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Key Points
* Comprehensive spatial validation of three land surface models over the contiguous USA.
* Incorporating a 30 year remote sensing dataset of monthly land surface temperature maps.

* Application of two innovative performance metrics to assess the simulated spatial patterns.
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1. Abstract

Land surface models (LSMs) are a key tool to enhance process understanding and to provide
predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict
hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration
(aET), at each grid cell. LST observations are widely available through satellite remote sensing
platforms that enable comprehensive spatial validations of LSMs. In spite of the great availability of
LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true
spatial pattern information. The core novelty of this study is the development and application of two
innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted
LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation
dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a
30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate
spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests
better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further,
more than 75% of the LST variability can be captured by a single pattern that is strongly correlated to
air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The
LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the
coupling between aET and LST is investigated at flux tower sites and compared against LSMs to

explain the identified LST shortcomings.
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2. Introduction

The terrestrial hydrological cycle comprises a complex interplay of subsurface, surface and atmosphere
processes with direct implications for the energy and carbon cycles. Reliably observing and modelling
of hydrologic variability and land-atmosphere interactions are a grand scientific and societal challenge
addressing issues of e.g. water resources management, climate change, drought and flood risk or land
use management. In this regard, distributed land surface modeling is an active field of research that
aims at predicting hydrologic variability at catchment scale (e.g. Stisen et al., 2011), large basin scale
(e.g. Getirana et al., 2014; Long et al., 2014), continental scale (e.g. Sheffield et al., 2014; Troy et al.,
2011) or global scale (e.g. Koirala et al., 2014; Sheffield and Wood, 2007). Due to the distinct spatial
heterogeneity of the natural system, the distributed nature of a land surface model (LSM) is essential.
This allows a process-based LSM to estimate hydrological states and fluxes as well as energy fluxes at

each grid (Clark et al., 2015).

In the hydrological community, models are typically validated against discharge at the outlet of a
catchment (Refsgaard, 1997). This traditional validation framework is found to have limited sensitivity
to the spatial patterns of spatially explicit hydrological variables, like soil moisture or land surface
temperature (LST) (Koch et al.,, 2015a; Stisen et al.,, 2011). The utility of LSM predictions for
understanding, for example, drought and flood risk, land use change effects, or land-atmosphere
feedbacks, is therefore hampered by the uncertainty in the representation of the spatial variability of
hydrological states and their related fluxes within a catchment or region. Refsgaard (2001) and Grayson

et al. (2002) stressed the need to move away from the traditional paradigm of validating distributed
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LSMs against aggregated observations such as discharge to a more adequate framework that includes
spatial observational data instead. Satellite remote sensing data provides independent spatial
observations of hydrological variables that are often at a similar spatial scale as the model’s predictions
(Wood et al., 2011) and can thus be used for calibrating LSMs (Corbari and Mancini, 2014; Wanders et

al., 2014) or be incorporated in data assimilation studies (Moradkhani, 2008; Reichle et al., 2010).

LST is considered a key state variable that controls energy and water exchanges at the land surface-
atmosphere interface (Karnieli et al., 2010; Sun and Pinker, 2003). Spatially continuous LST retrievals
are widely available through various remote sensing platforms as presented by Li et al. (2013) and Wan
et al. (2002). Gunshor et al. (2004) lists and compares various satellite instruments that measure
thermal infrared signatures from the earth’s surface, which is the basis for the retrieval of LST through
a radiative transfer equation via the single-channel method or more typically, the multi-channel method
(Li et al., 2013). This study features a 30 year dataset (1979-2009) of LST retrievals from the High-
Resolution-Infrared-Radiation-Sounder (HIRS) sensors that were flown on operational National-
Oceanic-Atmospheric-Administration (NOAA) polar satellites (Shi and Bates, 2011). HIRS provides
global LST retrievals potentially twice a day under clear sky conditions at a spatial resolution of 0.5°
(Coccia et al., 2015). Due to HIRS’s multi-decadal data record length it has been selected by the Global
Energy and Water Exchanges Project (GEWEX) Data and Analysis Project (GDAP) as the primary
satellite data source for the development of GDAP’s internally consistent datasets. Hence the HIRS
dataset will most likely receive more attention in the future with large-scale LSM validation being one
possible application. However, it is important to reflect on HIRS’s usability as an adequate LSM
validation target in terms of accuracy, spatial resolution and temporal frequency, which is addressed in

section 3.1.
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Satellite remote sensing data with good spatial coverage enables a comprehensive spatial validation of
a LSM. This provides information on spatial deficiencies that can help to diagnose model errors, which
may remain undetected using station based hydrological data in a traditional validation (Koch et al.,
2015b). However there exists no formal framework for assessing spatial performance of a model in an
optimal way so that the information on spatial patterns is fully taken into consideration. The demand
for true spatial performance metrics that go beyond simple cell to cell comparisons was highlighted by
Wealands et al. (2005) who suggested innovative performance metrics in a soil moisture validation
case study. For the field of atmospheric science, Gilleland et al. (2009) summarized various spatial
metrics and categorized them into feature based, neighborhood, scale separation and field deformation
approaches. Additionally, Wolf et al. (2014) compared standard metrics with innovative metrics, such
as neighborhood- and object-based metrics, to validate predicted precipitation fields. Besides these
efforts, there are only a limited number of spatial validation studies of land surface variables that fully

embrace the availability of satellite remote sensing data by means of true spatial performance metrics.

The main feature of this study is the application of two innovative spatial performance metrics that are
suitable for a comprehensive spatial model validation. First, an Empirical Orthogonal Functions (EOF)
analysis is conducted jointly on observed and simulated LST maps to assess the similarity between the
two datasets. In spatial validation studies by Fang et al. (2015) and Koch et al. (2015b) the EOF
analysis proved to be very beneficial and insightful as a diagnostic validation tool. Second, a
connectivity analysis is applied on warm and cold LST clusters that are derived by truncation of the
simulated and observed LST fields at specific thresholds. Connectivity is a common metric in
hydrogeology (Renard and Allard, 2013), but only few studies have implemented the concept of

connectivity to characterize spatial patterns of surface variables (Western et al., 2001). Grayson et al.
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(2002) underlined the physical meaning of connectivity of soil moisture patterns as a mechanism of
controlling runoff. Further, their study showed that the connectivity analysis captured more adequate
spatial information than the more standard variogram analysis. Both metrics are bias insensitive and
thus focus on the spatial patterns as such. This is of special importance in a multi-model pattern
validation study, because the models might have individual biases which should not interfere with the
pattern comparison. Nevertheless, the bias is an integral measure of a model validation and should
therefore always be considered separately. Furthermore, both metrics require high spatial coverage to
guarantee a meaningful analysis and therefore their application is constrained to time steps with a low

influence of cloud cover.

Actual evapotranspiration (aET) is a fundamental variable in the hydrological cycle and it is highly
heterogeneous in time and space (Stisen et al., 2008). At local scale aET may be accurately measured
by an eddy covariance tower (Alfieri et al., 2011). However, at larger scales there are not sufficient
ground observations to account for the distinct spatial variability of aET. Satellite products cannot
directly retrieve aET without relying on modelling. Therefore other variables, such as LST, can be used
as a proxy for spatially distributed aET information (Anderson et al., 2011; Karnieli et al., 2010). This
study reflects on the coupling between aET and LST based on in-situ observations at eddy covariance
towers (Fluxnet) and how this coupling is represented in the LSMs. Further we investigate if apparent
errors in predicted LST can be related to errors in predicted aET. From a process viewpoint it is
generally expected that a cool LST bias is linked to a high aET bias through an overemphasized

evaporative cooling.

The LSMs that undergo a spatial validation in this study are taken from the second phase of the multi

institutional North American Data Assimilation System (NLDAS-2) (Xia et al., 2012a; Xia et al.,
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2012b). NLDAS-2 provides high quality atmospheric forcing data and multi-model output of hourly
hydrological variables over the contiguous USA (CONUS) since 1979 at a spatial resolution of 0.125°
(~14km). In previous NLDAS studies GOES-East (Geostationary Operational Environmental Satellite,
GOES-8) LST retrievals have been utilized to validate LSMs (Mitchell et al., 2004; Wei et al., 2013;
Xia et al., 2015b). However, these studies missed the full potential of the validation dataset by only
focusing on simple cell to cell metrics like the bias or the spatial correlation coefficient. Further, these
studies were conducted on a limited validation period of several years, compared to the 30 year HIRS

LST dataset used in this study.

The core novelty of this study is the development and testing of innovative spatial performance metrics
that can expand the current validation toolbox of the modelling community. The NLDAS-2 models are
selected because of the exhaustive validation groundwork in preliminary studies in which this spatial
validation study can be nested. The HIRS LST dataset is chosen as the validation target, because of its

availability, multi-decadal data record length and its valuable spatial coverage.

The aims of this study are (1) to present a comprehensive land-surface temperature (LST) dataset with
global coverage that allows for a long-term validation of LSMs against monthly LST dynamics, (2) to
introduce two innovative spatial performance metrics that are suitable for a thorough bias insensitive
validation of simulated LST patterns, (3) to investigate the applicability of the HIRS LST dataset and
the spatial metrics in a validation of the NLDAS-2 LSMs and (4) to examine the coupling between
actual evapotranspiration (aET) and LST and reflect on the usability of LST as a proxy for diagnosing

model representation of the water balance.
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3. Methods and data

3.1. High-Resolution-Infrared-Radiation-Sounder (HIRS) LST Dataset
Remotely sensed data used to retrieve land surface temperature (LST) have been provided by different
platforms since the late 1970’s. Among them is the High-Resolution-Infrared-Radiometric-Sounder
(HIRS), flown on board the NOAA polar orbiting satellites (Shi and Bates, 2011). The HIRS
instrument has flown on 11 different satellites and has provided multispectral data since July 1979.
HIRS LST retrievals are in swath format and available for clear sky conditions at 0.5° (~55km) spatial
resolution with two return times per day at varying equatorial passing times (Coccia et al., 2015). For a
more detailed technical description of the HIRS instrument we refer to Robel (2009). ) The cloud
detection follows the procedure presented by Jackson et al. (2003), where HIRS channel 8 (11.1 um)
brightness temperature is compared spatially and temporally with an estimated clear-sky value. If the
deviation in brightness temperature is too cold (below a threshold) the observation is rejected as
cloudy. The inter-satellite calibration by Shi (2011) resulted in fairly consistent LST retrievals between
the satellites. Nevertheless, Siemann et al. (2016) highlighted that small inter-satellite biases still exist
by comparing HIRS LST with twelve Baseline-Surface-Radiation-Network (BSRN) stations (Ohmura
et al., 1998). The daytime biases of the satellites are ~ 0.5°C, varying from -0.1°C to 0.88°C, while the
nighttime biases are usually higher (~1.5°C) and the range spans from 0.1°C to 2.1°C between the

satellites.

This study utilizes the 30-year record (1979 - 2009) of hourly HIRS LST data over CONUS to validate
the spatial patterns of simulated LST from the three LSMs. As with any other satellite retrieved LST
product, the HIRS data is limited to cloud free conditions and thus exhibits spatial gaps. This makes an

instantaneous hourly observation over CONUS unusable for an analysis of spatial LST patterns and



167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

first at monthly time scale HIRS provides a reasonable coverage over CONUS. However, some cells
are poorly represented, because the monthly average is either based on very few observations or the
average is biased due to too many nighttime observations, because nighttime observations are more
inclined to be cloud free than daytime observations. Thus two loose constraints are introduced for each
grid cell to ensure representativeness: (1) A minimum of four observations per month and (2) a daytime
nighttime ratio that does not exceed one to four. A radiation threshold of 100 W/m® (based on the
NLDAS-2 forcing data) is chosen to distinguish between daytime and nighttime hours. Taking all
CONUS data from the eleven satellites into consideration and applying the two above mentioned
constraints yields a fractional coverage of 0.6 and higher for most months (Figure 1). The best
coverages (>0.95) are during late summer and autumn. Orbital drift is an acknowledged issue of the
NOAA satellites (Jackson and Soden, 2007; Wylie et al., 2005) which causes a shift in equatorial
crossing time over the lifespan of a satellite (e.g. up to 3.8 hours for NOAA-14). However, orbital drift
does not affect the validation of the NLDAS-2 simulations, because only grids that are collocated in
time and space with an hourly HIRS observation are extracted from the model output and used for

validation.

3.2. NLDAS-2
This study uses LSM data from the second phase of the multi institutional North American Data
Assimilation System (NLDAS-2) (Xia et al., 2012a; Xia et al., 2012b). NLDAS aims at constructing
datasets of hydrological states and fluxes of high spatial and temporal quality based on the best
available observations for application in coupled model initialization, drought monitoring, and
understanding hydrologic variability. This study focuses on three of the four LSMs: Mosaic (Koster

and Suarez, 1992), Noah (Ek et al., 2003) and the Variable Infiltration Capacity (VIC) model (Wood et
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al., 1997) which all incorporate a full soil-vegetation-atmospheric-transfer (SVAT) scheme. In
comparison to NLDAS-1 (Mitchell et al., 2004), NLDAS-2 improved the accuracy and the consistency
of the atmospheric datasets, upgraded the code and parametrization of the LSMs, and extended the
simulation period from 3 years to more than 30 years. The NLDAS-2 LSMs provide hourly data for all
relevant hydrological fluxes and state variables at a resolution of 0.125° (~14km) across CONUS from
1979 to present. The LSMs underwent thorough validations against streamflow data (Xia et al., 2012a),
station based soil moisture data (Xia et al., 2014) and station based evapotranspiration data (Xia et al.,
2015a). Additionally, Noah was individually validated against station based soil temperature (Xia et al.,
2013) and satellite derived (GOES-8) LST (Wei et al., 2013; Xia et al., 2015b). Mitchel et al. (2004)
evaluated LST for the NLDAS-1 LSMs, utilizing station based data for assessing the diurnal cycle and
satellite based (GOES-8) data for assessing the spatial patterns, but was limited by the short simulation
record. The NLDAS-1 study linked some of the LST disparities between the LSMs with the
observations to differences in aerodynamic conductance (Noah), ground heat flux (VIC) and canopy
conductance (Mosaic). For NLDAS-2, Xia et al. (2012b) suggested that the differences between Noah’s
and Mosaic’s spatial LST patterns over CONUS was explained by their differences in albedo. Areas of
higher and lower albedo were clearly negatively correlated to differences in LST. The overall higher
albedo in Noah caused lower net shortwave radiation, which corresponded well to the generally cooler
LST in Noah compared to Mosaic. Despite these previous efforts to validate simulated LST in the
NLDAS LSMs, a thorough spatial validation of the simulated patterns has not been conducted yet.
Previous studies applied simple cell to cell metrics and thereby lacked a true pattern comparison.
Furthermore, the 30-year coverage of HIRS allows a LST validation of the entire NLDAS-2 simulation
period, which has not been undertaken yet. Further the NLDAS LSM output is resampled from its

original 0.125° resolution to 0.5° to provide consistency with the HIRS LST data.
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3.3. FLUXNET
Fluxnet is a global network of micrometeorological flux measurement stations (Baldocchi et al., 2001)
that provides high quality data on water-, energy- and carbon-fluxes across a diverse range of
ecosystems and climates for multiple years. This study uses data from 74 stations that are located
across the U.S. and are part of the American AmeriFlux network. Flux data are measured half-hourly
from 1991 to 2007, but not all stations cover the entire period nor have complete measurements of all
fluxes. Moreover, the flux data is screened for energy balance closure at monthly time scale following
the approach presented by Stoy et al. (2013) and Wilson et al. (2002) The quality controlled data are
used for two purposes in this study: (1) To spatially and temporally validate the HIRS LST
observations with in-situ data and (2) to explore the coupling between HIRS LST and in-situ actual
evapotranspiration (aET), and investigate if the LSMs exhibit a comparable coupling. It has to be noted
that the differences in the spatial footprint and scale complicate a comparison between in-situ data from
flux towers and large scale satellite data and can cause inconsistency in the validation of satellite data
(McCabe and Wood, 2006). The effect of the mismatch in spatial footprint is not directly quantified in
this study. Instead the diurnal variability of satellite and in-situ LST is assessed at three Fluxnet sites to
facilitate a better understanding of the differences in the diurnal signal due to the differences in scale.
The three sites are situated in distinctly different climates and are selected as examples to discuss the

diurnal variability of HIRS and the general effect of scale mismatch.

Many studies have utilized the measured surface longwave radiation data at the Fluxnet stations to
validate remotely sensed LST products (Cleugh et al., 2007; Trigo et al., 2008; Wang and Liang, 2009).

LST can be related to surface longwave radiation by the Stefan Boltzmann law and reformulated as:

LST=L1-1-¢-L|e-c14 eq.1
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where LTand L |are the upward and downward longwave radiation, € is the surface emissivity and o is

the Stefan—Boltzmann's constant (5.67-10-8 W m-2K-4). As the HIRS LST retrievals assume a

constant surface emissivity of 1, the apparent relationship in equation 1 is purely driven by the upward
longwave radiation. 15 Fluxnet stations across CONUS feature longwave radiation measurements and

monthly LST averages are only used in the subsequent analysis if 90% of the half-hourly L1 data are

available in the respective month.

The eddy covariance data at the Fluxnet sites has frequently been incorporated in various studies to
derive in-situ aET observations (Cleugh et al., 2007; Jung et al., 2010; Velpuri et al., 2013). Following
Mu et al. (2011), aET in terms of water depth can be derived from the latent heat flux (LE) measured at

the Fluxnet eddy covariance stations:

aET=LEA eq. 2

where A is the latent heat of vaporization (J kg-1) that depends on the air Temperature Ta. The LE data

is measured half-hourly at the eddy covariance towers and each 30 min aET (mm) is calculated as:

A=2.501-0.002361-Ta-106 eq. 3

aET=LE-60-304 eq. 4

Monthly averages of aET are only used at 51 stations with eddy covariance data for months with at

least 90% of measurements of half-hourly LE and 7.
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3.4. Spatial performance metrics
This study features two innovative spatial performance metrics that enable a meaningful quantitative
validation of simulated LST spatial patterns. The metrics are derived from (1) an EOF analysis and (2)
a connectivity analysis of the simulated and observed LST patterns. Both metrics are bias insensitive,
which is favorable for this multi-model spatial validation, because individual model biases might
interfere with the validation. Furthermore, these metrics require good spatial coverage in order to
produce meaningful results. This is especially the case for the connectivity analysis which is therefore
only conducted on months with a coverage greater than 0.95. On the other hand, full coverage is less
essential for the EOF analysis where the coverage threshold is set to 0.9. This constrains the spatial

validation to 33 and 91 months out of 30 years, respectively.

3.4.1. EOF analysis
The Empirical-Orthogonal-Functions (EOF) analysis is a frequently applied statistical methodology in
the hydrological community to assess large spatio-temporal datasets of hydrological states and fluxes.
Most commonly it has been applied to observed (Korres et al., 2010; Perry and Niemann, 2007) soil
moisture data, but a recent application highlighted its applicability to surface fluxes as well (Mascaro et
al., 2015). The main feature of the EOF analysis is that it decomposes the variability of a spatio-
temporal dataset into a set of orthogonal spatial patterns (EOFs) that are invariant in time and a set of
loadings that describe how the EOFs are weighted over time. The spatial pattern of the first EOF
always captures as much as possible of the variance and the following EOFs will subsequently add to
the explained variance. For a detailed description of the methodology we refer to Graf et al. (2014).
The EOF analysis is typically applied on observational or modeled datasets to understand spatio-

temporal variability, however recent applications stressed it’s usability as a tool for a comprehensive
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spatial validation of distributed hydrological models at catchment scale (Fang et al., 2015; Koch et al.,
2015b). In order to derive a quantitative spatial performance metric Koch et al. (2015b) suggested to
conduct a joint EOF analysis on both observed and simulated data. In this way, the resulting EOF maps
honor the spatio-temporal variability of both datasets and the weighted difference in the loadings at
specific times can be utilized to derive a meaningful pattern similarity score. The weighting is required,
because each EOF contributes differently to the explained variance. Thus the EOF based similarity

score (Skor) between an observed and a predicted LST map at time x can be formulated as:

SEOFx=i=1nwiloadisimx-loadiobsx eq. S

where w;, the variance contribution of the i’th EOF, is multiplied with the absolute difference between
the simulated loading (load"™) and the observed loading (load’™) of the i’th EOF at time x. Prior to the
EOF analysis the monthly mean is removed from each LST map, thus the methodology is based on the

spatial anomalies which makes it bias insensitive.

3.4.2. Connectivity analysis
Within the field of hydrogeology, connectivity is a widespread measure to characterize the
heterogeneity of an aquifer (dell Arciprete et al., 2012; Koch et al., 2014). From a hydrogeological
perspective, the degree of connectivity has direct physical implications on groundwater flow and solute
transport. Western et al. (2001) and Grayson et al. (2002) are among the few studies that applied a
connectivity analysis on land surface variables. Both studies analyze soil moisture patterns at a small
catchment in Australia (Tarrawarra, 10.5 ha) and were able to link soil moisture connectivity to runoff
behavior. This finding also stresses the physical relevance of connectivity as a characteristic of spatial

patterns of other hydrological states such as LST. Another typical application that incorporates the
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concept of the connectivity of hydrological variables is the identification and tracking of drought events

(Andreadis et al., 2005; Sheffield et al., 2009).

On a regular grid the connectivity of a binary variable can either be via faces or via corners; both
having four possible connections. Connectivity via faces comprises cells that are vertically and
horizontally adjacent whereas connectivity via corners describes the diagonal direction. In this study
we consider both of them which results in eight possible connectors per cell. Furthermore, two cells are
connected if there exists a sequence of neighboring cells between them. Connected cells can then be
grouped into individual clusters. In order to apply this methodology on continuous variables, such as
LST or soil moisture, Renard and Allard (2013) suggested to decompose the continuous field, denoted
as Y(x), into a series of binary sets. The simplest way to decompose Y(x) is to introduce an increasing

threshold ¢# which stepwise, from minimum to maximum, truncates the field into a binary variable X:

Xt=x:Yx2t. eq. 6

This will generate a series of binary cluster maps where Xt1cXz2 if t1>t2. In the case of LST, ¢

classifies the continuous LST field into a binary map of cold and warm clusters. For this study, the
threshold value moves along all percentiles of the LST range and generates a series of 100 binary maps
of cold and warm clusters. Focusing on the percentiles makes this methodology bias insensitive and in
fact it allows to compare the spatial patterns of two different variables that are expected to be correlated
(e.g. soil moisture and actual evapotranspiration). Next, percolation theory can be used to describe the
transition from many disconnected clusters to a very large spanning cluster as ¢ increases. Hovadik and

Larue (2007) suggested the probability of connection as a suitable metric to quantify how percolated
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clusters are. The metric, denoted as 77(?), is computed for each threshold (¢) as the proportion of the

pairs of cells that are connected among all possible pairs of connected cells:

[t=1nt2i=1N Xtni2 eq. 7

n, 1s the total number of cells in the binary map X; at threshold percentile ¢. »; is the number of cells in
the ’th cluster in X; which has N(X,) distinct clusters in total. Renard and Allard (2013) plotted the
resulting connectivity curves, /(?), for different synthetic fields, and underlined that patterns are
equipped with a unique connectivity curve. Especially for the percolation threshold, the specific
threshold at which the connectivity abruptly increases is a very distinct characteristic for each pattern.
Based on numerical tests on synthetic 2D rectangular domains, Hovadik and Larue (2007) estimated
the percolation threshold to be 0.59 for a four-edge-connectivity. With regard to LST patterns, which
are underlain by an intrinsic autocorrelation and are thus not placed randomly in space, the percolation
threshold is expected to be generally lower. Overall, I'(#) can be understood as a measure of
homogeneity and smoothness of the patterns. A major benefit of the connectivity analysis is that it
allows for a separate assessment of cold patterns (cold phase: From coldest to warmest percentile) and
warm patterns (warm phase: From warmest to coldest percentile). Grayson et al. (2002) applied the
connectivity function in their analysis of soil moisture patterns, which is a more elaborated connectivity
analysis than the probability of connection, 7(z), used in this study. The connectivity function reflects
the probability that a cell of a binary map is connected with another cell (i.e. both are in the same
cluster) as a function of distance. The Grayson et al. (2002) study highlighted that the connectivity
function, as a way to characterize spatial variability, can contain more spatial information than the

more common variogram analysis. Renard and Allard (2013) identify a relationship between the sum of
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the connectivity function and 77#), which supports the use of 7(z) which clearly is the simpler metric to

compute and interpret.

In order to derive a quantitative measure of how good the observed LST connectivity (I(t)obs) is

represented by a model (I(?)sim), the root-mean-squared-error (RMSE¢,,) between the observed and

simulated connectivity curves, /), can be computed for both phases:

RMSECon=t=11001I(t)obs-I{(t)sim2100 eq. 8

In this context, the RMSE provides a global skill assessment of the connectivity that is not constrained
by local agreement. Hence, the structure of the patterns may match, but the corrected allocation of the
patterns is not warranted. This in analogous to the comparison of observed and predicted

semivariograms (Korres et al., 2015).

4. Results and discussion

4.1. HIRS
Before addressing the validation of HIRS against in-situ LST data at Fluxnet sites we want to broadly
discuss the usability of HIRS as a validation target, put HIRS into perspective to other satellite LST

products and reflect HIRS’s spatial and temporal limitations.

In general, polar orbiting satellites allow an insightful analysis of spatial processes, but their low
overpass frequency limits an adequate temporal analysis. In contrast, geostationary satellites can fill the
temporal gap and provide high resolution temporal data on diurnal processes, but are equipped with a

fixed viewing window that hinders global coverage. In theory, various geostationary satellites could be
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mosaicked in space and time to a global product, which, to our knowledge, has not been attempted yet.
Ideally a combination of both should be considered for a holistic validation of land-surface processes
which are complex in time and space. However, the incorporation of both polar orbiting and
geostationary LST retrievals in a single validation is beyond the scope of this study. Gunshor et al.
(2004) underlined that the calibrated infrared brightness temperature retrieved by polar orbiting
satellites (HIRS and AVHHR: Advanced Very High Resolution Radiometer) and geostationary
satellites (GOES-8, -10 and Meteosat-5, -7) and concluded that all instruments show small differences
within 0.6 °C. Despite HIRS’s accuracy, which is in reasonable agreement with other sensors, there are
issues concerning the spatial and temporal resolution of the retrievals. The 0.5° spatial resolution of
HIRS is coarser than alternative polar orbiting satellites such as AVHHR (Frey et al., 2012; Heidinger
et al., 2013) or MODIS (Wan et al., 2002; Wan et al., 2004). Nonetheless it still provides valuable
spatial information for the assessment of continental to global scale LSMs. Current global assessments
of water budgets (e.g. Rodell et al., 2015) and state-of-the-art LSMs and hydrological models (e.g.
Haddeland et al., 2011) are at resolutions of the order 0.5°, commensurate with the HIRS data. The
native resolution of continental LSMs might be finer (e.g. NLDAS-2), but the predictive capability at
the fine scale is questionable, given inadequate parameterizations and meteorological observations in
many parts of the world, particularly for precipitation (Sheffield et al., 2014); thus an aggregation to
0.5° reduces uncertainty and seems reasonable if the predominant spatial patterns across a continent are
of interest. Compared to other LST products, HIRS assumes a constant surface emissivity of one,
which makes it a favorable validation dataset, because the same assumption is most commonly applied

in LSM applications (Mitchell et al., 2004).
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Other LST products may provide more detail in time or space, but HIRS can still be regarded as a
valuable observation if large scale LST patterns over a multi-decadal period are of interest.
Additionally, the 30-year dataset was first processed at the National Climatic Data Center (Shi, 2011)
and very recently applied by Coccia et al. (2015) and Siemann et al. (2016) to generate a global hourly
LST dataset using a Bayesian merging procedure that combines HIRS with reanalysis LST data. This
study wants to expand the applicability of this recently introduced LST dataset by exploring the

usability of HIRS for the spatial validation of LSMs.

In order to ensure the accuracy of the HIRS LST dataset over CONUS, this study first conducts a
validation of the remote sensing observations against in-situ observations at Fluxnet sites. First,
monthly values are accessed at the flux sites and compared with monthly averages of collocated HIRS
observations. Secondly, the diurnal variability of HIRS LST is addressed at three Fluxnet sites for July
2004, where four NOAA satellites measured simultaneously which gives eight potential overpasses a
day. Figure 2 depicts the results based on 511 monthly LST averages at 15 stations that measure
upward longwave radiation (2000-2006). In spite of differences in the temporal coverage between
stations, Figure 2 does not distinguish between different years and analyzes the entire datasets jointly.
The scatter plot (Figure 2 b)) reveals a strong temporal correlation between in-situ LST and satellite
retrieved LST alongside a warm bias of the HIRS data of 1.9°C. Figure 2 a) disaggregates the scatter
plot into individual stations and plots their biases on a CONUS map. All stations exhibit a strong
temporal correlation of > 0.95 and are generally characterized by a warm bias, besides two stations that
have a cold bias. The combined root-mean-squared-error (RMSE) between HIRS LST and Fluxnet LST
1s 3.7°C and the individual RMSE per station lies between 1.7°C to 8.8°C. In order to validate HIRS

across seasons and across climate zones, the spatial correlation coefficient is computed for each month
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from 2000 to 2006 (not shown). Each month is covered by LST data from at least 9 Fluxnet stations
and the average spatial correlation is 0.84. Further, only six months out of the seven years show a
spatial correlation below 0.7. Siemann et al. (2016) conducted a global validation of the hourly HIRS
observations against the Baseline-Surface-Radiation-Network (BSRN) (Ohmura et al., 1998). 7 out of
the 12 BSRN sites are situated in CONUS and the overall correlation with the HIRS LST retrievals is
comparable to the Fluxnet correlations. The validation in Siemann et al. (2016) was based on hourly
data and split up into daytime and nighttime. In both cases HIRS manifests a warm bias, but the
nighttime basis is generally higher (~ 1.5°C) than the daytime bias (~ 0.5°C). In summary, the Fluxnet
validation is comparable to the BSRN validation and reassures the accuracy of the HIRS LST dataset
and thus its reliability for a spatial model validation. However, for further applications of the HIRS
LST dataset it is important to be aware of its warm bias. There is only limited information on the
spatial structure of the bias and therefore it is not taken into account during the spatial validation in this
study. Figure 3 addresses the diurnal variability of HIRS LST at three Fluxnet stations that are situated
in distinctly different climate conditions across the U.S. and mean monthly values are given for each
hour in July 2004. In that period, four NOAA (14 - 17) satellites operated simultaneously which
supplies eight potential overpasses a day. The diurnal amplitude of HIRS LST seems reasonable in
comparison to the Fluxnet data the at three given sites. However the previously discussed warm bias is
clearly visible but differs temporally between the sites: The Montana site has a pronounced midday
warm bias, the Illinois site shows a rather constant warm bias over the entire day and lastly, at the
Arizona site the nighttime warm bias is most emphasized. This complex spatio-temporal behavior of
the HIRS bias is expected to be caused by differences in spatial footprint between the in-situ data and
the satellite retrievals. The tracks of the NOAA satellites vary from day to day, while remaining the

same equatorial crossing time, thus the observation time shifts between days for the two overpasses that
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are recorded for each satellite. The uneven distribution of observations shown in figure 3 emphasizes
the limited applicability of HIRS for the validation of diurnal processes and instead geostationary

products such as GOES-8 would clearly be more suitable for a task like this.

4.2. Spatial validation of LST patterns
The overall goal of this study is to conduct a comprehensive spatial model validation of the NLDAS
LSMs using innovative performance metrics. Before applying these, a more general assessment of the

spatial performance is presented in the following section.

In general, remotely sensed LST (HIRS) and simulated LST (NLDAS) are both related to an
instantaneous radiometric surface temperature based on the upwelling longwave surface radiation and
are therefore comparable. In order to facilitate a fair comparison, only spatially and temporally
collocated hourly LST data are extracted from the LSMs at grids where HIRS provides a cloud free
observation for computing the average monthly LST maps. All LST data incorporated in this study, (1)
the NLDAS LSMs, (2) the in-situ Fluxnet sites and (3) the HIRS retrievals, underlie the assumption of
a constant surface emissivity of one. This underrepresentation of heterogeneity in time and space may
introduce errors, but at the same time it may also cancel out, because the same assumption is applied to
all datasets. This assumption is in general most valid for dense vegetation or snow, but less applicable

for bare soils.

Figure 4 presents monthly HIRS LST maps of two example months (March and August, 2004) and the
average LST map based on all monthly data in the 30 year period (1979-2009). The seasonality in the
observed LST data is striking, as the patterns drastically change from a cold month (March 2004) to a

warm month (August 2004). Figure 4 also features the bias maps of the three LSMs for the respective
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observations. All LSMs display seasonality in their bias maps, hence areas with a warm bias change to
a cold bias between the two months or vice versa. The common features among the LSMs bias maps
are the warm bias in the northeast in March 2004 and the warm bias in Texas for both months. VIC
generally has the most complex seasonality whereas Mosaic and Noah reflect a rather constant cold
bias over entire CONUS throughout the months. The similarity between Mosaic’s and Noah’s LST
patterns and the dissimilarities between them and VIC have already been pointed out by Xia et al.
(2012b). Xia et al. (2015b) validated Noah against GOES-8 nighttime LST over CONUS for a 13 year
period (1997-2009) and the magnitude and the pattern of the bias map resemble the one presented in

Figure 3.

Figure 5 focuses on the temporal component of the LST validation. The top panel depicts the monthly
mean LST anomaly for the observations (HIRS) and the three LSMs. While all datasets have a distinct
seasonality and all reflect some inter-annual variability, VIC clearly has the lowest amplitude with too
warm winters and too cold summers. This is supported by the bottom panel of Figure 5, which shows
the bias and spatial correlation per month. Mosaic and Noah have a uniform cool bias of ~-3°C, while
VIC has a distinct seasonality in its bias with a warm bias in winter (~3°C) opposed to a slight cool bias
in summer (~-1°C). The biases of the LSMs are clearly elevated in the first few years (1979-1984). To
our knowledge, no inter-satellite validation of the HIRS LST data has been conducted for the early
period (NOAA-06, 07 and 08). Small inter-satellite biases can be derived from the work by Siemann et
al. (2016) from NOAA-11 and onwards. Thus it can only be speculated if the elevated LSM bias in the
first few years is related to biases in HIRS LST or to biases in the NLDAS forcing in that period. The
spatial correlation coefficient of the simulated and observed monthly LST maps is generally very good

(>0.8) and the LSMs show a similar behavior apart from VIC which shows single low correlation
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outliers in the month of January for some years. Figure 6 summarizes the results described above by
showing the monthly averages of the bias and the spatial correlation coefficient for the 30 years of
validation. The distinct seasonality of the VIC bias is very apparent opposed to the rather constant cold
bias of Mosaic and Noah. The average correlation coefficient has small seasonality and it is generally

very satisfying for all 3 LSMs.

Plotting the mean versus the standard deviation is widely used to assess the spatio-temporal variability
of soil moisture patterns (Famiglietti et al., 2008; Graf et al., 2014). In the case of soil moisture the
relationship is typically defined by an upward convex behavior with highest spatial variability at very
wet or very dry conditions. Figure 7 presents the results for the monthly observed (HIRS) and
simulated LST data. The HIRS LST data clearly reveal a linear relationship between the monthly mean
LST and its spatial variability with higher variability in colder months. This is caused by the distinct
climate variability over CONUS, which is characterized by homogeneously warm LST patterns during
summer months and an enhanced LST variability during winter months due to a distinct separation of a
warm south and a cold north. Mosaic and Noah exhibit a similar relationship, although their cold bias
can clearly be detected, as all months are slightly shifted towards colder LST. VIC follows the
observed linear relationship until ~5°C and for lower temperatures the spatial variability drops. Besides
the lack of spatial variability the warm bias of VIC is also noticeable as the cold months are shifted

towards warmer LST.

4.2.1. EOF analysis
The previous analysis revealed that VIC has the most complex LST deficiencies with a clear seasonal

signal in the bias and too little spatial variability during cold months. Therefore the results of the EOF
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analysis are discussed for VIC in more detail and the results for Mosaic and Noah are briefly

summarized at a later stage.

Due to prior mean removal, the EOF analysis is a bias insensitive approach and thus it is not affected
by the bias seasonality shown in Figure 6. A joint EOF analysis is conducted for both observed (HIRS)
and simulated (VIC) monthly LST maps for 91 months that have a spatial coverage greater than 0.9.
The EOF maps in Figure 8 represent the predominant spatial patterns that are found in the 182
observed and simulated LST maps. The first EOF can capture 76% of the total variance and expresses
the most underlying pattern of the general warm-cold LST gradient from South to North. Additionally
high altitude areas in the western mountains are identified with the lowest values. Generally, the values
of the EOF maps do not have a direct physical meaning as such. First, when an EOF map is multiplied
with its loadings, the resulting product can be understood as a deviation in °C from the mean. The
pattern of the second EOF, which contributes additional 6% to the explained variance, is more complex
and its physical meaning is first revealed after assessing its loadings. The subsequent EOFs express less
than 2% of the variance and therefore they can be considered as noise originating either from the HIRS
observations or the LSMs. The loadings are presented in Figure 8 and the sign of the loadings for the
second EOF switches from positive in summer to negative in winter, which results in a seasonal
inversion of the pattern. For example, the Great Plains (positive EOF2 values) are “extra” hot in
summer and “extra” cold in winter whereas many of the coastal areas (negative EOF2 values) have
“milder” LST with warmer winters and colder summers. Comparing the loadings of the observed and
simulated LST maps in Figure 9 reveals that the second EOF is better represented by VIC than the first
EOF. Similar to the mean versus standard deviation plot in Figure 7, the loadings of VIC for the first

EOF are too low during colder months. This translates to too small spatial variability during those
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months, because the predominant South-North gradient in EOF1 is weighted too little by VIC. The
EOF based similarity is derived from the weighted sum of the differences in loadings between HIRS
and VIC in equation 5 and, based on Figure 9, it can already be anticipated that poor performance is

attested to the cold months.

The resulting EOF maps for the validation of Mosaic and Noah are almost identical to the ones of VIC
in Figure 8 and therefore not shown. On the other hand, the derived EOF based similarity scores for the
three LSMs are different as presented in Figure 10. The EOF based metric rates the spatial performance
of Mosaic and Noah as very similar for the warmer months and attests diverging similarities to the two
LSMs for the colder months. Following the EOF analysis, the LST patterns in the warmer months are
explicitly better predicted by VIC than by Mosaic and Noah. On the contrary, Mosaic and Noah clearly

provide a better spatial performance than VIC for the colder months.

Several studies (Jawson and Niemann, 2007; Qiu et al., 2014) tried to identify the main drivers of
spatial variability of soil moisture by conducting an EOF analysis and subsequently calculating the
spatial correlation between the resulting EOF maps of soil moisture with EOF maps of potential drivers
(e.g. precipitation, topography, vegetation). Important drivers were identifiable by a strong correlation.
For the LST case, the pattern of the first EOF in Figure 8 correlates strongly (0.86) to the first EOF of
air temperature, which emphasizes the strong physical coupling between the atmosphere and surface,

which VIC captures better in the warm months than in the cold months.

4.2.2. Connectivity analysis
Following the description in section 3.4.2., the simulated and observed LST maps can be assessed and

quantitatively compared by means of a connectivity analysis. Each percentile of the temperature range
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is utilized to generate a binary map of cold and warm which then undergoes a cluster analysis. Figure
11 exemplifies the cluster analysis of observed (HIRS) and simulated (VIC) LST for August 1993 for
four different thresholds: 5, 20™, 80™ and 95™ percentile. The thresholds correspond to the coldest 5%,
coldest 20%, warmest 20% and warmest 5%, respectively. Each distinct cluster is displayed with a
unique color and a first visual inspection indicates resemblance in location, size and number of clusters
between HIRS and VIC. For a complete and systematic analysis of the cluster maps at all percentiles,
the probability of connection is introduced as a metric. Figure 12 depicts 7/7(#), the probability of
connection, as a function of the threshold value ¢ for the warm and cold phase of the observed and
simulated LST patterns presented in Figure 11. The LST patterns display an inherent autocorrelation,
therefore the connectivity is already high at very low percentiles. As the threshold value increases for
the warm and cold phase, connectivity generally increases as well. The connectivity curves of the
observed LST have unique shapes with distinct percolation thresholds where the probability of
connection increases abruptly. The LSMs generally reflect the percolation thresholds in position and
magnitude quite well and the three LSMs are overall very similar in terms of their LST connectivity.
The most apparent difference between the LSMs is that VIC’s warm phase clearly percolates earlier
than Mosaic and Noah. This can be attributed to a larger degree of homogeneity in VIC’s warm
patterns. The RMSE between the connectivity curves of HIRS and the LSMs (eq.8) can be used as a
quantitative metric to assess the spatial performance of the warm and cold phase separately for each

LSM.

In total, 33 months of high coverage (>0.95) are incorporated for the connectivity analysis. Most of
them are in August (11), September (12) and October (8). Figure 13 illustrates the average connectivity

curves for the three months derived from the HIRS data and from the three LSMs. This allows a
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detailed analysis of the evolution of the LST patterns during the transition from summer to winter. The
observed connectivity curves clearly become steeper, when moving from August to October, and show
earlier percolations. Hence, cold months exhibit a more distinct separation between cold and warm
areas in comparison to warm months. In August the LST gradient in the HIRS data is smaller and the
transition from cold to warm is rather discontinuous and heterogeneous. On the other hand, the LST
range in October is expected to be larger and the clear north south gradient is more pronounced than in
August (EOF1). The continuous transition in October results in the steeper connectivity curves of the
cold and warm phase for the HIRS data in Figure 13. Generally, the LSMs behave quite similar in
terms of their connectivity and it is difficult to point out a single LSM with the best performance;
however the inter LSM similarity is more distinct for the warm phase than for the cold phase. The best
performance can be assessed for all LSMs for the warm phase in September and October. In those
months the warm patterns are simpler to model as they are mostly constrained to the southern part of
CONUS. Whereas in August, the warm patterns are more complex, because warm areas are less
localized and the LSMs do not capture the complexity in the patterns correctly and thus overestimate
the connectivity. The interpretation for the simulated connectivity of the cold phase in August is
analogous. Moving from August to October, the agreement between the connectivity of the cold phase
between HIRS and the LSMs declines, which is opposite to the warm phase. The connectivity of the
cold patterns in October is underestimated by the LSMs, meaning that the patterns are too

heterogeneous with respect to the observations.

4.2.3. Comparison of metrics
This study features two innovative spatial performance metrics that clearly require more effort to

implement compared to simpler cell to cell comparisons; such as RMSE or spatial correlation
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coefficient (R). The clear advantage of both the EOF analysis and the connectivity analysis, over cell to
cell comparisons, is that they offer additional features to the purely quantitative skill score. For
instance, the EOF analysis provides EOF maps that represent the predominant spatial patterns and the
connectivity analysis can be interpreted separately for cold and warm patterns. Both features provide
rather qualitative insights for the spatial validation. Nevertheless, if applied in an automated calibration
the qualitative features have no merit and only a single number, quantifying the spatial performance of
the model, is of interest. Therefore, we analyze if the EOF and connectivity analysis hold additional
information in comparison to more standard and simpler metrics like RMSE or R or if their information

is redundant.

Figure 14 depicts the resulting performance metrics for VIC derived from the EOF analysis, RMSE and
R for the 91 months used for the EOF analysis. Additionally, the performance derived from the
connectivity analysis is given for the 33 months with coverage greater than 0.95. The warm phase is
generally rated with a better performance than the cold phase and Table 1 underlines that the warm
phase has noteworthy correlations with the RMSE (0.6) and R (-0.5). Strong correlations between two
metrics indicate that their information content can be regarded as redundant. Figure 13 stresses that this
is the most evident for the RMSE and EOF analysis in VIC, which has a correlation of 0.8. In the case
of VIC the information provided by the EOF analysis and the connectivity analysis of the warm phase
is partly already represented by the RMSE and R. The connectivity analysis of the cold phase shows no
significant correlations to any other performance criteria in any of the LSMs (Tablel). All metrics
compared in Table 1 are meaningful, thus a metric with purely weak correlations to all other metrics
does not imply that it is not informative, it rather implies that it contains additional information on the

pattern performance compared to the other metrics. The correlations between the metrics are different
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between the LSMs, but Mosaic and Noah have similar correlations. Taking the bias maps in Figure 3
into consideration underlines that the spatial pattern of the biases of Mosaic and Noah are similar and
VIC exhibits a very different pattern in its spatial bias. This indicates that the type of spatial error
controls whether two metrics provide redundant information or not; e.g. RMSE and EOF are strongly
correlated in VIC but have a weak correlation in Mosaic and Noah. This complicates the choice of
spatial performance metric, because metrics show no unique correlations to other metrics and their
sensitivity depends on the kind of spatial error that is evident. The EOF analysis as well as the
connectivity analysis is constrained to months with a high spatial coverage and Figure 14 gives the
distribution of months that fulfill the coverage criterion for the given metrics. Coverage is generally
highest in spring and autumn, but all months are included in the analysis although they are unevenly

represented.

4.3. aET — LST coupling
The previous section describes the results of the spatial model validation and underlines that the EOF
analysis and connectivity analysis reveals comprehensive insight into the LST related model
deficiencies. This section reflects on the implications of LST errors in LSMs for the energy and water
balance to guide the interpretation of spatial LST deficiencies. In this context we analyze actual ET
(aET) measurements at the Fluxnet sites. aET links the water and energy balance and from a process
viewpoint (evaporative cooling) it can be expected that an overestimation in aET is associated with a
cool bias in LST and vice versa. If this relationship is tangible, LST can be theoretically used as a
proxy to indirectly validate the spatial distribution of the water balance via aET. This is otherwise not

feasible because no components of the water balance are observable directly via remote sensing. On the
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other hand, flux towers provide good temporal coverage, but their low spatial density and small support

scale limits the usability of tower data for a spatial validation of the water balance.

Figure 14 validates simulated monthly aET at the Fluxnet sites for VIC. The scatter plot in Figure 15 b)
reveals a negative bias of -5.3mm per month based on 2300 months at 51 Fluxnet sites over CONUS.
The correlation of 0.77 is reasonable, but the scatterplot identifies single months with very large errors
(>100mm/month). The overall temporal correlation and bias for Mosaic and Noah are 0.72,
17.5mm/month and 0.80, and -6.8mm/month, respectively. In general, the large positive aET bias for
Mosaic corresponds well with the cool LST bias. However the negative aET bias for Noah and its
generally cool LST bias contradict the expected relationship. The map over CONUS (Figure 15 a))
displays the VIC aET biases per station and the heterogeneous spatial pattern of positive and negative
biases stresses that there is no systematic spatial aET bias. The temporal correlations at the individual

stations are 0.83 on average with a minimum of 0.56.

It remains unclear how the aET errors in Figure 14 are related to errors in LST. In order to understand
the coupling between LST and aET better, Figure 16 investigates the relationship between the
hydrological state variable LST and the flux variable aET in more detail. This analysis is constrained to
daytime LST only, because it is expected that daytime LST is closer related to aET than nighttime LST.
Ideally the daily LST amplitude (daytime - nighttime) should be used to assess the link between LST
and aET, but due to the irregular distribution of HIRS overpass times it is not possible to compute a
meaningful LST amplitude based on the HIRS data. The observational data is based on monthly HIRS
daytime LST and Fluxnet aET at the 51 sites given in Figure 15. The coupling between the two
variables is of exponential nature with rapidly increasing aET as monthly daytime LST increases.

Another interesting feature is that the spread in monthly aET increases as well, because some of the
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data express water limitation while others are characterized by energy limitation. Water limitation is
identified by high daytime LST and low aET and for energy limited conditions the aET can increase
exponentially alongside an increase in LST. The three models feature this increase in aET variability
for warmer months accordingly, but the general relationship between aET and daytime LST varies
between the LSMs. The fitted curves of Mosaic and Noah are shifted towards cooler LST, because of
their inherent cold bias. Mosaic clearly overpredicts aET across the entire daytime LST range, while
Noah is in good agreement with the observations. VIC’s warm bias during cold months is clearly
apparent and it is consistent with an underestimation of aET. Out of the three LSMs, VIC seems to be
best at capturing the water and energy limiting control for the warmest months. Overall, the aET-LST
coupling is best represented by Noah and deviations in Mosaic and VIC are comprehensible from a

process viewpoint; too high aET is associated with cooling and vice versa.

4.4. Diagnosis of spatial model errors
LST is an important yet complex hydrological state variable of land-atmosphere interactions. The EOF
analysis identifies the strong coupling to air temperature and the previous section highlights the
complex relationship to aET. The comprehensive spatial validation of simulated LST patterns is
insightful and can be used as a diagnostic tool to learn about a LSM. However we have not touched
upon potential causes of the spatial deficiencies that are highlighted by the EOF and the connectivity
analysis. Attributing the problem to a general cause is rarely possible as a short literature review on
LST validation studies reveals. Wang et al. (2009) found that air temperature, especially the
temperature gradient for high altitudes, was a main concern in their LST validation. Koch et al. (2015b)
identified an overemphasized groundwater coupling, which resulted in a distinct cool LST bias as a

major limitation to their LSM. Silvestro et al. (2013) mentioned soil moisture and its effect on the
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thermal inertia as a drawback in their LST predictions. Wei et al. (2013) relied on the parametrization
of vegetation (e.g. spatio-temporal variation of LAI, root density and stomatal resistance) to improve
LST predictions of a LSM. Lastly, Mitchell et al. (2004) focused on improving the energy fluxes in the
NLDAS-1 simulations by means of adjusting the aerodynamic conductance and the ground heat storage
term to get better LST estimates. Some of these issues focus on the diurnal and others on the annual
cycle of LST, however the long list of potential causes of LST errors emphasizes the difficulty of this
task. It is likely that most of these issues contribute in some way to LST errors and may even

compensate for each other.

Nevertheless we sum up the findings of the spatial LST validation of Mosaic, Noah and VIC and

attempt to identify potential causes to the spatial deficiencies of each LSM.

The case for Mosaic is the most unambiguous one. The general cool bias is more or less constant in
space and time and it can be attributed to an overestimation of aET. This finding is supported by the
positive annual evaporation bias at 961 small catchments over CONUS (Xia et al., 2012a) and a distinct
high bias in latent heat flux (Xia et al., 2012b) caused by vigorous upward water transport from the root
zone to the land surface (Mitchell et al., 2004). Generally, the connectivity of the cold phase is highest
for Mosaic among the three LSMs, which means that its cold patterns are smooth with clear transitions.
The overemphasized coupling between aET and LST might smoothen the simulated LST patterns,
because aET is controlled by the available energy, which naturally has smooth gradients. Future
research may not focus on improving Mosaic, because it can be regarded as a legacy model that will be

replaced in future NLDAS research.
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Noah exhibits a quite similar LST pattern performance compared to Mosaic. However, in this case
errors in LST can clearly not be ascribed to aET errors (Figure 15). Xia et al. (2012b) identified
Noahs’s higher albedo and its resulting lower net shortwave radiation as the reason for different LST
predictions in comparison to Mosaic. Noah has the highest mean monthly albedo for 10 out of 12
months among the three LSM over CONUS. The resulting lowest net shortwave radiation could
possibly explain Noah’s cool bias. Recent works by Wei et al. (2013) and Xia et al. (2015b)
implemented improvements in the NLDAS-2 version of Noah. The emphasis was on adjusting the
roughness length for heat and the surface exchange coefficient to increase the aerodynamic

conductance, which yielded a significant improvement of the predicted LST patterns.

The spatial deficiencies in VIC are more complex than in the other LSMs. The lack of spatial
variability in the winter months is pointed out by the EOF analysis. This is due the distinct warm bias
in the northern part of CONUS (Figure 3) and can be attributed to an underestimation of aET. Further,
VIC’s low connectivity for the cold phase stresses that the cold patterns are too heterogeneous, due to
the presence of disrupting warm cells. This spatial deficiency may be related to the occurrence of snow

but further analysis is needed to investigate this in more detail.

However, the reason why there is a general agreement between the LST patterns and their errors in
Mosaic and Noah, while VIC appears to have other controlling mechanisms of its LST patterns,
remains unanswered. To this end, further work is needed to better understand the drivers of spatial
variability of land surface variables with focus on their spatial patterns. There is clearly a demand for a
true spatial sensitivity analysis that can guide the modelling community on how to increase the spatial

pattern performance in LSMs.
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5. Conclusion

This study provides a comprehensive spatial validation of three NLDAS-2 LSMs, namely Mosaic,

Noah and VIC. A 30 year, satellite based (HIRS), LST dataset, suitable for monthly spatial validation

of the annual cycle, is utilized to validate the models over CONUS. Although this study employs HIRS

LST data only for CONUS the spatial coverage allows for global applications as well. Two innovative

spatial performance metrics, namely an EOF analysis and a connectivity analysis, are applied to

conduct a true pattern comparison, which goes beyond the standard cell to cell comparisons. We draw

the following main conclusion from this work:

11.

Validation dataset: The HIRS LST retrievals provide reasonable coverage over CONUS at a
monthly aggregation level. The dataset has been validated against Fluxnet and BSRN stations
and mostly warm biases are evident alongside a strong spatial and temporal correlation. The
nature of the bias is complex in time and space and presumably caused, in part, by differences
in spatial scales between the in-situ measurements and the satellite retrievals. This makes the
HIRS LST dataset a suitable dataset for spatial LSM validations at large to global scales.
However due to its uneven temporal distribution a validation is only meaningful at monthly
time scale.

Spatial performance metrics: The NLDAS-2 LSMs have distinct spatial and temporal biases
and individual spatial model deficiencies that can be attributed to different causes. The joint
EOF analysis of the observed and simulated LST maps is straightforward to interpret and
combines the spatial and temporal component of the model validation. The first EOF captures
more than 75% of the spatial variability and a strong spatial correlation is evident to the first

EOF of air temperature. The second EOF adds an additional 6% of the explained variance and



721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

1il.

addresses the seasonality of the LST patterns. Comparing the loadings for the observed and
simulated LST maps allows us to derive a meaningful quantification of the spatial performance.
For the first time, a connectivity analysis is applied to LST patterns and subsequently used as a
spatial performance metric. It allows a separate analysis of the cold and warm patterns and
shows that the LSMs are unable to simulate the complex pattern evolution during the transition
from summer to winter. The LST patterns possess unique percolation thresholds, which
strengthens the physical relevancy of connectivity as a characteristic of LST patterns.
Connectivity, as a global measure with no local constrains, can be used to describe the
homogeneity and smoothness of patterns. The RMSE between observed and simulated
connectivity curves can quantify the spatial model performance. The inter-comparison of the
spatial performance metrics by means of a correlation analysis underlines the difficulty of
choosing a single, comprehensive metric. The metrics show redundant information depending
on the nature of the spatial error. The connectivity of the cold LST patterns is the only metric
that shows no redundancy to any other metrics and thus it clearly adds additional information to
the validation that would be undetected by the other metrics.

Land atmosphere coupling: Analyzing the complex coupling between daytime LST and aET
helps to distinguish between water limited and energy limited conditions. Mosaic clearly
performs worst at reproducing the observed coupling between the two variables while Noah is
able to reproduce the coupling most accurately among the three LSMs. Overall, errors in LST
are mostly related to errors in aET for Mosaic and VIC, but not for Noah. This emphasizes the

usability of LST as a proxy to validate water balance errors in Mosaic and VIC.
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982  Figure 1. Monthly coverage of HIRS LST retrievals over CONUS for each of the 11 NOAA satellites
983  and the combined coverage from July 1979 to July 2009.
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986  Figure 2. Comparison of monthly LST data between Fluxnet and HIRS at 15 stations over CONUS. a)
987  The bias at each station that has at least one full year of data and b) Scatter plot for all stations (511

988  months at 15 stations).

989



989

990

991

992

993

994

995

996

60
Fluxnet avg
50F | Fluxnet variability
40 i .
©C |
cC L]
8
c
@]
=
0 n n L
5 10 15
Local Time

lllinois

(e)]
o

(&)
o

N
o

w
o

N
o

RN
o

July 2004 - LST [°C]
L NOAA-14
. NOAA-15
L NOAA-16
. NOAA-17

5 10 15 20
Local Time

Arizona

60

50 1

10 15
Local Time

Figure 3. Diurnal validation of HIRS LST against Fluxnet data at three sites across the US: Fort Peck in

Montana, Bondville in Illinois and Audubon Research Ranch in Arizona. Fluxnet observations are

averaged for each hour for July 2004 and the variability is expressed by +/- one standard deviation.

Each individual HIRS observations from July 2004 at the collocated 0.5 degree grid is included in the

figure.
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998  Figure 4. The left column presents observed (HIRS) LST maps for March 2004, August 2004 and the

999  average of all months. Column two to four show the LST residuals for Mosaic, Noah and VIC,

1000  respectively. Red colors indicate a warm bias and cold colors indicate a cold bias.
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Figure 5. The top panel depicts the monthly variation of the observed (HIRS) and simulated (Mosaic,
NOAH and VIC) monthly mean LST anomaly. The bottom panel presents the monthly LST bias (LSM

- HIRS; solid line) and the monthly spatial correlation (dotted line) for the three LSMs.
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1007  Figure 6. The average monthly LST bias (LSM - HIRS; solid line) and the average monthly spatial

1008  correlation (dotted line) for the 30 year period.
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1011  Figure 7. The spatio-temporal variability of LST from HIRS and the three LSMs depicted by the mean

1012 monthly LST versus the monthly spatial variability of LST (standard deviation).
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1015  Figure 8. The resulting maps for EOF 1 and EOF 2 based on the joint EOF-analysis of 91 (coverage >

1016  0.9) monthly HIRS and VIC LST maps.
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1019  Figure 9. The resulting loadings for EOF 1 and EOF 2 based on the joint EOF-analysis of 91 (coverage
1020

> 0.9) monthly HIRS (obs) and VIC LST maps plotted against the average monthly LST.
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1022 Figure 10. Scatterplot showing the comparison of the EOF based performance metric for the three
1023  LSMs for the 91 months with a coverage greater than 0.9. The lower the score the better the spatial
1024  performance. The size of the circles represents the average monthly CONUS LST given by HIRS;

1025  ranging from -0.5°C (smallest circle) to 26.7°C (largest circle).
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Figure 11. An example of the connectivity analysis of observed (HIRS) and simulated (VIC) LST maps
for August 1993. The left panel shows the original LST maps and the right panel presents the results
from the cluster analysis for the coldest and warmest 5% and 20% of the cells. Each connected cluster

is assigned a unique color.
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Figure 12. The connectivity, quantified by the probability of connection, for the warm phase (red) and
cold phase (blue) for August 1993. The probability of connection is computed at all percentiles that

truncate the continuous LST maps into binary (cold/warm) maps.
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1036  Figure 13. Average connectivity curves for August, September and October. The connectivity-analysis
1037  is conducted for 33 months where the coverage is greater than 0.95. These months are predominantly
1038  August (11), September (12) and October (8).
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Figure 14. The top and middle panel shows a comparison of various spatial performance metrics: EOF
analysis, connectivity analysis, root-mean-squared-error (RMSE) and spatial correlation (R). The
results are only shown for the 91 months with a coverage greater than 0.9 that are used for the EOF-
analysis, thus the X-axis is not equidistant in time. The connectivity analysis is only conducted for
months with a coverage greater than 0.95 (33 months). The bottom panel illustartes the distribution of

months used for the EOF analysis and the connectivity analysis.
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Figure 15. Comparison of monthly aET data between Fluxnet and VIC at 41 stations over CONUS. a)
depicts the bias at each station that has at least on full year of data and b) combines all available data at

all  stations into one  scatter plot (1311 months at 41  Fluxnet sites).



1051

150
OBS - all data
—@®— OBS - fit
—@— Mosaic - fit
—@— Noah - fit
—@®— VIC - fit
100
S
E
|_
(11}
(3]
>
=
c
o
£
50
0
-20 0 20 40
1052 monthly daytime LST [°C]

1053  Figure 16. The coupling between monthly averages of daytime LST and monthly sums of aET for the
1054  observed data (aET from Fluxnet and LST from HIRS) and purely modelled data (1311 months at 41
1055  Fluxnet sites). The fitted curves are based on grouping the data into 10 equally sized bins following the
1056  LST percentiles; the points represent mean LST and mean aET per bin and the error bar represents the

1057  standard deviation of aET per bin.
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