, 2004.

E. Guresen, G. Kayakutlu, and T. U. Daim. Using artificial neural network models in

stock market index prediction. Expert Systems with Applications, 38(8):10389–10397,

2011.

S. Gutta and H. Wechsler. Face recognition using hybrid classifier systems. In Neu-

ral Networks, 1996., IEEE International Conference on, volume 2, pages 1017–1022.

IEEE, 1996. ISBN 0780332105.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of

Machine Learning Research, 3:1157–1182, 2003.

134 BIBLIOGRAPHY

L. K. Hansen and P. Salamon. Neural network ensembles. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 12(10):993–1001, 1990.

J. Hasbrouck. Measuring the information content of stock trades. The Journal of

Finance, 46:179–207, 1991.

J. Hasbrouck and G. Saar. Low-latency trading. Journal of Financial Markets, 16:

646–679, 2013.

N. Hautsch and R. Huang. The market impact of a limit order. Journal of Economic

Dynamics and Control, 36:501–522, 2012.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep Neural Networks for Acous-

tic Modeling in Speech Recognition. Ieee Signal Processing Magazine, (November):

82–97, 2012.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural

computation, 14(8):1771–1800, 2002.

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief

nets. Neural computation, 18(7):1527–54, 2006.

H. S. Hippert, C. E. Pedreira, and R. C. Souza. Neural networks for short-term load

forecasting: A review and evaluation. Power Systems, IEEE Transactions on, 16(1):

44–55, 2001.

T. K. Ho. Random decision forests. In Proceedings of the Third International Conference

on Document Analysis and Recognition, pages 278 – 282, 1995. ISBN 0818671289.

J. H. Holland. Adaptation in natural and artificial systems. Number 53. University of

Michigan Press, 1975. ISBN 0262581116.

H. Hong and J. Yu. Gone fishin’: Seasonality in trading activity and asset prices. 2009.

C. Hopman. Do supply and demand drive stock prices? Quantitative Finance, 7(1):

37–53, 2007.

J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched Pareto genetic algorithm for mul-

tiobjective optimization. In Evolutionary Computation, 1994. IEEE World Congress

on Computational Intelligence., Proceedings of the First IEEE Conference on, pages

82–87. Ieee, 1994.

C. R. Houck, J. Joines, and M. G. Kay. A genetic algorithm for function optimization:

a Matlab implementation. NCSU-IE TR, 95(09), 1995.

H. Huang and A. N. Kercheval. A generalized birthdeath stochastic model for high-

frequency order book dynamics, 2012.

BIBLIOGRAPHY 135

W. Huang, Y. Nakamori, and S.-Y. Wang. Forecasting stock market movement direction

with support vector machine. Computers & Operations Research, 32(10):2513–2522,

oct 2005.

D. H. Hubel and T. N. Wiesel. Receptive field and functional architechture in two

nonstriate visual areas (18 and 19) of the cat. Journal of neurophysiology, 28:229–

289, 1965.

G. Huberman and W. Stanzl. Price manipulation and quasi-arbitrage, 2004.

H. P. N. Hughes, C. W. Clegg, M. a. Robinson, and R. M. Crowder. Agent-based

modelling and simulation: The potential contribution to organizational psychology.

Journal of Occupational and Organizational Psychology, 85:487–502, 2012.

E. Hunsader. May 6’th 2010 Flash Crash Analysis, 2012.

a. G. Ivakhnenko. Polynomial Theory of Complex Systems. IEEE Transactions on

Systems, Man, and Cybernetics, 1(4):30–37, 1971.

P. K. Jain. Financial market design and the equity premium: Electronic versus floor

trading. The Journal of Finance, 60(6):2955–2985, 2005.

P. C. Jain and G.-H. Joh. The dependence between hourly prices and trading volume.

The Journal of Financial and Quantitative Analysis, 23:269–283, 1988.

N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and develop-

ment. Autonomous Agents and Multi-Agent Systems, 1:7–38, 1998.

O. B. Jennings and J. E. Reed. An overloaded multiclass FIFO queue with abandon-

ments. Operations Research, 60(5):1282–1295, 2012.

N. Johnson, G. Zhao, E. Hunsader, H. Qi, N. Johnson, J. Meng, and B. Tivnan. Abrupt

rise of new machine ecology beyond human response time. Scientific reports, Nature

Publishing Group, 3:2627, jan 2013.

T. Joyce, J. Nazarali, A. Levitt, F. Tomczyk, L. Harris, C. Spatt, D. Mathisson, G. Katz,

P. Stevens, E. Sirri, J. Bethel, D. Niederauer, J. Giesea, and B. Mock. Current

perspectives on modern equity markets: A collection of essays by financial industry

experts. Mighty Media, Inc., 2010.

I. Kaastra and M. Boyd. Designing a neural network for forecasting financial and eco-

nomic time series. Neurocomputing, 10(3):215–236, 1996.

K. Kamijo and T. Tanigawa. Stock price pattern recognition - A recurrent neural network

approach. In International Joint Conference on Neural Networks, pages 215–221. Ieee,

1990.

E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science, volume 4.

2000. ISBN 0838577016.

136 BIBLIOGRAPHY

L.-J. Kao, C.-C. Chiu, C.-J. Lu, and J.-L. Yang. Integration of nonlinear independent

component analysis and support vector regression for stock price forecasting. Neuro-

computing, 99:534–542, 2013.

Y. Kara, M. Acar Boyacioglu, and Ö. K. Baykan. Predicting direction of stock price

index movement using artificial neural networks and support vector machines: The

sample of the Istanbul Stock Exchange. Expert Systems with Applications, 38(5):

5311–5319, 2011.

A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi, and O. K. Hussain. Support vector re-

gression with chaos-based firefly algorithm for stock market price forecasting. Applied

Soft Computing, 13(2):947–958, 2013.

M. Kearns and L. Ortiz. The Penn-Lehman automated trading project. IEEE Intelligent

Systems, pages 22–31, 2003.

D. B. Keim and A. Madhavan. Anatomy of the trading process empirical evidence on

the behavior of institutional traders. Journal of Financial Economics, 37(3):371–398,

1995.

K.-j. Kim. Financial time series forecasting using support vector machines. Neurocom-

puting, 55(1-2):307–319, sep 2003.

K.-j. Kim. Artificial neural networks with feature transformation based on domain

knowledge for the prediction of stock index futures. International Journal of Intelligent

Systems in Accounting and Finance Management, 12(3):167–176, 2004.

T. Kimoto, K. Asakawa, M. Yoda, and M. Takeoka. Stock market prediction system

with modular neural networks. 1990 IJCNN International Joint Conference on Neural

Networks, pages 1–6 vol.1, 1990.

A. Kirilenko, A. S. Kyle, M. Samadi, and T. Tuzun. The flash crash: The impact of

high frequency trading on an electronic market. Available at SSRN 1686004, 2014.

A. S. Kondrashov. Deleterious mutations and the evolution of sexual reproduction.

Nature, 336(6198):435–440, 1988.

J. R. Koza. Genetic programming: on the programming of computers by means of natural

selection, volume 1. MIT press, 1992.

A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for content-based image

retrieval. Proceedings of 19th European Symposium on Artificial Neural Networks

(ESANN), pages 489–494, 2011.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. Advances In Neural Information Processing Systems,

pages 1–9, 2012.

BIBLIOGRAPHY 137

A. Kulkarni. Applications of neural networks to stock market prediction. Technical

report, 1996.

M. Kumar and M. Thenmozhi. Forecasting Stock Index Movement : a Comparision

of Support Vector Machines and Random Forest. Forest, Indian Institute of Capital

Markets 9th Capital Markets Conference Paper., pages 1–16, 2005.

R. Kuo, C. Chen, and Y. Hwang. An intelligent stock trading decision support system

through integration of genetic algorithm based fuzzy neural network and artificial

neural network. Fuzzy Sets and Systems, 118(1):21–45, 2001.

A. S. Kyle. Continuous auctions and insider trading. Econometrica: Journal of the

Econometric Society, 53:1315, 1985.

J. Lakonishok and S. Smidt. Are seasonal anomalies real? A ninety-year perspective.

Review of Financial Studies, 1(4):403–425, 1988.

B. Lariviere and D. Vandenpoel. Predicting customer retention and profitability by using

random forests and regression forests techniques. Expert Systems with Applications,

29(2):472–484, 2005.

P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. Genetic algo-

rithms for the travelling salesman problem: A review of representations and operators.

Artificial Intelligence Review, 13(2):129–170, 1999.

B. Lebaron. An evolutionary bootstrap method for selecting dynamic trading strategies.

Social Systems Research Institute, University of Wisconsin, Norwell, MA, 1998.

H. Lee, Y. Largman, P. Pham, and A. Ng. Unsupervised feature learning for audio clas-

sification using convolutional deep belief networks. Advances in Neural Information

Processing Systems, pages 1096–1104, 2009.

D. J. Leinweber. Stupid data miner tricks: Overfitting the S&P 500. The Journal of

Investing, 16(1):15–22, 2007.

F. H. F. Leung, H.-K. Lam, S.-H. Ling, and P. K. S. Tam. Tuning of the structure

and parameters of a neural network using an improved genetic algorithm. Neural

Networks, IEEE Transactions on, 14(1):79–88, 2003.

A. Liaw and M. Wiener. Classification and regression by random forest. R news, 2(3):

18–22, 2002.

F. Lillo, J. D. Farmer, and R. N. Mantegna. Master curve for price impact function.

Nature, 421(6919):129–130, 2003.

F. Lillo and J. D. Farmer. The long memory of the efficient market. Studies in Nonlinear

Dynamics & Econometrics, 8(3), 2004.

138 BIBLIOGRAPHY

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. In 30th An-

nual Symposium on Foundations of Computer Science, pages 256–261, 1989. ISBN

0818619821.

Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng, and H. Eugene Stanley. Correlations in

economic time series. Physica A: Statistical Mechanics and its Applications, 245(3):

437–440, 1997.

A. Lo and A. MacKinlay. A non-random walk down Wall Street. Princeton University

Press, Princeton, NJ, 2001.

S. Mahfoud and G. Mani. Applied artificial intelligence: Financial forecasting using

genetic algorithms. Applied Artificial Intelligence: An International Journal, 10(6):

543–566, 1996.

J. Mao. A case study on bagging, boosting and basic ensembles of neural networks

for OCR. In The 1998 IEEE International Joint Conference on Neural Networks

Proceedings. IEEE World Congress on Computational Intelligence., volume 3, pages

1828–1833. IEEE, 1998. ISBN 0780348591.

M. Maragoudakis and D. Serpanos. Towards stock market data mining using enriched

random forests from textual resources and technical indicators. In H. Papadopoulos,

A. Andreou, and M. Bramer, editors, Artificial Intelligence Applications and Innova-

tions, volume 339 of IFIP Advances in Information and Communication Technology,

pages 278–286. Springer, 2010.

J. Martens. Deep learning via Hessian-free optimization. 27th International Conference

on Machine Learning, 951:735–742, 2010.

I. Mastromatteo, B. Toth, and J.-P. Bouchaud. Agent-based models for latent liquidity

and concave price impact. Physical Review E, 89(4):042805, 2014.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

T. H. McInish and R. A. Wood. An analysis of intraday patterns in bid/ask spreads for

NYSE stocks. The Journal of Finance, 47:753–764, 1992.

G. Meissner and N. Kawano. Capturing the volatility smile of options on high-tech

stocks: A combined GARCH-neural network approach. Journal of Economics and

Finance, 25(3):276–292, 2001.

L. M. Menezes and N. Y. Nikolaev. Forecasting with genetically programmed polynomial

neural networks. International Journal of Forecasting, 22(2):249–265, 2006.

A. J. Menkveld and B. Z. Yueshen. Anatomy of the Flash Crash. SSRN Electronic

Journal, 2013.

BIBLIOGRAPHY 139

S. Mike and J. D. Farmer. An empirical behavioral model of liquidity and volatility.

Journal of Economic Dynamics and Control, 32(1):200–234, 2008.

B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection, and the

effects of noise. Complex Systems, 9(3):193–212, 1995.

J. F. Miller and P. Thomson. Cartesian genetic programming. In Genetic Programming,

pages 121–132. Springer, 2000.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry,

volume 165. 1969. ISBN 0262631113.

S. Mitra. Improving accuracy of option price estimation using artificial neural networks.

In Indian Institure of Capital Markets, 2006.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv preprint

arXiv: . . . , pages 1–9, 2013.

D. B. Nelson. Conditional heteroskedasticity in asset returns: A new approach. Econo-

metrica: Journal of the Econometric Society, pages 347–370, 1991.

M. a. Niazi and A. Hussain. A novel agent-based simulation framework for sensing in

complex adaptive environments. IEEE Sensors Journal, 11(2):404–412, 2011.

J. Noble. Finding Robust Texas Hold’em Poker Strategies Using Pareto Coevolution

and Deterministic Crowding. pages 233–239, 2002.

W. Nuij, V. Milea, F. Hogenboom, F. Frasincar, and U. Kaymak. An automated frame-

work for incorporating news into stock trading strategies. IEEE Transactions on

Knowledge and Data Engineering, 2013.

NYSE EURONEXT. Fees for non-display use of NYSE EURONEXT information. Tech-

nical report, 2013.

A. a. Obizhaeva and J. Wang. Optimal trading strategy and supply/demand dynamics.

Journal of Financial Markets, 16(1):1–32, feb 2013.

C. Oesch. An agent-based model for market impact. In 2014 IEEE Symposium on

Computational Intelligence for Financial Engineering and Economics (CIFEr), 2014.

R. R. Officer. The distribution of stock returns. Journal of the american statistical

association, 67(340):807–812, 1972.

H. V. D. Parunak, R. Savit, and R. L. Riolo. Agent-based modeling vs. equation-based

modeling: A case study and users guide. In Multi-agent systems and agent-based

simulation, pages 10–25. Springer, 1998.

140 BIBLIOGRAPHY

C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger.

Mosaic organization of DNA nucleotides. Physical Review E, 49:1685–1689, 1994.

V. Plerou, P. Gopikrishnan, X. Gabaix, and H. E. Stanley. Quantifying stock-price

response to demand fluctuations. Physical review. E, Statistical, nonlinear, and soft

matter physics, 66:027104, 2002.

V. Plerou and H. E. Stanley. Stock return distributions: Tests of scaling and universality

from three distinct stock markets. Physical Review E - Statistical, Nonlinear, and Soft

Matter Physics, 77(3):037101, 2008a.

V. Plerou and H. E. Stanley. Stock return distributions: Tests of scaling and universality

from three distinct stock markets. Physical Review E - Statistical, Nonlinear, and Soft

Matter Physics, 77(3):037101, 2008b.

M. Potters and J.-P. Bouchaud. More statistical properties of order books and price

impact. Physica A: Statistical Mechanics and its Applications, 324(1):133–140, 2003.

A. M. Prasad, L. R. Iverson, and A. Liaw. Newer classification and regression tree

techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2):

181–199, 2006.

S. Predoiu, G. Shaikhet, and S. Shreve. Optimal execution in a general one-sided limit-

order book. SIAM Journal on Financial Mathematics, 2(1):183–212, 2011.

T. Preis, S. Golke, W. Paul, and J. J. Schneider. Multi-agent-based order book model

of financial markets. Europhysics Letters (EPL), 75(3):510–516, 2006.

T. Preis, S. Golke, W. Paul, and J. J. Schneider. Statistical analysis of financial returns

for a multiagent order book model of asset trading. Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics, 76(1):016108, 2007.

Q. Qin, Q.-G. Wang, J. Li, and S. S. Ge. Linear and nonlinear trading models with

gradient boosted random forests and application to singapore stock market. Journal

of Intelligent Learning Systems and Applications, 5:1–10, 2013.

A.-P. Refenes, A. Zapranis, and G. Francis. Modelling stock returns in the framework of

APT: A comparative study with regression models. In Neural Networks in the Capital

Markets, pages 101–125. John Whiley and Sons, 1995.

C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM

SIGGRAPH Computer Graphics, 21(4):25–34, aug 1987.

J. Robinson, S. Sinton, and Y. Rahmat-Samii. Particle swarm, genetic algorithm, and

their hybrids: optimization of a profiled corrugated horn antenna. In Antennas and

Propagation Society International Symposium, 2002. IEEE, volume 1, pages 314–317.

IEEE, 2002.

BIBLIOGRAPHY 141

P. N. Rodŕıguez and S. Sosvilla-Rivero. Using machine learning algorithms to find

patterns in stock prices. Documento de Trabajo, page 12, 2006.

R. J. Rogalski. New findings regarding dayoftheweek returns over trading and nontrading

periods: A note. The Journal of Finance, 39(5):1603–1614, 1984.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and orga-

nization in the brain. Psychological review, 65(6):386–408, 1958.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations

by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel

Distributed Processing, volume 1 of Parallel Distributed Processing: {E}xplorations in

the Microstructure of Cognition, {V}ol.˜1: {F}oundations, chapter 8, pages 318–362.

MIT Press, 1986. ISBN 026268053X.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 1995. ISBN

9780137903955.

J. Rust, R. Palmer, and J. H. Miller. Behaviour of trading automata in a computerized

double auction market. Santa Fe Institute, 1992.

P. a. Samuelson. Interactions between the Multiplier Analysis and the Principle of

Acceleration. The Review of Economics and Statistics, 21(2):75–78, 1939.

R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,

1990.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new

explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651–

1686, 1998.

T. Schelling. Dynamic models of segregation. Journal of mathematical sociology, 1(2):

143–186, 1971.

SEC and CFTC. Findings regarding the market events of May 6, 2010. Technical

report, Report of the Staffs of the CFTC and SEC to the Joint Advisory Committee

on Emerging Regulatory Issues, 2010.

A. F. Serban. Combining mean reversion and momentum trading strategies in foreign

exchange markets. Journal of Banking and Finance, 34:2720–2727, 2010.

G. Sermpinis, J. Laws, A. Karathanasopoulos, and C. L. Dunis. Forecasting and trading

the EUR/USD exchange rate with gene expression and psi sigma neural networks.

Expert Systems with Applications, feb 2012.

T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual

cortex. Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2:994–1000, 2005.

142 BIBLIOGRAPHY

S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete

samples). Biometrika, pages 591–611, 1965.

K. Shin, K.-j. Kim, and I. Han. Financial data mining using genetic algorithms technique:

Application to KOSPI 200. In Proceedings of the Korea inteligen Information System

Society Conference, volume 200, pages 113–122, 1998.

E. Smith, J. Farmer, L. Gillemot, and S. Krishnamurthy. Statistical theory of the

continuous double auction. Quantitative Finance, 3(6):481–514, dec 2003.

V. L. Smith. An experimental study of competitive market behavior. Journal of Political

Economy, 70(2):111–137, 1962.

M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mutation in

genetic algorithms. Systems, Man and Cybernetics, IEEE Transactions on, 24(4):

656–667, 1994.

H. E. Stanley, V. Plerou, and X. Gabaix. A statistical physics view of financial fluctua-

tions: Evidence for scaling and universality. Physica A: Statistical Mechanics and its

Applications, 387(15):3967–3981, 2008.

S. Stoikov and R. Waeber. Optimal asset liquidation using limit order book information.

Available at SSRN 2113827, pages 1–33, 2012.

F. Sun, Y. Tan, H. Liu, R. d. A. Araújo, and T. A. Ferreira. A Morphological-Rank-

Linear evolutionary method for stock market prediction. Information Sciences, 237:

3–17, 2013.

J. Tang, H. Enderling, S. Becker-Weimann, C. Pham, A. Polyzos, C.-Y. Chen, and S. V.

Costes. Phenotypic transition maps of 3D breast acini obtained by imaging-guided

agent-based modeling. Integrative biology : quantitative biosciences from nano to

macro, 3(4):408–21, 2011.

F. E. H. Tay and L. J. Cao. Modified support vector machines in financial time series

forecasting. Neurocomputing, 48(1):847–861, 2002.

F. E. H. Tay and L. Cao. Application of support vector machines in financial time series

forecasting. Omega, 29(4):309–317, 2001.

L. Tesfatsion and K. L. Judd. Handbook of Computational Economics, volume 2. 2006.

ISBN 9780444512536.

S. Thurner, J. D. Farmer, and J. Geanakoplos. Leverage causes fat tails and clustered

volatility. Quantitative Finance, 12(5):695–707, 2012.

J. L. Ticknor. A Bayesian regularized artificial neural network for stock market fore-

casting. Expert Systems with Applications, 40(14):5501–5506, 2013.

BIBLIOGRAPHY 143

B. Tóth, Y. Lempérière, C. Deremble, J. de Lataillade, J. Kockelkoren, and J.-P.

Bouchaud. Anomalous price impact and the critical nature of liquidity in financial

markets. Phys. Rev. X, 1(2):021006, oct 2011.

R. Trippi and D. DeSieno. Trading equity index futures with a neural network. Journal

of Portfolio Management, 19(1):27–33, 1992.

C.-F. Tsai, Y.-C. Lin, D. C. Yen, and Y.-M. Chen. Predicting stock returns by classifier

ensembles. Applied Soft Computing, 11(2):2452–2459, mar 2011.

V. N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural

Networks, 10(5):988–999, 1999.

J. Z. Wang, J. J. Wang, Z. G. Zhang, and S. P. Guo. Forecasting stock indices with back

propagation neural network. Expert Systems with Applications, 38(11):14346–14355,

2011.

P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral

sciences. PhD thesis, Harvard, 1974.

H. White and S. Diego. Economic prediction using neural networks: The case of IBM

daily stock returns. In IEEE International Conference on Neural Networks, pages

451–458. IEEE, 1988. ISBN 0780309995.

D. Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks:

Optimizing connections and connectivity. Parallel computing, 14(3):347–361, 1990.

M. B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis for the

analysis of data. Biometrika, 55(1):1–17, 1968.

D. Witkowska and D. Marcinkiewicz. Construction and evaluation of trading systems:

Warsaw index futures. International Advances in Economic Research., 11:83–92, 2005.

World Bank. Data retrieved from World Bank

http://data.worldbank.org/indicator/CM.MKT.LCAP.CD. 2012.

A. H. Wright. Genetic algorithms for real parameter optimization. In Foundations of

Genetic Agorithms, pages 205–218. 1991. ISBN 1-55860-170-8.

Y. Xu, Z. Li, and L. Luo. A study on feature selection for trend prediction of stock trad-

ing price. 2013 International Conference on Computational and Information Sciences,

(2):579–582, jun 2013.

H. Yang, W. Zhou, L. Lu, and Z. Fang. Optimal sizing method for stand-alone hybrid

solar–wind system with LPSP technology by using genetic algorithm. Solar energy,

82(4):354–367, 2008.

144 BIBLIOGRAPHY

K. Zbikowski and P. Grzegorzewski. Stock trading with random forests, trend detection

tests and force index volume indicators. In Artificial Intelligence and Soft Computing,

volume I, pages 441–452. Springer, 2013.

S. Zemke. On developing a financial prediction system: Pitfalls and possibilities. In

Proceedings of DMLL-2002 Workshop at ICML-2002, Sydney, 2002.

Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen. Lung cancer cell identification based

on artificial neural network ensembles. Artificial Intelligence in Medicine, 24(1):25–36,

2002.

