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ABSTRACT
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Doctor of Philosophy

OPTIMAL DESIGN OF NONLINEAR MULTIFACTOR EXPERIMENTS

by Yuanzhi Huang

Optimal design is useful in improving the efficiencies of experiments with respect to a

specified optimality criterion, which is often related to one or more statistical models

assumed. In particular, sometimes chemical and biological studies could involve multiple

experimental factors. Often, it is convenient to fit a nonlinear model in these factors.

This nonlinear model can be either mechanistic or empirical, as long as it describes the

unknown mechanism behind the response surface. In this thesis, our main interest is in

exact optimal design of experiments for nonlinear multifactor models. In order to search

for optimal designs, we can use the conventional point or coordinate exchange approach,

which however can incorporate a new continuous optimisation method. On the basis of

this idea, we further develop and implement a multistage hybrid method to construct

local and (pseudo-)Bayesian optimal designs. The recommended hybrid exchange algo-

rithm overcomes the shortcomings of the modified Fedorov exchange algorithm and the

coordinate exchange algorithm, contributing to improved properties of the experimental

designs obtained. In addition, Bayesian optimal design with respect to an expected cri-

terion function is based on the assumed parameter prior distributions for the nonlinear

model. To limit the time for approximating expected criterion values in the algorithm,

we use some efficient numerical integration methods (e.g. a Gauss-Hermite quadrature),

which are much superior to the traditional pseudo-Monte Carlo method.

We demonstrate the hybrid exchange algorithm by means of several examples relevant

to Michaelis-Menten kinetics and other biochemical applications. Under some of these

circumstances, we consider hybrid nonlinear models which can be adopted to be fitted

to the data of new experiments, the tailor-made optimal designs of which are therefore

found and compared with each other. In order to normalise the error structure of such

a hybrid model, sometimes the Box-Cox transformation can be applied and the result

would be a transform-both-sides (TBS) model. Optimal designs for either untransformed

models or TBS models can be used for future experiments, as well as for comprehensive

studies of complicated mechanisms.
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Chapter 1

Introduction

1.1 Experimentation and Response Surfaces

A response surface can be expressed as a specified functional relationship between the

response and the independent variables. When an experiment is conducted to observe

the response variable, we are able to use the dataset and the assumed statistical model

to approximate the response surface. For scientific research in industries and laborato-

ries, experimentation is an essential tool as the complement to theoretical studies. In

this case, an independent experiment or even a series of sequential experiments can be

conceived and undertaken for multiple purposes. In relation to statistical inferences of

our particular interest, a common experimental purpose is to observe and interpret the

assumed response surface, and to obtain sufficient information or new knowledge about

the mechanism. Other common purposes in statistics include comparison of various

treatments, identification of the expected optimal response, inference of the intrinsic

causalities between the response and the individual independent variables, scientific in-

terpretation of the response variation under the mechanism studied, statistical tests to

check the fit of the prespecified model, and so on. Not all of them can be best fulfilled

in the same experiment, so an optimal compromise between desirable purposes needs to

be found to meet our multifaceted expectation from statistical inference.

With the data collected in the process of controlled experimentation, different statistical

models can be fitted. Most of the above purposes we consider can be linked to some

characteristics of the response surface. Hence, an important issue is to figure out how to

best set the levels of the independent variables (or controlled variables) for each run of the

experiment. Meanwhile, the other issue is to allow for specific experimental restrictions

and other constraints in various situations, when some feasible settings are required

in planning future experiments. A useful experimental plan can therefore instruct the

operation of experimentation and the collection of data and information. The theme

of this thesis is optimal design of experiments (ODoE), which is to develop a clever

1



2 Chapter 1 Introduction

allocation of treatments (i.e. combinations of the controlled variable levels) to a number

of experimental runs so as to better achieve desirable purposes in our mind.

In Box and Draper (1975) there was a list of 14 desirable properties of designs, supposing

the experimenters will use their future collected data to model an assumed response

surface. With different combinations of the variable levels under control, in accordance

with the model we assume beforehand, the expected response will be different in the

experiment. Good experimentation therefore needs an efficient and feasible arrangement

of the runs and the factor levels.

The standard experimental designs can perform well in some aspects, depending on

where the compromise among those experimental purposes lies. For this reason, for

instance, the factorial design and the central composite design (CCD) are the two most

popular choices for second-order linear experiments. These can be found in many classi-

cal textbooks (e.g. Myers et al. (2009), Box et al. (2005)). The term “linear experiment”

indicates an experiment that requires the fit of a prespecified linear model. In practi-

cal experimentation, most linear models we propose are of first order or second order.

The more complex models often require a lot of treatment parameters to be estimated,

when experimental data and resources are limited. For example, let Y denote the single

response variable and x1, x2 denote the two independent variables. For i = 1, 2, . . . , n,

the full first-order linear model can be written as

Yi = β0 + β1x1i + β2x2i + εi.

The notation n represents the number of response observations (i.e. the number of experi-

mental runs or units if all observations are valid), β0, β1, β2 are the treatment parameters,

and ε is the model error. With the addition of two quadratic effects and the interaction

between x1 and x2, the full second-order linear model is

Yi = β0 + β1x1i + β2x2i + β11x
2
1i + β22x

2
2i + β12x1ix2i + ε′i,

the new model error of which is ε′ 6= ε. The model can fit a better response surface

but contains more parameters for estimation. With some experimental data available,

it is viable to use either least squares or maximum likelihood to obtain the estimates of

these, the respective standard errors of which can also be calculated. The fitted linear

model must approximate the response surface as well as possible over a specified region

of experimental interest.

Due to the existence of the pure random error as well as the lack of fit of the given

linear model, we shall examine and minimise discrepancies between the experimental

data and the model prediction. As such, even though the model function for the true

response surface is unknown, a suitable alternative model can be identified for a best

description of the response surface. The classical response surface methodology (RSM)

for conventional linear models had been introduced in Box and Draper (1959).



Chapter 1 Introduction 3

1.2 Basics of Optimal Design of Experiments

1.2.1 Motivation and Concepts

When the theoretical model (which describes the unknown mechanism) is unavailable

prior to the experiment, the idea of RSM is to use several candidate linear models to

explore and approximate the true response surface. In this case, the fitted model is also

called an empirical model or a mathematical model, which is not established on the basis

of relevant scientific theories. An empirical model is often modified to suit the dataset,

as we can either add or delete some model terms. Expressed in a concise and smooth

form, the empirical model simplifies the overcomplex functional relationship between the

response and the controlled variables. See Box and Draper (1987) for an introduction

in more detail.

After we assume the statistical model (no matter whether it is empirical or theoretical)

for the experiment, there are different purposes to focus on. We can choose a specific

statistical criterion and find the optimal experimental design that satisfies one or more

corresponding purposes. It is conventional to refer to these criteria as the alphabetical

criteria of optimality or optimality criteria, since there is often a letter in the front of each

criterion definition. Most of them will require the evaluation of the Fisher information of

the model. That is a p× p matrix FTF, where p is the number of treatment parameters

to be estimated and F is the design matrix (or model matrix). The columns of F can be

computed as functions of the levels of the controlled variables. Below we will introduce

the four most common optimality criteria.

For example, if the single experimental purpose is the precise estimation of some or

all of the model parameters, we can use the D-criterion or the (weighted) A-criterion.

The D-criterion aims to minimise the volume of the confidence region of the treatment

parameter estimator θ̂. This volume is also called the Generalised Variance of the

estimator. The D-criterion is invariant to the scales of the p parameters in the model. It

therefore treats them equally in least squares or maximum likelihood estimation. While

D represents “the determinant of the Fisher information”, under the criterion, our aim

is to maximise the criterion function

φD = log
∣∣FTF

∣∣ .
In the function, of course different numerical scales can replace the natural logarithmic

one we use. If the D-criterion is chosen, the optimal experimental design Xopt should

be found to maximise the determinant of the (Fisher) information matrix. In this case,

if we assume the model errors ε to take zero mean and constant variance σ2 across all
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the experimental observations, the information matrix is

FTF =

(
V(θ̂|θ,X)

σ2

)−1
.

Hence, the Fisher information of the model measures the variances and covariances of

the estimator θ̂, which experimenters would like to minimise. V(θ̂|θ,X) is the variance-

covariance matrix, which is conditional on the specified experimental design X. If the

model we assume is nonlinear in terms of θ, this matrix also depends on the unknown

values of the parameters θ. The Fisher information is also the Cramér-Rao lower bound

of V(θ̂|θ,X). Notice that the constant error variance σ2 is a nuisance parameter under

the D-criterion, the estimation of which is unimportant.

As an alternative to the D-criterion, the A-criterion aims to minimise the average vari-

ance of the individual parameter estimators. Though it ignores the covariances between

these estimators, it does not influence the parameter estimation much for simple statis-

tical models with few parameters. This criterion depends on the scale or magnitude of

each parameter estimator even if the assumed model is linear. Hence, it is normal to

use a weighted A-criterion instead, which is a special case of the similar L-criterion (the

letter L represents “linear”). The L-criterion maximises the function

φL = Trace(W(FTF)−1),

where W is the weight matrix that is either numeric or depending on X. If W is

diagonal, the above can also be called the weighted A-criterion function. While the L-

criterion takes the covariances of the estimator θ̂ into account, the weighted A-criterion

does not. In comparison, when we consider the covariances, the parameter estimates

from the new experimental data tend to be more accurate. Otherwise, when we focus on

those individual variances, the estimates will become more precise. A higher expected

precision means that experimenters can report narrower individual confidence intervals

of the estimates θ̂. As usual, the indispensable condition is that the independent model

errors should come from an identical distribution with mean zero, and the distribution

is normal if we use maximum likelihood to obtain θ̂.

In contrast, there are special criteria for model prediction purposes. The standardised

variance of a fitted model response can be expressed as nV(Ŷi)/σ
2, for i = 1, 2, . . . , n.

We can then use the G-criterion to minimise the maximum standardised variance across

X , where X is the region of experimental interest. When we are planning the new

experiment, it is also called the design region or variable space, as defined in this thesis.

Otherwise, the I-criterion (or V-criterion) aims to minimise the average standardised

variance over X . Therefore, the criterion function to be minimised is a multiple integral,
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if the variable space is continuous in each dimension. For instance, the unweighted I-

criterion function for the two-variable linear model in Section 1.1 is

φI =

∫ ∫
X

nV(Ŷ (x1, x2))

σ2
dx1dx2.

If we assume the error variance σ2 to be constant across X , the emphasis of the I-

criterion is on the fitted response variance function V(Ŷ ), which should also depend on

the Fisher information of the model. Either the G-criterion or the I-criterion can lead

to precise response prediction of the fitted model. When n → +∞, the standardised

variance of the fitted response will be equal to p, the number of treatment parameters, at

each support point under the D-criterion. This is a result from the General Equivalence

Theorem; see Kiefer and Wolfowitz (1960). Meanwhile, this number p will also be the

maximal variance across the space X for independent variables. In this case, the D-

criterion for parameter estimation is identical to the G-criterion for model prediction.

Most of the time in practical experiments, however, the equivalence does not hold, since

we cannot afford such a huge n as the number of runs.

When we choose one relevant criterion for optimal design of an experiment, sometimes

the number of runs n will not be specified and thus we assume n → +∞. In this case,

what the optimality criterion looks for is the continuous optimal design or approximate

optimal design, which is often expressed as a weight measure. Suppose there are two

controlled variables x1 and x2 whereas we use two distinct levels for each, at most there

are four support points in total. A specific weight is then allocated to each point such

that a continuous experimental design is written as

Xcon =

{
(x11, x21) (x11, x22) (x12, x21) (x12, x22)

w1 w2 w3 w4

}
. (1.1)

In the first row in this matrix, we write down the coordinates of each point in two

dimensions; while in the second row, the weights are all real numbers that are no less

than zero. Here, we can let w1 + w2 + w3 + w4 = 1. However, if there is a specific

number of runs n, the weights can be rounded off to be integers so that the above Xcon

can become an exact experimental design of n runs. It is expressed in the form

Xexa =

{
(x11, x21) (x11, x22) (x12, x21) (x12, x22)

n1 n2 n3 n4

}
, (1.2)

where n1, n2, n3, n4 are the respective numbers of replicates for the four support points.

Of course, these integers must be nonnegative. The random model error ε is the sum of

the pure error and the lack of fit of the predicted response. With sufficient replication at

the support points, we are able to evaluate the variation in the pure errors of the model

and also improve the defined criterion function.



6 Chapter 1 Introduction

Continuous weight measures are useful in theoretical studies that require derivations of

corollaries (e.g. General Equivalence Theorem) to make some statistical inference. Once

the optimal solution is found, we can round the weights to decide the exact numbers

of replicates. When n is a huge number, the rounded solution will be close to optimal.

However, this is often not the case in practice, as most experiments do not need an ex-

cessive n. Hence, this thesis focuses on exact optimal designs, which are more applicable

and realistic in particular for small-scale experiments. In this situation, it will usually

take some computational effort to search for tailor-made exact optimal solutions.

In addition to the above four common optimality criteria, there are various other criteria

we can choose from. For instance, some recent criteria were developed to maximise

the power of a t-test or F-test in statistical inference (Gilmour and Trinca, 2012b).

Unlike factorial designs and CCDs, a normal optimal design often focuses on a specific

experimental purpose and aims to optimise its own performance in that aspect. When

there are multiple purposes to achieve in the same experiment, one can also use a

compound criterion or a composite criterion that combines and weights several individual

criterion functions. The relevant examples are to be shown in Chapters 3 and 5.

Our emphasis in most of this thesis is on the experimental purpose of the precise es-

timation of the treatment parameters in nonlinear models. This is arguably the most

common purpose in relation to statistics, since the obtained parameter estimates will

explain the quantified relationship between the dependent and independent variables.

The same or a similar method applies to linear models and the search of optimal designs

for some other experimental purposes too. There is no special need to do demonstrations

under all kinds of similar scenarios.

Moreover, in the estimation of the treatment parameters, maximum likelihood can lead

to similar results as nonlinear least squares (NLS), if we assume the error distribution

to be normal for the model. If not otherwise specified, the default in this thesis is

to consider least squares as the method to fit deterministic statistical models, which

also makes it easier to derive and recalculate defined criterion functions. In a special

case in Chapter 5, however, one of our designated steps is to estimate the Box-Cox

transformation parameter α in a full treatment model. In this situation, the estimate

and its variance function should be obtained with maximum likelihood.

1.2.2 Computation and Exchange Algorithms

In the experiment, there are n response observations to be made under different con-

ditions that we can change. Therefore, the Fisher information is composed of n unit

information matrices that tell us the expected information from each observation. No

matter which criteria we use (most of our demonstrations use the D-criterion), the ideal
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achievement will be a maximisation of the information we obtain from the n-run exper-

iment. An experimental design X involves n rows and v columns corresponding to the

v independent variables in the model. If the total number of coordinates nv is a small

number, over the design region X , it is viable to do a direct constrained optimisation

to search for the exact optimal X (Chaloner and Larntz, 1989). Otherwise, in more

complex cases in optimal design, there are some simple search algorithms available in

statistical software, such as SAS, JMP and Design-Expert.

The first step of a traditional search algorithm is to discretise X . Rather than the

bounded continuous variable space, we would like to use a list of candidate runs or

points. To cover the entire variable space X , a sufficient number of candidates should

be taken into account. For instance, we restrict the two controlled variables x1, x2 into

continuous space [−1, 1] and also assume no more constraints on this space. As such, the

area of the square X is four. If we then define seven candidate levels for each controlled

variable, there are 49 candidate points shown in Figure 1.1. In particular, when the

model involves one or more categorical variables or block variables, it makes more sense

to discretise X . However, if we define numerous discrete candidate points, it will take a

lot of computational effort later in the search.

(-1, -1)

(-1, 1) ( 1, 1)

( 1, -1)

x1

x2

u u u u u u u
u u u u u u u
u u u u u u u
u u u u u u u
u u u u u u u
u u u u u u u
u u u u u u u

Figure 1.1: Defined Discrete Candidate Points in a Square Region

With the chosen criterion, we define a set Ω of the candidate points. In this case, the

traditional discrete optimisation of a specific X can be completed in several iterations.

In each iteration, the aim is to update the individual rows or even the single coordinates

of X, towards a maximisation (or minimisation) of the criterion function. As such, the

whole optimisation task is divided into a number of much smaller ones, which makes the

optimisation feasible. For instance, the DETMAX procedure (Mitchell, 1974; Galil and

Kiefer, 1980) can promote the addition or deletion of the rows in the specific X. The

idea is to include the most beneficial points and remove the least beneficial ones in the

updated X. As a result, the total number of experimental runs n shall remain the same

after each update but we can expect a sequential improvement in the criterion function.

The classical search algorithms tend to adopt the point exchange approach (Fedorov,

1972, chap.3), which combines the two steps to delete and then add the rows in the



8 Chapter 1 Introduction

matrix X. With each exchange proposal, it can swap one current point with the most

beneficial candidate from Ω. In the iteration, the number of runs is fixed so that the

stepwise discrete optimisation solutions can be more reliable. Points that might compose

the optimal X are sought and the search will not terminate until an exchanging rule is

no longer satisfied for each current point in X. The iterative procedure cannot guarantee

the final X to be truly optimal, since the criterion function can converge to different

local optima and get stuck there (i.e. the stepwise exchanges will not improve the solution

further). For efficient optimal design of experiments, the same iterative search should

restart with various initial matrices of X. We can take random matrices, but some

specific points can also be included in each initial X.

Iterations under the above exchange approach imply considerable computational effort,

in some cases when the model function in terms of treatment parameters is complex

or when X includes a lot of coordinates. Besides, compared with the A-criterion or

L-criterion, it is often easier to implement the D-criterion, the function of which can

be much simplified and thus require less computation. On the basis of the Fedorov

exchange algorithm (Fedorov, 1972, chap.3), the earliest one that uses the point exchange

approach, some modified versions were proposed in the past decades. In comparison,

the modified Fedorov exchange algorithm (Cook and Nachtsheim, 1980) is the most

popular one in practice, since it streamlines the regular iterative procedure and thus

decreases the time spent in the search. For even less computational effort and quicker

discrete optimisation (this was important in the past), other modifications include the K-

exchange algorithm in Johnson and Nachtsheim (1983) and the KL-exchange algorithm

in Atkinson et al. (2007, chap.12). We will reintroduce them in Chapter 2, where we

also develop the new optimised exchange algorithm and hybrid exchange algorithm. Both

new algorithms are most relevant to the one in Cook and Nachtsheim (1980), and the

latter will be adapted and applied to different examples in this thesis.

Another reasonable choice is the coordinate exchange algorithm (Meyer and Nachtsheim,

1995), which comes after a simple modification of the point exchange approach. The

classical point exchange approach can swap complete points between the current X of n

rows and the candidate set Ω. If we discretise the variable space X as shown in Figure

1.1, Ω is expressed as a 49× 2 matrix. These are all the combinations of the candidate

levels of the two independent variables. On the other hand, the coordinate exchange

approach is developed to swap single coordinates between X and the respective candidate

levels. In that case, the number of candidate coordinates is seven per independent

variable. Hence, when there are lots of candidate points in Ω, the coordinate exchange

approach can save computational time in the stepwise discrete optimisation.

The last one to mention is the stochastic search, where some randomisation is used

in deciding whether or not to accept an exchange proposal. Genetic algorithms, for

instance, are useful sometimes for quick computation to solve complicated problems. We

will not consider them in this thesis, since the hybrid exchange algorithm can work quite
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well and find reliable solutions in all the examples. Likewise, simulated annealing can also

be applied for optimal design (Meyer and Nachtsheim, 1988). This metaheuristic will

demand more computational effort to attain a local optimum of the criterion function.

Compared with traditional exchange algorithms, it is less liable to get stuck in inferior

local optima, at which X is less efficient with respect to the criterion.

1.3 Preliminaries and Miscellaneous Topics

1.3.1 Nonlinear Experiments

Let l(θ,X) denote the log likelihood of the model we assume for the experiment. The

Fisher information can be calculated as

FTF = −E
(
∂2

∂θ2
l(θ,X)

)
. (1.3)

When the statistical model is linear, the covariance matrix of the least squares or max-

imum likelihood estimator θ̂ is

V(θ̂|θ,X) = (FTF)−1σ2.

This result is asymptotic as the variance estimate for the fitted model will depend on

the observed error distribution and the estimate of σ2. The design matrix F comes

from the linear model below in the matrix form: Y = Fθ + ε. Y is the vector of the

observed responses while ε is the vector of the model errors. As such, the least squares

estimator is θ̂ = (FTF)−1FTY. Hence, under least squares estimation, we can compute

the (Fisher) information matrix from F. Both the D-criterion and the A-criterion will

no longer involve the calculation of the likelihood function.

When the statistical model is nonlinear, we cannot write it in matrix form without

approximation. We should linearise the model in terms of the treatment parameters θ.

To achieve this, the conventional approach is to do a first-order Taylor series expansion

about a specified centre θ0, which is a numeric vector of size p. For more details,

see Atkinson et al. (2007, chap.17) or Chapter 2 in this thesis. After the first-order

linearisation, we obtain

F =
∂f(X,θ)

∂θ
|θ=θ0 ,

the value of which depends on θ0. The bias of this will be close to zero if θ = θ0,

so the Fisher information relies on the true parameters we are to estimate after the

experiment. What we will obtain in the nonlinear least squares case is almost identical

to the Fisher information in (1.3), after the same substitution θ = θ0. The θ0 is

called the parameter prior (or point estimate) that we have to decide before optimal

design of experiments. Model linearisation works best around the specified centre, so we
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Table 1.1: A 12-Run CCD for the Response Surface

x1 x2 x1 x2 x1 x2

-1 -1 -
√

2 0 0 0

-1 1
√

2 0 0 0

1 -1 0 -
√

2 0 0

1 1 0
√

2 0 0

should make the parameter prior as accurate as possible. In addition to the first-order

linearisation, some refined statistical methods also consider the higher-order derivatives

in the expansion (Bates and Watts, 1980; Hamilton and Watts, 1985).

Generalised (non)linear models can also attract experimenters’ attention, which assume

different nonnormal distributions for model errors. The common method to fit the model

and estimate the parameters is iteratively reweighted least squares. With a specific weight

matrix in relation to the presumed error distribution, the Fisher information and then

the criterion function can be derived for the model; see Woods et al. (2006) for some

examples. Likewise, a similar situation is when some random block effects are added to

the model, as we have to revise the Fisher information too.

We can treat CCDs as references to optimal experimental designs. For a second-order

linear model we assume, a standard CCD can include 2v factorial points, 2v axial points

(at a specified equal distance from the centre), and several centre points. In reference

to Figure 1.1, Table 1.1 shows a CCD when the uniform distance is set to
√

2. Hence,

except for the centre, the rest of points are located on a sphere with the radius
√

2. In

this case, the spherical CCD is rotatable. If the distance is one, for another example, the

CCD is face-centred, since the axial points and the centre are also midpoints between

the factorial points. Besides, if one of the experimental purposes is to compare multiple

treatments, we can also use an orthogonal CCD with a calculated radius.

Most important of all, the CCD can be useful despite the fact that the model we assume

is nonlinear. For some aspects, such as to estimate the response difference between two

treatments and to predict the combination of the variable levels that will maximise the

response, perhaps a standard CCD is not inferior to, for instance, the X that maximises

the D-criterion function. Hence, when there are multiple experimental purposes, we

should not overestimate the improved properties of optimal designs. In those situation,

instead of taking the simple D-criterion, a better idea is to aim for several desirable pur-

poses in a compound criterion or a composite criterion, both of which are also mentioned

in the last section. The compound criterion function is the weighted sum of its com-

ponents which are different simple criterion functions. In comparison, when the same

criterion is considered, but for more than one statistical model, we combine the different

components or models in an overall composite criterion function. It could be difficult to

use such a compound or composite criterion when we plan industrial experiments. Of

course, the properties we demand for X can sometimes partly overlap with one another.
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Figure 1.2: Information to Know before Optimal Design for Nonlinear Models

This means that the D-criterion might also suit some other experimental requirements,

in addition to the precise parameter estimation.

In those nonlinear experiments, the D-criterion or A-criterion depends on the numeric

vector θ0 that we must determine ourselves. Hence, the criterion function is called the

local criterion function and the X that satisfies the local criterion is called the local

optimal design. In some literature, it is also referred to as the locally optimal design. If

we use an exchange algorithm to search for that, the essential requirements are illustrated

in Figure 1.2. In brief, we should know all about the statistical model that will be fitted

to the new experimental data.

Compared with standard CCDs, for instance, optimal experimental designs are more

flexible in some aspects. There are no restrictions on the total number and the replication

of experimental runs, as long as n is no less than the number of treatment parameters

p. We are able to take account of specific constraints on X , which could appear in

different shapes in the v-dimensional space. Moreover, exchange algorithms can be

adapted to handle both quantitative and qualitative variables, which we will discuss

later in Chapters 2 and 3. Finally, a tailor-made design X can be found for the nonlinear

(multifactor) experiment, which is close to optimal with respect to the specified criterion.

1.3.2 Extensions of Basic Michaelis-Menten Kinetics

In Section 1.1, we showed two empirical models that can be used to approximate the

response surface under the unknown mechanism. In contrast, we can sometimes develop

theoretical or mechanistic models from scientific theories. The established model can be

nonlinear in the unknown parameters representing the treatment effects. A mechanistic

model often gives a better approximation to the experimental data at hand. Besides,

we can also use it for theoretical studies and interpretation of the properties of the

mechanism. In this thesis, we will focus on a specific area in science: the fundamental
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Michaelis-Menten kinetics and its extensions. This kinetics is widely used in chemical

sciences and is one of the most common examples in statistics addressing nonlinear

models. We will introduce the theories and background in Chapters 3 and 5. At the

moment, we need to know the statistical model of this kinetic profile, which is

νi =
νmaxSi
k + Si

+ εi,

for i = 1, 2, . . . , n. As usual, n denotes the number of experimental runs and ε denotes

the random error. ν is the initial rate of the biochemical reaction of experimental interest

whereas S is the initial substrate concentration. The two treatment parameters are νmax

and k, the values of which require some biochemical interpretations. The above model

is the solution of a set of differential equations that are derived under the rate laws

in kinetics. The relevant experiment should imply the use of an enzyme, in order to

catalyse the reaction that converts the substrate to the final product. The Michaelis-

Menten mechanism is the simplest in enzyme kinetics; however, we will discuss more

complicated mechanisms for extensions of that.

This is because, in experiments close to industrial applications, there could be several

controlled factors but no mechanistic model like for simple Michaelis-Menten kinetics.

To establish a joint functional relationship between the response and these factors, it is

natural to use an empirical model, such as a second-order linear response surface. The

response is the (initial) reaction rate in kinetics. In this case, if one of the treatment

factors is the (initial) substrate concentration, some theories should hold behind the

mechanism. We can then combine the linear response surface (or a similar empirical

model) and the Michaelis-Menten kinetics. The result is a nonlinear kinetic model with

a hybrid structure. It illustrates a special empirical approximation of the response

surface, which we believe is better than the simple linear model. If the initial substrate

concentration is one controlled variable and x denotes the other one, we can write a

simple nonlinear kinetic model as

νi =
(a0 + a1xi + a2xi

2)Si
k + Si

+ εi.

There are four treatment parameters in the model function. Other candidate models

will be introduced in the examples in Chapter 3. Optimal design of experiments for

such multifactor kinetic models is little studied in the past. In this thesis, we are also

interested in the nonlinear behaviour and the error structure of such a model. On the

one hand, the above model has a partially linear structure, which simplifies the normal

computer search for optimal designs. On the other hand, the structure of the random

error ε can be additive, multiplicative, or even more complicated. With the use of NLS or

maximum likelihood to fit the model, we must validate some of the classical assumptions.

The model errors must be uncorrelated and the error variance must be constant across

the n observations. Violation of these will increase the bias in parameter estimation and
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therefore the fitted nonlinear model will be less accurate. When there are some outliers

or wild observations, one or more assumptions can be violated. One remedial measure

is to transform both sides (TBS) of the above kinetic model, for instance. We can do a

power transformation to the power α, so the model will become

νi
α =

(
(a0 + a1xi + a2xi

2)Si
k + Si

)α
+ ε′i.

The power transformation is recommended in Carroll and Ruppert (1984) for mechanis-

tic models, the error structures of which are little known sometimes. The TBS model

can reserve the mechanistic relationship between the dependent and independent vari-

ables, so we should use the same transformation on the both sides. In this case, the

transformation is almost equivalent to the famous Box-Cox transformation (Box and

Cox, 1964). Both can take the role in stabilising the error variance and thus to fix the

bad error distribution we assume.

Provided we can find a suitable α, the Box-Cox transformation or power transformation

will improve the error structure as we postulate the distribution of ε′. α can be deter-

mined on the basis of the information from the dataset, as well as the ease of model

interpretation. For a simple Michaelis-Menten model in substrate concentration and two

treatment parameters, some transform-both-sides models were fitted in Ruppert et al.

(1989), where the Box-Cox transformation parameter α could be estimated by maximum

likelihood. In their simulation studies, the TBS model was considered to have a complex

error structure as follows:

ν
(α)
i =

(
νmaxSi
k + Si

)(α)

+ σSi
α′ε′i,

where ε′ was a standard normal random variable, σ was the unknown standard devia-

tion of the error distribution, and ν
(α)
i represented the Box-Cox transformation on the

initial rate. When Ruppert et al. chose different values for the two constants α, α′, the

simulated data can be skewed or heteroscedastic despite the transformation. Because

of that, these discussion were further extended in Nelder (1991) to include generalised

linear models for the kinetic data.

The focus in this thesis and in our demonstrations is on nonlinear models relevant to

Michaelis-Menten kinetics, no matter if we transform them in advance or not. Nev-

ertheless, the same idea should also fit varieties of applications in widespread areas of

science. A simple adaptation of the inputs in the hybrid exchange algorithm can lead

to tailor-made optimal designs of different nonlinear experiments.

We can even look at more complex mechanisms that do not follow Michaelis-Menten

kinetics. As we can refer to the rate laws, it is a common practice to solve a set of

differential equations to build up the kinetic model as required. Even in the less simple

cases, Atkinson and Bogacka (2002) applied a direct method to obtain the numerical
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solutions as well as to approximate the Fisher information of the model. To describe

a non-Michaelis-Menten mechanism, the initial reaction rate is often expressed as a

rational function in terms of the substrate concentration (no other factors are considered

in this example). If a1, a2, a3, a4, a5, a6, a7 are the treatment parameters, we can write

the advanced mechanistic model such as

νi =
a1 + a2Si + a3Si

2 + a4Si
3

a5 + a6Si + a7Si
2 + Si

3 + εi.

The model looks complex as the ratio of two polynomials of the specified degrees (both

of which are equal to three for the above equation). It will lead to the basic Michaelis-

Menten model when five of the seven unknown constants are equal to zero. However,

although the most concise model tends to be simpler as it involves some zero constants,

in studies of new mechanisms, such information is often unavailable prior to experiments.

As a result, we have to use the experimental data to estimate all p treatment parameters,

even though the substrate concentration is the only independent variable.

With a complex mechanistic model like this, it is difficult to either prove or disprove the

candidate model. That is, the data or the experimental design cannot “place the model

in jeopardy” (Box and Hunter, 1965). In this situation, more than one solution set will

be acceptable in the parameter estimation, since each fitted response surface can predict

the response observations well. Therefore, even if the complex ratio function is correct,

it is not so suitable if our desire is to learn the true parameter values.

Parameter estimates can compensate each other to some extent because of their high

correlation structure (Box and Lucas, 1959), so there could be quite different solutions for

the complex mechanism we assume. To use a complex mechanistic model, we demand

solid scientific evidence for an apt justification of the assumed model. Without such

evidence, it is viable to streamline the rational model function and reduce the total

number of treatment parameters. Now that there is also a model selection problem to

solve, when it is not recommended to adopt the optimal design of the experiment for a

single model assumed. Above all, we have to link the statistical model to the nature of

science and the mechanism to be studied. We also need to understand the experimental

conditions and the possible restrictions on the data collection. This requires a close

cooperation with experimenters from different research areas. In Chapter 5, we will

do a brief review of Michaelis-Menten kinetics, which we believe is essential for the

fundamental comprehension of our examples and numerical results.

1.3.3 Parameter Prior Distribution

In nonlinear experiments, the Fisher information relies on the parameter prior θ0. To

determine a reliable prior that is close to the vector of the true parameter values, one

solution is to consider sequential optimal design of experiments (Box and Hunter, 1963).
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This means that the experiment will be divided into multiple phases and we can fit the

model to the collected data after each phase. As such, we can obtain more and more

information to influence the choice of the parameter prior, while an optimal design of

the subsequent experimental runs can be found for the next phase. This is quite useful

in real experimentation, though it is not considered in this thesis. If there are some data

or old parameter estimates from literature sources or past experiments, we can make

use of them to determine the parameter prior too. Not all such information are reliable

for the new experiment to be planned, so this is not a perfect measure.

We can define a point parameter prior for the Fisher information. This is simple and

leads to the local optimality criterion. However, to take account of some uncertainties,

we can also assume a multivariate parameter prior density ρ(θ) (Draper and Hunter,

1967). The mean and the variance of ρ(θ) depend on the information we obtain before

the experiment. This information is often based on similar past experiments and old

data reported in some literature.

As one approach in optimal design, we can find an X that minimises the variances

and covariances of the parameter posterior distribution. A simple example was shown

in Gilmour and Mead (2003), where the main experimental purpose was to find the

combination of the variable levels that would maximise a response. This is useful when

the parameter prior is quite informative or/and the number of experimental runs is

small. In contrast, some people prefer classical frequentist inference about the quantities

of interest. The frequentist approach will also be the focus in this thesis. In this case,

the ODoE approach is to find an X that optimises the variance-covariance matrix of

least squares or maximum likelihood estimator θ̂.

No matter which approach experimenters wish to use, to take account of ρ(θ), we can

refer to an expected optimality criterion that maximises the expected Kullback-Leibler

distance (i.e. the increase in the Shannon information). As explained in Chaloner and

Larntz (1989), for nonlinear models, we assume the normal approximation of the pos-

terior and also the normal density ρ(Y|X). ρ(Y|X) is independent of parameters θ, so

it differs from the likelihood. The first condition must hold if we aim to minimise the

posterior variance whereas if the second condition is violated, the response distribution

should at least come from the exponential family (we shall calculate the related Fisher

information). The expected criterion is to maximise (or minimise) the multiple integral

ϕ =

∫
θ
φ(X|θ)ρ(θ)dθ,

where φ(X|θ) represents the local criterion function. In Chapter 4, we will show an

efficient numerical integration method to approximate the expected criterion function.

Besides, if the above two conditions do not hold, e.g. in the experiment in Myung and
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Pitt (2009), the Kullback-Leibler distance

ϕ =

∫ ∫
φ(X|Y,θ)ρ(θ|X,Y)ρ(Y|X)dθdY

cannot be simplified like in the above equation. This criterion function is not so useful

if what we will do is least squares or maximum likelihood estimation of the parameters.

A Markov Chain Monte Carlo (MCMC) approach (Müller and Parmigiani, 1995) can be

chosen to simulate the empirical criterion function. However, this approach tends to be

slow in exact optimal design of experiments.

This thesis will focus on experiments that require nonlinear least squares estimation. In

the examples in Chapters 4 and 5, the normal or lognormal parameter prior distributions

will be assumed to provide the prior information. With the expected optimality criterion,

what we do is called the Bayesian optimal design of experiments. Meanwhile, we will

not consider the real Bayesian inference for analysis of experimental data (even if we

do, the criterion function will be the same). In those examples, we are interested in

the variance-covariance matrix of the treatment parameter estimators, which can be

calculated with NLS and the data collected from the new experiment. Therefore, this

approach using the expected criterion is called the pseudo-Bayesian approach.

1.4 Outline

The structure of the rest of thesis is as follows.

In Chapter 2, we will demonstrate different exchange algorithms for exact optimal design

of nonlinear multifactor experiments. In comparison, a new continuous optimisation

method is favoured over the traditional discrete optimisation in the literature, and the

differences between the two will be elucidated in the examples. We will also propose a

new, hybrid exchange algorithm, which is developed to improve the procedure of optimal

design and to save computational time. The numerical results will be presented in this

chapter too, along with a brief discussion to conclude.

Chapter 3 will concentrate on several examples in relation to Michaelis-Menten kinetics.

We will start with some simple multifactor kinetic models and then extend our appli-

cations to more complex ones and to some special scenarios. We will examine these

results and also introduce a modified adjustment algorithm in order to improve some

of the optimal designs further. A number of the local L-criteria will be compared with

the local D-criterion. Finally, a simple compound criterion will be proposed too, which

allows experimenters to select from multiple nested candidate models.

Chapter 4 will introduce Gaussian quadrature rules, in particular the Gauss-Hermite

quadrature, which can offer a reliable approximation of the expected D-criterion func-

tion. With this efficient numerical approach, we can assume a suitable parameter prior
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distribution for the model and look for the (pseudo-)Bayesian optimal designs of ex-

periments. We will show how to define a small and suitable sample for Gauss-Hermite

quadrature, in order to speed up computation and reduce the bias in the numerical

approximation of the criterion function.

In Chapter 5, we will finish our discussion about Michaelis-Menten kinetics. A more

detailed introduction will be included so that readers can better understand the exper-

iments and kinetic models in the examples. Unlike in Chapter 3, we will focus on the

transform-both-sides kinetic models. To fit such a model, an extra task is to determine

the Box-Cox transformation parameter α. In Bayesian optimal design of experiments,

we will either take α as a prespecified constant or treat it as an unknown parameter to

be estimated. In the second case, a compound criterion can be derived for the precise

estimation of both the treatment parameters and α.

In the final chapter, we will draw our main conclusions and discuss some future work.

All the computation and calculation are completed in the Matlab environment, with a

Dell personal laptop with a 2.60 GHz Intel Core i5-3320M Processor and 4 GB RAM.

Besides, when this thesis shows (optimal) experimental designs in tables, note that the

experimental runs are sorted in ascending row order with respect to the variable levels.

Nonetheless, in the real experiments, these runs (or units) should be independent and

run in a random order. As an academic writing rule in this thesis, the personal pronouns

“we” and “our” are used instead of “I” and “my”.





Chapter 2

Optimal Design of Experiments

for General Nonlinear Response

Surfaces

2.1 Research Problem

2.1.1 Nonlinear Multifactor Models

In chemical and biological studies, experimenters often wish to explore and delineate

some unknown mechanisms with the data observed on presumed response surfaces. To

discover sufficient information, an adequate statistical model could be fitted to the ex-

perimental data, which relates the response measurement to the set of controlled factors.

As the mathematical function is established in the experimenters’ belief, the values of

the unknown parameters that constitute the model can be deduced with least squares

or maximum likelihood estimation. Here, our focus is on model-related experiments and

the precise estimation of treatment parameters in the model.

The statistical model can be theoretical or empirical. In vast industrial experiments,

the essential information about the working mechanisms is often incomplete or insuffi-

cient, so it is neither economic nor convenient to seek the theoretical models. In these

circumstances, we will assume the model function to be smooth such that it is realistic

to exploit common empirical modelling techniques instead. For instance, we can obtain

a smooth model function with a simple interpolation method. In a broader sense, on the

basis of the experimenters’ speculation, a linear or even nonlinear empirical model can

be found to elaborate the intrinsic mechanism behind the experimental data, whereas

the other influential experimental conditions are under control.

19
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The input and output variables of such an empirical model can be scaled or transformed

as appropriate in advance. As such, the new space of the controlled variables should

be identified as the region of experimental interest. Within the defined space at least,

the empirical model we assume should be the most capable one to approximate the

curve of the true response surface. Though we consider the model to be empirical, it is

hard to detect its most suitable form when the unknown mechanism involves multiple

factors. There is a chance that the empirical approximation we do is inadequate for the

experimental data, due to the existence of the lack of fit of the model. Moreover, there

is another problem to be concerned with. When we interpret the nature of science, an

empirical model is of limited value, even if it offers a first approximation to the data.

It is recommended to use the model-oriented optimal experimental design which is tai-

lored to a mechanistic (or theoretical) model rather than an ill-defined empirical model.

The mechanistic model is often derived from scientific theories and formulae, when the

actual mechanism is somewhat simplified under the relevant conjectures. A fitted mech-

anistic model is still an approximation to the response surface, but one can anticipate

a better and more intuitive elucidation of the complex mechanism. It is usual that

the mechanistic model is nonlinear in terms of the independent variables as well as the

treatment parameters. Moreover, we can consider the need for the transformation of

the model variables or the both sides of the mechanistic model function, in order to

improve the observed error structure. For some discussion of mechanistic studies and

corresponding design of experiments, see Box and Hunter (1965).

Unlike common empirical models, mechanistic models tend to be more frugal in the use

of unknown parameters. Meanwhile, before the new experiment, such a model cannot

be derived without the essential information, apart from the parameter values, about

the response surface. In real life, we cannot often acquire this information to derive

a theoretical model, depending on the current phase of mechanistic studies. In such

scenarios, it is advisable to resort to empirical modelling techniques, while we wish to

take account of at least some identified mechanistic features. As we will show in the

next subsection, in the second example in this chapter, a nonlinear multifactor model

can be found to fit to the experimental data. This model combines some mechanistic

information to our empirical approximation about the unknown mechanism. This is

therefore referred to as a hybrid model. The optimal experimental designs can also be

found for this hybrid model, as we will show later in this chapter.

2.1.2 Motivating Examples

Our first example is a chemical engineering application in Box and Draper (1987,

chap.11-12), where both an empirical second-order linear model and a mechanistic non-

linear model were fitted to the dataset. As to the experiment described, a pilot plant

was operated in a continuous stirred reactor, where the chemists wished to observe the
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response surface and interpret the mechanism it implied. A reliable fitted model can

be useful afterwards, for instance, for full-scale industrial experiments in future. In this

example, the actual mechanism explains a two-step consecutive decomposition reaction

of a chemical solution, where the intermediate is the output stream we demand from the

reaction. Before the appropriate mechanistic model is derived, the reaction mechanism

below shows the theoretical framework:

Chemical→ Intermediate (i.e.Product)→ Byproduct.

An undesirable byproduct shall be formed in the last step of the above reaction. To

activate this process, the experiment also involves a catalyst to be diluted in the chemical

solution. Yield η is the response of each experimental run, which should be measured

after a fixed lapse of time in the reaction. The response variable indicates the amount

of the desirable product that has been formed, which is in association with the average

reaction rate in the specified time interval.

Three controlled variables could influence the variation in η: flow rate R (at which the

chemical flows into the reactor), catalyst concentration C and xT = 1000/(T + 273)

where T is the temperature in degrees Celsius. Note that the response η is called the

“conversion rate” of the chemical in Box and Draper’s original example, which is an

incorrect definition. The experimental data in Box and Draper (1987) corresponds to

a 24-run spherical central composite design (CCD). There are four central points out

of the total 24 points. When the empirical second-order linear model is fitted to the

experimental data, x1 = (log(R)−log3)/log2, x2 = (log(C)−log2)/log2, x3 = (T−80)/10

are the scaled variables. In this situation, the uniform distance from the central points

in the spherical CCD is
√

2. The linear model includes the constant term, three first-

order terms, three quadratic terms, and three interaction terms. In total, there are 10

unknown treatment parameters to be estimated.

In contrast, the characteristics and the nature of this chemical reaction can be better

identified if we fit the mechanistic model as the alternative. Derived from the rate laws

in chemical kinetics, this mechanistic nonlinear model is

ηi =
Cθ1i θ0Riexp(θ2x)

(Ri + C
θ′1
i θ
′
0exp(θ′2x))(Ri + Cθ1i θ0exp(θ2x))

+ εi, (2.1)

where x is set to −0.001(xT,i−2.8344) for simplification. In the light of the nonlinear least

squares (NLS) assumptions, for i = 1, 2, . . . , 24, the error εi must be independent and

come from an identical distribution with zero mean and homogeneous variance. The aim

in optimal design of such an experiment is to minimise the Generalised Variance of the

NLS parameter estimators. Besides, to plan the new experiment, the design region (or

variable space) X can be envisaged to be a cuboid. As such, we let (x1, x2, x3) ∈ [−1, 1]3

delimit the box constraint for the empirical linear model. The equivalent constraint on
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the unscaled variables is (R,C, T ) ∈ [1.5, 6]×[1, 4]×[70, 90] for the mechanistic nonlinear

model (2.1). It is simple and common to define such a variable space, which is contained

in the spherical space for the previous CCD.

In the second example, the main experimental interest is to learn the mechanism of the

enzymatic depolymerisation of the substrate (i.e. dextran) (Mountzouris et al., 1999). In

a stirred-cell membrane reactor under monitoring, endodextranase can be added as the

enzyme activator, while the reaction products are different kinds of oligodextrans. The

controlled variables are the substrate concentration S (2.5-7.5 % in w/v or weight/vol-

ume), the enzyme concentration E (0.625-62.5 Units ml−1 times substrate concentration)

and the transmembrane pressure P (200-400 kPa). In the original experiment, multiple

response variables were observed and each can be linked to a unique empirical linear

model. However, in this example, the single response to consider is the substrate con-

version rate ξ (%) at the time of measurement. The old experimental data was obtained

according to an 18-run face-centred CCD in Mountzouris et al. (1999). The variable

space for this experiment is also assumed to be a cuboid.

No mechanistic model can be found to depict the response surface of ξ, so the alterna-

tive is to do an empirical approximation. In spite of the simplicity of purely empirical

models, it is worthwhile conceiving a hybrid model which could also contain some mech-

anistic implications and scientific reasoning. As we fit such a model to the experimental

data, a better illustration of the mechanism can be anticipated. With the remaining fac-

tors fixed, we can extrapolate a negative correlation from the old experimental data of

Mountzouris et al.. As a whole, the higher the initial substrate concentration S specified,

the lower the substrate conversion rate ξ expected. Herein, there is a smooth nonlinear

function E(ξ) = γ1S/(γ2 + S), where E(ξ) is the expectation of ξ. γ1 is a nonnegative

scale and the constant value of γ2 controls the curvature of this function. For details of

our rough derivation and conjecture, see Section 2.10 for the Appendix to this chapter.

Note that some practical restrictions are removed when we derive the function.

The transformed response of the model is specified as ξ/(100 − ξ), a logit function in

the absence of the natural logarithmic scale. E(ξ/(100− ξ)) = γ′1S/(γ
′
2 +S) where γ′1, γ

′
2

are unknown constants. After the simplification above, for the hybrid model with three

controlled variables, we are inclined to replace the nonnegative γ′1 with an empirical

exponential function in terms of xE = log10(E/6.25) and xP = (P − 300)/100. If the

variable space remains the same for the new experiment, there is (S, xE, xP) ∈ X =

[2.5, 7.5]× [−1, 1]2. The hybrid nonlinear model can be written as

ξi
100− ξi

=
exp(a0 + a1xE,i + a2xP,i + a3x

2
E,i + a4x

2
P,i)Si

a5 + Si
+ εi. (2.2)

Here εi is the error term and a0, a1, a2, a3, a4, a5 are the six parameters. When the

substrate concentration is fixed, the model function is simplified to E(log(ξ/(100−ξ))) =

a0 + a1xE + a2xP + a3x
2
E + a4x

2
P , which indicates the expectation of the transformed
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response. Rather than some empirical linear models, in our example, (2.2) will be fitted

to the new experimental data.

2.1.3 Statistical D-Criterion for Optimal Design

The experiment includes a series of runs to observe the response and thus to compile

the dataset. For each experimental run, we shall determine the respective levels of the v

controlled variables. As a whole, we can select an exact experimental design X consisting

of n runs. For i = 1, 2, . . . , n, the ith observed response is Yi = f(Xi,θ) + εi, where

Xi is the ith row of X. The error mean should be E(εi) = 0 and the homogeneous

error variance should be V(εi) = σ2. If the model function f(Xi,θ) is linear, since least

squares estimation applies, the matrix form of the model is Y = Fθ + ε. Here, Y is

the column vector of the n observations and ε is the column vector of the n residuals.

In addition, θ denotes the set of the p unknown treatment parameters, whereas F is

the n× p design matrix (or model matrix). The elements in each row of F are different

functions of the corresponding row elements in the n × v matrix X. An example of

computing the elements of F will be shown in Section 2.9.

In optimal design, our emphasis is to optimise the estimation of θ, which is the same

as to minimise the entries in the p × p variance-covariance matrix V(θ̂) = (FTF)−1σ2.

This matrix is a precision measure of the least squares estimator θ̂ and is independent

of the real data. As long as the model is linear, FTF is called the information matrix,

which is identical to the Fisher information of X. To best suit least squares or maximum

likelihood estimation, X should contain the maximal amount of information about θ̂. A

common approach to use the local D-criterion, i.e. to maximise the scalar function

φD = log
∣∣FTF

∣∣ ,
which is the sum of the logarithms of the eigenvalues of FTF. In other words, X is local

D-optimal if it minimises the determinant of the variance-covariance matrix of θ̂, which

is called the Generalised Variance. If the model errors come from an identical normal

distribution, the criterion also minimises the volume of the confidence region of θ̂ at a

given significance level (it is often 0.05 in biochemical applications). As the most popular

optimality criterion, the local D-criterion treats the parameters with equal importance

and it is invariant to different scales of the controlled variables in the model.

When the errors are in an identical normal distribution (not required for implementing

NLS), the 100(1−α)% confidence band of Y (x) is E(Y )±Tα/2
√
f(x)′(FTF)−1f(x), where

x is the set of the controlled variables. With n− 1 total degrees of freedom, Tα/2 is the

t statistic at the significance level α, where if σ2 is known according to the asymptotic

theories, it is feasible to replace Tα/2 with the Z statistic that is independent of n.

Besides, f(x) includes the p model terms at the point x; i.e. the functional form of the
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rows in F, in terms of x. If experimenters are more concerned with the model prediction

than the parameter estimation, the G-criterion and the I-criterion (or V-criterion) are

more attractive than the D-criterion, which all emphasise the confidence band of Y (x).

While the I-criterion aims to minimise the average width of the confidence band within

the variable space X , the G-criterion aims to minimise the maximum width.

2.1.4 Local Optimal Design for Nonlinear Models

Sometimes we have to find the model-oriented optimal designs of nonlinear experiments.

To use the local D-criterion in this case, we shall formulate the analogue of the informa-

tion matrix of interest. When the model function is nonlinear, to derive the D-criterion

function that corresponds to NLS estimation, the most common approach is to linearise

f(Xi,θ) in terms of θ (see e.g. Atkinson et al. (2007, chap.17)). With the first-order

Taylor series expansion about a selected centre θ0, the model function becomes

f(Xi,θ) ≈ f(Xi,θ
0) +

p∑
j=1

(
∂f(Xi,θ)

∂θj

∣∣∣
θj=θ0

j

)
(θj − θ0j ), (2.3)

where the truncation is made after the p first-order terms of θj . The column vector θ0

of p quantities is often chosen as the prior or point estimate of the currently unknown

θ. As a result of numerical approximation, for i = 1, 2, . . . , n, the ith row of F is

Fi =
∂f(Xi,θ)

∂θ

∣∣∣
θ=θ0

.

The Gauss-Newton or Levenberg-Marquardt algorithm requires a similar linearisation

for NLS. Given θ0, the information matrix FTF is identical to the Fisher information of

the model, which is proportional to the inverse of the variance-covariance matrix of the

estimator θ̂. For this reason, we call φD the local D-criterion function, since it is obtained

after the substitution θ = θ0 and the first-order linearisation in the vicinity of θ0. The

choice of the prior θ0 relies on the experimenters’ expertise or a “Best Guess” about the

mechanism behind the model. When the difference θ − θ0 is a zero vector, there shall

be no bias in (2.3). In contrast, when the difference increases, the linearisation will be

less successful at the true values of θ.

As will be shown in this thesis, the parameter prior can be obtained from old datasets

and estimates in the relevant literature (if the experimental environments under control

are similar). Under different environments, θ0 can also be modified in accord with the

experimenters’ conjecture, when there are reasonable demands. Or if there are several

independent and similar studies, the current experimenters can negotiate for a tradeoff

to determine their own parameter prior for the criterion. As an alternative, the experi-

menters can conduct sequential pilot studies, in order to find more reliable information

about θ0. A suitable model can also be found through such sequential experiments. In
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addition, we can take account of other experimental experiences, records or reports from

relevant literature sources, or even unproven predictions from the experimenters.

2.1.5 Need for Exact Design and Algorithm

In an approximate experimental design, the continuous weight instead of the number of

replicates will be calculated in correspondence to each of the support points (or unique

runs). Although we can round off the decimal weights for a specified total number of

experimental runs n, the solution will not work well when n is a small number. Hence,

we require a lot of runs to ensure that the obtained experimental design is efficient. In

contrast, an exact experimental design X is made of n runs, which implies the actual

scale of the experiment. When n is small, it is not infrequent that the exact optimal

design will not resemble the approximate optimal one, in terms of the support points and

the replication. The approximate designs shall be acceptable in some theoretical studies,

such as the earliest applications in Chernoff (1953); Box and Lucas (1959). Nevertheless,

for most real experiments, the exact optimal designs would be the first choices.

In total there are n×v coordinates in the exact experimental design X, which correspond

to the levels of the v controlled variables. To search for the optimal combinations of

these coordinates, under the local D-criterion we assume, some computational effort is

demanded to make X efficient. To implement the search in various situations, we shall

compile a computer algorithm that uses the criterion to improve nonoptimal designs

iteratively. As shown in 1.2, we should know in advance the essential details about

the model of interest. Therefore, the listed items must be input into the computer

algorithm: an explicit model function E(Yi) = f(Xi,θ), a natural number n, the space

of the v controlled variables X (e.g. an ellipsoid or cuboid in dimension v), and the

indispensable assumptions about the errors ε. In the next section, we will introduce the

traditional optimal design algorithms and the well-known exchange approach.

2.2 Introduction to Computer Exchange Algorithms

2.2.1 Point Exchange Approach

The matter is to search for the n-run local optimal designs of nonlinear experiments. We

should do some iterations, thus a small number of coordinates can be updated in each

dependent step of one complete iterative update. After each update in X, there should

be an instantaneous increment in the local D-criterion function, for instance, which will

move closer and closer towards its true maximum. When a local maximum is found,

we can stop the iteration and output the final solution X. The use of iterative updates

makes it easier to optimise X as a whole, but the result relies on the initial coordinate
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values of X. A similar iterative procedure can also be applied to find the approximate

optimal designs of experiments.

On the basis of this procedure, we consider the exchange algorithm (Fedorov, 1972,

chap.3) which can suit various nonlinear experiments across widespread areas of sci-

ence. Herein, if we adopt the classical point exchange approach (or Fedorov exchange

approach), the algorithm is able to update one entire row of X at a time so that it takes

n steps to finish one iterative update. With this approach, Fedorov (1972) built the the-

oretical framework for the earliest Fedorov exchange algorithm for exact local optimal

design. Before the iterative updates, it opts to discretise the continuous design region X
to obtain N candidate runs (or points), which can lead to the discrete optimisation of

the points of X. As such, the Fedorov exchange algorithm creates a feasible candidate

set Ω, where Ω can be expressed as a N × v matrix.

In advance, we shall know the nonlinear response surface Y = f(X,θ) + ε and the

experimental size n. As long as the parameter prior θ0 and the candidate set Ω are both

determined, we then have the chance to find the local optimal (or at least an efficient)

X. As we consider the discrete optimisation method in this case, each X in iterative

updates shall consist of some candidate runs in Ω. In order to speed up the computation

and the search, the modified Fedorov exchange algorithm (Cook and Nachtsheim, 1980)

adopts the fundamentals of the Fedorov exchange algorithm but streamlines the regular

iterative update procedure.

As such, in the ith step of each iterative update, for i = 1, 2, . . . , n, the modified Fedorov

exchange algorithm will evaluate the different consequences of updating the ith row

of the current X to one of the candidate runs in Ω. In this case, to measure the

relative improvement in the criterion function, we denote di as the ratio between the

two determinants of the information matrices after and before the specific point exchange

is made. Therefore the best candidate in Ω shall correspond to the maximal value of

this ratio. In our applications of exact local D-optimal design for nonlinear multifactor

models, we shall evaluate the information matrix of the model first. The modified

Fedorov exchange algorithm is compiled in the Matlab environment, adapted from Cook

and Nachtsheim for nonlinear models:

Modified Fedorov Exchange Algorithm for Nonlinear Models

1. Generate an initial nonsingular X of n independent random draws (with replace-

ment) out of the set Ω ofN candidate runs defined within X . After the substitution

θ = θ0, compute matrix F and the initial value of φD.

2. Let index i = 1 and flag Υ = 0 when each iterative update starts, which will work

through all n rows of X and the corresponding rows of F in sequential order.
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3. Use Ω for the search. At the ith row of X, let Xi = Xnew,i represent the best

substitution which leads to the maximum of di, the relative improvement in φD.

di is evaluated for each point exchange proposal between the current Xi and one

of the rows in the matrix Ω.

4. If the maximal di satisfies the prespecified exchanging rule (e.g. max(di) > 1.0001),

execute the substitution Xi = Xnew,i in X; then update F, φD as well as let Υ = 1.

5. When i < n, let i = i+ 1 for the current iterative update. Return to step 3.

6. When i = n and if Υ = 1, return to step 2 and this is the end of one dependent

iterative update. Otherwise if Υ = 0, save the current X and the corresponding

value of φD.

7. Do all the above steps for τ tries, each with a random initial X. The exact local

D-optimal Xopt is decided to be the most efficient X attained in step 6, which

corresponds to the highest φD out of the τ tries.

8. In real experimentation, the order of the n runs should be randomised.

The local D-criterion shall be used, so that step 3 of the above algorithm can take

advantage of the updating function of |FTF| (Fedorov, 1972). This will contribute to

the simpler and quicker evaluation of the function di (or φD). Letting |FTF| denote the

determinant of the information matrix in terms of the current X, |FTF|new then indicates

the determinant of the updated information matrix after one substitution Xi = Xnew,i

in X. As such, the updating function of di = |FTF|new/|FTF| is simplified to

di = (1−f(Xi)
′(FTF)−1f(Xi))(1+f(Xnew,i)

′(FTF)−1f(Xnew,i))+(f(Xnew,i)
′(FTF)−1f(Xi))

2,

where Xnew,i is chosen out of the candidate set Ω to maximise the ratio di. f(Xi) refers

to the transpose of the ith row of the current F, which is a vector of the p model terms

at the point Xi. Besides, the variance of prediction at Xi will be

V(Ŷi) = f(Xi)
′(FTF)−1f(Xi)σ

2,

where Ŷi is the fitted response. Therefore, to improve the local D-criterion function

in iterative updates, we tend to select those candidate runs at which the calculated

variances of prediction are large. The updating function allows us to compare two

different X and find suitable point exchanges. In optimal design of experiments, it is

viable to replace the local D-criterion with a specific A or L-criterion, for instance. A

similar updating function for the local A-criterion can also be found in Fedorov (1972),

though its evaluation requires more computation.

To summarise, the iterative update can be broken into n dependent steps, one for each

row of X. In line with the exchanging rule, the modified Fedorov exchange algorithm
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should run several iterative updates until the local D-criterion function has climbed

to a peak. For the same reason, we should also do a number of tries, in order to

compare different local maxima of the criterion function. A thorough search can make

this algorithm more successful. Besides, the final solution (or design) relies on the

parameter prior θ0 so that it is only local optimal at most (if we manage to attain the

true maximum of the local criterion function). Global optimal design of the experiment

will be found if the unknown θ is proven to equal θ0.

As a measure that can accelerate the iterative update further, the K-exchange algorithm

(Johnson and Nachtsheim, 1983) is developed to first determine the k ≤ n runs with the

lowest variances of prediction in the current X. These current runs are to be considered

for deletion in a complete iterative update and will be reevaluated after that iterative

update. This implies that the iterative update will consist of a pass through the k rows,

selected out of the total n rows. The KL-exchange algorithm (Atkinson et al., 2007,

chap.12) applies this idea for a similar modification of the Fedorov exchange algorithm.

In that case, it can reduce both numbers of runs in the current X and also in the discrete

candidate set Ω. In contrast, in an iterative update, it will determine the l candidate

runs with the highest variances of prediction.

2.2.2 Coordinate Exchange Approach

In this chapter, as an alternative to Cook and Nachtsheim (1980), the coordinate ex-

change algorithm (Meyer and Nachtsheim, 1995) takes more steps in the iterative update.

It is developed to interact with one small, discrete and unidimensional candidate set Ωk

at a time, which is a column vector that includes the candidate levels of the kth con-

trolled variable in the model. In other words, it contains the distinct levels in the kth

column of the candidate set Ω. Instead of updating the entire row Xi as a whole, now

each coordinate Xik becomes one separate item under the coordinate exchange approach,

for k = 1, 2, . . . , v and i = 1, 2, . . . , n. Although it demands more steps to accomplish

each iterative update, it is simpler to update single coordinates in X. When v > 1,

an option is to use the coordinate exchange algorithm instead of the above modified

Fedorov exchange algorithm. While X will be updated on a more frequent basis, the

fixed exchanging rule can be a bit looser in this case.

When there are lots of controlled variables and experimental runs, the coordinate ex-

change approach is beneficial because it reduces the computational cost to manipulate

with quite a long candidate list in Ω. In that case, the coordinate exchange approach

can save computer memory as well as time in evaluating discrete candidates. Meanwhile,

it also becomes more difficult to find a best candidate point Xnew,i after the consecutive

updates in the relevant v coordinates. As such, the coordinate exchange algorithm might

experience some trouble and take more iterative updates and tries to find the optimal
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X, since the local search of optimal coordinates are more dependent on the iterative

update. Later we shall check numerical results in the two examples.

2.3 A New Continuous Optimisation Method

For the discrete optimisation, candidate runs or coordinates are chosen from the space

X defined for the v controlled variables. When we search for an efficient Xopt, there

is sometimes no valid evidence to support the specification of discrete candidates. As

a result, it is beneficial to explore and include more candidate runs outside the finite

set Ω, which is composed of v subsets of candidate coordinates. A gridding technique

can of course create a denser Ω, with small meshes and narrow space between adjacent

candidate points. Nevertheless, since that increases the total number of candidates, the

computation will slow down in the iterative update. This is not the best solution as the

discrete optimisation cannot cover the whole continuous space X .

The discrete optimisation can work well for most linear experiments, as long as there are

a sufficient number of runs. Smith (1918) explored the approximate D-optimal designs

for univariate linear models of degree up to six, where the suitable candidate coordinates

were calculated for each independent variable. However, when f(Xi,θ) is nonlinear, it

is far from obvious to tell which candidates can compose the optimal Xopt. In this

circumstance, we believe that the continuous (nonlinear) optimisation over X is the

more attractive method than the traditional discrete optimisation over a finite Ω.

The continuous nonlinear optimisation is rapid itself, but our new concern is to derive

the function of the relative improvement di to be optimised, which requires intensive

algebraic computation in each step of iterative updates. In this thesis, all of our algo-

rithms are compiled in the Matlab language (version 2013b), which is efficient for most

numerical computation. In comparison to C++, for instance, Matlab is much slower

in algebraic computation and the interpretation of individual operations in the code.

Under the point exchange approach, below is a succinct description of the optimised Fe-

dorov exchange algorithm that we first propose in this chapter, which will be similar to

the alternative optimised coordinate exchange algorithm (when the coordinate exchange

approach is used instead):

Optimised Fedorov Exchange Algorithm for Nonlinear Models

1. Generate an initial nonsingular X of n independent random draws from X . After

the substitution θ = θ0, compute matrix F and the initial value of φD.

2. Let index i = 1 and flag Υ = 0 when each iterative update starts, which will work

through all n rows of X and the corresponding rows of F in sequential order.
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3. At the ith row of X, replace Xi with X∗new,i which is an unspecified candidate

run and is made up of v decision variables. Write the function di in the algebraic

expression. Decide (e.g. at random) one or more initial vectors of X∗new,i, while the

default is to use Xi.

4. Maximise di with an optimisation method such as the Nelder-Mead (or quasi-

Newton) method. Output the numeric local optimal solution Xnew,i within X ,

which will substitute X∗new,i. This is the best candidate that can perhaps supplant

the current Xi.

5. If the maximal di satisfies the prespecified exchanging rule (e.g. a loose rule we use

is max(di) > 1.00000001), execute the substitution Xi = Xnew,i in X; then update

F, φD and let Υ = 1.

6. When i < n, let i = i+ 1 for the current iterative update. Return to step 3.

7. When i = n and if Υ = 1, return to step 2 and this is the end of one dependent

iterative update. Otherwise if Υ = 0, save the current X and the corresponding

value of φD.

8. Do all the above steps for τ tries, each with a random initial X. The exact local

D-optimal Xopt is decided to be the most efficient X attained in step 7, which

corresponds to the highest φD out of the τ tries.

9. The truncation can be made somewhere after each decimal coordinate in Xopt,

since the real experimentation will restrict the coordinates to be finite decimals.

We can choose the Nelder-Mead method (Nelder and Mead, 1965) to implement the

continuous optimisation of di with a box constraint. In the optimised Fedorov exchange

algorithm, it requires the variable space X to be in the shape of a v-orthotope (e.g. a

cuboid when v = 3). Under the coordinate exchange approach, on the other hand,

there must be no constraints on X in addition to the two bounds for each controlled

variable. This is a simplex method that excels at high-dimensional optimisations or

complex functions to be optimised. Notice that the continuous optimisation solutions

are warranted to be local optimal only, since we are unable to assess the numerous

candidates from X . It is sensible to take multiple initial starts in X , so the best local

optimal solution can be selected for the experimental run or the specific coordinate.

The alternative optimisation option is the quasi-Newton method (e.g. the BFGS algo-

rithm), which looks flexible for low-dimensional constrained nonlinear optimisations. In

addition to the upper and lower limits of the controlled variables in the model, this

method can handle other constraints too. Thus we can shape a unique X to meet spe-

cific experimental constraints. Moreover, the coordinate exchange algorithm in Gotwalt

et al. (2009) carried out the so-called Brent’s method, which is for the unidimensional

optimisation of each coordinate in X (Brent, 1973, chap.5). The computation of the
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relative improvement function di is simple and quick in each step in iterations, but the

local optimal solutions it offers will be no better than those from the Nelder-Mead or

quasi-Newton method.

We must decide the dimension, i.e. the number of decision variables, of each continuous

optimisation of the relative improvement and thus choose a suitable exchange approach.

While the relative improvement is a function derived from the information matrix of the

model, under the chosen dimension of the optimisation, we must ensure the qualities of

the local optimal solutions Xnew,i. Besides, if the experiment is on a small scale, i.e. the

total number of coordinates is small, Chaloner and Larntz (1989) introduced a simple

approach to use the Nelder-Mead method for the direct optimisation of X as a whole.

There are no iterative updates or updating functions, so the optimal experimental design

can be found in one step. However, the optimisation is often taxing in computation

whereas each optimal solution Xopt will depend on the initial values of up to v × n

coordinates, which is one of the numerous local solutions in the maximisation of φD.

For the optimisation of X in one step in the R environment, the technical function

“optim” can be made use of, but it is vital to use different initial matrices of X. More

often than not, exchange approaches are more efficient in computation and optimisation.

2.4 Numerical Results and Comparisons

2.4.1 Example 1: A Multifactor Mechanistic Model

We assume the main experimental purpose to be the precise estimation of the treatment

parameters in the nonlinear model. Therefore, the local D-criterion is a sensible choice

for optimal design of experiments. In the first example from Box and Draper (1987),

one of our particular aims is to compare the findings of the new optimised exchange

algorithms to those of the traditional ones that adopt the discrete optimisation method.

Our reference X is the face-centred CCD in Table 2.1, where each experimental unit Xi

is located within the cuboid space X = [1.5, 6]× [1, 4]× [70, 90]. The Fisher information

of the mechanistic model (2.1) depends on θ. In this example, the parameter prior θ0

is decided to be identical to the nonlinear least squares estimate θ̃ = {θ̃0 = 5.90, θ̃′0 =

1.15, θ̃1 = 0.53, θ̃′1 = −0.01, θ̃2 = 15475, θ̃′2 = 7489}, which originates from fitting (2.1)

to the experimental data in Box and Draper. The reference CCD leads to the calculated

local D-criterion value φD = −52.7712, which we expect to improve under the 24-run

local optimal X. In this thesis, the uniform rule is to keep four decimal places of each

criterion value.

The 24 experimental runs in Table 2.1 are allocated to four blocks of equal size six. At the

moment, we do not consider these fixed block effects that are not inherent components

of the mechanistic model. This topic will be discussed later in Section 2.8.
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Table 2.1: 24-Run Reference Face-Centered CCD

Block R C T Block R C T Block R C T Block R C T

2 1.5 1 70 3 3 1 80 2 3 2 80 1 6 1 70
1 1.5 1 90 4 3 1 80 2 3 2 80 2 6 1 90
3 1.5 2 80 3 3 2 70 3 3 2 90 3 6 2 80
4 1.5 2 80 4 3 2 70 4 3 2 90 4 6 2 80
1 1.5 4 70 1 3 2 80 3 3 4 80 2 6 4 70
2 1.5 4 90 1 3 2 80 4 3 4 80 1 6 4 90

In this demonstration, we shall do τ = 100 random tries under the exchanging rule

max(di) > 1.0001 for the modified Fedorov (or coordinate) exchange algorithm. For

i = 1, 2, . . . , n, if the relative improvement di is found to be lower than the critical value

(1 + 10−4), the row substitution Xi = Xnew,i will not be made in the current X. When

there are more candidate runs in Ω or when the number of runs n is larger, we can use

a smaller critical value and it will trigger more exchanges to update X.

The specification of discrete candidate runs could depend on the experimental conditions,

the shape of the variable space X , as well as the number of runs n. A small set Ω makes

the computation quick in the discrete optimisation, while a dense distribution of the

candidates within X can lead to reliable optimisation solutions. In this example, the

three distinct levels in the CCD can act as the candidate coordinates for each controlled

variable. As such, there are candidate subsets Ω1 = {1.5, 3, 6},Ω2 = {1, 2, 4},Ω3 =

{70, 80, 90}. If we combine the three subsets, there are 33 = 27 runs in the overall

candidate set Ω. All the demonstrations are performed using the Matlab environment,

with a Dell personal laptop with a 2.60 GHz Intel Core i5-3320M Processor and 4 GB

RAM. For the record, the elapsed time of each demonstration will be counted to measure

the approximate computational cost.

Consider a full second-order polynomial model in terms of the scaled variables x1, x2, x3.

In Box and Draper (1987, chap.11), this is the model for the empirical approximation

of the response surface. With the modified Fedorov exchange algorithm, for instance,

the 24-run local D-optimal design Xemp can be found for the empirical linear model.

The model is well fitted to the old experimental data, but the Xemp in Table 2.2 cannot

contribute much to the precise estimation of θ of the mechanistic model (2.1). In this

case, the face-centred CCD is 74.66% efficient, relative to Xemp of which the local D-

criterion value is φD = −51.0181. Apart from the CCD, Xemp is another baseline when

we compare different X.

Table 2.2: 24-Run Local D-Optimal Design for the Polynomial Model

R C T R C T R C T R C T R C T R C T

1.5 1 70 1.5 2 90 1.5 4 90 3 2 80 6 1 80 6 4 70
1.5 1 80 1.5 4 70 3 1 70 3 4 80 6 1 90 6 4 70
1.5 1 90 1.5 4 70 3 1 90 6 1 70 6 2 80 6 4 90
1.5 2 70 1.5 4 90 3 2 70 6 1 70 6 2 90 6 4 90
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Our interest is in the local optimal experimental design for the nonlinear model (2.1),

which can offer a mechanistic approximation of the response surface. The candidate list

in Ω is very short, so the modified Fedorov exchange algorithm can finish all the com-

putation within two seconds. In comparison, the coordinate exchange algorithm takes

13 seconds of computational time, which is quick as well. No matter which approach is

used, we can find the identical local D-optimal solution Xopt (Table 2.3) for (2.1), the

maximal φD of which is −49.7321 and the number of support points is 11.

Out of the 100 random tries, it is sensible to look at some X of which the criterion

values are the highest. With the modified Fedorov exchange algorithm, the most quali-

fied three X are identical to our best solution Xopt. This suggests that we have found

the global maximum of the local D-criterion function in terms of X. With the co-

ordinate exchange algorithm, the three designs are dissimilar though it could be be-

cause of minor random fluctuation. In this case, the highest three criterion values are

−49.7321,−49.7412,−49.7412. This hints that we should to do more than 100 tries to

secure the most efficient solution Xopt in Table 2.3.

Table 2.3: 24-Run Local D-Optimal Design with Discrete Optimisation

R C T R C T R C T R C T R C T R C T

1.5 1 70 1.5 1 90 1.5 4 80 1.5 4 90 6 1 80 6 4 70
1.5 1 80 1.5 4 70 1.5 4 90 3 1 70 6 1 90 6 4 70
1.5 1 90 1.5 4 70 1.5 4 90 3 1 70 6 1 90 6 4 80
1.5 1 90 1.5 4 70 1.5 4 90 6 1 80 6 4 70 6 4 80

For the new optimised exchange algorithms, Matlab can be instructed to do Parallel

Computation with two local workers (i.e. the cores of the processor) available in the

laptop. If we want to do 100 tries, each local worker will take 50 tries. In this case, the

recorded elapsed time of computation will be about half of the normal time.

Our aim in this demonstration is to compare the continuous optimisation over X to

the discrete optimisation over Ω, so we will also do 100 random tries and use the same

exchanging rule max(di) > 1.0001. This requires the calculated maximal relative im-

provement to be greater than 1.0001 such that the proposed exchange will be executed.

For the continuous optimisation method, this rule is a bit too strict, so one can decrease

the critical value (1 + 10−4) in practice. In total, when we adopt the point exchange

approach, it costs 3324 seconds in computation whereas the time cost is 3920 seconds

under the coordinate exchange approach. It makes little difference in this example.

In each individual step of the iterative update, the current point (or coordinate) also

acts as the sole initial vector (or value) for the continuous optimisation of the criterion

function. This means that the Nelder-Mead optimisation will search from the vicinities

of the current points first, in order to maximise the relative improvements in the iterative

update. To obtain more local maxima and then select the best one, we can use multiple

initial vectors (or values) at either random or specified locations in X .
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When the point exchange approach is used, the local D-criterion value of Xopt (Table

2.4a) equals −49.5582. Out of the 100 tries and the continuous optimisation, the mean of

the 100 local maxima of the criterion function is −49.7484. Under the current exchanging

rule, the mean number of iterative updates is 4.48, so it does not take too much trouble

to update X. In comparison, when we choose the coordinate exchange approach, the

Xopt in Table 2.4b is found to be local D-optimal. The achieved maximal φD is −49.5506

so that the design is more efficient than the one in Table 2.4a. The mean of the 100

local criterion values is calculated to be −49.7927 while the number of iterative updates

is 5.23 on average. The diversities between the two exchange approaches are not too

apparent. In Table 2.4, the coordinate values of the two dissimilar Xopt are shown up

to five significant figures, unless the referred levels can be approximated to one of the

variable bounds in X = [1.5, 6]× [1, 4]× [70, 90]. If not otherwise specified, this is a rule

we follow in presenting all the tables in this chapter.

Table 2.4: 24-Run Local D-Optimal Design with Continuous Optimisation Using

(a) Point Exchange (b) Coordinate Exchange

R C T R C T R C T R C T

1.5 1 70 2.9872 1 70 1.5 1 70 1.7286 4 90
1.5 1 80.447 3.0288 1 70 1.5 1 70 3.3102 1 70
1.5 1 90 3.0820 1 70 1.5 1 90 3.3474 1 70
1.5 1 90 5.7580 4 70 1.5 1 90 5.6925 4 70
1.5 4 73.682 5.7829 4 70 1.5 1 90 5.7240 4 70
1.5 4 73.873 5.8240 4 70 1.5 1 90 5.8159 4 70
1.5 4 73.986 5.9067 4 70 1.5 4 74.006 5.8280 4 70
1.5 4 74.187 6 1 84.702 1.5 4 74.033 6 1 84.629
1.5073 1 90 6 1 84.746 1.5 4 74.081 6 1 84.729
1.7366 4 90 6 1 84.789 1.5 4 74.145 6 1 84.802
1.7373 4 90 6 4 80.308 1.7045 4 90 6 4 80.088
1.7445 4 90 6 4 80.423 1.7261 4 90 6 4 80.630

Under the strict exchanging rule max(di) > 1.0001, it does not take many iterative up-

dates to transform a random initial X to one at a local maximum of the local D-criterion

function. The first word “local” indicates the local optimisation solution whereas the

other “local” implies the criterion’s dependence on the parameter prior θ0.

Exact replicate runs are rare as we see in Table 2.4, since the variable space X is

continuous and thus implies an infinite number of feasible candidate runs. However,

in spite of the decimals, it is clear what kind of coordinates we should use under the

local D-criterion. Furthermore, most adopted experimental runs in either Xopt are not

far in distance from the discrete candidates defined previously in the 3 × 3 × 3 set Ω.

With respect to the local D-criterion we consider, the result does not show much of an

effective upgrade from Table 2.3, which we can compose with the traditional discrete

optimisation. Let φD,A and φD,B represent the respective local D-criterion values of any

two experimental designs XA and XB. Before we make the comparison, it is common
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to define the relative efficiency of XA with respect to XB as

eff =
exp(φD,A/p)

exp(φD,B/p)
100%.

As such, the comparison of the two does not depend on the number of parameters nor

on the numeric scale we exert on the determinants of the information matrices. In exact

optimal design for the mechanistic model (2.1), the most efficient solution Xopt is found

in the optimised coordinate exchange algorithm. With respect to Table 2.4b consisting

of quasi-continuous runs (i.e. each coordinate value of X is an irrational number), the

reference CCD is exp(−52.7712/6)/exp(−49.5506/6) ≈ 58.46% efficient and the Xemp is

78.30% efficient. The relative efficiency is as high as 97.02% for the Xopt in Table 2.3,

which is made up of some discrete candidate runs from the small Ω. In other words, we

can expect a 3% reduction in the Generalised Variance of the new NLS estimator θ̂.

This indicates that even with a complex mechanistic model, a small and well-specified set

of discrete candidates could make the optimal experimental design simple and efficient

with respect to the criterion function. However, if we intend to change the values of θ0

or the boundaries of X , for the discrete optimisation, the commensurate candidate set

Ω must be modified too. In nonlinear multifactor experiments, this can be difficult.

2.4.2 Example 2: A Special Empirical Model

This example is in relation to the experiment in Mountzouris et al. (1999). We assume

the nonlinear empirical model (2.2), which fits the old experimental data well. Before

searching for the local D-optimal experimental design, we must decide the parameter

prior θ0 in order to evaluate the Fisher information matrix. The common approach is

to fit (2.2) to the dataset of the 18-run face-centred CCD (Table 2.5). For the fitted

model, the adjusted coefficient of determination is calculated to be 0.986. When the

significance level is 0.05, all the estimated coefficients are significant according to the

standard t-tests. As we use the old experimental data from Mountzouris et al. (1999),

the nonlinear least squares estimate of θ is found. As we show four decimal places,

θ̃ = {ã0, ã1, ã2, ã3, ã4, ã5} ≈ {0.4340, 1.3140,−0.1059,−0.8224, 0.4105,−2.0633} which

is set to be the parameter prior θ0 for model (2.2). In this case, the local D-criterion

value of the reference CCD is equal to φD = 31.7538.

Note that the 16th run of the previous experiment failed, so the relevant observation has

been discarded in Table 2.5. In spite of this failure, we assume the same variable space for

the new experiment in this example. As such, there is a cuboid X = [2.5, 7.5]× [−1, 1]2,

which also contains the point of the previous 16th experimental run. Except for the

substrate concentration, two other independent variables are transformed in model (2.2).

It is more sensible to show the raw variable levels in Table 2.5. According to the X , the
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feasible interval of the enzyme concentration is [0.625, 6.25] and that of the pressure is

[200, 400].

Table 2.5: 18-Run Reference Face-Centered CCD in Mountzouris et al. (1999)

S E P ξ S E P ξ S E P ξ

5 6.25 300 73.6 2.5 62.5 400 95.2 7.5 62.5 400 82.7
5 6.25 200 81.6 7.5 6.25 300 77.3 2.5 6.25 300 90.0
5 62.5 300 76.0 5 6.25 400 69.0 2.5 0.625 400 55.2
5 6.25 300 69.4 7.5 0.625 200 43.3 7.5 0.625 400
5 6.25 300 73.6 2.5 0.625 200 62.8 7.5 62.5 200 87.0
5 0.625 300 50.5 5 6.25 300 74.0 2.5 62.5 200 96.0

In this example, the new emphasis is to search for an 18-run Xopt that maximises the

local D-criterion function. Our emphasis is different from the one in the first example,

such that the exchanging rule is set to max(di) > 1.00000001 in each case. On the one

hand, the change of the critical value makes little difference for the discrete optimisation

over a small candidate set Ω. On the other hand, at the expense of more computation and

iterative updates, when n = 18 and p = 6, this rule will suit the continuous optimisation

of the function di over X , for i = 1, 2, . . . , n. With a loose exchanging rule like this,

we could see better updates of the initial random matrix X. Thus the chosen solution

Xopt is prone to be more stable in composition and more efficient with respect to the

criterion. This rule will also reduce the discrepancies between those quasi-replicate runs

in Xopt, the points which are rather close to each other in the variable space X .

As an alternative approximation to the response surface, for instance, one can also fit a

full second-order linear model in terms of the transformed variables xS, xE, xP, where

xS =
S − 5

2.5
∈ [−1, 1].

With the modified Fedorov exchange algorithm, it is convenient to obtain the Xemp

that is D-optimal, the 10 × 10 information matrix of which does not depend on the

parameter values. As in the first example, if we use the Xemp to run the experiment

but then estimate the parameters θ of the nonlinear model (2.2) (rather than the linear

one), the local D-criterion value of Xemp equals 34.4783. At least, Xemp is more efficient

than the CCD in Table 2.5.

Our interest is to find a D-efficient Xopt for model (2.2), which will lead to a reasonable

approximation to the response surface. For the traditional discrete optimisation, the

candidate set Ω of 33 runs is made up of the distinct variable levels adopted in the

reference CCD. It takes less than two seconds to accomplish all the computation. Out of

the 100 random tries, the best three solutions X are similar, each criterion value of which

is φD = 38.8433. Likewise, when the coordinate exchange approach is used, the subset of

candidate coordinates is of size three for each controlled variable. It takes eight seconds

to finish 100 tries, as the highest three criterion values are 38.7324, 38.6514, 38.6514. In

this demonstration, the point exchange approach is better in the traditional discrete
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optimisation, in which case the required number of random tries can be far less than

100.

Before we implement the new continuous optimisation method, in this demonstration,

one more refinement is to start the optimisation at multiple initial points, in addition to

the default one (the current values in the current row of X). We can define a coarse point

set {3.3, 5, 6.7}× {−0.67, 0, 0.67}2 to spread over X , which contains 33 initial points for

the continuous optimisation. This means that there are in total 28 initial starts under the

point exchange approach, as the aim is to maximise the relative improvement function of

v = 3 decision variables. Meanwhile, under the coordinate exchange approach, there are

four initial starts for unidimensional optimisations, which are easier to solve. Certainly

there is more computation to do when we take these initial starts, but it will be worth

it if we therefore find the local D-efficient Xopt. With this attempt to improve the

maximal relative improvement in each step in the iterative update, the computational

time is 6641 seconds in the optimised Fedorov exchange algorithm. In comparison, it is

2879 seconds in the optimised coordinate exchange algorithm.

While max(di) > 1.00000001 is a suitable rule when we update X, there is little difference

between the two solutions listed in Table 2.6. After the truncation at four decimal places

of the 100 local D-criterion values at their respective local maxima, more than 20 of them

are equal to the chosen maximum 41.2246. Thus fewer tries should be sufficient. On

average, the optimised Fedorov exchange algorithm requires 6.39 iterative updates to

achieve the local convergence of the criterion function. In this case, the expectation

of the criterion value is 41.2218, after 6641 seconds of computation. In comparison,

the optimised coordinate exchange algorithm requires 7.29 iterative updates on average

and the mean of the 100 criterion values is 41.1937. The fewer iterative updates it

takes, the more effective the exchange approach works. Here, the mean difference is

7.29− 6.39 = 0.9, so the faster coordinate exchange approach is not a bad choice in this

example.

Table 2.6: 18-Run Local D-Optimal Design with Continuous Optimisation Using

(a) Point Exchange (b) Coordinate Exchange

S E P S E P S E P S E P

2.5 2.7971 200 2.5 62.5 200 2.5 2.7969 200 2.5 62.5 200
2.5 2.7973 200 2.5 62.5 200 2.5 2.7969 200 2.5 62.5 200
2.5 2.7976 200 2.5 62.5 288.88 2.5 2.7974 200 2.5 62.5 288.87
2.5 19.277 400 2.5 62.5 288.88 2.5 19.276 400 2.5 62.5 288.87
2.5 19.279 400 2.5 62.5 400 2.5 19.278 400 2.5 62.5 400
2.5 20.646 200 2.5 62.5 400 2.5 20.647 200 2.5 62.5 400
2.5 20.650 200 3.0979 62.5 200 2.5 20.648 200 3.0977 62.5 200
2.5 23.249 288.37 3.1502 31.245 200 2.5 23.245 288.37 3.1500 31.237 200
2.5 23.252 288.37 3.1502 31.247 200 2.5 23.250 288.37 3.1502 31.247 200

The simple candidate set is not so good for the discrete optimisation. Differing from the

result in the Martins et al. example, the implementation of the continuous optimisation

can make an apparent improvement in Xopt. With respect to the Xopt in Table 2.6a,
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for instance, the previous optimal design found with the discrete optimisation method

is exp(38.8433/6)/exp(41.2246/6) ≈ 67.24% efficient. Likewise, the baseline Xemp is

32.49% and the CCD is 20.63% efficient, relative to the optimal design over X . Hence

we shall recommend the new continuous optimisation method.

2.5 A New Multistage Exchange Algorithm

2.5.1 Introduction to the New Method

The optimised exchange algorithm uses a lot of tries to find an efficient Xopt, where the

experimental runs of diverse initial X are determined at random. The simple random

selection is safe and fair, as long as there are sufficient tries to make the random sample

representative. However, that is almost impossible for most experiments since there are

in total n × v coordinate values of X to be sampled from the continuous design region

X . Moreover, the simple random sampling method lacks effectiveness and is wasteful in

computation, since one specific random initial X might not happen to suit our exchange

algorithms. As a consequence, after τ random tries, the most efficient solution Xopt is

treated as to be optimal whereas those inferior solutions will be abandoned.

In this section, our aim is to look for an alternative technique which can decrease the

normal computational time. In most situations, there is insufficient information about

the appropriate candidate experimental runs that will compose an efficient Xopt and

lead to the effective maximisation of the local D-criterion function. The true maximum

of the criterion function is unknown. To find some room to improve the random sample

of X, our conjecture is that the more efficient are the initial random X, the quicker and

smoother can the continuous optimisation method work through the iterative updates

and in the end, the more stable and efficient Xopt is expected to be found.

As such, the idea is to schedule a swift first stage of iterative computation, in order

to develop the random initial X to an efficient intermediate solution X1st. This is

feasible with the traditional discrete optimisation over a sparse but suitable candidate

set Ω. We can use just a small number of candidates, as a way to reduce the amount

of computation. We can also require the exchanging rule to be strict, in order to avoid

some identical matrices X1st.

This measure is supposed to enhance the subsequent implementation of the continuous

optimisation, which requires much more intensive computation in each iterative update.

Besides, it is a bit similar to the technique of forward sequential composition of nonran-

dom initial X, which can also be applied to optimal design of experiments.

For the continuous optimisation in the second stage, some or all of those distinct X1st

(the duplicates are to be deleted) can act as different new starts. The integrated iterative



Chapter 2 Optimal Design of Experiments for General Nonlinear Response Surfaces 39

update shall be similar to that in the optimised exchange algorithm with a fairly loose

exchanging rule. With the continuous nonlinear optimisation of relative improvements

over X , each X1st can continue to be updated towards a more stable and competitive

solution X2nd. Out of the diverse designs X2nd, the most D-efficient one will be chosen

as Xopt, which is treated as to be optimal.

With an optional third stage of computation to be appended in the end, this is the

new hybrid method we develop for optimal design of experiments in this thesis, which

is expected to work with fewer starts (i.e. the number of distinct X1st we select) for the

continuous optimisation part. We summarise the new hybrid Fedorov exchange algorithm

as follows, whereas the alternative hybrid coordinate exchange algorithm will be compiled

in a similar structure:

Hybrid Fedorov Exchange Algorithm for Nonlinear Models

1st stage: local D-optimal design with discrete optimisation over Ω

1.1 Generate an initial nonsingular X of n independent random draws (with replace-

ment) out of the set Ω ofN candidate runs defined within X . After the substitution

θ = θ0, compute matrix F and the initial value of φD.

1.2 Let index i = 1 and flag Υ = 0 when each iterative update starts, which will work

through all n rows of X and the corresponding rows of F in sequential order.

1.3 Use Ω for the search. At the ith row of X, let Xi = Xnew,i represent the best

substitution which leads to the maximum of di, the relative improvement in φD.

di is evaluated for each point exchange proposal between the current Xi and one

of the rows in the matrix Ω.

1.4 If the maximal di satisfies the prespecified exchanging rule (e.g. max(di) > 1.01),

execute the substitution Xi = Xnew,i in X; then update F, φD and let Υ = 1.

1.5 When i < n, let i = i+ 1 for the current iterative update. Return to step 1.3.

1.6 When i = n and if Υ = 1, return to step 1.2 and this is the end of one dependent

iterative update. Otherwise if Υ = 0, save the current X as an intermediate matrix

X1st.

1.7 Do steps 1.1-1.6 for τ tries, each with a random initial X. Delete the duplicates

of X1st, so there are τ∗ distinct X1st left for the continuous optimisation.

2nd stage: local D-optimal design with continuous optimisation over X

2.1 Pick out one unused X1st out of the τ∗ intermediates in the 1st stage. After the

substitution θ = θ0, compute matrix F as well as the starting value of φD.
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2.2 Let index i = 1 and flag Υ = 0 when each iterative update starts, which will work

through all n rows of X and the corresponding rows of F in sequential order.

2.3 At the ith row of X, replace Xi with X∗new,i which is an unspecified candidate

run and is made up of v decision variables. Write the function di in the algebraic

expression. Decide (e.g. at random) one or more initial vectors of X∗new,i, while the

default is to use Xi.

2.4 Maximise di with an optimisation method such as the Nelder-Mead (or quasi-

Newton) method. Output the numeric local optimal solution Xnew,i within X ,

which will substitute X∗new,i. This is the best candidate that can perhaps supplant

the current Xi.

2.5 If the maximal di satisfies the prespecified exchanging rule (e.g. a loose rule we use

is max(di) > 1.00000001), execute the substitution Xi = Xnew,i in X; then update

F, φD and let Υ = 1.

2.6 When i < n, let i = i+ 1 for the current iterative update. Return to step 2.3.

2.7 When i = n and if Υ = 1, return to step 2.2 and this is the end of one dependent

iterative update. Otherwise if Υ = 0, save the current X and the value of φD, where

X is one of the matrices X2nd, the criterion value of which is a local optimum.

2.8 Return to step 2.1 for (τ∗ − 1) more tries, each with a new distinct X1st. Upon

completing this stage of computation, the exact local D-optimal Xopt is decided to

be the most efficient X2nd attained in step 2.7, which corresponds to the highest

φD out of the τ∗ tries in the continuous optimisation.

3rd stage: local D-optimal design with adjustment and reallocation of runs

3.1 For k = 1, 2, . . . , v, determine the closest distance dk for the kth factor (or con-

trolled variable). Group all quasi-replicates (i.e. points that are close to each other

in distance) in Xopt, so the n independent runs of X = Xopt can be divided into

n∗ homogeneous clusters. While the column order of the v factors is fixed, sort X

in ascending row order with respect to the cluster allocations and the (rounded)

variable levels. Reset k = 1.

3.2 Let i = 1 and i∗ = 1 be the starting values.

3.3 Pick out the i∗th cluster of X, which corresponds to ni∗ quasi-replicates. The aim

is to find the best candidate as a substitute for the kth coordinate of each selected

quasi-replicate (the maximum of which is Xmax,k and the minimum is Xmin,k).

After the substitution, there shall be ni∗ exact replicates of the optimal candidate

coordinate.
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3.4 Create a provisional subset of candidate coordinates Ωk, for instance, on the ba-

sis of the closest distance, the defined space [Xmin,k, Xmax,k], and the continuous

variable space X . With the subset, do a discrete optimisation for the ni∗ quasi-

replicates in X in one step. Denote Xnew as the best candidate coordinate that

maximises φD. Then execute the coordinate substitution for the kth coordinate of

each quasi-replicate. Let i = i+ ni∗ .

3.5 Unless i = n+ 1, let i∗ = i∗ + 1 and return to step 3.3 .

3.6 Unless k = v, let k = k + 1 and return to step 3.2.

3.7 Create a new candidate set Ω, consisting of the n∗ unique runs of the current X.

With this candidate set, do a discrete optimisation for the n experimental runs.

As a result of the modified Fedorov exchange algorithm, for instance, let X∗opt be

the local D-optimal experimental design, which is also the eventual solution of the

multistage hybrid method.

The coordinate exchange approach can be installed at the second stage, which will

speed up the continuous optimisation if v is large. In contrast, it does not matter

which approach we use for the initial discrete optimisation, though the point exchange

approach is found to be more efficient in our demonstrations where v is small.

Overall, the new continuous optimisation method is used to complement the traditional

discrete optimisation over an imperfect candidate set. Part of this idea can be linked

to an adjustment algorithm in Donev and Atkinson (1988), which was applied to some

second-order linear experiments of quite small numbers of runs. In those cases, Donev

and Atkinson (1988) recommended an out-of-date nonsequential approach (e.g. the DET-

MAX procedure (Mitchell, 1974)) for the discrete optimisation over candidate sets. The

optimisation did not work well, so it made sense to adjust the coordinate levels obtained

from the discrete optimisation, so as to improve the optimal designs.

Hence, this adjustment algorithm is developed to explore the adjacent variable space

outside the finite discrete candidate set, in which case there are numerous candidate

points located in X . Likewise, in our multistage hybrid method, there is a third stage

of computation, which aims to convert the quasi-continuous coordinates of a specific

Xopt into some rational numbers, as well as to obtain exact replicates of each unique

run (i.e. support point) of the experiment. Compared with the adjustment algorithm,

we also adjust some coordinate levels after the optimisation. However, we do it for a

different purpose (not to improve the efficiencies of optimal designs) and as a result,

the number of unique runs in the final solution will not increase. Besides, the steps we

follow in the noniterative procedure are also different, where the candidate coordinates

for each unique run can be specified in advance.
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2.5.2 General Applications of the Algorithm

Practical limitations influence how we can set the controlled variable levels, even though

we decide the number of significant figures to show for those coordinates in Tables 2.4

and 2.6. Therefore, the closest distance between levels of a controlled variable indicates

the minimum space between two feasible coordinates next to each other, the levels

of which must be distinguishable to the experimenters. As we have determined the

closest distance, the continuous variable space X is then redefined into a large set of

discrete candidates, located on a grid of small and dense meshes. This is another new

definition we introduce in this thesis. For instance, set the closest distance to 0.01 unit

for the variable of flow rate in the Box and Draper example. In Table 2.4a, the 10-12th

experimental runs can be labelled as quasi-replicates. This means that the space between

the maximum and minimum flow rates is [1.7366, 1.7445] ⊂ [1.73, 1.75]. To convert these

quasi-replicates in step 3.4, the relevant and feasible candidate coordinate subset can

be composed as Ω1 = {1.73, 1.74, 1.75}.

To allocate quasi-replicates into the same cluster as required, sometimes we can check

the Euclidean norms or distances between the current experimental points of Xopt. In

complex cases, it seems to be sensible to build up these clusters with clever techniques

such as hierarchical clustering or k-means clustering. Grouping quasi-replicates can be

straightforward if there is a loose exchanging rule, e.g. max(di) > 1.00000001 in both

examples, for the continuous optimisation to attain Xopt. Here, n∗ will also indicate the

number of unique runs in the eventual solution X∗opt and likewise, ni∗ can denote the

respective number of replicates of one unique run of the experiment, for i∗ = 1, 2, . . . , n∗.

A smaller n∗ or a certain extent of replication can facilitate the experimentation as well

as the estimation of the treatment parameters.

After all quasi-replicates are converted to exact ones, we consider a reallocation of repli-

cation for the n∗ unique runs included in Ω. The optimal number of replicates should

be recalculated for each unique run, although we expect little improvement in the crite-

rion function. This attempt can benefit the local convergence of the criterion function

and was also implemented in Gotwalt et al. (2009). On occasions when the continuous

optimisation with sufficient tries works well, the reallocation of replication is unimpor-

tant and this process can be skipped. A similar reallocation of runs after each iterative

update of the continuous optimisation part can be beneficial in some cases too. If we

do that, to save computational time, we can use fewer initial points to commence the

continuous optimisation of relative improvements (or updating functions).

We also learn about the randomness that determines the order or sequence of the n rows.

The iterative update follows such an order so as to update the experimental units. Be-

cause of the dependence between the updates, the computation we do is associated with

the row order determined beforehand. The Default Plan in all of our demonstrations

should follow a “row to column” scheme. With the coordinate exchange approach, for
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instance, each iterative update starts from the first row of X (no matter if it is sorted

or unsorted) and tries to update the v separate coordinates in this row. The function

for the row increment is i = i + 1 until i = n, so we will inspect each of the n experi-

mental runs in a sequential row order. This row order is unimportant in the discrete

optimisation, where the initial X is random. However, in the subsequent continuous

optimisation and also the adjustment stage, we will sort each X1st in ascending row

order in accord with the controlled variable levels and a fixed column order. As such,

the row order influences the iterative update.

There is also the column order of X to take account of. While the row order is sequential,

we choose to use a new random column order for each of the tries, for either the

discrete optimisation or the continuous optimisation. The iterative update will follow

this random column order of controlled variables until we attain a local optimum of the

criterion function. A fixed column order will be followed for the final adjustment, when

there is just one iterative update.

On the other hand, it is viable to do more frequent randomisation. For instance, we can

conceive a Iteration Random Plan, which will let us randomise the row and column

orders at the start of each iterative update (except in the adjustment stage). As far

as we can discern, in local D-optimal design of experiments, the hybrid method will

not be much improved (results not shown) in the demonstration. Hence too frequent

randomisation is not important in these algorithms.

To summarise, the new hybrid method can save us some computational time and perhaps

make a substantial improvement in the solutions of optimal design of experiments. The

performance of the exchange algorithm relies on the initial discrete optimisation of the

candidate runs in Ω. If X is a cuboid, it is a common rule to make at least both limits

of each controlled variable to be two of the candidate levels. If we are quite optimistic

in finding the appropriate discrete candidates, it is even acceptable to skip the whole

discrete optimisation part of the hybrid method. This triggers a shortcut as follows:

one can sample each random initial X from the first discrete candidate set Ω, instead

of the continuous variable space X . With these random initial starts for the continuous

optimisation, we can obtain efficient solutions as well.

2.6 Examples Revisited

In our first demonstration of the Box and Draper example, one of the aims is to compare

the new algorithms we develop and the two exchange approaches for optimal design

of experiments. Here, for the first stage of the hybrid method, the initial discrete

optimisation can use the same 3 × 3 × 3 candidate set Ω for the modified Fedorov

exchange algorithm, which is made up of the variable levels in the reference CCD in

Table 2.1. This is a useful candidate set, which will make our hybrid method successful.
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With τ = 30 tries, we choose the point exchange approach, for instance. The discrete

optimisation shall use a rather strict exchanging rule max(di) > 1.1, since a large τ∗ is

desirable. There are τ∗ = 30 distinct intermediate solutions X1st in this case.

To examine the exchange approaches, in each case, the continuous optimisation method

will start with the same 30 X1st. We also set the exchanging rule to max(di) > 1.0001,

with which we can examine the continuous optimisation results in Table 2.7. These

two are the interim local D-optimal experimental designs at the moment, before we

do some adjustments of their coordinates. With the point exchange approach, the

elapsed time till we complete the continuous optimisation is 809 seconds for the 30

tries. The computational time is much less than that of the optimised Fedorov exchange

algorithm with 100 tries. It starts with the different X1st, which are quite efficient al-

ready. As a result, out of the 30 tries, the mean number of iterative updates drops to

3.9333 in the continuous optimisation. The highest three criterion values are equal to

−49.5186,−49.5192,−49.5281 and the mean of the total 30 is −49.5687. Of course the

shown results are better in the optimisation, since the mean of the 100 criterion values

is −49.7484 when we use the optimised Fedorov exchange algorithm. With the hybrid

coordinate exchange algorithm, meanwhile, it takes 786 seconds to complete the 30 tries.

φD = −49.5186,−49.5193,−49.5280 are the highest three criterion values whereas the

mean is −49.5740, a bit inferior to −49.5687. Besides, to finish the continuous optimi-

sation, it takes 4.1 iterative updates on average. Compared with 3.9333, the difference

is small so that the coordinate exchange approach is efficient in this demonstration too.

Table 2.7: 24-Run Local D-Optimal Design for Model (2.1): Interim Solution
after the Continuous Optimisation Part (2nd Stage) of the Hybrid Method Using

(a) Point Exchange (b) Coordinate Exchange

R C T R C T R C T R C T

1.5 1 70 1.7372 4 90 1.5 1 70 1.7372 4 90
1.5 1 70 3.2893 1 70 1.5 1 70 3.2892 1 70
1.5 1 81.402 3.3938 1 70 1.5 1 81.403 3.3938 1 70
1.5 1 90 5.7226 4 70 1.5 1 90 5.7227 4 70
1.5 1 90 5.7338 4 70 1.5 1 90 5.7338 4 70
1.5 1 90 5.7444 4 70 1.5 1 90 5.7444 4 70
1.5 4 74.238 6 1 84.410 1.5 4 74.238 6 1 84.410
1.5 4 74.250 6 1 84.725 1.5 4 74.250 6 1 84.725
1.5 4 74.350 6 1 84.805 1.5 4 74.350 6 1 84.805
1.7332 4 90 6 1 85.049 1.7332 4 90 6 1 85.050
1.7333 4 90 6 4 78.600 1.7333 4 90 6 4 78.600
1.7352 4 90 6 4 79.153 1.7352 4 90 6 4 79.153

We choose the Xopt in Table 2.7a for the third stage of the hybrid method, for instance.

The respective closest distances for the controlled variables, i.e. flow rate, catalyst con-

centration and temperature, are decided to be 0.1 unit, 0.1 unit and 1 unit in this
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example. These closest distances can be reset on request of experimenters, so it is flex-

ible. After the reallocation of replication (i.e. redetermining the optimal numbers of

replicates) in the last step, the eventual solution X∗opt is shown in Table 2.8, which is

considered to be the local D-optimal design. It is improbable that the hybrid Fedorov

exchange algorithm could have missed a greatly superior X. The new maximal criterion

value is −49.5116 which is even higher than −49.5186 of Xopt. Besides, there are n∗ = 8

unique runs in X∗opt, in contrast to 11 unique runs in Table 2.3 that is found as a result

of the traditional discrete optimisation.

Table 2.8: 24-Run Local D-Optimal Design for Model (2.1) with Hybrid Method

R C T R C T R C T R C T R C T R C T

1.5 1 70 1.5 1 90 1.5 4 74 1.7 4 90 5.8 4 70 6 1 85
1.5 1 70 1.5 1 90 1.5 4 74 1.7 4 90 5.8 4 70 6 1 85
1.5 1 90 1.5 4 74 1.7 4 90 3.3 1 70 5.8 4 70 6 1 85
1.5 1 90 1.5 4 74 1.7 4 90 3.3 1 70 6 1 85 6 4 79

In the Mountzouris et al. example, the exchanging rule is the same max(di) > 1.1 for

the discrete optimisation with the point exchange approach. We use the much looser

rule max(di) > 1.00000001 for the following continuous optimisation, since the aim is

to increase the maximal criterion value as much as possible. In this demonstration,

we also use multiple initial points to improve the continuous optimisation solution in

each step of the iterative update. These initial points were defined as in the previous

demonstrations when the optimised exchange algorithms were run, which we can also

change for different examples.

After the initial discrete optimisation, we obtain τ∗ = 4 distinct X1st, each of which

is made up of 18 runs from the 24-run candidate set Ω. As we continue to use the

point exchange approach for the continuous optimisation, the elapsed computational

time is 284 seconds until we find the solution Xopt. Here, the four criterion values

are all approximately 41.2246 whereas the number of completed iterative updates is

6.75 on average. Instead, when the coordinate exchange approach is used, the elapsed

time is 102 seconds. The time reduces because there are fewer initial points for the

continuous optimisation of the relative improvement in the local D-criterion function,

which depends on one decision variable in each step of the iterative update. The four

criterion values of X2nd are listed as 41.2246, 41.2171, 41.2039, 41.1301, each of which

requires seven iterative updates to achieve the local maximal value. We set the closest

distance to 0.01 for S ∈ [2.5, 7.5], 0.005 for E ∈ [0.625, 62.5], and 0.1 for P ∈ [200, 400].

We can continue with the third stage of the hybrid method and the Xopt found using

the point exchange approach. The number of unique runs is n∗ = 9, so the total number

of exact replicate runs is (18− 9) = 9. The criterion value of the optimal design X∗opt in

Table 2.9 equals 41.2246. It is similar to the solutions provided in Table 2.6.
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Table 2.9: 18-Run Local D-Optimal Design for Model (2.2) with Hybrid Method

S E P S E P S E P

2.5 2.795 200 2.5 20.645 200 2.5 62.5 288.9
2.5 2.795 200 2.5 23.25 288.4 2.5 62.5 400
2.5 2.795 200 2.5 23.25 288.4 2.5 62.5 400
2.5 19.275 400 2.5 62.5 200 3.1 62.5 200
2.5 19.275 400 2.5 62.5 200 3.15 31.25 200
2.5 20.645 200 2.5 62.5 288.9 3.15 31.25 200

2.7 Discussion and Recommendations

2.7.1 Nonlinear Multifactor Experiments

As a special class of nonlinear models, the characteristics and statistical interpretation of

empirical linear response surfaces are much more familiar to experimenters. As long as

there is a sufficient number of runs n to allow for the precise parameter estimation, it is

not hard to do efficient local D-optimal design of multifactor linear experiments with the

traditional discrete optimisation method. In spite of the usefulness of empirical linear

models as elucidated in Box and Draper (1987), experimenters can often encounter a

mechanistic model or an empirical nonlinear model which does not coincide the common

response surfaces. With some justification from relevant scientific theories and/or math-

ematical derivations, it will be beneficial to fit this nonlinear model. As such, we can

achieve a better approximation of the true response surface as well as other experimen-

tal purposes. In optimal design for nonlinear models, however, the discrete optimisation

cannot work quite well without a suitable candidate set Ω, which is hard to define. In

this context, we turn our attention to the new continuous optimisation method proposed

in this chapter. Based on that, a multistage hybrid exchange algorithm is also developed

to search for efficient optimal designs of experiments.

Two main challenges must be tackled though: 1. to find the suitable form of the model;

2. to make a reliable choice of θ0. On the first, when there is no theoretical model to

be assumed, sometimes it is possible to conceive an empirical nonlinear model which

contains some characteristics about the mechanism. In this chapter, we made several

assumptions and built up such a hybrid model in the Mountzouris et al. (1999) example,

which can fit to the reference data well. In this thesis, we focus on deterministic nonlinear

models, the information matrix of which can be derived through a normal procedure.

A similar idea will also fit the less common classes of models, such as mixed effects

models and even stochastic models (Parker et al., 2015). As to the second challenge we

face, it shall often require some relevant reference data in order to derive an appropriate

parameter prior. The data can be brought from the literature or collected from pilot

experiment(s). As long as we can evaluate the criterion function assumed, the next task

is to use an exchange approach to optimise the coordinates of a design X.
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2.7.2 Continuous Optimisation

The continuous optimisation is robust when it is applied to determine the coordinates

of X. It can take the whole variable space X into account, when the aim is to maximise

or minimise the new criterion function. As it is not limited into a finite candidate set Ω,

we take no risk from the improper definition of the discrete candidates. It also saves us

time to compare and validate the results of the traditional discrete optimisation, which

will facilitate optimal design of experiments. With this method to update X in steps,

we wish to see some improvement in the solution Xopt in the new optimised exchange

algorithms. Meanwhile potential problems exist. Continuous nonlinear optimisation

can be an expensive computational tool and especially when there are multiple initial

points to start with, it will slow down the exchange algorithm in the Matlab environment

at least. Therefore, in developing the multistage hybrid method for optimal design of

experiments, our intent is to make it quicker and more reliable in the maximisation of

the local D-criterion function, which is in terms of X. As a further evolution from the

optimised exchange algorithm, the new hybrid method can circumvent some ineffective

optimisations and updates of X, and thus reduce the amount of computation. In other

words, we can do fewer tries in the continuous optimisation part, which will otherwise

demand substantial computational effort. To some extent, the performance of the hybrid

exchange algorithm relies on the small candidate set Ω, which should be used at the

stage of the discrete optimisation. Meanwhile, the potential influences of generating

initial X at random are weak on the obtained X2nd, as well as the final solution of the

hybrid method X∗opt. A suitable candidate set makes the discrete optimisation quick

and leads to a spectrum of efficient X1st for the subsequent continuous optimisation.

In comparison, the traditional discrete optimisation is a more direct method. The nu-

merical evaluation of the local D-criterion function or its updating function is much

quicker, even if the model is complex. Even though it looks a bit cumbersome, if the

total candidate set is small enough, the discrete optimisation is a time-saving method

and demands less tedious computation. As we can see, an improper specification of

Ω can perhaps lead to bad “optimal” designs of the experiment and therefore waste

some resources. Hence, the discrete optimisation requires our careful consideration of

the best qualified candidate runs. In contrast, the new continuous optimisation is free

of specified candidates so that we can save some trouble in the search for efficient opti-

mal experimental designs. Particularly for those simple differentiable nonlinear models,

the local D-criterion function and its updating function are simple as well. This makes

the continuous optimisation rapid and efficient in finding the local optimal solutions in

iterative updates under the point or coordinate exchange approach.

The point and coordinate exchange approaches are both efficient in most circumstances.

However, the Fisher information is the sum of n unit information matrices, each of

which corresponds to one experimental run. When the statistical model to be fitted is
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nonlinear, each element of the total information matrix can be a function written in terms

of some or all of the controlled variable levels. As such, the local D-criterion function

can be complex in some cases and it will depend on the nonadditive joint effects of the v

controlled variables in the model. With closer associations between the exchanges in the

iterative update, the coordinate exchange approach does not value these joint effects, due

to its low dimension of optimisation. As we assess the independent effects of updating one

coordinate at a time, it often takes more effort to make the criterion function converge

and thus find an efficient X at a stable local optimum of the criterion function. When

there are limited candidates for selection and the traditional discrete optimisation is

used, this trend is more apparent in our demonstrations. Nevertheless, if we can finish

the continuous optimisation well, when the number of controlled variables is not too

large, there is little difference in the results between the two exchange approaches.

Unlike the discrete optimisation that will assess each feasible candidate in Ω, the con-

tinuous optimisation will advise us to test multiple initial points (initial values of the

decision variables in the specific optimisation function) to find reliable local optimal

solutions over X . As shown in our examples, an efficient Xopt can be found after a

number of iterative updates that implement the continuous optimisation. Under the

point exchange approach, we tend to do fewer updates of each random initial matrix X

and that will facilitate the local convergence of the criterion function. In comparison,

the coordinate exchange approach brings about more reliable local optimal solutions

to maximise the relative improvement function (or updating function) for the local D-

criterion. Therefore we can use fewer initial points for the unidimensional optimisation

of one coordinate of X each time in the iterative update.

Our recommendation is the hybrid Fedorov exchange algorithm when the number of

controlled variables v is small in the nonlinear model (e.g. smaller than four). Other-

wise, when the continuous optimisation of each experimental run (which will contain

v coordinates as the decision variables for multidimensional optimisation) is difficult

and the computational cost is expected to be high, we shall then recommend the more

flexible coordinate exchange approach. In addition, an idea for compromise is to use

the hybrid Fedorov exchange algorithm first but switch to use the coordinate exchange

approach in the middle of multiple iterative updates.

2.8 Optimal Design of Experiments in Blocks for Multi-

factor Nonlinear Models

In this section, we will review the reference CCD in Table 2.1, in which there are four

blocks containing the 24 experimental units. Block allocation is a useful tool when

not all experimental observations can be completed under similar circumstances. There

could be some latent environmental noises (e.g. time effects, nonrandom measurement
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errors) that disturb independence of different observations, even if we follow a random

order of runs for experimentation. All in all, optimal design of experiments in blocks

is an important issue to discuss in this case, as the exchange algorithm should also be

adapted in computation and iterative updates.

Our demonstration is for the Box and Draper example where the mechanistic model

can be fitted to the experimental data. The new consideration is to include simple

fixed block effects in the model, which can explain part of the error sum of squares. In

other words, we expect the block allocation to influence the variation in the observed

response, which is unknown prior to the experiment. The response varies from block to

block in this case and the diversities between blocks are for several reasons, e.g. repeated

response measurements, outside environmental changes, some specific operations in the

experiment, and so on.

Note that we will not address mixed effects model where we can assume random block

effects. There are n = 24 experimental units so that there is an invariant block size

of six units. We can add an implicit common intercept β0 to model (2.1) but since

the model is nonlinear, least squares estimation would interpret this hidden effect in

the fitted mechanistic function. To be more specific, the estimator of θ0 can act as the

overall common intercept of the model, so β0 is redundant.

We define four artificial terms to represent the fixed block effects in the mechanistic

model as βb, for b = 1, 2, 3, 4. The constraint can be either β1 + β2 + β3 + β4 = 0 or

βb = 0 if the bth block is treated as the baseline. θ0 explains the common intercept

and must be kept in the model. The block label is a qualitative factor. For instance, to

define the constraint β1 + β2 + β3 + β4 = 0, in the experimental design X, we should

use four columns for the respective block indicators. The trick is to append an extra

row (1, 1, 1, 1, 0, 0, 0) on the bottom of X, which corresponds to the constraint equation

(the expected response is zero). This constraint lets us estimate the overall fixed block

effects in contrast to the overall mean responses.

The more convenient measure is to decide a baseline block and set its fixed block effect

to zero (e.g.β1 = 0). Hence it is confounded with the “common intercept” estimate θ̂0.

As such, we can use three indicator variables to represent the other three blocks. There

are also three columns to be added to X. Here we can compare their fixed block effects

to the baseline block effect, as the fitted model can show the respective differences. This

is demonstrated as follows, where we use the constraint β1 = 0.

There are three extra unknown parameters (i.e. the ones that correspond to the three

indicator variables) to be estimated. Under this new structure, the mechanistic model

(2.1) can include the fixed block effects such that

η = βb +
cθ1 θ0 r eθ2 (x−0.001x)(

r + cθ
′
1 θ′0 eθ

′
2 (x−0.001x)) (r + cθ1 θ0 eθ2 (x−0.001x)

) + ε, where ε ∼ N(0, σ2),
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for b = 2, 3, 4. Our main concern is to adjust the continuous optimisation method, in

order to search for the optimal blocked experimental design for this model. The baseline

block is the first, so we must estimate β2, β3, and β4, which are used for providing

some auxiliary information in interpreting the variation in the observed response η.

Their existence does not distort the mechanistic relationship between the dependent

and independent variables, which is important in this nonlinear experiment.

The block allocation does not make a vital impact on the mechanistic model, so we

are not so interested in the precise estimation of the block effects, but rather the six

treatment parameters. The simple local D-criterion will not suit optimal design of

this experiment. With the exception of the estimator of the hyperparameter σ2, the

constant variance of errors, the main experimental purpose is to minimise the Generalised

Variance of the six treatment parameter estimators, which are also involved in (2.1).

As the standard errors of the block effect estimators are not of concern, the attention

is drawn to the Ds-criterion (see Atkinson et al. (2007) for an introduction) or even

the (DP)s criterion, which can be used for optimal experimental design in this situation

(Gilmour and Trinca, 2012b). Regardless of σ2, there are also nine columns (of first-

order derivatives with respect to the model parameters) in the matrix F. The complete

9 × 9 information matrix of the mechanistic model can therefore be partitioned and

rewritten as a 2× 2 block matrix as

FTF =

(
{FTF}11 {FTF}12
{FTF}21 {FTF}22

)
= ((FTF)−1)−1.

Let submatrix {(FTF)−1}11 indicate the square variance-covariance matrix for the three

estimators of the block effects (or nuisance parameters). Likewise, {(FTF)−1}22 repre-

sents the (9− 3)× (9− 3) variance-covariance matrix for the estimates of the treatment

parameters from (2.1), which depends on the block allocation. Hence, in this example,

the aim of the Ds-criterion is to minimise the determinant

|{(FTF)−1}22| = 1/|({(FTF)−1}22)−1| 6= 1/|{FTF}22|.

A general algebraic result for the inverse of a 2× 2 block matrix is(
A B

C D

)−1
=

(
A−1 + A−1BU−1CA−1 −A−1BU−1

−U−1CA−1 U−1

)
,

where U = D−CA−1B is a matrix. In this case, FTF is a 9× 9 block matrix. While

the 3× 3 submatrix A is invertible, the determinant of the information matrix is

|FTF| =

∣∣∣∣∣ A B

C D

∣∣∣∣∣ = |A||U| = |A|/|U−1|.
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We know A = {FTF}11 and D = {FTF}22, such that

U−1 = {(FTF)−1}22.

Hence, the local Ds-criterion aims to maximise the criterion function

φDs = 1/|{(FTF)−1}22| = |FTF|/|{FTF}11|.

The determinant of the block effects |{FTF}11| = 63 is a constant because of the equal

and fixed sizes of the four blocks. Therefore, in this example, the simple local D-criterion

that maximises the function φD = |FTF| is equivalent to the local Ds-criterion above.

In optimal design of this blocked experiment, we shall evaluate and maximise the same

updating function as for the local D-criterion.

Nevertheless, the block allocation does affect the Ds-criterion: {FTF}11 is fixed as

the submatrix of the Fisher information, but the cross-product terms in {FTF}12 and

{FTF}21 are dependent on the block labels we allocate to the experimental units. We use

the notion “Block” to represent the block label for each experimental unit. In each iter-

ative update, the exchange algorithm will incorporate the simple block interchange steps

to allow for the updates of the block labels (i.e. levels of the three indicator variables) in

X. It is reasonable to do discrete optimisations to accomplish these interchanges, under

the specific constraint that the block sizes must be fixed. In short, it demands more

effort to programme the iterative update and compute the results. The point exchange

approach is chosen in our demonstration. Besides, we will calculate the local Ds-criterion

value rather than the D-criterion value.

We do 30 tries in the hybrid exchange algorithm. Let the exchanging rule be max(di) >

1.0001 for the discrete optimisation over the four blocks and the 3×3×3 candidate set for

the three controlled variables. Despite the loose rule, there are 28 distinct intermediate

designs X1st left for the continuous optimisation. With the same critical value (1+10−4)

for the exchanging rule, the total computational time is 858 seconds before the last stage

of the hybrid method. Instead, we also do 100 random tries in the optimised Fedorov

exchange algorithm, as it takes 3347 seconds to complete the continuous optimisation.

The highest three local Ds-criterion values are −50.9103,−50.9455,−50.9498, each local

maximum is attained after five iterative updates. In comparison, under the faster hybrid

exchange algorithm, the highest three values are −50.9060,−50.9168,−50.9205 and each

takes four iterative updates to attain, which show a bit improvement in the results. As

we can see, the best solutions Xopt are shown in Tables 2.10-2.11, where the first column

is for the block label. Note that we also show the scaled variable xT in the last column,

instead of the untransformed one (i.e. temperature). To examine the support points of

these experimental designs, the multiple column sorts in the two tables are based on the

three controlled variables in advance of the block label.
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Table 2.10: 24-Run Local Optimal Design by Optimised Fedorov Exchange
Algorithm

Block r c x Block r c x

2 1.5 1 2.7548 1 1.8776 4 2.7548
3 1.5 1 2.7548 3 3.0252 1 2.9155
4 1.5 1 2.8176 2 3.0868 1 2.9155
1 1.5 1 2.9155 4 3.3744 1 2.9155
4 1.5 4 2.8733 3 6 1 2.7915
3 1.5 4 2.8785 2 6 1 2.7921
2 1.5 4 2.8789 1 6 1 2.8003
1 1.5 4 2.9155 4 6 4 2.8230
1 1.6137 1 2.7548 1 6 4 2.8683
4 1.6794 4 2.7548 2 6 4 2.9155
3 1.6925 4 2.7548 3 6 4 2.9155
2 1.7028 4 2.7548 4 6 4 2.9155

Table 2.11: 24-Run Local Optimal Design by Hybrid Fedorov Exchange Algo-
rithm: Interim Solution after the Continuous Optimisation Part (2nd Stage)

Block r c x Block r c x

2 1.5 1 2.7548 4 3.2259 1 2.9155
3 1.5 1 2.7548 3 3.2520 1 2.9155
4 1.5 1 2.7548 2 3.2878 1 2.9155
1 1.5 1 2.8341 1 5.0265 4 2.9155
1 1.5 1 2.9155 2 6 1 2.7886
2 1.5 4 2.8782 4 6 1 2.7895
4 1.5 4 2.8784 3 6 1 2.7955
3 1.5 4 2.8868 1 6 1 2.7972
3 1.6862 4 2.7548 3 6 4 2.8444
2 1.7509 4 2.7548 1 6 4 2.8579
4 1.7734 4 2.7548 2 6 4 2.9155
1 1.8582 4 2.7548 4 6 4 2.9155

There is not as much resemblance as we expect between the two tables. This hints

that we should have chosen a critical value smaller than (1 + 10−4) for the continuous

optimisation. We continue the hybrid method with the more efficient Xopt in Table 2.11,

whereas the closest distance for each controlled variable remains the same. After the

reallocation of replication and block labels, the final solution X∗opt (Table 2.12) adopts

just n∗ = 8 unique runs. The new local Ds criterion value is −50.8820, which even

increases from −50.9060. With respect to the Ds-optimal X∗opt in this example, the

24-run CCD in Table 2.1 (of which φDs = −54.3019) is 56.87% efficient. The local

Ds-criterion aims to minimise the Generalised Variance of the six treatment parameter

estimators as well as the volume of their joint confidence region. We can expect the

solution in Table 2.12 to fulfil the criterion for this blocked experiment.

Blocks 2-4 are identical, each containing six identical runs for the experiment. However,

Block 1 is in a somewhat different structure from the other blocks. The number of

degrees of freedom for the model residual is 24 − 6 − 3 = 15, since in total there are

nine parameters to be estimated. Six of them are treatment parameters and the rest
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Table 2.12: 24-Run Local Ds-Optimal Design of the Experiment in Blocks

Block r c T Block r c T Block r c T Block r c T

1 1.5 1 70 2 1.5 4 74 4 1.8 4 90 4 6 1 85
1 1.5 1 70 3 1.5 4 74 2 3.3 1 70 2 6 4 70
1 1.5 1 90 4 1.5 4 74 3 3.3 1 70 3 6 4 70
2 1.5 1 90 1 1.8 4 90 4 3.3 1 70 4 6 4 70
3 1.5 1 90 2 1.8 4 90 2 6 1 85 1 6 4 78
4 1.5 1 90 3 1.8 4 90 3 6 1 85 1 6 4 78

are relevant to the block effects. As we should deduct three degrees of freedom from

the pure error (these are for the block effects), the number of degrees of freedom for

the lack of fit is (8 + 3)− 6− 3 = 2 whereas for the pure error, it is 24− (8 + 3) = 13.

Hence, there are lots of replicate runs and the local Ds criterion is inclined to distribute

these replicates across the four blocks. This will be helpful for the contrasts of different

treatments (or experimental runs) and also for the comparison of the block effects.

2.9 Optimal Candidates for Optimal Design

In this brief section, we would like to make some tentative empirical inferences for the

determination of the candidate levels for one of the independent variables in the Box and

Draper example. With respect to the local D-optimal design X∗opt (Table 2.8) over the

continuous region X , for instance, our specific interest is in the catalyst concentration,

the two unique coordinate levels of which are the upper and lower limit of C ∈ [1, 4] ∈ X .

To illustrate this result, first, the n × p design matrix F is made up of six first-order

derivatives of f(X,θ) with respect to each of the p treatment parameters in θ. As we

use the parameter prior for the substitution θ = θ0 = θ̃, in terms of the three variables,

the first-order derivative functions f ′1, f
′
2, . . . , f

′
6 can be simplified as

f ′1 =
∂f

∂θ0
=

Cθ1 R2 eθ2x(
R+ Cθ

′
1 θ′0 eθ

′
2x
)

(R+ Cθ1 θ0 eθ2x)
2 ;

f ′2 =
∂f

∂θ1
=

Cθ1 R2 θ0 eθ2x log(C)(
R+ Cθ

′
1 θ′0 eθ

′
2x
)

(R+ Cθ1 θ0 eθ2x)
2 ;

f ′3 =
∂f

∂θ2
=

Cθ1 R2 θ0 eθ2xx(
R+ Cθ

′
1 θ′0 eθ

′
2x
)

(R+ Cθ1 θ0 eθ2x)
2 ;

f ′4 =
∂f

∂θ′0
=

−Cθ′1 Cθ1 Rθ0 eθ
′
2x eθ2x(

R+ Cθ
′
1 θ′0 eθ

′
2x
)2

(R+ Cθ1 θ0 eθ2x)
;

f ′5 =
∂f

∂θ′1
=
−Cθ′1 Cθ1 θ′0Rθ0 eθ

′
2x eθ2x log(C)(

R+ Cθ
′
1 θ′0 eθ

′
2x
)2

(R+ Cθ1 θ0 eθ2x)
;
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f ′6 =
∂f

∂θ′2
=

−Cθ′1 Cθ1 θ′0Rθ0 eθ
′
2x eθ2xx(

R+ Cθ
′
1 θ′0 eθ

′
2x
)2

(R+ Cθ1 θ0 eθ2x)
.

The reference NLS estimate from Box and Draper (1987) is θ̃ = {θ̃0 = 5.90, θ̃′0 =

1.15, θ̃1 = 0.53, θ̃′1 = −0.01, θ̃2 = 15475, θ̃′2 = 7489}. In relation to the theories behind

this mechanistic model, all parameters of θ should be nonnegative. Besides, either θ1

or θ′1 can be linked to the order of the chemical reaction, which is often determined

as an integer or the fraction of two small integers. As such, θ1 = 0.5, θ′1 = 0 are

reasonable values when we interpret this mechanism. There is θ̃1 + θ̃′1 ≈ θ̃1. If we write

z = Cθ1 , then f ′1; f
′
3, . . . , f

′
6 are monotone decreasing functions of z ∈ [1, 40.53]. As in

Box-Cox transformation, as α → 0, log(z)/θ1 → (zα − 1)/(αθ1). This means f ′2 shall

be an increasing function of z within X . Thanks to the similarities between the above

derivative functions, in terms of f ′1 and f ′4,

|FTF| =

∣∣∣∣∣ A B

BT D

∣∣∣∣∣ = |AD−B2| = |
n∑
i=1

f ′
2
1iAci

n∑
i=1

f ′
2
4iDci−(

n∑
i=1

f ′1if
′
4iBci)

2|, where

A =
∑ f ′

2
1 f ′1f

′
2 f ′1f

′
3

f ′1f
′
2 f ′

2
2 f ′2f

′
3

f ′1f
′
3 f ′2f

′
3 f ′

2
3

 ; B =
∑ f ′1f

′
4 f ′1f

′
5 f ′1f

′
6

f ′2f
′
4 f ′2f

′
5 f ′2f

′
6

f ′3f
′
4 f ′3f

′
5 f ′3f

′
6

 ; D =
∑ f ′

2
4 f ′4f

′
5 f ′4f

′
6

f ′4f
′
5 f ′

2
5 f ′5f

′
6

f ′4f
′
6 f ′5f

′
6 f ′

2
6

 .
A,B,D are 3 × 3 submatrices with the sum of the n = 24 unit information. For the

observation i = 1, 2, . . . , n, we might take the respective common factors f ′21i, f
′
1if
′
4i

and f ′24i out of these submatrices. In this case, the remainders Aci,Bci,Dci consist of

constants plus the term log(z)/0.53. Regardless of the effects of log(z), the local D-

criterion aims at argmax f ′21i f
′2
4i and argmin |f ′1if ′4i| for individual unit information

matrices and the sum of them.

As long as the above approximation holds (i.e. θ̃1 + θ̃′1 ≈ θ̃1), zi = 40.53 can minimise

f ′21i and f ′23i in the unit Fisher information, which also leads to the simultaneous max-

imisation of the other derivative squared. In contrast, if we adopt the lower limit zi = 1

for the ith observation, it corresponds to the maximum of f ′21i (and f ′23i) as well as the

minimum of the rest functions. All derivatives are considered to be monotonic functions

within X . Hence, one or the other limit of zi can minimise the absolute of a specific

cross-product element such as |f ′1if ′4i|. In short, the two candidate coordinate levels

are sufficient for the local D-criterion, the numbers of replicates of which are found to

be equal in Table 2.8. Generalisation of these findings are more of interest and we start

with some algebraic properties as follows:∣∣∣∣∣ A 0

0 D

∣∣∣∣∣ = |A||D|; |FTF| =

∣∣∣∣∣ A B

BT D

∣∣∣∣∣ = |A||D−BA−1BT|.

Let A =
∑
f ′21 be the sum of the derivative squared with respect to the first parameter

in θ. In terms of the (p − 1) × (p − 1) submatrix D, |FTF| = |
∑
f ′21D −BTB| where
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B consists of the (p− 1) cross-products in association with f ′1. While we are looking for

the maximum of
∑
f ′21, the minimisation of the absolute values of the elements in B is

also desirable since that will increase the magnitude of the determinant.

As it goes, we can continue with the submatrix D to find all requirements for a X to

achieve the local D-criterion. On the one hand, the aim is to maximise the diagonal

elements of the Fisher information matrix. A special case is the so-called local Trace-

criterion, which aims for the maximisation of the trace of this matrix. In fact, the

diagonal elements of an information matrix can be called the effective sample sizes cor-

responding to the parameters of the model. The effective sample size decides how much

information will be contained within the planned experiment. It is a simple measure

of the rough D-efficiencies of different X. On the other hand, however, the absolute

values of the cross-product elements of the information matrix should be minimised at

the same time, which makes it hard to determine some optimal candidate runs.

In the simplest cases when the derivatives are orthogonal to each order (e.g. in a first-

order linear model), there is |FTF| =
∑
f21 |D| and it simplifies the optimisation tasks.

In other cases, we have to exploit some further information about the model derivatives

to decide the optimal candidates with respect to a specified criterion. When there is

v = 1 independent variable in the model, sometimes it is not hard to do so under the

local D-criterion. For instance, Dette and Biedermann (2003) derived and illustrated

the continuous local D-optimal design for the nonlinear Michaelis-Menten model in bio-

chemical kinetics, which is on the basis of the General Equivalence Theorem in Kiefer

and Wolfowitz (1960). However, unless we can derive all support points in advance, it

is recommended to use the new continuous optimisation method to search for efficient

(if not optimal) X.

2.10 Appendix: Derivation of the Nonlinear Multifactor

Model

In the Mountzouris et al. example, one of our interests is in the functional relationship

between the response (i.e. the substrate conversion rate) ξ and the (initial) substrate

concentration S. The mechanism of this reaction is unknown but there are two reagents:

the substrate and the enzyme. Hence, it is reasonable to consider the first step of the

whole mechanism to be reversible and bimolecular: the small molecules of the dextran

will attach to the active sites of the endodextranase and as a result, this bond can form

one molecule of an intermediate complex. To learn this reaction in the experiment, we

should think about the mixture of the two reagents.

Consider the first extreme scenario when even the maximal substrate concentration

(i.e.S = 7.5) is far too low relative to the fixed enzyme concentration E. As the chemical
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reaction just starts, the substrate consumption will be quick at a high and stable rate. As

such, the conversion is then close to 100% at the response measurement time t (it is often

after the reaction almost ceases). At time t, the instantaneous substrate concentration

shall be close to a constant so that the expected conversion rate is E(ξ)→ 100(S−a)/S

where a is a nonnegative constant. As we can infer from the reference data in Table

2.5, this extreme scenario will not be the case. Consider the opposite extreme scenario

when even the minimal substrate concentration (e.g.S = 2.5) is an apparent overdose in

the reaction. In this case, the substrate consumption will be slow and it can reduce fast

over the elapsed time in the course of the reaction. Hence, we can assume the amount

of the converted substrate to be a constant b, such that the expected conversion rate is

E(ξ)→ 100b/S.

To describe the old experimental data in Table 2.5, a tradeoff can be found between the

two impractical scenarios. Under the theoretical assumption of the ideal solution (or

ideal mixture), overall, E(ξ) should be a decreasing function of the substrate concentra-

tion within X (not under the first extreme scenario described in the above paragraph).

It is also realistic to consider the model function in terms of the substrate concentration

to be concave, which will not be the case under the second extreme scenario. When the

substrate concentration is low, the slope of the model functional curve will be small.

As the substrate concentration increases, however, the expected conversion will decrease

fast so that we will move towards the second extreme scenario described. For an empir-

ical approximation to the response surface in Mountzouris et al. (1999), we envisage a

nonlinear model function

E(ξi) =
γ1Si
γ2 + Si

, for i = 1, 2, . . . , n,

where γ1 is a nonnegative constant and γ2 is a negative one. When the substrate

concentration is low, this function suits the first extreme scenario well, except that it

is a decreasing function. When the substrate concentration is in the higher range, this

function suits the second extreme scenario more, except that the function is concave

rather than convex. As such,

ξi
100− ξi

=
γ′1Si
γ′2 + Si

+ ε′i, for i = 1, 2, . . . , n, (2.4)

is the model which incorporates a transformed response, a residual ε′i and two constants

γ′1, γ
′
2. While the initial substrate concentration is fixed, we shall focus on the scaled

independent variables xE and xP. As there is no theoretical support for a chemical

interpretation of the mechanism, it is common to consider a transformed second-order

linear model as the alternative. With the insignificant interaction term xExP dropped

from the tentative model, the established model with an exponential transformation on
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its empirical linear function is

ξi
100− ξi

= exp(a′0 + a′1xE,i + a′2xP,i + a′3x
2
E,i + a′4x

2
P,i) + ε′′i , (2.5)

where ε′′i is the residual and a′0, a
′
1, a
′
2, a
′
3, a
′
4 are the unknown constants. With the com-

bination of (2.4) and (2.5) for an approximation of the response surface, the nonlinear

multifactor model can be written as

ξi
100− ξi

=
exp(a0 + a1xE,i + a2xP,i + a3x

2
E,i + a4x

2
P,i)Si

a5 + Si
+ εi, for i = 1, 2, . . . , n,

where εi is the total error and a0, a1, a2, a3, a4, a5 are unknown parameters. This so-called

hybrid model complies our conjectures and therefore fits the reference experimental

data quite well. Hence, it is feasible to use it for a new experiment under a similar

environment. With the model fitted to approximate the response surface, we can find a

reasonable interpretation of the unknown mechanism of the interest.





Chapter 3

Hybrid Nonlinear Models:

Applications to Michaelis-Menten

Kinetics

3.1 Research Problem

We are most interested in the mechanistic model that can describe the relationship be-

tween the response and the factors (or controlled variables) to be studied in different

experiments. These kinds of models are relevant to some scientific theories, as well as the

constraints imposed on the reaction mechanism. In applications to biochemical mecha-

nisms, the Michaelis-Menten model (Michaelis and Menten, 1913) is widely used in the

fundamental analysis of enzyme kinetic data. This model can interpret mechanisms

of the simplest two-step kinetics and in this case, it illustrates a unique functional rela-

tionship between the initial reaction rate ν (i.e. the response) and the (initial) substrate

concentration S. The kinetic data shall be produced in an experiment, where the initial

substrate concentration is specified for each experimental run.

In its most common form, the Michaelis-Menten (M-M) model is theoretical and nonlin-

ear, developed as the solution of the set of differential equations with respect to the time

course of a reaction. Given a simple M-M mechanism, the initial reaction rate deter-

mines the formation speed of the final chemical product in the ongoing reaction, whereas

the substrate is the reagent added in the liquid solution of a fixed volume. In each ex-

perimental run, this solution shall be a mixture of the substrate and a suitable enzyme

that can activate the reaction. In modern experimental environments, the reaction rate

ν can be measured within an initial transient time span of the specific reaction, when

the substrate depletion is negligible. With the model error term εi, the most common

59
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Michaelis-Menten model is expressed as

νi =
νmaxSi
k + Si

+ εi , for the experimental unit i = 1, 2, . . . , n.

The parameter νmax represents the theoretical maximal value of the initial rate and k is

named the Michaelis constant, both of which are independent of the substrate concen-

tration. As usual, since we use nonlinear least squares (NLS) or maximum likelihood to

fit this model and estimate the two treatment parameters, it requires the errors εi to

be uncorrelated, subject to zero mean and homogeneous variance. At times, the simple

M-M model can also be modified and fitted to interpret more complex reactions of which

the kinetic properties are to be studied. We will discuss that later in this chapter.

Under the local D-criterion for optimal design of experiments, we wish to minimise the

variances of the two nonlinear least squares parameter estimators. This is for a better

interpretation of the M-M mechanism, which can be taken as the main experimental pur-

pose. If we assume an infinite number of runs in the experiment, to decide the respective

substrate concentration levels, the continuous local D-optimal experimental design can

be derived in a few steps (Dette and Biedermann, 2003; Matthews and Allcock, 2004). It

specifies n∗ = 2 support points: one is situated at the maximal substrate concentration

level Smax while the other is equal to Smaxk/(2k+ Smax) in the unidimensional variable

space X . The latter substrate concentration level depends on the unknown true value

of the Michaelis constant k. In this case, the number of treatment parameters equals

the number of support points. The continuous local D-optimal design will have the

respective weights in association to the two support points being equal. If n is an even

number (half of which is an integer too), e.g. 1000, we shall allocate 500 experimental

runs to each support point. Most real experiments have a much smaller number of runs,

so we should search for an exact optimal design of the experiment instead, when a small

integer n is specified beforehand.

On the basis of simple Michaelis-Menten kinetics, in this chapter, we also specialise

in more complicated multifactor mechanisms, as often required in practical industrial

experiments. As there are some complex nonlinear models, to find the exact optimal

designs of experiments, we shall implement the hybrid exchange algorithm developed in

Chapter 2, which makes use of the new continuous optimisation method.

When there is a complicated mechanism, the experimental data must be copious to

meet the experimenters’ requirements and it can take a lot of effort to approximate the

response surface. To reduce the scale of experimentation, some choose to fix several

controlled factors at one or more specified levels, and thus treat these factors as either

constants or categorical variables. As such, the attention is on a simplified mechanism

of fewer controlled variables. Besides, after the experimenters alter the level of one

categorical variable (if there are any), the comparison of treatments can be made to

calculate the difference in the observed response and even in the fitted model.
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In fact, we should make full use of the experimental data at hand, to learn some valuable

information about such a complicated mechanism. Even if there is no theoretical model

we can use, the alternative is to build up a suitable empirical model. As we treat each

controlled variable as continuous, for instance, it is viable to approximate the response

surface with an overall empirical model. When little is known about the mechanism, it

is most common to fit a second-order linear model, or a similar model based on such

kinds of linear or close-to linear functions. On the negative side, however, these linear

models lack in support from relevant theories.

To overcome this drawback and to best match the experimental data, we should deter-

mine the best model to be fitted. The idea is that we can exploit the limited mechanistic

information (if it exists) as appropriate. As we show in the next section, even if it is

hopeless to find a purely mechanistic model, a hybrid nonlinear model can be developed,

for instance, on the basis of Michaelis-Menten kinetics. The logic is that, for experiments

where the response is the initial rate and one of the factors is the substrate concentra-

tion, Michaelis-Menten kinetics applies when the remaining controlled factors are held

constant. To approximate the overall response surface, we contemplate establishing an

empirical nonlinear model, which also incorporates such mechanistic information about

the kinetics. In comparison to a simple linear model, for instance, it will make the error

structure more reasonable and also interpret the real mechanism better. As a result, the

fitted model can improve the results in regression in some aspects.

3.2 Models Based on Michaelis-Menten Kinetics

Our emphasis is to advocate the appropriate use of hybrid models in preference to em-

pirical linear models. This will be demonstrated in examples relevant to the simplest

Michaelis-Menten mechanisms. In circumstances when the essential information about

the mechanism is unavailable or incomplete, a hybrid nonlinear model can be conceived

as follows: (1) the (initial) substrate concentration is one factor so that the complicated

multifactor mechanism is in relation to Michaelis-Menten kinetics under certain condi-

tions; (2) meanwhile, we can derive an empirical function in terms of the other controlled

variables; (3) then we combine Michaelis-Menten kinetics and this empirical function, as

the empirical function can replace the constant νmax in the Michaelis-Menten equation;

(4) At the request of experimenters, we can add (or delete) new (or current) empirical

terms in the integrated hybrid model, before the best functional form is decided; (5) in

addition, we can transform the controlled variables or even the both sides of the model,

depending on the new error structure to be expected.

As a result, the hybrid nonlinear model incorporates more than one controlled variable,

the error structure of which can be modified as required. The empirical approximation

of this model is expected to improve, at least within the continuous variable space X .



62 Chapter 3 Hybrid Nonlinear Models: Applications to Michaelis-Menten Kinetics

However, no matter how close the fitted response values conform to the raw experi-

mental data, the model is not a mechanistic one. When experimenters impose different

constraints on X , it is necessary to reconsider the hybrid model and its practical limits.

Our examples focus on M-M kinetics but hybrid modelling techniques can also be applied

to widespread areas in science and medicine. The general ideas we discuss are relevant

to the broader use of hybrid models, although the experimental context will influence

the suitable closed-form expression of the model. In Chapter 2, we have derived such

a nonlinear model for the experimental data in Mountzouris et al. (1999), where we

envisage the relation between the conversion rate and the substrate concentration.

We now propose some candidate models based on Michaelis-Menten kinetics. Apart from

the substrate concentration S, the independent variables can be scaled (or transformed).

We then add them into an empirical linear (or close-to-linear) function which shall be a

component of the model. Letting x denote a single scaled variable, the simplest model

can be written in terms of just four parameters k, a0, a1, a2 as

νi =
(a0 + a1xi + a2xi

2)Si
k + Si

+ εi, (3.1)

for i = 1, 2, . . . , n, where the errors can be explained as ε ∼ N(0, σ2) so as to follow an

identical normal distribution. Here, the full second-order polynomial in x substitutes

the unknown parameter νmax in the M-M model. The polynomial function excludes its

error term so that it cannot perfectly predict νmax, when the value of x varies. Due

to this more complicated mechanism, the estimate of k in the fitted model cannot be

interpreted as the true Michaelis constant.

Likewise, some effort could be made to replace k with another empirical function. Nev-

ertheless, this will lead to a far more complex model which is hard to fit and interpret.

In this respect, model (3.1) avoids an overcomplex function since it defines fewer param-

eters. It seems to be realistic to accept this more concise model.

We shall also consider the error structure of (3.1), which relies on the empirical function

as well as the M-M equation. The fundamental assumption is that the error variance is

constant across the n observations and independent of the substrate concentration level.

Otherwise, model (3.1) should be modified to meet the requirement and thus it makes

sense to contemplate more candidate models as alternatives.

The true functional relationship between the response ν and the scaled variable x is

uninformative to us. Instead of an empirical linear function to replace νmax, a different

substitution is to use the exponential (or logarithmic, depending on the error distribu-

tion) function of the linear combination of some empirical additive terms. For instance,

we can write the exponential function as

νmax,i = exp(a0 + a1xi + a2xi
2).
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In some cases, the new exponential function can stabilise the model errors. More-

over, since the maximum initial rate νmax is a nonnegative number in Michaelis-Menten

kinetics, the exponential transformation of a second-order linear function is more or

less reasonable. As long as the model errors can meet the relevant assumptions, for

i = 1, 2, . . . , n, we have

νi =
exp(a0 + a1xi + a2xi

2)Si
k + Si

+ εi. (3.2)

Compared with (3.1), the new model leads to quite a similar response surface fitted to the

experimental data, but it can influence our prediction of the response and interpretation

of the mechanism. At times, experimenters also make some speculations about the true

error structure of a model. To indicate the potential increase in errors in M-M kinetics,

for instance, Cornish-Bowden (2004, chap.14) conceived the model

νi =
νmaxSi
k + Si

(1 + εi),

where ε ∼ N(0, σ2) is a normal random variable.

To deal with the assumed multiplicative error structure of candidate model (3.2) and

thus stabilise the error variance, it is common to use an appropriate transform-both-

sides (TBS) model instead. For instance, suppose ε(1) is the additive error due to the

empirical exponential approximation of νmax, we also conceive the multiplicative error

exp(ε(2))− 1 which is due to the fit of the Michaelis-Menten model. On the foundation

of (3.2), the ith experimental observation is equal to

νi =
exp(a0 + a1xi + a2xi

2 + ε
(1)
i )Si

k + Si
× exp(ε

(2)
i ),

where the normal random variables are ε(1) ∼ N(0, σ21) and ε(2) ∼ N(0, σ22) (σ21 and σ22 are

the respective error variances). Although the normal distribution of the errors is not an

essential assumption under least squares estimation, it will improve our comprehension

of the fitted model. When the experimenters consider the above error structure as most

appropriate, it is convenient to impose a simple transformation on the both sides of the

model. As it goes,

ν ′i = log(νi) = log

(
Si

k + Si

)
+ a0 + a1xi + a2xi

2 + εi, (3.3)

where ε = ε(1) + ε(2) ∼ N(0, σ21 + σ22).

In comparison to (3.2), the TBS model is linear in terms of the independent variable x.

No matter which candidate model we accept, it should lead to small lack of fit and valid

error assumptions. A simple but comprehensive hybrid model seems to be attractive,

which is frugal in the use of parameters. Compared with some rare and overcomplex
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candidate models, it lets us focus on the important parameters that are involved in

the empirical component of the selected model. As there are fewer parameters to be

estimated, we can make the most of the experimental data.

3.3 An Adapted Kinetics Example

In experimental investigation of the reaction mechanism and the kinetic profile, Martins

et al. (1999) studied a biochemical reaction which occurred in the permeabilised cells

of saccharomyces cerevisiae, which can be used in industrial experiments in pharmaceu-

ticals and medicine. In one of their original experiments, glyoxalase II is the enzyme

(or the protein catalyst) that could activate a specific reaction in situ (i.e. in a 2-ml re-

action mixture), when a range of S-D-lactoylglutathione (the substrate) concentrations

S were determined in the continuous variable space [0.15, 3] mM (the millimolar, unit

of concentration). The response is the initial rate ν of GSH (i.e. the desirable product)

formation, so M-M kinetics holds.

In the first scenario when the remaining experimental conditions were fixed (i.e. with

invariant temperature at 30 ◦C, the pH at 6.5, and the weight of glyoxalase II protein at

approximately 0.03mg), five distinct levels of the substrate concentration were specified

and each corresponded to three replicate runs in the experiment. As there were 15

runs in total, the NLS estimation of the M-M model lead to the estimates ν̃max =

0.000765 (±0.000049) mM min−1 and k̃ = 0.36 (±0.09) mM. If the small constant k̃

is the unbiased estimate, at the higher range of the substrate concentration, the fitted

curve of the M-M model would approach a horizontal line. This is the first half of the

reference experiment.

Meanwhile, the second step of the Michaelis-Menten mechanism is of first order and is

irreversible (see Chapter 5 for explanation in detail). When the substrate concentration

is under control, a mechanistic equation can be established such that νmax(Ei) ≈ a1Ei,

where νmax(E) is a function of the concentration (or weight) of protein E. In another

scenario in Martins et al. (1999), while the temperature and the pH were under control,

the substrate concentration had been fixed at 1.5 mM. As such, five distinct levels

of the protein weight were specified in the variable space [0.02, 0.12] mg (milligram)

and each corresponded to three replicates in the experiment. In this second half of

the experiment, there were also 15 runs in total. The estimate of the slope was ã1 =

0.0204 (±0.0006) mM min−1 mg−1, along with a small standard error.

The fitted model will be superior if the two subsets of data can be incorporated into a

master dataset of the two factors and the 30 experimental observations. In this case,

the full M-M model can be fitted to interpret the whole mechanism, where we postulate
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an overall additive error. The integrated form of the Michaelis-Menten model is

νi =
a1EiSi
k + Si

+ εi, (3.4)

which is similar to the hybrid nonlinear model (3.1). For i = 1, 2, . . . , n, the errors can

be explained as εi ∼ N(0, σ2), as long as the NLS assumptions are satisfied. The local

D-optimal design of an experiment for (3.4) is no harder than that for the simpler M-M

model in terms of the substrate concentration only. Under the local D-criterion, the

protein weight E should be in the maximum for all the experimental runs. The most

appropriate model is identified as above, but in studies of unknown multifactor mech-

anisms, it is difficult to find adequate and detailed information to make a mechanistic

postulate. Therefore, in the example, we are to assume that the appropriate mechanistic

model (3.4) is unknown. Under this premise, an alternative is to derive and use a hybrid

nonlinear model that will suit the data, for which we construct a local optimal design

of a 30-run new experiment.

Three candidate models are offered in (3.1)-(3.3), which are in terms of the substrate

concentration and an unspecified variable x. If we intend to select (3.2), according to the

unknown mechanistic model, the best variable transformation shall be x = log(E). In

the empirical component of the model, the constant term and the quadratic term can be

deleted from the exponential function. However, in this example, x = (E− 0.07)/0.05 ∈
[−1, 1] is the linear transformation we prefer. The variable x falls in the standardised

space [−1, 1], so the whole variable space is a rectangle X = [−1, 1] × [0.15, 3], within

which the nonlinear model function is smooth and differentiable. Note that it is unwise

to do a nonlinear transformation on the substrate concentration, which comes from the

theoretical M-M equation.

Details about our new hybrid method, which is efficient in searching for the exact opti-

mal designs of experiments, are described in Chapter 2. The hybrid exchange algorithm

involves three stages of computation, and the first two of them should follow an ex-

change approach in iterative updates. The first stage is for a swift discrete optimisation

of each experimental design X over a small candidate set. Therefore, our first move is

to demarcate, for instance, a coarse 3× 3 set of discrete candidate runs. As the model

in each form is linear or at least partially linear in terms of x, we include the conven-

tional candidate levels in the subset Ω1 = {−1, 0, 1} for x. For the unscaled substrate

concentration, the candidate subset Ω2 = {0.15, 1.5, 3} ⊂ [0.15, 3] is not a bad choice.

Meanwhile, we approximate the exact coordinate levels of the X used from Figure 2 in

Martins et al. (1999). Table 3.1 shows this 30-run reference design of the experiment

Xref . It is the baseline when we make some comparisons.

If we fit the mechanistic model (3.4) to the old data, the NLS estimates are ã1 =

2.422 (±0.098)× 10−2 and k̃ = 0.3290 (±0.0696). We can use k̃ as the parameter prior

for local D-optimal design of the new experiment then. In reference to the results under
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Table 3.1: 30-Run Reference Experimental Design

E S 100ν E S 100ν E S 100ν

0.023 1.5 0.0425 0.03 0.9 0.051 0.045 1.5 0.075
0.023 1.5 0.0475 0.03 0.9 0.0535 0.0675 1.5 0.13
0.023 1.5 0.0475 0.03 1.5 0.057 0.0675 1.5 0.135
0.03 0.15 0.023 0.03 1.5 0.06 0.0675 1.5 0.1375
0.03 0.15 0.024 0.03 1.5 0.063 0.089 1.5 0.17
0.03 0.15 0.025 0.03 3 0.07 0.089 1.5 0.18
0.03 0.3 0.0355 0.03 3 0.07 0.089 1.5 0.19
0.03 0.3 0.0365 0.03 3 0.07 0.112 1.5 0.225
0.03 0.3 0.037 0.045 1.5 0.07 0.112 1.5 0.225
0.03 0.9 0.0485 0.045 1.5 0.075 0.112 1.5 0.225

the continuous D-criterion in Dette and Biedermann (2003), where the protein weight

is fixed in the M-M model,

Xopt =

{
(0.12, 0.2698) (0.12, 3)

15 15

}
(3.5)

should be the 30-run local D-optimal design for the M-M model (3.4). In the first row of

(3.5), the two coordinates in each bracket represent the values of the controlled variables

of one support point (or unique experimental run) (E,S), which must be contained in

the variable space X . Then the second row shows the number of replicate runs at each

support point and in this case, we can have lots of replicates. With experimental data

collected from (3.5), a drawback is that we cannot evaluate the lack of fit of the model.

This implies that we will be unable to fit candidate models with more than two unknown

parameters. Next, we will look at the three simple hybrid models based on M-M kinetics:

the Additive Candidate Model (3.1), the Exponential Candidate Model (3.2), and the

Transformed Candidate Model (3.3).

3.4 Local D-Optimal Design of Experiments

3.4.1 Model 1: the Additive Candidate Model

In respect of the candidate model (3.1), the empirical substitution of νmax in Michaelis-

Menten kinetics is a simple second-order linear function. If we select the model for the

nonlinear experiment, the local D-criterion shall minimise the variances of the NLS esti-

mators of the unknown parameters θ = {k, a0, a1, a2}. We use the dataset in Table 3.1

to obtain the reference parameter estimate that is θ̃ = {0.3191, 0.0016, 0.0012, 0.0001}.
The adjusted coefficient of determination is 0.991, so the fitted model explains most of

the response variation. If the Michaelis-Menten mechanism holds in this example, the

quadratic effect of the empirical linear function contributes little to the response. To
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determine the baseline level, the local D-criterion value is calculated to be φD = −9.0594

for the 30-run reference Xref . The criterion value depends on the parameter prior θ0

which is set to equal the estimate θ̃ from the old data.

We implement the new hybrid exchange algorithm, which can tackle the intensive com-

putation encountered in the iterative search for the local D-optimal design of the ex-

periment. For the iterative update (i.e. the loop we construct for iterative computation)

of each X, we are to examine the point exchange approach (Fedorov, 1972) as well as

the coordinate exchange approach (Meyer and Nachtsheim, 1995) in the stage of the

continuous optimisation. While we can use the former approach to update an entire row

in X in each step of the iterative update, the latter approach is limited to optimising

an individual coordinate at a time. In comparison, the number of controlled variables is

v = 2, so we expect similar computational results from the two exchange approaches.

For proper use of the three-stage hybrid method, it is important to determine a suitable

exchanging rule for the iterative update. Here, it is reasonable to set the rule to be

max(di) > 1.1 for the initial discrete optimisation under the point exchange approach,

for instance. As to the following continuous optimisation, a much looser rule max(di) >

1.00000001 will encourage the update of rows or coordinates in X. Besides, to improve

the local optimal solutions of continuous optimisations, one can use multiple vectors

of initial values. In addition to the default vector (i.e. the set of current coordinate

values), we use the Nelder-Mead method to examine nine fixed initial starts from a

coarse set {−0.67, 0, 0.67}×{0.5, 1.5, 2.5}. Hence there are ten initial points in total for

the v-dimensional continuous optimisation. Meanwhile, under the coordinate exchange

approach, we can check four initial values for each controlled variable, three of which

are fixed in advance.

Over the finite candidate set Ω = {−1, 0, 1} × {0.15, 1.5, 3}, in our demonstration, we

do 30 random tries in the discrete optimisation. Thanks to the strict rule max(di) >

1.1, there are 30 distinct intermediate optimal solutions X1st left. After continuous

optimisation of each X1st over the variable space X , we can obtain a distinct solution

X2nd. The interim local D-optimal solution Xopt is selected as the most efficient X2nd

out of the 30 tries. As we examine both exchange approaches, the results are presented

in Table 3.2 where we show four decimal places of each coordinate value (unless it is on

the boundaries of X ).

As we keep four decimal places of each value, there are three unique coordinate levels

for the protein weight. Two of them are on the boundaries, whereas the other level

is approximately 0.07, the midpoint in the variable space. Prior to the final stage of

the hybrid method, the elapsed time of computation is 559 seconds after continuous

optimisation under the point exchange approach. As we finish 30 tries in the continuous

optimisation, the mean number of iterative updates is exactly four. Therefore, it is not

hard to find a local maximum of the local D-criterion function of X. The highest three
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Table 3.2: 30-Run Local D-Optimal Design for Model (3.1): Interim Solution
after the Continuous Optimisation Part (2nd Stage) of the Hybrid Method Using

(a) Point Exchange (b) Coordinate Exchange

E S E S E S E S E S E S
0.02 3 0.0700 3 0.12 0.2631 0.02 3 0.0700 3 0.12 0.2631
0.02 3 0.0700 3 0.12 0.2631 0.02 3 0.0700 3 0.12 0.2631
0.02 3 0.0700 3 0.12 0.2631 0.02 3 0.0700 3 0.12 0.2632
0.02 3 0.0700 3 0.12 3 0.02 3 0.0700 3 0.12 3
0.02 3 0.0700 3 0.12 3 0.02 3 0.0700 3 0.12 3
0.02 3 0.12 0.2631 0.12 3 0.02 3 0.0700 3 0.12 3
0.02 3 0.12 0.2631 0.12 3 0.02 3 0.12 0.2631 0.12 3
0.0700 3 0.12 0.2631 0.12 3 0.02 3 0.12 0.2631 0.12 3
0.0700 3 0.12 0.2631 0.12 3 0.0700 3 0.12 0.2631 0.12 3
0.0700 3 0.12 0.2631 0.12 3 0.0700 3 0.12 0.2631 0.12 3

criterion values are all equal to −3.6863, so the point exchange approach works well. In

comparison, the reference Xref is 26.10% efficient with respect to the Xopt in Table 3.2a.

Instead, when we use the coordinate exchange approach for the continuous optimisation,

it takes 612 seconds and 4.3 iterative updates on average. In comparison to the above,

the differences are quite small. The most qualified three X2nd all lead to the identical

criterion value −3.6863.

Here we use the Xopt in Table 3.2a for the remaining computation, when there are some

further refinements to make. For minor coordinate adjustments in Xopt, the closest

distance is set to 0.001 mg for the protein weight and 0.01 mM for the substrate con-

centration. As we finish the hybrid exchange algorithm, there are n∗ = 4 support points

to compose the solution

X∗opt =

{
(0.02, 3) (0.07, 3) (0.12, 0.26) (0.12, 3)

8 8 7 7

}
, (3.6)

which shall be local D-optimal. The criterion value is φD = −3.6864. It does not

decrease much from that of Table 3.2a. The number of unique runs is equal to the

number of parameters p, so the weights associated with the four support points should

be equal under the continuous D-criterion case (assuming n→∞). This can be proven

under the General Equivalence Theorem. As n = 30 in (3.6), the respective numbers of

replicates are 8, 8, 7, 7, which are close to each other.

The experiment contains a lot of replicates. One can perhaps reduce the number of

runs to 12-20, for instance, depending on the scale of the error variance σ2 and the

controlled variables in the model. In (3.6), the three candidate levels of the scaled

variable x = (E − 0.07)/0.05 ∈ [−1, 1] are identical to the conventional levels {−1, 0, 1}
defined in Ω. This is because of the potentially weak nonlinear behaviour of model (3.1)

as well as the small prior value ã2 = 0.0001 for the parameter in front of the empirical

quadratic term x2 in the model.
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The true parameter values of the model are unknown prior to real experimentation. Thus

we are interested in the parameter sensitivities (i.e. the robustness to the potential varia-

tion of the parameter prior values) of (3.6). In reference to the standard errors in fitting

the model to the reference dataset, we consider 16 different scenarios S1,S2, . . . ,S16

shown in Table 3.3, where the true parameter values of the model are specified. Under

each scenario, we are able to find a tailor-made local D-optimal X. Under scenarios

S1,S2, . . . ,S8, the identical solution we found is

X∗opt =

{
(0.02, 3) (0.07, 3) (0.12, 0.15) (0.12, 3)

8 8 7 7

}
, (3.7)

where the substrate concentration level of the third support point is at the minimum.

Under each of the scenarios S9,S10, . . . ,S16, the optimal solution is

X∗opt =

{
(0.02, 3) (0.07, 3) (0.12, 0.39) (0.12, 3)

8 8 7 7

}
, (3.8)

which is similar to (3.6) too. Except for the first parameter value, the envisaged vari-

ation of a0, a1, a2 do not influence the local D-criterion used. In other words, (3.6) is

quite robust to the perturbation of the true parameter values. Under scenario S1, for

instance, (3.6) is 90.27% efficient with respect to (3.7). On the other hand, it is 97.38%

efficient with respect to (3.8) under scenario S9. Moreover, due to the similarities be-

tween (3.6) and (3.7), the relative efficiencies of (3.6) under scenarios S1,S2, . . . ,S8 (or

S9,S10, . . . ,S16) are found to be the same too.

Table 3.3: Assumed True Parameter Values (Prior Values) under Each of the
16 Postulated Scenarios

k a0 a1 a2 k a0 a1 a2

S1 0.1058 0.0014 0.0011 -0.0001 S9 0.5324 0.0014 0.0011 -0.0001
S2 0.1058 0.0019 0.0011 -0.0001 S10 0.5324 0.0019 0.0011 -0.0001
S3 0.1058 0.0014 0.0014 -0.0001 S11 0.5324 0.0014 0.0014 -0.0001
S4 0.1058 0.0019 0.0014 -0.0001 S12 0.5324 0.0019 0.0014 -0.0001
S5 0.1058 0.0014 0.0011 0.0003 S13 0.5324 0.0014 0.0011 0.0003
S6 0.1058 0.0019 0.0011 0.0003 S14 0.5324 0.0019 0.0011 0.0003
S7 0.1058 0.0014 0.0014 0.0003 S15 0.5324 0.0014 0.0014 0.0003
S8 0.1058 0.0019 0.0014 0.0003 S16 0.5324 0.0019 0.0014 0.0003

Now we come back to our D-optimal solution (3.6), which is in a simple and interesting

structure. The two substrate concentration levels are 3 and 0.26, which are similar to the

two optimal coordinate levels in (3.5). Overall, on the one hand, the support points 1,2,4

constitutes an efficient 23-run experimental design for the precise parameter estimation

of a0, a1, a2 in the candidate model. On the other hand, the support points 3 and 4

constitutes an efficient 15-run design for the estimation of k. These two points shall be

quite stable when the Exponential Candidate Model is considered in the next subsection.

Hence, (3.6) is almost like a one-factor-at-a-time D-optimal design of the experiment. To
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validate this statement, our approach is to adapt the local Ds-criterion (see Section 2.8

for details) to focus on the estimation of the full set of the parameters except for k. This

requires more computation since we have to evaluate and update two determinants in

the defined criterion function. The final Ds-optimal solution we obtain is a bit different

to (3.6) in this situation, where fewer replicate runs (or experimental units) are allocated

to the support points 3 and 4:

X∗opt =

{
(0.02, 3) (0.068, 3) (0.12, 0.2) (0.12, 3)

10 9 3 8

}
. (3.9)

This is a result we expect from model (3.1). For the record, since the number n∗ = 4 is

the minimum requirement for least squares estimation of unknown parameters, (3.6) is

also optimal under the local DP-criterion introduced in Gilmour and Trinca (2012b).

3.4.2 Model 2: the Exponential Candidate Model

Consider the candidate model (3.2), where we assume a different error structure. In

this situation, an empirical exponential function in terms of x replaces the second-order

linear one in (3.1), in order to substitute the maximum initial rate νmax in the theoret-

ical Michaelis-Menten kinetics. This candidate model shall exhibit stronger nonlinear

behaviour than (3.1). Meanwhile, the constraint νmax ≥ 0 will be satisfied for all values

of x. The same observed response surface in Martins et al. (1999) can be interpreted

under the new mechanistic postulate, so a better candidate model and the parameter

prior can be determined. However, the 30-run local D-optimal experimental design for

(3.2) tends to be more complicated, because of the exponential transformation of the

second-order linear function.

If we fit (3.2) to the old data, the adjusted coefficient of determination is 0.994. This

shows an increase over the coefficient 0.991 for (3.1). To evaluate the Fisher information,

the NLS estimate θ̃ = {k̃, ã0, ã1, ã2} = {0.3122,−6.4086, 0.8383,−0.2861} is taken as the

parameter prior θ0. Here, the candidate model is more complex because ã2 = −0.2861

deviates from zero, unlike the estimate of a2 in the fitted (3.1). We shall look at the

interpretation of Michaelis-Menten kinetics (when x is a constant). The parameter prior

of k equals 0.3122 for the new candidate model, which is quite close to the value 0.3191

for (3.1) and the value 0.3290 for the Michaelis-Menten model (3.4) (which we assume

to be unknown). After all, the exponential transformation has little influence on the

curvature and shape of the fitted response surface, despite the error structure being

different. This indicates that both (3.1) and (3.2) can be reliable approximations to the

mechanistic model.

While the model specification should be modified according to (3.2), the same input

arguments (e.g. discrete candidate set) are supplied to the hybrid exchange algorithm.

The interim solutions after the continuous optimisation over the variable space X are
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illustrated in Table 3.4. With the point exchange approach, the computational time

is 999 seconds and the mean number of iterative updates is 7.0667. Compared with

our previous demonstration for candidate model (3.1), the implementation of the new

optimal design demands more calculation and effort to achieve a local maximum of the

local D-criterion function. For each of the 30 X2nd we obtain after the iterations, the

criterion value is the same −43.0239. As such, the reference in Table 3.1 (of which

φD = −48.2255) is 27.24% efficient relatively. The coordinate exchange approach can be

efficient in this situation too. The elapsed time of computation is 1079 seconds and the

mean number of iterative updates is as low as 7.3333. At the different local convergences

towards the maximum, the criterion value equals −43.0239 for 27 tries of the 30. This

hints that we can do even fewer tries to find an efficient Xopt.

Table 3.4: 30-Run Local D-Optimal Design for Model (3.2): Interim Solution
after the Continuous Optimisation Part (2nd Stage) of the Hybrid Method Using

(a) Point Exchange (b) Coordinate Exchange

E S E S E S E S E S E S
0.0255 3 0.0863 3 0.12 0.2625 0.0255 3 0.0863 3 0.12 0.2625
0.0255 3 0.0863 3 0.12 0.2625 0.0255 3 0.0863 3 0.12 0.2625
0.0255 3 0.0863 3 0.12 0.2625 0.0255 3 0.0863 3 0.12 0.2625
0.0255 3 0.0863 3 0.12 3 0.0255 3 0.0863 3 0.12 3
0.0255 3 0.0863 3 0.12 3 0.0255 3 0.0863 3 0.12 3
0.0255 3 0.0966 0.3300 0.12 3 0.0255 3 0.0966 0.3300 0.12 3
0.0255 3 0.12 0.2624 0.12 3 0.0255 3 0.12 0.2624 0.12 3
0.0255 3 0.12 0.2624 0.12 3 0.0255 3 0.12 0.2624 0.12 3
0.0863 3 0.12 0.2624 0.12 3 0.0863 3 0.12 0.2624 0.12 3
0.0863 3 0.12 0.2624 0.12 3 0.0863 3 0.12 0.2624 0.12 3

As it takes more iterative updates on average in the continuous optimisation, the current

exchanging rule max(di) > 1.00000001 seems loose in this case. Besides, the fixed initial

values in the coarse set {−0.67, 0, 0.67} × {0.5, 1.5, 2.5} are not in the far distance from

the adopted coordinate levels of x in Xopt, which improves the local optimal solutions of

the continuous nonlinear optimisation. As we save four decimal places of the coordinate

levels, Table 3.4a is identical to Table 3.4b. After the third stage of the hybrid method

is completed, the solution is

X∗opt =

{
(0.025, 3) (0.086, 3) (0.097, 0.33) (0.12, 0.26) (0.12, 3)

8 7 1 7 7

}
, (3.10)

the local D-criterion value of which is φD = −43.0242. Overall, five unique runs and the

respective numbers of replicates feature in the two rows in (3.10). Compared with (3.6)

for the previous model, the unique run (0.12, 0.26) also appears as the same substrate

concentration is included. It shows some similarities due to the link between the two

candidate models, in spite of the exponential transformation of the linear function in

(3.2). In contrast, the difference is that it is harder to determine the coordinate levels of x

in the local D-optimal design (3.10). As the number of experimental runs is n = 30 in this
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example, an additional support point (0.097, 0.33) appears in (3.10), which corresponds

to just one replicate run. Although the new candidate model is also close-to-linear, the

new continuous optimisation method is much more useful when we search for the final

solution X∗opt in the iterative update.

3.4.3 Model 3: the Transformed Candidate Model

In the third scenario, we use the transform-both-sides model (3.3), which assumes a

simple multiplicative error structure in Michaelis-Menten kinetics. As a result, (3.3) is

at least linear in terms of the scaled variable x. It also implies that the Fisher information

matrix and the local D-criterion function are independent of the values of a0, a1, a2. To

define the discrete candidate levels of x, we use the conventional three levels in {−1, 0, 1}.

We fit the TBS model to the reference dataset, so the estimate is θ̃ = {k̃, ã0, ã1, ã2} =

{0.2838,−6.4406, 0.8420,−0.2561}, which does not deviate too far from that of the fitted

untransformed model (3.2). The adjusted coefficient of determination is 0.989, so the

observed response variation is well explained. After the model transformation, we can see

some improvement in the error structure (i.e. the model satisfies the error assumptions

better). Nevertheless, even if the error structure is not the most desirable one, (3.3) is

still a useful empirical approximation because of its simple model function and strong

linear behaviour. With the same hybrid exchange algorithm and the parameter prior as

θ0 = θ̃, the new Xopt are found in Table 3.5, as a result of the continuous optimisation.

Table 3.5: 30-Run Local D-Optimal Design for Model (3.3): Interim Solution
after the Continuous Optimisation Part (2nd Stage) of the Hybrid Method Using

(a) Point Exchange (b) Coordinate Exchange

E S E S E S E S E S E S
0.02 0.15 0.0695 3 0.12 0.15 0.02 0.15 0.0700 0.15 0.12 0.15
0.02 0.15 0.0695 3 0.12 0.15 0.02 0.15 0.0700 0.15 0.12 0.15
0.02 0.15 0.0695 3 0.12 0.15 0.02 0.15 0.0700 0.15 0.12 0.15
0.02 0.15 0.0696 3 0.12 0.15 0.02 0.15 0.0700 0.15 0.12 0.15
0.02 3 0.0696 3 0.12 3 0.02 0.15 0.0700 0.15 0.12 0.15
0.02 3 0.0706 0.15 0.12 3 0.02 3 0.0700 3 0.12 3
0.02 3 0.0706 0.15 0.12 3 0.02 3 0.0700 3 0.12 3
0.02 3 0.0706 0.15 0.12 3 0.02 3 0.0700 3 0.12 3
0.02 3 0.0706 0.15 0.12 3 0.02 3 0.0700 3 0.12 3
0.0695 3 0.0706 0.15 0.12 3 0.02 3 0.0700 3 0.12 3

The point exchange approach can be used, when the computational time is 603 sec-

onds and the mean number of iterative updates is 4.8. While there are 30 distinct

X1st from the initial discrete optimisation, the highest three local D-criterion values are

11.6658, 11.6658, 11.6657 for the respective X2nd. In comparison, when the coordinate

exchange approach is used, the elapsed time is 624 seconds and there are 4.4667 itera-

tive updates on average. The highest three criterion values are 11.6960, 11.6658, 11.6658,

which are a bit better. This may be due to minor random variation.
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We fail to find many D-efficient X2nd, so the exchanging rule max(di) > 1.00000001 can

be looser for continuous optimisation whereas max(di) > 1.1 is also too strict a rule for

the discrete optimisation. In addition, since there is one more unique run to be specified

under the current local D-criterion, it will be reasonable to do more tries and use better

initial starts (e.g. use the initial coordinate level x = ±1 rather than ±0.67). The interim

solution Xopt in Table 3.5a is not the best. Hence it is even more important to finish

the hybrid method as we can make minor coordinate adjustments and then recalculate

the optimal numbers of replicates. If we continue with Table 3.5a to search for the final

solution X∗opt, for instance, the maximal local D-criterion value is 11.6956 for

X∗1 =

{
(0.02, 0.15) (0.02, 3) (0.07, 3) (0.071, 0.15) (0.12, 0.15) (0.12, 3)

5 5 5 5 5 5

}
.

(3.11)

This is similar to the interim solution in Table 3.5b. After the reallocation of replications,

there are equal numbers of replicates of the six support points. We can also use Table

3.5b to restart the search. As the more efficient Xopt is chosen for the third stage of the

hybrid method, the final solution is

X∗2 =

{
(0.02, 0.15) (0.02, 3) (0.07, 0.15) (0.07, 3) (0.12, 0.15) (0.12, 3)

5 5 5 5 5 5

}
.

(3.12)

Given the continuous variable space X of interest, we are convinced that (3.12) is indeed

local D-optimal and the maximal local D-criterion value equals 11.6960. With respect

to X∗2, the reference design in Table 3.1 (of which φD = 8.5739) is 45.82% efficient. The

scale of the experiment is n = 30 and there are five replicates of each of the n∗ = 6

support points.

The candidate model (3.4) is close to linear and the exact local D-optimal experimental

design is simplified to a large extent. The conventional candidate coordinate levels

{−1, 0, 1} are chosen for the scaled variable x in the discrete optimisation. Meanwhile,

the upper and lower limits of the variable space [0.15, 3] are the two candidate coordinates

for the substrate concentration. As such, X∗2 is a 3 × 2 factorial, the support points of

which are contained in the discrete candidate set Ω. Under a suitable exchanging rule,

the traditional discrete optimisation shall be a sufficient method for us to find the local

D-optimal solution (3.12). Details about different exchange algorithms are in Chapter

2.

In this section, we have considered three of the candidate hybrid nonlinear models, each

of which can fit the reference data reasonably well. Hence, in optimal design of experi-

ments in this case, as long as the statistical model is decided for the new experimental

data, there is no need to make a compromise among optimal designs for different types

of candidate models (i.e. (3.1)-(3.3) as shown above). More often than not, the best

strategy is to focus on a specific hybrid model that suits our mechanism conjecture

and interpretation. An exception is that, if the experimenters make several mechanistic
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postulates in addition to simple Michaelis-Menten kinetics (i.e. when the best mecha-

nism to assume is uncertain), optimal experimental design may take account of a model

selection process, which is based on experimental data and scientific theories as well.

Prior to experimentation, moreover, it may also take troubles to determine the suitable

empirical terms in the hybrid nonlinear model, especially when the model involves more

than two factors. Given such kinds of circumstances, a compound criterion or a com-

posite criterion will be useful, if the experimenters wish to examine their mechanistic

or empirical postulates and then decide the most appropriate model. An example of a

simple compound criterion will be discussed in Section 3.7.

3.5 Complex Nonlinear Multifactor Models

3.5.1 Practical Complications in Nonlinear Experiments

The model can be complex because of the inherent kinetics mechanism. As we men-

tioned at the end of the last section, there could be other mechanistic postulates in

addition to simple Michaelis-Menten kinetics. At times, the mechanistic model function

is more complex, expressed as the ratio of two linear functions in terms of the substrate

concentration. As explained in Wong (1975), that is not a rare case, due to diversities

of different biochemical reactions. As such, the kinetic model (or the hybrid model that

incorporates a mechanistic function of kinetics) shall include more unknown parameters.

Thus we can see the complexities in the interpretation of the mechanism, which must

be based on the rate laws (i.e. differential equations in relation to kinetics) and the ex-

perimental constraints. Besides, many chemical reactions in practice shall involve more

than one substrate species and (by)products in the course of the reaction. Therefore,

some advanced kinetics could be considered as an extension of the simple M-M model

(Wong and Hanes, 1962). As we have also discussed, sometimes it is hard to select the

most suitable and concise kinetic model to be fitted after the experiment.

However, in this chapter our emphasis is on the empirical component of the hybrid

nonlinear model. We thus assume the mechanistic function component to be informative

as we concentration on, for instance, the two-step M-M mechanism in the examples. In

optimal design of experiments, it is not hard to replace the M-M equation with another

univariate mechanistic function and we can implement the same hybrid method to find

local D-optimal (or D-efficient at least) solutions. The complication is that, even if we

assume Michaelis-Menten kinetics, an ambitious modeller can require multiple controlled

variables to coexist in the same model. This issue is relevant to the complex nonlinear

multifactor experiments with which we are concerned.

In common practice, to derive a mechanistic model like M-M kinetics, several irrelevant

experimental conditions must be fixed at one or several constants. As a result, the
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roles and influences of these factors will be less studied in the fitted mechanistic model.

Outside M-M kinetics, nonetheless, there is a more comprehensive multifactor mecha-

nism to explore, which is an extension from the simple M-M mechanism. Except for

the enzyme concentration (or protein weight), various factors can be considered in the

hybrid nonlinear model that approximates the true response surface. For instance, the

famous experiment in Michaelis and Davidsohn (1911) explored a common kinetics when

hydrogen ion concentration (i.e. the pH scale) was an independent variable. As a conse-

quence, the initial rate function of the pH was close to quadratic in their defined variable

space. Later in another experiment in Michaelis and Menten (1913), the pH scale had

been fixed as a constant so that the substrate concentration was the only independent

variable in the kinetics. In this situation, the classical form of the Michaelis-Menten

equation had been established, where both the Michaelis constant and the theoretical

maximum initial rate may depend on the pH. Though there is no mechanistic model

to explain the response in terms of the pH, experimenters shall be able to consider an

empirical approximation to their smooth functional relationship.

Temperature is another factor that influences the reaction kinetics. For some ideas

about the link between the absolute temperature and the initial reaction rate, one can

refer to the Arrhenius equation. However, this often results in an overcomplex and also

unreliable model that is not very useful in experimental studies. The Arrhenius equation

can be best seen as an empirical function, as it does not explain some kinds of kinetics

as one wishes. A pertinent and universal kinetic model cannot be found to relate the

temperature as a controlled factor.

3.5.2 Model and Optimal Design of the Experiment

We now consider a further example, where four controlled factors are involved in a mech-

anism on the basis of simple Michaelis-Menten kinetics. As usual it is not realistic or

economic to derive an explicit mechanistic model for the response surface of the initial

rate ν. Instead, it is far easier to fit a hybrid nonlinear model for a reliable empirical

approximation. To substitute the maximum initial rate νmax in M-M kinetics, the em-

pirical component is as complex as the exponential of a second-order linear function of

three controlled variables excluding the (initial) substrate concentration. The hybrid

model requires an effective utilisation of the n runs and the experimental data to es-

timate each treatment parameter we define. If there are some relevant reference data

available for us to check the nonlinear regression results, it is sensible to drop some

insignificant empirical terms out of the finalised model. When we are unconvinced with

sufficient information, a safe choice is to assume the exponential of a full linear function

as the empirical component of a hybrid model.

In this example, let xE ∈ [−1, 1] represent the enzyme concentration, which is a trans-

formed variable in the empirical function. It can lead to a linear effect and a quadratic
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effect as two terms in the empirical exponential function, as shown in (3.2). We

can take two more variables into account in the second-order linear function in that

model. Define the hydrogen ion concentration xH ∈ [−1, 1] and experimental tempera-

ture xT ∈ [−1, 1], both of which are transformed. Both factors are fixed in the Martins

et al. experiment, where the variable space of the substrate concentration is [0.15, 3].

Hence, for optimal experimental design, we can define the four-dimensional variable

space X = [−1, 1]3 × [0.15, 3]. The experimenters should determine the limits (and

sometimes also constraints) of the untransformed controlled variables, expressed in the

units of real chemical measurements. When we combine the chosen levels of these fac-

tors, a realistic environment can be created as the experiment requires. Therefore, the

reaction mechanism and kinetic profile are to be studied over a realistic variable space

of new experimental interest.

Caution must be taken to evaluate the joint impacts of the controlled variables on the

initial rate and its measurement. For instance, experimenters can often increase the

temperature to speed up some chemical reactions within a certain time span. As the

reaction continues, however, an excessive temperature can sometimes inactivate or even

denature the enzyme steadily. As a consequence, such an experimental environment

is impractical and thus the variable space X should not contain excessive temperature

levels. If considerable enzyme activities cannot be retained later on in the course of

the reaction, due to the common thermodynamic consideration, it does not make much

sense to use a temperature that maximises the initial rate. To learn how to relate

relevant theories and presumptions to the determination of a reasonable variable space,

see Cornish-Bowden (2004, chap. 3).

There are four factors, the levels of which can be specified in the respective dimension

of the variable space X = [−1, 1]3 × [0.15, 3]. To learn the comprehensive mechanism in

relation to Michaelis-Menten kinetics, we can build the hybrid nonlinear model

ν =
exp(a0 + a1xE + a2xH + a3xT + a4x

2
E + a5x

2
H + a6x

2
T + a7xExH + a8xExT + a9xHxT)S

k + S
+ ε, (3.13)

where the parameter prior θ0 = {0.3,−6.4, 0.8, 0.3, 0.8,−0.3,−0.3,−0.1, 0.1, 0.1, 0.1}
is in correspondence with θ = {k, a0, . . . , a9}. As usual, ε is the residual, of which the

mean shall be zero and the variance shall be constant across the n = 30 independent

observations. The main experimental purpose we assume is to obtain precise parameter

estimates for the fitted response surface, though the majority of the 11 parameters come

from the empirical component (i.e. exponential function) of the model. As we fit this

model, the advantage is the comprehension of the whole kinetics mechanism when no

mechanistic model is available. Due to the lack of experimental data and the lack of fit

of the fitted model, the empirical approximation of (3.13) to the response surface is not

reliable all the time.

At first sight, due to the exponential transformation of the second-order linear function

in the complex model (3.13), it can be difficult to find suitable candidate coordinates to



Chapter 3 Hybrid Nonlinear Models: Applications to Michaelis-Menten Kinetics 77

compose the 30-run local D-optimal design of the experiment. Therefore, the continuous

(nonlinear) optimisation is a useful tool that we can exploit in the three-stage hybrid

exchange algorithm. In accordance with previous demonstrations, we can take 30 ran-

dom initial X for a swift discrete optimisation over a 34 candidate set. As to each of the

new variables xH, xT, we can define the conventional three candidate levels in {−1, 0, 1}.

The total number of coordinates is 120 in the 30× 4 matrix X. For the discrete optimi-

sation, the exchanging rule is max(di) > 1.05 under the point exchange approach. The

rule will influence our selection of candidate runs such that the aggregated number of

distinct matrices X1st is τ∗ = 11 (which is large enough). We can use them for 11 tries

in the next subsequent continuous optimisation. As the hybrid method continues, the

exchanging rule is set to max(di) > 1.00000001, in which case we can expect a lot of

iterative updates to complete. Likewise, it is sensible to use different vectors of initial

values for continuous optimisation, which include the current point and those in the set

{−0.67, 0, 0.67}3 × {0.5, 1.5, 2.5} ∈ X . As such, when we do a v-dimensional continuous

optimisation under the point exchange approach, there are 34 + 1 = 82 initial points to

examine and we expect a dramatic increase in the amount of computation. When we

use the coordinate exchange approach, there are four initial coordinate values for each

unidimensional optimisation. All the results of our hybrid method are summarised in

Tables 3.6 and 3.7.

When the number of controlled variables is v = 4, it is hard to evaluate the 11×11 Fisher

information matrix of a specific X and then maximise the local D-criterion function.

In addition to the time consumption in the continuous optimisation, under the point

exchange approach, the local optimal solutions of the v-dimensional optimisation will be

less reliable. As we have mentioned above, we define 82 initial points in order to find a

better local optimal solution. In that case, the overall computational time is 567 minutes,

while the maximum and mean of the τ∗ = 11 local D-criterion values of different X2nd

is −113.5698 and −113.5806. The iterative computation can be quite intensive, so we

allow at most 30 iterative updates in the continuous optimisation of each distinct X1st,

which are obtained from the discrete optimisation in the hybrid method. On average,

it takes 16.8182 iterative updates to achieve one local maximum of the local D-criterion

function in the continuous optimisation. The result implies computational complexities

when we use the point exchange approach.

When we use the coordinate exchange approach, the computation is quicker and the

elapsed time is 64 minutes. The local D-criterion value of Xopt (see Table 3.6b) is

−113.5601. On average, the criterion value of the 11 distinct X2nd is calculated to

be −113.5777. Compared with the previous results under the point exchange, the im-

provement is slight. The mean number of iterative updates is 28.8182, which also sug-

gests difficulties to maximise the criterion function. Under the current exchanging rule

max(di) > 1.00000001, the maximum number of iterative updates (i.e. 30) has been hit 8

times out of the 11 tries in the continuous optimisation. Nevertheless, the improvement
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Table 3.6: 30-Run Local D-Optimal Design for Model (3.13): Interim Solution
after the Continuous Optimisation Part (2nd Stage) of the Hybrid Method Using

(a) Point Exchange (b) Coordinate Exchange

xE xH xT S xE xH xT S
-0.7546 0.0915 1 3 -0.7814 0.1461 1 3
-0.6794 1 1 3 -0.6705 1 1 3
-0.6792 1 1 3 -0.6704 1 1 3
-0.1285 -0.0337 -0.2440 3 -0.1404 -0.0385 -0.2640 3
-0.1282 -0.0346 -0.2432 3 -0.1394 -0.0415 -0.2623 3
-0.0374 1 -0.0686 3 -0.0536 -0.6401 1 3
-0.0230 -0.6674 1 3 -0.0536 -0.6401 1 3
-0.0226 -0.6676 1 3 -0.0290 1 -0.0543 3
0.2621 1 0.2824 3 0.2793 1 0.2982 3
0.3768 1 1 3 0.3883 1 1 3
0.3768 1 1 3 0.3884 1 1 3
0.4637 0.2582 1 3 0.4591 0.2221 1 3
1 -1 1 3 1 -1 1 3
1 -1 1 3 1 -1 1 3
1 -0.6107 -0.0323 3 1 -1 1 3
1 -0.6107 -0.0322 3 1 -0.5922 -0.0554 3
1 0.1142 -1 3 1 -0.5920 -0.0555 3
1 0.1717 1 3 1 0.1465 -1 3
1 0.1718 1 3 1 0.2077 1 3
1 0.2507 0.4691 3 1 0.2078 1 3
1 0.4248 1 0.2853 1 0.2092 0.4630 3
1 1 -0.9293 3 1 0.3855 1 0.2839
1 1 -0.9291 3 1 1 -0.9209 3
1 1 0.3704 3 1 1 -0.9208 3
1 1 0.3704 3 1 1 0.3830 3
1 1 1 0.2606 1 1 0.3831 3
1 1 1 0.2606 1 1 1 0.2667
1 1 1 3 1 1 1 0.2667
1 1 1 3 1 1 1 3
1 1 1 3 1 1 1 3

is expected to be small in the late iterative updates, so 20 or fewer iterative updates

should be sufficient in this example.

On the basis of Table 3.6b, we continue the hybrid method to finish the last stage. The

eventual solution is the X∗opt shown in Table 3.7, the local D-criterion value of which

equals −113.5603. As we can see, there are n∗ = 18 support points in X∗opt, under the

condition that we wish to estimate the 11 unknown parameters in (3.13). Most of the

support points have one or two replicates, so it is hard to find their coordinate levels

under the criterion.

Although the coordinate exchange approach seems quite useful, it is not flawless. While

its unidimensional optimisation is quicker and more accurate at each step of the iterative

update, it takes more updates to achieve a local maximum of the local D-criterion

function. The impact of updating a single coordinate is quite trivial when there are 120

coordinates in total in each X. Compared with the previous demonstrations in Section
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Table 3.7: 30-Run Local D-Optimal Design for Model (3.13) with Hybrid
Method

xE xH xT S xE xH xT S
-0.78 0.14 1 3 1 -0.59 -0.06 3
-0.67 1 1 3 1 -0.59 -0.06 3
-0.67 1 1 3 1 0.15 -1 3
-0.14 -0.04 -0.26 3 1 0.21 0.46 3
-0.14 -0.04 -0.26 3 1 0.21 1 3
-0.05 -0.64 1 3 1 0.21 1 3
-0.05 -0.64 1 3 1 0.39 1 0.28
-0.03 1 -0.06 3 1 1 -0.92 3
0.28 1 0.3 3 1 1 -0.92 3
0.39 1 1 3 1 1 0.38 3
0.39 1 1 3 1 1 0.38 3
0.46 0.22 1 3 1 1 1 0.27
1 -1 1 3 1 1 1 0.27
1 -1 1 3 1 1 1 3
1 -1 1 3 1 1 1 3

3.4, the search of Xopt or X∗opt is more dependent on the iterative updates. It can take

quite a while to make the solution stable.

3.5.3 Modified Adjustment Algorithm

We consider the solution in Table 3.7 to be local D-efficient (if not D-optimal). With

some more adjustments on the 120 coordinates (or the 18 support points), the solution

can sometimes be improved even further. This shall be examined as we aim to find

the X that maximises the criterion function. Let us consider a modified version of the

adjustment algorithm in Donev and Atkinson (1988), which we adapt to work with the

solution of the hybrid exchange algorithm, for instance. In short, it is more efficient and

enables us to calibrate and adjust the level of each coordinate in Table 3.7. Although

the required steps of our modified adjustment algorithm below are different to those of

Donev and Atkinson (1988) and of the coordinate adjustments in the third stage of the

hybrid method, the overall intention is similar:

The Modified Adjustment Algorithm After the Previous Exchange Algorithm

4.1 For k = 1, 2, . . . , v, determine the closest distance dk for the kth factor (or con-

trolled variable). While the column order of the v factors is fixed, sort the previous

solution X = X∗opt in ascending row order. The X includes n∗ unique runs, each

of which correspond to a certain number of replicates. Calculate the initial local

D-criterion value φD for the X.

4.2 Reset k = 1 and flag Υ = 0.

4.3 Let i = 1 and i∗ = 1 be the starting values.
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4.4 Pick out the i∗th unique run of X, which corresponds to ni∗ replicates. The aim

is to find the best candidate as a substitute for the kth coordinate of the selected

unique run. It should then affect the relevant coordinates in the ni∗ replicates.

4.5 Create a subset of candidate coordinates Ω, for instance, on the basis of the closest

distance, a defined space [0.95Xik, 1.05Xik] (when the current coordinate value Xik

is nonnegative; the limits of this space can be changed to suit different examples),

and the variable space X . With the subset, do an optimisation for this unique run

and denote Xnew as the best candidate that maximises φD. If Xik 6= Xnew, execute

the coordinate substitution for each replicate and set Υ = 1. Let i = i+ ni∗ .

4.6 Unless i = n+ 1, let i∗ = i∗ + 1 and return to step 4.4 .

4.7 Unless k = v, let k = k + 1 and return to step 4.3.

4.8 Unless Υ = 0, return to step 4.2. Otherwise, save the current X as the final

solution X∗∗opt, which is considered to be optimal under the local D-criterion.

The premise of the modified adjustment algorithm is that the replication of unique

runs in X∗opt is optimal. Therefore, the numbers of replicates are fixed and will not be

reallocated in the iteration above. In our first demonstration, the solution of the hybrid

method X∗opt in Table 3.7 is input into the modified adjustment algorithm. As a result,

there are no coordinate adjustments to make to maximise the local D-criterion function.

That is, X∗∗opt = X∗opt. The result is impressive as the solution of the hybrid method is

verified to be optimal.

Though there is no contribution to the final solution in this example, the modified

adjustment algorithm can be a useful tool when X∗opt is a bit less efficient than the

optimal design. When we do fewer tries (or fewer iterative updates under a strict

exchanging rule) in the continuous optimisation, the modified adjustment algorithm

builds on and improves the previous solution and its criterion value. It will also be

implemented in the next section, when our demonstrations demand even more intensive

computation.

3.6 Local L-Optimal Design of Experiments

3.6.1 Numerical Results under the Local Weighted A-Criterion

Under the local D-criterion, the model parameters in (3.13) are treated with equal impor-

tance in the nonlinear least squares estimation. In this case, we allocate the experimental

resources to minimise the Generalised Variance of the parameter estimators. However,

the importance of each parameter can be adapted to fit different applications. Within
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the complex hybrid nonlinear model (3.13), for example, we replace the maximum ini-

tial rate νmax of Michaelis-Menten kinetics with an empirical exponential function. As a

result, the hybrid model function exhibits considerable uncertainties since it defines 11

unknown parameters in total.

Meanwhile, the Michaelis-Menten equation is nonlinear in terms of the parameter k > 0,

which is the mechanistic component of the model. To some extent, we can sometimes

presume that the precise estimation of k is more important than that of each parameter

in the empirical exponential function. The rationale can be as follows: the estimator

of k determines the nonlinearities of the fitted model (3.13) and thus influences the

overall empirical approximation of the response surface; besides, the standard error

of the estimator k̂ delimits its confidence interval, which is in close relation to the

interpretation of the kinetics mechanism; a small standard error can also reduce chances

that the confidence interval contains the zero point. As to the 10 empirical terms in

the numerator, while some of them (e.g. higher-order terms) are perhaps insignificant in

the fitted model, the coefficients of some other terms can also be less important in the

estimation. M-M kinetics should be followed such that a reliable estimation of k with a

small standard error is desirable. In these circumstances, the local D-criterion does not

suit all our requirements.

Under the current local D-criterion, we assume the solution in Table 3.7 to be optimal.

The prior value of k is equal to 0.3, which is a small constant relative to the limits of the

substrate concentration level in [0.15, 3]. In most of the n = 30 experimental runs, the

substrate concentration levels are fixed at the maximum at 3 mM. The rest of substrate

concentration levels seem to be dependent on the parameter prior k0 = 0.3 more than

the other priors. While the estimation of each empirical parameter is as important as

that of k, the value of k0 is not very important under the local D-criterion. As such, it

is no surprise that the maximum level of the substrate concentration is so frequent in

Table 3.7 (it appears 27 times in total).

Commonly, the D-criterion is fair with respect to nonlinear regression and least squares

estimation of the parameters θ. The A-criterion, on the other hand, aims to minimise

the trace of the inverse of the information matrix of a specific X. This is equivalent to

minimising the sum of variances of the NLS estimator θ̂. The local A-criterion function

can be written as φA = Tr((FTF)−1) where Tr represents “trace”. In the comparison

of different X, the relative efficiencies can be calculated as the direct ratios of the

relevant criterion values φA. In spite of its extensive use in practice, the weakness is

that the unweighted A-criterion will dismiss the diversities of the scales of the prior

values of different parameters. Thus the A-criterion is quite sensitive to the scales or

transformations of the model variables. This can be a serious issue for nonlinear models,

the parameter prior values of which are specified.
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To offset this weakness, the weighted A-criterion (WA-criterion) is proposed to do ap-

propriate weighting on the diagonal elements of (FTF)−1. A weight matrix W should be

incorporated into the criterion function. Further, W can be specified as a nondiagonal

matrix too, when one attempts to weight the covariances of model parameter estimators.

In this case, the local WA-criterion function φWA = Tr(W(FTF)−1) is also defined as

the local L-criterion function (L stands for “linear”). See Stallings and Morgan (2015)

for some discussion on weighted criteria. In the example in this section, we shall choose

different local WA-criterion functions to search for the optimal experimental designs for

the complex model (3.13).

According to the recommendation in Gilmour and Trinca (2012a) on the specification of

the WA-criterion function φWA, we can use the previous local D-optimal X∗opt (Table 3.7)

to calculate the expected variances of θ̂. The result is based on the Fisher information

matrix of the model, such that we can obtain the variance vector {V(k̂),V(â0), . . . ,V(â9)}
= {0.1635, 1.4559, 2.4060, 1.2026, 2.2051, 0.8256, 0.1989, 0.8214, 0.5811, 1.7221, 0.7630}×
100000σ2. The error variance σ2 is assumed to be constant, which can be estimated

after we obtain the data. As such, the reciprocals of these variances are{
1

V(k̂)
,

1

V(â0)
, . . . ,

1

V(â9)

}
=

{0.6116, 0.0687, 0.0416, 0.0832, 0.0453, 0.1211, 0.5027, 0.1217, 0.1721, 0.0581, 0.1311}
10000σ2

.

On the basis of Table 3.7, the expected variance of k̂ is V(k̂) = 16350σ2. Here σ2

must be a rather small value. Under a WA-criterion, the p × p diagonal matrix W

can be specified as we refer to the reciprocals of expected variances. If we assume

the 11 parameter estimators to be as important as each other, for instance, the above

{1/V(k̂), 1/V(â0), . . . , 1/V(â9)} can act as diagonal elements of W, where the unknown

error variance σ2 can be ignored.

In the first scenario, for instance, the local WA-criterion is to minimise the defined

function φWA,1, the matrix W of which is specified. In this scenario, we allocate three

times the normal weight to the estimator k̂, which is treated as most important in the

fitted model. In Table 3.8, we show the unique weight matrix W and calculate its

nonzero elements W11,W22, . . . ,W11 11.

While our recommendation is the quicker coordinate exchange approach, the evaluation

of the inverse matrix (FTF)−1 is difficult in each step of the iterative update. To

facilitate the computation involved to invert the 11 × 11 information matrix, Fedorov

(1972) derived an updating function for the unweighted A-criterion. In spite of that,

this criterion requires more computation than the updating function for the D-criterion

(see Section 2.2). As we also take W into account in the hybrid exchange algorithm, it

is viable to calculate and update the local WA-criterion function φWA.
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Table 3.8: Four Unique Weight Matrices for the Respective WA-Criterion Func-
tions

Element Indicator φWA,1 φWA,2 φWA,3 φWA,4

10−4W11 10−4/V(k̂) 1.8347 0.6116 6.1156 1.8347
10−4W22 10−4/V(â0) 0.0687 0.0687 0.0687 0.0687
10−4W33 10−4/V(â1) 0.0416 0.0416 0.0416 0.0416
10−4W44 10−4/V(â2) 0.0832 0.0832 0.0832 0.0832
10−4W55 10−4/V(â3) 0.0453 0.0453 0.0453 0.0453
10−4W66 10−4/V(â4) 0.1211 0.1211 0.1211 0.0606
10−4W77 10−4/V(â5) 0.5027 0.5027 0.5027 0.2514
10−4W88 10−4/V(â6) 0.1217 0.1217 0.1217 0.0609
10−4W99 10−4/V(â7) 0.1721 0.1721 0.1721 0.0574
10−4W10 10 10−4/V(â8) 0.0581 0.0581 0.0581 0.0194
10−4W11 11 10−4/V(â9) 0.1311 0.1311 0.1311 0.0437

A problem is that the inverse of the information matrix can be ill-conditioned sometimes

and thus the calculated local WA-criterion value will take an extreme value. Moreover,

it affects the application of the updating function since inaccurate results can be found

in that case. To fix this problem, when the condition number of the inverse matrix is

high for an initial random X, we should not attempt to add a small constant to each

diagonal element of the matrix. It does not work well in some situations. Instead, it

is more reliable to do diagonal preconditioning of the information matrix. In this case,

although the information matrix is close to singular, at least a numeric answer will be

found as the criterion value. As such, the computation and the first iterative update

will not be terminated due to the ill-conditioned matrix. After we complete the first

iterative update, this problem will disappear as the information matrix will no longer

be singular. Besides, an alternative measure is to resample the initial random matrix X

until we can obtain a nonsingular information matrix. We can also increase the total

number of candidate runs in the discrete optimisation. This reduces our chances to

obtain a high condition number for each initial random X, the number of support points

of which tends to increase.

When the relative efficiencies are calculated, we evaluate the ratio between the new and

old values of the criterion function φWA. In the iterative update, this requires us to set

a rule to determine whether the specific coordinate exchange should be executed or not.

In our demonstration, we use the exchanging rule min(di) < 0.9999 or the equivalent

max(
1

di
) >

1

0.9999

for the initial discrete optimisation of the hybrid method, for instance. It seems much

looser than the rule max(di) > 1.05 under the local D-criterion. As to the continuous

optimisation part of the hybrid method, the rule min(di) < 0.99999999 will be suitable.

The rule for the local WA-criterion does not have to depend on the number of model
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parameters, since the criterion function is the weighted sum of the p diagonal elements

from the inverse of the information matrix.

To construct a small discrete candidate set Ω, we choose four identical coordinate lev-

els for each of the three variables involved in the exponential function of the model.

As the number of coordinates is larger in X, we have increased the number of candi-

date points for an efficient discrete optimisation. The four conventional levels used are

{−1,−
√

1/5,
√

1/5, 1}, which are the coordinate levels for the continuous D-optimal ex-

perimental design for the 3rd-order linear model in one independent variable x ∈ [−1, 1].

More candidate coordinates can be specified, but this attempt does not always improve

the solution of the hybrid method. Meanwhile, as we can infer from Table 3.7, no more

than two candidate coordinates are required for the substrate concentration S. A sim-

ple choice is to take the upper and lower bounds of the variable space S ∈ [0.15, 3],

so the candidate subset of substrate concentration levels is {0.15, 3}. As we combine

the four subsets of candidate coordinates for respective controlled variables, Ω contains

43 × 2 = 128 candidate points in total. In addition, the maximum number of iterative

updates is set to 30 in the continuous optimisation. The computation and update of

matrices X should be halted after the 30th iterative update. This is a measure to speed

up the minimisation of the criterion function.

The number of random tries is τ = 30. After the initial discrete optimisation under, for

example, the point exchange approach, we take the most efficient τ∗ = 8 intermediate

solutions X1st. Until the finish of the continuous optimisation part of the hybrid method,

289 minutes have elapsed. Although we use the coordinate exchange approach, it takes

longer under the local WA-criterion than under the D-criterion. φWA,1 is the criterion

function in this case, as we use the weight matrix in Table 3.8. The criterion values of

X2nd are 11.3682, 11.4040, 11.4180, 11.4180, 11.4196, 11.4276, 11.4276, 11.4495. In seven

of the cases in the continuous optimisation, the number of iterative updates approaches

30, so it is hard to find a stable minimum of the local WA-criterion function φWA,1 in

this demonstration. After we complete the hybrid exchange algorithm, the solution X∗opt

is found in Table 3.9, of which φWA,1 = 11.3686.

We implement the modified adjustment algorithm and the local WA-optimal solution

X∗∗opt is shown in Table 3.10, the new criterion value of which equals 11.3681. An

improved local minimum of the criterion function φWA,1 is identified. In comparison,

some appreciable updates are made on the 9th and 10th experimental runs in Table

3.9. As a result, there are n∗ = 21 support points under this local WA-criterion. It is

difficult to determine the optimal coordinate levels of these points. The criterion function

to minimise seems quite insensitive or robust to minor changes of some coordinates of the

three transformed variables. In the meantime, it is far easier to determine the substrate

concentration levels of which 25 are set to the maximum. Due to the complexities of

the model assumed, sometimes there is no assurance that the final solution X∗∗opt is local

WA-optimal, even if the modified adjustment algorithm works well.
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Table 3.9: When φWA,1 Is the Criterion Function: 30-Run Local WA-Optimal
Design for Model (3.13) by Hybrid Coordinate Exchange Algorithm

xE xH xT S xE xH xT S
-0.85 1 1 3 1 -1 1 3
-0.85 1 1 3 1 -0.81 -0.19 3
-0.45 -0.63 1 3 1 -0.81 -0.19 3
-0.3 0.28 -0.49 3 1 -0.26 -1 3
-0.3 0.28 -0.49 3 1 0.3 1 3
-0.3 0.28 -0.49 3 1 0.32 0.55 3
-0.23 1 -0.17 3 1 0.44 1 0.23
-0.22 -0.82 1 3 1 0.44 1 0.23
-0.07 -0.52 -0.03 3 1 1 -1 3
0.06 -0.67 0.14 3 1 1 -1 3
0.45 1 1 3 1 1 0.4 3
0.47 1 0.46 3 1 1 1 0.21
0.55 0.31 1 3 1 1 1 0.21
0.62 1 1 0.27 1 1 1 3
1 -1 1 3 1 1 1 3

Table 3.10: When φWA,1 Is the Criterion Function: 30-Run Local WA-Optimal
Design for Model (3.13) after the Modified Adjustment Algorithm

xE xH xT S xE xH xT S
-0.85 1 1 3 1 -1 1 3
-0.85 1 1 3 1 -0.81 -0.19 3
-0.45 -0.64 1 3 1 -0.81 -0.19 3
-0.3 0.27 -0.48 3 1 -0.27 -1 3
-0.3 0.27 -0.48 3 1 0.3 1 3
-0.3 0.27 -0.48 3 1 0.32 0.54 3
-0.23 -0.81 1 3 1 0.43 1 0.23
-0.22 1 -0.18 3 1 0.43 1 0.23
-0.11 -0.47 -0.08 3 1 1 -1 3
0.1 -0.71 0.19 3 1 1 -1 3
0.45 1 1 3 1 1 0.4 3
0.47 1 0.46 3 1 1 1 0.21
0.55 0.31 1 3 1 1 1 0.21
0.63 1 1 0.27 1 1 1 3
1 -1 1 3 1 1 1 3

In the local WA-criterion function, the numeric matrix W can be updated as appropriate.

This makes the allocation of experimental units more flexible as we can tailor the specific

requirements in the NLS estimation of model parameters. In Table 3.8, we consider a

similar criterion function φWA,2 which has assigned a normal weight to the estimator k̂.

In model (3.13) to be fitted, the 11 parameter estimators in θ̂ are as important as each

other. Under this criterion, the solution of the modified adjustment algorithm X∗∗opt is

illustrated in Table 3.11, which is close to local WA-optimal. It looks different from the

solution above in Table 3.10. In contrast, in the scenario when we opt for 10 times the

normal weight on k̂, the criterion function is φWA,3 also in Table 3.8. It leads to the

final solution in Table 3.12. Again, it looks different from the results above, in terms of

the adopted support points and the coordinate levels.



86 Chapter 3 Hybrid Nonlinear Models: Applications to Michaelis-Menten Kinetics

Table 3.11: When φWA,2 Is the Criterion Function: 30-Run Local WA-Optimal
Design for Model (3.13) after the Modified Adjustment Algorithm

xE xH xT S xE xH xT S
-0.85 -0.15 1 3 0.74 1 1 0.25
-0.85 1 1 3 1 -1 1 3
-0.85 1 1 3 1 -1 1 3
-0.31 0.09 -0.44 3 1 -0.84 -0.17 3
-0.31 0.09 -0.44 3 1 -0.84 -0.17 3
-0.23 1 -0.2 3 1 -0.21 -1 3
-0.23 1 -0.2 3 1 0.26 1 3
-0.22 0.11 -0.62 3 1 0.31 0.54 3
-0.17 -0.9 1 3 1 0.4 1 0.26
-0.17 -0.9 1 3 1 1 -1 3
0.03 -0.6 0.04 3 1 1 -1 3
0.03 -0.6 0.04 3 1 1 0.4 3
0.41 1 1 3 1 1 1 0.23
0.53 1 0.51 3 1 1 1 3
0.53 0.3 1 3 1 1 1 3

Table 3.12: When φWA,3 Is the Criterion Function: 30-Run Local WA-Optimal
Design for Model (3.13) after the Modified Adjustment Algorithm

xE xH xT S xE xH xT S
-0.85 1 1 3 1 -0.81 -0.13 3
-0.85 1 1 3 1 -0.43 -0.88 3
-0.51 -0.53 1 3 1 0.37 0.52 3
-0.26 -0.11 -0.35 3 1 0.39 1 3
-0.26 -0.11 -0.35 3 1 0.5 1 0.2
-0.26 -0.11 -0.35 3 1 0.5 1 0.2
-0.16 -0.88 1 3 1 0.5 1 0.2
-0.12 1 -0.15 3 1 1 -1 3
-0.12 1 -0.15 3 1 1 -1 3
0.36 -0.8 0.09 3 1 1 0.44 3
0.47 1 1 3 1 1 1 0.19
0.55 0.38 1 3 1 1 1 0.19
0.63 1 1 0.24 1 1 1 0.19
0.74 1 0.72 0.29 1 1 1 3
1 -1 1 3 1 1 1 3

Finally, we construct the local WA-criterion function φWA,4. This allocates three times

the normal weight on the estimator k̂, half the normal weight on coefficient estimators

of the empirical quadratic terms (i.e. â4, â5, â6), and one third the normal weight on

coefficient estimators of the empirical interaction terms (i.e. â7, â8, â9). This criterion

function is useful when the current model we assume for the experiment is tentative.

As we alter the weights in this way, the new solution in Table 3.13 can be compared

with the above three. Now that we have studied five different criterion functions (four

local WA and also local D) for the same complex model (3.13), it is reasonable to

examine the efficiencies or robustness of the solutions in Tables 3.7, 3.10-3.13 across the

different scenarios. Table 3.14 is compiled to summarise these results and allow mutual

comparisons.
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Table 3.13: When φWA,4 Is the Criterion Function: 30-Run Local WA-Optimal
Design for Model (3.13) after the Modified Adjustment Algorithm

xE xH xT S xE xH xT S
-0.97 0.45 1 3 1 -1 1 3
-0.83 1 1 3 1 -0.84 -0.1 3
-0.55 -0.53 1 3 1 -0.51 -0.78 3
-0.33 0.06 -0.39 3 1 0.35 1 3
-0.33 0.06 -0.39 3 1 0.36 0.5 3
-0.33 0.06 -0.39 3 1 0.58 1 0.2
-0.12 1 0 3 1 0.58 1 0.2
-0.12 1 0 3 1 0.58 1 0.2
0 -1 1 3 1 1 -1 3
0.13 -0.65 0.18 3 1 1 -1 3
0.13 -0.65 0.18 3 1 1 0.41 3
0.17 -0.1 -1 3 1 1 1 0.2
0.42 1 1 3 1 1 1 0.2
0.53 0.34 1 3 1 1 1 3
0.61 1 1 0.26 1 1 1 3

Table 3.14: Relative Efficiencies (%) of The Experimental Designs in Tables
3.7, 3.10-3.13 with Respect to the Optimal Design (Which Corresponds to the
100% Cases in the Diagonal) in the Assumed Scenario. Each Column Shows
the Calculated Efficiencies under a Specific Scenario.

φD φWA,1 φWA,2 φWA,3 φWA,4

Table 3.7 100 87.45 88.58 76.26 80.11
Table 3.10 91.19 100 97.02 95.29 98.82
Table 3.11 91.28 96.42 100 80.48 91.18
Table 3.12 84.02 94.39 87.57 100 97.46
Table 3.13 84.94 96.74 91.69 97.26 100

Here are some of our comments and findings after the tedious computation in optimal

design of experiments. In the scenario under the WA-criterion function φWA,2 which

treats k̂ to be as important as the remaining parameters, the local D-optimal solution

in Table 3.7 is found to be 88.58% efficient, relative to the baseline in Table 3.11.

This indicates the discrepancies between the two well-known optimality criteria in the

minimisation of the variances and covariances of the NLS estimator θ̂. If we do not

intend to control and reduce the covariance estimates, the WA-criterion will meet the

experimental purpose best since it focuses on the individual variances rather than the

Generalised Variance of θ̂.

In the last scenario we assume, the criterion value φWA,4 of Table 3.10 is equal to 7.7011,

which entails an important deduction. This design is 98.82% efficient with respect to

the WA-optimal design in Table 3.13, which is close to reaching 100%. While these two

are rather different from each other in the coordinate levels, their relative efficiencies are

similar in the comparison. Hence, it seems to be hard to determine the coordinate levels

of an X that can minimise the local WA-criterion function. The result also implies that
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the parameter estimation of the six second-order terms has just minor impact on each

WA-criterion we assume.

In the local WA-criterion function, we can reduce the relative importance on parameter

estimators of the second-order terms in the model. This is a bit similar to increasing

the weight on the estimator k̂. Therefore, on the one hand, the two local WA-optimal

solutions in Tables 3.12-3.13 are alike in terms of the substrate concentration levels and

the calculated relative efficiencies. On the other hand, both designs in Table 3.7 and

Table 3.11 appear to be less efficient in the two scenarios when we choose either the

criterion function φWA,3 or φWA,4.

3.6.2 General Applications of the Local L-Criterion

When we choose the local D-criterion as in Section 3.5, sometimes we can obtain more

distinct and efficient intermediate solutions X1st from the initial discrete optimisation.

These matrices are distinct but can be quite similar to each other. If we opt for a

WA-criterion or L-criterion, in our demonstrations, there are fewer efficient and more

discrepant X1st. These intermediate solutions are found at the local minima of the

criterion function. To some extent, this is because of the much looser exchanging rule

min(di) < 0.9999 we adopt for the discrete optimisation. When this rule is modified,

the solutions of the discrete optimisation would be affected too and that can lead to

different results of the hybrid method.

We should choose appropriate rules and a suitable discrete candidate set. When an

improper rule is set for discrete optimisations over a bad candidate set, it is then hard

to minimise the criterion function in the subsequent continuous optimisation part. The

situation deteriorates when the nonlinear multifactor model is as complex as in this

example. Besides, in real practice, we have to do sufficient random tries to increase the

chances to find an efficient (if not optimal) design in the end. The increasing computa-

tional time is one of our concerns to address, but most of the time, it is manageable.

When the D-criterion is chosen in favour of each WA-criterion we define in Table 3.8,

the final solution (Table 3.7) tends to be more stable. This means that there are more

coordinate levels fixed at the respective upper limits in the variable space. In contrast,

as we see in Table 3.10, for instance, the finalised coordinate levels are not quite similar

to the coordinates defined in the 43 × 2 discrete candidate set. As such, it can take

more iterative updates to maximise the local WA-criterion function and search for X2nd

in the continuous optimisation. The hybrid exchange algorithm relies on the discrete

candidate set, so it is less efficient in these local WA-criterion cases.

The hybrid model is complex, so v-dimensional continuous optimisations are difficult un-

der the point exchange approach. In this situation, there are plenty of ways to adapt the

hybrid method. In the above demonstrations, we prefer the hybrid coordinate exchange
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algorithm in order to reduce the computational cost in each iterative update. If we wish

to increase the dimension of optimisation, perhaps it is useful to compromise between

the two approaches when the number of controlled variables is large in the experiment.

We can think about the 2-dimensional or 3-dimensional optimisation, so as to update

a fixed small number of coordinates at a time in the iterative update. As such, we can

somewhat compensate the drawbacks of the coordinate exchange approach.

Even if we stick to the coordinate exchange approach for continuous optimisation, at

the same time, it will be beneficial to update the other coordinate values in the same

row of X. This can be done with a swift discrete optimisation over a small subset of

candidate coordinates. It is a combination of the univariate continuous optimisation

and the multivariate discrete optimisation, in order to reduce the mutual dependence

between the coordinate updates.

If there are a lot of experimental runs (e.g.n > 30), a refined measure is to define fewer

runs n− first. With the hybrid method up to the end of the continuous optimisation,

we can find several X2nd, each of which can be treated as a discrete candidate set of

n− runs. Now the number of runs can be reset to the actual size n in the computation.

We can either do the discrete optimisation over each candidate set (if n− is near n), or

we can use the candidate sets to rerun the hybrid exchange algorithm from its discrete

optimisation part (in the first stage). This ensures that we use a suitable candidate

set to make the solution of the hybrid method reliable. Even if the total number of

experimental runs is small, this measure is useful as well whenever we cannot determine

the suitable candidate runs (or coordinates).

For continuous optimisation in the hybrid method, we use multiple vectors of initial

values in each step of the iterative update. These vectors include the default current

experimental run and the fixed points in the set {−0.67, 0, 0.67}3 × {0.5, 1.5, 2.5} ∈ X .

To redefine this 34 set, we can also select the points on the boundaries of the variable

space X to replace some of those inside X . An alternative choice is to fill the bounded

variable space with the points from, for instance, a Latin hypercube or a sphere packing.

These points can also be suitable initial vectors for the continuous optimisation. Yet

another choice is to use the points we find from the previous discrete optimisation over

a small candidate set. This measure can sometimes reduce the number of initial vectors

to be included.

3.7 A Simple Compound Criterion

We can fit more than one candidate model to the same experimental data. Then the best

model can be found as the approximation of the response surface. To improve the model

selection and the parameter estimation, sometimes it is useful to construct a simple

compound criterion. In these circumstances, we combine different criterion functions
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and also take different candidate models into account in the overall compound criterion

function. In the example, our purpose is to find the 30-run local D-optimal X that is

robust to a minor modification of the current statistical model. From the perspective

of statistical inference, the comparison between the candidate models (e.g. with and

without the 3rd-order empirical term) should be well clarified before we operate the

experiment and select the most suitable model. On the basis of the hybrid nonlinear

model (3.2), for instance, we can add the cubic term x3. In this case, the model becomes

νi =
exp(a0 + a1xi + a2xi

2 + a3xi
3)Si

k + Si
+ εi, (3.14)

where a3 is the unknown coefficient of the cubic term and the exponential transformation

of the linear function is substituted into the Michaelis-Menten equation. We expect the

value of a3 to be near zero and the P-value of its estimate to be near the significance

level 0.05. As such, it is possible that we should drop the cubic term from the tentative

model above, which could have minor influence on the response variation. This means

that there is a model selection question on whether we shall delete the cubic term or

not, which could depend on the P-value of the a3 estimate. After the new experiment, it

will be sensible to test if the more complex candidate model (3.14) is better than (3.2).

Although the old data (if it is available) can also be used to detect the best model,

sometimes the conclusion is not reliable or informative. As a result, the X that is local

optimal for (3.2) might be inefficient or irregular for (3.14).

As we learn from Gilmour and Trinca (2012b), the (DP)s-criterion can be applied to

minimise the 100(1 − α)% confidence region of the specified estimators, which is the

same as maximising the power of the F-test. The difference is that we consider the

local D-criterion rather than the local DP-criterion for the precise parameter estimation.

Besides, there is just one additional parameter in (3.14), of which we wish to minimise the

variance. We therefore consider a local Ds-criterion function φDS , which is a component

of the compound criterion function. The related aim is to maximise the statistical power

of a two-tailed t-test of the null hypothesis a3 = 0, since the maximal power of the test

can provide support to our probable acceptance or rejection of the hypothesis.

Meanwhile, no matter what the result is in the t-test, we should consider the parameter

estimation in both candidate models. In a composite D-criterion function, suitable

weights can be introduced to link the two local D-criterion functions for the respective

models. In the example, we fit (3.14) to the kinetic data in Martins et al. (1999). The

parameter prior θ0 = {k0, a00, a01, a02, a03} can therefore be found for evaluation of the

determinant of the information matrix |M1|. At the same time, since a3 is assumed

to be near zero, we use the identical θ0 for the alternative model (3.2). It simplifies

our later calculation of the compound criterion function φCC. In contrast to |M1|, for

the simpler candidate model, denote |M2| as the determinant of the relevant 4 × 4

information matrix.
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There are some benefits from our considerations above. If the cubic term is found to

be significant in (3.14), then we can reject the candidate model (3.2). As such, the

value of |M2| makes no sense for the specific X. While even if the cubic term should

be removed from (3.14), the incurred bias is small in the evaluation of |M2| for (3.2).

In both cases, the parameter prior is reliable. As the constants c1, c2, c3 can denote the

weights involved in the model selection in our example, the compound criterion function

is defined as

φCC = c1φD1 + c2φDS + c3φD2 = c1log|M1|+ c2log
|M1|
|M2|

+ c3log|M2|

= (c1 + c2)log|M1|+ (c3 − c2)log|M2|.

When the weights are c1 = c3 = 0, we concentrate on the statistical t-test of the a3

estimator. When c2 = c3 = 0 or c1 = c2 = 0, we then concentrate on one of the two

candidate models and the criterion function will be φD1 or φD2. Commonly, unless there

is some further information for the mechanism studies, it is safe to assume equal weights;

thus we choose c1 = c2 = c3 in the example. However, the term |M2| will be knocked

out of the compound criterion function so that it is the same as to set c2 = c3 = 0. The

above criterion is then simplified to the local D-criterion for the more complex candidate

model (3.14). We can understand the simplification as follows. When we adopt the

criterion function φCC with three equal weights, the aim is to minimise the Generalised

Variance (i.e. a scalar function of variances and covariances) of the estimators of the five

parameters in (3.14), where the precise estimation of a3 is as important as the rest.

Thanks to the close-to-linear behaviours of both candidate models, we can find a sim-

plified compound criterion function. The result of the univariate t-test can determine

the candidate model to fit to the experimental data. Let us look at the difference be-

tween the constants c2 and c3. In general, c2 � c3 does not make sense. If that is the

case, the criterion considers a3 to be even less important than the individual unknown

parameters in (3.2). This is often an unwanted consideration. Unless the experimen-

tal resources are rich (i.e. there are lots of runs), the criterion will be unhelpful for the

statistical inference with the t-test. In contrast, except for scenarios when c2 → c3, a

more reasonable consideration is to choose a constant c2 > c3 and thus to weight the

Ds-criterion function component more. This allows us to better discriminate between

the two candidate models.

However, if the weight is c2 � c3 instead of c2 = c3, it seems that we are looking

for clearer evidence to accept one of the models and that is the reason to improve the

statistical power of the t-test (when the confidence has been fixed at a certain level). As

a consequence, we can better discriminate between models, but less improvement can

be made in the parameter estimation of the fitted model. It is important to achieve a

plausible balance among multiple objectives (i.e. experimental purposes), the differences

between the three weights in the criterion function should not be over large.
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In our demonstration, we implement the hybrid exchange algorithm in the simplest case

when c1 = c2 = c3 and thus φCC ∝ φD1. In other words, the compound criterion aims

to maximise |M1|, the determinant of the information matrix for the candidate model

(3.14). As we fit (3.14) to the reference data, the cubic term seems to lack significance.

The NLS estimate is θ̃ = {0.3148,−6.4151, 0.8959,−0.2696,−0.0928} which is quite

similar to the estimate {0.3122,−6.4086, 0.8383,−0.2861} of the fitted model (3.2). As

expected, the prior value a03 = −0.0928 is relatively close to zero. After the new experi-

ment, we can do a hypothesis test for the cubic term. As such, one experimental purpose

is to discriminate between the two candidate models. Because of the cubic term in the

model, we have to define a different discrete candidate set. With 30 random tries, we

use the exchanging rule max(di) > 1.1 for optimisation over the discrete candidate set

Ω = {−1,−
√

0.2,
√

0.2, 1}× {0.15, 1, 2, 3}. Under the criterion function φD1, 28 distinct

X1st are found in the first stage of the hybrid method. As we finish the following contin-

uous optimisation, Table 3.15b shows the local D-optimal solution under the coordinate

exchange approach, the criterion value of which is φD1 = −56.3972. In contrast, under

the point exchange approach, the criterion value of the solution in Table 3.15a equals

−56.3987. With either solution selected for the rest of the computation and then the

modified adjustment algorithm, the final solution is

X∗∗opt =

{
(0.02, 3) (0.062, 3) (0.1, 3) (0.104, 0.3) (0.12, 0.27) (0.12, 3)

6 6 6 2 4 6

}
, (3.16)

the achieved maximal criterion value of which is φD1 = −56.3834. It is local D-optimal

for model (3.14) and also optimal under the simple compound criterion.

Table 3.15: 30-Run Local D-Optimal Design for Model (3.14): Interim Solution
after the Continuous Optimisation Part (2nd Stage) of the Hybrid Method Using

(a) Point Exchange (b) Coordinate Exchange

E S E S E S E S E S E S

0.02 3 0.0619 3 0.12 0.2812 0.02 3 0.0619 3 0.12 0.2744
0.02 3 0.0998 3 0.12 0.2812 0.02 3 0.0998 3 0.12 0.2744
0.02 3 0.0998 3 0.12 0.2812 0.02 3 0.0998 3 0.12 0.2744
0.02 3 0.0998 3 0.12 0.2812 0.02 3 0.0998 3 0.12 0.2744
0.02 3 0.0998 3 0.12 3 0.02 3 0.0998 3 0.12 3
0.0619 3 0.0998 3 0.12 3 0.0619 3 0.0998 3 0.12 3
0.0619 3 0.0998 3 0.12 3 0.0619 3 0.0998 3 0.12 3
0.0619 3 0.1041 0.2989 0.12 3 0.0619 3 0.1027 0.3149 0.12 3
0.0619 3 0.1041 0.2990 0.12 3 0.0619 3 0.1027 0.3149 0.12 3
0.0619 3 0.1041 0.2990 0.12 3 0.0619 3 0.12 0.2744 0.12 3

If we use the final solution in (3.16) for the new experiment and for the parameter

estimation in the other candidate model (3.2), it is exp(−43.3911/4)/exp(−43.0242/4) =

91.24% efficient with respect to the local D-optimal design in (3.10). While the cubic

term is included in model (3.14), Michaelis-Menten kinetics (i.e. the initial rate function

in terms of the substrate concentration) remains the same. There are n∗ = 6 unique

runs in (3.16) and most of the substrate concentration levels are also fixed at the defined
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maximum in X . In comparison to (3.10), there is one more degree of freedom for the

lack of fit of the total error. Thus experimenters are able to fit a bit more complex

candidate models to the dataset.

While the first three unique runs in (3.16) look different from the first two in (3.10), the

importance of the estimator k̂ is reduced under the new local D-criterion. As a result,

there are just four replicates at the support point (0.12, 0.27), which is in close relation

to the variance of k̂. This implies that when there is an overcomplicated empirical

function component in the model, the experimental resources will be undercut for the

estimation of each important parameter, of which the precision will be lower. Hence a

concise hybrid nonlinear model is desirable.

Given the small parameter prior a03 = −0.0928, no doubt (3.16) is quite robust to the two

candidate models. This is also the reason that we can consider the compound criterion

for both the parameter estimation and the t-test of the significance of the cubic term.

As the P-value of the test is expected to be near the threshold 0.05, it is even more

important to reduce the standard error of â3 in order to select the correct statistical

model. However, if we are unsure about the model function, it shall be useful to assume

the more complex one and find the model-oriented optimal design for that. After the

data collection in the new experiment, the insignificant terms can be deleted to establish

the best model.

Except for the D-criterion and the compound criterion, the local L-criterion is an al-

ternative to make the adopted optimal designs robust to multiple candidate models. It

can let us assign more weight to the important estimators and less weight to the less

important ones (e.g. the higher-order terms in the exponential function of (3.14)). If

a suitable W can be found, compared with different compound criterion functions we

can assume (if c2 6= c3 in this example), sometimes it is simpler to compute the local

L-criterion function. However, all of these criterion functions will require the most com-

plex candidate model (e.g. (3.14)) to contain all the others (e.g. (3.2)). This restricts the

scope of model selection.

As we show in this example, the Ds criterion works well when the candidate models

are nested. To discriminate between nonnested rival models (when the true model is

known), a more formal approach is to use the T-criterion (Atkinson and Fedorov, 1975)

so that there is no restriction as above. If the true model is unknown, the best rival

model must be decided after the new experiment such that a compound T-criterion is the

sensible choice (Atkinson, 2008). To demonstrate that, Atkinson and Bogacka (2002)

applied the compound T-criterion in optimal design of experiments for the selection

between two kinetic models for inhibition (i.e. competitive and noncompetitive ones).

With some Monte Carlo computation to evaluate the expectation of the compound

T-criterion function, the sequential experiments in Myung and Pitt (2009) aimed to

discriminate between several empirical models. Similar ideas can benefit widespread
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biological studies and the reader can see Kreutz and Timmer (2009) for an overview of

them.

In addition to discrimination of rival models, statistical inference is another area of inter-

est in the analysis of experimental data. In the example in this section, we show a simple

local Ds-criterion function for the t-test of one parameter estimate. Of course, various

inferences can also be done with the data available. See Gilmour and Trinca (2012b)

for some literature review and also the latest recommendations, where the statistical

inference is on the basis of the pure error estimator of the response variance.

3.8 A Nonlinear Model with a Categorical Variable

A series of experiments in Yamamoto (1958) unveiled the photodynamic action of dyes

in the inactivation of bacteriophages. As the biochemical reaction described proceeded,

the concentration of the specified substrate (or the dye) tended to decrease as the phage

strains lost some of their activation effects. Quantitative studies of such kinds of mech-

anisms are important. Experimental results can assist doctors in the relevant disease

therapies and the required medical treatments in this area.

Given several regularity assumptions, Yamamoto (1958) was able to use simple Michaelis-

Menten kinetics for interpretation of the inactivation mechanism. In order to use the

simple linear regression, all of their models were linearised to follow the Lineweaver-

Burk equation. In contrast, to find more reliable estimation of unknown parameters,

it is much better to fit the nonlinear M-M model instead with nonlinear least squares.

In our example, the M-M equation is considered as the mechanistic component of the

model to be assumed.

The overall experimentation had several important purposes (e.g. to learn the inhibition

effects when two different dyes were considered in the same reaction). Our focus is on

the first part of their work, which is on M-M kinetics and the photodynamic inactivation

of the coliphage T5 of the escherichia coli strain B. In this case, a controlled factor is the

pH level that we consider to be a continuous variable; the other factor is the dye species

that shall be treated as a categorical variable. It is neither essential nor economical to

collect all the data, so we pick out two effective dyes for the new experiment: methylene

blue and toluidine blue.

According to the reference experiment, there are in total 24 observations relevant to

the two dyes (five for the less important toluidine blue). Most of the data (i.e. observed

initial rates) are approximated from the first two figures in Yamamoto (1958), so some

of our computation is not 100% correct for this example. As we fit the model, the NLS

estimates are used as the realistic parameter prior to support the 24-run local D-optimal

design of the new experiment. In this case, the hybrid nonlinear model can be written
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as

νi =
exp(a0 + a1Di + a2xi + a3xiDi + a4xi

2 + a5xi
2Di)Si

k0 + k1Di + Si
+ εi, (3.17)

where x = (H − 7.4)/0.4 and the p = 8 parameters are k0, k1, a0, . . . , a5. Here, D =

{0, 1} is an indicator variable, the zero representing the methylene blue and the one

representing the toluidine blue, H ∈ [7, 8] denotes the hydrogen ion concentration or

the pH level, S denotes the substrate (or dye) concentration, and ν is the initial rate

(or velocity) of reaction. The variable space of the substrate concentration is set to

[0.02, 0.2]M (molar) to contain the levels 1/48 and 1/6, adopted levels in the reference

experiment. We also assume the error variance to be a constant V(εi) = σ2.

The indicator variable leads to four fixed effects in (3.17). Nevertheless, it is not recom-

mended to divide the total experiment into two separate ones and then fit two unrelated

models. In that case, the fitted models would be a bit different because of the errors, the

independent experimental runs, and also the covariances of parameter estimators. In

comparison, better results shall be found as we fit (3.17) to the 24-run dataset. However,

due to the existence of the covariances, it is difficult to extrapolate the true parameter

values of M-M kinetics as well as to make response predictions with the fitted model.

There is no mechanistic model available in the example, so we stick to (3.17) as the

alternative.

With the old dataset, we are unable to estimate a3 and a5. Hence the parameter prior

can be set to θ0 = {0.11281,−0.044306, 0.32276,−0.67747, 0.31409, 0,−0.10768, 0}. In

the current space of the substrate concentration, the result implies that the toluidine

blue is inferior to its rival all the time in terms of the initial rate maximisation. Our

hybrid point exchange algorithm can be implemented in this case. With random starts

from 30 tries, we find 18 distinct matrices X1st after the discrete optimisation over the

candidate set Ω = {0, 1}×{−1, 0, 1.5}×{1/48, 1/18, 1/6}. Note that the 2nd dimension

is for the transformed variable x and the 3rd is for the substrate concentration. Up

to this moment, the exchanging rule is max(di) > 1.1 as the local D-criterion tries to

maximise its relative improvement in each step of iterative updates.

In the subsequent continuous optimisation, the rule is set to max(di) > 1.00000001. In

each step of optimisation, there are also 18 extra initial points from a coarse set Ω =

{0, 1}×{−0.375, 0.25, 0.875}×{0.06, 0.1, 0.14} which covers the variable space (or design

region) X . In our demonstration, the continuous optimisation of each experimental run

is simultaneous under the Nelder-Mead method. However, a quicker approach can exist:

the alternative is to optimise the indicator variable of the point in one step and then

optimise the continuous variables in another step. Besides, the quasi-Newton method

can enable users to better define the indicator variables in the model and thus it allows

for some extra flexibility. These options are sensible when the computation is intensive.

On the other hand, the hybrid method is already quick enough in this example and the
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elapsed computational time up to the end of the continuous optimisation is 1217 seconds

in total and the interim solution we find is in Table 3.16.

Table 3.16: 24-Run Local D-Optimal Design for Model (3.17): Interim Solu-
tion after the Continuous Optimisation Part (2nd Stage) of Hybrid Fedorov
Exchange Algorithm

D H S D H S D H S D H S

0 7 0.2 0 7.6678 0.0588 1 7 0.2 1 7.6678 0.0455
0 7 0.2 0 8 0.0553 1 7 0.2 1 8 0.0426
0 7 0.2 0 8 0.0553 1 7 0.2 1 8 0.0426
0 7.5733 0.2 0 8 0.2 1 7.5733 0.2 1 8 0.2
0 7.5733 0.2 0 8 0.2 1 7.5734 0.2 1 8 0.2
0 7.5734 0.2 0 8 0.2 1 7.5734 0.2 1 8 0.2

All the 18 distinct matrices X1st can lead to about the same local D-criterion values of

X2nd. Their maximum is 11.3612, for the Xopt in Table 3.16. As a result, there are the

same number of runs for the two dye species. This is because the eight model parameter

estimators have equal importance under the local D-criterion. Before we finish the hybrid

method as well as the modified adjustment algorithm, the closest distance is determined

to be 0.1 for the pH level and 0.01 for the substrate concentration. As such, the final

solution is

X∗∗opt =


(0, 7, 0.2) (0, 7.6, 0.2) (0, 7.7, 0.06) (0, 8, 0.06) (0, 8, 0.2)

3 3 1 2 3

(1, 7, 0.2) (1, 7.6, 0.2) (1, 7.7, 0.05) (1, 8, 0.04) (1, 8, 0.2)

3 3 1 2 3

 , (3.18)

the local D-criterion value of which is 11.3361. The modified adjustment algorithm is not

quite essential in this demonstration as it does not make an improvement. Besides, as we

assume the two parameter prior a03 = a05 = 0, the coordinate levels of pH are identical

between the first and the third rows in (3.18). The numbers in the other two rows

represent the numbers of replicates of the respective unique runs in the experiment.

Most of the coordinates are located on the boundaries. As far as we are aware, the

discrete candidate levels of the substrate concentration (which come from the reference

experiment) are not suitable for the discrete optimisation of the hybrid method. We

can also set the point parameter prior as a03 = a02, a
0
5 = a04. This will not influence the

support points in the first row in (3.18). In this scenario,

X∗∗opt =


(0, 7, 0.2) (0, 7.6, 0.2) (0, 7.7, 0.06) (0, 8, 0.06) (0, 8, 0.2)

3 3 1 2 3

(1, 7, 0.2) (1, 7.6, 0.2) (1, 7.8, 0.04) (1, 8, 0.04) (1, 8, 0.2)

3 3 1 2 3

 , (3.19)

which is quite similar to (3.18). It seems that the local D-optimal design of the experi-

ment is quite robust to the modifications we make in the point parameter prior. As an

alternative to the D-criterion, we consider a local Ds-criterion for the estimation of all
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the parameters except for k0 and k1. In this situation, the Ds-optimal solution is

X∗∗opt =


(0, 7, 0.2) (0, 7.6, 0.05) (0, 7.6, 0.2) (0, 8, 0.05) (0, 8, 0.2)

3 1 3 2 2

(1, 7, 0.2) (1, 7.6, 0.2) (1, 7.7, 0.04) (1, 8, 0.04) (1, 8, 0.2)

4 3 1 2 3

 , (3.20)

which is still dependent on the specified prior values of k0 and k1. Compared with (3.19),

the numbers of replicate runs are somewhat different and imbalanced. In addition, we see

minor perturbations of the optimal coordinate levels, which leads to the maximisation

of the local Ds-criterion function.

In practice, thorough mechanistic studies are difficult when there are various dye species

and coliphages. As we can expect in this case, it requires a lot of experimentation to

collect the massive dataset and then fit a complex model. Otherwise, there would be

no adequate information to verify the mechanistic postulate. Therefore, some latent

variables or effects are often excluded from the model, e.g. the empirical terms corre-

sponding to the coefficients a3, a5 in (3.17). Nonetheless, it would be useful to define

important categorical variables (or indicator variables) in the hybrid nonlinear model.

As such, we can then integrate all relevant information into a comprehensive mechanism

and find correlations between different factors. In this situation, as a complex model

is assumed, optimal design of experiments can exert a constructive role to save us time

and workload in real experimentation.

Sometimes not all estimates of the categorical variables are important or equally impor-

tant. If one dye species is more likely to be favoured in the experiment, we can then

consider either a local L-criterion or a composite Ds-criterion. This allows experimenters

to alter the weight allocation in the criterion function, in order to emphasis the estima-

tion of specific parameters. Under the local D-criterion, we can also fix the numbers

of experimental runs for different categories: e.g. we can allocate 16 runs to methylene

blue and 8 runs to toluidine blue, since in this first case, the expected initial rate is

higher under the same conditions. No matter what we shall do, the ultimate purpose is

to make a better use of experimental resources.

3.9 A General Discussion of Advanced Kinetics

The paramount role of the kinetic model is well appreciated in the establishment and

interpretation of molecular mechanisms. It is vital to make the experimental data con-

tain sufficient information such that we can fit kinetic models and make extrapolations.

As also discussed in Cornish-Bowden (2014), it is worthwhile using a suitable design of

the experiment for raw data collection, in order to fulfil specific purposes in relation to

statistical modelling and inference.
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In this chapter, we focus on simple Michaelis-Menten kinetics, the nonlinear model

function of which involves two unknown parameters. As we also mentioned, depending

on the specific steps in the reaction mechanism, a more complex theoretical model can

be reasonable (Wong, 1975). It is common to write those advanced kinetic models in the

forms of rational functions of the initial substrate concentration. For example, Halder

and Crabbe (1984) studied a special mechanism that used two substrates in the reaction.

Also in this advanced mechanism, experimenters must consider both the pH level and

the product inhibition effect on the observed response. Even in simpler one-substrate

reactions (like in M-M kinetics), if the dual substrate binding sites exist on the molecules

of the enzyme, experimenters can assume second-order kinetics. To learn such kinetics,

Gilmour and Trinca (2012a) illustrated some sophisticated reparametrisations to derive

an intuitive mechanistic model.

On the topic of reparametrisation, Ratkowsky (1985, 1986) advised that we can in fact

reparametrise varieties of nonlinear kinetic models. The new model function exhibits

some stronger linear or close-to-linear behaviour. As such, the reparametrisation can

make it easier to use nonlinear least squares for parameter estimation, since the classical

NLS assumptions can be better satisfied for the more close-to-linear model. Nevertheless,

the new model does not make much sense if our experimental interest is to estimate the

original kinetic parameters (with minimal standard errors) and thus to interpret the

metabolism. Hence experimenters can be reluctant to do too much reparametrisation,

which then leads to difficult interpretations. In contrast, nonlinear transformation of

the both sides of kinetic models is a more reasonable approach (Carroll and Ruppert,

1984; Ruppert et al., 1989). The main purpose of transformation is to reshape the error

structure or error distribution of the fitted model. In the transform-both-sides model,

the kinetic function between the dependent and the independent variables remains the

same as in our conjecture. We will discuss some applications of this further in Chapter

5 of this thesis.

A complex looking metabolism can be elucidated in detail if we can write out the correct

chemical equation, which is composed of some basic reaction steps. As we combine

all the (parallel) opposing and consecutive steps, the appropriate kinetic model can

be established on the basis of the simultaneous differential rate laws. If the model is

complex and nonlinear, note that the NLS estimation relies on initial values of model

parameters. We shall determine these initial values beforehand so that the nonlinear

model can be fitted. To reduce this unwanted dependence, one can start with the most

basic kinetic models (or similar hybrid nonlinear models). After the appropriate initial

values are ascertained, the more complex model can be studied then.

For the studies of some rare kinetics (due to allosteric interactions or cooperatives, for

instance) as well as in vitro drug metabolisms, Tracy and Hummel (2004) discussed

different mechanistic models for one-substrate reactions. In the real experiment, the

model selection requires sufficient kinetic evidence to support it, so it is sometimes
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difficult to consider various metabolic regulations. To ascertain the best candidate model

that suits the in vitro data, it is judicious to separate the lack of fit of candidate models

from the observed pure error and then compare fitted models.

Experimenters can also consider the inhibition (or activation) effects on Michaelis-

Menten kinetics. If these effects must be taken into account, some modifications can

be made on the normal M-M model. When an inhibitor is involved in the reaction, for

instance, the inhibitor concentration can be a factor. It is common to assume one of the

candidate inhibition models (e.g. competitive, uncompetitive or mixed) first. We can

then fit it to the kinetic data in order to validate the potential inhibition effect. As the

mechanistic model can be derived in this case, we do not have to use a hybrid nonlinear

model. For simple inhibition models in terms of two or three parameters, the closed-

form expressions of the continuous local D-optimal experimental designs were found in

Bogacka et al. (2011). In each of these optimal designs, however, there is an indispens-

able constraint. The number of support points is set to equal the number of model

parameters, which is no more than three. Under the local D-criterion in this case, it is

not too hard to determine the substrate concentration level and inhibitor concentration

level for each of the support points.

Moreover, experimenters often encounter Michaelis-Menten kinetics in the process of

drug development. In these cases, the simple kinetic model can be found and written

in terms of the time in the full course of reaction (Schnell and Mendoza, 1997). As

such, the independent variable is the reaction time when the substrate concentration

level is fixed at an optimal constant. Of course, the response of the experiment shall

be the rate at time t instead of the initial rate measured at t → 0. In the research

areas of pharmacokinetics and pharmacodynamics, there are many examples of optimal

experimental designs, which we will not discuss further.

In the next chapter, we will continue to concentrate on the nonlinear multifactor model.

The most striking new development is that some efficient Gaussian quadrature rules

shall be applied to evaluate the expected D-criterion function. The expected D-criterion

function is an integral based on the local D-criterion function we have used in the last

two chapters. In comparison, its criterion function is much more complex and it can be

quite robust to minor variations of the true parameter values. The complex expected

D-criterion function shall be used in the search for optimal experimental designs for

nonlinear models. Hence, we must adapt the current hybrid method to implement a

suitable Gaussian quadrature rule.





Chapter 4

Bayesian Optimal Design of

Nonlinear Multifactor

Experiments

4.1 Expectation of the D-criterion Function

4.1.1 Local Optimality Criterion

The previous chapters have informed us the relationship between the optimal designs

of experiments and the Fisher information of the assumed model. When the model is

nonlinear, we should choose the parameter prior of the p-element vector θ = {θ1, . . . , θp},
in order to calculate and maximise the local D-criterion function φD, for instance. If

we use the D-criterion, the aim will be to minimise the variances and covariances of

the nonlinear least squares (NLS) estimator of θ. This is desirable in most experiments

that involve the fitting of statistical models, though there are various optimality criteria

available for other experimental purposes linked to statistics.

In particular, φD is a local criterion function. This is because we use the point parameter

prior vector θ0 to substitute the unknown true parameters θ in the Fisher information

matrix of the criterion function. Therefore, the performance and robustness of the local

optimal design relies on the deviation θ0 − θ. This is a disadvantage of using a local

optimality criterion. When we assume an inaccurate parameter prior for the nonlinear

model, the local criterion might not be suitable and the obtained optimal design could

be much less efficient than we expect. To deal with this problem, in this chapter,

we introduce a pseudo-Bayesian approach for optimal design of nonlinear multifactor

experiments. As we will show, it is then plausible to replace the local D-criterion with

an expected D-criterion, which takes account of the assumed uncertainties about the

101
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true parameter values. In this case, the obtained optimal designs would be more robust

to minor variations of the point parameter prior.

Suppose we can select a design X of n experimental runs (n ≥ p). The model of the

observed response can be written as Yi = f(Xi,θ) +εi for i = 1, 2, . . . , n. Here, f(Xi,θ)

is the model function in terms of v controlled variables in the ith row of X. The error

term is εi which should follow the essential assumptions in nonlinear regression. We can

then write the local D-criterion function as φD = log|FTF|. As to the model,

F =
∂f(X,θ)

∂θ

∣∣∣
θ=θ0

denotes the numeric n×p design matrix which depends on the parameter prior θ0. When

we maximise the criterion function φD, the ultimate aim is to minimise the Generalised

Variance of the parameter estimator θ̂ and thus to make the estimation precise with

the collected experimental data. Let Y be a column vector of the n responses and ε

be a column vector of the respective errors. With a first-order linearisation around the

determined centre θ0, the nonlinear model is in a matrix form Y ≈ Fθ + ε, where the

errors due to the Taylor series approximation (not to be confused with the model errors)

are omitted.

If none of the model parameters is a nuisance, a X is local D-optimal if it could maximise

the function φD, which is equivalent to minimising the variance-covariance matrix of the

least squares estimator V(θ̂) = (FTF)−1σ2, where the error variance σ2 is assumed

to be homogeneous across the n uncorrelated experimental observations. We are most

interested in the Fisher information matrix FTF, which is linked to the precision of θ̂.

It is crucial to determine an appropriate θ0 for the local D-criterion function. Com-

monly, experimenters can either use an old parameter estimate recorded in the litera-

ture or come up with a subjective prior estimate as their “best guess” of the unknown

parameters. Moreover, as shown in most of our examples, we can fit the required model

to the data from one or more reference experiments conducted under the same or similar

environments. Besides, if the relevant data can be found to obtain the reference param-

eter estimate θ̃, we shall also be able to consider multiple candidate models and make

comparisons. Remind that when the model function is nonlinear in the parameters, the

local optimality criterion must assume a numeric parameter prior vector to enable the

evaluation of its criterion function. In this case, we have to find a reliable reference

estimate θ̃ (i.e. close to the unknown true parameter values) for a justification of the

local optimal design. However, this is not achievable in many circumstances.

4.1.2 The Pseudo-Bayesian Approach

In practice, there are more or less uncertainties about the true values of θ. At times,

there would be a lack of sufficient information for using the local D-criterion, as we
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cannot ensure the prior estimate θ0 to be accurate. To deal with these situations, it

is beneficial to think about a vaguer definition of the parameter prior. To be specific,

we could consider the reference estimate θ̃ as the mean vector of a multivariate prior

distribution (ρ(θ) denotes its probability density function), the variances and covariances

of which are chosen to reflect the uncertainties about θ beforehand.

To incorporate this information about the prior distribution, the idealistic aim is to do

numerical evaluations of the expectation of the D-criterion function of the different X,

in order to compare their utilities with respect to the criterion. As reviewed in Chaloner

and Verdinelli (1995), for the nonlinear model, the expected criterion function can be

simplified to be a multiple definite integral

ϕ =

∫
θ
φ(X|θ)ρ(θ)dθ,

where φ(X|θ) is the local criterion function in terms of θ within its parameter space. In

our demonstrations in this chapter, the parameter space is defined by the density function

ρ(θ) only and in the integral above, we shall substitute the general criterion function

form φ(X|θ) with the local D-criterion function φD. As we can see, the information

about the prior distribution is expressed in the form of the joint probability density

function (p.d.f.) ρ(θ) of the unknown parameters.

Let µ be the prior mean and Σ be the prior variance-covariance matrix. For example, we

assume ρ(θ) to be derived from a multivariate normal distribution θ ∼ N(µ,Σ). This is

the most common case when there is no constraint on the continuous space (−∞,+∞) for

each parameter of ϕ. The aim is to find the Bayesian optimal design which maximises the

expected D-criterion function under the assumption of the parameter prior distribution.

Since we must implement an exchange algorithm for the computer search, the multiple

integration of ϕ must be performed frequently for numerous X evaluated in the search.

The direct integration of ϕ is an unrealistic solution as that requires too intense compu-

tation to afford. Hence, researchers shall look for a simpler but still accurate numerical

approximation of the expected D-criterion function. Most of the time, the first step of

a numerical approximation is to draw from the specified parameter prior density ρ(θ) a

number of times to obtain a representative sample of θ. As such, at least we can use the

sample to evaluate the local D-criterion values φD of a specific X, when we choose the

different point parameter priors. The individual evaluations are then combined so that

the approximation of ϕ is the weighted mean of those local D-criterion values. This is

the criterion-evaluation approach for Bayesian optimal design. In the literature, it could

sometimes be referred to as a pseudo-Bayesian, semi-Bayesian or average approach. As

we plan to use nonlinear least squares to fit the model, this approach does not imply

Bayesian inference, though an expected criterion can take that into account too.
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The most well-known method is random sampling and it requires a considerable number

of random draws from the multivariate prior distribution. The Monte Carlo sample in

this case must be large enough in order to be representative for the approximation of

the integral ϕ. Optimal design of a market choice experiment in Kessels et al. (2009)

relied on such a huge Monte Carlo sample, which was drawn from a multivariate normal

parameter prior distribution for a simple logistic model. For the sake of simplification,

one sometimes assumes independence between the individual estimates of θ, in particular

due to the lack of sufficient prior information about the covariances. As such, the

variance-covariance matrix Σ becomes diagonal as specified, for example, in optimal

experimental design in Gilmour and Trinca (2012a). In this case, it would be reasonable

to draw p univariate random samples for each parameter and moreover, this flexible

assumption allows us to consider and incorporate different univariate prior distributions

in ρ(θ). When such kinds of decisions have to be made, it is useful to refer to the

properties of different exponential families as well as the constraints on the parameter

space of the specific model.

In the light of the rectangle rule in unidimensional cases, a definite integral can be

approximated with numerous narrow rectangles of which the heights can sketch the

upper bounding line of the area. As long as we take m random draws from the specified

distribution of the parameter prior, the local D-criterion function varies across different

vectors of θ0. Hence, to approximate the expectation of the D-criterion function, we

can take the arithmetic mean

ϕ̃(m) =
1

m

m∑
r=1

φD(X|θ = θr) ≈ ϕ, m→∞. (4.1)

This is also referred to as the pseudo-Monte Carlo (PMC) method in Bliemer et al.

(2008). There are p model parameters to be integrated out and the integrand function

of ϕ is often complex in terms of the design X. Note that the approximation ϕ̃(m)

is not invariant to different Monte Carlo samples, unless we could define a sample size

m→∞. However, if the sample is too large, the computation would be quite expensive,

even if the final PMC approximation is proven to be accurate. Herein, θr is the rth

unit of the Monte Carlo sample of the parameter prior density ρ(θ). In optimal design

of experiments, the expected D-criterion function ϕ should be maximised for a X. As

such, an exchange algorithm would use the approximating function ϕ̃(m) to calculate

and compare the utilities or relative efficiencies of various X.

A special case is when we combine the continuous nonlinear optimisation with an ex-

change approach, which is the core idea in the new optimised exchange algorithm as

well as our most recommended hybrid method described in the last two chapters. While

a lot of the algebraic computation would be complicated in this case, it could take a

long time to complete the task with a conventional software like Matlab and R. Hence,

it seems impractical to draw a huge Monte Carlo sample of the model parameters. In
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other words, for the PMC approximation in each iteration of the algorithm, we cannot

afford too much computation to evaluate different local D-criterion functions in (4.1).

To facilitate the applications that have to deal with an uninformative parameter prior

in the expected D-criterion function, in this chapter, we consider an efficient numerical

integration method for an accurate approximation of the integral ϕ. With a small

sample size m to be chosen, we can draw a nonrandom sample of the model parameters.

As a specific weighted mean of the individual local D-criterion values is taken, the

approximation using the deterministic sample can be even more accurate than most PMC

approximations. This clever method will be elucidated and then applied to Bayesian

optimal design of nonlinear multifactor experiments.

4.2 Deterministic Gauss-Hermite Approximation

As an alternative to the pseudo-Monte Carlo method, the Gaussian quadrature rules are

useful numerical integration tools. Each of the Gaussian quadrature rules corresponds

to a specific interpolating function and therefore can be adapted to approximate a whole

class of relevant definite integrals. A Gaussian quadrature is often stated as a weighted

sum (or mean) of the function values of the interest, which should be evaluated at some

identified points (i.e. abscissas). These quadrature points can be sampled and determined

according to the relevant integrand function as well as a fixed sample size m.

The quadrature rule can provide a much simplified solution of ϕ, the multiple integral

that contains the local D-criterion function. First, we can assume a multivariate normal

prior distribution for θ, for instance. In this situation, the Gauss-Hermite (GH) quadra-

ture rule is feasible for numerical integration as we require, the interpolating function

of which is a Hermite polynomial of a fixed order. As the interpolating function is de-

termined, we can draw the Gauss-Hermite sample of m abscissas, all the units of which

are deterministic and nonrandom. For now, let us look at how the GH approxima-

tion can solve integrals in a simple and general form. Suppose the random variable is

z ∈ (−∞,+∞) in the univariate case, the Gauss-Hermite quadrature can approximate

the following form of definite integral as∫ +∞

−∞
φ(X, z)e−z

2
dz ≈

m∑
r=1

w(r)φ(X, z(r)), (4.2)

where z(r) and w(r) represent the abscissa and the associated weight of the rth Gauss-

Hermite draw, for r = 1, 2, . . . ,m. As we assume z ∈ R, φ(X, z) is then an explicit

function of X, which is made up of controlled variables. No matter what form the

function φ takes, the GH quadrature can lead to an accurate approximation when it

has an appropriate sample size m. Under the GH quadrature in (4.2), we should find

the m abscissas and the respective weights, in order to evaluate the linear terms on the
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right hand side. While each abscissa z(r) should be one of the m roots of the orthogonal

Hermite polynomial, the associated weight w(r) denotes the relative importance of z(r)

in the Gauss-Hermite sample.

An m-point Gaussian quadrature rule can lead to an exact approximation (i.e. a perfect

integration without an error) and thus an error-free numerical integration of ϕ, when

the function φ of the integrand is a polynomial of degree 2m − 1 or less. Here, we

have the local D-criterion function φD, which is nonlinear in the model parameters θ.

According to Taylor’s theorem, this nonlinear function can be approximated with a

linear response surface, which requires an expansion of φD about the mean µ (or θ̃) of

the parameter prior density ρ(θ). The higher order is the linear response surface, the

more accurate approximation of the nonlinear function would be achievable. In other

words, the larger the overall Gauss-Hermite sample size of the model parameters, the

more accurate numerical integration of ϕ we can obtain from (4.2). When we use the

quadrature in optimal design of experiments, it is wise to find an acceptable balance

between the total sample size m and the expected error of the approximation ϕ̂.

We can expand the above discussion to the multivariate case, when there are p random

variables (i.e. z = {z1, z2, . . . , zp}) to be integrated out of ϕ. The multiplication rule

applies to the Gauss-Hermite quadrature and it requires p individual steps for numerical

integration. As a result, it implies the approximation

∫ +∞

−∞
. . .

∫ +∞

−∞
φ(z)

p∏
j=1

e−zj
2
dz1 . . . dzp ≈

m1∑
r1=1

. . .

mp∑
rp=1

w
(r1)
1 . . . w

(rp)
p φ(z

(r1)
1 , . . . , z

(rp)
p ),

(4.3)

where m = m1 × m2 × . . . × mp indicates all combinations of the p univariate and

uncorrelated Gauss-Hermite subsamples for the individual variables z1, . . . , zp. If m1 =

m2 = . . . = mp = m such that total sample size is m = mp, we have identical abscissas

and weights in these Gauss-Hermite subsamples for z1, ..., zp. The assumption is that

we have a multivariate normal prior distribution for θ. Therefore, in our case, we

should rearrange the expected D-criterion function ϕ in order to use the Gauss-Hermite

approximation in (4.3) (Bliemer et al., 2008).

For j = 1, 2, . . . , p, if we define θj ∼ N(µj ,Σjj) as an independent univariate prior

distribution, which means that the variance-covariance matrix Σ is diagonal, the rjth

sampling unit (i.e. sampled prior value) of the parameter θj can be calculated as

θ
(rj)
j = µj +

√
2Σjjz

(rj)
j .

We can find all the abscissas from the Gauss-Hermite quadrature, so it is straightforward

to calculate the corresponding parameter prior using the formula above. In the numerical

integration of ϕ, the associated weights ω
(rj)
j of the prior value θ

(rj)
j can also be obtained

from the associated weights w
(rj)
j of the abscissa z

(rj)
j . The formula is ω

(rj)
j = w

(rj)
j /
√
π,
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as we replace ρ(θ) of the integral ϕ with the modified p.d.f. of a univariate standard

normal distribution. As we assume the independence between the individual parameter

prior distributions (or the sampled values), this shows how we can compute the sampling

units and the associated weights for a Gauss-Hermite quadrature.

On the other hand, it is also viable to consider a multivariate normal distribution for

the whole vector θ, all the covariances of which are zero. In reference to Kessels et al.

(2009), a Cholesky decomposition can be used on the variance-covariance matrix so

that Σ = DDT, where D is a p × p lower triangular matrix with all positive entries

in its diagonal. In (4.3), for r = 1, 2, . . . ,m, the composite weight w(r) = w
(r1)
1 . . . w

(rp)
p

is the product of p GH subsample weights from each step of numerical integration.

Likewise, for a Gauss-Hermite approximation of ϕ, the composite weight function should

be ω(r) = w(r)/πp/2. In terms of the vector z(r), which is one combination of the abscissas

for different parameters, the rth parameter prior vector is calculated as

θr = µ+
√

2Dz(r)

for r = 1, 2, . . . ,m, where µ = E(θr) is the mean of the multivariate normal density

ρ(θ) and z(r) = {z(r1)1 , . . . , z
(rp)
p } is the rth unique combination of the abscissas from the

independent univariate Gauss-Hermite subsamples of θ. In line with the above, if Σ is

diagonal, then so is D. As such, all nonzero entries of D are the standard deviations of

the multivariate normal prior density ρ(θ) and the calculated parameter prior vectors

or units of the GH sample are independent of each other.

To summarise, one can draw a Gauss-Hermite sample of the parameters and calculate

the composite weights, since the expected criterion function can be rewritten as

ϕ =

∫
θ
φ(X|θ)ρ(θ)dθ =

1√
π

∫ +∞

−∞
φ(X|z)

p∏
j=1

e−zj
2
dz.

On the right hand side of this equation, we replace the parameters θ with the set of

random variables z and the whole integral has to be divided by a constant
√
π. To

approximate ϕ with the Gauss-Hermite quadrature, under the D-criterion, there is

φBD = ϕ̂ ≈
m∑
r=1

ω(r)φD(X,θ = θr) with appropriate constants m1,m2, . . . ,mp. (4.4)

A reliable sample should lead to a small approximation error. φBD denotes the approx-

imation of the expected D-criterion function whereas ω(r) = w
(r1)
1 w

(r2)
2 . . . w

(rp)
p /πp/2

is the composite weight corresponding to the rth parameter prior vector θr from the

Gauss-Hermite sample of the parameters. When we fix the subsample sizes as m1 =

m2 = . . . = mp = m, implying the equal importance of the p parameter estimates fro

the fitted model, the total GH sample size is m = mp.
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As has been mentioned, the GH subsamples made of abscissas and weights are indepen-

dent of the statistical model as well as the normal parameter prior distribution ρ(θ).

The abscissas for each parameter are distributed symmetrically around zero whereas the

sum of the associated weights (as well as the sum of the composite weights of the whole

sample) should be equal to one. In the simplest case, when the GH subsample size is

m = 2 for each parameter, the two identical abscissas are ±0.7071067811865475 for each

of the p random variables in z and all the composite weights w are fixed at 0.5p.

We now consider the Gauss-Hermite approximation φBD in (4.4), where a sufficient

number of abscissas should be selected for each parameter of θ. As the aim is to

integrate out the parameters of the interest, the GH subsample sizes depend on the

Fisher information matrix FTF of the model, as well as the variance-covariance matrix

Σ for the vague parameter prior. To make up for the downsides of using a local criterion,

the assumed expected criterion is preferred. Therefore, we are attempting to extrapolate

the true level of ϕ for a specific X. The appropriate GH sample should be drawn so

that we can obtain an accurate approximate value φBD, without requiring too intensive

computation in optimal design of experiments. Afterwards, we wish to evaluate and

compare the relative efficiencies of various X. As the new function φBD is based on a far

smaller sample size than the traditional PMC approximation, this task becomes easier.

In principle, the larger are the variances or covariances in Σ of the normal prior dis-

tribution, the more GH sampling units have to be defined to construct φBD. With

a multinomial logistic regression model used for market choice experiments, Yu et al.

(2010) compared a series of sampling methods and the respective approximations of

ϕ. In their examples, the controlled variables were categorical whereas the univariate

normal distributions of the individual parameter priors were uncorrelated and had zero

means and identical variances.

We have introduced the traditional PMC approximation and the deterministic Gauss-

Hermite quadrature. Moreover, the spherical-radial (SR) transformation is another effi-

cient method for numerical integration of the expected criterion function (Monahan and

Genz, 1997; Gotwalt et al., 2009). This works when the parameter prior distribution

is specified to be multivariate normal. This is quite a promising method which we will

come back to introduce in Section 4.8. At the moment, suppose one would like to obtain

an accurate approximation φBD with the Gauss-Hermite quadrature. In this situation,

the simulation results in Yu et al. (2010) would recommend us to choose equal GH sub-

sample sizes m ≥ 2, when the uniform prior variance is as small as 0.04 for the logistical

model parameters. However, this standard varies depending on specific applications,

so it is useful to examine the errors of the Gauss-Hermite approximations in different

orders when we change the subsample sizes m1,m2, . . . ,mp. The total sample size m

can also be quite large sometimes.
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The most common situation is to assume a multivariate normal distribution of ρ(θ).

Nevertheless, if the variance-covariance matrix Σ is envisaged as diagonal, it is feasible

to tailor different exponential family distributions to the individual parameter priors.

At times, there are alternative Gaussian quadrature rules which we can resort to. For

instance, the Gauss-Legendre rule can be adopted when we assume a uniform prior

distribution and the details were described in Matthews and Allcock (2004); Bliemer

et al. (2008). Furthermore, Goos and Mylona (2013) extended the application of the

Gaussian quadrature rules in optimal design of experiments. Their new results shall

enable us to handle different expected criterion functions with lognormal, beta or gamma

distributions for the parameter priors, each corresponding to an accurate approximation

of a different class of definite integrals.

In comparison, despite the modification considered in Gotwalt et al. (2009), the SR

transformation is tailored to multivariate normal prior distributions and otherwise its

approximation is not so accurate. In this case, we would prefer the more flexible Gaussian

quadrature rules when we are required to draw a small sample of the parameters.

4.3 Determination of a Reliable Gauss-Hermite Sample

Before we can consider optimal design of experiments, a crucial task is to construct an

appropriate function φBD to approximate the expected D-criterion function. To find

the extrapolated values of ϕ, the Gauss-Hermite sample size relies on the number of

model parameters to be integrated out as well as the variance-covariance matrix of the

parameter prior distribution. As has been mentioned, an acceptable balance must be

identified between the computational effort to make and the total number of Gauss-

Hermite draws. In this section, we are to show how to find such a balance with some

quick examination of the approximation error.

The emphasis of our applications is on biochemical experiments. In each example, also

discussed in Chapters 2 and 3, we assume a hybrid nonlinear model, which combines

some valid mechanistic information with our simple empirical speculation. In a biological

kinetics experiment in Martins et al. (1999), the assumed Michaelis-Menten mechanism

for a fundamental chemical reaction was studied. As usual, that required a statistical

model to be fitted with (nonlinear) least squares estimation.

In this case, the simple kinetics can be illustrated with the theoretical Michaelis-Menten

model. The complete dataset involves 30 independent experimental observations. While

the other experimental conditions must be the same (i.e. with constant temperature at

30 ◦C and the pH at 6.5), there are two controlled variables which could be linked to

the observed response ν (mM/min), the initial reaction rate. In the old experiment, the

biochemical reaction would occur in a 2-ml mixture of two reagents. The initial rate of
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GSH (i.e. the desirable product) formation should therefore depend on the initial S-D-

lactoylglutathione (i.e. the substrate) concentration and the initial glyoxalase II (i.e. the

enzyme or the so-called protein catalyst) concentration. To learn the quantitative re-

lationship between the three factors, the Michaelis-Menten model could offer a best fit

to the data in Martins et al. (1999). However, our first example is based on a more

complex hybrid nonlinear kinetic model as follows:

νi =
exp(a0 + a1xi + a2xi

2)Si
k + Si

+ εi (4.5)

for i = 1, 2, . . . , 30. Here S is the substrate concentration, E is the enzyme concentration,

of which x in the above hybrid model denotes the scaled variable. We should also assume

the error εi to have zero mean and constant variance across the 30 observations. A special

case is that, if a1 = 1, a2 = 0 and the scaled independent variable is x = log(E), (4.5)

is then simplified to the theoretical Michaelis-Menten model. In this example, however,

we assume the mechanistic model to be unknown, no matter how simple it is. As such,

the best alternative approach is to select the kinetic model (4.5) for NLS estimation.

Notice that the empirical function a0 + a1xi + a2xi
2 is a second-order linear function,

where we can also add or delete the corresponding terms and parameters for the over-

all regression model. As a result, this empirical function is a component of the hybrid

nonlinear model which involves the enzyme concentration as its second controlled vari-

able. To approximate the true Michaelis-Menten mechanism, we must establish the most

appropriate and concise form of the model. The same idea can also suit other compli-

cated Michaelis-Menten mechanisms, when there are some different controlled variables

in addition to the substrate concentration. This is also elucidated in Chapter 3.

In view of the old experiment in Martins et al. (1999), we should best approximate the

n = 30 old observations in order to compile a reference dataset. According to their

figures and annotations, we can also define a continuous variable space X and assume

it to be of the new experimental interest. In this example, the substrate concentration

must be located in the range [0.15, 3](mM) and as to the enzyme concentration (or the

protein weight), there should be E ∈ [0.02, 0.12](mg). A simple linear transformation

seems to be reasonable so that xE = (E − 0.05)/0.07 ∈ [−1, 1]. In optimal design of

the new experiment we conceive, each of the 30 experimental units (x, S) should be

specified within the bounded rectangular region X = [−1, 1] × [0.15, 3]. In addition,

nonlinear least squares estimation assumes that E(ε) = 0 and V(ε) = σ2. With the

Levenberg-Marquardt algorithm and the reference dataset, model (4.5) is fitted as

νi =
exp(−6.4086(±0.0366) + 0.8383(±0.0175)xi − 0.2861(±0.0329)xi

2)Si

0.3122(±0.0591) + Si
+ εi,

with four decimal places for the parameter estimates and their standard errors in the

brackets behind. In Bayesian optimal design for this nonlinear response surface, the

NLS estimate θ̃ = {k̃, ã0, ã1, ã2} = {0.3122,−6.4086, 0.8383,−0.2861} is therefore set to

be the mean vector µ of the parameter prior density ρ(θ) for the expected D-criterion
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function ϕ. In our first demonstration in this example, we assume p = 4 independent

univariate normal prior distributions of θ; i.e. Σ is a diagonal variance-covariance matrix

for ρ(θ). While the prior covariances are all equal to zero, the four prior variances can

be linked to the reference standard errors shown above.

Under nonlinear least squares, the parameter estimates are dependent on each other,

though we now consider their prior distributions to be independent. To assume a vague

parameter prior (i.e. less information for the new experiment), the prior variances of

ρ(θ) should be set to be somewhat larger than the reference standard errors in the fitted

model. In this case, there are 30 old experimental units so that the reference parameter

estimate θ̃ is rather precise and the model fits the reference data quite well. Hence, to

determine the diagonal elements of the matrix Σ, we use 10 times the corresponding vari-

ance estimates of θ̃. As such, the standard deviations of the parameter prior distribution

are chosen as {0.1868, 0.1159, 0.0554, 0.1040}, more than three times the standard errors

we obtain from the old experimental data. Depending on experimenters’ conjecture, the

prior standard deviations can be modified to reflect how informative the parameter prior

should be.

Given that we assume the independence between the parameter prior vectors, the error of

the Gauss-Hermite approximation φBD depends on the individual subsample size for the

numerical integration of the expected criterion function ϕ with respect to each parameter

in θ. In this case, we could determine some appropriate numbers mk,ma0 ,ma1 and ma2

and then calculate the total GH sample size m. To facilitate our computation, we can do

some quick numerical investigation beforehand, in order to find a simplified and refined

form of the approximation φBD in (4.4).

As we see from the hybrid nonlinear model, while we derive the local D-criterion function,

the component exp(a0) is a constant to be taken out of the Fisher information matrix

of (4.5). This implies that even if we consider the variance of the univariate prior

distribution ρ(a0) to be nonzero, the prior value of the second parameter a0 would not

affect our search for the Bayesian D-optimal design. We can then fix it at the mean

a0 = ã0 for instance, so this GH subsample size is ma0 = 1. In addition, the local D-

criterion function is φD = log|FTF|. The sampled prior value of a0 should be distributed

around the mean ã0 of the prior distribution ρ(a0). In this sense, even if ma0 > 1 and we

incorporate the subsample of a0 to construct the overall approximating function φBD,

the approximate value would remain the same. Note that this is not the case if we

choose the PMC method or the SR transformation with some introduced randomness,

though it is still advisable to fix the prior value of a0.

Since the GH subsample size of a0 is one, there is one fewer numerical integration step

for the Gauss-Hermite approximation, when the expected D-criterion function ϕ is to

be evaluated for each new experimental design X. We then focus on the subsample

sizes of the other three parameters. The Gauss-Hermite quadrature will be an exact
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approximation of ϕ, in terms of the jth parameter of θ, if the local D-criterion function

φD can be depicted as a linear response surface of degree 2mj − 1 or less. However,

this is often not the case and a mjth-order linear approximation of φD would lead to

a certain error so that the numerical integration of ϕ will not be exact. The realistic

question is that how much should that error affect the Gauss-Hermite approximation of

ϕ. If we know the answer, we can then decide an appropriate GH sample.

We can present a simple conjecture first. If the local D-criterion function φD or even the

model function f(X,θ) is close-to-linear in each model parameter from θ ∈ (−∞,+∞),

the Gauss-Hermite quadrature would be an accurate approximation of the expected D-

criterion function ϕ, the expected error of which can be ignored. In that situation, the

total GH sample size m will still be small so that we can construct a simple function φBD

in (4.4). Besides, when the model function tends to be close-to-linear, the corresponding

Fisher information (with the first-order linearisation of the assumed nonlinear model)

would be more robust to the variations in the true parameter values. In this case,

the NLS estimates will be more reliable and so is the local D-optimal design of the

experiment. Hence, when the Gauss-Hermite approximation is accurate and yet the

relevant GH sample size m is small, the Bayesian D-optimal design might be found to

resemble its local optimal version of which the point parameter prior is the reference

estimate θ̃.

With the expected criterion function ϕ, we assume a normal parameter prior density

ρ(θ) with the mean µ = θ̃ and the diagonal variance-covariance matrix Σ. As we

approximate ϕ with the Gauss-Hermite quadrature, the parameter prior values in each

GH subsample are distributed around the mean θ̃, with their deviations depending on

the specified prior variances. We envisage that a GH sampling unit θr departs far away

from the centre θ̃. In this case, a supposed Taylor series approximation of the nonlinear

function φD or f(X,θ), with a low-order linearisation around the prior mean θ = θ̃, will

not be too accurate at θ = θr.

If the variances are larger in the parameter prior density ρ(θ), it will be more difficult to

approximate the expected criterion function. Within the parameter space, the Gauss-

Hermite quadrature would lead to some longer distances between the sampled parameter

prior vectors and the mean θ̃. As a result, the local D-criterion functions are less close-to-

linear when we use one prior vector of the sample to substitute the unknown parameters

in φD. To ensure an accurate approximation in this situation, we should increase the

total GH sample size for the approximation in (4.4), since the interpolation technique

demands more prior vectors.
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4.4 Numerical Investigation

4.4.1 Model and Parameters

While the nonlinear model could have been established as (4.5), it is sometimes viable to

do some kind of reparametrisation to obtain a more close-to-linear model (Ratkowsky,

1985). With the simple Michaelis-Menten model, the suitable reparametrisation was

found in Ratkowsky (1986) through some simulation studies, which can reduce the bias

of the NLS parameter estimator and also make it more plausible to assume a multivariate

normal density ρ(θ). Likewise, if we consider a similar reparametrisation for (4.5) (note

that it is not the same as that for the Michaelis-Menten model), for instance, the kinetic

model can be rewritten as follows:

νi =
exp(a1xi + a2xi

2)Si
k0 + k1Si

+ εi, (4.6)

which is based on the Michaelis-Menten equation. Yet the nonlinear behaviour of model

(4.6) should be examined. If the experimenters are to fit this rewritten model, the results

of NLS could be a little discrepant and the Fisher information will also not be the same

as that of model (4.5). Here, the upside is that nonlinear least squares estimation will be

more accurate under model (4.6). With the same reference dataset from Martins et al.

(1999), the new fitted model better satisfies the essential assumptions of errors, which

is important in regression. This result can then contribute to our specification of the

multivariate parameter prior distribution, for optimal design of a new experiment. As

the prior means are more accurate and the prior variances are smaller, it will be easier

to determine a desirable Gauss-Hermite sample of the model parameters.

On the other hand, the emphasis of the experiment and the optimality criterion should

be on the precise estimation of the previous parameters a0 and k in model (4.5). Given

the common interests in the mechanism of the kinetics, it is perhaps not quite reasonable

to reparametrise (4.5). Although model (4.6) can still be fitted to the observed response

surface and is strong in prediction as well, it does not allow us directly to calculate the

standard errors and the confidence intervals of the parameter estimators of model (4.5).

In short, in this example, it is better not to reparametrise the previous kinetic model

(4.5), the local D-criterion function φD of which is:

φD = log

∣∣∣∣∣∣∣∣∣∣∣

∑
E(νi)

2 . . . . . .
∑ −E(νi)2

k+Si∑
E(νi)

2xi
∑

E(νi)
2xi

2
...∑

E(νi)
2xi

2
∑

E(νi)
2xi

3
∑

E(νi)
2xi

4
...∑ −E(νi)2

k+Si

∑ −E(νi)2xi
k+Si

∑ −E(νi)2xi2
k+Si

∑ E(νi)2
(k+Si)2

∣∣∣∣∣∣∣∣∣∣∣
,

where E(νi) is the expectation of νi or model (4.5) in terms of the scaled variable xi

and the substrate concentration. Within the determinant function, the upper-left 3× 3
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submatrix shares some similarities with the Fisher information matrix of univariate

second-order linear models. This implies that the information matrix FTF of the hybrid

model (4.5) is not too complex in composition, due to its weak nonlinear behaviour.

The information matrix can also be considered as the sum of n unit Fisher information

matrices, corresponding to the n independent experimental runs of X. The empirical

function a0 + a1xi + a2xi
2 is linear. This hints that some small Gauss-Hermite subsam-

ples of a1 and a2 could be adequate for an accurate approximation of ϕ. In contrast,

the function φD in terms of k is more complex, since the parameter k is involved in

the nonlinear Michaelis-Menten equation and also requires some careful biochemical

interpretation. Perhaps we should sample more prior values of k to compose φBD.

4.4.2 Initial Gauss-Hermite Quadrature Results

The Gauss-Hermite sample size m also depends on the variance-covariance matrix Σ of

the prior. In this example, compared with the mean 0.3122 of the univariate normal

prior distribution, the variance of ρ(k) is not as small as those of the other two univariate

normal distributions ρ(a1) and ρ(a2). As such, there is a chance that we have to use a

larger GH subsample size mk in order to integrate out k of the multiple integral ϕ.

A numerical investigation will be helpful before we decide the best form of Gauss-

Hermite quadrature for optimal design. If we set mk = ma1 = ma2 = 2 whereas a0

is fixed at ã0 = −6.4086, it is our expectation that the local D-criterion function φD can

be well approximated with a third-order linear function in all the parameters. As the

multiplication rule applies, the approximate value ϕ̂ = φBD of a specific X should be

compared with the true expected D-criterion value ϕ, which is unknown.

To find the best combination of the GH subsample sizes, first we can choose the X to be

the approximate reference experimental design Xref in Martins et al. (1999). Moreover,

an alternative is the X∗0 also listed in Table 4.1, which is the local D-optimal design.

At first sight, X∗0 is neat in the allocation of the 30 experimental units. It has n∗ = 5

support points with corresponding replicates. In comparison, the experimental units in

Xref are dissimilar from those of the local optimal X∗0. While there are fewer replicates

in total, Xref seems to be inefficient in the NLS estimation of model parameters. X∗0
determines most of its substrate concentration levels to be in the high range of the

variable space [0.15, 3]. In this case, it is more sensible to assume ρ(k) to be a normal

distribution. We will come back to explain this later in this subsection.

With the GH subsamples of equal size m = 1, 2, 3 and 4 of the four parameters (even

though ma0 > 1 does not make sense), it is not hard to calculate the parameter prior

values and the associated weights for each GH subsample. The consequent step is to

derive all combinations of these subsampling units so as to form the overall Gauss-

Hermite sample. As m = 1, 8, 27, 64, we can establish the respective functions φBD.
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Table 4.1: The 30-Run Reference Design Against the Local D-Optimal Design

(a) Xref (b) X∗0

E S E S E S E S E S E S

0.023 1.5 0.03 0.9 0.045 1.5 0.025 3 0.086 3 0.12 0.26
0.023 1.5 0.03 0.9 0.0675 1.5 0.025 3 0.086 3 0.12 0.26
0.023 1.5 0.03 1.5 0.0675 1.5 0.025 3 0.086 3 0.12 0.26
0.03 0.15 0.03 1.5 0.0675 1.5 0.025 3 0.086 3 0.12 3
0.03 0.15 0.03 1.5 0.089 1.5 0.025 3 0.086 3 0.12 3
0.03 0.15 0.03 3 0.089 1.5 0.025 3 0.097 0.33 0.12 3
0.03 0.3 0.03 3 0.089 1.5 0.025 3 0.12 0.26 0.12 3
0.03 0.3 0.03 3 0.112 1.5 0.025 3 0.12 0.26 0.12 3
0.03 0.3 0.045 1.5 0.112 1.5 0.086 3 0.12 0.26 0.12 3
0.03 0.9 0.045 1.5 0.112 1.5 0.086 3 0.12 0.26 0.12 3

A downside of the Gaussian quadrature rule is that, as the number of parameters p or

the equal subsample sizes m increases, we will see a geometric growth of the required

total sample size m. The problem becomes serious if the nonlinear model assumes a

quite vague parameter prior and thus amplifies the prior variances of ρ(θ). Though it is

easier to make the subsample sizes equal, computation tends to be more intensive than

required with the most appropriate Gauss-Hermite sample.

An economic and flexible method is to draw the individual Gauss-Hermite subsamples of

different sizes. No matter whether we assume the independence between the parameter

prior vectors, one can, for instance, draw mj ≥ 1 GH subsampling units of a specific

parameter as well as one unit of each of the other parameters. This implies that each

time our focus is on a separate numerical integration with respect to one parameter,

when the total GH sample size is m = mj = 1, 2, 3, and 4. In this case, the evaluation

of φBD tells us how much the numerical integration can improve when the subsample

size increases. The numerical result then indicates a suitable Gauss-Hermite subsample

size for the integration of ϕ with respect to the jth parameter, for j = 1, 2, . . . , p.

With a selection of different GH samples, the approximate values are summarised in

Table 4.2. For the last column of the table, mj also represents an equal subsample

size m for all the parameters such that m = mp. Overall, the values of φBD, the GH

approximation of ϕ, should converge towards the true expected D-criterion values as

the subsample size mj of the jth parameter increases. This trend to converge is clearer

when we use X∗0 as the experimental design X, which does not use the minimal substrate

concentration level 0.15.

To be more specific, when k is the sole parameter of which we draw the prior more than

once, for m = mk = 2, 3, 4, the approximate value φBD is close to the one shown in

the last column for which the sample size is m = m3
j = 8, 27, 64. Hence, for Bayesian

D-optimal design with the Gauss-Hermite approximation of ϕ, it is not essential to draw

more than two prior values for either a1 or a2. Even if we do, it will not improve the
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Table 4.2: A Selection of Gauss-Hermite Quadratures in Different Orders for
the Approximation of the Expected D-Criterion Value

Sample {k} {a1} {a2} {k, (a0), a1, a2}

mj=1 -48.2255 -48.2255 -48.2255 -48.2255
Xref mj=2 -47.8485 -48.2247 -48.2243 -47.8464

mj=3 -47.7491 -48.2247 -48.2243 -47.7470
mj=4 -47.6082 -48.2247 -48.2243 -47.6061

mj=1 -43.0242 -43.0242 -43.0242 -43.0242
X∗0 mj=2 -42.7803 -43.0240 -43.0232 -42.7792

mj=3 -42.7462 -43.0240 -43.0232 -42.7451
mj=4 -42.7321 -43.0240 -43.0232 -42.7310

overall approximation much. After all, it is rare for a small error to affect the computer

search and selection for the most efficient X out of several candidates.

The simplest treatment is to use the fixed substitutions a0 = ã0, a1 = ã1 and a2 = ã2

for the approximation of the expected D-criterion function we assume. We can even

replace the multivariate normal density ρ(θ) or ρ(k, a0, a1, a2) with the univariate density

ρ(k) and we shall be able to find a similar optimal design. Since there are no nonzero

covariances in Σ, the Gauss-Hermite quadrature we choose involves just a unidimensional

numerical integration step. As the total GH sample size will be small, in fact we can

afford to draw more prior values of a0 and a1.

However, our use of the expected criterion function has a drawback due to the specified

ρ(k). Our assumption is that ρ(k) is a univariate normal distribution N(0.3122, 0.18682),

which indicates a vague parameter prior. It is argued that with a large standard devia-

tion to accommodate, the quantiles in the left tail of ρ(k) fall below zero. Meanwhile, in

the Michaelis-Menten mechanism, k is constrained to be positive. Hence, the assumed

parameter prior density ρ(k) violates the kinetic mechanism. When the substrate con-

centration is at the lowest level 0.15 mM, in this example, the model function could even

take negative values, when the initial rate ν should at least be nonnegative. This is a

contradiction which can often arise if we assume a mechanistic model.

Under the Gauss-Hermite quadrature in Table 4.2, when the subsample size is mk > 3 for

the parameter k, at least one prior value is less than zero in the GH subsample. In this

case, even if the prior value is positive but close to zero, it would be similar to assuming

the substrate concentration to be nearly independent of the expected initial rate. All

these scenarios are unacceptable if we also require the Michaelis-Menten mechanism to

hold behind the biochemical reaction in the experiment. A direct consequence is that

the approximating function φBD will not converge well towards a stable solution, which

is supposed to be the true criterion value. In particular, our reference Xref in Table

4.1 specifies three substrate concentration levels to the minimum 0.15, which made the

situation worse.
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The above is our main concern as the variance of the univariate normal density ρ(k)

is 10 times the old variance estimate we find from the reference data. If we adhere

to the normal distribution, a feasible measure is to halve the prior variance of k. As

the GH subsample sizes of the remaining parameters are all fixed to one (i.e. the prior

mean would be used if the prior distribution is normal), under the GH quadrature,

we shall draw m = mk prior values of k. The total sample size is still small, so it is

comfortable to draw more parameter prior values to extrapolate the true level of ϕ. The

mutual comparisons of the results are in Table 4.3, where Σ11 = 0.18682 represents the

variance of ρ(k) for our previous computation to obtain Table 4.2. As we can see, with

the increase in the subsample size mk, the Gauss-Hermite quadrature becomes a more

reliable approximation of ϕ.

Table 4.3: Gauss-Hermite Quadratures in Different Orders for the Approxima-
tion of the Expected D-Criterion Value (Revised)

Σ11
1
2Σ11

{k} Xref X∗0 Xref X∗0

mk=1 -48.2255 -43.0242 -48.2255 -43.0242
mk=2 -47.8485 -42.7803 -48.0451 -42.9056
mk=3 -47.7491 -42.7463 -48.0276 -42.8985
mk=4 -47.6082 -42.7321 -48.0225 -42.8975

mk=5 -47.8062 -42.7145 -48.0198 -42.8973
mk=6 -47.7458 -42.7365 -48.0162 -42.8972
mk=7 -47.6476 -42.7404 -48.0236 -42.8971
mk=8 -47.7892 -42.7263 -48.0221 -42.8970

Another measure is available if we do not wish to reduce the variance in the matrix Σ.

Instead of limiting ourselves to use a normal parameter prior, we can assume ρ(k) to be a

different distribution from common exponential families, which should suit the Michaelis-

Menten mechanism in our example better. For instance, it is worthwhile considering the

Gauss-Legendre quadrature instead of the Gauss-Hermite quadrature, which will allow

us to define a uniform distribution of the parameter prior. The uniform distribution

can define a lower bound for the parameter space of k and is therefore sensible in this

respect. The gamma prior distribution is another option, which can coordinate with the

Gauss-Laguerre quadrature. This can set the lower bound of the parameter space to

zero, though the densities will not be as low as we shall expect at the positive parameter

values near zero.

The above substitutes should work well in this example of Michaelis-Menten kinetics,

but our preferred choice of ρ(k) would be the univariate lognormal distribution. As

such, it just requires a simple adaptation of the Gauss-Hermite quadrature rule, so it

is not hard to implement that. More importantly, a lognormal assumption ensures the

prior value of k to be positive and also the value of ρ(k) to be low when k → 0. Both

features can benefit the approximation of ϕ and make Bayesian optimal design more



118 Chapter 4 Bayesian Optimal Design of Nonlinear Multifactor Experiments

realistic. Besides, ρ(a0, a1, a2) can be specified as a multivariate normal distribution. If

the controlled variable x is a fixed constant, as a whole, the empirical function exp(a0 +

a1x+a2x
2) would have a lognormal distribution too. Hence, under the Michaelis-Menten

mechanism, it is reasonable to assume a lognormal prior for k.

Later we shall elucidate the benefits of assuming a lognormal prior for k, as some nu-

merical results can be compared with those in Table 4.2. Now let us come back to our

initial parameter prior specification that ρ(θ) is a multivariate normal distribution, the

variances of which are 10 times the NLS estimates we find from the reference data.

4.4.3 Pseudo-Monte Carlo Approximation Results

In comparison to the Gauss-Hermite quadrature, a suitable reference is the PMC ap-

proximation. In this subsection, we will draw 10 independent Monte Carlo samples of θ

and each random sample will contribute to an individual approximation of the expected

D-criterion function ϕ. Therefore, we will see some fluctuation of the PMC approximate

values near the desirable true level.

To check how accurate and dispersed the individual approximations are, we draw 10

Monte Carlo samples of size 10,000 of either the complete vector θ or the most influential

parameter k (while the remaining parameters are fixed at the respective normal prior

means). As the number of draws is 10,000, so there are 100,000 different prior vectors

in total, which we can use to extrapolate the true value of ϕ.

With each Monte Carlo sample, we can do a PMC approximation of the expected D-

criterion function and it will be computed after we choose the reference design Xref or

the local D-optimal design X∗0. It is then straightforward to calculate the range of the

10 independent approximate values as shown in Table 4.4. This number should be as

small as possible if the PMC approximation with the sample size 10,000 is expected to

be accurate. The mean (or median) of the total 100,000 local D-criterion values can

also be obtained and taken as the closest extrapolation of the true value of ϕ. It should

be close to the approximate value of a suitable Gauss-Hermite quadrature too. Note

that when we sample all the parameters as a whole, different prior values of a0 would

influence the PMC approximation as well as the consequent optimal design. It is also

viable for someone to fix the prior value of a0 at the mean ã0.

Instead of sampling all the univariate parameter prior distributions for PMC approxima-

tion, we can use the univariate Monte Carlo sample of the parameter k. A simplification

like this reduces the randomness and uncertainties of the different samples whereas sim-

ilar approximate values can be found after we complete all computation. In each case

shown in Table 4.4, the difference between the minimum and the maximum of the 10

PMC approximate values is a bit too large. In other words, the current large sample size

10,000 is still insufficient for an accurate PMC approximation of ϕ. Partly, this is due
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Table 4.4: Mean and Range of the PMC Approximations of the Expected D-
Criterion Value

Sample Mean Range of the 10

Xref {k} -47.7287 [-47.7814, -47.6849]
{k, a0, a1, a2} -47.6991 [-47.7424, -47.6503]

X∗0 {k} -42.7277 [-42.7723, -42.6869]
{k, a0, a1, a2} -42.7108 [-42.7593, -42.6468]

to an issue with the normal prior distribution of k, which has been found to be an inap-

propriate prior assumption. In this case, even the mean of the 100,000 local D-criterion

values is not an exact approximation of the expected D-criterion value. However, the

value of ϕ (if it exists) should at least be close to −42.7108 (or −42.7277) for X = X∗0.

In reference to Tables 4.2-4.3, we can control the Gauss-Hermite approximation and the

error will be small when the subsample size of k reaches three or four.

Our ultimate aim in approximating ϕ is to select the most efficient X in optimal design

of the nonlinear experiment. Hence, even if the approximation is inaccurate sometimes

(e.g. due to an inadequate parameter prior assumption), as long as the exchange algo-

rithm used can find the true Bayesian optimal design in the end, the PMC or GH sample

of the model parameters θ would be acceptable. In this example, we cannot afford a

huge PMC sample and the incurred high computational cost, so the better choice is to

implement the Gauss-Hermite quadrature in our new exchange algorithm. In the next

section, we will continue to assume a multivariate normal prior distribution for θ.

4.5 Initial Optimal Design Results

4.5.1 A Multistage Exchange Algorithm

As has been shown in Chapter 2, a new hybrid exchange algorithm is developed to obtain

and ensure reliable solutions as the optimal designs of experiments. At the first stage

of this efficient hybrid method we propose, a small number of candidate levels should be

defined and allocated to each controlled variable. In this kinetics example, it is intuitive

to choose the three levels {±1, 0} for the scaled enzyme concentration x. In reference

to Smith (1918), these candidate coordinates should be recommended in continuous

D-optimal design for univariate linear models of second order. Likewise, the subset

{0.15, 1.5, 3} includes the maximum, the minimum, and a middle candidate coordinate

for the unscaled substrate concentration S. The algorithm can then create a simple

candidate set Ω consisting of nine points, with which the traditional discrete optimisation

can be performed under an exchange approach, for instance. Global optimal solutions

can be found in updating X, while the discrete optimisation takes all the nine candidate
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runs (or points) into account. Moreover, we can know in advance from Table 4.1 that

the substrate concentration level 1.5 is not a useful candidate coordinate.

With Ω and a specified number of tries τ = 30, we first construct 30 random initial ex-

perimental designs X. As the discrete optimisation (with the point exchange approach)

should be applied, we can obtain τ∗ ≤ τ distinct X at the local maxima of φBD as a

Gauss-Hermite approximation to the expected D-criterion value ϕ. All these converged

X are denoted as X1st, which are thought to be quasi-optimal (close to optimal). Note

that a strict exchanging rule should be adopted for the discrete optimisation if we wish

to obtain more distinct intermediate solutions X.

Before we finish the first stage of computation, the aim is to shape the rough optimal

structure of X = X1st. Compared with a random X as the initial start in the algorithm,

these X1st must be far more efficient and adopt more sensible coordinate levels. With

each X1st to act as a distinct new start, we can now introduce the new continuous

optimisation method to this multistage exchange algorithm. As it extends the search

domain from Ω to the rectangular variable space X = [−1, 1]× [0.15, 3], the continuous

optimisation is a much more effective method but is slower in computation.

At the second stage of this hybrid exchange algorithm, we can abandon the list of the

defined discrete candidates now. Here, the point exchange approach should be adapted to

incorporate, for instance, the Nelder-Mead method to optimise each point in the current

X1st. In total, there are n steps to update the whole X1st and thus complete one iterative

update. There are some relevant instructions. On the one hand, a transformation of the

controlled variables can impose a box constraint on the optimisation, which should define

the space X of experimental interest. On the other hand, no matter which optimisation

option we choose, all the continuous optimisation solutions are local optimal, since there

is no limit on the number of candidate points to be evaluated. To select the best local

optimal solution, multiple sets of initial values can be specified, which are also called

the “initial points for the continuous optimisation”.

Under a reasonable exchanging rule, the continuous optimisation of respective experi-

mental runs is a tedious process in several iterative updates. This will not be completed

until we achieve a local maximum of ϕ or its Gauss-Hermite approximation φBD, in terms

of X. When no more important updates or point exchanges can be found to improve the

X1st from the current iterative update, the solution is treated as being converged and

can be saved as a X2nd. Overall, there are also τ∗ solutions X2nd, of which we denote

the most efficient one (the one with the maximal φBD) as XB.

All in all, we should implement the continuous optimisation after the first stage for the

discrete optimisation. In this regard, since the continuous optimisation starts from a

distinct X1st rather than a random initial design X, it will be much easier to maximise

the expected D-criterion function and obtain some efficient X2nd. Compared with the

optimised exchange algorithm (see Chapter 2 for our introduction) which will optimise τ



Chapter 4 Bayesian Optimal Design of Nonlinear Multifactor Experiments 121

random X without passing through a stage for the simple discrete optimisation, the hy-

brid exchange algorithm will require fewer tries, since it is more effective in computation

and more focused on the iterative search for optimal candidate points.

At the third stage of the hybrid method, we shall use the term closest distance d

to represent the minimum space between two feasible and adjacent coordinates, both

values of which therefore must be distinguishable in a real experiment. In our example,

we choose the closest distance to be 0.001 mg for the protein weight E and 0.01 mM

for the (initial) substrate concentration S. As we can now discretise the continuous

variable space X , it is viable to construct suitable subsets (rather than complete sets)

of candidate coordinates for both controlled variables.

Because of the use of the continuous optimisation, the total number of exact replicates is

often small in the current best solution XB. However, we can perhaps find some quasi-

replicates there, the locations of which are quite close to each other in X . Hence, the

idea is to convert each cluster of quasi-replicates to exact replicates on a feasible support

point. To find the support point that maximises the criterion function, a small candidate

coordinate subset can be constructed for each cluster of quasi-replicate runs. The upper

and lower limits of this subset depend on the maximal and minimal coordinates out

of the quasi-replicate runs, so the number of discrete candidates would be small if we

have chosen a reasonable exchanging rule for the continuous optimisation. After the

conversion of the quasi-replicates, we should also recheck the numbers of exact replicates

of each feasible support point. This requires a simple discrete optimisation as we can

recalculate the numbers of replicates. This is the end of the hybrid method, whereas the

result of the discrete optimisation is the final Bayesian D-optimal design X∗B. As our

final output of the algorithm, it should best meet the experimental requirements.

In this version of the hybrid exchange algorithm, though we adopt the classical point

exchange approach (Fedorov, 1972) for the iterative updates of X, a similar three-stage

algorithm is compatible with the coordinate exchange approach (Meyer and Nachtsheim,

1995) too. In this example we discuss, the number of controlled variables is v = 2 so

that the results of the two exchange approaches will not be much different. Our first

demonstration in this chapter will follow the point exchange approach throughout, which

we expect to be more efficient at least in the initial discrete optimisation.

When we approximate the expected D-criterion function ϕ, it is useless to draw a Gauss-

Hermite subsample of a0 if its prior is independent of the other parameter priors. Nev-

ertheless, a0 is not a nuisance parameter in the model and should not be removed from

the Fisher information matrix in ϕ. As we see in the local D-optimal design X∗0, under

the new expected criterion, we believe the variation in the prior value of k will at least

make an impact on the adopted substrate concentration level 0.26 in Table 4.1b. In

contrast to k, since a1 and a2 are the parameters in the empirical exponential function,

we expect some linear behaviours of model (4.6). Under the current prior variances, the



122 Chapter 4 Bayesian Optimal Design of Nonlinear Multifactor Experiments

variations in the prior values of these two parameter shall also have certain impacts on

the expected D-criterion and the adopted coordinate levels in X∗B. Overall, although

the hybrid exchange algorithm aims to find a X which maximise ϕ instead of the local

D-criterion function φD, we can expect X∗0 to be still efficient and resemble X∗B. These

speculations will be examined in the next section.

4.5.2 Mutual Comparisons and Robustness of Optimal Designs

Our first assumption of the parameter prior density ρ(θ) is the joint p.d.f. of four inde-

pendent normal densities. Remind that the normal prior distribution of a0 is of little

importance to Bayesian optimal design. We choose the total Gauss-Hermite sample size

to be m = 23 = 8 as mk = ma1 = ma2 = m = 2. The purpose is to inspect the influence

of each local D-criterion function in φBD, which is associated with one unique parameter

prior vector θr, for r = 1, 2, . . . , 8. In this circumstance, it is simple to compose the

Gauss-Hermite quadrature to approximate ϕ. Meanwhile, the GH composite weights

are all equal since there are fewer than three units in each of the independent GH sub-

samples for the individual parameters. In short, the function φBD will be the arithmetic

mean of eight local D-criterion values φ1, φ2, . . . , φ8.

To examine the relative efficiencies and the robustness of X∗B, the local D-criterion can

act as the reference. This means that each time we choose one of the local criterion

functions φ1, φ2, . . . , φ8 and thus assume a scenario with a different parameter prior

vector. Therefore, the hybrid exchange algorithm can also be applied to find a X∗r which

is close to local D-optimal. This is similar to what we did in Chapters 2 and 3. As a

result, we will output the final results X∗1,X
∗
2, . . . ,X

∗
8 under eight scenarios, in addition

to the real local D-optimal design X∗0.

As such, we envisage m + 1 = 9 artificial scenarios from S0 to S8, which assume

different true values for the unknown parameters θ. These true parameter values are

listed in Table 4.5 and are set to equal θr, for r = 0, 1, . . . , 8. Hence, we use the prior

mean θ̃ under S0 and the units of the Gauss-Hermite sample under the corresponding

S1,S2, . . . ,S8. For instance, under the first scenario S0, the local D-criterion function

should be written as φD(θ = θ̃). As the information matrix is found, we shall be able

to find the solution X∗0 in Table 4.1b, which is known to be local D-optimal under the

current postulated scenario.

Our real aim is to search for the Bayesian D-optimal design X∗B as the tradeoff among

the scenarios S1 to S8, which should tend to maximise ϕ or its Gauss-Hermite approx-

imation φBD. With respect to the previous experimental designs X∗0,X
∗
1, . . . ,X

∗
8, the

relative efficiencies eff of X∗B can be calculated under each scenario described in Table
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Table 4.5: Assumed True Parameter Values (Prior Values) under Each of the
Nine Postulated Scenarios

Scenario k a0 a1 a2

S0 0.3122 -6.4086 0.8383 -0.2861
S1 0.1254 -6.4086 0.7828 -0.3902
S2 0.1254 -6.4086 0.8937 -0.3902
S3 0.1254 -6.4086 0.7828 -0.1821
S4 0.1254 -6.4086 0.8937 -0.1821
S5 0.4990 -6.4086 0.7828 -0.3902
S6 0.4990 -6.4086 0.8937 -0.3902
S7 0.4990 -6.4086 0.7828 -0.1821
S8 0.4990 -6.4086 0.8937 -0.1821

4.5. As such, for r = 0, 1, . . . , 8,

eff (X∗B,θ
r) =

exp(φD(X∗B,θ
r))

1
4

exp(φD(X∗r ,θ
r))

1
4

100%. (4.7)

The same formulae can also be used to calculate the relative efficiencies of X∗0,X
∗
1, . . . ,X

∗
8

with respect to the others. We can then check their robustness to the parameter prior.

In our demonstration of the hybrid exchange algorithm with either the local or the

expected D-criterion, the number of tries is fixed to be τ = 30 no matter if that involves

the Gauss-Hermite sample of size m = 8. A strict exchanging rule max(di) > 1.1 is

chosen for the discrete optimisation of random initial designs X. It will make τ∗, the

number of distinct X1st, close to 30 so that we can do more continuous optimisation. In

contrast, the rule for the continuous optimisation is as loose as max(di) > 1.00000001,

in order to facilitate the search for X2nd in different tries and Xopt.

After the conversions of the quasi-replicates and the reallocation of the numbers of

replicates, the final solutions of the hybrid method are taken to be X∗0,X
∗
1, . . . ,X

∗
8,X

∗
B,

when there are different parameter prior assumptions. To obtain the most reliable

results, some of them can be a little improved in a modified adjustment algorithm. In

the next section, we will revisit this useful tool which was first introduced in Chapter 3.

To make mutual comparisons of these results under a scenario Sr, for r = 0, 1, . . . , 8,

the fixed baseline is set to be the current X∗r which is local D-optimal if θ = θr. As

such, Table 4.6 summarises the calculated relative efficiencies of X∗0,X
∗
1, . . . ,X

∗
8,X

∗
B, all

relative to the baseline X∗r under the scenario Sr. We can do similar computation under

each scenario described in Table 4.5. The relative efficiencies of the baselines must be

100% under their respective scenarios, and these numbers are presented in bold font.

In this case, φBD is the arithmetic mean of the eight local criterion functions. It can

also be expressed as the logarithm of the geometric mean of the determinants of the

eight respective information matrices F(X,θr)TF(X,θr). Therefore, for r = 0, 1, . . . , 8,
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Table 4.6: Relative Efficiencies of Experimental Designs under Each of the Nine
Postulated Scenarios

Postulated Scenario

Design k ≈ 0.3122 k ≈ 0.1254 k ≈ 0.4990

S0 S1 S2 S3 S4 S5 S6 S7 S8

X∗0 100 91.57 91.28 91.74 92.14 97.32 96.85 96.86 97.20
X∗1 93.75 100 99.52 97.15 97.53 87.18 86.64 84.24 84.51
X∗2 94.02 99.56 100 96.45 97.68 87.19 87.50 84.09 85.13
X∗3 95.45 97.46 96.66 100 99.87 86.89 86.12 88.75 88.64
X∗4 95.34 97.11 96.53 99.91 100 86.58 86.00 88.67 88.75
X∗5 97.42 83.38 83.20 81.67 82.17 100 99.59 97.30 97.79
X∗6 96.96 82.88 83.37 80.53 81.66 99.59 100 96.12 97.38
X∗7 97.57 81.74 81.07 83.87 83.77 97.91 97.04 100 99.87
X∗8 97.45 81.45 80.96 83.80 83.87 97.56 96.90 99.91 100

X∗B 99.33 95.17 94.87 95.37 95.79 94.67 94.16 94.13 94.42

the relative efficiencies of X∗B must be lower than 100% under all the scenarios listed

in Table 4.5. Nevertheless, more emphasis of the criterion function ϕ is on the four

scenarios when X∗B could lead to a smaller determinant of its Fisher information matrix.

This is found to be the case when we assume k = 0.4990.

The expected D-criterion tends to compensate the loss from the four less efficient cases,

since its solution X∗B must be an optimal tradeoff among X∗1,X
∗
2, . . . ,X

∗
8, regarding

the support points and the corresponding replication. As a consequence in Table 4.6,

the fluctuation of the relative efficiencies of X∗B is most stable across the postulated

scenarios. Under the scenario S0 when θ = θ̃, its local D-criterion value is also much

higher than those of the other experimental designs. This is because of the similarities

between the X∗B and X∗0 we have obtained.

In comparison to the local D-optimal design X∗0, X∗B is more efficient if the current

scenario assumes k ≈ 0.1254 but it is less efficient otherwise. As such, the independent

normal parameter prior density ρ(k) not only influences the model nonlinearities but

also the expected D-criterion that maximises the function ϕ. Overall, there will be an

improvement if we favour X∗B over X∗0, as the variances and covariances of the parameter

estimators will be smaller.

While we assume model (4.5), the relative improvement is slight. This is because, the

efficiencies of the local optimal design X∗0 is very robust to the other three parameter

values (excluding k). Hence, there is not much room to improve it further, even if we

can still consider the uncertainties of the true parameter values. The result can also

be observed in Table (4.6): when the same value of k is assumed as a parameter prior

value for different local D-criterion functions, all the relevant efficiencies are found to be

higher than 96%. Under the current expected criterion, ρ(a0), ρ(a1), ρ(a2) do not make

much difference to improve the efficiencies of X∗B.
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This means that when we choose X∗B instead of X∗0, the main improvement will be in

the reduction of the standard error of the NLS estimate of k. We can obtain some ideas

about the variance-covariance matrix of the new estimator θ̂, when the assumption is

that the multivariate parameter prior distribution has no nonzero covariances. As the

Gauss-Hermite approximation φBD defines the total sample size m = 8, we can write

M1 =
m∏
r=1

(F(X,θr)TF(X,θr))−ω
(r)

; M2 =
m∑
r=1

ω(r)(F(X,θr)TF(X,θr))−1.

The two matrices above can be interpreted. M1 is the elementwise product of the

weighted inverses of the information matrices whereas M2 is the weighted sum of these

inverse matrices. The Fisher information is calculated for each of the sampled parameter

prior vectors θr and we shall also obtain the respective composite weights ω(r). As an

alternative, if one takes the matrix product instead of the elementwise product, there is

−log|M1| = φBD. Both M1 and M2 reflect some prior knowledge about the variance-

covariance matrix of θ̂, when the variance of the errors σ2 is assumed to be an unknown

constant. When X = X∗B, log|M1| = 43.2328 and log|M2| = 43.8144 as

M1 = 104


2.9861 0.0000 0.0000 0.0000

0.0000 3.3845 0.0000 0.0000

0.0000 0.0000 7.4340 0.0000

0.0000 0.0000 0.0000 7.9420

 ;M2 = 105


0.8476 0.2420 0.0708 0.0644

0.2420 0.6098 −0.2771 −0.2663

0.0708 −0.2771 1.3873 −0.9897

0.0644 −0.2663 −0.9897 1.4348

 .

In contrast, when X = X∗0, log|M1| = 43.2658 and log(|M2|) = 43.7183 as

M1 = 104


3.1441 0.0000 0.0000 0.0000

0.0000 3.3720 0.0000 0.0000

0.0000 0.0000 7.3857 0.0000

0.0000 0.0000 0.0000 7.8761

 ;M2 = 105


0.7976 0.2239 0.0790 0.0758

0.2239 0.6041 −0.2751 −0.2627

0.0790 −0.2751 1.3871 −0.9887

0.0758 −0.2627 −0.9887 1.4324

 .

We can look at M1 first. It appears that the variance of the NLS estimator k̂ will be

much smaller if we use X∗B instead of X∗0 for the new experiment. In contrast, that also

increases the variances of the other parameter estimators. Overall, the statistic of X∗B
is log|M1| = 43.2328, which is lower than that of X∗0. This is the result we would like to

see, as X∗B is thought to be the better choice under the assumption of the multivariate

normal prior density ρ(θ). Hence, M1 is a good measure of the information coming from

X, a fixed experimental design, though the matrix is approximately diagonal.

However, M2 does not look sensible as it takes the weighted sum of those inverse ma-

trices. In that case, X∗0 is shown to be better than X∗B in the precise estimation of the

model parameters. As the statistic of X∗0 is even lower, this result cannot be accepted.

As soon as we link M1 to the nonlinear model function and the efficiencies calculated

in Table 4.6, it is not hard to see the influences of X∗B on the specific parameters.

As shown in Table 4.5, the standard deviation of ρ(k) is larger than the others in ρ(θ),

which leads a vaguer univariate prior distribution. This is one reason that we can expect
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some improvement in the estimation of k, when the expected D-criterion replaces the

local one. Another important reason is related to the assumed model and its Fisher

information. While the other three parameters appear in the empirical exponential

function of the hybrid nonlinear model (4.5), k is the one from the theoretical Michaelis-

Menten equation. Hence, it is reasonable that the expected D-criterion will emphasise

the precise estimation of k.

On the other hand, the parameter prior values of both a1 and a2 have minor impacts

on the efficiencies, which almost reach 100% in some cases in Table 4.6. This implies

that even if we assume those two univariate prior densities ρ(a1) and ρ(a2), that would

not much affect the D-criterion and the overall precision in the parameter estimation.

Instead, it is even plausible to assume the point prior values a0 = ã0, a1 = ã1 and

a2 = ã2. Because of that, with respect to X∗0, X∗B is 99.33% efficient under the first

scenario S0, which is a similar experimental design.

We can make further comparison of the experimental designs and look for more details.

Figure 4.1 visualises the 30 runs of X∗0 as well as those of X∗B. While the integer to the

upper right of each bubble (or circular marker) represents the number of exact replicates,

the bracket near each bubble indicates the coordinate levels of the support point in X.

A rectangle is also drawn, which represents the bounded variable space X .

Under the scenario S0, the local D-criterion value of X∗0 is −43.0242. As we can see,

there are no conspicuous discrepancies between X∗0 and X∗B. To be specific, three of the

five unique experimental runs and the corresponding numbers of replicates are identical,

while the substrate concentration is set to 3mM in these cases. Overall, the adopted

coordinate levels of the protein weight are almost the same, whereas the substrate con-

centration levels are not. This is because of the normal parameter prior density ρ(θ) we

assume. Although the pseudo-Bayesian approach does not improve much the D-optimal

design for the kinetic model (4.5), if possible, one is still encouraged to use the more

robust expected D-criterion.

Figure 4.1: Local and Bayesian D-Optimal Designs of the Same Experiment
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Figure 4.2 visualises the local optimal solutions X∗1,X
∗
2, . . . ,X

∗
8 under the other scenarios

described in Table 4.5. We can first see the impact of the prior value of k, which is in

relation to the exact location of the bottom right bubble. If we assumes k ≈ 0.1254 under

one scenario, for instance, the substrate concentration level shall be set to the minimum

0.15 for this bubble. As the parameter values of the Michaelis-Menten equation are

different, the substrate concentration will have a low correlation with the initial rate

in this case. Otherwise, if the current scenario assumes k ≈ 0.4990, the substrate

concentration level is 0.39 whereas the protein weight remains 0.12.

Compared with the others, the variance of the univariate normal prior distribution ρ(a1)

is rather small under our assumption. Therefore, we cannot see much difference in the

results when a1 takes a different value. As we have mentioned, this is also because of

the linear behaviour of model (4.5).

Relatively, the variation in the parameter value a2 could take a more important role,

though its impact is also weak on the relative efficiencies of X∗0 and X∗B under various

scenarios. When a2 ≈ −0.3902, we can find five unique experimental runs in each case,

one of which will take two or three replicates. In contrast, when a2 ≈ −0.1821, the

model function is closer to linear and the number of support points n∗ is reduced to

four. As such, we can see almost the same numbers of replicates because the number of

parameters p is equal to four too. Hence, perhaps there is more than one local optimal

solution under these scenarios. Moreover, with a new value of a2, the linear behaviour of

the model is then different. It can lead to a modification of the current optimal location

of the top left bubble, along with the Fisher information matrix.

To summarise, it is clear that X∗B is a compromise among the various parameter prior

vectors. It should therefore be adopted to retain the most robustness to the uncertainties

of the true unknown parameter values. However, to use X∗B instead of X∗0, the premise is

that our assumption of the multivariate parameter prior density ρ(θ) is correct. When

the model is written as (4.5), this is unfortunately not the case since we assume an

inappropriate normal prior for the parameter k.

4.6 A Combination of Normal and Lognormal Priors

An alternative to the common normal prior will be a lognormal one for the parameter

k in the hybrid nonlinear model (4.5). In this section, we will discuss this change of the

parameter prior distribution. The mean of this lognormal prior should be equal to the

old NLS estimate k̃ whereas the variance is 10 times the old variance estimate. As such,

the new prior distribution we assume is k ∼ logN(−1.3171, 0.55312), which is equivalent

to log(k) ∼ N(−1.3171, 0.55312). Meanwhile, the remaining univariate parameter prior

distributions are normal as before and independent of the lognormal prior of k.
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Figure 4.2: Local D-Optimal Designs under Various Postulated Scenarios



Chapter 4 Bayesian Optimal Design of Nonlinear Multifactor Experiments 129

Our treatment for the lognormal prior is not the same. It demands a different ap-

plication of the same Gauss-Hermite quadrature in Section 4.2. A simple exponential

transformation of the lognormal prior values in the GH subsample is also required, which

is consistent with the work in Goos and Mylona (2013), for instance. As long as the

variance-covariance matrix of the multivariate parameter prior density ρ(θ) is diagonal,

the constraint k > 0 can be well satisfied. Hence, it is more reasonable to replace the

local D-criterion function φD with our assumed expected criterion function ϕ.

To approximate the multiple integral ϕ, it is time to determine the four subsample sizes

for the Gauss-Hermite quadrature. A constructive approach is to inspect and compare

the approximate values φBD, which are calculated with different GH samples in Table

4.7. As we can see, the lognormal parameter prior is a reasonable assumption. With

the increase in each subsample size, the approximate value will converge to a stable

level, which can be extrapolated to be the true value of ϕ. To ensure an accurate GH

approximation, we choose mk = 4 and ma1 = ma2 = 2 so that the total GH sample size

is m = 16. As such, we will be rather close to find the true value of ϕ, at least in both

evaluated cases (i.e.ϕ ≈ −47.9387 for Xref and ϕ ≈ −42.8326 for X∗0). Of course, an

even smaller GH sample can also be acceptable sometimes.

Table 4.7: Gauss-Hermite Quadratures in Different Orders for the Approxima-
tion of the Expected D-Criterion Value (Lognormal Prior)

Sample {k} {k, (a0), a1, a2}
Xref X∗0 Xref X∗0

mj=1 -47.7145 -42.5920 -47.7145 -42.5920
mj=2 -47.9426 -42.8347 -47.9405 -42.8336
mj=3 -47.9404 -42.8337 -47.9383 -42.8326
mj=4 -47.9409 -42.8338 -47.9388 -42.8327

mj=5 -47.9409 -42.8337 -47.9387 -42.8326
mj=6 -47.9409 -42.8338 -47.9387 -42.8326
mj=7 -47.9409 -42.8338 -47.9387 -42.8326
mj=8 -47.9409 -42.8338 -47.9387 -42.8326

As a reference, we also draw 10 uncorrelated Monte Carlo samples of θ of size 10,000

each. Each sample then leads to an independent PMC approximation of ϕ. The mean of

the 10 approximate values is −47.9263 for Xref , whereas the minimum and maximum are

−47.9652 and −47.8916. The arithmetic mean of the 100,000 local D-criterion values is

the closest PMC approximation to the true ϕ. The difference between the maximum and

minimum is reduced but is still nowhere near zero, compared with the previous result in

Table 4.4. Overall, it seems that the Gauss-Hermite quadrature is the more reliable and

accurate approximation, which also takes a rather small sample size. Likewise, the mean

of the 100,000 local D-criterion values is −42.8315 for X∗0, but this PMC approximation

of the huge size 100,000 is not too accurate when the true expected D-criterion value

extrapolated from the Gauss-Hermite quadrature is close to −42.8326. The minimum
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and maximum of the 10 approximate values are −42.8527 and −42.7879, which could

indicate the uncertainty of a PMC approximation of size 10,000.

As an alternative, we draw a univariate Monte Carlo sample of k, when the other param-

eter prior values are fixed at their respective means in θ̃. With the sampled parameter

prior vectors in this case, the overall mean of the 100,000 local D-criterion values is

−47.9483 for Xref , whereas the minimum and maximum of the 10 PMC approximations

are −47.9734 and −47.9212. Also for X∗0, the calculated mean is −42.8324, with the

minimum and maximum being −42.8532 and −42.7953.

There are some nice results when we assume the lognormal prior distribution for k. Then

it is worthwhile using the same hybrid exchange algorithm, which is subject to the new

assumption and the revised form of the joint p.d.f. ρ(θ). Moreover, the result will be

taken for the modified adjustment algorithm (the one we also used in the last section),

which is developed on the basis of the work in Donev and Atkinson (1988). It is included

to make a minor improvement in the result of the multistage hybrid method, which is in

line with the expected criterion function we assume. When the problems are simple, this

modified adjustment algorithm can ensure the final solution X∗∗B to be optimal, when

the criterion function will achieve the true maximum. Of course, this is not essential in

optimal design of experiments. If the third stage of the hybrid method does not make its

then solution X∗B much different from the best continuous optimisation solution Xopt,

we might not need the modified adjustment algorithm for further improvement.

In reference to the previous measure X∗B of n rows, first we must fix the number of unique

experimental runs n∗ as well as the respective numbers of replicates. The premise to

implement the modified adjustment algorithm is that these fixed numbers are assumed

to be the ones in the truly optimal X which will maximise the expected D-criterion

function. Under this condition, we work on the n∗ × v exact coordinate levels of the

support points, so the required computation is much simplified. In the brief description

below, we revisit the modified adjustment algorithm from Chapter 3. As usual, it uses

the coordinate exchange approach but is written in a different version, since we would

like to update all relevant replicate runs in one step:

The Modified Adjustment Algorithm After the Previous Exchange Algorithm

4.1 For k = 1, 2, . . . , v, determine the closest distance dk for the kth factor (or con-

trolled variable). While the column order of the v factors is fixed, sort the previous

solution X = X∗B in ascending row order. The X includes n∗ unique runs, each of

which correspond to a certain number of replicates. Calculate the initial Gauss-

Hermite approximation φBD for the X.

4.2 Reset k = 1 and flag Υ = 0.

4.3 Let i = 1 and i∗ = 1 be the starting values.
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4.4 Pick out the i∗th unique run of X, which corresponds to ni∗ replicates. The aim

is to find the best candidate as a substitute for the kth coordinate of the selected

unique run. It should then affect the relevant coordinates in the ni∗ replicates.

4.5 Create a subset of candidate coordinates Ω, for instance, on the basis of the closest

distance, a defined space [0.95Xik, 1.05Xik] (when the current coordinate value Xik

is nonnegative; the limits of this space can be changed to suit different examples),

and the variable space X . With the subset, do an optimisation for this unique

run and denote Xnew as the best candidate that maximises φBD. If Xik 6= Xnew,

execute the coordinate substitution for each replicate and set Υ = 1. Let i = i+ni∗ .

4.6 Unless i = n+ 1, let i∗ = i∗ + 1 and return to step 4.4 .

4.7 Unless k = v, let k = k + 1 and return to step 4.3.

4.8 Unless Υ = 0, return to step 4.2. Otherwise, save the current X as the final

solution X∗∗B , which is considered to be optimal under the expected D-criterion.

4.7 Final Results in the First Example

In simple Bayesian optimal design when n∗×v is a reasonable number (i.e. not too large),

the above procedure can make sure that our final solution is optimal. This is also an

alternative to doing a one-step optimisation of X when X∗B acts as the initial solution,

in order to maximise the expected D-criterion function. With the modified adjustment

algorithm and the assumed lognormal prior for the parameter k, the new result is shown

in Table 4.8, when the total Gauss-Hermite sample size is 16.

Table 4.8: New Optimal Design under the Lognormal Prior Assumption of k

(a) X∗B (b) X∗∗B

E S rep. E S rep. E S rep. E S rep.

0.026 3 8 0.12 0.23 7 0.025 3 8 0.12 0.23 7
0.086 3 7 0.12 3 7 0.086 3 7 0.12 3 7
0.096 0.3 1 0.096 0.3 1

The difference is on the first unique run, where the coordinate of the protein weight

has been updated through the modified adjustment algorithm. As a result, the Gauss-

Hermite approximation of the expected D-criterion value ϕ increases a bit from −42.8232

of X∗B to −42.8231 of X∗∗B . In addition, the final solution is quite similar to the one in

Figure 4.1, though we now assume a lognormal prior distribution of k.

In this simple example, the total number of coordinates from the unique runs is n∗×v =

10 and it is small enough to be dealt with. We could exploit the modified adjustment

algorithm further, in an attempt to reduce the amount of computation on a substantial
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scale. As we follow the above procedure, the final solution X∗∗B is then less dependent

on the qualities and efficiencies of the spectrum of X1st, which can be obtained after

an initial discrete optimisation. As such, we demand fewer of them for the continuous

optimisation of the hybrid method, so computation could be less intensive.

We still wish to see an efficient XB after the continuous optimisation, which is not hard

when n∗×v = 10. After the conversion of those quasi-replicates to some exact ones, the

intermediate solution X∗B should include suitable support points which can be further

refined and validated with the modified adjustment algorithm. As long as the number of

unique runs and the respective numbers of replicates are all correct, it is even acceptable

to set τ∗ = 1 as the number of tries during the continuous optimisation. In this case,

we might wish to adapt the configuration of the hybrid method as follows:

• We still do τ = 30 random tries for the discrete optimisation over the small 3× 3

candidate set Ω. As τ∗ = 1, it is safe to use a loose exchanging rule max(di) >

1.0001 and keep the most efficient solution X1st for the continuous optimisation.

To choose a proper rule, the critical value (or threshold) 1.0001 of this rule should

depend on the numbers n and p in the example.

• For the continuous optimisation, we use the exchanging rule max(di) > 1.00000001.

A loose rule makes it easier to determine the most appropriate n∗ and the repli-

cation of unique runs. It will facilitate the conversion of the quasi-replicates too.

• If the dimension v is not too high (e.g. less than four), we use the point exchange

approach instead of the coordinate exchange approach. We might therefore have

a better chance to find efficient solutions after the continuous optimisation.

After the above adaptation, the last piece of the jigsaw is to implement the modified

adjustment algorithm which can be made the most of. In the demonstration for this

example, we have obtained the same solution as in Table 4.8b, so it is unnecessary to do

more tries in the continuous optimisation. Even if the number n∗×v is not so small in a

different example, we still endeavour to use fewer tries to find an efficient final solution.

On the other hand, more computational effort will enable us to better validate numerical

results and make them more credible.

Another approach to deal with the lognormal prior density ρ(k), when we compute the

Fisher information, is to reparametrise model (4.5) as below:

νi =
exp(a0 + a1xi + a2xi

2)Si
exp(k′) + Si

+ εi (4.8)

where the substitution is k = exp(k′) such that k′ ∼ N(−1.3171, 0.55312). With the new

normal prior distribution, one shall compute the information matrix and the expected D-

criterion function ϕ for (4.8), which can be approximated with a different Gauss-Hermite
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quadrature. To be clearer, this is not an equivalent consideration to the previous one,

since the new statistical interest is in the estimation of k′ instead of the parameter k

in (4.5). As we do so, the upside is that a multivariate normal prior distribution can

be defined for the new parameters in θ, whereas the downside is the change of the real

experimental focus on the model. It is sometimes hard to refocus on the original model

after we use an advanced reparametrisation.

With the downside in mind, in this example, the D-criterion will be sensible, which is

independent of the numeric scale of each estimate in θ̂. It is therefore feasible to consider

model (4.8) after the simple reparametrisation. However, even if we use the D-criterion,

it is sometimes important to avoid complex transformations and even reparametrisations

on a nonlinear theoretical function. In practice, for instance, the transformation in (4.6)

is rare to be the most suitable form of the model. On occasion, the fitted transformed

model will not lead to a natural and meaningful interpretation of the true unknown

mechanism, which is often considered as the main experimental purpose. Although that

is not a serious concern in this example, the new experimental data should be collected

in order to fit the original model (4.5), even if the adopted D-criterion function ϕ is

derived for the reparametrised model (4.8).

In line with our earlier discussion, the reparametrisation of k will influence the nonlin-

earities of the specified model, as well as the parameter estimates under nonlinear least

squares. This is due to some sort of function linearisation implemented in the Gauss-

Newton algorithm (or the similar Levenberg-Marquardt algorithm), which we use for

nonlinear regression. Moreover, if we fit the reparametrised model to the approximate

data from Martins et al. (1999), the new estimate is k̃′ = log(k̃) = −1.1642 and there is

a different standard error as well. Given that we are interested in (4.5), the normal prior

distribution to be assumed must be k′ ∼ N(−1.3171, 0.55312), which is derived from the

fitted model without the reparametrisation.

It is important to examine that our assumption of the parameter prior distribution is

consistent with what we will do next in nonlinear regression. To approximate the new

expected D-criterion function ϕ, we can use the Gauss-Hermite quadrature of the same

total sample size 16. In other words, the GH approximation will be quite accurate when

ma0 = 1,ma1 = ma2 = 2 and the subsample size of k′ is four. As such, we find the same

final solution X∗∗B in Table 4.8, in spite of the simple model reparametrisation.

4.8 Approximation of the Spherical-Radial Transformation

To draw a deterministic sample from ρ(θ), recall that the Gauss-Hermite quadrature has

to complete p unidimensional approximations in a row, with respect to each parameter.

As a common quadrature rule, it will take all the combinations of the p univariate

subsamples to form the total GH sample. If the size of θ is large, we might need to
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consider a lot of sampled prior vectors, which then lead to a high computational cost in

the Gauss-Hermite approximation of ϕ.

In addition to various Gaussian quadrature rules, when the parameter prior density ρ(θ)

is informative to experimenters, varieties of nonrandom sampling methods are available.

There, the main purpose is to obtain an accurate numerical integration of the expected

criterion function ϕ, whereas an overview of this topic can be found in Yu et al. (2010).

Wherein, the spherical-radial (SR) transformation is most popular in recent years and

it was developed to fit some common Bayesian optimal design examples (Monahan and

Genz, 1997; Gotwalt et al., 2009). Hence, this section will provide a brief introduction

to the spherical-radial transformation.

First, it is known that the SR transformation can work quite well with at least the

multivariate normal density ρ(θ) (or the joint p.d.f. of independent normal priors).

To understand its core idea, we can rewrite the variance-covariance matrix of ρ(θ) as

Σ = DDT, where D is a lower triangular matrix to be found after a conventional

Cholesky decomposition. If the total sample size of the SR transformation is m, for

r = 1, 2, . . . ,m, a new expression of the rth sampling unit θr is θ̃ + D∆(r)ur. Here, ur

indicates a specific location to be sampled on the surface of a unit (p−1)-sphere S. This

means that the norm of ur is equal to (ur)Tur = 1, for r = 1, 2, . . . ,m. Meanwhile,

we denote ∆(r) as the radius in correspondence to this location, which can be sampled

from the continuous space [0,+∞). Altogether, ∆(r)ur can be treated as a sampling

unit from the multivariate standard normal distribution, which is similar to the role of

an abscissa for the Gaussian-Hermite quadrature. This sample is also independent of

the mean θ̃ and the variance-covariance matrix Σ of the assumed normal density ρ(θ).

With the same multiple integral to solve, the SR transformation endeavours to approx-

imate the volume of the hyperellipsoid region within the boundary of ϕ. It takes two

numerical integration steps on the basis of the above reparametrisation: 1. the evalua-

tion of an inner unit spherical integral in terms of u (though it is a line integral with the

dimension p− 1); and 2. the subsequent evaluation of the outer radial integral in terms

of one parameter ∆. Hence, we will draw a sample of the product ∆u before computing

the SR transformation sample of θ.

An extended simplex integration method (Mysovskikh, 1980) can be chosen to approxi-

mate the spherical integral and the approximation will be exact if the local D-criterion

function is a polynomial up to the degree (2 × 3 − 1) = 5. While the surface area of

a unit (p − 1)-sphere S is 2(π)p/2/Γ(p/2), the integration requires m1 = (p + 1)(p + 2)

deterministic draws of u such that∫
S
du =

2(π)
p
2

Γ(p2)
;

∫
S
φD(X|θ̃ + D∆u)du ≈

m1∑
r=1

w
(r)
1 φD(X|θ̃ + D∆ur)

2(π)
p
2

Γ(p2)
. (4.9)
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As usual, φD is the local D-criterion function in terms of the new parameters u and ∆.

In correspondence to each sampled parameter prior vector ur, the weight w
(r)
1 should

be computed, which depends on the number of parameters p. Hence, we can use (4.9)

to evaluate the inner spherical integral of ϕ.

On the other hand, ∆ in (4.9) can be integrated out of ϕ with the generalised Gauss-

Laguerre quadrature, which requires ρ(θ) to be joint normal. If the multivariate prior

distribution is nonnormal, one should reparametrise the model in order to normalise

the density ρ(θ) (Gotwalt et al., 2009). In that circumstance, the SR transformation

approximation of the adapted ϕ will suffer from a larger error due to the outer radial

integration. This is a crucial problem to be solved.

As one of the Gaussian quadrature rules, the generalised Gauss-Laguerre approximation

is exact if φD is a polynomial of degree 2m2 − 1 or less, where m2 is the subsample

size of the radius ∆. In our demonstration, we choose m2 = 3 in order to match

the approximation in the extended simplex integration. Now the expected D-criterion

function of X can be rewritten as

ϕ = (2π)−
p
2

∫ ∞
0

∫
S
φD(X|θ̃ + D∆u)du ∆p−1e−

∆2

2 d∆. (4.10)

After a further substitution z = ∆2/2, the above can be integrated as

ϕ(z,u) =
π−

p
2

2

∫ ∞
0

∫
S
φD(X|θ̃ + D

√
2zu)du z

p
2
−1e−zdz

≈ π−
p
2

2

(
w

(1)
2

∫
S
φD(X|θ̃)du+

m2∑
r=2

w
(r)
2

∫
S
φD(X|θ̃ + Dz(r)u)du

)
,

(4.11)

where a zero coordinate is added as the first of the sampling units or generalised Gauss-

Laguerre abscissas z(r) (i.e. Dz(1)u = 0). Besides, w2 is the associated weight. If we

use (4.11) for the radial integration, the fundamental assumption ∆u ∼ N(0, I) should

not be violated when we assume the parameter prior distribution. As (4.11) can be

combined with (4.9), the total sample size is m = 1 + (m2 − 1)m1 = 1 + 2(p+ 1)(p+ 2)

for conventional SR transformation approximation.

Now we can calculate the prior vectors of θ. For r = 1, 2, . . . ,m2, it could be observed

that each nonzero abscissa z(r) is identical to one root of the generalised Laguerre poly-

nomial Ls+1
m2

(z), where s = p/2− 1 (Krylov and Fedenko, 1962). Let o = m2 − 1. With

respect to the generalised Gauss-Laguerre quadrature (Cassity, 1965; Kopal, 1961), the

weight in correspondence to z(r) should be computed with the formula

w
(r)
2 =

Γ(m2)Γ(m2 + s)

(m2 + s)(Ls
o(z

(r))o!)2
,
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for r = 1, 2, . . . ,m2. The sum of these is
∑m2

r=1w
(r)
2 = Γ(s+1) = Γ(p/2), which is a term

to be cancelled out in the SR transformation. Notice that our definition of the generalised

Laguerre polynomial Ls
o incorporates the constant denominator o! which is suppressed

sometimes in the literature (since it will be cancelled out with the same numerator o!).

In the most common cases when the SR transformation sample requires two or three

units of the radius, Gotwalt (2010) simplified and rewrote the above formulae of the

radii and the weights in terms of the number of parameters p, where the original weights

were also divided by a gamma function Γ(p/2).

We have chose the total sample size to be m = 4 × 1 × 2 × 2 = 16 to construct the

Gauss-Hermite quadrature. However, when the model is complex with more parameters,

the GH approximation will become a bit expensive in computation. In contrast, if we

assume a multivariate normal prior density ρ(θ), the SR transformation sample size is

m = m3(m2 − 1)(p + 1)(p + 2) + 1, where m2 = 3 and m3 = 1 are the numbers for

its standard version. We can use an integer m3 > 1 to indicate the number of random

orthogonal matrices which can be integrated into the approximating function in (4.9).

This is a dedicated approach for improving the spherical integration (Monahan and

Genz, 1997), whereas m1 = (p+ 1)(p+ 2) is fixed. Besides, when we will sample at most

three model parameters from the assumed multivariate prior distribution (i.e. rather

than to fix their prior values at constants), there will be some quasi-replicates of θr at

times. This can be considered to reduce the total sample size.

However, the spherical-radial transformation is not flawless. The outer radius integration

should follow the Gaussian quadrature rule, so it can be improved when we increase the

subsample size m2. In contrast, to improve the inner spherical integration, Monahan

and Genz (1997) mentioned that we can choose a number m3 > 1 so as to introduce

some randomness into the subsample of u. This is plausible because if Q is a random

orthogonal matrix, (DQ)T(DQ) = DDT = Σ is identical to the variance-covariance

matrix, though the sampled parameter prior vectors will be different.

When m3 = 1, the standard SR transformation can deliver an exact approximation

of ϕ, as long as φBD is a linear function of degree five or less. On the downside, it

is hard to make further improvement in this approximation, even if we increase the

sample size m3. Compared with the Gauss-Hermite quadrature, the standard sample

size of the SR transformation is sometimes smaller but that would not be the case

if we increase m3 at the same time. If the extended simplex integration fails to be

an accurate approximation, it is then problematic to eliminate the error of the overall

SR transformation approximation. This can happen when we assume some excessive

variances or covariances in Σ or when ρ(θ) is not a multivariate normal density. If we

must define a large m3, sometimes it is better to use the Gauss-Hermite quadrature.

The SR transformation can be implemented to approximate ϕ in the JMP software,

where the built-in computer algorithm uses the coordinate exchange approach (Gotwalt
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et al., 2009) and thus will resort to unidimensional optimisation with the Brent’s method

(Brent, 1973, chap.5). This is incorporated as a convenient function for Bayesian optimal

design. In our example, however, we would like to make the results more comparable.

What we have done is to adapt the hybrid method as well as the modified adjustment

algorithm, in order to approximate ϕ with the standard SR transformation (i.e. the

numbers are m2 = 3 and m3 = 1) instead of the Gauss-Hermite quadrature.

In the current example, three of the four parameters (if a0 is taken into account, the

sample size is m = 61 for the standard SR transformation) should be integrated out

from ϕ. If the tailored SR transformation sample includes the 12 quasi-replicates of θr,

for r = 1, 2, . . . ,m, the total sample size is m = 41 as we then use it to approximate the

expected D-criterion function.

In comparison to the Gauss-Hermite quadrature of the sample size m = 4×1×2×2 = 16

from the last section, the SR transformation appears to be less flexible as it assumes

the equal importance of the parameters of the interest. If we use the Gauss-Hermite

quadrature, we can do a quick numerical investigation in order to determine a suitable

subsample size for each parameter. The GH subsamples are then summarised to form

an overall GH sample of the parameters. In contrast, even though we can do similar

computation to determine the SR transformation, we cannot see the result in more

details. This is because, after the reparametrisation of ϕ, our attention is drawn to u

and ∆. On the one hand, this makes the standard SR transformation sample size smaller

when the number p is large. On the other hand, this disallows us from evaluating the

impacts of the individual parameter priors on ϕ.

After we deduct the number of quasi-replicates, the sample size of the SR transforma-

tion is m = 29. It therefore takes more computational cost to approximate ϕ. Besides,

to circumvent the trouble to deal with the lognormal prior of k, we use the expected

D-criterion function for the reparametrised model (4.8), where the multivariate param-

eter prior distribution is normal. As a result, the final solution X∗∗SR is identical to that

in Table 4.8. In this case, the SR transformation also leads to an almost identical ap-

proximation of ϕ (the approximate value of which is −45.457373) as the Gauss-Hermite

quadrature (the approximate value of which is −45.457368). This shows that the results

of the SR transformation are reliable and interpretable in this example.

4.9 A Follow-Up Example in Optimal Design

In this section, we consider a complex hybrid nonlinear model in Chapter 2, which

involves three controlled factors. The number of experimental runs is smaller, so there

will be fewer replicates on the support points. Besides, more support points must be

chosen to estimate the model parameters, so it is more difficult to find the Bayesian

optimal design. The parameter prior also becomes less informative in this case, since
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we use a smaller reference dataset to derive θ̃. As such, we should perhaps increase the

Gauss-Hermite sample size to ensure an accurate approximation of ϕ. It will then take

more computational effort to maximise the function φBD.

In this example, we assume a new experiment which is same as the one in Mountzouris

et al. (1999). The main interest is to learn the unknown mechanism of the enzymatic

depolymerisation of a dextran (i.e. the substrate). The desirable reaction products are

different types of oligodextrans. This reaction can take place in a stirred-cell membrane

reactor, which the experimenters can monitor. In this case, endodextranase works as

the enzyme activator which plays a crucial role in the depolymerisation of the dextran.

Furthermore, there are three controlled variables: the substrate concentration S (2.5-7.5

% in w/v or weight/volume), the enzyme concentration E (0.625-62.5 Units ml−1 times

substrate concentration) and the transmembrane pressure P (200-400 kPa).

In the original experiment in Mountzouris et al. (1999), there were multiple responses

to be observed and each corresponded to a unique empirical model. In this example, we

focus on one response, the substrate conversion rate ξ (%), which should be measured

at a fixed reaction time. The previous experimental data is in relation to an 18-run

face-centred central composite design (Table 4.9). It will act as our reference which is

used to fit the model and compute the reference nonlinear least squares estimate of the

model parameters. Note that the 16th run of the reference experiment failed so that

the observation had been discarded. Therefore, the 16th observed response is missing

in Table 4.9. For our convenience, this omission does not prevent us from assuming the

same variable space X for the planned new experiment.

Table 4.9: The 18-Run Reference: A Central Composite Design with the Data

S E P ξ S E P ξ S E P ξ

5 6.25 300 73.6 2.5 62.5 400 95.2 7.5 62.5 400 82.7
5 6.25 200 81.6 7.5 6.25 300 77.3 2.5 6.25 300 90.0
5 62.5 300 76.0 5 6.25 400 69.0 2.5 0.625 400 55.2
5 6.25 300 69.4 7.5 0.625 200 43.3 7.5 0.625 400
5 6.25 300 73.6 2.5 0.625 200 62.8 7.5 62.5 200 87.0
5 0.625 300 50.5 5 6.25 300 74.0 2.5 62.5 200 96.0

No mechanistic model could be identified for a reasonable interpretation of the observed

response surface of ξ, so an empirical functional relationship must be built as a surrogate.

In spite of the relative convenience of constructing a purely empirical model, it is more

challenging but will be useful for us to fit a hybrid nonlinear model instead. This model

should combine our current scientific understanding about the unknown mechanism with

an established empirical function. While the remaining conditions are under control, we

can observe a negative relationship from the old dataset. Within the variable space X
of experimental interest, the higher the substrate concentration S the experimental run

specifies, the lower the conversion rate ξ is.
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The true mechanism behind this reaction seems to be complicated, but if we remove a

number of restrictions in the mathematical derivation, we end up with a simple relation-

ship between the two variables as ξ = β1S/(β2 + S) + ε′. β1, β2 are unknown constants

and ε′ is the error term for the experimental observation. While β1 is a nonnegative

ratio, β2 can control the curvature of the model function. This simplified and smooth

model can be adopted as the base of the overall hybrid nonlinear model, regardless of

the unknown mechanism.

The conversion rate ξ is the quotient of the instantaneous substrate concentration (mea-

sured after the reaction) to the initial concentration, so a transformed response can be

chosen as ξ/(100− ξ), which is a logit function without the logarithmic scale. As such,

we can obtain the next model ξ/(100 − ξ) = γ1S(γ2 + S) + ε′′. Two more controlled

variables should be included afterwards, so we are inclined to replace the nonnegative

constant γ1 in this model with an exponential function in terms of E and P . As usual,

some transformations of these variables will be suitable. Here, for i = 1, 2, . . . , n = 18,

we can compute two simple scaled variables

xE,i = log10

(
Ei

6.25

)
∈ [−1, 1]; xP,i =

Pi − 300

100
∈ [−1, 1].

With the six parameters a0, a1, a2, a3, a4, a5, the hybrid model can be established as

ξi
100− ξi

=
exp(a0 + a1xE,i + a2xP,i + a3x

2
E,i + a4x

2
P,i)Si

a5 + Si
+ εi. (4.12)

The NLS assumptions are the zero mean and the constant variance of the error εi, across

the 18 uncorrelated observations. This model is similar to (4.5), but it is an empirical

one and unrelated to the Michaelis-Menten mechanism. In the numerator of this model

function, the exponential function excludes an interaction term between the two scaled

variables. This is because the interaction will not contribute much to the model fitted

to the data in Table 4.9. In comparison, model (4.12) uses fewer parameters than a

full second-order linear model whereas it is not difficult to interpret such a close-to-

linear model. Besides, the true value of a5 should not be smaller than −2.5, minus the

minimum of the initial substrate concentration. The value a5 = 0 is undesirable too,

which will assume the substrate concentration to be independent of the response ξ.

When the substrate concentration S is fixed, the model function (without the error) can

be transformed into a simple linear function E(log(ξ/(100 − ξ))) = a0 + a1xE + a2xP +

a3x
2
E + a4x

2
P , the response of which is a logit function. As we assume that model (4.12)

reflects the true nonlinear response surface, we can find the Bayesian D-optimal design

for (4.12). This requires the same hybrid exchange algorithm to do a sufficient number

of tries (i.e. τ = 30), along with the modified adjustment algorithm.

When we determine the multivariate prior distribution of θ, it is feasible to assume all

the covariances to be zero in Σ. As such, the Gauss-Hermite subsample for each model
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parameter can be drawn from the respective univariate prior distribution. To obtain the

prior information, we fit model (4.12) to the reference data in Table 4.9. The estimate

is θ̃ = {ã0, ã1, ã2, ã3, ã4, ã5} ≈ {0.4340, 1.3140,−0.1059,−0.8224, 0.4105,−2.0633}. θ̃ is

then chosen as the mean of the prior density ρ(θ), the standard deviations of which are

set to {0.1936, 0.3717, 0.0537, 0.4492, 0.2611, 0.0822}, which are
√

5 times the standard

errors we find in the NLS estimation. While we could assume univariate normal prior

distributions for the parameters a0, a1, a2, a3, a4, it is sensible to consider ρ(a5) + 2.5

as a lognormal distribution, for instance. In this case, a5 > −2.5 indicates the lower

limit when we are to sample the prior values of a5, so the assumption is ρ(a5) + 2.5 ∼
logN(−0.8459, 0.18672). Given the small standard deviation in this case, one can even

assume a normal prior for a5 without much trouble in computation.

To obtain an accurate approximation of ϕ, we should find a suitable Gauss-Hermite

subsample size for each parameter when the other GH subsample sizes are fixed to

one. With the central composite design in Table 4.9 as the reference, the results of

our numerical investigation are shown in five of the columns in Table 4.10. Recall that

we can fix the prior value of a0 to the constant ã0, since its univariate normal prior

distribution does not affect the expected D-criterion. For the last column, we combine

all the GH subsamples which are of equal size mj , for mj = 1, 2, . . . , 8. As such, the

true expected D-criterion value ϕ should be near 32.2518.

Table 4.10: Gauss-Hermite Approximations of the Expected D-Criterion Value

{a5} {a1} {a2} {a3} {a4} {(a0), a1, a2, a3, a4, a5}

mj=1 31.9290 31.9290 31.9290 31.9290 31.9290 31.9290
mj=2 31.9349 32.0408 31.9416 32.0760 31.9781 32.2502
mj=3 31.9348 32.0439 31.9415 32.0758 31.9778 32.2518
mj=4 31.9348 32.0440 31.9415 32.0755 31.9778 32.2519

mj=5 31.9348 32.0439 31.9415 32.0756 31.9778 32.2518
mj=6 31.9348 32.0439 31.9415 32.0756 31.9778 32.2518
mj=7 31.9348 32.0439 31.9415 32.0756 31.9778 32.2518
mj=8 31.9348 32.0439 31.9415 32.0756 31.9778 32.2518

The variance of ρ(a5) is small, since the reference data is quite suitable for the estimation

of a5. As a result, we can use a small Gauss-Hermite subsample for a5. According to

Table 4.10, our intuitive choices of the six subsample sizes are ma1 = ma3 = 3,ma2 =

ma4 = ma5 = 2,ma0 = 1 for the model parameters. As such, the total Gauss-Hermite

sample size is m = 72, smaller than the size 85 of the alternative standard SR transfor-

mation sample. We now draw this GH sample and construct the function φBD, which

we endeavour to maximise with an optimal X.

In our example, the closest distance is set to 0.01 for S ∈ [2.5, 7.5], 0.005 for E ∈
[0.625, 62.5], and 0.1 for P ∈ [200, 400]. The traditional discrete optimisation over the

complete candidate set will be slow and cumbersome, so the hybrid method is useful. The
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final solution X∗∗B is illustrated in Table 4.11. All the substrate concentration levels are

equal or at least close to the lower limit 2.5, which is defined in the continuous variable

space X . To estimate the six model parameters, there are n∗ = 9 support points and

most of them correspond to two exact replicates. As we can see, this solution is quite

similar to the local D-optimal design we have shown in Chapter 2. Hence, if we assume

a close-to-linear hybrid model similar to (4.12), sometimes the expected D-criterion will

not improve much the result under the local D-criterion. In spite of this, if possible, we

should continue to use the Bayesian optimal designs for validation purposes in practice,

which are most robust to the assumed variations in the true parameter values.

Table 4.11: Optimal Design of the Experiment under the Expected D-Criterion

S E P rep. S E P rep. S E P rep.

2.5 2.75 200 3 2.5 20.31 200 2 2.5 62.5 400 2
2.5 17.85 400 2 2.5 62.5 200 2 3.09 62.5 200 1
2.5 20.3 288.1 2 2.5 62.5 289.1 2 3.12 27.075 200 2





Chapter 5

Model Transformation under

Michaelis-Menten Mechanisms:

Optimal Design of Experiments

for Transform-Both-Sides Models

5.1 Review of the Michaelis-Menten Equation

In this section, we continue to discuss Michaelis-Menten kinetics and we will first in-

troduce more biochemical background. As a chemical application of the rate laws, the

fundamental two-step mechanism of Michaelis-Menten kinetics can be expressed as

Enzyme
Et

+ Substrate
St

kf
�
kb

Intermediate
It

k2−→ Enzyme + Product
Pt

. (5.1)

We denote the initial concentrations of the enzyme and the substrate as E and S, when

the reaction takes place in a solution of fixed volume. As the current time in the reaction

is t, the corresponding instantaneous concentrations can be written in mathematical

equations Et = E − It and St = S − It (as long as the product concentration Pt is

negligible), where It is the concentration of the intermediate (or an enzyme-substrate

complex in Michaelis-Menten kinetics).

Decomposition or dissociation of the intermediate will regenerate free enzyme molecules

in the overall equivalent concentration, so there is no irreversible consumption of the

enzyme. Moreover, the denotions kf , kb, k2 represent the rate constants (or reaction rate

coefficients) for each step of Michaelis-Menten kinetics, which link those instantaneous

concentrations to the reaction rate. All the rate constants are dependent on several

influential factors or latent variables that exclude the current time t.

143
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At the reversible first step, the classical Michaelis-Menten equation is on the basis of

the rapid equilibrium assumption such that the expected reaction should be rapid

enough to attain chemical equilibrium. As such, Et, St and It are all approximately

constant before and after the rate measurement time t. Meanwhile, in the vicinity of

time t, the equation −∂St/∂t = kfEtSt = kbIt should hold at least in a short period.

In general, the rapid equilibrium assumption requires low reaction speed in the second

step: i.e. kfEtSt = kbIt � k2It since there should be no appreciable increment in Pt.

Here, both St and It are assumed to be constants and there is also kb � k2.

The mathematical derivation continues. As long as kf and kb are fixed rate constants,

the ratio k = EtSt/It = kb/kf should be a constant too, which can be defined as the

substrate dissociation. Under the rapid equilibrium assumption imposed at time t, the

instantaneous intermediate concentration is equal to

It =
(E − It)St

k
=

E

(k/St) + 1

after rearrangement of the fraction. Meanwhile, the second step of the mechanism can

be interpreted as a first-order reaction step, so the reaction rate of the intermediate is

νt = k2It =
k2ESt
k + St

at time t.

This is defined as the classical Michaelis-Menten equation, when it excludes the ob-

servational error of the response. Michaelis and Menten (1913) monitored the whole

course of the enzymatic reaction and thus attempted to learn the developed kinetics

over the time flow. However, a simpler research approach is to aim at the observation

of the initial rate ν at t → 0. As such, the response should be measured at the very

beginning of the reaction before an appreciable decrease of the substrate concentration.

With the condition t→ 0 (or S � E in a large excess), both It and Pt are to be small

in comparison to the instantaneous substrate concentration such that St = S would be

a reasonable substitution. The initial substrate concentration is often known since it

is under experimenters’ control. An alternative to the above condition (t → 0) is that

νt is considered to be insensitive to the substrate concentration, which will require an

extreme value for the ratio k = kb/kf > 0.

Given the fulfilment of the assumptions, we can build up the mechanistic relationship

between the initial rate ν and the (initial) substrate concentration S as

ν =
k2ES

k + S
.

Furthermore, when the intermediate concentration It is close to E, i.e. almost all re-

ceptors of the enzyme molecules will be occupied and in the bond with the substrate

molecules, there would be ν → k2E as the initial rate is approaching its upper limit.
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For the same simple Michaelis-Menten kinetics, Briggs and Haldane (1925) took both re-

action steps into account in the equilibrium. In their case, the modern Michaelis-Menten

equation could be established under the quasi-steady-state assumption (QSSA) de-

scribed in the text below. The classical and modern equations are in identical forms but

the respective constraints or premises are not the same under the different assumptions.

As the reaction starts at t = 0, there is a brief and rapid acceleration of the reaction

rate until it arrives at ν which we will measure. This acceleration is not considered in

the Michaelis-Menten equation but it exists as we have to wait for molecular collisions

which will lead to the bond of the enzyme and the substrate. It shall also increase the

instantaneous intermediate concentration It from zero to a certain constant level before

we look into the kinetics and its indispensable assumptions.

The response ν is the initial rate so that we expect an immediate finish of the rate

acceleration. Afterwards, the enzymatic reaction should be able to achieve a balance

called the quasi-steady-state. It would last for a short while when the instantaneous

substrate concentration consumption is quite low. As the substrate concentration then

decreases with passing time, the rate will start to decelerate after some point. Before

this rate deceleration becomes influential, the concentration It could be approximately

constant under the QSSA and this is when the response νt should be measured. In other

words, at a suitable time t, the equation ∂It/∂t = 0 should be satisfied under the QSSA

and thus we can write

kf (E − It)St = kbIt + k2It.

This equation illustrates the quasi-steady-state in the two-step Michaelis-Menten mech-

anism, where the reversible reaction step (valid in both directions) is of second order

and the forward reaction step is of first order. As long as it holds from the start of the

reaction, the product formation (not the substrate conversion in this mechanism) can

be approximated to be proportional to the time span. If experimenters wish to measure

the reaction rate νt, it is constant and can be expressed in the equation

νt = k2It =
kfk2ESt

kb + k2 + kfSt
=

k2ESt
kb+k2
kf

+ St
.

Generalisation of this equation will be useful. Let νmax = kcatE = k2E and k = kb+k2
kf

.

Here, k is the substrate dissociation under the QSSA and it is different from the one under

the rapid equilibrium assumption. At times, the modern Michaelis-Menten equation

below can be applied to illustrate more complex kinetic mechanisms in addition to the

simplest Michaelis-Menten mechanism (Cornish-Bowden, 2004, chap.2):

νt =
kcatESt
k + St

=
νmaxSt
k + St

at time t. (5.2)

Here kcat represents the rate constant of the second reaction step and it indicates the

overall impact of the enzyme on the rate. Likewise, the remaining denotions also contain
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some biochemical meanings: νmax implies the theoretical maximum rate at time t and it

is constant when the enzyme concentration is fixed in (5.2); k is also called the Michaelis

constant of which the unit of chemical measurement is the same as that of concentration.

If the molar concentration of the selected enzyme is unknown (e.g. since it is unpurified

or its molecular mass is uncertain), then the substitution νmax = kcatE would be favoured

as the Michaelis-Menten equation then circumvents the independent variable E. In

studies of more advanced kinetics, sometimes kcat cannot defined as the rate constant

for the second step of the Michaelis-Menten mechanism. For example, the following

mechanism involves another reaction step in the formation and decomposition of the

complex EI. Although it follows Michaelis-Menten kinetics overall, both kcat and k

would depend on the rate constants k2 and k3:

Enzyme
Et

+ Substrate
St

kf
�
kb

Intermediate-1
EtSt

k2−→ Intermediate-2
EtIt

k3−→ Enzyme + Product.

There are some such kinds of mechanisms that could require minor modification in the

interpretation of the Michaelis-Menten equation. Besides, one should also examine the

assumptions for each biochemical reaction and make sure there is no misuse of scientific

equations or mechanistic models.

Let us return to the simplest two-step Michaelis-Menten mechanism (5.1). As the initial

rate is measured as the response, we can expect the relation St ≈ S. Then it is often

most sensible to assume the rate νt to be constant in a narrow time span for those t→ 0.

Hence, there is Pt ≈ tνt. If we consider the classical rapid equilibrium assumption, it

can hold for a little longer when the rate constant k2 is smaller (i.e. the second step of

the reaction is slower) or when the response measurement time is earlier (i.e. when the

substrate conversion rate is lower).

In contrast, the new QSSA takes account of the rate for the second step too and it is

therefore more realistic. Under the modern Michaelis-Menten equation that can

be derived under the QSSA, the relevant experimental constraints tend to

be less strict. In this case, the balance of the whole mechanism is what we shall care

most about. Up to the time of the response measurement, there should not be a great

decrement on the instantaneous substrate concentration St. Hence, like the rapid equi-

librium assumption, the QSSA does not suit some fast reaction kinetics. Nevertheless,

the QSSA can tolerate a higher instantaneous product concentration Pt which does not

have to be near zero in this case. Under the QSSA, It and Et = E − It are considered

to be constant and then so is the rate νt = kcatIt.

The new benefit is that, even though the time-independent rate constants kcat and kf

are not often much smaller than kb (this makes sense because St + It + Pt = S), the

Michaelis-Menten equation can hold if the following condition is satisfied. As long as we

assume St � Et or equivalent St → S, which could happen at reaction time t→ 0, the
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state ∂It/∂t = 0 will be able to hold for a short time. An alternative exposition is that,

since It = E/(k+St)St, the condition E/(k+St)� 1 or approximately E/(k+S0)� 1

will be desirable as one wishes to reduce the percentage of substrate consumption.

When the observed response is the initial rate, the Michaelis-Menten equation is

ν =
kcatES

k + S
=
νmaxS

k + S
at time t→ 0. (5.3)

Here the QSSA should be applicable for most mechanisms, except for those of fast

reactions. Most kinetic studies focus on the initial rate, but there is another area for

research. If the measurement time t is an independent variable according to the time

course kinetics, the rationale behind the Michaelis-Menten equation would be invalid. In

that case, a closed-form mathematical solution should be derived to determine kcat and k

of the nonlinear reaction rate equation (Beal, 1983; Schnell and Mendoza, 1997). It then

leads to a different rate equation which can also be used to validate the Michaelis-Menten

equation (5.2) under the QSSA.

5.2 More Assumptions under Michaelis-Menten Kinetics

Prior to our discussion of the error structure of the Michaelis-Menten model, it is worth-

while mentioning some mechanistic assumptions behind the modern Michaelis-Menten

equation, in addition to the foremost one, the QSSA.

First, we can look at the stepwise reactions under the simple Michaelis-Menten mecha-

nism (5.1). To comprehend fundamental enzyme kinetics, it is most common to assume

the formation of the sole intermediate (often called the enzyme-substrate complex) step

to be second-order and bimolecular. In mechanism (5.1), in other words, this reaction

in the forward direction is considered to be first-order in both concentrations E and S

(i.e. the stoichiometric coefficients or colliding molecular entities take value one). This

means that the reaction will take one step and every enzyme molecule involved has only

one active site that could collide and bind with the substrate molecules. This is the

basic mechanistic assumption under the QSSA.

The natural form of an enzyme could be a protein in living cells or organisms. Their

molecule sizes are always much larger than those of the substrate. In Michaelis-Menten

kinetics, as the molecules of the two reagents bind with each other, the overall activation

energy required to convert the substrate to the desirable product will decrease. As we

now consider the role of the enzyme, the second mechanistic assumption is the

conservation law of molar concentrations, which requires Et + It to equal the initial

enzyme concentration E at time t. In practice, however, the enzyme might lose its

full effectiveness in the course of the reaction such that the actual decrease of Et + It
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violates the conservation law. Due to the potential progressive enzyme inactivation, it

is therefore most convenient to measure the initial rate when t→ 0.

The simple Michaelis-Menten mechanism does not consider the effects of the allosteric

regulation or the cooperative binding elaborated in the famous Hill equation. Both could

exist, for instance, in complex metabolisms in living cells (Tracy and Hummel, 2004) and

their latent effects could depend on the nature of specific reactions and reagents. More

importantly, the inhibition effects of either the intermediate or the products (and some-

times byproducts) should be taken into account and that might lead to a modification

of the simple Michaelis-Menten equation. Hence, the third mechanistic assumption

is that no inhibitors or additional activators are involved in the biochemical reaction.

A violation of this assumption could also make the conservation law and the Michaelis-

Menten mechanism (5.1) uncomprehensive.

When there is more than one reagent species, the biochemical reaction can be presumed

to be stable and continuous over time (when the true mechanism could be assumed).

This requires the experimenters to stir the solution (i.e. a mixture of different reactants)

to make the present reactants diffusive. Otherwise, an observational error is unavoidable

in the experiment and the model. A perfect experimental environment should be a closed

biochemical system with a constant volume of the buffer solution and an ideal mixture

of the reactants, which almost never exists in practice.

The rate constants must be independent of the concentrations of all the reactants. As

we can learn, when the initial substrate concentration S is too low in relative to the fixed

E, the initial rate would increase in direct ratio to the substrate concentration. This is

because a lot of the substrate molecules would be free in this case, which can then collide

and bind with the enzyme molecules. As a result, a certain fraction of the collisions will

be successful so as to form the intermediate or the enzyme-substrate complex. However,

it is rare to use such low substrate concentrations for the experiment.

On the other hand, when S � E, which is an optional requirement under the QSSA, the

reaction rate will also approach to the upper limit νmax quickly. As the reaction starts,

almost all the active sites of the enzyme will be occupied so that we can find It � Et

under the QSSA. As the free enzyme concentration is so low, the reaction rate will cease

acceleration soon and then it can be measured as the initial rate at t→ 0. Of course, as

the reaction goes and the substrate is consumed at length, the same condition cannot

be maintained. A recognisable and continuous decrement on ν = ∂Pt/∂t is to follow

after some point, even if the conservation law holds. Here our discussion can show how

the rate could change in the course of a reaction.

To illustrate Michaelis-Menten kinetics through mathematical deductions, the fourth

mechanistic assumption is the application of rate laws or rate equations to the fun-

damental two-step Michaelis-Menten mechanism. These rate laws shall hold when the

experiment is conducted in a perfect environment described above. Thus the quantitative
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changes of the intermediate concentration can be explained. In this simple mechanism,

Intermediate→ Enzyme + Product; Intermediate→ Enzyme + Substrate

are both first-order reaction steps while

Enzyme + Substrate→ Intermediate

is of second order. The three stoichiometric coefficients are equal to one, so the law of

mass action applies to this bimolecular reaction. Considering Michaelis-Menten kinetics

as a whole, the differential equations can be written as

∂St/∂t = kbI
α3
t − kfE

α1
t Sα2

t ; ∂Pt/∂t = kbI
α4
t , (5.4)

where the four reaction orders are determined as α1 = α2 = α3 = α4 = 1. These orders

should not be confused with the stoichiometric coefficients and as each of them is one,

the rates in the individual steps are all proportional to the reactant concentrations.

The rate laws shall hold at least for unimolecular elementary reactions, which require

just one step from the reactant to the ultimate product. In that case, the stoichiometric

coefficients are identical to the reaction orders too. Meanwhile, if an elementary reaction

is bimolecular or even has a larger molecularity, the circumstance will be complicated as

we should consider the reactant diffusion and mixture. Without adequate experimen-

tation to study those composite (i.e. multi-step) mechanisms, it is hard to determine

appropriate reaction orders and thus use the rate laws, even though the stoichiometric

coefficients are often known.

The Michaelis-Menten equation is the basis for many studies of single-substrate enzyme

kinetics. However, more advanced reaction mechanisms could involve the formation of

several reactive intermediates and some concurrent reaction steps. While a reaction

could either make or break some bonds between the enzyme and the substrate, the rate

equations have to be applied to derive the overall kinetic function if each step of the

mechanism is informative. For instance, Kopanchuk et al. (2006) studied a mechanism

of a dual binding kinetics, which is a bit similar to Michaelis-Menten kinetics. Hence, a

unique statistical model can be derived from the relevant rate laws.

The rate laws also describe how the substrate concentration (or free enzyme concentra-

tion) varies in a specific time span. In the simple Michaelis-Menten mechanism, the two

differential equations above indicate the velocities of the substrate consumption and the

product formation at the measurement time t from the start of the reaction. However,

even in a simple bimolecular reaction step, the relevant rate laws are reliant on the speed

and the effect of the reactant diffusion and mixture.
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Furthermore, the mixture of the two reagents will depend on their initial concentrations

in the solution as well as the intervention of experimenters. If a solution is stirred on a

regular basis, the diffusion will be faster and the mixture will be closer to being ideal.

Under Michaelis-Menten kinetics, if the initial rate is to be measured, the rate constant

kf is not a real constant over different substrate (and enzyme) concentration levels.

In this case, the rate laws and the law of mass action no longer work so well in the

application of the rate equation. As we have mentioned in the second last paragraph in

brief, some error will be expected in the explanation of the overall reaction rate ν or νt.

The rationale is, when t → 0, the experimental environment is imperfect since the

reactants are not in ideal mixture. Not all the substrate molecules are free to bind to

the active sites of the enzyme molecules in a short time after the two substances are first

brought together to enable the reaction. In addition to the reactant concentrations, a few

factors can also affect the environment and conditions. As a result, molecular movements

are somewhat restricted in the solution and that will alter the overall reaction rate ν.

In this case, the rate law for the bimolecular reaction step does not hold all the time

since its rate is not proportional to the substrate concentration.

The initial rate for the first step of the Michaelis-Menten mechanism (in the forward

direction; it is not the response ν) can be written as kfE
α1Sα2 = kfES, in reference to

the rate laws in (5.4). The rate laws might not hold in some cases, but as the enzyme

concentration E is often fixed, we should at least treat kf as a real constant across

various substrate concentration levels and its bias is to be explained in the error term in

a model. As such, the Michaelis-Menten equation is assumed to be valid as it

is derived on the basis of the rate laws, though there is a small probability

that the variance of the observational errors is heterogeneous. Hence, as one

constraint to use the rate laws and measure the initial rate, experimenters should

assume an environment with a well-stirred solution or even an ideal mixture

of the reactants. This is almost impossible when the reaction starts at t = 0. For a

fitted Michaelis-Menten model, to reduce the error due to the rate laws or the law of

mass action, rapid mixing of the reagents are important in the experiment.

To summarise, the assumption of the rate laws in (5.4) leads to the requirements on the

reactant mixture in the solution. The Michaelis-Menten equation considers the substrate

concentration as a controlled variable, so the application of the rate laws would cause

some error added to the expected response at a small t (i.e. initial rate). When the

reaction starts at t = 0, the diffusion and free collision of the reactant molecules are

limited, so we will tend to overestimate the initial rate. In particular, this is more likely

to occur when experimenters choose a higher substrate concentration.

Given the restriction on the molecular mobility, the effect of the reactant diffusion and

mixture is somewhat similar to a competitive inhibition effect which is in relation to

the third mechanistic assumption we make. Therefore, there are two possible measures
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to fix the problem before the Michaelis-Menten model is fitted. On the one hand, ex-

perimenters can think about a modification of the Michaelis-Menten equation or other

theoretical equations concerned. On the other hand, after the equation is properly mod-

ified, experimenters can consider an appropriate transformation to correct the raw error

structure of the model, in order to meet the assumptions of least squares or maximum

likelihood estimation. The two measures will be discussed in details later in this chapter.

5.3 Other Factors in Association with the Initial Rate

This section provides a concise introduction to the most common factors which could

influence the initial rate of Michaelis-Menten kinetics. When experimenters consider

a more complex Michaelis-Menten mechanism, it is plausible to include one or more

of these factors in the fitted statistical model. Even though it is often too difficult to

find suitable mechanistic models in those situations, the relevant empirical modelling

techniques will be the other options for conventional nonlinear regression.

A number of these factors could have been considered in the Michaelis-Menten mech-

anism, e.g. the measurement time, the inhibition or activation effects, and the reagent

concentrations. In addition, temperature is a noticeable factor that could be in a

close link with the nature of the reagents. For the best outcome from the reaction,

each substrate or enzyme species shall correspond to an optimal range of temperature.

Therefore, when a specific combination of the reagents is to be used for the reaction, it

will be helpful if we know how to set the temperature as a fixed or variable experimental

condition. In the first step of the Michaelis-Menten mechanism, for instance, a proper

change of experimental temperature can activate effective molecule collisions and lead

to a faster reaction at the time point t.

In practice, it is rare that the reaction rate is independent of or negatively correlated

with temperature. Over a moderate range of temperatures, the common temperature

influence on the rate constants can be represented with the Arrhenius equation. For

the rate constant kcat from the modern Michaelis-Menten equation, for instance, we can

write the empirical Arrhenius equation

kcat = Aexp

(
− Ea

RT

)
= Aexp

(
− 1

T

Ea
R

)
∝ ν,

which can also be modified for different rate constants in a mechanism. Here, T is the

temperature (in Kelvin) and R is the gas constant. With the remaining experimen-

tal conditions fixed, both A and Ea are unknown nonnegative constants. While A can

be used to describe how often a molecular collision occurs at the reaction time t, Ea

denotes the amount of the activation energy (i.e. the minimum energy required for suc-

cessful collisions and for the reaction to occur). The Arrhenius equation implies some
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mechanistic knowledge with reasonable scientific justification, but it is still an empirical

mathematical relationship between temperature and the rate constant. This means that

the equation is not exact and sometimes its prediction error is not small. The draw-

back is that the Arrhenius equation is not tailored to all reactions and respective rate

constants, though it is simple to interpret this equation in terms of one independent

variable. According to its assumptions, some of the experimental constraints seem to be

oversimplified and thus it would be quite hard to integrate the Arrhenius equation into

the Michaelis-Menten model (Cornish-Bowden, 2004, chap.10).

We can also think about the second factor: the hydrogen ion concentration or the pH

scale which is a transformation of the former. It can have an impact on the formation and

decomposition of the intermediate in Michaelis-Menten kinetics. Likewise, there shall be

an optimal range of the hydrogen ion concentration for the reaction in the buffer solution

or the mixture. When this factor is taken into account, a lot of experimentation will be

demanded to compare different substrate and enzyme species.

It is apparent that if the hydrogen ion concentration is too low or too high on the acid

or alkaline side of its true optimum, the normal biochemical reaction would not attain

its maximum rate or it would be inhibited. Given the other experimental conditions

and the response measurement time, the approximate pH effect can be considered to be

analogous to an inhibition effect in the kinetics. If we know the specified hydrogen ion

concentration as well as the corresponding acid dissociation constants, the Michaelis-

Menten mechanism could be modified to take the pH effect into account in an empirical

statistical model. However, due to some additional assumptions, which we have to make

for a simplified mechanism, such an empirical model cannot fit all Michaelis-Menten

kinetics. Even if it does (as being assumed), experimenters should be advised to check

the error structure of the model.

The third factor is the pressure and it is vital at least in gaseous chemical reactions,

which do not follow fundamental Michaelis-Menten kinetics. In those cases, it could

influence the reactant concentrations since a high pressure can reduce the volumes of

the reactants. In biochemical reactions in the liquid solution, in some respects, the

effect of the hydrostatic pressure is a bit similar to that of temperature. In order to

interpret the reaction mechanism, some dependence studies could be useful, which will

also require some experimentation. A short discussion of the potential pressure effect

can be found in Cornish-Bowden (2004, chap.1).

Experimenters can consider some other factors when the experimental conditions are to

be set. For instance, the chemical reaction on surfaces (when at least one of the reagents

is a solid) tends to be faster if we can enlarge the contact area or surface area of the

solid reagent to facilitate molecular collisions. Under the same rationale, when all the

reagents are liquids, the diffusion or the mixture will affect the rates of multimolecular
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reactions. If these factors can be assessed in quantities, we would be able to learn how

a difference is made in Michaelis-Menten kinetics.

5.4 Measurement Errors in the Experiment

This section focuses on experiments to learn the two-step Michaelis-Menten mechanism.

This is most convenient as we can circumvent a lot of mathematical deductions and

assumptions for more complicated kinetic studies. As far as we are concerned, the

Michaelis-Menten model will be fitted to the experimental data. When its error structure

is known or assumed, we can calculate the standard errors of the parameter estimates.

In this case, there could be several different scenarios, since there is not a universal result

which can be applied to all dissimilar Michaelis-Menten mechanisms.

With the dataset on hand, experimenters can invoke the Michaelis-Menten model or

other theoretical models without regard to some essential assumptions made and the

true mechanism behind the biochemical reaction. In this case, it is simple to fit the

statistical model but as a result, the lack of fit could exist and the parameter estimation

could be inaccurate. If an inappropriate mechanistic model is fitted, the observed error

structure could be quite different from what we assume and thus lead to an ineffective

use of the experimental data and nonlinear least squares (NLS) estimation.

Four mechanistic assumptions have been discussed in Section 5.2. When the response is

the initial rate, there is a chance that the rate laws would be untrue. Our conjecture is

that the limited ligand activities should be responsible for the inaccurate prediction of

the initial reaction rate. As has been mentioned, this is because of the nonideal mixture

of the two reagents for the first bimolecular step of the Michaelis-Menten mechanism.

The rate laws reflect an oversimplification of the mechanism, which we use to derive an

mathematical function of the reaction rate. For instance, it is most natural to consider

an increasing trend of the measurement errors as experimenters use higher and higher

substrate concentrations. This is because of the prolonged time the reactant diffusion

and mixture would take to fulfil the rate laws. If the diffusion and mixture are too

slow or too anomalous, the rate laws would fail in the interpretation of the reaction

mechanism, even if there is no inhibition or other activation effects.

There is another conjecture on the errors and the inhibition. Under the QSSA, the

described mechanistic assumptions shall be best satisfied when the response is the ini-

tial rate. However, even at the measurement time t → 0, the inhibition effect of the

intermediate can be strong sometimes. It can happen when experimenters use a high

substrate concentration so that the expected initial rate is also high.

In this case, the free enzyme concentration Et would be rather close to zero whereas the

intermediate concentration It approaches E. The problem is that the rate laws do not
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consider the intermediate which is not involved in the reaction, though it does exist in

the mixture under the assumed Michaelis-Menten mechanism (as does the product). As

a result, a high intermediate concentration under the QSSA could somewhat reduce the

rate of the collision and binding of the enzyme and substrate molecules. This makes the

rate law for the bimolecular reaction step less reliable.

As to the Michaelis-Menten model, this conjecture can lead to an inaccurate estimation

of the parameters as well as an increase in the measurement errors of the initial rate.

When E is fixed, the predicted rates at the higher levels of S tend to be less accurate.

However, note that the responses would not be found to be overestimated on average

if the unknown true parameter values are to be estimated and thus we use the model

fitted to the experimental data.

The measurement errors can be learnt when we think about the dependence relationship

between the rate constants and the substrate concentration. The first-order steps (i.e. the

decomposition or dissociation of the intermediate) would not cause much trouble to the

errors, so our exclusive interest is in the bimolecular reaction step

Enzyme + Substrate→ Intermediate,

which is studied at t → 0. Under the rate laws, the differential equation in (5.4) is

simplified to ∂S/∂t = kbIt−kfEtS. We can use it to derive the modern Michaelis-Menten

equation. If the error of the initial rate is to increase as the substrate concentration

increases, the observed value of kfEtS could be smaller than its expected value from

the relevant rate law. As its consequence for the Michaelis-Menten mechanism which

incorporates both reaction steps, there is an inequality

kf (E − It)S > kbIt + kcatIt at t→ 0.

This actual relationship violates the QSSA at the current time t. When there are n

independent runs in the experiment, the above can be revised to be a function

kf (E − Iti)λ(Si)Si ≈ kbIti + kcatIti, for i = 1, 2, ..., n.

Here λ(S) is included as a discontinuous step function in terms of the initial substrate

concentration and we define it as the correction factor. If the response error increases

with the substrate concentration, the correction factor should be less than one most of

the time. It could allow for comparisons of the error dispersions at various substrate

concentration levels. Of course, for reactions in the ideal mixture, the correction factor

should be close to constant at one. Furthermore, for the ith experimental run at a

substrate concentration Si, the approximate bias of the Michaelis constant k is

kb + kcat
kf

− kb + kcat
λ(Si)kf
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if we know the three rate constants kb, kf and kcat from the rate laws. If the response

error increases with the substrate concentration, this bias above will be less than zero, on

the basis of the ith observation. This means that the true k tends to be underestimated

if we ignore the correction factor. Besides, as the step function value λ(S) varies across

the n observations, the biases of k are not identical with each other. Now, with an error

term εi added to the Michaelis-Menten equation, the model can be written as

νi ≈ kcatIti =
kcatESi
k + Si

+ εi =
νmaxSi
k + Si

+ εi at time t→ 0. (5.5)

Here the term νi ≈ kcatIti indicates the ith observation of the initial rate and the rate law

for the first-order reaction step. For instance, we assume λ(Si) ≤ 1 to be an increasing

function in the substrate concentration. As there is also Si � Ei, the expected initial

rate would be overestimated according to model (5.5). In this case, the model error εi

shall be associated with the level of Si, which is in contradiction to the fundamental

assumptions of nonlinear least squares.

Recall that the approximation St ≈ S does not hold quite well at low substrate concen-

tration levels which are often covered in the variable space. Thus an additional error

will influence the fitted Michaelis-Menten model, even if the substrate consumption is

low at the measurement time t→ 0 under the QSSA. It is judicious to set a reasonable

lower limit of the substrate concentration, in order to make the QSSA more reasonable.

5.5 Residuals in Nonlinear Least Squares Estimation

Unexplained errors (i.e. model residuals) can lead to inaccurate estimates of the rate

constants and an increase in the lack of fit of the fitted Michaelis-Menten model. If

we deduct the calculated pure error out of the total error εi, the rest is due to the

nonrandom lack of fit (i.e. variation between the unique treatments). The true response

surface is unknown, so a model does not account for the lack of fit. We introduced the

correlation factor λ(S) in the previous section. While the Michaelis-Menten model does

not involve this correlation factor which we assume to exist, the NLS estimation of k is

inaccurate. It will contribute to much of the lack of fit. However, if k̂ is an unbiased

estimate that is identical to k/λ (λ = λ(Si) must be constant across the n observations),

the other estimate ν̂max = k̂catE shall be quite accurate. This is because, unlike the

rate constant kf out of k, kcat corresponds to a simple first-order reaction step and it is

much easier to approximate its true value.

As a result of nonlinear least squares estimation to fit the Michaelis-Menten model, the

expected initial rate can be expressed as

ν̂i =
νmaxSi
k + Si

+

(
ν̂maxSi

k̂ + Si
− νmaxSi
k + Si

)
.
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The first component is the Michaelis-Menten equation with its most appropriate param-

eter values from the rate laws. The component inside the bracket denotes the expected

deviation of the fitted model. If we make an approximation ν̂max ≈ νmax, which is as-

sumed to be indeed an invariant constant across different substrate concentration levels,

the famous Lineweaver-Burk equation can be derived to transform the above equation.

As the reciprocal of the response should be taken, i.e. ν ′ = 1/ν, the transform-both-sides

Michaelis-Menten model can be fitted as

ν̂ ′i =
k + Si
νmaxSi

+

(
k̂ + Si
ν̂maxSi

− k + Si
νmaxSi

)
≈ k + Si
νmaxSi

+
k̂ − k
νmaxSi

.

A justification of the Lineweaver-Burk equation is important before we can adopt the

above equation, but this transformation at least simplifies the model. If we include an

error term and a correction factor for the response, the untransformed model should be

νi =

(
k + Si
νmaxSi

+
λ(Si)k − k
νmaxSi

)−1
+ ε

(1)
i . (5.6)

The parameter estimates are not included in the above expression. For i = 1, 2, . . . , n,

the mean of the error ε
(1)
i should be zero and the variance should be constant. In

contrast, if a better error structure is achievable when the response is set to be ν ′, the

simpler transformed model should be

ν ′i =
1

νi
=
k + Si
νmaxSi

+
λ(Si)k − k
νmaxSi

+ ε
(2)
i , (5.7)

where the same assumption applies to the error, for i = 1, 2, . . . , n. Experimenters

can transform the Michaelis-Menten equation into whatever a form, but the aim is to

improve the error structure and to better fit the experimental data.

Meanwhile, λ(Si) is a step function of the substrate concentration. For convenience, we

can assume the true lack of fit of the Michaelis-Menten model to be well explained in

the fitted model. That is, we assume λ(Si) = λ as a fixed constant and thus we can

substitute λ(Si)k − k with k̂ − k. In this case, though the estimate of the Michaelis

constant is not unbiased, model (5.7) becomes

ν ′i =
k + (k̂ − k) + Si

νmaxSi
+ ε′i =

k̂ + Si
νmaxSi

+ ε′i, (5.8)

where ε′i is the updated error and k̂ is the NLS estimate to be obtained. Given that

the model is true and the simple substitution is reasonable, the bias of the Michaelis

constant would be unknown unless the correction factor is a known constant. On the

other hand, the lack of fit would not much disrupt or distort the error structure of ε′i so

that the NLS estimate of νmax is accurate. Otherwise we cannot assume ν̂max = νmax

which is important for us to write down models (5.6) and (5.7).
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In contrast, if the correction factor is no longer independent of the substrate concen-

tration, it is harder to evaluate the lack of fit and this also depends on experimental

conditions. In theoretical studies, the function λ(S) could indicate those unknown ef-

fects or uncertainties that we wish to reduce. Otherwise, if we cannot eliminate the

lack of fit, at least the error structure should be modified to facilitate (i.e. meet the

assumptions under) the use of nonlinear least squares or maximum likelihood.

It is hard to interpret most of the unidentified errors of models (5.6) and (5.7). We

can assume these errors to be random and small if the model transformation is correct.

As to the lack of fit due to the correction factor, we further assume a first-order linear

function λ(S) = λ0+λ1S. While λ0 and λ1 are two parameters, this is not uncommon to

consider a simple empirical function like that. If the transformed response is ν ′, model

(5.7) can be rewritten as

ν ′i =
k + Si
νmaxSi

+
λ(Si)k − k
νmaxSi

+ ε
(2)
i =

λ0k + Si
νmaxSi

+
λ1k

νmax
+ ε

(2)
i . (5.9)

The unexplained component of the lack of fit is also small if we ignore the distribution

of the total errors. While the bias of k̂ is (λ0 − 1)k, ν̂max could also be biased due to

an additional constant term. Note that when this constant is small enough, we cannot

assume model (5.9) since the proposed substitution ν̂max = νmax will not be suitable. In

this case, the fitted model cannot explain this source of the lack of fit well, which then

requires us to find a better model.

No matter whether we transform the model or not, we should take some measures to

improve the NLS estimation of the parameters as well as to meet the essential assump-

tions of the errors. As we have presumed the exact function of the correction factor, the

most direct measure is to take the correction factor into account in a modified Michaelis-

Menten model. Before we discuss that, recall that the effect of the competitive inhibition

(as one of the basic linear inhibitions) can be taken into account in Michaelis-Menten

kinetics. If the initial free inhibitor concentration is I, the kinetic model of the initial

rate can be modified as

ν ′′i =
νmaxSi

k(1 + Ii/k) + Si
+ ε′′i at time t→ 0. (5.10)

Here k is the inhibition constant, ν ′′i is the observed rate under the competitive inhibition,

and ε′′i is the new error. Likewise, if we assume the empirical function λ(S) = λ0 +λ1S,

the Michaelis-Menten model can be modified as in the form

νi =
νmaxSi

k(λ0 + λ1Si) + Si
+ ε

(1)
i . (5.11)

This is the untransformed model where the Michaelis constant now varies across the

substrate concentration levels. Even though there is no anticipation of an influential

inhibition effect, (5.11) is analogous to the above Michaelis-Menten model under the
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competitive inhibition. If all the error assumptions are satisfied, the fitted model (5.11)

can diminish the lack of fit incurred in model (5.6) and thus lead to more accurate NLS

estimation of the unknown parameters.

In reference to our conjectures in Section 5.4, we assume the response error to increase

with the initial substrate concentration. Of course, the correction factor can be a linear

function of second order or above. In that situation, a similar modification can be

adopted and it will contribute to a suitable model. Besides, the function can be even

more complex since it should be defined as a discontinuous step function in fact.

Both scenarios we discussed (for models (5.8) and (5.11)) are idealistic as both functions

of the correction factor are continuous and linear. When the correction factor is a

constant or a first-order function in terms of the substrate concentration, the Michaelis-

Menten model can be modified to accommodate the lack of fit and also meet the NLS

assumptions. However, it is perhaps more sensible to assume the correction factor to

be unknown or, if known, a discrete step function across different levels of the substrate

concentration. In that case, it is difficult (if not impossible) to find a simple modified

version of the Michaelis-Menten model. It is also unavoidable that the error structure of

the assumed model is not most suitable and thus the nonlinear least squares estimation

has to suffer from the lack of fit.

The good news is that we can take another measure to create a better error structure. In

addition to using the reciprocal of the initial rate, there are different kinds of nonlinear

transformations for the model. Here we will not discuss the model modification on

the basis of a correction factor function further, so let us come back to the simple

Michaelis-Menten model (5.5). As the model function is a mechanistic equation, we

should transform the both sides of this model in order to influence the error distribution.

Response transformation was recommended in Box and Cox (1964), which can be an

approach to stabilise and normalise the observed distribution of model errors with respect

to the fitted responses or one of the controlled variables. The reciprocal of the response

in model (5.7) is a special case of the classical Box-Cox transformation below:

ν(α) =

να−1
α α 6= 0;

log(ν) α = 0.

A simplified form of the Box-Cox transformation is the nonlinear power transformation,

which can lead to similar results if we transform both the response and the whole model

function on the right. We can use different values for the Box-Cox transformation

parameter α, such that it is viable to adapt the error structure of the fitted model.

Besides, we can also derive the likelihood function of the transformed model in terms

of α, in order to determine the transformation parameter with maximum likelihood

estimation. Evidence can be found to support the use of Box-Cox transformations

of the response. For instance, Horwitz (1982) derived an empirical equation to show
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the common link between the expected response of a chemical measurement and the

variance of the untransformed observed response. When this Horwitz curve is considered

for a specified model, the Box-Cox transformation could make the error variance of

the transformed observed response more constant and less dependent on the expected

response (Atkinson, 2003).

When the statistical model we assume is purely empirical and linear, we can do most

kinds of variable transformations as appropriate. However, if we transform the initial

rate of (5.5), it is essential to do the same transformation on the mechanistic model

function. Otherwise, the fundamental Michaelis-Menten equation will not hold and the

transformed model will be an incorrect interpretation of the true mechanism. Hence,

the Box-Cox transformation with the same value of α should be exerted on both sides

of the Michaelis-Menten model. In accordance with the structure of the lack of fit, the

best α should be found if one wishes to improve the overall fitting of the model and

the NLS estimation of the parameters. For instance, if the correction factor λ(S) is

an unknown second-order linear function in terms of the substrate concentration, the

Box-Cox transformation with α = ±2 is a possible option to reduce the error dispersion

of the Michaelis-Menten model. The sign of α depends on the unknown parameters of

the correction factor function.

The transformation parameter α is a real number which can also be treated as an

unknown parameter of the transform-both-sides (TBS) model. As we would introduce

with two examples later, it can be estimated with either maximum likelihood or a recent

ANOVA method from Latif and Gilmour (2015). As the model transformation will

improve the raw error structure, the transform-both-sides Michaelis-Menten model is

ν
(α)
i =

(
νmaxSi
k + Si

)(α)

+ εi at time t→ 0, (5.12)

where the new ε are assumed to be independent, with zero mean and constant variances.

The classes of TBS models were first introduced in Carroll and Ruppert (1984) and later

applied to simulation studies of simplest Michaelis-Menten kinetics (Ruppert et al.,

1989). As it enables a Box-Cox transformation before the implement of nonlinear least

squares, the TBS model can weaken the dependence of model errors on the expected

mean of the response and thus stabilise the variation in the observed initial rates. This

model can also reduce the lack of fit under NLS so that we would be able to find

more accurate parameter estimates. If experimenters use maximum likelihood instead

of nonlinear least squares, the classical assumption is εi ∼ N(0, σ2) for i = 1, 2, . . . , n,

where σ2 is the constant error variance. In that case, the TBS model can reduce the

skewness of the observed responses from a normal distribution too.

The Box-Cox transformation is demonstrated to be successful in various practical scenar-

ios. For instance, if we let α = 2, for i = 1, 2, . . . , n, the ith measurement error εi of the

fitted TBS model can be explained with a quadratic function in terms of the raw error
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of the fitted untransformed model. A reasonable Box-Cox transformation can therefore

adapt the error structure of the model to meet the NLS assumptions to some admissible

extent. As such, we can stick to NLS rather than referring to iterative weighted NLS to

deal with a heterogeneous error structure.

The weighted least squares estimation also depends on experimenters’ conjecture of the

error structure of the model, which is unknown in practice. Hence, there are some risks

to take as we must assign correct weights to different experimental observations. In a

theoretical example in Cornish-Bowden (2004, chap.14), the coefficients of variation are

assumed to be identical across the experimental observations. This means that there is

a multiplicative error structure for the Michaelis-Menten model

νi =

(
νmaxSi
k + Si

)
(1 + εi).

The term εi ∼ N(0, σ2) is associated with the substrate concentration. Instead of

weighted nonlinear least squares, let us consider the Box-Cox transformation with α = 0.

With the natural logarithmic scale for the transformation, the TBS model is written as

log(νi) = log(νmaxSi) + log(k + Si) + log(1 + εi).

At first sight, there is insufficient information about the most suitable distribution of

the error log(1 + εi) of the above model. However, the mean of the errors could be zero

in the fitted model and after the Box-Cox transformation, these measurement errors will

be independent of the initial substrate concentrations. Under NLS, now it is much more

reasonable to assume the error variance to be constant.

5.6 Empirical Kinetic Model and Box-Cox Transformation

The Michaelis-Menten equation elaborates the influence of the substrate concentration

on the (initial) rate of reaction. In the experimental environment, the discrete levels of

the substrate concentration must be specified and so must other influential factors. These

factors are fixed when we derive the Michaelis-Menten model. For most experimental

studies of mammalian enzymes, for instance, it is common to imitate a near physiological

environment: i.e. with the pH at 7.2, temperature at 37 ◦C, and the ionic strength at 0.15

mol l−1 in the solution (Cornish-Bowden, 2004, chap.3). At times, there could be more

than one suitable level for these factors, when we are interested in more comprehensive

studies of the mechanism. There are also some enzymes which can be modified and used

in different experimental environments. This will require a careful consideration and

interpretation of the reaction mechanism.
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If we no longer fix the relevant experimental conditions, more than one controlled vari-

able should be involved in the kinetic model. The Michaelis-Menten equation is inade-

quate when we require suitable models for such complicated experiments. In this case,

the empirical modelling techniques can be useful when we should incorporate several

controlled variables in the same statistical model. Meanwhile, this model can be related

to the Michaelis-Menten equation, if one of the variables is the substrate concentration.

The result will be what we call a hybrid model based on Michaelis-Menten kinetics.

To construct the hybrid model, for the ease of interpretation, we consider an empirical

replacement of the theoretical maximum rate νmax with a simple function in terms of the

controlled variables (except for the substrate concentration). When this simple function

is linear and the controlled variable is the enzyme concentration, the hybrid model

could be identical to the Michaelis-Menten model. The common influential factors,

temperature T , the hydrogen ion concentration H, and the atmospheric pressure P were

all discussed in Section 5.3. In some cases, experimenters could be interested in their

roles in the reaction and their causal relationships with the (initial) rate. Nevertheless,

not all information will be available from theories. If an appropriate theoretical equation

cannot be derived or integrated into the Michaelis-Menten equation, experimenters can

think about an empirical hybrid model, which is often nonlinear.

A controlled variable can be either continuous or categorical, depending on experimenters

sometimes. One of the common experimental purposes is to make multiple comparisons

between different potential reagents (i.e. substrate species). This could require some

treatment contrasts and parameter estimation, when relevant experimental conditions

or controlled variables are under control. In this case, we can use a categorical variable

to represent the labels of different substrate species, for instance. This variable will be

integrated into the Michaelis-Menten model and so will the three continuous controlled

variables T,H, P . Denote L(T,H, P ) as an empirical linear function in terms of the

continuous variables. Thus a hybrid model based on Michaelis-Menten kinetics can be

E(νi) = βi +
L(Ti, Hi, Pi)Si

k + Si
or

βi + L(Ti, Hi, Pi)Si
k + Si

or βi
L(Ti, Hi, Pi)Si

k + Si
. (5.13)

Here βi indicates the ith fixed effect, for i = 1, 2, . . . , n. The three candidate models

above are simple in the sense that βi is the sole categorical effect. In particular, if we

assume βi to be an additive constant in the model, the effect of the substrate species

will be independent of the other controlled variables. To describe real mechanisms,

however, the candidate models in (5.13) can be more complex since we should consider

the interaction and correlation between the variables.

When we consider an exponential transformation of the linear function L(T,H, P ), the

updated model below could be a suitable description of the expected initial rate:

E(νi) = βi
exp(L)Si
k + Si

=
exp(β′i + L(Ti, Hi, Pi))Si

k + Si
or

exp(βiL(Ti, Hi, Pi))Si
k + Si

, (5.14)
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where β = exp(β′) in the first expression. At times, it is useful to transform both sides

of the model. For instance, we assume an informative error structure in the model

νi =
exp(β′i + L(Ti, Hi, Pi) + ε(1)i)Si

k + Si
× eε(2)

i , (5.15)

where ε(1)i ∼ N(0, σ21), ε(2) ∼ N(0, σ22). Note that the normal distributions of the errors

are not essential under nonlinear least squares but the standard deviations σ1 and σ2

should be constant in that case. If we assume the above error structure, the simple

natural logarithmic transformation will lead to a better model

log(νi) = log(
Si

k + Si
) + β′i + L(Ti, Hi, Pi) + εi, (5.16)

where εi = ε(1)i+ε
(2)

i ∼ N(0, σ21+σ22). The TBS model satisfies the NLS assumptions on

errors and it is linear in all controlled variables except for the substrate concentration.

We use an empirical function (e.g.L(Ti, Hi, Pi)) to replace the maximum rate νmax,

where the controlled variables involved can be scaled before we include them in a hybrid

nonlinear model. A charming aspect is that there could be some mechanistic information

to be made use of, when we are to scale or transform these variables. For instance, we

learn from the Arrhenius equation that

νmax ∝ Aexp

(
− 1

T
Ea

)
.

This relationship hints that an inverse transformation (i.e. 1/T ) can be adopted for the

exponential function, where T represents absolute temperature. Notice that the two

constants, A and Ea, could depend on the other controlled variables in the model. As

we should ensure νmax to be nonnegative all the time, to some extent, it is sensible to

replace this parameter with the exponential function in the model.

Models (5.13)-(5.14) can lead to simple interpretations, even though each of them is

nonlinear and written in terms of several controlled variables. When the substrate

concentration is fixed, the hybrid model will become linear or exponential. The Michaelis

constant k is the ratio of the rate constants and it can be substituted with an empirical

function too. In that case, there should be more parameters in the function and these

parameters could be a bit redundant in the overall model. In comparison, it is easier to

use and popularise the models in (5.13)-(5.14).

Now that the hybrid model treats k as a constant, it will not be the same as the

Michaelis constant we wish to estimate. This is because, most of the time, we should

not consider the intermediate concentration to be independent of the controlled variables

in the empirical functions. However, the drawback is unavoidable when we have to

interpret a complicated Michaelis-Menten mechanism of multiple factors.



Chapter 5 Model Transformation under Michaelis-Menten Mechanisms: Optimal
Design of Experiments for Transform-Both-Sides Models 163

The measurement errors of a hybrid model will depend on the assumed empirical func-

tion as well as the Michaelis-Menten equation. To stabilise the response errors and

obtain accurate NLS estimates of the parameters, we shall emphasise the usefulness of

the nonlinear Box-Cox transformation. On the basis of model (5.14), for instance, a

transform-both-sides hybrid model is

ν
(α)
i =

(
exp(β′i + L(Ti, Hi, Pi))Si

k + Si

)(α)

+ εi. (5.17)

After a suitable Box-Cox transformation, we assume εi to be independent and its vari-

ance to be constant across different observations. To summarise, the above model for

complex Michaelis-Menten mechanisms could have the following merits:

1. It is flexible: unlike mechanistic models of which the expressions are deterministic,

we could determine the empirical component of a hybrid model ourself and even

transform the controlled variables (except for the substrate concentration). It

allows us to make full use of the mechanistic information we know, in order to

derive the best form of the hybrid model. We can also add or delete some fixed

or/and even random effects in the empirical function of the model, so there could

be different reliable options in model selection.

2. It is comprehensive: the hybrid model involves more than one controlled variable

from a more complicated Michaelis-Menten mechanism. Therefore, we do not have

to fix some of these controlled variables to learn several simplified mechanisms.

This means that the observations from even different experiments can be combined

to compose an overall dataset. As such, experimenters can make the most of the

collected and combined data to fit the assumed model, which is an economic and

efficient approach in the use of experimental resources. The fitted model implies

the obtained information about the comprehensive Michaelis-Menten mechanism.

This saves our time in comparison of different treatments and search for the optimal

combination of the experimental conditions for the reaction.

3. It is convenient: the fitted hybrid model can be used to describe a complicated

mechanism and it offers a reliable approximation to the response surface. It does

not require too much information or relevant theories. Since the model can be

written in a simple nonlinear form, it will not be hard to interpret and validate

the results of nonlinear least squares estimation.

4. It is universal: the hybrid model is not limited to the applications to Michaelis-

Menten kinetics, which we have demonstrated in this thesis. Generalisation of the

transform-both-sides model to widespread areas of scientific research is promising,

where similar ideas can be adopted to derive suitable statistical models.
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5.7 Optimal Design of Experiments

We have established the transform-both-sides model to be fitted to the dataset of n

experimental observations. With a suitable Box-Cox transformation, we expect some

improvement in the nonlinear least squares estimation of the parameters. In addition,

before the experiment is run and the response data are collected, it is sensible to con-

sider a Bayesian optimal design of the upcoming experiment. We now assume that the

main experimental purpose is to minimise the standard errors of the estimates of the p

treatment parameters in θ, which is the most common purpose in regression.

With this intention in mind, the classical optimal design approach is to use the local

D-criterion which aims to maximise the criterion function φD = log|FTF|. Here, FTF

is the Fisher information matrix which is associated with the p× p variance-covariance

matrix of the NLS estimator θ̂. We write the nonlinear model for the observed response

as Yi = f(Xi,θ) + εi, for i = 1, 2, . . . , n. Here, Xi represents the ith experimental run

which is one row of the specific experimental design X, and εi is the error of the ith

response of the model. With a first-order linearisation of the model function above, we

can derive the n× p design matrix

F =
∂f(X,θ)

∂θ

∣∣∣
θ=θ0

which depends on the numeric vector of the parameter prior θ0. As an alternative to

using the local D-criterion (of optimality), following Chapter 4, we continue to use the

so-called pseudo-Bayesian approach. Rather than a deterministic numeric vector θ0, a

realistic multivariate parameter prior distribution of θ should be assumed. This can

describe the uncertainties of the true model parameter values, which are then taken into

account in Bayesian optimal design. While the joint density function of the parameter

prior distribution is ρ(θ), instead of the local D-criterion function φD, the expected

D-criterion aims to maximise the multiple integral

ϕ =

∫
θ
φD(X|θ)ρ(θ)dθ.

We should find an optimal X, a n × v matrix, to maximise the criterion function ϕ,

where v indicates the number of controlled variables. To achieve this, we develop and

implement the new hybrid exchange algorithm for the iterative search of optimal can-

didates to update the individual points or coordinates of a specific X. In addition,

the modified adjustment algorithm can be applied to increase the expected D-criterion

function further, before we output the final solution (as the Bayesian optimal design).

The computation can be quite intensive in this case. Hence, to evaluate the criterion

function ϕ above, we shall use the Gaussian quadrature rules. As one of these rules, the

Gauss-Hermite quadrature, presented in Chapter 4, is an efficient numerical integration
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tool that can be adapted to approximate the value of ϕ. Most of the time, it requires

the parameter prior density ρ(θ) to be multivariate normal or at least lognormal. A

special case is, if the covariances of this distribution are all zero, the normal prior and

the lognormal prior can be combined in the same multivariate distribution, which has

been demonstrated in Chapter 4 too. Otherwise, some alternative Gaussian quadrature

rules were introduced in Goos and Mylona (2013), which can fit some different expected

criterion functions and their respective assumptions of ρ(θ).

In the examples to be shown here, where the Gauss-Hermite quadrature is applied, we

can approximate the expected D-criterion function ϕ with

φBD = ϕ̂ ≈
m∑
r=1

ω(r)φD(X,θ = θr) with appropriate constants m1,m2, . . . ,mp. (5.18)

As one unit of the Gauss-Hermite sample we draw, θr is a unique parameter prior vector

whereas ω(r) is the associated composite weight, for r = 1, 2, . . . ,m. Here, m is the total

Gauss-Hermite sample size and m1,m2, . . . ,mp are the subsample sizes in correspon-

dence to each parameter to be integrated out of ϕ. As we showed in detail in Chapter

4, the Gaussian quadrature rules are quite feasible as we are allowed to determine each

subsample size in order to achieve a reliable approximation overall. Hence, in each ex-

ample, a quick numerical investigation can help us to decide how to construct a suitable

Gauss-Hermite quadrature φBD. We can then search for the Bayesian D-optimal design

to maximise the information to be obtained from the future observed data, when the

experimental purpose is to estimate the model parameters θ.

5.8 A Simple Hybrid Nonlinear Model Example

5.8.1 Estimation of Box-Cox Transformation Parameter

We now look at an example adapted from an experiment in Martins et al. (1999). First,

the reaction involves two controlled variables: the substrate concentration S and the

protein concentration E. The observed response is the initial rate ν in the experiment,

so Michaelis-Menten kinetics should hold even though there is an additional variable to

control. We have to do an empirical approximation in this case and therefore, a hybrid

nonlinear model can be used to integrate all the information and to approximate the true

response surface. As the nonlinear least squares estimation requires the error variance

to be uncorrelated and thus homogeneous, for the experiment, we can assume a hybrid

model based on Michaelis-Menten kinetics:

νi =
exp(a0 + a1xi + a2xi

2)Si
k + Si

+ εi, (5.19)
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where xi = (Ei−0.07)/0.05 ∈ [−1, 1] and S ∈ [0.15, 3]. This is the same kinetic model we

discussed in Chapters 3 and 4. Within the continuous variable space X , any combination

of the levels of the two factors can be used as the experimental input, though the closest

distance is decided to be 0.001 for the protein concentration and 0.01 for the substrate

concentration in this example. When the kinetic model (5.19) is fitted to the approximate

data in Martins et al. (1999), the adjusted coefficient of determination is found to be

0.994 (so this model fits the reference data well at least in some aspects) and the nonlinear

least squares estimate is θ̃ = {k̃, ã0, ã1, ã2} = {0.3122,−6.4086, 0.8383,−0.2861}. In

Chapter 3, this reference estimate was chosen as the point parameter prior θ0 of both

the local D-criterion and the WA-criteria for model (5.19).

Here, we wish to transform both the response and the model function of (5.19). As

such, we expect to find a more reliable estimate of the unknown θ and a more reasonable

error structure for regression. As α denotes an additional parameter from the Box-Cox

transformation, the transform-both-sides kinetic model can be written as

ν
(α)
i =

(
exp(a0 + a1xi + a2xi

2)Si
k + Si

)(α)

+ εi, (5.20)

where the least squares assumptions of εi should be satisfied also to minimise the error

of the parameter estimator θ̂. To determine α over its sampling space, the traditional

maximum likelihood method is to treat it as an unknown nontreatment parameter to

be estimated. This is difficult as the transformed response ν(α) depends on one param-

eter. Hence, Latif and Gilmour (2015) introduced a new ANOVA (analysis of variance)

method which separates the estimation of α from the rest. As such, one will estimate θ

conditional on a constant α. With this ANOVA method, the computation is simplified

and θ̂ shall be independent of the estimation of α for the Box-Cox transformation.

The previous data in Martins et al. (1999) can also be used to determine the transfor-

mation parameter α. It is convenient to make its estimator to be independent of the

model function we assume. If βi∗ indicates the treatment effect corresponding to one of

the n∗ unique experimental runs, the following full treatment model can be fitted with

maximum likelihood estimation:

ν
(α)
i = µ0 + βi∗ + εi, (5.21)

for i∗ = 1, 2, . . . , n∗. Herein, µ0 is the mean of the responses and ε is the error. The

estimation of µ0 can be ignored when we fit the model, unless we set one of the treatment

effect to be the baseline. As the total error ε depends on the value of α we choose, it

makes no sense to minimise the sum of squares of the errors. Besides, the (adjusted)

coefficient of determination is now less important in model comparison since the least

squares cannot be adopted to fit the model.
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As we shall use maximum likelihood to estimate the unknown parameter α, the assump-

tion is ε ∼ N(0, ς2) as we require the error distribution to be normal. The lack of fit

has been eliminated in the full treatment model, so the total error ε is identical to the

pure error. In this situation, the log likelihood function in terms of α conditional on the

observed responses ν can be expressed as

l(α) = −nlog

 ς̂(α)∏
ν
α−1
n

i

− n

2
= (α− 1)

∑
logνi − nlogς̂(α)− n

2
,

where ς̂(α) is the maximum likelihood estimator (MLE) of the standard deviation ς.

The above function l(α) does not show those treatment effects βi∗ since we focus on

α. Moreover, ς̂2(α) =
∑
ε2i /n is the mean of the squares of the pure errors from the

full treatment model. In the reference dataset, there are three replicates on each of the

n∗ = 10 support points, so there is a large number of degrees of freedom for the errors. As

the function l(α) is to be maximised with the Nelder-Mead method, the transformation

parameter estimate is equal to 0.1496 ≈ 0.15. This value has to be recalculated after

the new experiment but at the moment, we can use it for the TBS model (5.20).

Nonetheless, the model transformation does not affect the functional relationship be-

tween the response and the controlled variables. If we treat α as a constant, the optimal

design of the experiment is often quite robust to minor corrections of α. Otherwise,

if we find a less reliable estimate of α using the reference dataset, an alternative is to

consider it as an important unknown parameter in optimal design. In this case, one of

our aims is to maximise the Fisher information of model (5.20) with respect to α. As

such, a compound criterion can be used for the precise estimation of α as well as the

treatment parameters θ in the model (Bogacka et al., 2015). In this case, the expected

cost is to estimate one more parameter using the new experimental data, which will use

some of the resources if the optimal design takes that into account.

With a transformation of both the response and the model function, we expect to see

better model fitting after the modification of the raw error structure of the untransformed

model. In Figure 5.1, we show two residual plots obtained before and after we transform

the full treatment model (5.21). As the Box-Cox transformation is applied with α = 0.15,

it is now more reasonable to assume the pure errors to be homogeneous and to fluctuate

around the zero level. Since the essential error assumptions will be better satisfied, we

are able to obtain more accurate parameter estimates from the TBS hybrid model.

We wish to reduce the bias of the NLS estimate {0.3122,−6.4086, 0.8383,−0.2861} ob-

tained from the untransformed model (5.19). As the substitution α = 0.15 is made

in model (5.20), the new parameter estimate is θ̃ = {0.2859,−6.4368, 0.8408,−0.2607}
when the error distribution is not assumed to be normal. The two estimates are sim-

ilar but this time, we can see a different k estimate, for instance. This coincides with
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(a) (b)

Figure 5.1: Residuals Against Fitted Response Values Under: (a) the Untrans-
formed Full Treatment Model (α = 1); (b) the Full Treatment Model

our presumption that the estimate of the Michaelis constant from the simple Michaelis-

Menten model could be inaccurate, though the Box-Cox transformation has adjusted the

error structure in this case. Unless the untransformed model is quite bad, a Box-Cox

transformation will not change too much θ̃, the NLS estimates which are supposed to

be near the true parameter values. This means that some possible values of α (which

will lead to quite different estimates) cannot be approved for the transformation in the

TBS model, even if the variation in the transformed response will be well explained.

5.8.2 Lack of Fit and Pure Error

A new method we propose in this thesis is to use the fitted model (5.20), which we assume

for the experiment, to determine the value of the transformation parameter α. Different

from computation under the full treatment model, the value of α in this case has to be

updated in iterations until little further improvement can be made on model residuals.

We should start with the untransformed model (i.e.α = 1) and replace the vector θ with

the current nonlinear least squares estimate θ̃ = {0.3122,−6.4086, 0.8383,−0.2861}. As

such, we can compute the fitted responses ν̃ as well as the residuals ν − ν̃. With the

lack of fit taken into account, the total error variance is ς̂2(α) = σ̂2(α) =
∑
ε2i /n. This

allows us to maximise the log likelihood function l(α) and then estimate α. With the

residuals from the fitted untransformed model, the initial estimate is α = 0.3646.

Given the transformation parameter, we are able to update and refit the model. The

treatment parameter estimate is found to be θ̃ = {0.2897,−6.4308, 0.8394,−0.2676}.
Given the new θ̃, we can repeat the above steps for iterative estimation of α and θ.

When the first four decimal digits are constant after six iterations, the final solutions

are α = 0.1624 and θ̃ = {0.2861,−6.4365, 0.8407,−0.2610}. These results are similar

to those found with the full treatment model and the corresponding two residual plots

are shown in Figure 5.2. This is because of the small lack of fit on average. Under the
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(a) (b)

Figure 5.2: Residuals Against Fitted Response Values Under: (a) the Untrans-
formed Hybrid Kinetic Model); (b) the TBS Hybrid Kinetic Model

untransformed hybrid kinetic model, the error variances do not seem to be homogeneous.

In this aspect, there is some clear improvement after we transform the model. Moreover,

after the transformation of the both sides of the model, there is a bit improvement in

the observed error distribution, which is assumed to be normal. Hence, if we fit the TBS

model with NLS, we can expect more reliable parameter estimation and interpretation

of the response variation.

There are some differences between the two methods in the determination of the Box-Cox

transformation parameter. When the lack of fit is smaller on average, as we increase

the number of empirical terms in the hybrid model, the difference between the two

maximum likelihood estimates of α could also be smaller. However, that would make it

difficult to fit the hybrid nonlinear model and it is also impractical to do so. For the full

treatment model, the number of parameters is equal to the number of unique treatments

(if we ignore the common intercept and exclude α) and therefore the lack of fit will be

eliminated. While the ANOVA method in Latif and Gilmour (2015) makes the accurate

estimation of α independent of the assumed nonlinear model, the alternative method we

introduced above is even more similar to using maximum likelihood to fit the complete

model. But it is easier than that and it will not involve the covariances between the

estimators of α and the treatment parameters.

In summary, the benefit of transforming the model is that we will find more reliable

parameter estimates and improve our understanding about the response surface. When

the model we assume is mechanistic, our recommendation is to use the full treatment

model to determine α. The ANOVA method shall utilise the pure errors, a quite natural

Box-Cox transformation can be found to maximise the likelihood of the full treatment

model, conditional on the observed responses. The parameters of mechanistic models

often contain some scientific information to be interpreted, so it is important to obtain

accurate estimates of the parameters from the mechanism we assume.
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To achieve this, the better choice is to use the pure errors to define the Box-Cox transfor-

mation. With exclusion of the lack of fit which is expected to be small for a mechanistic

model, α is there to improve the pure error structure. As such, the estimate of θ could

be considered to be most accurate if both the model and the postulated mechanism

are correct. This is crucial in studies of reaction mechanisms and relevant theories.

In contrast, one’s interest is often in a best description or approximation to the unknown

mechanism when the model we assume is purely empirical (i.e. unrelated to theories). In

this case, our recommendation is to use the total error to find the maximum likelihood

estimate of α. After the subsequent estimation of the treatment parameters θ, the fitted

model could lead to the best explanation of the response variation. This is because, in

such kind of empirical studies, the lack of fit can reflect the model discrepancies from

the true unknown mechanism, which we wish to minimise.

The experimental purpose is to approximate the response surface and the relationship

between the response and the controlled variables, so it is acceptable to let the estimator

of θ depend on the lack of fit of the model. Given α, in this example, the hybrid model

function can be used to evaluate the total error of the model, which combines the pure

error and the lack of fit. We can then expect the estimates of the treatment parameters

to be more precise (i.e. the standard errors will be smaller) than those obtained under

the ANOVA method, since the maximum likelihood assumptions of the (total) errors

shall be most reasonable in this case.

5.8.3 Optimal Experimental Design Results

For a precise estimation of the treatment parameters θ, in addition to transforming both

sides of a nonlinear model, another measure is to consider optimal experimental design

prior to the data collection. In this example, the first step is to decide α as we wish to

transform the response ν. The hybrid nonlinear model in this case is a combination of

the Michaelis-Menten equation and a simple exponential function. Though the lack of

fit exists, it is rather small because the untransformed model (5.19) can fit the reference

data quite well. As we can see previously, there is little difference between the two

maximum likelihood estimates α = 0.1496 and α = 0.1624. Here, since the TBS model

contains some characteristics of Michaelis-Menten kinetics, we choose the full treatment

model to determine the Box-Cox transformation, for example. As a result, α ≈ 0.15

is fixed as a constant before we estimate θ with nonlinear least squares. It is based

on the pure errors from the reference dataset, so the new experiment could suggest a

different Box-Cox transformation function in terms of α, depending on the fitted full

treatment model. Given the uncertainty about the true value of α, even if the impact of

the transformation is potentially minor on the parameter estimation, this is one of the

main disadvantages when we do optimal design for a TBS model.
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To define a multivariate parameter prior distribution, we set the prior mean of θ to

equal θ̃ = {0.2859,−6.4368, 0.8408,−0.2607}. In the TBS model (5.20), α is fixed to

be a constant 0.15 in our first demonstration below. This is not treated as an unknown

parameter such that we can focus on the estimation of the four treatment parameters.

However, it is still important to find a reliable prior value for α (0.15 in this case)

beforehand and also calculate the maximum likelihood estimate of α after the new

experiment, in order to determine the best transformation of the model. Besides, the

Box-Cox transformation also influences the nonlinear behaviour of the TBS model. Now,

as we learn from the previous example in Chapter 4, if we do not transform model (5.19)

(i.e.α = 1), the 30-run local D-optimal design can be obtained as

X∗0 =

{
(0.025, 3) (0.086, 3) (0.097, 0.33) (0.12, 0.26) (0.12, 3)

8 7 1 7 7

}
. (5.22)

This has been found to be efficient across various postulated scenarios. It is also robust to

the defined moderate uncertainties of the true parameter values, which are exhibited in

the joint prior density ρ(θ). This is because of the strong linearities of the untransformed

model, which incorporates an empirical exponential function in terms of three unknown

parameters. As such, though the value of ϕ varies depending on the parameter prior

values, the specified expected D-criterion will not much influence the result in (5.22),

even though it evaluates a complex function ϕ instead of the local D-criterion function.

After we transform both sides of model (5.19), it is sensible to reexamine the relative

improvement of the new Bayesian D-optimal design and its robustness to the variation

in the true parameter values. To do this, we assume an appropriate parameter prior

distribution so that the pseudo-Bayesian approach can be applied to use the expected

D-criterion. To approximate its criterion function ϕ and reduce computational time, we

shall find a reliable Gauss-Hermite quadrature. It will be intuitive to calculate different

Gauss-Hermite approximations (quadratures in different orders) of ϕ of a fixed X and

compare them to the extrapolated true value of ϕ.

Recall that the Xref in Table 5.1 is the reference from the previous experiment and the

X∗0 shown in (5.22) is local D-optimal for the untransformed model (5.19). With each of

them, we are able to compare the errors of the Gauss-Hermite quadratures in different

orders as approximations to ϕ. To compose an economic and reliable Gauss-Hermite

sample for the function φBD, we shall determine the four subsample sizes in correspon-

dence to the respective treatment parameters. As such, the total Gauss-Hermite sample

size m depends on each of the subsample sizes. Our intention is to find an acceptable

tradeoff between the total sample size and the Gauss-Hermite approximation error.

In this example related to Michaelis-Menten kinetics, first, the univariate prior distribu-

tions of the treatment parameters are assumed to be normal for a0, a1, a2 and lognormal

for k. This is due to the constraint that k must take a nonnegative value. We can
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Table 5.1: 30-Run Reference Design in Martins et al. (1999)

E S E S E S E S E S E S

0.023 1.5 0.03 0.15 0.03 0.9 0.03 3 0.045 1.5 0.089 1.5
0.023 1.5 0.03 0.3 0.03 0.9 0.03 3 0.0675 1.5 0.089 1.5
0.023 1.5 0.03 0.3 0.03 1.5 0.03 3 0.0675 1.5 0.112 1.5
0.03 0.15 0.03 0.3 0.03 1.5 0.045 1.5 0.0675 1.5 0.112 1.5
0.03 0.15 0.03 0.9 0.03 1.5 0.045 1.5 0.089 1.5 0.112 1.5

further assume the mutual independence between the four univariate prior distributions

to derive the multivariate ρ(θ). This implies that in the 4×4 variance-covariance matrix

of ρ(θ), the prior covariances are all zero. The prior variances are set to be 10 times the

variance estimates which are obtained from the model fitted to the reference dataset.

Hence, the mean of ρ(θ) is {0.2859,−6.4368, 0.8408,−0.2607} and the specified standard

deviations are {0.0808, 0.0949, 0.0713, 0.1550}. Besides, after we transform both sides

of the model, the estimation of k is much more precise but that of a2 is less precise.

The new parameter prior density ρ(θ) can be incorporated into the expected D-criterion

function ϕ, which we will approximate with φBD. As we change the Gauss-Hermite

subsample size(s) with respect to one or all (see the last column) treatment parameters,

the numerical results are summarised in Table 5.2.

Table 5.2: A Selection of Gauss-Hermite Quadratures in Different Orders for
the Approximation of the Expected D-Criterion Value

Sample {k} {a1} {a2} {k, (a0), a1, a2}

mj=1 -15.0905 -15.0905 -15.0905 -15.0905
Xref mj=2 -15.1215 -15.0905 -15.0905 -15.1213

mj=3 -15.1214 -15.0905 -15.0905 -15.1213
mj=4 -15.1214 -15.0905 -15.0905 -15.1213

mj=1 -13.1393 -13.1393 -13.1393 -13.1393
X∗0 mj=2 -13.1700 -13.1393 -13.1392 -13.1699

mj=3 -13.1699 -13.1393 -13.1392 -13.1698
mj=4 -13.1699 -13.1393 -13.1392 -13.1699

The parameter value of a0 does not influence the approximation error of ϕ, as was

explained in Chapter 4. Thus we fix it at the point estimate ã0 = −6.4368. For three

of the columns, we determine a specific Gauss-Hermite subsample size for one of the

treatment parameters when the remaining subsample sizes are all fixed to one (i.e. the

total size is m = mj). Note that the parameter k is subject to a lognormal prior

distribution. Therefore, even if the subsample size is one, the single prior value of k

will not be equal to the mean of the prior distribution (k̃ = 0.2859). For the results in

the last column of Table 5.2, we determine an identical Gauss-Hermite subsample size

for each of the three parameters (if we exclude a0). As such, the total sample size is

calculated to be m = m3
j = 1, 8, 27, 64 but this will not lead to the most appropriate

Gauss-Hermite sample for efficient and economic approximation of ϕ.
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An improvement in the numerical results is that, after the Box-Cox transformation of

the both sides of the hybrid model, it becomes much easier to approximate the new

expected D-criterion function. According to Table 5.2, we can choose to fix both prior

values of a1 and a2 at the respective means ã1 and ã2. As such, the total Gauss-Hermite

sample size is as small as m = 3 since we will use three sampled prior values of k. In

addition to quicker computation, this result also implies the close-to-linear behaviour of

the hybrid nonlinear model.

To configure our hybrid (point) exchange algorithm for Bayesian optimal design, we

define a simple 3 × 3 candidate set Ω = {−1, 0, 1} × {0.15, 1.5, 3} (the first variable is

the scaled protein concentration) and an exchanging rule max(di) > 1.01 for the swift

discrete optimisation of 30 random initial designs over Ω. Out of the τ = 30 tries in

the discrete optimisation, most of the solutions X1st are identical at the attained local

maxima of the expected D-criterion function. In total, we find τ∗ = 4 distinct X1st

that will act as the new starting designs for the continuous optimisation under the point

exchange approach, which will be the second stage of the hybrid method.

The exchange rule is reset to max(di) > 1.00000001 as we shall optimise each point of

X1st in iterations over the bounded variable space X = [−1, 1]× [0.15, 3]. As usual, we

can utilise ten vectors of initial variable values where the continuous optimisation can

start: the current point in X and nine fixed points from {−0.67, 0, 0.67}×{0.5, 1.5, 2.5}.
With the continuous optimisation, each of the four distinct X1st will be updated further

until we obtain a stable solution X2nd. The most efficient solution out of the four X2nd

will be called Xopt, which could maximise ϕ.

The closest distance is set to be 0.001 for the protein concentration and 0.01 for the

substrate concentration. As such, Xopt will be used to finish the hybrid exchange algo-

rithm. Its corresponding points and numbers of replicates can be recalculated before we

obtain a feasible optimal design X∗opt. Finally, the modified adjustment algorithm can

be applied to validate the expected D-criterion and to compute the finalised Bayesian

D-optimal design X∗∗opt. This is not an essential part though, since the X∗∗opt below is

identical to X∗opt (no improvement is made) in this example:

X∗∗opt =

{
(0.02, 0.15) (0.02, 3) (0.074, 0.15) (0.074, 3) (0.12, 0.15) (0.12, 3)

3 6 4 6 5 6

}
, (5.23)

of which φBD = −11.9937. As we can see, there are six support points which are similar

to the discrete candidate points from the small 3 × 3 set Ω. We can also expect a

similar result when the local D-criterion replaces the current expected D-criterion. This

is because the X∗∗opt in (5.23) is quite robust to variations of the true parameter values

that we sample just one prior value for each of the treatment parameters except for k.

To find an efficient optimal design in this case, we do not have to do many random tries

in the continuous optimisation and even a simple discrete optimisation alone could be

sufficient for the exchange algorithm to be implemented. This is another benefit of using
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a suitable Box-Cox transformation on the model, which can be found to improve the

untransformed error structure of the full treatment model.

Moreover, the six support points in (5.23) are almost identical to those in the previous

local D-optimal design we find for the TBS model when α → 0 (i.e. the natural loga-

rithmic scale is used for the transformation). However, the numbers of replicates are

different, which could depend on the transformation parameter value α in this case.

5.9 A Kinetic Model with a Categorical Variable

We now consider the experiment in Yamamoto (1958) that studied a Michaelis-Menten

mechanism with three controlled variables: the dye (or substrate) concentration S ∈
[0.02, 0.2], the hydrogen ion concentration H ∈ [7, 8] (i.e. the pH), and the dye species

D ∈ {0, 1}. The aim is to understand the photodynamic action of the dyes in inactivation

of the bacteriophages, the kinetics of which is important in disease therapies and medical

treatments. The dummy variable D = 0 indicates the use of methylene blue dye for the

reaction whereas D = 1 indicates the use of toluidine blue dye. Hence, we can consider

a transform-both-sides hybrid nonlinear model as follows:

ν
(α)
i =

(
exp(a0 + a1Di + a2xi + a3xiDi + a4xi

2 + a5xi
2Di)Si

k0 + k1Di + Si

)(α)

+ εi, (5.24)

where x = (H − 7.4)/0.4 and the p = 8 treatment parameters are k0, k1, a0, . . . , a5. The

reference experiment included 24 valid runs in Yamamoto (1958) (the initial rates were

observed under the same conditions): there were 19 observations for the methylene blue

and five for the toluidine blue which was the less important dye. The problem is, in

total, that there are 17 support points. Thus we can only use seven replicate runs for

an evaluation of the pure error variance of the model.

The total errors of the fitted TBS model can be calculated whereas the lack of fit can be

larger than that in the previous example. If we use the TBS model above to estimate

the Box-Cox transformation parameter α, the final answer is α̃ = 1.4460. The reference

dataset does not allow for the estimation of a3 and a5, so we fix them to be zeros in the

current model fitting. As a consequence of the model transformation, the total errors

are now better explained. Nevertheless, at least the assumption of homogeneous error

variances is still not quite adequate.

In contrast, we use the pure errors to estimate the α from the full treatment model. The

solution α̃ = 0.8202 ≈ 0.82 recommends a different form of the Box-Cox transformation

and this requests a different kind of error structure correction. Given the current small

number of replicate runs, this calculation is not so reliable in a sense. A more accurate

estimation of α will require sufficient replication of the adopted support points, which
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is often encouraged in design of experiments. In this situation, one might find the

DP-criterion (Gilmour and Trinca, 2012b) useful in place of the classical D-criterion.

It is no wonder this form of the Box-Cox transformation does not improve much the

model fitting since there are not many nonzero observations of the pure errors. Without

a much better explanation of model errors, the optimal design might not be simplified

too. To be consistent with the first example in this chapter, however, α is determined

to be a known constant 0.82 in this case, so that we could obtain the NLS estimate θ̃ =

{0.11281,−0.044306, 0.32276,−0.67747, 0.31409, 0,−0.10768, 0} of all the treatment pa-

rameters, where we set the two unavailable estimates ã3, ã5 to zero.

In comparison, we have more parameters and less experimental units in this example.

The prior distribution of θ can be specified such that the prior variances are set to be

five times the reference variance estimates. The prior mean shall equal θ̃ and the prior

standard deviations of {k0, a0, . . . , a5} are {0.0541, 0.0976, 0.0855, 0.1009, 0, 0.5484, 0} .

An exception is that the standard deviation of k1 is set to zero such that the prior

value of k1 will not be influenced under our pseudo-Bayesian approach. We assume

normal distributions for a0, . . . , a5 and a lognormal distribution for k0 − k̃1. This is

because the function k0 + k1 cannot take nonpositive values (this is a constraint under

the Michaelis-Menten mechanism) and k̃1 = −0.044306 is a fixed parameter prior value.

There are some alternative measures to meet this constraint but most of the required

adaptations would much affect the parameter prior distribution. One approach is to

take the covariance estimates of k̃0 and k̃1 into account in a bivariate lognormal prior

distribution. Another approach is to reparametrise k0 and k1 when we assume the

corresponding parameter prior distribution. For instance, k0 + k1Di can be rewritten

as exp(k′0 + k′1Di), for i = 1, 2, . . . , n. Nonetheless, the results of optimal design of

experiments can change under either approach, which is undesirable if experimenters

are interested in the parameter estimation of model (5.24) only.

As we can see in Table 5.3 below, the emphasis of a suitable Gauss-Hermite quadrature

will be all related to the experimental units with the allocation D = 0: i.e. when methy-

lene blue is the dye species for the reaction. These approximations are on the basis of

the local D-optimal design

X∗∗0 =


(0, 7, 0.2) (0, 7.6, 0.2) (0, 7.7, 0.06) (0, 8, 0.06) (0, 8, 0.2)

3 3 1 2 3

(1, 7, 0.2) (1, 7.6, 0.2) (1, 7.7, 0.05) (1, 8, 0.04) (1, 8, 0.2)

3 3 1 2 3

 (5.25)

for the untransformed model hybrid in an example in Chapter 3. For the results in each

column of Table 5.3, we take one parameter at a time to draw its prior value such that

the Gauss-Hermite sample size is m = mj . To ensure an accurate approximation of the

expected D-criterion value for model (5.24), which is transformed when α = 0.82, we
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choose the Gauss-Hermite sample that includes four prior values of k1, two of a2, and

also two of a4. The rest of the parameter prior values will take the respective point

estimates, so there is no need to integrate them out of ϕ. Although there are eight

treatment parameters, the determined Gauss-Hermite sample size is as small as m = 16.

Table 5.3: A Selection of Gauss-Hermite Quadratures in Different Orders for
the Approximation of the Expected D-Criterion Value

Sample {k1} {a1} {a2} {a4}

mj=1 10.8858 10.8858 10.8858 10.8858
mj=2 10.0287 10.8858 10.8892 10.8983
mj=3 10.0399 10.8858 10.8892 10.8983
mj=4 10.0400 10.8858 10.8892 10.8983
mj=5 10.0400 10.8858 10.8892 10.8983
mj=6 10.0400 10.8858 10.8892 10.8983

For the discrete optimisation part (first stage) of the hybrid exchange algorithm, the

candidate set for each point (Di, xi, Si) is Ω = {0, 1} × {−1, 0, 1.5} × {1/48, 1/18, 1/6}
and the exchanging rule is max(di) > 1.05. Out of τ = 30 random tries, we find τ∗ = 8

distinct X1st as the starting designs for the subsequent continuous optimisation (second

stage). The exchanging rule is reset to max(di) > 1.00000001 and as to the initial

values of the controlled variables, there are 18 additional points from the coarse set

{0, 1} × {−0.375, 0.25, 0.875} × {0.06, 0.1, 0.14}. Finally, to adjust the coordinates, the

closest distance is 1 for the binary dye species, 0.1 for the pH and 0.01 for the dye

concentration. The modified adjustment algorithm cannot improve the solution of the

hybrid method further, so X∗∗opt = X∗opt is the finalised Bayesian D-optimal design:

X∗∗opt =


(0, 7, 0.2) (0, 7.6, 0.05) (0, 7.6, 0.2) (0, 8, 0.05) (0, 8, 0.2)

3 1 3 2 3

(1, 7, 0.2) (1, 7.6, 0.04) (1, 7.6, 0.2) (1, 8, 0.03) (1, 8, 0.2)

3 1 3 2 3

 , (5.26)

of which φBD = 10.1631. It is similar to the baseline in (5.25), even after the Box-

Cox transformation of the model and the use of the expected D-criterion. As we also

commented in the first example, once more both local and Bayesian D-optimal designs

will be robust to the variation in the true parameter values.

5.10 Precise Estimation of the Transformation Parameter

In this section, we are to consider a compound criterion that allows for the precise

estimation of α from the full treatment model. We can demonstrate this methodology

in the Martins et al. (1999) example, where the expected D-criterion for model (5.20)

is adopted to minimise the variances and covariances of the four treatment parameter

estimators. In that case, the six optimal support points are found in (5.23) and each is
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robust to the true parameter values. As the total number of experimental runs is n = 30,

the corresponding numbers of replicate runs are also calculated but these integers must

be updated for an optimal design that satisfies the new compound criterion.

For simplification, we choose to optimise the compound criterion function over a discrete

candidate set which consists of the six support points in (5.23). It is convenient to

do so as we can then concentrate on the calculation and optimisation of the exact

number of replicates of each fixed candidate point. As we have learned beforehand, the

variance estimate of the transformation parameter α comes from the maximum likelihood

estimation of the full treatment model

ν
(α)
i = βi∗ + εi, (5.27)

for i∗ = 1, 2, . . . , 6 and i = 1, 2, . . . , 30. In comparison to the previous model (5.21),

the common intercept µ0 is removed so that we will evaluate the individual treatment

effects in this case. At each of the six candidate points, the fitted TBS model (5.20) will

return an expected value of the response ν, which is taken as the prior value of the i∗th

unique treatment effect βi∗ . In addition, the maximum likelihood estimate of the pure

error variance ς2 is set to be another point parameter prior.

The fundamental assumption of the treatment model is ε ∼ N(0, ς2). Unlike the proposed

compound criterion in Bogacka et al. (2015), the criterion we use is a bit different because

we assume a fixed effects model. Therefore, when we derive the Fisher information

matrix of model (5.27), there is no need to treat ς2 as a parameter of particular interest

in estimation. As such, the used compound criterion function is

φC = −c1log

(
V(α̂)

ς2

)
+ c2

(
φBD

p

)
= −c1log((0, 0, 0, 0, 0, 0, 1)M(β, α)−1(0, 0, 0, 0, 0, 0, 1)T) + c2

(
φBD

p

)
,

where M indicates the 7 × 7 information matrix of the full treatment model and α̂

indicates the estimator of α conditional on the new experimental data. In this case,

M is the expected value of minus the Hessian matrix. However, the matrix involves a

number of terms of which the expected values are unknown: i.e.E(ναlog(ν)). We can

consider να as a random variable and therefore, for simple linearisation of these terms,

the second-order Taylor expansion can be applied around the mean να = E(να). As

we know, the first moment of the response ν
(α)
i is E

(
ν
(α)
i

)
= βi∗ whereas the second

moment is V
(
ν
(α)
i

)
= ς2. In other words, the mean of να will be αβi∗ + 1 and the

variance will be α2ς2 as a constant. In this case, for instance,

E(ναlog(ν)) ≈ E(να)log(E(να))

α
+

V(να)

2E(να)α
.
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We expect the pure error variance to be small for the assumed model and particularly

in the Martins et al. (1999) example, the variance estimate of the full treatment model

is ς̃2 = 0.00012454. Hence even the second nonzero term of a Taylor expansion can

take quite small values relative to the first. In this case, we can delete the second

term of the expansion if the prior value of the pure error variance ς2 is unreliable.

After we introduce these approximations to the compound criterion function, the Fisher

information M(β, α) can be expressed in terms of β, α, ς2 and the n treatment labels.

To evaluate the variance of α̂ as well as the compound criterion function φC, we use the

point parameter prior calculated. For simplification, the prior value of each parameter

is fixed at the reference maximum likelihood estimate. The prior value of α is α0 = 0.15

and the prior variance is zero. In this case, no Gauss-Hermite quadrature is required for

the evaluation of V(α̂) in the compound criterion function.

For each of the six candidate points, the unit Fisher information can be calculated since

the aim is to determine the six numbers of replicates. If our interest is to minimise

the variance function V(α̂), the compound criterion requires just one support point

(0.02, 0.15) ∈ [0.02, 0.12]× [0.15, 3], at which the expected response ν is at the minimum

in reference to the previous fitted TBS model. On the other hand, if we let c1 = 0

and thus ignore the component V(α̂), the optimisation solution under the compound

criterion will be (5.23), which maximises the expected D-criterion function.

As we search for a X to maximise the compound criterion function φC, it is reasonable to

implement a nonlinear optimisation with the constraint
∑
ni∗ = 30, where ni∗ indicates

the number of replicates on the i∗th candidate point. Either the quasi-Newton method

or the Nelder-Mead method can be chosen, the latter of which is used for the multidi-

mensional optimisation in this example. To ensure the best local optimal solution, some

different combinations of initial values are used. After an optimal solution is found, we

also do a simple discrete search to obtain an integer solution which will be the output

of nonlinear optimisation. A discrete search requires us to choose several integers near

the optimal solution in each dimension. As numerical computation is quick in Matlab,

we can finish a search over hundreds of candidates in less than one second.

In comparison, the point exchange approach (Fedorov, 1972) is not so suitable for this

compound criterion. This is because, if we update at most one experimental run in each

iterative step, that might not be sufficient for an improvement of the criterion function.

It can happen that the exchange approach would get stuck at inefficient solutions as it

is so restrictive in increasing or decreasing the numbers of replicates. In some cases, we

should delete candidate points of which the numbers of replicates have fallen to zero. It

can be hard to complete this through iterations.

Hence, our recommendation is to use the nonlinear optimisation to determine each ni∗ .

If the dimension of a complete optimisation (it equals the number of candidate points)

is too high for finding an accurate solution, the whole task can be divided into several
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dependent lower-dimensional optimisations. In that case, the local optimal solution

(i.e. the optimal numbers of replicates) can be updated in several iterations.

First, let us choose the weight c1 = 0.25c2 = 0.5. The Gauss-Hermite approximation of

the expected D-criterion function is φBD, which integrates p = 4 treatment parameters

out of ϕ. Hence, it is a reasonable choice to let c2 = 4c1. This does not mean that the

precise estimation of α is as important as that of the individual treatment parameters

in θ, since it depends on the fitted full treatment model with a different error structure.

In this situation, there are six support points and after the discrete search near the end

of the optimisation, the final optimal solution is

XC =

{
(0.02, 0.15) (0.02, 3) (0.074, 0.15) (0.074, 3) (0.12, 0.15) (0.12, 3)

4 6 5 5 5 5

}
. (5.28)

Compared with (5.23), there is one more replicate on each of the experimental runs

(0.12, 0.15) and (0.074, 0.15), at which the expected responses of the previous fitted

TBS model are low. In contrast, there is one fewer replicate on each of (0.074, 3) and

(0.12, 3), which can contribute to higher expected initial rates. Therefore, as we replace

the expected D-criterion for the TBS model with the new compound criterion for the

estimation of both λ and θ, the optimal numbers of replicate runs can be different.

In addition, we shall consider some different weights for the criterion, depending on the

importances of the parameter estimates. If the compound criterion uses c1 = 0.125c2

to weight φBD, the respective numbers of replicates are determined to be {4, 5, 4, 6, 5, 6}
such that one change has been made from (5.23). In contrast, when c1 = 0.5c2 is the

weight, the new compound optimal solution is {6, 5, 5, 5, 4, 5} as the set of the numbers

of replicates. The criterion allocates fewer replicates to the last three support points.

Moreover, even in this worst scenario when c1 = 0.5c2, with respect to the compound

optimal design, one can expect the Bayesian D-optimal design (5.23) to be 94.07%

efficient in terms of the precise maximum likelihood estimation of α.

The prior value of the Box-Cox transformation parameter α can also be modified. When

there is a new prior value of α, we should also update the prior values of the treatment

effects β as well as the error variance ς2. This is because of the close association between

the estimators of these parameters, when the full treatment model and the function

of V(α̂) should be evaluated. On the other hand, we do not have to update the prior

distribution of the treatment parameters of the TBS model (5.20) and the Gauss-Hermite

approximation φBD. Due to the transformation of the both sides of the model, the

estimation of the treatment parameters are less sensitive to the value of α. As such, we

can use the same multivariate prior distribution that is specified with reference to the

fitted TBS model when α = 0.15. While we let the weight be c1 = 0.25c2 = 0.5 for the

compound criterion above, the final results are summarised in Table 5.4.

This shows that, when α is close to 0.15, the compound criterion prefers a more equal

allocation of the replicates on the six support points. When the prior value of α deviates
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Table 5.4: Optimal Experimental Designs When There Are Different Prior Val-
ues of α

α rep. α rep. α rep.

1 {0, 8, 0, 7, 8, 7} 0.5 {0, 8, 2, 7, 6, 7} 0.15 {4, 6, 5, 5, 5, 5}

α rep. α rep. α rep.

-0.15 {7, 5, 6, 3, 6, 3} -0.5 {8, 8, 7, 0, 7, 0} -1 {8, 8, 7, 0, 7, 0}

from 0.15, in contrast, we tend to use fewer support points for the experiment. For

instance, when α = 1 and there is no transformation for model (5.19), the final optimal

solution is different but quite similar to a solution in (5.22), the local D-optimal design

for the untransformed kinetic model.

5.11 Discussion of Model Transformation

In this chapter, we have shown the usefulness of the Box-Cox transformation to improve

the fit of some nonlinear kinetic models. When the real error structure of a model

does not meet the requirement of least squares estimation, under the Michaelis-Menten

mechanism and its essential assumptions, a suitable Box-Cox transformation on both

sides of the kinetic model can correct a bad error structure for the untransformed model

and thus stabilise the variation in the response. We can then obtain more reliable

estimates of treatment parameters from the experimental data, even if some assumptions

of the mechanism are violated in the reaction in the experiment.

In our demonstration of more complex Michaelis-Menten mechanisms that involve mul-

tiple factors, sometimes it is sensible to fit a hybrid nonlinear model for a better interpre-

tation with experimental data. In this chapter, two examples with transform-both-sides

hybrid models were presented as we estimated the Box-Cox transformation parameter

α for the more accurate estimation of treatment parameters θ. In addition to a recent

ANOVA method (Latif and Gilmour, 2015), we also proposed a new method which can

make the maximum likelihood estimation of α dependent on the assumed model. For

these TBS hybrid models, the tailor-made Bayesian optimal designs were found for the

new experiments we envisage. In addition to the implementation of the hybrid exchange

algorithm in Chapter 2 and the Gauss-Hermite quadrature in Chapter 4, we have shown

how to use the compound criterion in Bogacka et al. (2015) to improve the estimation

of both α and θ with the new experimental dataset. Overall, the hybrid modelling

techniques and the Box-Cox transformation of nonlinear models we discuss should be

considered in developments of new strategies for statistical inference and also in future

applications of optimal design of science experiments.
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Conclusion

6.1 State of the Art

Different statistical models can be used in studies of various mechanisms in science and

medicine. For instance, empirical models are popular in industrial experiments, which

lack support from relevant theories. It is convenient for a suitable empirical model to

incorporate multiple controlled variables. On the other hand, mechanistic models are of

value in approximation and interpretation, which are subject to theoretical assumptions.

The derived mechanistic model is often nonlinear but is frugal in the use of parameters.

Besides, when we do not have all the information, an empirical model can be derived to

involve some mechanistic features and practical considerations. As such, it can be defined

as a hybrid model as in this thesis, which is often nonlinear in terms of parameters.

A suitable nonlinear multifactor model can be fitted to the data, as the experimental

purpose we focus on is the precise estimation of model parameters. Experimenters can

then obtain a sensible explanation of the response surface and the mechanism. Therefore,

a model-oriented optimal design can be used to refine the experimental process and the

observation of response. As such, when the nonlinear model is fitted with nonlinear least

squares or maximum likelihood, we can expect some improvement in the estimation

of parameters (or other specific experimental purposes). In computation, it is most

common to use either the point exchange approach or the coordinate exchange approach

to search for exact optimal designs. The main task is to optimise a number of initial

random designs in steps in several iterative updates. As an alternative to the traditional

discrete optimisation (see Figure 6.1 for its core procedure) in the literature, in Chapter

2 we develop a new continuous optimisation method to improve the relative efficiencies

of optimal designs of experiments. In this situation, the iterative search for the best

candidates is not limited to the finite discrete candidate set. It is able to take the whole

variable space (design region) X into account, in spite of the intensive computation
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Figure 6.1: The Traditional Discrete Optimisation Method for the Exchange
Approach: The Discrete Candidate Set is the One Used in the Box and Draper
(1987) Example

involved. This effective method overcomes some drawbacks of the discrete optimisation

and thus it is implemented in the new optimised exchange algorithm we propose.

As a further development on the basis of the optimised exchange algorithm, we incor-

porate the discrete optimisation and continuous optimisation methods as two connected

stages of computation. The outcome is the new hybrid exchange algorithm (or hybrid

method), the rough structure of which is elucidated in Figure 6.2. Compared with the

optimised exchange algorithm, it is quicker and more efficient in exact optimal design of

nonlinear multifactor experiments. The result and performance of the hybrid exchange

algorithm depends on the (small) candidate set specified for the discrete optimisation.

However, even if a suitable candidate set cannot be found in advance (to improve results

of the optimisation), we can obtain one with a quick continuous optimisation; i.e. we

can refer to the result of an optimised exchange algorithm with just one or two tries.

In Chapter 2, we demonstrated these algorithms in some examples under the common

local D-criterion. Of course, a different criterion can also be considered at the request

of experimenters, which can lead to dissimilar results.

Some biochemical studies involve mechanistic models to describe the effect of a single

factor. However, more studies involve multiple experimental factors, for some of whose

effects no mechanistic model is available. This necessitates the combination of theoret-

ical functions with empirical response surface models in the experimental factors. For

the approximation and interpretation of the unknown kinetic mechanism, for instance,

we consider a number of hybrid nonlinear models based on Michaelis-Menten kinetics.
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Figure 6.2: The New Hybrid Exchange Algorithm in A Brief Flow Chart

Depending on the mechanism we assume, some of these models are quite complex in

terms of several controlled variables and a lot of parameters. One or more controlled

variables can be categorical, which should be defined in the model. We also need to find

the most suitable model to be fitted, which implies a model selection problem. With

the hybrid exchange algorithm and a modified adjustment algorithm we develop, exact

optimal designs for these hybrid nonlinear models can be found as shown in Chapter

3. In addition to the local D-criterion for the hybrid nonlinear model, we also exam-

ined the local L-criterion and even a simple compound criterion, which met different

experimental purposes and requirements for the parameter estimation.

Under a pseudo-Bayesian approach, we can define a multivariate prior distribution to

take account of uncertainties about the unknown parameter values. As such, in Bayesian

optimal experimental design for the nonlinear model, an expected criterion function

should be evaluated instead of the local criterion function. Given the intensive compu-

tation in this situation (if we use the inefficient traditional PMC method to approximate

the criterion function), it will be beneficial if the expected criterion function can be some-

how simplified. Meanwhile, the Gaussian quadrature rules are efficient approaches in

numerical approximation of the various forms of definite integrals. With adaptation

based on the assumed parameter prior distributions for the expected criterion, it has

been justified that some of these quadratures can be used as close approximations to

different forms of expected criterion functions.

Depending on the multivariate parameter prior distribution we assume, there are dif-

ferent quadrature rules for optimal design of experiments. In this thesis, we focus on

Gauss-Hermite quadrature which can work with both the normal prior and the lognor-

mal prior of model parameters. To approximate each expected D-criterion function in
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Chapter 4, we can use a small and economic Gauss-Hermite sample of the parameters.

Compared with the random sample under the PMC approximation, it can lead to more

accurate approximations and reduce the computational time in the hybrid exchange al-

gorithm. Besides, we also introduced the spherical-radius transformation, an alternative

method for efficient numerical integrations of the expected criterion function. Also in

Chapter 4, the Gauss-Hermite quadrature had been examined and demonstrated under

various scenarios. In our examples, though all the hybrid models are nonlinear, their

close-to-linear behaviours are quite clear. As a result, the Bayesian optimal designs we

obtain are similar to the respective local optimal ones, even if the parameter priors are

assumed to be not informative (i.e. the variances of the prior distribution are large).

Yet we recommend the expected criterion under the pseudo-Bayesian approach, which

is robust to minor variations of the true parameter values and can therefore be used to

validate the results under a local criterion. However, it is important to not overestimate

the improvement from implementing the Bayesian optimal design in the real experiment,

relative to the local optimal design. Therefore we should choose a realistic parameter

prior distribution for the model, which also meets the experimental constraints on the

true parameter values.

Chapter 5 elucidates the Michaelis-Menten mechanisms in further detail in relation to

biochemical sciences. We also emphasised the importance to transform the mechanistic

model and the relevant hybrid nonlinear model, in order to obtain a reasonable error

structure. As it can make the least squares or maximum likelihood assumptions better

satisfied, the Box-Cox transformation of both sides of the model can improve the param-

eter estimation or other model properties. The Box-Cox transformation can be used to

normalise the error structure, but we must decide a suitable transformation parameter

α. A recent ANOVA based method is therefore applied to estimate α. In optimal design

of experiments, we can treat α as a known constant or an unknown parameter to be

estimated. In the latter case, we can adapt the compound criterion in Bogacka et al.

(2015) to improve the estimation of α as well as the treatment parameters in the hybrid

nonlinear model. As there are various scenarios when we consider the transformations

of hybrid models, it is worthwhile comparing the numerical results and explaining their

differences.

6.2 Areas for Future Development

In this thesis, we focus on the deterministic nonlinear multifactor models when the

experimental purpose is the precise estimation of model parameters. These nonlinear

models have complex structures and require complicated treatments in their optimal

designs. As a future extension, we can also consider different kinds of statistical mod-

els. Generalised linear (or nonlinear) models (e.g. logistic models) are useful when we

assume some special distributions for the response variable. Hence, when the criterion
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function is derived, the Fisher information matrix has a more complex structure. Like-

wise, mixed effects models are popular for experiments in hierarchical data structures

(i.e. with clusters or blocks). In these cases, e.g. for animal experiments or clinical trials,

we shall also compute the required criterion function that takes some random effects into

account. Hence, one of our future interests is to see how the hybrid exchange algorithm

can work in such situations. Besides, some of these experiments can involve a lot of runs

to compose the Fisher information. It will be useful to compare the respective exact

optimal designs to the continuous optimal ones.

In some experiments, it is hard to decide the most suitable model as well as the param-

eter prior. In this situation, a reasonable option is to consider sequential experiments

and start with a tentative model. It is important to plan in advance when the unknown

response surface must be explored in phases. In studies of some established mechanisms,

the derived models can be overcomplicated (e.g. a stochastic model or a compartment

model). It is then difficult to derive the criterion function as required. Finally, as we

showed in Chapters 4 and 5, sometimes it is sensible to transform and/or reparametrise a

current model. For instance, the fractional polynomial model introduced in Gilmour and

Trinca (2005) requires complex transformation of variables and some sort of reparametri-

sation. Optimal experimental design for such nonlinear models will be another future

challenge.

Apart from different kinds of statistical models, there could be some special purposes

to be achieved in experiments. For the purpose of statistical inference, for instance,

one might wish to use a DP or AP criterion (Gilmour and Trinca, 2012b) to replace

the common D or A criterion. In our tests (not shown here), we find some difference

in the optimal experimental designs in some examples in this thesis. Moreover, if our

purpose is Bayesian inference about a deterministic model, the criterion function we

assume for least squares or maximum likelihood estimation might be modified. When

we cannot determine the model to be fitted to the experimental data, model selection

can be more difficult than what we described in Chapter 3. To discriminate between

more than one candidate model, we can use the compound T-criterion in our hybrid

exchange algorithm. This is another area to explore.
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