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1. Abstract  19 

Land surface models (LSMs) are a key tool to enhance process understanding and to provide 20 

predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict 21 

hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration 22 

(aET), at each grid cell. LST observations are widely available through satellite remote sensing 23 

platforms that enable comprehensive spatial validations of LSMs. In spite of the great availability of 24 

LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true 25 

spatial pattern information. The core novelty of this study is the development and application of two 26 

innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted 27 

LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation 28 

dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 29 

30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate 30 

spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests 31 

better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, 32 

more than 75% of the LST variability can be captured by a single pattern that is strongly correlated to 33 

air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The 34 

LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the 35 

coupling between aET and LST is investigated at flux tower sites and compared against LSMs to 36 

explain the identified LST shortcomings.  37 



 38 

2. Introduction 39 

The terrestrial hydrological cycle comprises a complex interplay of subsurface, surface and atmosphere 40 

processes with direct implications for the energy and carbon cycles. Reliably observing and modelling 41 

of hydrologic variability and land-atmosphere interactions are a grand scientific and societal challenge 42 

addressing issues of e.g. water resources management, climate change, drought and flood risk or land 43 

use management. In this regard, distributed land surface modeling is an active field of research that 44 

aims at predicting hydrologic variability at catchment scale (e.g. Stisen et al., 2011), large basin scale 45 

(e.g. Getirana et al., 2014; Long et al., 2014), continental scale (e.g. Sheffield et al., 2014; Troy et al., 46 

2011) or global scale (e.g. Koirala et al., 2014; Sheffield and Wood, 2007). Due to the distinct spatial 47 

heterogeneity of the natural system, the distributed nature of a land surface model (LSM) is essential. 48 

This allows a process-based LSM to estimate hydrological states and fluxes as well as energy fluxes at 49 

each grid (Clark et al., 2015). 50 

In the hydrological community, models are typically validated against discharge at the outlet of a 51 

catchment (Refsgaard, 1997). This traditional validation framework is found to have limited sensitivity 52 

to the spatial patterns of spatially explicit hydrological variables, like soil moisture or land surface 53 

temperature (LST) (Koch et al., 2015a; Stisen et al., 2011). The utility of LSM predictions for 54 

understanding, for example, drought and flood risk, land use change effects, or land-atmosphere 55 

feedbacks, is therefore hampered by the uncertainty in the representation of the spatial variability of 56 

hydrological states and their related fluxes within a catchment or region. Refsgaard (2001) and Grayson 57 

et al. (2002) stressed the need to move away from the traditional paradigm of validating distributed 58 



LSMs against aggregated observations such as discharge to a more adequate framework that includes 59 

spatial observational data instead. Satellite remote sensing data provides independent spatial 60 

observations of hydrological variables that are often at a similar spatial scale as the model’s predictions 61 

(Wood et al., 2011) and can thus be used for calibrating LSMs (Corbari and Mancini, 2014; Wanders et 62 

al., 2014) or be incorporated in data assimilation studies (Moradkhani, 2008; Reichle et al., 2010).  63 

LST is considered a key state variable that controls energy and water exchanges at the land surface-64 

atmosphere interface (Karnieli et al., 2010; Sun and Pinker, 2003). Spatially continuous LST retrievals 65 

are widely available through various remote sensing platforms as presented by Li et al. (2013) and Wan 66 

et al. (2002). Gunshor et al. (2004) lists and compares various satellite instruments that measure 67 

thermal infrared signatures from the earth’s surface, which is the basis for the retrieval of LST through 68 

a radiative transfer equation via the single-channel method or more typically, the multi-channel method 69 

(Li et al., 2013). This study features a 30 year dataset (1979-2009) of LST retrievals from the High-70 

Resolution-Infrared-Radiation-Sounder (HIRS) sensors that were flown on operational National-71 

Oceanic-Atmospheric-Administration (NOAA) polar satellites (Shi and Bates, 2011). HIRS provides 72 

global LST retrievals potentially twice a day under clear sky conditions at a spatial resolution of 0.5° 73 

(Coccia et al., 2015). Due to HIRS’s multi-decadal data record length it has been selected by the Global 74 

Energy and Water Exchanges Project (GEWEX) Data and Analysis Project (GDAP) as the primary 75 

satellite data source for the development of GDAP’s internally consistent datasets. Hence the HIRS 76 

dataset will most likely receive more attention in the future with large-scale LSM validation being one 77 

possible application. However, it is important to reflect on HIRS’s usability as an adequate LSM 78 

validation target in terms of accuracy, spatial resolution and temporal frequency, which is addressed in 79 

section 3.1.  80 



Satellite remote sensing data with good spatial coverage enables a comprehensive spatial validation of 81 

a LSM. This provides information on spatial deficiencies that can help to diagnose model errors, which 82 

may remain undetected using station based hydrological data in a traditional validation (Koch et al., 83 

2015b). However there exists no formal framework for assessing spatial performance of a model in an 84 

optimal way so that the information on spatial patterns is fully taken into consideration. The demand 85 

for true spatial performance metrics that go beyond simple cell to cell comparisons was highlighted by 86 

Wealands et al. (2005) who suggested innovative performance metrics in a soil moisture validation 87 

case study. For the field of atmospheric science, Gilleland et al. (2009) summarized various spatial 88 

metrics and categorized them into feature based, neighborhood, scale separation and field deformation 89 

approaches. Additionally, Wolf et al. (2014) compared standard metrics with innovative metrics, such 90 

as neighborhood- and object-based metrics, to validate predicted precipitation fields. Besides these 91 

efforts, there are only a limited number of spatial validation studies of land surface variables that fully 92 

embrace the availability of satellite remote sensing data by means of true spatial performance metrics.  93 

The main feature of this study is the application of two innovative spatial performance metrics that are 94 

suitable for a comprehensive spatial model validation. First, an Empirical Orthogonal Functions (EOF) 95 

analysis is conducted jointly on observed and simulated LST maps to assess the similarity between the 96 

two datasets. In spatial validation studies by Fang et al. (2015) and Koch et al. (2015b) the EOF 97 

analysis proved to be very beneficial and insightful as a diagnostic validation tool. Second, a 98 

connectivity analysis is applied on warm and cold LST clusters that are derived by truncation of the 99 

simulated and observed LST fields at specific thresholds. Connectivity is a common metric in 100 

hydrogeology (Renard and Allard, 2013), but only few studies have implemented the concept of 101 

connectivity to characterize spatial patterns of surface variables (Western et al., 2001). Grayson et al. 102 



(2002) underlined the physical meaning of connectivity of soil moisture patterns as a mechanism of 103 

controlling runoff. Further, their study showed that the connectivity analysis captured more adequate 104 

spatial information than the more standard variogram analysis. Both metrics are bias insensitive and 105 

thus focus on the spatial patterns as such. This is of special importance in a multi-model pattern 106 

validation study, because the models might have individual biases which should not interfere with the 107 

pattern comparison. Nevertheless, the bias is an integral measure of a model validation and should 108 

therefore always be considered separately. Furthermore, both metrics require high spatial coverage to 109 

guarantee a meaningful analysis and therefore their application is constrained to time steps with a low 110 

influence of cloud cover.  111 

Actual evapotranspiration (aET) is a fundamental variable in the hydrological cycle and it is highly 112 

heterogeneous in time and space (Stisen et al., 2008). At local scale aET may be accurately measured 113 

by an eddy covariance tower (Alfieri et al., 2011). However, at larger scales there are not sufficient 114 

ground observations to account for the distinct spatial variability of aET. Satellite products cannot 115 

directly retrieve aET without relying on modelling. Therefore other variables, such as LST, can be used 116 

as a proxy for spatially distributed aET information (Anderson et al., 2011; Karnieli et al., 2010). This 117 

study reflects on the coupling between aET and LST based on in-situ observations at eddy covariance 118 

towers (Fluxnet) and how this coupling is represented in the LSMs. Further we investigate if apparent 119 

errors in predicted LST can be related to errors in predicted aET. From a process viewpoint it is 120 

generally expected that a cool LST bias is linked to a high aET bias through an overemphasized 121 

evaporative cooling.     122 

The LSMs that undergo a spatial validation in this study are taken from the second phase of the multi 123 

institutional North American Data Assimilation System (NLDAS-2) (Xia et al., 2012a; Xia et al., 124 



2012b). NLDAS-2 provides high quality atmospheric forcing data and multi-model output of hourly 125 

hydrological variables over the contiguous USA (CONUS) since 1979 at a spatial resolution of 0.125° 126 

(~14km). In previous NLDAS studies GOES-East (Geostationary Operational Environmental Satellite, 127 

GOES-8) LST retrievals have been utilized to validate LSMs (Mitchell et al., 2004; Wei et al., 2013; 128 

Xia et al., 2015b). However, these studies missed the full potential of the validation dataset by only 129 

focusing on simple cell to cell metrics like the bias or the spatial correlation coefficient. Further, these 130 

studies were conducted on a limited validation period of several years, compared to the 30 year HIRS 131 

LST dataset used in this study.  132 

The core novelty of this study is the development and testing of innovative spatial performance metrics 133 

that can expand the current validation toolbox of the modelling community. The NLDAS-2 models are 134 

selected because of the exhaustive validation groundwork in preliminary studies in which this spatial 135 

validation study can be nested. The HIRS LST dataset is chosen as the validation target, because of its 136 

availability, multi-decadal data record length and its valuable spatial coverage.  137 

The aims of this study are (1) to present a comprehensive land-surface temperature (LST) dataset with 138 

global coverage that allows for a long-term validation of LSMs against monthly LST dynamics, (2) to 139 

introduce two innovative spatial performance metrics that are suitable for a thorough bias insensitive 140 

validation of simulated LST patterns, (3) to investigate the applicability of the HIRS LST dataset and 141 

the spatial metrics in a validation of the NLDAS-2 LSMs and (4) to examine the coupling between 142 

actual evapotranspiration (aET) and LST and reflect on the usability of LST as a proxy for diagnosing 143 

model representation of the water balance. 144 



3. Methods and data 145 

3.1. High-Resolution-Infrared-Radiation-Sounder (HIRS) LST Dataset 146 

Remotely sensed data used to retrieve land surface temperature (LST) have been provided by different 147 

platforms since the late 1970’s. Among them is the High-Resolution-Infrared-Radiometric-Sounder 148 

(HIRS), flown on board the NOAA polar orbiting satellites (Shi and Bates, 2011). The HIRS 149 

instrument has flown on 11 different satellites and has provided multispectral data since July 1979. 150 

HIRS LST retrievals are in swath format and available for clear sky conditions at 0.5° (~55km) spatial 151 

resolution with two return times per day at varying equatorial passing times (Coccia et al., 2015). For a 152 

more detailed technical description of the HIRS instrument we refer to Robel (2009). ) The cloud 153 

detection follows the procedure presented by Jackson et al. (2003), where HIRS channel 8 (11.1 µm) 154 

brightness temperature is compared spatially and temporally with an estimated clear-sky value. If the 155 

deviation in brightness temperature is too cold (below a threshold) the observation is rejected as 156 

cloudy. The inter-satellite calibration by Shi (2011) resulted in fairly consistent LST retrievals between 157 

the satellites. Nevertheless, Siemann et al. (2016) highlighted that small inter-satellite biases still exist 158 

by comparing HIRS LST with twelve Baseline-Surface-Radiation-Network (BSRN) stations (Ohmura 159 

et al., 1998). The daytime biases of the satellites are ~ 0.5°C, varying from -0.1°C to 0.88°C, while the 160 

nighttime biases are usually higher (~1.5°C) and the range spans from 0.1°C to 2.1°C between the 161 

satellites.  162 

This study utilizes the 30-year record (1979 - 2009) of hourly HIRS LST data over CONUS to validate 163 

the spatial patterns of simulated LST from the three LSMs. As with any other satellite retrieved LST 164 

product, the HIRS data is limited to cloud free conditions and thus exhibits spatial gaps. This makes an 165 

instantaneous hourly observation over CONUS unusable for an analysis of spatial LST patterns and 166 



first at monthly time scale HIRS provides a reasonable coverage over CONUS. However, some cells 167 

are poorly represented, because the monthly average is either based on very few observations or the 168 

average is biased due to too many nighttime observations, because nighttime observations are more 169 

inclined to be cloud free than daytime observations. Thus two loose constraints are introduced for each 170 

grid cell to ensure representativeness: (1) A minimum of four observations per month and (2) a daytime 171 

nighttime ratio that does not exceed one to four. A radiation threshold of 100 W/m2 (based on the 172 

NLDAS-2 forcing data) is chosen to distinguish between daytime and nighttime hours. Taking all 173 

CONUS data from the eleven satellites into consideration and applying the two above mentioned 174 

constraints yields a fractional coverage of 0.6 and higher for most months (Figure 1). The best 175 

coverages (>0.95) are during late summer and autumn. Orbital drift is an acknowledged issue of the 176 

NOAA satellites (Jackson and Soden, 2007; Wylie et al., 2005) which causes a shift in equatorial 177 

crossing time over the lifespan of a satellite (e.g. up to 3.8 hours for NOAA-14). However, orbital drift 178 

does not affect the validation of the NLDAS-2 simulations, because only grids that are collocated in 179 

time and space with an hourly HIRS observation are extracted from the model output and used for 180 

validation.   181 

3.2. NLDAS-2 182 

This study uses LSM data from the second phase of the multi institutional North American Data 183 

Assimilation System (NLDAS-2) (Xia et al., 2012a; Xia et al., 2012b). NLDAS aims at constructing 184 

datasets of hydrological states and fluxes of high spatial and temporal quality based on the best 185 

available observations for application in coupled model initialization, drought monitoring, and 186 

understanding hydrologic variability. This study focuses on three of the four LSMs: Mosaic (Koster 187 

and Suarez, 1992), Noah (Ek et al., 2003) and the Variable Infiltration Capacity (VIC) model (Wood et 188 



al., 1997) which all incorporate a full soil-vegetation-atmospheric-transfer (SVAT) scheme. In 189 

comparison to NLDAS-1 (Mitchell et al., 2004), NLDAS-2 improved the accuracy and the consistency 190 

of the atmospheric datasets, upgraded the code and parametrization of the LSMs, and extended the 191 

simulation period from 3 years to more than 30 years. The NLDAS-2 LSMs provide hourly data for all 192 

relevant hydrological fluxes and state variables at a resolution of 0.125° (~14km) across CONUS from 193 

1979 to present. The LSMs underwent thorough validations against streamflow data (Xia et al., 2012a), 194 

station based soil moisture data (Xia et al., 2014) and station based evapotranspiration data (Xia et al., 195 

2015a). Additionally, Noah was individually validated against station based soil temperature (Xia et al., 196 

2013) and satellite derived (GOES-8) LST (Wei et al., 2013; Xia et al., 2015b). Mitchel et al. (2004) 197 

evaluated LST for the NLDAS-1 LSMs, utilizing station based data for assessing the diurnal cycle and 198 

satellite based (GOES-8) data for assessing the spatial patterns, but was limited by the short simulation 199 

record. The NLDAS-1 study linked some of the LST disparities between the LSMs with the 200 

observations to differences in aerodynamic conductance (Noah), ground heat flux (VIC) and canopy 201 

conductance (Mosaic). For NLDAS-2, Xia et al. (2012b) suggested that the differences between Noah’s 202 

and Mosaic’s spatial LST patterns over CONUS was explained by their differences in albedo. Areas of 203 

higher and lower albedo were clearly negatively correlated to differences in LST. The overall higher 204 

albedo in Noah caused lower net shortwave radiation, which corresponded well to the generally cooler 205 

LST in Noah compared to Mosaic. Despite these previous efforts to validate simulated LST in the 206 

NLDAS LSMs, a thorough spatial validation of the simulated patterns has not been conducted yet. 207 

Previous studies applied simple cell to cell metrics and thereby lacked a true pattern comparison. 208 

Furthermore, the 30-year coverage of HIRS allows a LST validation of the entire NLDAS-2 simulation 209 

period, which has not been undertaken yet. Further the NLDAS LSM output is resampled from its 210 

original 0.125° resolution to 0.5° to provide consistency with the HIRS LST data.    211 



3.3.  FLUXNET 212 

Fluxnet is a global network of micrometeorological flux measurement stations (Baldocchi et al., 2001) 213 

that provides high quality data on water-, energy- and carbon-fluxes across a diverse range of 214 

ecosystems and climates for multiple years. This study uses data from 74 stations that are located 215 

across the U.S. and are part of the American AmeriFlux network. Flux data are measured half-hourly 216 

from 1991 to 2007, but not all stations cover the entire period nor have complete measurements of all 217 

fluxes. Moreover, the flux data is screened for energy balance closure at monthly time scale following 218 

the approach presented by Stoy et al. (2013) and Wilson et al. (2002) The quality controlled data are 219 

used for two purposes in this study: (1) To spatially and temporally validate the HIRS LST 220 

observations with in-situ data and (2) to explore the coupling between HIRS LST and in-situ actual 221 

evapotranspiration (aET), and investigate if the LSMs exhibit a comparable coupling. It has to be noted 222 

that the differences in the spatial footprint and scale complicate a comparison between in-situ data from 223 

flux towers and large scale satellite data and can cause inconsistency in the validation of satellite data 224 

(McCabe and Wood, 2006). The effect of the mismatch in spatial footprint is not directly quantified in 225 

this study. Instead the diurnal variability of satellite and in-situ LST is assessed at three Fluxnet sites to 226 

facilitate a better understanding of the differences in the diurnal signal due to the differences in scale. 227 

The three sites are situated in distinctly different climates and are selected as examples to discuss the 228 

diurnal variability of HIRS and the general effect of scale mismatch.       229 

Many studies have utilized the measured surface longwave radiation data at the Fluxnet stations to 230 

validate remotely sensed LST products (Cleugh et al., 2007; Trigo et al., 2008; Wang and Liang, 2009). 231 

LST can be related to surface longwave radiation by the Stefan Boltzmann law and reformulated as: 232 

𝐿𝑆𝑇=𝐿↑−1−𝜀∙𝐿↓𝜀∙𝜎14     eq.1 233 



where 𝐿↑and 𝐿↓are the upward and downward longwave radiation, 𝜀 is the surface emissivity and 𝜎 is 234 

the Stefan–Boltzmann's constant (5.67∙10−8	
   𝑊	
   𝑚−2𝐾−4). As the HIRS LST retrievals assume a 235 

constant surface emissivity of 1, the apparent relationship in equation 1 is purely driven by the upward 236 

longwave radiation. 15 Fluxnet stations across CONUS feature longwave radiation measurements and 237 

monthly LST averages are only used in the subsequent analysis if 90% of the half-hourly 𝐿↑ data are 238 

available in the respective month. 239 

The eddy covariance data at the Fluxnet sites has frequently been incorporated in various studies to 240 

derive in-situ aET observations (Cleugh et al., 2007; Jung et al., 2010; Velpuri et al., 2013). Following 241 

Mu et al. (2011), aET in terms of water depth can be derived from the latent heat flux (LE) measured at 242 

the Fluxnet eddy covariance stations: 243 

𝑎𝐸𝑇=𝐿𝐸𝜆       eq. 2 244 

where 𝜆 is the latent heat of vaporization (𝐽	
  𝑘𝑔−1) that depends on the air Temperature 𝑇𝑎. The LE data 245 

is measured half-hourly at the eddy covariance towers and each 30 min aET (mm) is calculated as: 246 

𝜆=2.501−0.002361∙𝑇𝑎∙106    eq. 3 247 

𝑎𝐸𝑇=𝐿𝐸∙60∙30𝜆     eq. 4 248 

Monthly averages of aET are only used at 51 stations with eddy covariance data for months with at 249 

least 90% of measurements of half-hourly LE and Ta.  250 



3.4. Spatial performance metrics 251 

This study features two innovative spatial performance metrics that enable a meaningful quantitative 252 

validation of simulated LST spatial patterns. The metrics are derived from (1) an EOF analysis and (2) 253 

a connectivity analysis of the simulated and observed LST patterns. Both metrics are bias insensitive, 254 

which is favorable for this multi-model spatial validation, because individual model biases might 255 

interfere with the validation. Furthermore, these metrics require good spatial coverage in order to 256 

produce meaningful results. This is especially the case for the connectivity analysis which is therefore 257 

only conducted on months with a coverage greater than 0.95. On the other hand, full coverage is less 258 

essential for the EOF analysis where the coverage threshold is set to 0.9. This constrains the spatial 259 

validation to 33 and 91 months out of 30 years, respectively.     260 

3.4.1. EOF analysis 261 

The Empirical-Orthogonal-Functions (EOF) analysis is a frequently applied statistical methodology in 262 

the hydrological community to assess large spatio-temporal datasets of hydrological states and fluxes. 263 

Most commonly it has been applied to observed (Korres et al., 2010; Perry and Niemann, 2007) soil 264 

moisture data, but a recent application highlighted its applicability to surface fluxes as well (Mascaro et 265 

al., 2015). The main feature of the EOF analysis is that it decomposes the variability of a spatio-266 

temporal dataset into a set of orthogonal spatial patterns (EOFs) that are invariant in time and a set of 267 

loadings that describe how the EOFs are weighted over time. The spatial pattern of the first EOF 268 

always captures as much as possible of the variance and the following EOFs will subsequently add to 269 

the explained variance. For a detailed description of the methodology we refer to Graf et al. (2014). 270 

The EOF analysis is typically applied on observational or modeled datasets to understand spatio-271 

temporal variability, however recent applications stressed it’s usability as a tool for a comprehensive 272 



spatial validation of distributed hydrological models at catchment scale (Fang et al., 2015; Koch et al., 273 

2015b). In order to derive a quantitative spatial performance metric Koch et al. (2015b) suggested to 274 

conduct a joint EOF analysis on both observed and simulated data. In this way, the resulting EOF maps 275 

honor the spatio-temporal variability of both datasets and the weighted difference in the loadings at 276 

specific times can be utilized to derive a meaningful pattern similarity score. The weighting is required, 277 

because each EOF contributes differently to the explained variance. Thus the EOF based similarity 278 

score (SEOF) between an observed and a predicted LST map at time x can be formulated as: 279 

𝑆𝐸𝑂𝐹𝑥=𝑖=1𝑛𝑤𝑖𝑙𝑜𝑎𝑑𝑖𝑠𝑖𝑚𝑥−𝑙𝑜𝑎𝑑𝑖𝑜𝑏𝑠𝑥   eq. 5 280 

where wi, the variance contribution of the i’th EOF, is multiplied with the absolute difference between 281 

the simulated loading (loadsim) and the observed loading (loadobs) of the i’th EOF at time x. Prior to the 282 

EOF analysis the monthly mean is removed from each LST map, thus the methodology is based on the 283 

spatial anomalies which makes it bias insensitive.     284 

3.4.2. Connectivity analysis 285 

Within the field of hydrogeology, connectivity is a widespread measure to characterize the 286 

heterogeneity of an aquifer (dell Arciprete et al., 2012; Koch et al., 2014). From a hydrogeological 287 

perspective, the degree of connectivity has direct physical implications on groundwater flow and solute 288 

transport. Western et al. (2001) and Grayson et al. (2002) are among the few studies that applied a 289 

connectivity analysis on land surface variables. Both studies analyze soil moisture patterns at a small 290 

catchment in Australia (Tarrawarra, 10.5 ha) and were able to link soil moisture connectivity to runoff 291 

behavior. This finding also stresses the physical relevance of connectivity as a characteristic of spatial 292 

patterns of other hydrological states such as LST. Another typical application that incorporates the 293 



concept of the connectivity of hydrological variables is the identification and tracking of drought events 294 

(Andreadis et al., 2005; Sheffield et al., 2009). 295 

On a regular grid the connectivity of a binary variable can either be via faces or via corners; both 296 

having four possible connections. Connectivity via faces comprises cells that are vertically and 297 

horizontally adjacent whereas connectivity via corners describes the diagonal direction. In this study 298 

we consider both of them which results in eight possible connectors per cell. Furthermore, two cells are 299 

connected if there exists a sequence of neighboring cells between them. Connected cells can then be 300 

grouped into individual clusters. In order to apply this methodology on continuous variables, such as 301 

LST or soil moisture, Renard and Allard (2013) suggested to decompose the continuous field, denoted 302 

as Y(x), into a series of binary sets. The simplest way to decompose Y(x) is to introduce an increasing 303 

threshold t which stepwise, from minimum to maximum, truncates the field into a binary variable X: 304 

𝑋𝑡=𝑥:𝑌𝑥≥𝑡.      eq. 6   305 

This will generate a series of binary cluster maps where 𝑋𝑡1⊂𝑋𝑡2	
   if 𝑡1>𝑡2. In the case of LST, t 306 

classifies the continuous LST field into a binary map of cold and warm clusters. For this study, the 307 

threshold value moves along all percentiles of the LST range and generates a series of 100 binary maps 308 

of cold and warm clusters. Focusing on the percentiles makes this methodology bias insensitive and in 309 

fact it allows to compare the spatial patterns of two different variables that are expected to be correlated 310 

(e.g. soil moisture and actual evapotranspiration). Next, percolation theory can be used to describe the 311 

transition from many disconnected clusters to a very large spanning cluster as t increases. Hovadik and 312 

Larue (2007) suggested the probability of connection as a suitable metric to quantify how percolated 313 



clusters are. The metric, denoted as Γ(t), is computed for each threshold (t) as the proportion of the 314 

pairs of cells that are connected among all possible pairs of connected cells: 315 

Γ𝑡=1𝑛𝑡2𝑖=1𝑁𝑋𝑡𝑛𝑖2     eq. 7 316 

nt is the total number of cells in the binary map Xt at threshold percentile t. ni is the number of cells in 317 

the i’th cluster in Xt which has N(Xt) distinct clusters in total. Renard and Allard (2013) plotted the 318 

resulting connectivity curves, Γ(t), for different synthetic fields, and underlined that patterns are 319 

equipped with a unique connectivity curve. Especially for the percolation threshold, the specific 320 

threshold at which the connectivity abruptly increases is a very distinct characteristic for each pattern. 321 

Based on numerical tests on synthetic 2D rectangular domains, Hovadik and Larue (2007) estimated 322 

the percolation threshold to be 0.59 for a four-edge-connectivity. With regard to LST patterns, which 323 

are underlain by an intrinsic autocorrelation and are thus not placed randomly in space, the percolation 324 

threshold is expected to be generally lower. Overall, Γ(t) can be understood as a measure of 325 

homogeneity and smoothness of the patterns. A major benefit of the connectivity analysis is that it 326 

allows for a separate assessment of cold patterns (cold phase: From coldest to warmest percentile) and 327 

warm patterns (warm phase: From warmest to coldest percentile). Grayson et al. (2002) applied the 328 

connectivity function in their analysis of soil moisture patterns, which is a more elaborated connectivity 329 

analysis than the probability of connection, Γ(t), used in this study. The connectivity function reflects 330 

the probability that a cell of a binary map is connected with another cell (i.e. both are in the same 331 

cluster) as a function of distance. The Grayson et al. (2002) study highlighted that the connectivity 332 

function, as a way to characterize spatial variability, can contain more spatial information than the 333 

more common variogram analysis. Renard and Allard (2013) identify a relationship between the sum of 334 



the connectivity function and Γ(t), which supports the use of Γ(t) which clearly is the simpler metric to 335 

compute and interpret.  336 

In order to derive a quantitative measure of how good the observed LST connectivity (𝛤(𝑡)𝑜𝑏𝑠) is 337 

represented by a model (𝛤(𝑡)𝑠𝑖𝑚), the root-mean-squared-error (RMSECon) between the observed and 338 

simulated connectivity curves, Γ(t), can be computed for both phases: 339 

𝑅𝑀𝑆𝐸𝐶𝑜𝑛=𝑡=1100𝛤(𝑡)𝑜𝑏𝑠−𝛤(𝑡)𝑠𝑖𝑚2100       eq. 8 340 

In this context, the RMSE provides a global skill assessment of the connectivity that is not constrained 341 

by local agreement. Hence, the structure of the patterns may match, but the corrected allocation of the 342 

patterns is not warranted. This in analogous to the comparison of observed and predicted 343 

semivariograms (Korres et al., 2015). 344 

4. Results and discussion 345 

4.1. HIRS  346 

Before addressing the validation of HIRS against in-situ LST data at Fluxnet sites we want to broadly 347 

discuss the usability of HIRS as a validation target, put HIRS into perspective to other satellite LST 348 

products and reflect HIRS’s spatial and temporal limitations.  349 

In general, polar orbiting satellites allow an insightful analysis of spatial processes, but their low 350 

overpass frequency limits an adequate temporal analysis. In contrast, geostationary satellites can fill the 351 

temporal gap and provide high resolution temporal data on diurnal processes, but are equipped with a 352 

fixed viewing window that hinders global coverage. In theory, various geostationary satellites could be 353 



mosaicked in space and time to a global product, which, to our knowledge, has not been attempted yet. 354 

Ideally a combination of both should be considered for a holistic validation of land-surface processes 355 

which are complex in time and space. However, the incorporation of both polar orbiting and 356 

geostationary LST retrievals in a single validation is beyond the scope of this study. Gunshor et al. 357 

(2004) underlined that the calibrated infrared brightness temperature retrieved by polar orbiting 358 

satellites (HIRS and AVHHR: Advanced Very High Resolution Radiometer) and geostationary 359 

satellites (GOES-8, -10 and Meteosat-5, -7) and concluded that all instruments show small differences 360 

within 0.6 °C. Despite HIRS’s accuracy, which is in reasonable agreement with other sensors, there are 361 

issues concerning the spatial and temporal resolution of the retrievals. The 0.5° spatial resolution of 362 

HIRS is coarser than alternative polar orbiting satellites such as AVHHR (Frey et al., 2012; Heidinger 363 

et al., 2013) or MODIS (Wan et al., 2002; Wan et al., 2004). Nonetheless it still provides valuable 364 

spatial information for the assessment of continental to global scale LSMs. Current global assessments 365 

of water budgets (e.g. Rodell et al., 2015) and state-of-the-art LSMs and hydrological models (e.g. 366 

Haddeland et al., 2011) are at resolutions of the order 0.5°, commensurate with the HIRS data. The 367 

native resolution of continental LSMs might be finer (e.g. NLDAS-2), but the predictive capability at 368 

the fine scale is questionable, given inadequate parameterizations and meteorological observations in 369 

many parts of the world, particularly for precipitation (Sheffield et al., 2014); thus an aggregation to 370 

0.5° reduces uncertainty and seems reasonable if the predominant spatial patterns across a continent are 371 

of interest. Compared to other LST products, HIRS assumes a constant surface emissivity of one, 372 

which makes it a favorable validation dataset, because the same assumption is most commonly applied 373 

in LSM applications (Mitchell et al., 2004).     374 



Other LST products may provide more detail in time or space, but HIRS can still be regarded as a 375 

valuable observation if large scale LST patterns over a multi-decadal period are of interest. 376 

Additionally, the 30-year dataset was first processed at the National Climatic Data Center (Shi, 2011) 377 

and very recently applied by Coccia et al. (2015) and Siemann et al. (2016) to generate a global hourly 378 

LST dataset using a Bayesian merging procedure that combines HIRS with reanalysis LST data. This 379 

study wants to expand the applicability of this recently introduced LST dataset by exploring the 380 

usability of HIRS for the spatial validation of LSMs. 381 

In order to ensure the accuracy of the HIRS LST dataset over CONUS, this study first conducts a 382 

validation of the remote sensing observations against in-situ observations at Fluxnet sites. First, 383 

monthly values are accessed at the flux sites and compared with monthly averages of collocated HIRS 384 

observations. Secondly, the diurnal variability of HIRS LST is addressed at three Fluxnet sites for July 385 

2004, where four NOAA satellites measured simultaneously which gives eight potential overpasses a 386 

day. Figure 2 depicts the results based on 511 monthly LST averages at 15 stations that measure 387 

upward longwave radiation (2000-2006). In spite of differences in the temporal coverage between 388 

stations, Figure 2 does not distinguish between different years and analyzes the entire datasets jointly. 389 

The scatter plot (Figure 2 b)) reveals a strong temporal correlation between in-situ LST and satellite 390 

retrieved LST alongside a warm bias of the HIRS data of 1.9°C. Figure 2 a) disaggregates the scatter 391 

plot into individual stations and plots their biases on a CONUS map. All stations exhibit a strong 392 

temporal correlation of > 0.95 and are generally characterized by a warm bias, besides two stations that 393 

have a cold bias. The combined root-mean-squared-error (RMSE) between HIRS LST and Fluxnet LST 394 

is 3.7°C and the individual RMSE per station lies between 1.7°C to 8.8°C. In order to validate HIRS 395 

across seasons and across climate zones, the spatial correlation coefficient is computed for each month 396 



from 2000 to 2006 (not shown). Each month is covered by LST data from at least 9 Fluxnet stations 397 

and the average spatial correlation is 0.84. Further, only six months out of the seven years show a 398 

spatial correlation below 0.7. Siemann et al. (2016) conducted a global validation of the hourly HIRS 399 

observations against the Baseline-Surface-Radiation-Network (BSRN) (Ohmura et al., 1998). 7 out of 400 

the 12 BSRN sites are situated in CONUS and the overall correlation with the HIRS LST retrievals is 401 

comparable to the Fluxnet correlations. The validation in Siemann et al. (2016) was based on hourly 402 

data and split up into daytime and nighttime. In both cases HIRS manifests a warm bias, but the 403 

nighttime basis is generally higher (~ 1.5°C) than the daytime bias (~ 0.5°C). In summary, the Fluxnet 404 

validation is comparable to the BSRN validation and reassures the accuracy of the HIRS LST dataset 405 

and thus its reliability for a spatial model validation. However, for further applications of the HIRS 406 

LST dataset it is important to be aware of its warm bias. There is only limited information on the 407 

spatial structure of the bias and therefore it is not taken into account during the spatial validation in this 408 

study. Figure 3 addresses the diurnal variability of HIRS LST at three Fluxnet stations that are situated 409 

in distinctly different climate conditions across the U.S. and mean monthly values are given for each 410 

hour in July 2004. In that period, four NOAA (14 - 17) satellites operated simultaneously which 411 

supplies eight potential overpasses a day. The diurnal amplitude of HIRS LST seems reasonable in 412 

comparison to the Fluxnet data the at three given sites. However the previously discussed warm bias is 413 

clearly visible but differs temporally between the sites: The Montana site has a pronounced midday 414 

warm bias, the Illinois site shows a rather constant warm bias over the entire day and lastly, at the 415 

Arizona site the nighttime warm bias is most emphasized. This complex spatio-temporal behavior of 416 

the HIRS bias is expected to be caused by differences in spatial footprint between the in-situ data and 417 

the satellite retrievals. The tracks of the NOAA satellites vary from day to day, while remaining the 418 

same equatorial crossing time, thus the observation time shifts between days for the two overpasses that 419 



are recorded for each satellite. The uneven distribution of observations shown in figure 3 emphasizes 420 

the limited applicability of HIRS for the validation of diurnal processes and instead geostationary 421 

products such as GOES-8 would clearly be more suitable for a task like this.                         422 

4.2. Spatial validation of LST patterns 423 

The overall goal of this study is to conduct a comprehensive spatial model validation of the NLDAS 424 

LSMs using innovative performance metrics. Before applying these, a more general assessment of the 425 

spatial performance is presented in the following section.  426 

In general, remotely sensed LST (HIRS) and simulated LST (NLDAS) are both related to an 427 

instantaneous radiometric surface temperature based on the upwelling longwave surface radiation and 428 

are therefore comparable. In order to facilitate a fair comparison, only spatially and temporally 429 

collocated hourly LST data are extracted from the LSMs at grids where HIRS provides a cloud free 430 

observation for computing the average monthly LST maps. All LST data incorporated in this study, (1) 431 

the NLDAS LSMs, (2) the in-situ Fluxnet sites and (3) the HIRS retrievals, underlie the assumption of 432 

a constant surface emissivity of one. This underrepresentation of heterogeneity in time and space may 433 

introduce errors, but at the same time it may also cancel out, because the same assumption is applied to 434 

all datasets. This assumption is in general most valid for dense vegetation or snow, but less applicable 435 

for bare soils.       436 

Figure 4 presents monthly HIRS LST maps of two example months (March and August, 2004) and the 437 

average LST map based on all monthly data in the 30 year period (1979-2009). The seasonality in the 438 

observed LST data is striking, as the patterns drastically change from a cold month (March 2004) to a 439 

warm month (August 2004). Figure 4 also features the bias maps of the three LSMs for the respective 440 



observations. All LSMs display seasonality in their bias maps, hence areas with a warm bias change to 441 

a cold bias between the two months or vice versa. The common features among the LSMs bias maps 442 

are the warm bias in the northeast in March 2004 and the warm bias in Texas for both months. VIC 443 

generally has the most complex seasonality whereas Mosaic and Noah reflect a rather constant cold 444 

bias over entire CONUS throughout the months. The similarity between Mosaic’s and Noah’s LST 445 

patterns and the dissimilarities between them and VIC have already been pointed out by Xia et al. 446 

(2012b). Xia et al. (2015b) validated Noah against GOES-8 nighttime LST over CONUS for a 13 year 447 

period (1997-2009) and the magnitude and the pattern of the bias map resemble the one presented in 448 

Figure 3.      449 

Figure 5 focuses on the temporal component of the LST validation. The top panel depicts the monthly 450 

mean LST anomaly for the observations (HIRS) and the three LSMs. While all datasets have a distinct 451 

seasonality and all reflect some inter-annual variability, VIC clearly has the lowest amplitude with too 452 

warm winters and too cold summers. This is supported by the bottom panel of Figure 5, which shows 453 

the bias and spatial correlation per month. Mosaic and Noah have a uniform cool bias of ~-3°C, while 454 

VIC has a distinct seasonality in its bias with a warm bias in winter (~3°C) opposed to a slight cool bias 455 

in summer (~-1°C). The biases of the LSMs are clearly elevated in the first few years (1979-1984). To 456 

our knowledge, no inter-satellite validation of the HIRS LST data has been conducted for the early 457 

period (NOAA-06, 07 and 08). Small inter-satellite biases can be derived from the work by Siemann et 458 

al. (2016) from NOAA-11 and onwards. Thus it can only be speculated if the elevated LSM bias in the 459 

first few years is related to biases in HIRS LST or to biases in the NLDAS forcing in that period. The 460 

spatial correlation coefficient of the simulated and observed monthly LST maps is generally very good 461 

(>0.8) and the LSMs show a similar behavior apart from VIC which shows single low correlation 462 



outliers in the month of January for some years. Figure 6 summarizes the results described above by 463 

showing the monthly averages of the bias and the spatial correlation coefficient for the 30 years of 464 

validation. The distinct seasonality of the VIC bias is very apparent opposed to the rather constant cold 465 

bias of Mosaic and Noah. The average correlation coefficient has small seasonality and it is generally 466 

very satisfying for all 3 LSMs.  467 

Plotting the mean versus the standard deviation is widely used to assess the spatio-temporal variability 468 

of soil moisture patterns (Famiglietti et al., 2008; Graf et al., 2014). In the case of soil moisture the 469 

relationship is typically defined by an upward convex behavior with highest spatial variability at very 470 

wet or very dry conditions. Figure 7 presents the results for the monthly observed (HIRS) and 471 

simulated LST data. The HIRS LST data clearly reveal a linear relationship between the monthly mean 472 

LST and its spatial variability with higher variability in colder months. This is caused by the distinct 473 

climate variability over CONUS, which is characterized by homogeneously warm LST patterns during 474 

summer months and an enhanced LST variability during winter months due to a distinct separation of a 475 

warm south and a cold north. Mosaic and Noah exhibit a similar relationship, although their cold bias 476 

can clearly be detected, as all months are slightly shifted towards colder LST. VIC follows the 477 

observed linear relationship until ~5°C and for lower temperatures the spatial variability drops. Besides 478 

the lack of spatial variability the warm bias of VIC is also noticeable as the cold months are shifted 479 

towards warmer LST.    480 

4.2.1. EOF analysis 481 

The previous analysis revealed that VIC has the most complex LST deficiencies with a clear seasonal 482 

signal in the bias and too little spatial variability during cold months. Therefore the results of the EOF 483 



analysis are discussed for VIC in more detail and the results for Mosaic and Noah are briefly 484 

summarized at a later stage.  485 

Due to prior mean removal, the EOF analysis is a bias insensitive approach and thus it is not affected 486 

by the bias seasonality shown in Figure 6. A joint EOF analysis is conducted for both observed (HIRS) 487 

and simulated (VIC) monthly LST maps for 91 months that have a spatial coverage greater than 0.9. 488 

The EOF maps in Figure 8 represent the predominant spatial patterns that are found in the 182 489 

observed and simulated LST maps. The first EOF can capture 76% of the total variance and expresses 490 

the most underlying pattern of the general warm-cold LST gradient from South to North. Additionally 491 

high altitude areas in the western mountains are identified with the lowest values. Generally, the values 492 

of the EOF maps do not have a direct physical meaning as such. First, when an EOF map is multiplied 493 

with its loadings, the resulting product can be understood as a deviation in °C from the mean. The 494 

pattern of the second EOF, which contributes additional 6% to the explained variance, is more complex 495 

and its physical meaning is first revealed after assessing its loadings. The subsequent EOFs express less 496 

than 2% of the variance and therefore they can be considered as noise originating either from the HIRS 497 

observations or the LSMs. The loadings are presented in Figure 8 and the sign of the loadings for the 498 

second EOF switches from positive in summer to negative in winter, which results in a seasonal 499 

inversion of the pattern. For example, the Great Plains (positive EOF2 values) are “extra” hot in 500 

summer and “extra” cold in winter whereas many of the coastal areas (negative EOF2 values) have 501 

“milder” LST with warmer winters and colder summers. Comparing the loadings of the observed and 502 

simulated LST maps in Figure 9 reveals that the second EOF is better represented by VIC than the first 503 

EOF. Similar to the mean versus standard deviation plot in Figure 7, the loadings of VIC for the first 504 

EOF are too low during colder months. This translates to too small spatial variability during those 505 



months, because the predominant South-North gradient in EOF1 is weighted too little by VIC. The 506 

EOF based similarity is derived from the weighted sum of the differences in loadings between HIRS 507 

and VIC in equation 5 and, based on Figure 9, it can already be anticipated that poor performance is 508 

attested to the cold months. 509 

The resulting EOF maps for the validation of Mosaic and Noah are almost identical to the ones of VIC 510 

in Figure 8 and therefore not shown. On the other hand, the derived EOF based similarity scores for the 511 

three LSMs are different as presented in Figure 10. The EOF based metric rates the spatial performance 512 

of Mosaic and Noah as very similar for the warmer months and attests diverging similarities to the two 513 

LSMs for the colder months. Following the EOF analysis, the LST patterns in the warmer months are 514 

explicitly better predicted by VIC than by Mosaic and Noah. On the contrary, Mosaic and Noah clearly 515 

provide a better spatial performance than VIC for the colder months.   516 

Several studies (Jawson and Niemann, 2007; Qiu et al., 2014) tried to identify the main drivers of 517 

spatial variability of soil moisture by conducting an EOF analysis and subsequently calculating the 518 

spatial correlation between the resulting EOF maps of soil moisture with EOF maps of potential drivers 519 

(e.g. precipitation, topography, vegetation). Important drivers were identifiable by a strong correlation. 520 

For the LST case, the pattern of the first EOF in Figure 8 correlates strongly (0.86) to the first EOF of 521 

air temperature, which emphasizes the strong physical coupling between the atmosphere and surface, 522 

which VIC captures better in the warm months than in the cold months.                 523 

4.2.2. Connectivity analysis 524 

Following the description in section 3.4.2., the simulated and observed LST maps can be assessed and 525 

quantitatively compared by means of a connectivity analysis. Each percentile of the temperature range 526 



is utilized to generate a binary map of cold and warm which then undergoes a cluster analysis. Figure 527 

11 exemplifies the cluster analysis of observed (HIRS) and simulated (VIC) LST for August 1993 for 528 

four different thresholds: 5th, 20th, 80th and 95th percentile. The thresholds correspond to the coldest 5%, 529 

coldest 20%, warmest 20% and warmest 5%, respectively. Each distinct cluster is displayed with a 530 

unique color and a first visual inspection indicates resemblance in location, size and number of clusters 531 

between HIRS and VIC. For a complete and systematic analysis of the cluster maps at all percentiles, 532 

the probability of connection is introduced as a metric. Figure 12 depicts Γ(t), the probability of 533 

connection, as a function of the threshold value t for the warm and cold phase of the observed and 534 

simulated LST patterns presented in Figure 11. The LST patterns display an inherent autocorrelation, 535 

therefore the connectivity is already high at very low percentiles. As the threshold value increases for 536 

the warm and cold phase, connectivity generally increases as well. The connectivity curves of the 537 

observed LST have unique shapes with distinct percolation thresholds where the probability of 538 

connection increases abruptly. The LSMs generally reflect the percolation thresholds in position and 539 

magnitude quite well and the three LSMs are overall very similar in terms of their LST connectivity. 540 

The most apparent difference between the LSMs is that VIC’s warm phase clearly percolates earlier 541 

than Mosaic and Noah. This can be attributed to a larger degree of homogeneity in VIC’s warm 542 

patterns. The RMSE between the connectivity curves of HIRS and the LSMs (eq.8) can be used as a 543 

quantitative metric to assess the spatial performance of the warm and cold phase separately for each 544 

LSM.     545 

In total, 33 months of high coverage (>0.95) are incorporated for the connectivity analysis. Most of 546 

them are in August (11), September (12) and October (8). Figure 13 illustrates the average connectivity 547 

curves for the three months derived from the HIRS data and from the three LSMs. This allows a 548 



detailed analysis of the evolution of the LST patterns during the transition from summer to winter. The 549 

observed connectivity curves clearly become steeper, when moving from August to October, and show 550 

earlier percolations. Hence, cold months exhibit a more distinct separation between cold and warm 551 

areas in comparison to warm months. In August the LST gradient in the HIRS data is smaller and the 552 

transition from cold to warm is rather discontinuous and heterogeneous. On the other hand, the LST 553 

range in October is expected to be larger and the clear north south gradient is more pronounced than in 554 

August (EOF1). The continuous transition in October results in the steeper connectivity curves of the 555 

cold and warm phase for the HIRS data in Figure 13. Generally, the LSMs behave quite similar in 556 

terms of their connectivity and it is difficult to point out a single LSM with the best performance; 557 

however the inter LSM similarity is more distinct for the warm phase than for the cold phase. The best 558 

performance can be assessed for all LSMs for the warm phase in September and October. In those 559 

months the warm patterns are simpler to model as they are mostly constrained to the southern part of 560 

CONUS. Whereas in August, the warm patterns are more complex, because warm areas are less 561 

localized and the LSMs do not capture the complexity in the patterns correctly and thus overestimate 562 

the connectivity. The interpretation for the simulated connectivity of the cold phase in August is 563 

analogous. Moving from August to October, the agreement between the connectivity of the cold phase 564 

between HIRS and the LSMs declines, which is opposite to the warm phase. The connectivity of the 565 

cold patterns in October is underestimated by the LSMs, meaning that the patterns are too 566 

heterogeneous with respect to the observations.      567 

4.2.3. Comparison of metrics 568 

This study features two innovative spatial performance metrics that clearly require more effort to 569 

implement compared to simpler cell to cell comparisons; such as RMSE or spatial correlation 570 



coefficient (R). The clear advantage of both the EOF analysis and the connectivity analysis, over cell to 571 

cell comparisons, is that they offer additional features to the purely quantitative skill score. For 572 

instance, the EOF analysis provides EOF maps that represent the predominant spatial patterns and the 573 

connectivity analysis can be interpreted separately for cold and warm patterns. Both features provide 574 

rather qualitative insights for the spatial validation. Nevertheless, if applied in an automated calibration 575 

the qualitative features have no merit and only a single number, quantifying the spatial performance of 576 

the model, is of interest. Therefore, we analyze if the EOF and connectivity analysis hold additional 577 

information in comparison to more standard and simpler metrics like RMSE or R or if their information 578 

is redundant.  579 

Figure 14 depicts the resulting performance metrics for VIC derived from the EOF analysis, RMSE and 580 

R for the 91 months used for the EOF analysis. Additionally, the performance derived from the 581 

connectivity analysis is given for the 33 months with coverage greater than 0.95. The warm phase is 582 

generally rated with a better performance than the cold phase and Table 1 underlines that the warm 583 

phase has noteworthy correlations with the RMSE (0.6) and R (-0.5). Strong correlations between two 584 

metrics indicate that their information content can be regarded as redundant. Figure 13 stresses that this 585 

is the most evident for the RMSE and EOF analysis in VIC, which has a correlation of 0.8. In the case 586 

of VIC the information provided by the EOF analysis and the connectivity analysis of the warm phase 587 

is partly already represented by the RMSE and R. The connectivity analysis of the cold phase shows no 588 

significant correlations to any other performance criteria in any of the LSMs (Table1). All metrics 589 

compared in Table 1 are meaningful, thus a metric with purely weak correlations to all other metrics 590 

does not imply that it is not informative, it rather implies that it contains additional information on the 591 

pattern performance compared to the other metrics. The correlations between the metrics are different 592 



between the LSMs, but Mosaic and Noah have similar correlations. Taking the bias maps in Figure 3 593 

into consideration underlines that the spatial pattern of the biases of Mosaic and Noah are similar and 594 

VIC exhibits a very different pattern in its spatial bias. This indicates that the type of spatial error 595 

controls whether two metrics provide redundant information or not; e.g. RMSE and EOF are strongly 596 

correlated in VIC but have a weak correlation in Mosaic and Noah. This complicates the choice of 597 

spatial performance metric, because metrics show no unique correlations to other metrics and their 598 

sensitivity depends on the kind of spatial error that is evident. The EOF analysis as well as the 599 

connectivity analysis is constrained to months with a high spatial coverage and Figure 14 gives the 600 

distribution of months that fulfill the coverage criterion for the given metrics. Coverage is generally 601 

highest in spring and autumn, but all months are included in the analysis although they are unevenly 602 

represented.  603 

4.3. aET – LST coupling 604 

The previous section describes the results of the spatial model validation and underlines that the EOF 605 

analysis and connectivity analysis reveals comprehensive insight into the LST related model 606 

deficiencies. This section reflects on the implications of LST errors in LSMs for the energy and water 607 

balance to guide the interpretation of spatial LST deficiencies. In this context we analyze actual ET 608 

(aET) measurements at the Fluxnet sites. aET links the water and energy balance and from a process 609 

viewpoint (evaporative cooling) it can be expected that an overestimation in aET is associated with a 610 

cool bias in LST and vice versa. If this relationship is tangible, LST can be theoretically used as a 611 

proxy to indirectly validate the spatial distribution of the water balance via aET. This is otherwise not 612 

feasible because no components of the water balance are observable directly via remote sensing. On the 613 



other hand, flux towers provide good temporal coverage, but their low spatial density and small support 614 

scale limits the usability of tower data for a spatial validation of the water balance.    615 

Figure 14 validates simulated monthly aET at the Fluxnet sites for VIC. The scatter plot in Figure 15 b) 616 

reveals a negative bias of -5.3mm per month based on 2300 months at 51 Fluxnet sites over CONUS. 617 

The correlation of 0.77 is reasonable, but the scatterplot identifies single months with very large errors 618 

(>100mm/month). The overall temporal correlation and bias for Mosaic and Noah are 0.72, 619 

17.5mm/month and 0.80, and -6.8mm/month, respectively. In general, the large positive aET bias for 620 

Mosaic corresponds well with the cool LST bias. However the negative aET bias for Noah and its 621 

generally cool LST bias contradict the expected relationship. The map over CONUS (Figure 15 a)) 622 

displays the VIC aET biases per station and the heterogeneous spatial pattern of positive and negative 623 

biases stresses that there is no systematic spatial aET bias. The temporal correlations at the individual 624 

stations are 0.83 on average with a minimum of 0.56. 625 

It remains unclear how the aET errors in Figure 14 are related to errors in LST. In order to understand 626 

the coupling between LST and aET better, Figure 16 investigates the relationship between the 627 

hydrological state variable LST and the flux variable aET in more detail. This analysis is constrained to 628 

daytime LST only, because it is expected that daytime LST is closer related to aET than nighttime LST. 629 

Ideally the daily LST amplitude (daytime - nighttime) should be used to assess the link between LST 630 

and aET, but due to the irregular distribution of HIRS overpass times it is not possible to compute a 631 

meaningful LST amplitude based on the HIRS data. The observational data is based on monthly HIRS 632 

daytime LST and Fluxnet aET at the 51 sites given in Figure 15. The coupling between the two 633 

variables is of exponential nature with rapidly increasing aET as monthly daytime LST increases. 634 

Another interesting feature is that the spread in monthly aET increases as well, because some of the 635 



data express water limitation while others are characterized by energy limitation. Water limitation is 636 

identified by high daytime LST and low aET and for energy limited conditions the aET can increase 637 

exponentially alongside an increase in LST. The three models feature this increase in aET variability 638 

for warmer months accordingly, but the general relationship between aET and daytime LST varies 639 

between the LSMs. The fitted curves of Mosaic and Noah are shifted towards cooler LST, because of 640 

their inherent cold bias. Mosaic clearly overpredicts aET across the entire daytime LST range, while 641 

Noah is in good agreement with the observations. VIC’s warm bias during cold months is clearly 642 

apparent and it is consistent with an underestimation of aET. Out of the three LSMs, VIC seems to be 643 

best at capturing the water and energy limiting control for the warmest months. Overall, the aET-LST 644 

coupling is best represented by Noah and deviations in Mosaic and VIC are comprehensible from a 645 

process viewpoint; too high aET is associated with cooling and vice versa. 646 

4.4. Diagnosis of spatial model errors 647 

LST is an important yet complex hydrological state variable of land-atmosphere interactions. The EOF 648 

analysis identifies the strong coupling to air temperature and the previous section highlights the 649 

complex relationship to aET. The comprehensive spatial validation of simulated LST patterns is 650 

insightful and can be used as a diagnostic tool to learn about a LSM. However we have not touched 651 

upon potential causes of the spatial deficiencies that are highlighted by the EOF and the connectivity 652 

analysis. Attributing the problem to a general cause is rarely possible as a short literature review on 653 

LST validation studies reveals. Wang et al. (2009) found that air temperature, especially the 654 

temperature gradient for high altitudes, was a main concern in their LST validation. Koch et al. (2015b) 655 

identified an overemphasized groundwater coupling, which resulted in a distinct cool LST bias as a 656 

major limitation to their LSM. Silvestro et al. (2013) mentioned soil moisture and its effect on the 657 



thermal inertia as a drawback in their LST predictions. Wei et al. (2013) relied on the parametrization 658 

of vegetation (e.g. spatio-temporal variation of LAI, root density and stomatal resistance) to improve 659 

LST predictions of a LSM. Lastly, Mitchell et al. (2004) focused on improving the energy fluxes in the 660 

NLDAS-1 simulations by means of adjusting the aerodynamic conductance and the ground heat storage 661 

term to get better LST estimates. Some of these issues focus on the diurnal and others on the annual 662 

cycle of LST, however the long list of potential causes of LST errors emphasizes the difficulty of this 663 

task. It is likely that most of these issues contribute in some way to LST errors and may even 664 

compensate for each other. 665 

Nevertheless we sum up the findings of the spatial LST validation of Mosaic, Noah and VIC and 666 

attempt to identify potential causes to the spatial deficiencies of each LSM.  667 

The case for Mosaic is the most unambiguous one. The general cool bias is more or less constant in 668 

space and time and it can be attributed to an overestimation of aET. This finding is supported by the 669 

positive annual evaporation bias at 961 small catchments over CONUS (Xia et al., 2012a) and a distinct 670 

high bias in latent heat flux (Xia et al., 2012b) caused by vigorous upward water transport from the root 671 

zone to the land surface (Mitchell et al., 2004). Generally, the connectivity of the cold phase is highest 672 

for Mosaic among the three LSMs, which means that its cold patterns are smooth with clear transitions. 673 

The overemphasized coupling between aET and LST might smoothen the simulated LST patterns, 674 

because aET is controlled by the available energy, which naturally has smooth gradients. Future 675 

research may not focus on improving Mosaic, because it can be regarded as a legacy model that will be 676 

replaced in future NLDAS research.    677 



Noah exhibits a quite similar LST pattern performance compared to Mosaic. However, in this case 678 

errors in LST can clearly not be ascribed to aET errors (Figure 15). Xia et al. (2012b) identified 679 

Noahs’s higher albedo and its resulting lower net shortwave radiation as the reason for different LST 680 

predictions in comparison to Mosaic. Noah has the highest mean monthly albedo for 10 out of 12 681 

months among the three LSM over CONUS. The resulting lowest net shortwave radiation could 682 

possibly explain Noah’s cool bias. Recent works by Wei et al. (2013) and Xia et al. (2015b) 683 

implemented improvements in the NLDAS-2 version of Noah. The emphasis was on adjusting the 684 

roughness length for heat and the surface exchange coefficient to increase the aerodynamic 685 

conductance, which yielded a significant improvement of the predicted LST patterns.      686 

The spatial deficiencies in VIC are more complex than in the other LSMs. The lack of spatial 687 

variability in the winter months is pointed out by the EOF analysis. This is due the distinct warm bias 688 

in the northern part of CONUS (Figure 3) and can be attributed to an underestimation of aET. Further, 689 

VIC’s low connectivity for the cold phase stresses that the cold patterns are too heterogeneous, due to 690 

the presence of disrupting warm cells. This spatial deficiency may be related to the occurrence of snow 691 

but further analysis is needed to investigate this in more detail.   692 

However, the reason why there is a general agreement between the LST patterns and their errors in 693 

Mosaic and Noah, while VIC appears to have other controlling mechanisms of its LST patterns, 694 

remains unanswered. To this end, further work is needed to better understand the drivers of spatial 695 

variability of land surface variables with focus on their spatial patterns. There is clearly a demand for a 696 

true spatial sensitivity analysis that can guide the modelling community on how to increase the spatial 697 

pattern performance in LSMs.                  698 



5. Conclusion  699 

This study provides a comprehensive spatial validation of three NLDAS-2 LSMs, namely Mosaic, 700 

Noah and VIC. A 30 year, satellite based (HIRS), LST dataset, suitable for monthly spatial validation 701 

of the annual cycle, is utilized to validate the models over CONUS. Although this study employs HIRS 702 

LST data only for CONUS the spatial coverage allows for global applications as well. Two innovative 703 

spatial performance metrics, namely an EOF analysis and a connectivity analysis, are applied to 704 

conduct a true pattern comparison, which goes beyond the standard cell to cell comparisons. We draw 705 

the following main conclusion from this work:    706 

i. Validation dataset: The HIRS LST retrievals provide reasonable coverage over CONUS at a 707 

monthly aggregation level. The dataset has been validated against Fluxnet and BSRN stations 708 

and mostly warm biases are evident alongside a strong spatial and temporal correlation. The 709 

nature of the bias is complex in time and space and presumably caused, in part, by differences 710 

in spatial scales between the in-situ measurements and the satellite retrievals. This makes the 711 

HIRS LST dataset a suitable dataset for spatial LSM validations at large to global scales. 712 

However due to its uneven temporal distribution a validation is only meaningful at monthly 713 

time scale. 714 

ii. Spatial performance metrics: The NLDAS-2 LSMs have distinct spatial and temporal biases 715 

and individual spatial model deficiencies that can be attributed to different causes. The joint 716 

EOF analysis of the observed and simulated LST maps is straightforward to interpret and 717 

combines the spatial and temporal component of the model validation. The first EOF captures 718 

more than 75% of the spatial variability and a strong spatial correlation is evident to the first 719 

EOF of air temperature. The second EOF adds an additional 6% of the explained variance and 720 



addresses the seasonality of the LST patterns. Comparing the loadings for the observed and 721 

simulated LST maps allows us to derive a meaningful quantification of the spatial performance. 722 

For the first time, a connectivity analysis is applied to LST patterns and subsequently used as a 723 

spatial performance metric. It allows a separate analysis of the cold and warm patterns and 724 

shows that the LSMs are unable to simulate the complex pattern evolution during the transition 725 

from summer to winter. The LST patterns possess unique percolation thresholds, which 726 

strengthens the physical relevancy of connectivity as a characteristic of LST patterns. 727 

Connectivity, as a global measure with no local constrains, can be used to describe the 728 

homogeneity and smoothness of patterns. The RMSE between observed and simulated 729 

connectivity curves can quantify the spatial model performance. The inter-comparison of the 730 

spatial performance metrics by means of a correlation analysis underlines the difficulty of 731 

choosing a single, comprehensive metric. The metrics show redundant information depending 732 

on the nature of the spatial error. The connectivity of the cold LST patterns is the only metric 733 

that shows no redundancy to any other metrics and thus it clearly adds additional information to 734 

the validation that would be undetected by the other metrics. 735 

iii. Land atmosphere coupling: Analyzing the complex coupling between daytime LST and aET 736 

helps to distinguish between water limited and energy limited conditions. Mosaic clearly 737 

performs worst at reproducing the observed coupling between the two variables while Noah is 738 

able to reproduce the coupling most accurately among the three LSMs. Overall, errors in LST 739 

are mostly related to errors in aET for Mosaic and VIC, but not for Noah. This emphasizes the 740 

usability of LST as a proxy to validate water balance errors in Mosaic and VIC.  741 
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 981 

Figure 1. Monthly coverage of HIRS LST retrievals over CONUS for each of the 11 NOAA satellites 982 

and the combined coverage from July 1979 to July 2009.  983 
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 985 

Figure 2. Comparison of monthly LST data between Fluxnet and HIRS at 15 stations over CONUS. a) 986 

The bias at each station that has at least one full year of data and b) Scatter plot for all stations (511 987 

months at 15 stations).   988 

989 
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 990 

Figure 3. Diurnal validation of HIRS LST against Fluxnet data at three sites across the US: Fort Peck in 991 

Montana, Bondville  in Illinois  and Audubon Research Ranch in Arizona. Fluxnet observations are 992 

averaged for each hour for July 2004 and the variability is expressed by +/- one standard deviation.  993 

Each individual HIRS observations from July 2004 at the collocated 0.5 degree grid is included in the 994 

figure. 995 

996 
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997 
Figure 4. The left column presents observed (HIRS) LST maps for March 2004, August 2004 and the 998 

average of all months. Column two to four show the LST residuals for Mosaic, Noah and VIC, 999 

respectively. Red colors indicate a warm bias and cold colors indicate a cold bias.   1000 
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 1002 

Figure 5. The top panel depicts the monthly variation of the observed (HIRS) and simulated (Mosaic, 1003 

NOAH and VIC) monthly mean LST anomaly. The bottom panel presents the monthly LST bias (LSM 1004 

- HIRS; solid line) and the monthly spatial correlation (dotted line) for the three LSMs.    1005 



 1006 

Figure 6. The average monthly LST bias (LSM - HIRS; solid line) and the average monthly spatial 1007 

correlation (dotted line) for the 30 year period. 1008 
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 1010 

Figure 7. The spatio-temporal variability of LST from HIRS and the three LSMs depicted by the mean 1011 

monthly LST versus the monthly spatial variability of LST (standard deviation).1012 
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 1014 

Figure 8. The resulting maps for EOF 1 and EOF 2 based on the joint EOF-analysis of 91 (coverage > 1015 

0.9) monthly HIRS and VIC LST maps. 1016 
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 1018 

Figure 9. The resulting loadings for EOF 1 and EOF 2 based on the joint EOF-analysis of 91 (coverage 1019 

> 0.9) monthly HIRS (obs) and VIC LST maps plotted against the average monthly LST. 1020 



 1021 

Figure 10. Scatterplot showing the comparison of the EOF based performance metric for the three 1022 

LSMs for the 91 months with a coverage greater than 0.9. The lower the score the better the spatial 1023 

performance. The size of the circles represents the average monthly CONUS LST given by HIRS; 1024 

ranging from -0.5°C (smallest circle) to 26.7°C (largest circle).                1025 



 1026 

Figure 11. An example of the connectivity analysis of observed (HIRS) and simulated (VIC) LST maps 1027 

for August 1993. The left panel shows the original LST maps and the right panel presents the results 1028 

from the cluster analysis for the coldest and warmest 5% and 20% of the cells. Each connected cluster 1029 

is assigned a unique color.   1030 



 1031 

Figure 12. The connectivity, quantified by the probability of connection, for the warm phase (red) and 1032 

cold phase (blue) for August 1993. The probability of connection is computed at all percentiles that 1033 

truncate the continuous LST maps into binary (cold/warm) maps.   1034 



 1035 

Figure 13. Average connectivity curves for August, September and October. The connectivity-analysis 1036 

is conducted for 33 months where the coverage is greater than 0.95. These months are predominantly 1037 

August (11), September (12) and October (8).   1038 



 1039 

Figure 14. The top and middle panel shows a comparison of various spatial performance metrics: EOF 1040 

analysis, connectivity analysis, root-mean-squared-error (RMSE) and spatial correlation (R). The 1041 

results are only shown for the 91 months with a coverage greater than 0.9 that are used for the EOF-1042 

analysis, thus the X-axis is not equidistant in time. The connectivity analysis is only conducted for 1043 

months with a coverage greater than 0.95 (33 months). The bottom panel illustartes the distribution of 1044 

months used for the EOF analysis and the connectivity analysis.1045 
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 1047 

Figure 15. Comparison of monthly aET data between Fluxnet and VIC at 41 stations over CONUS. a) 1048 

depicts the bias at each station that has at least on full year of data and b) combines all available data at 1049 

all stations into one scatter plot (1311 months at 41 Fluxnet sites).  1050 
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 1052 

Figure 16. The coupling between monthly averages of daytime LST and monthly sums of aET for the 1053 

observed data (aET from Fluxnet and LST from HIRS) and purely modelled data (1311 months at 41 1054 

Fluxnet sites). The fitted curves are based on grouping the data into 10 equally sized bins following the 1055 

LST percentiles; the points represent mean LST and mean aET per bin and the error bar represents the 1056 

standard deviation of aET per bin.   1057 
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Tabel 1. Comparison of various spatial performance metrics, EOF analysis, connectivity analysis, root-1060 

mean-squared-error (RMSE) and spatial correlation (R), on the basis of their correlation coefficients. A 1061 

strong correlation between two metrics indicates that they provide redundant information. Strong 1062 

correlations (> 0.5) are highlighted.   1063 
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