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1 Introduction

One of the most basic and interesting features of gauge/gravity dualities [1–3] is the holo-

graphic RG (renormalisation group), which relates the radial flow of classical gravity so-

lutions in asympotically anti-de Sitter spaces and the RG evolution of their field-theory

duals in the large-N approximation [4–7]. The regions near the boundary of the space on

which the gravity theory is defined correspond to the UV (ultraviolet) of the field theoy,

while the deep interior of that space is related to its IR (infrared).1 On the field theory

side, the deepest understanding of renormalisation and the RG comes from a Wilsonian

perspective [8, 9], and therefore one might hope to understand holography itself at a deeper

1Whenever we use in this paper the terms UV and IR in the gravity theory they refer to the regimes in

the field-theory dual and thereby to regions near and far from the boundary, respectively.
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level through this framework (in the line, for instance, of [10–15]). A number of attempts

have been made to formulate holographic the RG in Wilsonian terms, but making this map

precise has proved challenging.

A first proposal of a holographic Wilsonian RG was made in ref. [16], with the Wilson

action given by the gravity action with an IR boundary cutoff, evaluated on solutions to the

bulk equations. The solutions are determined by specific boundary conditions at the UV

and IR ends of the space. As nicely explained in ref. [17], this is not yet a truly Wilsonian

approach, as this Wilson action depends on physics below the IR cutoff. In ref. [18], one

of us proposed to use as an effective action the cutoff gravity action evaluated on solutions

with given UV conditions and Dirichlet conditions on the IR boundary. This object, which

we call boundary action in this paper, is a functional of the restrictions of the bulk fields

to the IR boundary. It only depends on UV data and can be used to calculate observables

at large N by integration of the remaining degrees of freedom. The boundary action is the

gravity counterpart of the Wilson action in field theory. The RG evolution of the sliding

boundary action was studied in ref. [19].

Major progress has been made more recently by Heemskerk and Polchinski in ref. [20].

These authors argue that the Wilson action itself, written as a functional of single-trace

operators, is an integral transform of the boundary action. In the large-N limit, it re-

duces to a Legendre transform.2 Moreover, in refs. [20] and [21] it was shown that the

holographic boundary and Wilson actions obey Hamilton-Jacobi equations that describe

their dependence on the position of a sliding cutoff surface. (Beyond large N, they obey

a Schrödinger equation.) This is a holographic formulation of the genuine Wilsonian RG.

However, as emphasised in ref. [20], the nature of the boundary cutoff on the field-theory

side remains unknown.

In this paper, we explore in greater detail the precise relation between the Wilsonian

RG in both sides of the holographic correspondence, in the strong ’t Hooft coupling and

large-N limits. We find fixed points of the RG/Hamilton-Jacobi evolution3 and study small

deformations of them. The relevant deformations are used to construct holographic renor-

malised trajectories, following a standard field-theoretical treatment. We make an explicit

connection between Wilsonian and renormalised (Gell-Mann-Low) RG flows and match the

corresponding beta functions. In particular, this allows us to give a precise interpretation

of the solutions of the gravity theory as running couplings in a specific renormalisation

scheme.4 We also calculate perturbatively the renormalised boundary action in a scalar

theory with a cubic interaction, and the Wilsonian and renormalised beta functions. The

explicit calculations illustrate the general formalism. We pay special attention to certain

subtle cancellations of the subdivergences in the three-point functions. The method of

holographic renormalisation [22–24] plays a major role in many of these developments.

2In ref. [18] it was already argued that the analogous boundary actions obtained by integration of the

IR degrees of freedom are related by a Legendre transform to the correlation functions of operators in the

field theory with a UV cutoff. This is an IR version of the conjugate relation of the Wilson and boundary

actions, which are UV objects.
3Physically-relevant fixed-points were already found perturbatively in ref. [20] in the potential approx-

imation. Here we find them (also perturbatively in a field expansion) to all orders in derivatives. We also

discuss the existence of non-analytic fixed points.
4A related interpretation, which we will discuss, was given in ref. [17].
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Wilsonian renormalisation group transformations relate a given Wilson action to an-

other one with a lower cutoff. They involve two steps: integration of the UV degrees of

freedom and rescaling of all length scales in terms of the new cutoff. We examine the effect

of this rescaling in the Hamilton-Jacobi evolution and show that it can be absorbed in a

modified Hamiltonian. This allows us to extend the formalism to space-time dependent

couplings. On the other hand, a strong limitation in this paper is that we work in a fixed

AdS background. Therefore, we neglect the backreaction of the scalar fields on the geom-

etry. This approximation necessarily breaks down in the IR of the renormalised theories,

for any non-trivial theory. Nevertheless, we believe that our core insights in AdS already

capture the essential features of the holographic Wilsonian RG in a complete treatment

with dynamical gravity. In section 6 we comment on some key ingredients that such a

treatment will require.

The paper is organised as follows. We start in section 2 with a review of the Wilsonian

RG in the continuum context, the so-called exact renormalisation group [8, 9, 27–29] and

show how various renormalisation schemes fit into this picture. Some of the observations

we make here already seem to be new. Then, in section 3, we apply these ideas to a

holographic Wilsonian description, starting with a review of Hamilton-Jacobi evolution,

and paying particular attention to the inclusion of space-time dependent couplings and

their derivatives. In section 4 we discuss various holographic renormalisation schemes

beyond the UV scheme already introduced, with special emphasis on the possibility of

using field solutions as renormalised couplings. In section 5 we illustrate these ideas with

explicit perturbative calculations in a scalar theory in AdS with a cubic interaction. Finally

in section 6 we draw our conclusions. Many general, somewhat technical results about fixed

points and their deformations are derived and presented in the appendices.

2 Wilsonian description of renormalisable theories: field theory

Let us consider a generic quantum field theory in d Euclidean dimensions. By definition we

are therefore assuming that the description exists on all scales, i.e. has a continuum limit.

However it is helpful to consider it defined at some UV cutoff Λ by a classical quasi-local

Wilsonian action S, which can be written as

S =

∫
ddxgα(x)Oα(x), (2.1)

where Oα are Λ-independent local operators made out of the relevant quantum fields ω and

their derivatives, with definite engineering mass dimension δ(α). They may obey symmetry

constraints. We will concentrate on Lorentz scalar operators. We consider space-time

dependent couplings, which in particular allows to extract correlations functions. The

partition function is obtained by functional integration of the fields ω with the UV cutoff Λ:

ZΛ[g] =

∫
[Dω]Λ e−SΛ(g). (2.2)

For the moment, we do not specify the nature of the cutoff (we will do it in the gravity

side). In the case of degenerate vacua for certain values of g, an extra condition can be

– 3 –
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imposed in (2.2) to select a particular vacuum. A cutoff and a set of couplings defines in

this way a particular quantum field theory, but this description is redundant. To any pair

of cutoff and couplings (Λ0, g0), we can associate a one-dimensional family of pairs (Λ, g)

by integrating out the “intermediate” degrees of freedom: if Λ < Λ0,

e−SΛ(g) =

∫
[Dω]Λ0

Λ e−SΛ0
(g0). (2.3)

If Λ > Λ0, we just exchange in this equation (Λ0, g0) and (Λ, g) (assuming that SΛ(g)

exists, which will generically be the case providing Λ/Λ0 is not too large). The notation in

the measure indicates that the path integral is performed with a UV cutoff Λ0 and an IR

cutoff Λ, chosen such that [Dω]Λ [Dω]Λ0
Λ = [Dω]Λ0 . This condition ensures that

ZΛ[g] = ZΛ0 [g0] (2.4)

in any vacuum, and thus all physical observables are the same. Besides the integration

in (2.3), the Wilsonian RG transformations involve another ingredient: scaling the cutoff

back to its original size. Simpler and equivalent is to measure all variables in units of the

cutoff. For this purpose, we write in the following the Wilson action as a functional of

dimensionless couplings ḡ, which are functions of the dimensionless coordinates x̄µ = Λxµ:

S(g) = S̄(ḡ)

=

∫
ddx̄ḡα(x̄)Ōα(x̄)

≡ ḡ · Ō , (2.5)

where we have introduced a basis {Ōα} of dimensionless operators,5

Ōα(x̄) = cβα Λ−δ(β)Oβ(x̄/Λ) . (2.6)

When written in terms of fields made dimensionless with Λ, the operators Ō do not depend

explicitly on Λ. Among these operators we include the identity operator, which contributes

to the vacuum energy and will be useful in our formalism to absorb a local part of the

breaking of scale invariance. We label this operator and its coupling with the index α = 0.

We will assume that some distance can be defined in the theory space given by all possible

couplings, which we leave implicit. We also redefine the partition function as

Z̄[ḡ] = ZΛ[g]. (2.7)

A change of variables in the functional integral shows that the left-hand side does not

depend explicitly on Λ. Observe that, in terms of the new variables, any change of cutoff

automatically involves a dilatation. In the remaining of this section we always work with

dimensionless variables but drop the bars to simplify the notation.

5As above we sum over pairs of repeated indices. The brackets, (β), indicate the dependence on the

index β without the pairing. The pairing and thus summation is then indicated by the other two instances

of β. (Occasionally, we will raise or lower indices with an implicit Euclidean metric.)

– 4 –
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In terms of dimensionless variables (2.4) reads

Z[g] = Z[g0], (2.8)

with g and g0 related by the dimensionless version of eq. (2.3). This is the statement of RG

invariance. The relation between g and g0 defines a Wilsonian RG flow in theory space,

gα = fαΛ/Λ0
(g0). (2.9)

Here, fαΛ/Λ0
are quasilocal functionals, i.e. fαΛ/Λ0

(g0)(xΛ0/Λ) can be expanded as a infinite

power series of gα0 and their spatial derivatives in x. All RG flows are generated by the

vector field

βαW (g) =
∂

∂t
fαt (g)

∣∣∣∣
t=1

. (2.10)

Eq. (2.8) implies the differential RG equation

βW (g) · δZ[g]

δg
= 0. (2.11)

The fixed points g∗ of the flow have βW (g∗) = 0. Close to them, we can linearise the

Wilsonian beta functions, which read

βαW (g∗ + δg) = −λ(α)δg
α −Dδgα +O

(
(δgα)2

)
, (2.12)

where D is an infinitesimal dilatation, [Df ](x) = xµ∂µf(x). Here and from now on we use

a basis of couplings that diagonalizes the linearised flow around the fixed point of interest.

The operators (2.6) are then the eigenperturbations such that λ > 0, λ = 0 and λ < 0

correspond to relevant, marginal and irrelevant operators, respectively.

In this framework, the description of renormalisable theories is simple and intuitive.

The simplest cases correspond to fixed points of the flow, which describe scale-invariant

physics. More interesting renormalisable theories result from the linear combination of

relevant and exactly marginal or marginally relevant eigen-operators in (2.6) about a par-

ticular fixed point which, modulo total derivative terms,6 span a vector space of finite

dimension r. In these cases Wilsonian actions SΛ(g) exist no matter how large Λ is taken,

and thus describe the “continuum limit”. The set of points that can be reached from these

perturbed theories under RG evolution towards the IR, form the renormalised manifold R
of the given fixed point.7 Each integral curve of βW with image in R defines a particular

renormalisable theory, with definite physical predictions that do not depend on any cutoff.

Consider a coordinate system of R, with dimensionless coordinates gaR, a = 1, . . . , r.

They will play the role of renormalised couplings. Different parametrisations g(gR) de-

fine different renormalisation schemes. Any RG integral curve in R can be written as

6In other words, considering two operators equivalent if they differ by a total derivative, it is the quotient

space that has dimension r.
7We mean the “renormalised trajectories” but we will loosely regard the space R as a manifold of

dimension r, keeping in mind that singular behaviours such as boundaries are quite possible far from the

fixed point or at the fixed point itself.
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fΛ/µ(g(gR)) for some scale µ and renormalised couplings gR. Therefore, (µ, gR) defines a

renormalised theory. Writing the points of these curves in terms of the coordinates, a flow

gaR → FaΛ/µ(gR) is induced with local functionals evaluated at a space-time point x:

g(FΛ/µ(gR)) = fΛ/µ(g(gR)). (2.13)

The corresponding vector fields

βa(gR) =
∂

∂t
Fat (gR)

∣∣∣∣
t=1

(2.14)

are local versions of the Gell-Mann-Low beta functions of the renormalised theory. They

differ from the standard ones by the fact that they include the effect of the dilatation.

These renormalised beta functions are related to the (local) Wilsonian ones, for points on

R, by the chain rule:

βαW (g(gR)) =
δgα(gR)

δgR
· β(gR). (2.15)

The renormalisation scale µ is required for dimensional reasons when a dimensionful cutoff

Λ is employed. Different choices of µ just amount to different parametrisations of the

integral curves. A change in renormalisation scale µ → µ′ can be compensated by a

change gR → g′R = Fµ′/µ(gR) such that, thanks to the group property Ft ◦ Ft′ = Ftt′ , the

same integral curve is obtained. In this context, the functions F play the role of running

constants of the renormalised theory. The partition function of the renormalised theory,

given by

ZR[gR] = Z[g(gR))], (2.16)

is invariant under renormalised RG flows:

ZR[FΛ/µ(gR)] = Z[fΛ/µ(g(gR))]

= Z[g(gR)]

= ZR[gR]. (2.17)

The differential version of this property is the Callan-Symanzyk equation for the renor-

malised theory,

β(gR) · δZ
R[gR]

δgR
= 0. (2.18)

Note that the usual µ∂/∂µ term in the Callan-Symanzyk equation is already taken into

account in our formalism by the automatic dilatations.8 Furthermore, a possible conformal

anomaly in this equation, emerging from our usage of local couplings, can be included in

8The standard version of the Callan-Symanzyk equation can be found undoing the rescaling of coordi-

nates: defining ZRµ [gR] = ZR[ḡR], with ḡR(x) = gR(x/µ), eq. (2.18) takes the form[
µ
∂

∂µ
+ β̃(gR) · δ

δgR

]
ZRµ [gR] = 0, (2.19)

where β̃(gR)(x) = [β(ḡR) +DḡR](xµ) are the standard Gell-Mann-Low beta functions.

– 6 –
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the local term β0δ/δg0
R, which is related to the vacuum energy. This also holds for the

corresponding explicit breaking by the cutoff in (2.11).

A natural renormalisation scheme is to parametrise directly the integral curves along

the renormalised manifold by their linearised rates as they leave the fixed point:

ΓαΛ/µ(gUV)(x) = gα∗ + (Λ/µ)−λ(a)δαa g
a
UV(xµ/Λ), as Λ/µ→∞, (linearised) (2.20)

with a indicating the relevant or marginal eigendirections.9 This induces a parametrisation

of the renormalised manifold g(gUV) = Γ1(gUV). With this parametrisation, Γt(gUV) =

ft(g(gUV)). We will call this the UV scheme (hence the label for this instance of gR). It

is purely Wilsonian, as it can be defined in a neighbourhood of the fixed point without

integrating out the IR degrees of freedom. The flow of renormalised couplings in this

scheme is extremely simple:

Fat (gUV)(x) = t−λ(a)gaUV(x/t). (2.21)

It is diagonal for all values of t. This simplicity reflects the fact that this scheme is only

sensitive to the UV dynamics of the theory. The corresponding beta functions are, exactly,

βa(gUV) = −λ(a)g
a
UV −DgaUV. (2.22)

This is equivalent to the statement that, even though the form (2.20) above is modified

away from the limit Λ/µ → ∞, it remains the case that gaUV and µ always appear in the

combination µλ(a)gaUV. For small gUV, where both eqs. (2.12) and (2.20) can be used, it is

easy to check explicitly that (2.15) holds.

If the dimensions satisfy λ(a)+λ(b) ≤ λ(c), for some a, b, c then generically as Λ/µ→∞,

there are higher order terms that are as important or more important than the linearised

terms shown in (2.20). In particular this is always true if a or b corresponds to a non-

vanishing marginally relevant coupling. In the non-exceptional case where naλa is not a

non-negative integer, for any non-zero vector of integers na, the generalisation is readily

treated. We just have to recognise that ΓαΛ/µ is then a Taylor expansion in the r small

quantities ε(a) = (Λ/µ)−λ(a) , which can be treated as independent since each term in the

large Λ/µ expansion can be uniquely expressed as some monomial Πaε
na

(a). In mathematical

terms, the terms in the expansion form an integral domain. Equation (2.20) then makes

rigorous sense as an expansion in the leading terms for ε(a).

If ga=m
R corresponds to a marginal direction or the dimensions are exceptional, then

such a general treatment is not possible. We will remark only on the leading term of a

marginal direction, specialising to the case of space-time independent coupling.

The treatment depends on whether the direction is marginally relevant or exactly

marginal. (Non-perturbatively, marginally irrelevant directions are excluded, since they

correspond to theories that do not flow into the fixed point as Λ/µ→∞.) The definition

of the coupling given in (2.20) is correct only for an exactly marginal direction. If the

9Actually, depending on dimensions, this expansion should be treated more carefully, as we discuss

below. This includes in particular marginal directions.
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perturbative β function is non-vanishing, (2.20) is replaced along direction a = m by the

leading logarithmic running

ΓmΛ/µ(gR) = gm∗ +
(
nβ(m) ln Λ/Λc

)−1/n
as Λ/µ→∞, (2.23)

where Λc is a dynamically generated physical scale assumed finite on the scale of µ,

and (2.22) is replaced by the leading term

βm(gR) = −β(m) (gmR )n+1 , (2.24)

in the β function, all the higher order terms being neglected as vanishingly small in the limit

Λ/µ→∞. The normalisation of gR(µ) is set by gmR (µ) ≈
(
nβ(m) lnµ/Λc

)−1/n
for µ� Λc.

Except for some occasional comments, we will ignore these exceptions in the following,

to simplify our discussion. That is, we will consider generic cases with non-exceptional

eigenvalues in the relevant directions, in the way already described below (2.22).

The usual mass-dependent schemes used in quantum field theory are defined in terms

of correlation functions of the elementary fields. They require the integration of all the

quantum fluctuations. In this paper we are interested in the gravity duals of gauge theories,

which are manifestly gauge-invariant, so the correlation functions of elementary fields do

not have a gravity counterpart. However, we can define a similar renormalisation scheme

in terms of other observables, like Wilson loops or correlation functions of gauge-invariant

operators. This requires the intermediate usage of another renormalisation scheme, such

as the UV scheme above, in order to calculate them. For example we can choose to define

the Yang-Mills coupling gYM through the expectation of a Wilson loop 〈W (C)〉 in general,

by setting it equal to the exact formula for N = 4 Yang-Mills at large ’t Hooft coupling

Ng2
YM [1] even when the theory no longer corresponds exactly to N = 4 Yang-Mills in

this limit. At least for small perturbations away from such a theory, we can expect this

definition of gYM to remain sensible. An interesting property of such physical schemes is

that the beta functions are sensitive to IR details, such as mass thresholds or the choice of

vacuum state, if degenerate.

A natural scheme for defining renormalised couplings in Wilsonian flows is by pro-

jection, by which we mean that they are defined through the coefficient of the natural

operator in the Wilsonian effective action. Thus we pick a natural subset of the gα defined

in eq. (2.5) (possibly reparametrised) to play the role of the renormalised couplings. An

example should make this clearer. In Yang-Mills theory a natural way to define gYM di-

rectly from the Wilsonian action is to define the coefficient of the field-strength squared

term in the Wilsonian action to be F 2/4g2
YM(Λ). This defines a coupling that runs with Λ

under eq. (2.9). It can be considered to be renormalised if it is chosen to be finite when

the integrating out is continued down to values of Λ corresponding to finite energies. Once

we are on R, all the couplings gα then become functions of these renormalised couplings.

In this example we would have gα ≡ gα(gYM). Clearly, this scheme breaks down when the

projection is not injective. The evolution of renormalised couplings in projection schemes is

sensitive to the dynamics of the theory at the probed scales. However, unlike the physical

schemes, they are of Wilsonian nature and the value of the renormalised couplings at a

given finite renormalisation scale does not depend on lower scales.
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So far we have described a direct approach to renormalised theories, which only uses the

renormalised manifold. However, in practice, it is often easier to follow a renormalisation

procedure based on counterterms or, equivalently, bare couplings. For this, we choose some

bare action at scale Λ0 which depends on these r tunable parameters. There is a great

deal of freedom in the form of this action, equivalently in the dependence of g on these

parameters. (This is a statement of universality.) Now let us review the procedure in the

Wilsonian language (see figure 1). The critical manifold is the set of points that under

RG evolution towards the IR, reach the fixed point. We choose a manifold B of dimension

equal to or larger than r, in the same sense as above, that cuts the critical manifold at a

point P . The RG curves of points close to P will approach g∗ and, before they reach it,

leave the critical manifold along the relevant directions, approximately, and stay (at least

for a while) close to R. Let hΛ0/µ(gR) be curves in B that, when Λ0/µ→∞, approach P

at a rate characterized by gbR, b = 1, . . . , r, with the condition that

lim
Λ0→∞

fΛ/Λ0
(hΛ0/µ(gR)) ∈ R. (2.25)

This defines a renormalised theory:

ZR[gR] = lim
Λ0→∞

Z[hΛ0/µ(gR)]

= Z

[
lim

Λ0→∞
fΛ/Λ0

(hΛ0/µ(gR))

]
. (2.26)

One possible parametrisation of the renormalised manifold is

g(gR) = lim
Λ0→∞

fµ/Λ0
(hΛ0/µ(gR)). (2.27)

Then,

lim
Λ0→∞

fΛ/Λ0
(hΛ0/µ(gR)) = lim

Λ0→∞
fΛ/Λ0

(hΛ0/Λ(FΛ/µ(gR))) (2.28)

It follows that

0 = lim
t0→∞

 δfβt−1
0

δg

∣∣∣∣∣∣
g=ht0 (gR)

·
(
t0
∂ht0(gR)

∂t0
− β(gR) · δht0(gR)

δgR

) . (2.29)

The renormalised beta function can be obtained from the asymptotic behaviour of the

bare couplings ht0 . This is possible, even if each of the two terms inside the parenthesis

approaches zero in the limit t0 → ∞, because the first factor ∂f/∂g diverges in this limit

at the same rate. The reason is that both sides of (2.28) are, by definition, finite points

in the renormalised manifold. The rate at which the curves ht0 approach the point P

will determine the rate at which an RG trajectory passing through g(gR) leaves the fixed

point. Indeed for Λ � µ such that we are sufficiently close to keep just the first order

perturbation, we have that condition (2.25) implies, at the linearised level,

lim
Λ0→∞

fαΛ/Λ0
(hΛ0/µ(gR))(x) = gα∗ + δαa (Λ/µ)−λ(a)Ca(gR)(xµ/Λ), (linearised) (2.30)
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Critical Manifold

g
*

R

B

P

Figure 1. Points lying in the critical manifold are shown in blue. The bare manifold B cuts the

critical manifold at a single point P . The dashed grey curve illustrates the action of combined RG

evolution and renormalisation as in (2.25), finishing at a finite point in R.

for some dimensionless functions of the renormalised couplings Ca(gR). We have used (2.12)

and the existence of a limit to recognise that the Λ dependence must take this form.10

By comparison with (2.20) we see that the renormalised couplings in the Wilsonian UV

scheme are given by gaUV = Ca(gR). If we choose in particular Ca(gR) = c(a)g
a
R, it follows

that the beta functions of the two schemes have the same functional form. Although again

we are displaying equations only for relevant or exactly marginal directions, it is clear from

the discussion below (2.20) that a similar identification holds true also for the remaining

case of marginally relevant directions.

Furthermore, expanding the left hand side of (2.30) about h = P , we obtain a Taylor

series with terms of the form 1
n! ∂

nfΛ/Λ0
(g)/∂gn (∆h)n, where only ∆h = hΛ0/µ(gR) −

P carries dependence on µ and only the Taylor series coefficient carries dependence on

Λ. Consider first the case in which all the eigenvalues of relevant directions fulfil the

condition λ(a) + λ(b) > λ(c). Without some special tuning, already the first order term will

contribute, fixing the µ dependence of ∆h and ensuring that actually only the first order

term contributes in the Λ� µ regime:

lim
Λ0→∞

fαΛ/Λ0
(hΛ0/µ(gR)) = gα∗ + lim

Λ0→∞

 δfαΛ/Λ0
(g)

δg

∣∣∣∣∣
g=P

·
(
hΛ0/µ(gR)− P

) , (2.31)

10 At the non-linear level the non-exceptional case case follows the treatment given below (2.22).
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and that

Ma(x) ·
(
hΛ0/µ(gR)− P

)
= Ca(gR)(xµ/Λ0)

(
Λ0

µ

)−λ(a)

as Λ0/µ→∞, (2.32)

where

Ma
β(x, y) = lim

Λ0→∞

(
Λ

Λ0

)λ(a) δfaΛ/Λ0
[g(x)]

δgβ(y)

∣∣∣∣∣
g=P

. (2.33)

When we withdraw the condition on the relevant eigenvalues, the second and possibly

higher-order terms can give contributions that are more important than the right-hand

side of (2.31), and also the µ behaviour of the left-hand side is modified. Then, to obtain

the correct µ dependence of the left-hand side hΛ0/µ in (2.32) must be corrected. Again

the result is the same for the non-exceptional case, interpreted as the leading terms in an

ε(a) expansion. At the non-linear level, schematically,

Ma(x) ·
(
hΛ0/µ(gR)− P

)
= Ca(gR)(xµ/Λ0)

(
Λ0

µ

)−λ(a)

+
∑
j

αaj (gR)(xµ/Λ0)

(
Λ0

µ

)−λj
as Λ0/µ→∞, (2.34)

where the exponents λj are sums of eigenvalues with λj < Max{λ(a)} and the coefficients

αaj depend on Cb(gR).

3 Holographic Wilsonian description of renormalisable theories

3.1 Hamilton-Jacobi evolution

Let us consider an asymptotically-AdS space in d + 1 Euclidean dimensions. In some

neighbourhood of the boundary, we can use Fefferman-Graham coordinates and write the

metric as

ds2 =
L2

z2
dz2 + hµν(z, x)dxµdxν . (3.1)

The boundary is located at z = 0. In this paper we consider a fixed metric, i.e. we neglect

the backreaction of other fields on the geometry. Furthermore, below we will specialise to

AdS space. These are strong restrictions and we comment on the complete treatment with

a fluctuating geometry in the final discussion.

In agreement with holography and the UV/IR connection [4], all the information about

the ultraviolet of the gauge theory is encoded in the dual picture near the boundary of the

asymptotically-AdS space. A natural way to do it is by enforcing boundary conditions

on the degrees of freedom of the gravity theory. On the other hand, as in field theory,

a regularisation is required to make quantities such as correlation functions well-defined.

The standard regularisation used in the literature of gauge/gravity duality is to cut the

space off close and parallel to the boundary [30]. Then, the boundary conditions must be

imposed at the new boundary, i.e. the cutoff position. More generally, we can consider

placing this cutoff boundary (which we keep parallel to the conformal boundary) at larger

values of the radial coordinate z, which correspond to a lower UV cutoff in the field theory.
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A consistent way of imposing these boundary conditions is to add an action that depends

on the fields restricted to the UV boundary.11 It is then natural to identify the cut-off

partition function in (2.2), for some boundary action SBl , with

Z1/l[g] =

∫
[Dφ]l e

−SBl (g)[φ(l)]−SG[φ], (3.2)

where [Dφ]l indicates functional integration in the fields φ of the gravity theory, with sup-

port restricted to z ≥ l, and SG is the classical gravity action. The space-time integrals

inside the functional integral are always understood to be restricted to the support of the

fields. The boundary action SBl is a differentiable functional of the fields restricted to the

boundary and of the gauge-theory couplings. We will often not display explicitly the argu-

ments of SBl . For definiteness, the fields φ are assumed to be l-independent dimensionless

functions of the dimensionful space-time variables. This can be achieved with some dimen-

sionful constant of the gravity theory, such as the AdS curvature. Then, the l dependence

of SBl is dictated by dimensional analysis, similarly to (2.5). It is useful to distinguish the

boundary values of the fields and write (3.2) in the following equivalent form:

Z1/l[g] =

∫
Dϕe−SBl (g)[ϕ]

∫
[Dφ]l,ϕ e

−SG[φ]. (3.3)

Here, [Dφ]l,ϕ indicates a path-integral measure for fields with support z ≥ l and such that

φ(l, x) = ϕ(x). The usage of (3.2) (or (3.3)) entails a particular definition of the cutoff

procedure in the gauge theory [18, 20, 21]. It is not clear at all that this regularisation

can be formulated, for arbitrary l, in an independent form in terms of the field-theory

degrees of freedom, and we will not attempt here to find such a correspondence. At any

rate, (3.2) allows to formulate holographically all the field-theoretical Wilsonian formalism

reviewed in the previous section in terms of the dual gravity theory. The relation between

the gravity boundary action at l and its corresponding Wilson action at cutoff 1/l will be

examined below.

To any pair (l0, g0), RG invariance associates a flow g′ = fl0/l(g0) given, for l0 < l, by

e−S
B
l (g′)[ϕ] =

∫
[Dφ]l,ϕl0 e

−SBl0 (g0)[φ(l0)]−SG[φ]
. (3.4)

Here, [Dφ]l,ϕl0 indicates a measure for fields φ(z) with support l0 ≤ z ≤ l such that φ(l) = ϕ.

In the following we work in the large N limit (with fixed large ’t Hooft coupling), which

is dual to gravity in the classical field-theory approximation and allows for a saddle-point

calculation of the path integrals.12 In this limit, the gravity action can be written in terms

of a local Lagrangian SG[φ] =
∫
dzddxL(φ(z, x), ∂φ(z, x), z), and the path integrals in (3.2)

or (3.3) are obtained by extremizing the exponent, subject to the UV boundary conditions

BCl :=

{
Πc(l, x) =

δSB(g)[ϕ]

δϕc(x)

∣∣∣∣
ϕ=φ(l)

}
, (3.5)

11We always employ field-theoretical language, which should be appropriately translated to string-

theory analogues in precise formulations beyond the low-energy field-theory approximation, valid at large

’t Hooft coupling.
12The N global factors in the actions and in the normalisation of the operators that are necessary for a

well-defined large-N limit are implicit in our equations.
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where we have defined the momenta

Πc(z, x) =
∂L

∂φ̇c(z, x)
, (3.6)

with φ̇ = ∂zφ. Likewise, SB(g′) is obtained by inserting in SG +SB(g) the solutions φcl to

the equations of motion with boundary conditions BCl0 and φ(l, x) = ϕ(x):

SBl (g′)[ϕ] = SG[φcl] + SBl0 [φcl(l0)]. (3.7)

The condition that Z1/l[fl0/l(g)] be independent of l implies again the Wilson RG equa-

tion (2.11). This time, because we have a specific cutoff procedure, we can write ∂/∂l Z1/l

more explicitly. In fact, SBl (g′) in (3.7) is defined exactly as a Hamilton’s principal

function in classical mechanics. As shown in [20, 21], differentiation of (3.7) with re-

spect to l, with fixed ϕ, gives a Hamilton-Jacobi equation for the sliding boundary action

SB〈l,l0〉(g)[ϕ] = SBl (fl0/l(g))[ϕ]:

∂

∂l
SB〈l,l0〉(g)[ϕ] = −Hl

[
ϕ,
δSBl/l0(g)[ϕ]

δϕ

]
, (3.8)

with the Hamiltonian

Hz[φ(z),Π(z)] = Π(z) · φ̇(z)−
∫
ddxL(φ(z, x), ∂φ(z, x), z). (3.9)

Let us now specialize to a fixed AdSd+1 background. We work in the Poincaré patch

and use Poincaré coordinates, with

ds2 =
L2

z2

(
ηµνdx

µdxν + dz2
)

(3.10)

The AdS isometry allows us to write the Hamilton-Jacobi equation as an autonomous

differential equation. Indeed, in the dimensionless coordinates x̄µ = xµ /l, z̄ = z/l, the

induced metric on the sliding cutoff surface is just L2ηµν , the gravity Lagrangian has the

same form and the equation reads

t
∂

∂t
S̄B〈t〉(g)[ϕ̄] = −Ĥ

[
ϕ̄,
δS̄B〈t〉(g) [ϕ̄]

δϕ̄

]
, (3.11)

with the following definitions:

ϕ̄(x̄) = ϕ(x), π̄(x̄) = ldπ(x)

H̄[ϕ̄, π̄] = lHl[ϕ, π], Ĥ[ϕ̄, π̄] = H̄[ϕ̄, π̄] + π̄ ·Dϕ̄, (3.12)

S̄B〈l/l0〉(g)[ϕ̄] = SB〈l,l0〉(g)[ϕ].

Remember that [Df ](x) = xµ∂µf(x). The point of these redefinitions is that the functional

Ĥ in eqs. (3.11) does not depend on l. This modified Hamiltonian generates motions along

– 13 –



J
H
E
P
0
3
(
2
0
1
6
)
1
9
8

the logarithmic radial coordinate, accompanied by a dilatation:

l
∂

∂l
φ̂l =

δĤ[φ̂l, Π̂l]

δΠ̂l

, (3.13)

l
∂

∂l
Π̂l = −δĤ[φ̂l, Π̂l]

δφ̂l
, (3.14)

with φ̂l(x̄) = φ(l, x̄l), Π̂l(x̄) = ldΠ(l, x̄l) and φ, Π solutions of the original equations of

motion derived from H. The energy associated to Ĥ is conserved along this motion. On

the other hand, S̄B only depends on l/l0, by dimensional analysis. In the following we only

use barred quantities, but drop the bars to avoid cluttering the notation too much. (On

the other hand, we keep hats explicit whenever they appear; for instance, φ and Π refer to

the the original definitions of the 5D fields and momenta as functions of the dimensionful

coordinates.) The solution to (3.11), analogous to (3.4), reads in path-integral notation

e
−SB〈t〉(g)[ϕ]

=

∫
[Dφ]

l0t,ϕ̃l0t
l0

e
−SB〈1〉(g)[φ̂l0 ]−SG[φ]

=

∫
[Dφ]

l0,ϕ̃l0
l0t−1 e

−SB〈1〉(g)[φ̂l0t−1 ]−SG[φ]
, (3.15)

where ϕ̃l(x) = ϕ(x/l) and l0 is a dummy length introduced for dimensional reasons, due

to our choice of 5D fields. The boundary condition imposed by the redefined SB(g) reads

BCl :=

{
Π̂l c(x) =

δSB(g)[ϕ]

δϕc(x)

∣∣∣∣
ϕ=φ̂l

}
. (3.16)

Inserting this boundary condition for the sliding boundary action into (3.13), we see, as

in standard Hamilton-Jacobi theory, that a given solution SB〈t〉 to the Hamilton-Jacobi

equation generates solutions satisfying the first-order differential equation

l
∂

∂l
φ̂l =

δĤ[φ̂l, Π̂l]

δΠ̂l

∣∣∣∣∣
Π̂l=

δSB
lµ

[φ̂l]

δφ̂l

, (3.17)

where µ is an arbitrary reference scale. The Hamilton-Jacobi equation ensures that (3.14)

is also satisfied.

It is easy to establish a connection with the evolution of coupling constants, once the

functional SB[g] associated to the theory is known. Using the chain rule,

t
∂

∂t
SB〈t〉(g)[ϕ]

∣∣∣∣
t=1

= −βW (g) · δS
B(g)[ϕ]

δg
, (3.18)

so the Hamilton-Jacobi equation implies the relation

βW (g) · δS
B(g)[ϕ]

δg
= Ĥ

[
ϕ,
δSB(g)[ϕ]

δϕ

]
, (3.19)
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which can be used to obtain the Wilsonian beta functions from a given SB(g). Since the

latter is calculated with an IR cutoff, we can expand it in derivatives:

SB(g)[ϕ] =

∫
ddxSB(g(x))(ϕ(x), ∂ϕ(x), ∂2ϕ(x), . . .)

=

∫
ddx

∞∑
n=0

SB(n)(g(x))(ϕ(x), ∂ϕ(x), . . . , ∂nϕ(x)) (3.20)

with SB(n) containing n derivatives and ∂k = ∂µ1 . . . ∂µk . On the other hand, writing

H[ϕ, π] =
∫
ddxH(ϕ(x), π(x)), we have

Ĥ[ϕ,
δSB(g)[ϕ]

δϕ
] =

∫
ddx

[
H+ xµ

(
∂SB(g)

∂ϕc
− ∂ν

∂SB(g)

∂∂νϕc
+ . . .

)
∂µϕ

c

]
=

∫
ddx

[
H+ xµ∂µSB(g) +

∞∑
n=1

n
∂SB(g)

∂∂nϕc
∂nϕc − xµ∂µg

∂SB(g)

∂g

]
(3.21)

=

∫
ddx

[
H− dSB(g) +

∞∑
n=1

n
∂SB(g)

∂∂nϕc
∂nϕc − xµ∂µg

∂SB(g)

∂g

]
,

with

H = H

(
ϕ(x),

∞∑
n=0

(−1)n∂n
∂SB(g)

∂[∂nϕ(x)]

)
. (3.22)

The third term of the last line in (3.21) just counts the number of derivatives of each term

of SB. Due to explicit derivatives and the fact that H also contains derivatives, each step

of the RG evolution adds derivatives to SB. A derivative-independent SB is not stable

under RG. Actually, using (3.20) and (3.21) we see that the derivative expansion of (3.11)

has a triangular form, with SB(n) not entering in the equation for SB(m) with m < n. At

the leading order and for constant couplings, the Hamilton-Jacobi equation for SB(0)
〈t〉 is

t
∂

∂t
SB(0)
〈t〉 (ϕ) = −H(0)

ϕ, ∂SB(0)
〈t〉 (ϕ)

∂ϕ

+ dSB(0)
〈t〉 (ϕ), (3.23)

where H(0) is the derivative-independent part of H and we have left the g dependence

implicit. To be more explicit, we shall often consider a gravity theory with a set of real

active scalar fields {Φi, i = 1, . . .M} and Lagrangian density of the form

L =
√
g

[
1

2
gMN∂MΦi∂NΦi + U(Φ)

]
. (3.24)

To apply our equations, we define dimensionless fields φ = L(d−1)/2Φ and potential V (φ) =

Ld+1U(Φ). The Hamiltonian density is

H(ϕ, π) =
1

2
πiπi −

1

2
∂µϕ

i∂µϕi − V (ϕ). (3.25)

In this case, (3.23) reads

t
∂

∂t
SB(0)
〈t〉 = dSB(0)

〈t〉 −
1

2

(
∂iSB(0)
〈t〉

)2
+ V, (3.26)

with ∂i = ∂/∂ϕi.
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So far, we have expressed all the holographic Wilsonian formalism in terms of the

boundary action SBl . In order to make precise contact with the standard formulation in

terms of the field-theory degrees of freedom, we need a relation between SBl and the field-

theory Wilson action S1/l. Such a relation has been proposed in ref. [20] by Heemskerk

and Polchinski as a generalization of the usual dynamical statement of the AdS/CFT cor-

respondence for deformations of the conformal theory with single-trace operators Os [2, 3].

Let us explain this proposal. Recall first that the elementary fields φ in the dual gravity

theory are associated to single-trace primary operators Os (possibly with additional re-

strictions from supersymmetry) in the gauge theory. A general Wilson action at scale Λ

can be written as a functional of the couplings and the primary single-trace operators:

SΛ(g) = S(g)[−OΛ
s ]. (3.27)

(The minus sign in this definition is just to make some formulas below look more natural.)

In particular, an action Ss without multi-trace operators will be a bilinear functional

Ss(gs)[OΛ
s ] = −gs · OΛ

s , (3.28)

since the derivatives in descendants can be absorbed in the space-time dependence of gs.

Heemskerk and Polchinski postulate that the partition function associated to Ss with some

cutoff is equal to the gravity partition function with Dirichlet conditions at a UV boundary:

Zs1/l[gs] =

∫
[Dφ]l,g̃s,l e

−SG[φ], (3.29)

with g̃s,l(x) = gs(x/l). This equation entails a choice of field variables in the gravity theory

and of operators in the field theory. In a neighbourhood of l = 0, this regularised version

of the correspondence has been discussed and validated against particular field-theoretical

calculations in ref. [18]. Furthermore, it is consistent with the success of the method of

holographic renormalisation [22], to be discussed below. For finite l, on the other hand, we

simply take it as a definition of the cutoff procedure in the field-theory side. The assumption

is then that such a cutoff can be formulated in terms of the field-theory degrees of freedom.

Combining (3.3) and (3.29), and using the particular expression (3.28), it follows that the

partition function in (2.2) is reproduced if we choose a Wilson action S(g) defined, as a

functional of single-trace operators, by

e−S(g)[π] ≡
∫
Dϕe−SB(g)[ϕ]+ϕ·π. (3.30)

Therefore, the Wilson action is given (at least for a static gravitational background) by a

simple functional-integral transform of the boundary action. Note that the latter should

be bounded from below for this definition to make sense.

In the large-N/classical-gravity limit eq. (3.30) reduces to a Legendre-Fenchel trans-

form. One general property of the Wilson action defined in this manner is that it is concave

as a functional of the single-trace operators. The Legendre-Fenchel transform is not in-

vertible in general. To be more explicit, when using this transform we will assume that
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SB(g) is convex in ϕ.13 In this case, the Wilson and boundary actions are related by the

invertible Legendre transform

S(g)[π] = SB(g)[ϕ]− π · ϕ, π =
δSB(g)[ϕ]

δϕ
. (3.31)

Observe that, when used near l = 0, (3.31) is nothing but Witten’s prescription for defor-

mations with multi-trace operators [31]. We will also consider limit cases with S(g)[Os]
linear in the variables Os, for which eq. (3.31) is singular. In fact, (3.30) gives a linear

Wilson action when exp{−SsB(gs)[ϕ]} = δ(ϕ− gs), which can be considered as a singular

boundary action that imposes a Dirichlet boundary condition. Note that this is consistent

with the initial assumption, eq. (3.29).

With this relation, all the equations above involving SB can be equivalently formu-

lated in terms of the Wilson action. Using Legendre conjugates, the boundary condi-

tion (3.16) reads

BCl
′
:=

{
φ̂cl (x) = − δS(g)[π]

δπc(x)

∣∣∣∣
π(x)=Π̂l(x)

}
. (3.32)

The flowing Wilson action S〈t〉(g) = S(ft(g)) obeys a dual Hamilton-Jacobi equation,

t
∂

∂t
S〈t〉(g)[π] = −Ĥ

[
−
δS〈t〉(g)[π]

δπ
, π

]
. (3.33)

The counterpart of (3.19) is

βW (g) · δS(g)[π]

δg
= −Ĥ

[
−δS(g)[π]

δπ
, π

]
. (3.34)

We will be interested in cases in which SB(g)[ϕ] is analytic in ϕ in some region, where it

can be written in the quasilocal form

SB(g)[ϕ] = q ·Q. (3.35)

Here, Qα(x) are linear combinations of products of fields ϕ and their derivatives at x while

the (dimensionless) dual couplings qα(x) are x-dependent functionals of g. The RG flow

can then be equivalently described by a flow κt(q) in the dual theory space, with

κt α(q(g)) = qα(ft(g)). (3.36)

The corresponding tangent vectors are

βBα (q) =
∂

∂t
κt α(q)

∣∣∣∣
t=1

. (3.37)

13It is of course perfectly possible that these properties hold only in some regions of theory space and/or

only when the possible values of ϕ and π are restricted. A careful study of these basic issues would be

interesting, but we will not pursue this course here. We simply note in this regard that our restriction to

quasilocal Wilson actions and (3.30) require SB(g) to be strictly convex at ϕ0, the ϕ value dual to π = 0,

which is an extremum of SB .
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These boundary beta functions are related to the Wilsonian ones by

βBα (q(g)) =
∂qα(g)

∂gβ
ββW (g). (3.38)

Using this relation, eq. (3.19) can be written in a quite explicit form:

βB(q) ·Q[ϕ] = Ĥ

[
ϕ, q · δQ[ϕ]

δϕ

]
. (3.39)

3.2 Renormalisable theories

We now proceed to study how renormalisable field theories are described in this Wilsonian

holographic framework. Let us introduce the following convention, which will save some

writing: the indices i, j, k label the fields; a labels relevant (and marginal) directions and

â irrelevant ones; the index 0 labels the identity/vacuum-energy direction; and b labels

relevant (and marginal) directions different from 0. The first step is to look for fixed points

of the flowing boundary action SB〈t〉, which are also fixed points of the flowing Wilson action

S〈t〉. From (3.11), the fixed-point condition is simply

Ĥ

[
ϕ,
δSB∗
δϕ

]
= 0, (3.40)

where SB∗ = SB(g∗). Let us consider the theory (3.24). The fixed-point equation in this

case is analysed in detail in appendix A. Here, we just give the main results of this analysis

(some of them appear also in [20]). We consider solutions SB∗ of (3.40) that are analytical

at a point ϕ0 where δSB∗ [φ0]/δφi0 = 0. This conditions guarantees a discrete set of linearly

independent perturbations. It can be satisfied simultaneously only if ϕ0 is also a critical

point of the scalar potential, i.e. ∂iV (ϕ0) = 0. Then there are in general 2M such solutions:

SB∗ (ϕ) = −v0

d
+

1

2
∆(i)(ϕ

i − ϕi0)2 +O((ϕ− ϕ0)3) + derivatives, (3.41)

where v0 = −d(d− 1)/2 is the AdS cosmological constant in units of L and ∆(i) = ∆±(i) =

d/2±
√
d2/4 +m2

(i), with m(i) the mass of φi, also in units of L. The two possible values

∆±(i) for each i correspond to the dimension of the operator dual to φi in the standard (upper

sign) and alternate (lower sign) quantisations, as discussed in ref. [32]. We only consider

in the following cases with non-integer values of
√
d2/4 +m2

(i) ≡ ν(i).
14 The set of chosen

signs determines the higher order terms and characterizes each fixed point. The values

∆(i) < d/2 − 1, only possible with the alternate quantisation, correspond to non-unitary

quantum field theories in the continuum limit [32, 34, 35], so they should be excluded. In

appendix A, we give the derivative terms at order (ϕ− ϕ0)2 in a closed form, and provide

recursion formulas to obtain the higher order terms in the expansion about ϕ0. Observe

in (3.41) that, consistently with our assumptions, SB∗ is convex at ϕ0. In the following we

14Protected integer conformal dimensions are ubiquitous in supersymmetric theories and can be easily

dealt with, but we make this restriction to avoid distinguishing multiple cases and thus keep the discussions

as simple as possible.
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take ϕi0 = 0. This entails no loss of generality, as it just amounts to working in terms of

fields without tadpoles in the gravity theory.

At the quadratic level, (3.41) imposes the boundary condition

∆(i)φ
i(l, x) = l

∂

∂l
φi(l, x), (3.42)

when lp � 1 (here p is the d-dimensional dimensionful momentum of φ). The solutions

close to the boundary have the general form

φi(z, x) =

(
z

l0

)d−∆(i) (
Ai−(x) +O(z2)

)
+

(
z

l0

)∆(i) (
Ai+(x) +O(z2)

)
, z ∼ 0, (3.43)

when the dimensions are generic. The boundary condition requires Ai− = 0 and thus selects

the solutions φ(z, x) that go like z∆ when z ∼ 0. Because the field solutions then approach

zero in the limit z → 0, the nonlinear corrections are suppressed and the same conclusion

holds for the complete SB∗ .

The Legendre transform of (3.41) gives the fixed-point Wilson density action, which

is analytic at π = 0 and contains no single-trace operators, except the identity:

S∗(π) = −v0

d
− 1

2∆(i)
(πi)

2 +O(π3) + derivatives. (3.44)

More details are given in appendix A.

Once we have understood the structure of the possible fixed points, we are ready to

study small deformations of a given fixed point SB∗ . The Hamilton-Jacobi equation for the

perturbation S′B = SB − SB∗ reads

t∂tS
′B
〈t〉[ϕ] = H

[
ϕ,
δSB∗
δϕ

]
−H

[
ϕ,
δ(SB∗ + S′B〈t〉)

δϕ

]
−
δS′B〈t〉

δϕ
·Dϕ . (3.45)

At the linearised level,

t∂tS
′B
〈t〉[ϕ] = −

(
δH[ϕ, π]

δπ

∣∣∣∣
π=

δSB∗
δϕ

+Dϕ

)
·
δS′B〈t〉

δϕ
.

≡ ΨS′B〈t〉 (3.46)

This equation is studied in appendix B. As shown there, the eigenvectors of Ψ can be

constructed from basic functions of the form

T i(ϕ) = ϕi +O(ϕ2) +O(∂ϕ), (3.47)

which are themselves density eigenvectors (to be integrated in d dimensions) with eigenvalue

λ(i) = d − ∆(i). The detailed form of these basic functions is given in appendix B. If Q

and Q′ are arbitrary density eigenvectors with eigenvalues λ = d − ∆ and λ′ = d − ∆′,

respectively, then ∂nQ is a density eigenvector with eigenvalue λ − n, while QQ′ is a

density eigenvector with eigenvalue d − ∆ − ∆′, in agreement with large-N factorisation.

– 19 –



J
H
E
P
0
3
(
2
0
1
6
)
1
9
8

Therefore, general analytical density eigenvectors can be constructed as products of a finite

number of basic functions T i and their derivatives ∂nT i. Relevant, exactly marginal and

irrelevant perturbations have eigenvalues λ > 0, λ = 0 and λ < 0, respectively. We see

that the number of independent relevant directions is finite, as expected in field theory.

Actually, at the fixed point with standard quantisation for all fields, the only relevant

eigendeformations are given by the T i themselves, with ∆(i) ≤ d. In fixed points with

non-standard quantisation for some fields, there are also eigenvectors formed by products

of two T i (and more, depending on d), possibly with derivatives. In all cases, there exists

a trivial relevant eigendeformation with eigenvalue λ = d: a constant term in SB, which

can be interpreted as a vacuum energy. Even though such a constant, which is dual to the

identity operator in S, does not modify boundary conditions, it will be interesting to keep

track of it.

Much as we did for the Wilson actions, we choose in the following a basis in the space

of boundary actions in which the operators Qα in (3.35) are eigenperturbations around the

fixed-point of interest. The perturbed boundary action reads

S′B(g)[ϕ] = (q − q∗) ·Q, (3.48)

with q∗ = q(g∗). The Legendre transform between SB and S preserves the eigendirections

at the fixed point in the following sense: the Wilson action associated to SB∗ [ϕ]+Q[ϕ], with

Q an eigenoperator, is, to linear order in Q, S∗[π] +O[π], with O an eigenperturbation of

S∗. Explicitly, O[π] = Q[ϕ∗[π]], where ϕ∗[π] is a solution of the equation π = δS∗[ϕ∗]/δϕ∗.

The eigenvalues of Q and O are the same. In particular, the Legendre conjugates of the

basic eigenperturbations T i have the form

Oi[π] = ∆−1
(i)πi +O(π2) +O(∂π). (3.49)

Therefore, we see that basic eigenperturbations are associated, to lowest order, to single-

trace operators, but also that they involve a tower of multi-trace operators. Note that our

choices of basis imply

qα(g)− q∗α = c(α)δαβ

(
gβ − gβ∗

)
+O

(
(g − g∗)2

)
(3.50)

in the neighbourhood of the fixed point, with the constant c(α) depending on the normal-

ization of the perturbations. For the basic eigenperturbations Qi = T i, we have c(i) = ∆(i).

As explained in the previous section, renormalisable theories can be intrinsically de-

scribed in terms of the renormalised space formed by the actions that can be reached,

under RG evolution, from relevant or marginal deformations of a given fixed-point action.

Each particular renormalised theory is given by an integral curve of the Wilsonian beta

functions along the renormalised manifold, which in the gravity picture corresponds to

a solution to the Hamilton-Jacobi equation that approaches the fixed point towards the

UV. A parametrisation of these solutions defines a renormalisation scheme. In the space of

boundary actions, these solutions are integral curves q = Γ̄αt (gR) of the vectors βB(q)α that

leave the fixed point along relevant or marginal directions. For instance, the UV scheme

(2.20) introduced in the previous section is defined holographically by

Γ̄t α(gUV) = q∗α + δαac(a)g
a
UVt

λ(a) + nonlinear, t→ 0, (3.51)
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with a running over relevant directions. Nonlinear corrections are treated as discussed in the

previous section. The renormalised manifold can be parametrised by q(gR) = Γ̄1(gR). The

flow of renormalised couplings and the corresponding beta functions are identical to the ones

in (2.21) and (2.22). Note that an implicit renormalisation scale µ is necessary to write these

equations in terms of a dimensionful cutoff Λ = tµ. The “perfect” boundary actions Γ̄t(gR)·
Q can be used to calculate the partition function in terms of the renormalised parameters,

for any position of the sliding cutoff. They impose modified boundary conditions on the

fields associated to relevant directions. In the quadratic approximation, T i = ϕi and the

basic perturbations Q = T i are dual to single-trace deformations. For these, the boundary

condition imposed by the boundary action fixes the coefficient of the asymptotic term

zd−∆(i) to be proportional to the renormalised UV coupling: Ai− = giUV ∆(i)/(d − 2∆(i)).

This works both for standard and alternate quantisation, with the corresponding values

∆(i) = ∆±(i). We note in passing that the factors ∆(i)/(d−2∆(i)) in these relations are akin

to the correction factors first found in ref. [30]. For a deformation Q = (T i)2, for instance,

which can be relevant if φi is quantised non-standardly at the fixed point, we find instead

Ai−/A
i
+ = giUVc(i)/(d− 2∆(i)).

3.3 Holographic renormalisation

The renormalisation procedure via bare couplings can also be carried out in the gravity

side. We examine in the following how to implement it in the Wilsonian picture. First, we

need to define a space of bare theories that cuts the critical manifold at least at one point

and, close to this critical point, has a dimension equal to the number of relevant directions

of the fixed point of interest. One obvious choice is to choose bare boundary actions of

the form

SBB = SB∗ + qBaQ
a, (3.52)

i.e. qα = q∗α + δaαq
B
a . Instead of the Qa, one can use their first orders in the momentum

expansion. (How many orders depends on the theory at hand.) This bare subspace cuts

the critical manifold precisely at the fixed point, when qaB = 0 ∀a. Comparing with (3.51),

it is clear that the curves q = ht(gR) renormalise the theory if we choose

ht α(gR) = q∗ + δαaC
a(gR)tλ(a) + nonlinear, (3.53)

which is the dual version of (2.32). The relation with the Wilsonian UV scheme is c(a)g
a
UV =

Ca(gR). One advantage of this renormalisation procedure is that it works in the same

manner for standard and alternate quantisations, including multitrace relevant directions.

A simpler holographic renormalisation method [22–26] exists in the case of standard

quantisation.15 In this case the relevant directions are given by the basic perturbations

T b, and can be associated to the scalar fields φb with negative squared mass (satisfying

the Breitenlohner-Freedman bound [34, 35]), which we will call relevant fields. The re-

maining relevant direction is the constant term in SB. The bare manifold B in holographic

renormalisation is defined by singular boundary actions that impose Dirichlet boundary

15In [33], this method is generalised to include the alternate quantisation and multi-trace deformations.
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conditions for all fields: φ̂il0 = gi. The boundary actions in B are conjugate to linear Wil-

son actions, which contain only the identity and single-trace operators. Since, as stressed

in ref. [20], the Hamilton-Jacobi equation generates multi-trace operators, B is not stable

under RG evolution (unlike the critical and the renormalised manifolds).

The space B so defined works as a good bare manifold for renormalisable theories

emanating from the fixed point with standard quantisation for all fields. The reason, in

the Wilsonian language, is that B cuts the critical manifold of that particular fixed point.

One point in the intersection is P : gi = ϕi0 = 0, g0 = −v0/d. To show that P belongs to

this critical manifold, let us prove that it flows under RG evolution towards the standard-

quantisation fixed point g∗, that is to say, that limt→∞ ft(0) = g∗. The boundary action

after a finite RG evolution is given, in path integral notation, by

e
−SB〈t〉 [ϕ] =

∫
[Dφ]

l0,ϕ̃l0
l0t−1,0

e
∫
ddx

v0
d
td−SG[φ]. (3.54)

SB〈t〉 is thus obtained from solutions of the SG equations of motion that vanish at l0t
−1. If

we now take the limit t → ∞, this condition forces the solutions to approach zero as fast

as possible when z → 0. The quadratic approximation to SG is then valid in the near-

boundary region and we can use (3.43). The t→∞ boundary condition requires that the

coefficient of the leading term z
d−∆+

(i) vanishes. This agrees with the boundary condition

imposed by the all-standard-quantisation fixed boundary action.16 Note also that −v0/d

is precisely the constant term of the fixed-point boundary action. Therefore, in the limit

t → ∞, (3.54) is just the trivial RG evolution of the standard fixed point, which simply

gives the very same fixed point, as claimed. An illuminating explicit check is performed

in section 5. Let us now have a quick look at the RG trajectories that initiate in B. We

see in (3.43) that the solutions for the relevant fields φb vanish on the AdS boundary.

Consequently, a constant boundary condition φ̂bl0t−1 = Cb 6= 0 would give rise, in the limit

t0 → ∞, to divergent coefficients and divergent solutions, and thus to a divergent action.

The need of renormalisation is thus clear. Note in contrast that the irrelevant fields φâ have

particular solutions (at the quadratic level) that diverge at the boundary. If we choose a

point with φ̂b
l0t
−1
0

= 0 and φ̂â
l0t
−1
0

= C â 6= 0, this component of the solution will vanish in

the limit t→∞, so the RG evolution will end at the fixed point, just as in the case of P .

This shows that these points also lie on the critical manifold.

The main step in holographic renormalisation is to find a family of curves ht0(gR) in

B that approach the critical manifold at the right rate, such that RG evolution takes them

past the fixed point and into arbitrary points of the renormalised manifold, as specifed in

eq. (2.25) and illustrated in figure 1. The theory at each point of the curves is defined by

the Dirichlet conditions φ̂i1/(µt0) = hit0(gR) plus the vacuum-energy density g0 = h0
t0 . We

will demand that the curves approach the particular point P : limt0→∞ h
i
t0(gR) = 0 and

limt0→∞ h
0
t0 = −v0/d. A stronger condition comes from the requirement that the limit

e−S
B
R (gR) = lim

t→∞
e
−SB〈t〉(gR,t) = lim

t→∞

∫
[Dφ]l,ϕ

lt−1, h̃t/(lµ)(gR)|
lt−1

e
−
∫
ddxtd h̃0

t/(lµ)
(gR)

∣∣∣
lt−1
−SG[φ]

(3.55)

16This also means that B cannot be used to renormalise theories with alternate quantisations.
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be finite. Here, h̃...|ε(x) = h...(x/ε). An essential observation here is that SB〈t〉(gR, t) does

not follow an RG trajectory as t changes, due to the explicit t-dependence of the boundary

condition (see figure 1). Therefore, the limit in (3.55) does not give a fixed point, in general.

Once the limit is taken, a change in the renormalisation scale µ does correspond to an RG

transformation of the boundary action. This follows from dimensional analysis, as in the

general field-theoretical case. The finiteness of (3.55) constrains the asymptotic behaviour

of the bare couplings hat0 . Conversely, the renormalised action SBR (gR) depends only on the

asymptotics of hit0(gR). The explicit form of hit0 has been studied for several tensor fields

and interactions in refs. [22, 23]. We find them explicitly in section 5 for the case of several

interacting scalars with arbitrary masses. In this section, we concentrate on the relation

with the Wilsonian formalism.

A necessary condition to obtain a finite result in (3.55) is that the solutions stay finite

in the limit. This can be achieved by taking as hbt0 an arbitrary solution to the equations

of motion (including dilatations and with t−1
0 the dimensionless radial coordinate), for

any non-singular IR condition [22].17 The reason is that the UV Dirichlet condition will

then give rise to the same solution for any t0. The limit will then be trivially finite.

Different parametrisations of the solutions give rise to different renormalisation schemes.

One possibility, further explored in the next section, is to use as renormalised couplings

the values of the solutions at a given t−1
0 . Another one, which we use in section 5, is to

parametrise ht0 by the leading term of the asymptotic solutions of the relevant fields in the

free approximation:

hbt0(gR)(x) = Cb(gR(x/t0))t
∆(b)−d
0 , t0 →∞ (no interactions). (3.56)

With a faster approach to P , the limit in (3.55) would end into the fixed point, while a

slower approach would give a divergent result. It is easy to check that the Dirichlet bound-

ary condition with (3.56) used at lt−1
0 ∼ 0, selects the leading coefficient of the asymptotic

solutions: Ab− = Cb(gR) if we set l0 = µ−1. This agrees with the boundary condition

imposed asymptotically by the perturbed boundary action SB∗ + (d − 2∆(b))C
b(gR)ϕb in

standard quantisation. When interactions are taken into account, the asymptotic behaviour

of the solutions is corrected. In certain cases, which we study in detail in section 4, the

correction terms are more important than the ones shown in (3.56). Such terms must then

be taken into account for a correct renormalisation:

hbt0(gR)(x) = Cb(gR(x/t0))t
∆(b)−d
0 +

∑
j

αbj(gR(x/t0))t
−λj
0 t0 →∞, (3.57)

where λj < Max {d −∆(b)} and the coefficients αbj depend only on the set C(gR) and are

independent of the IR conditions on the solutions. The renormalised theory is defined

by the finite boundary action of the limit (3.55). Close to the UV and at the linearised

level, this theory is given by the fixed point plus a linear combination of relevant basic

eigenperturbations T a, which can be parametrised by the UV scheme (3.51). In the free-

field approximation, we have T b = ϕb+O(∂ϕb), which gives a boundary condition satisfied

17An important advantage of this method is that it preserves relevant symmetries. [23].
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by (3.56). When interactions are turned on, the renormalised action close to the UV gives

a boundary condition satisfied by the asymptotic form of the full solution, (3.57). (This

is explained in more detail in the next section.) Therefore, the renormalised action is in

fact given by (3.51) with gbUV = [(d − 2∆(b))/∆(b)]C
b(gR). In section 5 we will check this

conclusion by explicit calculations.

After the field renormalisation we have just described, the limit (3.55) is still diver-

gent. The divergent terms are ϕ-independent functions of the renormalised couplings gR.

Furthermore, power counting shows that the degree of divergence for deformations with

relevant operators is smaller than d. Therefore, a finite renormalised boundary action can

be obtained by choosing an adequate h0
t0(gR) that approaches −v0/d as t0 →∞ and can-

cels the divergences out when combined with the td0. It turns out that this counterterm

is a local function of the Cb(gR(x)) [22, 24], in agreement with standard renormalisation

theory. We will examine an example in section 5. As we will see there, in some cases the

α terms in (3.57) are essential to be able to cancel all divergences with local counterterms.

4 Holographic renormalisation schemes

As in field theory, different renormalisation schemes can be used in the holographic descrip-

tion of renormalised theories. We have already discussed two of them, which are essentially

equivalent: the UV scheme and the leading-term parametrisation of ht0 in holographic

renormalisation. They are both insensitive to the IR dynamics. The renormalised beta

functions are very simple for generic (non-marginal) dimensions. More physical schemes,

sensitive to the deep IR, could in principle be defined based on correlation functions of

local operators or expectation values of non-local operators, such as Wilson loops. We

do not consider them in this paper. Instead, in the following two subsections we discuss,

respectively, renormalisation schemes based on projections of the Wilsonian or boundary

actions and, in greater detail, the popular scheme based on solutions to the field equations

of motion.

4.1 Projections

Several schemes can be naturally defined in holography by projections of either the Wilso-

nian or the boundary action into convenient subspaces of the same dimension as R. In this

subsection we briefly comment on them.

The most obvious possibility is to project into the subspace tangent to the fixed point

that is spanned by the relevant operators. If we use the Wilson action, this subspace is

given by S = S∗ + gaROΛ
a and we identify the renormalised coupling gaR with the point

in R that has coordinates ga = ga∗ + gaR along the relevant directions. This is a good

parametrisation in a neighbourhood of g∗, but it may break down further away if there are

different points in R with the same ga. The relation between renormalised and Wilsonian

beta functions is:

βαW (g(gR)) = δαa β
a(gR) + δαb

δgb

δgaR
βa(gR). (4.1)
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Note that this renormalisation scheme is very different from the UV scheme for points far

from the fixed point. Analogously, we could use the relevant tangent subspace for boundary

actions, SB = SB∗ + qRa Q
a, with s0 = 1 and identify the dual renormalised couplings qRa

with the point in R with coordinates qRa = q∗a + qRa along the relevant directions. Points

in this tangent subspace are given by a Legendre transformation of points in the tangent

subspace defined above only when they are infinitesimally close to the fixed point. The

boundary beta functions and dual renormalised beta functions are related as in (4.1).

In the case of the completely standard-quantisation fixed point, instead of using the

eigenoperators OΛ
a to define the projection subspace, it is possible to use their single-

trace components OΛ
s a (including the identity). Namely, we associate gaR with the point

in R for which the coefficient of the single-trace operator OΛ
s a is ga∗ + gaR. Shifting away

the fixed point, with no effect on the parametrisation, the projection subspace is given

by S = gaROΛ
s a. This is the exactly the same as the bare space of standard holographic

renormalisation, with boundary actions that impose Dirichlet conditions on the fields.

Even if this renormalisation scheme is quite different from the ones naturally defined in

holographic renormalisation, we will see in the next subsection that a relation can be

established by a non-trivial reparametrisation of the Wilson action. Even if the projection

subspaces are different, this renormalisation scheme is exactly the same as the one above

(with Wilson action), since the coefficients of each OΛ
s a in the Wilson action are the same as

the coefficients of OΛ
a . The reason for this is that OΛ

s a appears as a component of OΛ
a , but

not of other operators. Similar remarks apply to a projection of SB into gaRφ
a, but in this

case there is no relation with the bare manifold of standard holographic renormalisation.

4.2 Field solutions as renormalised couplings

In the standard non-Wilsonian approach to holographic RG flows, the solutions to the field

equations of motion are interpreted as running couplings of the dual theory [5]. These so-

lutions are often obtained by the (fake) superpotential method [36–38], which is a version

of Hamilton-Jacobi theory [7, 39, 40] and can also be used in the approximation with fixed

background. This method splits the problem of solving the second order differential equa-

tions in two steps, corresponding to two integrations of first-order equations. In the first

one, a superpotential (or Hamilton’s principal function) is selected. A given superpotential

generates a class of solutions that satisfy the same first-order differential equation. This

makes the RG interpretation possible.

In this section, we investigate the relation between the RG flows based on field solutions

and the Wilsonian RG flows. The main idea is that using the solutions as renormalised

couplings amounts to choosing one particular renormalisation scheme. Therefore, the gen-

eral relation between the RG evolution of Wilsonian and renormalised couplings, discussed

in section 2 and summarized in (2.13), also holds in this case.

Let SIR
〈t〉 =

∫
ddxSIR

t be a Hamilton’s principal function of the AdS theory, i.e. a solution

to the Hamilton-Jacobi equation

t
∂

∂t
SIR
〈t〉[ϕ] = Ĥ

[
ϕ,−

δSIR
〈t〉

δφ

]
. (4.2)
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The reason for the opposite sign in the momentum is that here we are considering evolu-

tion from the IR to the UV, in contrast to the case of the boundary actions. Comparing

with (3.11), we see that this is the same Hamilton-Jacobi equation obeyed by −SB〈t〉. Par-

ticular solutions can be found explicitly from the IR counterpart of (3.15),

e
−SIR
〈l/l0〉

[ϕ]
=

∫
[Dφ]l,ϕ̃l e

−SG[φ], (4.3)

when some boundary condition is specified in the far IR. In this equation l0 (with l0 > l)

is some scale introduced by the IR boundary condition. If the IR condition respects the

AdS isometry, no scale is introduced and then the l.h.s. will be independent of l and thus

a fixed-point solution. In fact, in order to get a standard running of the couplings, with

scale-independent beta functions, we restrict our attention to these fixed-point solutions

of (4.2), SIR
〈t〉 = W , which obey

Ĥ

[
ϕ,−δW

δϕ

]
= 0. (4.4)

The possible solutions are the same as the ones found in appendix A for SB∗ , up to a global

minus sign. Note that for exceptional dimensions an analytic W may not exist. In this case

we can split it and take only the local part, as in [7, 25, 41], but the relation of the scheme

with actual solutions will be lost. We continue with the study of generic dimensions. Given

a particular W , a class of solutions to the equations of motion can be found solving the

first order equation,

z∂zφ̂
i
z =

δĤ[φ̂z, Π̂z]

δΠ̂i
z

∣∣∣∣∣
Π̂z=−δW [φ̂z ]/δφ̂z

. (4.5)

Remember that φ̂z(x) = φ(z, xz), where we are taking z dimensionful and x dimensionless.

We want to interpret these solutions as renormalised couplings running with the scale

µ = 1/z. In other words, we want the solutions to provide a parametrisation of the

renormalised manifold in which the renormalised RG flows obey (4.5). We consider only

the renormalisable theory R associated to the fixed point with standard quantisation in

all directions. As discussed in the previous section, the relevant eigendeformations of this

fixed point are in one-to-one correspondence, apart from the constant term, with relevant

fields φb (those with a negative squared mass). To any SB〈t〉 in R we associate the set of

fields ϕit that extremizes the sum SB〈t〉[ϕ] +W :

SB〈t〉 → ϕt :
δ

δϕit

(
SB〈t〉[ϕt] +W [ϕt]

)
= 0. (4.6)

Observe that SB〈t〉 and W are, respectively, the result of the UV and IR integrations at

the classical level, and this extremization corresponds to the remaining integration over

ϕ [17, 18, 20]. Note as well that (4.6) can be understood as the requirement of compatibility

of the boundary conditions imposed on the classical fields by SB〈t〉 and W . Given a ϕt that

solves (4.6), we choose a reference scale µ and define φ̂iz = ϕiµz. These φ̂iz satisfy (4.5),

so they are solutions to the equations of motion. This can easily be checked using the
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ϕt evolution derived from SB〈t〉 together with (4.6). It is the result of connecting the UV

evolution of on-shell fields with their IR evolution through the on-shell ϕi.

For our parametrisation purposes, we need (4.6) to have a solution for every SB〈t〉 in

R, and the solution to be unique. Let us see that this can be achieved by an adequate

choice of W . First, we observe that the solution associated to the fixed point SB∗ is

constant in z, φ̂z = φ̂∗. Then, for a Hamiltonian quadratic in momenta we must require

that W possesses a critical point at φ̂∗, such that (4.5) is satisfied for this solultion.18 In

particular, we must identify φ̂∗ = ϕ0 = 0. We also require the solutions to be analytic

in the field expansion and also in momenta (at p = 0).19 As we have seen, for scalars in

fixed AdS background there is only a finite number of analytic fixed-point solutions to the

Hamilton-Jacobi equations with critical points, and all of them have as critical point an

extremum of the potential. These solutions are labelled by the values ∆±(i). It is clear that

we cannot choose ∆(i) = ∆+
(i) for all i, since this would lead to infinite solutions at the

fixed point, and no solution for perturbations around it. Moreover, imagine that we choose

∆(i) = ∆+
(i) for some i. Then, (4.5) generates a solution φ̂iz with a vanishing asymptotic

mode z
∆−

(i) . This solution cannot obey the boundary condition imposed by a perturbed

density action SB∗ +T i. On the other hand, if this direction is not perturbed, (4.6) does not

fix the asymptotic behaviour of φ̂iz and the solution will remain undetermined in general.

Therefore, we choose ∆(i) = ∆−(i) for all i,

W [ϕ] =

∫
ddx

[
v0

d
− 1

2
∆−(i)ϕ

iϕi +O(ϕ3) + derivatives

]
. (4.7)

Because W here is just a tool to define a scheme, we do not impose restrictions from

unitarity on the values ∆−(i). Nevertheless, we should point out that below the unitarity

bound singularities may arise at certain values of the momenta [17]. With this W , (4.6)

has a unique solution, at least in some neighbourhood of the fixed point. Then, we can

define the renormalised constants associated to the renormalised action SB〈1〉 ∈ R as

gbR = ϕb1 = φ̂b1/µ. (4.8)

The corresponding running couplings are

F bt (gR) = φ̂b1/tµ. (4.9)

The renormalised constant parametrising the constant direction is defined as the (shifted)

constant term in the boundary action:

g0
R = SB〈1〉(0, 0, . . .) +

v0

d
+ total derivatives. (4.10)

18For any Hamiltonian without linear terms in the momenta, the existence of a critical point is a sufficient

condition for (4.5) to be valid at φ̂∗.
19Usually, the regularity of fields in the deep interior is imposed as an IR boundary condition to calculate

physical quantities in Euclidean AdS space. Using the associated W to define a physical renormalisation

scheme would lead to a non-local parametrisation.
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The total derivatives are irrelevant for all purposes. The map from R to the space of

renormalised couplings gR must be invertible. The inverse relation can be defined by

means of holographic renormalisation. Consider a set of renormalised couplings gaR, choose

a scale µ and let φ̂z be the solution of (4.5), with W given by (4.7), that satisfies the

following conditions:

φ̂b1/µ = gbR.

lim
z→0

φ̂â = 0. (4.11)

Then, we perform the holographic renormalisation, at the same scale µ, with the bare

couplings

hbt0(gR) = φ̂b1/(t0µ). (4.12)

Note that the second condition (4.11) ensures that the bare couplings hbt0 approach the

critical point P . We also need to add the counterterms to get a finite SBR . As shown in

ref. [39], for our choice of W they are given by

h0
t0(gR) = −W(φ̂1/(t0µ), ∂φ̂1/(t0µ), . . .) + g0

Rt
−d
0 + total derivatives, (4.13)

where W is the density of the fixed-point action: W =
∫
ddxW.

To show that this procedure does provide the inverse map, consider a particular solu-

tion φ̂z of (4.5) and the renormalised theory SBR obtained from (3.55) with ht0 = φ̂(t0µ)−1 .

Motion in the radial direction (µt0)−1 can be described, with t0 fixed, as a rescaling µ→ tµ.

This rescaling induces the RG transformation SBR → SBR 〈t〉. By construction, φ̂z obeys the

boundary condition imposed by SBR 〈t〉 at any z = (µt)−1. Then, ϕt = φ̂t/µ must be a

solution of (4.6). By the uniqueness requirement, solving (4.6) with SBR 〈t〉 will give the

solution φ̂z we have started with.

Conversely, let us start with a given SB〈t〉 and obtain the associated solution φ̂z. Perform

the holographic renormalisation with ht0 = φ̂(t0µ)−1 and rescale µ → tµ to obtain SBR 〈t〉.

The solution φ̂z obeys the boundary condition imposed by both SB〈t〉 and SBR 〈t〉, and also the

one imposed by W . Moreover, both SB〈t〉 and SBR 〈t〉 are boundary actions of the renormalised

manifold. Close to the fixed point, they are described by a linear combination of relevant

eigenperturbations. From our previous study of the asymptotic behaviours for t � 1 we

know that the coefficients of the relevant perturbations (excluding the constant term) are

determined by the leading behaviour of the solution. Therefore, up to a constant term,

SB〈t〉 and SBR 〈t〉 have the same functional form for t � 1. Since they follow the same RG

trajectory, they are actually equal for any value of t, up to the constant (which does not

interfere in the RG evolution). Finally, it is easy to check that (4.13) and (4.10) are inverses

of each other, up to unimportant total derivatives.

In this manner, we have defined a renormalisation scheme in which the running renor-

malised constants are solutions to the field equations of the gravity theory, and we have

shown how to obtain the associated Wilson action.20 This relation between Wilsonian and
20This scheme may break down far from the fixed point if the solutions become singular or if they are

not determined by (4.6).
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non-Wilsonian holographic RG flows (with our choice of W ) precisely matches the general

field-theoretical relation between Wilsonian and renormalised (Gell-Mann-Low) RG flows.

Our interpretation of this relation looks quite transparent and explicit to us, but we should

point out that it is closely related to previous proposals in [20] and [17], respectively. The

first proposal [20] is a perturbative version of our renormalisation scheme, as can be readily

checked by a field expansion of our equations. The second one requires more explanation.

The authors of [17] define a modified Wilson action in which the RG evolution of the coef-

ficients of single-trace operators is given by particular solutions to the equations of motion.

Let us briefly review this procedure and show that it is equivalent to the renormalisation

scheme presented in this subsection. Let us define a modified boundary action

SB′(g)[ϕ] = SB(g)[ϕ] + Sct[ϕ], (4.14)

where the functional Sct is analytic in fields and momenta. Let S′(g)[π] be the Legendre

transform of SB′(g)[ϕ] (we assume that the necessary properties of differentiability and

convexity are preserved),

S′[π] = SB[φ(π)] +W [φ(π)]− π · φ(π),

πi[ϕ] =
δ

δϕi
(SB[ϕ] +W [ϕ]),

ϕi[π] = −δS
′[π]

δπi
.

(4.15)

This modified Wilson action can be understood as a reparametrisation of the couplings,

S′(g) = S(g′). Obviously, the original partition function can be obtained using SB′(g)

instead of SB(g) and adding at the same time Sct[ϕ] to the exponent of the integrand

in (3.2). The couplings of the single-trace terms of the modified Wilson action are given by

gis = − δS′[π]

δπi

∣∣∣∣
π=0

= ϕi[0]. (4.16)

The value π = 0 is conjugate to the stationary point ϕ[0] of SB′(g). Now, the reason for the

equivalence is that the authors of [17] make the “maximal substraction” choice Sct = W ,

where W is the same as the one in (4.7).21 In this case, our condition (4.6) is the same as

the requirement that the modified boundary action SB′(g) be stationary. Therefore,

gis = ϕicl (4.17)

where ϕicl is the solution of (4.6). Using in these equations the modified sliding boundary

actions

SB′〈t〉 = SB〈t〉 +W, (4.18)

we conclude that the RG evolution of the single-trace couplings of the modified Wilson

action, f is,t(g), reproduces the solutions ϕcl t that are generated by W . This is true for

21A choice of Sct is called a “renormalisation scheme” in ref. [17]. This should not be confused with the

field-theoretical meaning we give to that term in this paper.
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any RG trajectory. If we start with SB in the renormalised manifold these solutions are

forced to have a specific behaviour close to the AdS boundary, and can be described in

terms of r parameters (the number of relevant directions), which can work as renormalised

parameters. So, the renormalisation scheme that uses the field solutions can alternatively

be understood as a projection into the space of single-trace operators after a suitable

reparametrisation of the Wilson action. Of course, this parametrisation carries non-trivial

information about the dynamics of the gravity theory in the interior of AdS.

5 Perturbative calculation of boundary action and beta functions

Let us consider once more a theory of M real scalar fields in fixed AdSd+1 space, given

by (3.24), with potential

V (φ) = v0 +
1

2
m2

(i)φ
iφi + vijkφ

iφjφk. (5.1)

We assume that all these fields are relevant, i.e. all of them have negative m2
(i). The other

possible fields in the theory (including irrelevant ones) are assumed to decouple from the

“active” ones in (5.1). In this section we calculate explicitly, to cubic order in ϕ and

linear order in vijk, the general boundary actions SBR [ϕ] that describe the renormalisable

theories associated to the fixed point with standard quantisation for all the M fields.

We work perturbatively in the bare manifold B and holographically renormalise to reach

points on the renormalised manifold. The results in this section provide a partial check of

the more general ones in the appendices, which are obtained instead from the differential

Hamilton-Jacobi equation. Moreover, they also probe the renormalised theory far from the

fixed-point. Finally, we calculate the Wilsonian beta functions and the renormalised ones in

different schemes. To shorten the discussion we consider, once more, generic dimensions and

non-integer ν(i).
22 We will mostly work in momentum space. We use the following notation:

the letter q refers to dimensionless momenta, while the letter p is employed for dimensionful

momenta. The fields and solutions φ̌i(ε, p) refer to the Fourier transform with p conjugate to

the dimensionful coordinate, while ϕ̌(q) and ǧR(q) are Fourier transforms of dimensionless

variables. With these conventions, the Fourier transform of φ̂z(x) is z−dφ̌(z, q/z).

To compute the boundary action we need to integrate out, at the classical level, the

degrees of freedom between a UV boundary at z = ε and an IR boundary at z = l. We

will sometimes write ε = l/t. At l we impose the boundary condition φ(l) = ϕ̃l, while

at ε, following holographic renormalisation, we impose an ε-dependent Dirichlet condition,

φ(ε) = h̃1/(εµ)(gR)|ε. Eventually we will take the limit ε → 0 with fixed l, i.e. t → ∞. We

22The treatment of exceptional and integer dimensions is very similar, and can be recovered by analytical

continuation in the dimensions [42]. We refer to ref. [18], in which two-point and three-point correlators

were calculated in a theory with a UV cutoff, in both AdS and the CFT (using differential regularisation

in position space) sides. It was shown there that, for certain exceptional dimensions, logarithms and

double logarithms appear in the large UV-cutoff expansion. After renormalisation, these logs remain in the

renormalised expressions of the correlation functions and give rise to conformal anomalies. These results for

exceptional dimensions have been recovered with a different (momentum-space) CFT method and studied

in detail in the new paper [43].
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z = ǫ z = l

D20

z = ǫ z = l

D30

Figure 2. Witten diagrams contributing to the boundary action of the fixed point.

perform perturbative calculations in a mixed position/momentum representation, writing

the action as in (A.23). Let us define the IR-boundary-to-bulk propagator K(i)
ε,l (z, p) and the

UV-boundary-to-bulk propagator P(i)
ε,l (z, p) as solutions of the free theory with boundary

conditions

K(i)
ε,l (ε, p) = 0; K(i)

ε,l (l, p) = 1;

P(i)
ε,l (ε, p) = 1; P(i)

ε,l (l, p) = 0. (5.2)

Explicitly,

K(i)
ε,l (z, p) =

(z
l

) d
2 I−ν(i)

(εp)Iν(i)
(zp)− Iν(i)

(εp)I−ν(i)
(zp)

I−ν(i)
(εp)Iν(i)

(lp)− Iν(i)
(εp)I−ν(i)

(lp)

=
(z
l

) d
2 Iν(i)

(zp)

Iν(i)
(lp)

+O(ε2) +O(ε2ν(i)), (5.3)

and

P(i)
ε,l (z, p)=

(z
ε

) d
2 I−ν(i)

(zp)Iν(i)
(lp)− I−ν(i)

(lp)Iν(i)
(zp)

I−ν(i)
(εp)Iν(i)

(lp)− I−ν(i)
(lp)Iν(i)

(εp)

=ε
−∆−

(i)

[
2−ν(i)π csc(πν(i))l

∆−
(i)

(z
l

)d/2
(lp)ν(i)

Iν(i)
(lp)I−ν(i)

(zp)−I−ν(i)
(lp)Iν(i)

(zp)

Γ(ν(i))Iν(i)
(lp)

+O(ε2) +O(ε2ν(i))

]
. (5.4)

Both z and the momentum p in these expressions are dimensionful.Let us first calculate the

fixed-point action SB∗ [ϕ] to third order in ϕ. To do this, we start at the critical point P .

That is to say, we use hit(0) = 0 and h0
t (0) = −v0/d. The cubic interaction induces terms

in SB∗ with arbitrary powers of ϕ, as shown in figure 2. The constant, vacuum-energy part

is given by the limit of the sum of −v0
d t

d and the integral of the cosmological term in SG:

s0 = lim
t→∞

[
−v0

d
td + l−d

∫ l

lt−1

dz z−d−1v0

]
= − v0

d
. (5.5)

– 31 –



J
H
E
P
0
3
(
2
0
1
6
)
1
9
8

The quadratic term is given by a boundary term at l after integration by parts in SG. The

two-point function is

s+(i)(lp) = ld lim
ε→0

1

2
z−d+1∂zK(i)

ε,l (z, p)
∣∣∣
z=l

=
d

4
+
I ′ν(i)

(pl)

Iν(i)
(pl)

, (5.6)

with zero-momentum limit

s+(i)(0) =
1

2
∆+

(i). (5.7)

For the cubic term we need to perform a bulk integral. The three-point function is

sijk(lp1, lp2, lp3)= vijk(2π)dδ(p1 + p2 + p3) lim
ε→0

∫ l

ε

dz

z
z−dK(i)

ε,l (z, p1)K(j)
ε,l (z, p2)K(k)

ε,l (z, p3)

= vijk(2π)dδ(p1+p2+p3)

∫ l

0

dz

z
z−dK(i)

0,l(z, p1)K(j)
0,l (z, p2)K(k)

0,l (z, p3). (5.8)

Note that all these calculations for the fixed-point action are directly finite and do not

require any renormalisation. We can directly see that, to order ϕ2, the fixed-point action

SB∗ is identical to the one found in appendix A for standard quantisation. We have also

checked that the first orders in the momentum expansion of the cubic terms (5.8) precisely

agree. More generally, it should be the case that in the limit ε → 0 the Witten diagrams

give an integral representation of the solutions to the recursive equations in the appendices.

As explained in section 3, we have found the fixed point with standard quantisation due

to our choice of P , which lies on the critical manifold of this particular fixed point.

In order to reach the renormalizable manifold R of this fixed point, we need non-trivial

bare couplings ht. They need to be chosen in such a way that the divergences in the t→∞
limit be cancelled. As discussed in sections 3 and 4, this cancellation will be guaranteed if

we use as bare couplings adequate solutions of the equations of motion (with the dilatation

included). For generic dimensions we can use the solutions generated by W in (4.7).23 If

φ̂z is a solution of (4.5), then we take hit = φ̂i1/(tµ). In practice, instead of working with Ĥ

and (4.5), it is easier to undo the rescaling (3.12) and use the original equation

∂zφ
i(z, x) =

δHz[φ,Π]

δΠi(z, x)

∣∣∣∣
Π=−δWz [φ]/δφ

. (5.9)

The UV boundary condition is just to impose that the value of the scalar field i at ε be

equal to φi(ε, x), with φi a solution of (5.9). This does not mean that the on-shell field

will be the same as this solution for all values of z, as it obeys a different IR boundary

condition. W is just minus the special fixed point action with alternate quantisation for

23For exceptional dimensions a fixed-point action W analytic in momenta may not exist. Then (and

also in the generic case) we can separate the local part of W and use it in (4.5) to define the (local) bare

couplings, which will no longer be actual solutions of the field equations. This is the method used in ref. [7].
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all fields. From appendix A we have, to order vijk,

W [ϕ̌] = −
∫

ddq

(2π)d

∑
a

s−(i)(q)ϕ̌
i(q)ϕ̌i(−q)

−
∫

ddq1

(2π)d
ddq2

(2π)d
ddq3

(2π)d
(2π)dδ(q1 + q2 + q3)s−ijkϕ̌

i(q1)ϕ̌j(q2)ϕ̌k(q3) +O(v2
ijk)

= −
∫

ddq

(2π)d

[
d

4
+ q

I ′−ν(i)
(q)

2I−ν(i)
(q)

]
ϕ̌i(q)ϕ̌i(−q) (5.10)

− vijk
∫
ddq1d

dq2d
dq3

(2π)2d
δ(q1 + q2 + q3)ϕ̌i(q1)ϕ̌j(q2)ϕ̌k(q3)

[
1

∆−(i) + ∆−(j) + ∆−(k) − d

+
1

2

q2
1

ν(i)−1 +
q2
2

ν(j)−1 +
q2
3

ν(k)−1

(∆−(i) + ∆−(j) + ∆−(k) + 2− d)(∆−(i) + ∆−(j) + ∆−(k) − d)
+O(q4)

]
+O(v2

ijk).

Wz[φ] can be easily obtained from W [ϕ̌] changing the Euclidean metric by the induced

metric at z. To order vijk, (5.9) is

φ̌i(ε, p) = (εµ)
∆−

(i)
Γ(1−ν(i))

2ν(i)
(εp)ν(i)I−ν(i)

(εpi)µ
−dǧiR(p/µ)+3vijk(εµ)

∆−
(j)

+∆−
(k)

×
∫
ddp1d

dp2

(2π)d
δ(p+p1+p2)µ−2dǧjR(p1/µ)ǧkR(p2/µ)

[
1

(∆−(j)+∆−(k)−∆−(i))(∆
−
(j)+∆−(k)−∆+

(i))

+ ε2
4p2−

(
p2

1
ν(j)−1 +

p2
2

ν(k)−1

)
(∆−(j)+∆−(k)−∆−(i))(∆

−
(j)+∆−(k)−∆+

(i))

4(∆−(j)+∆−(k)−∆−(i))(∆
−
(j)+∆−(k)−∆+

(i))(∆
−
(j)+∆−(k)−∆−(i)+2)(∆−(j)+∆−(k)−∆+

(i)+2)

+O(ε4p4)

]
. (5.11)

The O((vijk)
0) part of the solution φi, which we call φi0, has the following momentum

expansion

φ̌i0(ε, p) = µ−d(εµ)
∆−

(i)

[
1 +

ε2p2

4− 4ν(i)
+O(ε4p4)

]
ǧiR(p/µ). (5.12)

Depending on the set of dimension, the O(vijk) terms may give important contributions

that cancel subdivergences. On the other hand, high-enough orders in ε will not contribute

in the limit ε→ 0. It will be useful to write the solutions as

φ̌i(ε, p) = φ̌i0(ε, p) +

∫
ddp1d

dp2

(2π)d
δ(p+ p1 + p2)φ̌j0(ε, p1)φ̌k0(ε, p2)Ωi

jk(εp, εp1, εp2) +O(v2
ijk),

(5.13)

where the function Ωijk is defined, to all orders in momenta, as the analytic solution at

qm = 0 of the equation

(
−2s−(i)(q1) + 2s−(j)(q2) + 2s−(k)(q3)

)
Ωijk(q1, q2, q3) +

3∑
m=1

qm∂qmΩijk(q1, q2, q3)

= 3s−ijk(q1, q2, q3), (5.14)
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z = ǫ z = l

D02

z = ǫ z = l

D03

Figure 3. Witten diagrams contributing to the vacuum energy of for the deformed theory up to

order O(vijk).

where the s− are the coefficients of the ϕ̌ series of the action W . The first terms of its

low-momentum expansion are

Ωijk(q, q1, q2) = 3vijk

[
1

(∆−(j)+∆−(k)−∆−(i))(∆
−
(j)+∆−(k)−∆+

(i))

+
q2+

[
q2
1

2(ν(j)−1) +
q2
2

2(ν(k)−1)

]
(d− ν(j)−ν(k)+2)

(∆−(k)+∆−(j)−∆−(i))(∆
−
(k)+∆−(j)−∆+

(i))(∆
−
(k)+∆−(j)−∆−(i)+2)(∆−(k)+∆−(j)−∆+

(i)+2)

+O(q4)

]
. (5.15)

To calculate SBR (gR) to linear order in vijk, we need to add to SB∗ the contribution of the

diagrams in figures 3, 4 and 5, which contribute to the vacuum energy, to the linear term

in ϕ̌ and to the quadratic term in ϕ̌, respectively.

To order vijk, the vacuum energy density s0 receives corrections δs0 with two and three

legs on the UV boundary, as shown in figure 3. They are respectively equal to

D02 = −1

2

∫
ddp

(2π)d
φ̌i(ε, p)φ̌i(ε,−p) z−d+1∂zP(i)

ε,l (z, p)
∣∣∣
z=ε

=

∫
ddp

(2π)d
φ̌i(ε, p)φ̌i(ε,−p)ε−d

[
−d

4
− εp

I ′−ν(i)
(εp)

2I−ν(i)
(εp)

]
+O(ε0)

= −
∫

ddp

(2π)d
φ̌i(ε, p)φ̌i(ε,−p)ε−ds−(i)(εp) +O(ε0) (5.16)

and

D03 = vijk

∫
ddp1

(2π)d
ddp2

(2π)d
ddp3

(2π)d
(2π)dδ(p1 + p2 + p3)φ̌i(ε, p1)φ̌j(ε, p2)φ̌k(ε, p3)

×
∫ l

ε
dzz−1−d P(i)

ε,l (z, p1)P(j)
ε,l (z, p2)P(k)

ε,l (z, p3). (5.17)
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In these expressions the φi are not generic fields, but the solutions (5.11). Because they

contain not only linear but also quadratic terms in the renormalised couplings gR, pro-

portional to vijk, D02 will contribute to order vijk to δs
[2]
0 (terms with two couplings giR

and gjR), and also to δs
[3]
0 (terms with three couplings giR, gjR and gkR). The diagram D03

contributes only to δs
[3]
0 at this order.

The limit ε → 0 of both D02 and D03 is divergent. However, all the non-local diver-

gences are nicely cancelled out by the divergent terms in the φi. Here and in the following

“local”, “non-local” and “semi-local” refer to terms that have these properties in the limit

in which the IR cutoff is removed (with the IR cutoff, all divergences are actually local).

These cancellations are not trivial. The completely non-local divergences in δs
[2]
0 and in

δs
[3]
0 are cancelled, as is well-known, by the φ0 terms in φ, which are linear terms in gR.

This widely-employed linear renormalisation of the sources is insufficient in some cases.

Indeed, as found in ref. [18], D03 contains semi-local divergent terms when, for some i, j, k

(not necessarily different), ∆−(i) +∆−(j) < ∆−(k). These terms cannot possibly be cancelled by

a linear renormalisation, and seem to require a non-local divergent counterterm. However,

as mentioned above, the non-linear terms in φ that appear in D02 give another contribution

to δs
[3]
0 . It turns out that this contribution precisely cancels the semi-local divergences.

The remaining local divergence can then be cancelled by a local counterterm in the vacuum

energy. Let us show all this explicitly.

First, using φ→ φ0 in (5.16) we get

(δs
[2]
0 )D02(εp) = −

∫
ddp

(2π)d
ǧiR(p/µ)ǧR i(−p/µ)(µε)−2ν(i)s−(i)(εp) (5.18)

+

∫
ddp

(2π)d
ǧiR(p/µ)ǧR i(−p/µ)

(
p

µ

)2ν(i) Γ(1− ν(i))
2 sin[πν(i)]I−ν(i)

(lp)

4ν(i)πIν(i)
(lp)

+O(ε2ν(i)).

The local divergence is to be cancelled by a counterterm in the vacuum energy, as we

discuss below. The O(vijk) part of D02, arising from nonlinear terms in φ, is

(δs
[3]
0 )D02(εp1, εp2, εp3) =−

∫
ddp1

(2π)d
ddp2

(2π)d
ddp3

(2π)d
(2π)dδ(p1 + p2 + p3) (5.19)

× φ̌i0(ε, p1)φ̌j0(ε, p2)φ̌k0(ε, p3)ε−dΩijk(εp1, εp2, εp3)z∂zP(i)
ε,l (εp1).

The z integral in (5.17) can be written as,

vijk

∫ l0

ε
dzz−1−dP(i)

ε,l (z, p1)P(j)
ε,l (z, p2)Pkε,l(z, p3)

= ε−d [Zijk(εp1, εp2, εp3) + Yijk(εp1, εp2, εp3) + Yjik(εp2, εp1, εp3)

+ Ykij(εp3, εp1, εp2) +O(ε2ν(j)+2ν(k)) +O(ε2ν(i)+2ν(j)) +O(ε2ν(i)+2ν(k))
]

+O(ε
−∆−

(i)
−∆−

(j)
−∆−

(k)), (5.20)

with

Zijk(εp1, εp2, εp3) = −vijk
∫
dz

z

(z
ε

)d/2 I−ν(i)
(zp1)I−ν(j)

(zp2)I−ν(k)
(zp3)

I−ν(i)
(εp1)I−ν(j)

(εp2)I−ν(k)
(εp3)

∣∣∣∣∣
z=ε
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= −vijk
[

1

∆−(i) + ∆−(j) + ∆−(k) − d

+
ε2

2

p2
1

ν(i)−1 +
p2

2
ν(j)−1 +

p2
3

ν(k)−1

(∆−(i) + ∆−(j) + ∆−(k) + 2− d)(∆−(i) + ∆−(j) + ∆−(k) − d)
+O(ε4p4

1)


= −s−ijk , (5.21)

and

Yijk(εp1, εp2, εp3) =
Ω̃ijk(εp1, εp2, εp3)

3

[
z∂zP(i)

ε,l (z, p1)|z=ε − 2s−(i)(εp1)
]
,

Ω̃ijk(εp1, εp2, εp3) = −3vijk
π

2 sin(πν(i))

1

I−ν(j)
(εp2)I−ν(k)

(εp3)
(5.22)

×
∫
dz

z

(z
ε

)d/2 {
I−ν(j)

(zp2)I−ν(k)
(zp3)

[
I−ν(i)

(εp1)Iν(i)
(zp1)− I−ν(i)

(zp1)Iν(i)
(εp1)

]}∣∣∣∣
z=ε

The indefinite integrals above and hereafter are defined as the primitive with vanishing

constant term in the Laurent expansion at z = 0. It can be shown that Ω̃ satisfies the

defining equation (5.14), so in fact Ω̃ = Ω. When used in (5.17), Z gives local divergences

if ν(i) +ν(j) +ν(k) > d/2. The same is true for the second term in Y. On the other hand, the

first term, Ωz∂zP, gives semi-local divergences when ∆−(i)+∆−(j) < ∆−(k) for some i, j, k. But

we see that this contribution cancels exactly against δs
[3]
0 . From the arguments in section 3

and previous work on holographic renormalisation we know this should be the case when we

use solutions as bare couplings. All this agrees as well with the field-theoretical discussion

in section 2. In particular, note that the same condition on the dimensions gives rise to the

non-linear contributions. Finally, the local divergence that remains in δs0 can and should

be cancelled by a counterterm, which can be chosen as

h0
1/(εµ)(x) = −W [φ̂ε(x), ∂φ̂ε(x), . . .] + (εµ)dg0

R(εµ x). (5.23)

In this equation, g0
R parametrises the renormalised vacuum energy. The integral of the

first term,

W [φ̂ε] =−
∫

ddp

(2π)d
ε−ds−(i)(εp)φ̌

i
0(ε, p)φ̌0 i(ε,−p)

−
∫

ddp1

(2π)d
ddp2

(2π)d
ddp3

(2π)d
(2π)dδ(p1 + p2 + p3)ε−dφ̌i0(ε, p1)φ̌j0(ε, p2)φ̌k0(ε, p3)

×
[
s−ijk(εp1, εp2, εp3) + 2s−(i)(εp1)Ωijk(εp1, εp2, εp3)

]
+O(v2

ijk), (5.24)

manifestly cancels all the remaining divergences.

Even if we are using non-local bare couplings ht, all the terms that survive in the

limit ε → 0 are actually local. In fact, we are oversubstracting (much as the “maximal

substraction” in [17]), but we could equivalently use the complete solutions or the first

terms in the ε expansion, up to the necessary order, which are polynomial in momenta and

thus local in position space.
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z = ǫ z = l

D11

z = ǫ z = l

D12

Figure 4. Witten diagrams contributing to the linear term in ϕ̌ for the deformed theory up to

order O(vijk).

Let us consider next the linear term
∫
ddqδsi(q)ϕ̌(q) of SBR . Remember that si = 0 in

the fixed-point action. In the presence of sources, it is given to order vijk by the diagrams

in figure 4, with either one or two legs on the UV boundary. The contribution of the first

diagram to δsi(pl) is

D11 =
1

2
φi(ε,−p)

(
z−d+1∂zP(i)

ε,l (z, p)
∣∣∣
z=l
− z−d+1∂zK(i)

ε,l (z, p)
∣∣∣
z=ε

)
= φi(ε,−p)Bε,l(p), (5.25)

where

Bε,l(p) =
1

π

2ε−d/2l−d/2 sin(πν)

I−ν(i)
(lp)Iν(i)

(εp)− I−ν(i)
(εp)Iν(i)

(lp)

= ε
−∆−

(i) l
−∆+

(i)

[ −2ν(i)(lp)
ν(i)

2ν(i)Γ(ν(i) + 1)Iν(lp)
+O(ε2) +O(ε2ν)

]
. (5.26)

This contributes to δs
[1]
i , with one renormalised coupling gjR and —through the non-linear

terms in φi — to δs
[2]
i , with two renormalised couplings gjR and gkR. In δs

[1]
i , the divergence

is directly cancelled:

δs
[1]
i (q) = −2ν(i)ǧR i(q)(lµ)

−∆+
(i)

qν(i)

2ν(i)Γ(ν(i) + 1)Iν(q)
(5.27)

The contribution to δs
[2]
i is

(δs
[2]
i )D11(lp) =

∫
ddp1d

dp2

(2π)d
δ(p+ p1 + p2)φ̌j0(ε, p1)φ̌k0(ε, p2)Ωijk(εp, εp1, εp2)Bε,l(p) (5.28)

The contribution of the second diagram to δsi(pl) is

D12 = 3vijk

∫
ddp1

(2π)d
ddp2

(2π)d
(2π)dδ(p1 + p2 + p)φ̌j(ε, p1)φ̌k(ε, p2)

×
∫ l

ε
dzz−1−dP(j)

ε,l (z, p1)P(k)
ε,l (z, p2)K(i)

ε,l (z, p). (5.29)
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z = ǫ z = l

D21

Figure 5. Witten diagram contributing to the quadratic term in ϕ̌ for the deformed theory up to

order O(vijk).

The completely non-local divergences can be easily seen to cancel out in this expression.

But again, a semi-local divergence remains when, for some fixed i, j, k, with ϕ̌i the field on

the IR boundary, the corresponding dimensions satisfy ∆−(j) + ∆−(k) < ∆−(i):

(δs
[2]
i )D12(pl) = −

∫
ddp1d

dp2

(2π)d
δ(p+p1+p2)φ̌j0(ε, p1)φ̌k0(ε, p2)Ω̃ijk(εp, εp1, εp2)Bε,l(p)+O(ε0).

(5.30)

The cancellation of the divergences of (δs
[2]
i )D12 and (δs

[2]
i )D11 is manifest. After this, no

divergences remain in δs
[1]
i and δs

[2]
i , so we are directly left with the renormalised δsi.

The last correction to the fixed-point action to order vijk is quadratic in ϕ̌. The only

corrrection to the two-point function, δsij , is given by the diagram in figure 5 and reads

δsjk(lp1, lp2) = 3vijk

∫
ddp δ(p1 + p2 + p)φ̌i(ε, p)

∫ l

ε
dzz−1−dP(i)

ε,l (z, p)K
(j)
ε,l (z, p1)K(k)

ε,l (z, p2).

(5.31)

The non-local divergence of the integral is cancelled by the φ (only the φ0 part contributes

to O(vijk), and a finite expression remains, so that the limit ε→ 0 of (5.31) gives directly

the renormalised δsij(q1, q2).

We have found SBR (gR)[ϕ] in a particular scheme given by holographic renormalisation

with solutions parametrised by their asymptotic behaviour. We have shown explicitly that

it is finite. The fixed-point action is SB∗ (0), which we have calculated at the beginning of

this section. The renormalised manifold is tangent to the relevant directions at the fixed

point. Therefore,
∂SBR (gR)[ϕ]

∂gaR

∣∣∣∣
gR=0

= N b
aQb. (5.32)

In the case we are studying, all the relevant egenperturbations are basic functions T i =

ϕi + . . .. Because the UV to IR propagator is diagonal, the matrix N is also diagonal in

this basis. Comparing with δs
[1]
i we also find the normalisation:

∂SBR (gR)[ϕ]

∂giR

∣∣∣∣
gR=0

= (d− 2∆+
(i))(µl)

−∆+
(i)Ti. (5.33)
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We have checked that this equation is also satisfied at order vijk for the first terms in the

momentum expansion.

The renormalised Wilson action SR(gR)[π] to order vijk can be readily found by a

perturbative Legendre transform of SBR (gR)[ϕ]. We do not do it here explicitly. Instead,

we proceed to calculate the Wilsonian and renormalised beta functions for the scalar theory

at hand.

As we have discussed in section 3, the Wilsonian beta functions of both the couplings

and of the conjugate couplings can be directly computed from the Hamiltonian, written

in terms of the Wilson and boundary action, respectively. To facilitate the comparison

with renormalised beta functions below we choose to work with boundary variables. We

continue working in (dimensionless) momentum space. Instead of working in the basis of

eigenperturbations, it is simpler to use the basis given by products of ϕi. The conjugate

couplings s are then the coefficients of the Taylor expansion of SB[ϕ] in ϕ,

SB(s)[ϕ̌] = s0 +

∫
ddq1

(2π)d
si(q1)ϕ̌i(q1) +

∫
ddq1

(2π)d
ddq2

(2π)d
si1i2(q1, q2)ϕ̌i1(q1)ϕ̌i2(q2)

+
∑
n≥3

∫
ddqi1
(2π)d

. . .
ddqin
(2π)d

si1...in(q1, . . . , qn)ϕ̌i1(q1) . . . ϕ̌in(qn) . (5.34)

The Wilsonian beta functions of the boundary couplings s can be easily performed using

eq. (3.19). We find

βBj1...jn(s)(qj1 . . . qjn) =
1

2

n∑
k=0

(k + 1)(n− k + 1) Sym
{(jk,qk)}nk=1

∫
ddq

(2π)d
[
sij1...jk(−q, q1, . . . , qk)

× sjk+1...jni(qk+1, . . . , qn, q)
]

+

n∑
l=1

qµl
∂

∂qµl
sj1...jn(q1, . . . , qn)

− 1

2
δ2n(2π)dδ(q1 + q2)

(
q2

1 + δj1j2m
2
(j1)

)
− δ3n(2π)dδ(q1 + q2 + q3)vj1j2j3 , (5.35)

where Sym symmetrises over the pairs {(jk, qk)}nk=1:

Sym
{(jk,qk)}nk=1

Aj1...jn [q1, . . . , qn] =
1

n!

∑
σ∈Sn

Ajσ(1)...jσ(n)
[qσ(1), . . . , qσ(n)]. (5.36)

Here, βBj1...jn is the Wilsonian boundary beta function in the direction of sj1...jn . Notice

how, in general, the beta function for the coupling si1...in with n indices is affected by the

couplings with n + 1 indices or less. In appendix A, the fixed points are computed by

requiring that these beta functions vanish. To order vijk and in terms of the deviation of

the couplings from their fixed-point value, δsi1...in = si1...in− s+i1...in(2π)dδ (
∑n

r=1 qr), (5.35)

reduces to

βB0 =
1

2

∫
ddq

(2π)d
δsi(q)δsi(−q) +O(v2

ijk),
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βBj (q) =

[
2s+(j)(q) + qµ

∂

∂qµ

]
δsj(q)

+ 2

∫
ddq1

(2π)d
δsji(q, q1)δsi(q1) +O(v2

ijk),

βBj1j2(q1, q2) =

[
2∑

k=1

(
2s+(jk)(qk) + qµk

∂

∂qµk

)]
(δs)j1j2(q1, q2)

+ 3δsi(−q1 − q2)s+ij1j2(−q1 − q2, q1, q2) +O(v2
ijk),

βBj1...jn(q1, . . . , qn) = O(v2
ijk) n ≥ 3. (5.37)

The boundary couplings representing points in the renormalised manifold are functions

of the renormalised couplings and the renormalisation scale. We choose µ = 1/l in the

following to simplify the formulas. In the scheme given by holographic renormalisation

with solutions parametrised by their asymptotic behaviour, the non-vanishing couplings of

the renormalised boundary action to order O(vijk) have the form

s0 = −(2π)d
v0

d
δ(0) + ǧ0

R(0) +

∫
ddq

(2π)d
R02

(i)(q)ǧ
i
R(q)ǧR i(−q)

+

∫
ddq1d

dq2d
dq3

(2π)2d
δ(q1 + q2 + q3)R03

;ijk(q1, q2, q3)ǧiR(q1)ǧjR(q2)ǧkR(q3),

si(q) = R11
(i)(q)ǧR i(q) +

∫
ddq1d

dq2

(2π)d
δ(q + q1 + q2)R12

i;jk(q; q1, q2)ǧjR(q1)ǧkR(q2),

sij(q1, q2) = R20
(i)(q1)δij(2π)dδ(q1 + q2) +

∫
ddqδ(q + q1 + q2)R21

ij;k(q1, q2; q)ǧkR(q),

sijk(q1, q2, q3) = R30
ijk;(q1, q2, q3)(2π)dδ(q1 + q2 + q3). (5.38)

The renormalised functions Rnm are the finite pieces of the diagrams after subtracting the

infinite part. The first superindex, n, refers to the number of indices of the corresponding

coupling si1,...in . The second superindex, m, indicates the number of subindices to be

contracted with the renormalised coupling gR. Once more, an index in brackets is used

for diagonal elements of diagonal matrices. Some of these functions have actually been

defined above or in the appendices: R11
(i)(q) is the eigenperturbation of the boundary action

to order O((vijk)
0) in (B.19), R21

ij;k(q) is its correction to O(vijk), whereas R20
(i) = s+(i) and

R30
ijk; = s+(ijk) (the coefficients in the expansion of the boundary action of the standard

fixed point).

Let us now compute the renormalised, Gell-Mann-Low beta functions. They are scheme

dependent and can be calculated in two ways: from the bare couplings and requiring that

the renormalised action be independent of the renormalisation scale. We follow the first

method and continue using the same renormalisation scheme. Using (2.29) with hat given

by the solutions (5.13) and (5.23), we find extremely simple beta functions:

βi(q) = ∆+
(i)ǧ

i
R(q) + qµ

∂

∂qµ
ǧiR(q), (5.39)

β0(q) = qµ
∂

∂qµ
ǧ0
R(q). (5.40)
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These are the same as in the UV scheme. Remember that we are always considering generic

dimensions. Note that g0
R(q) is always evaluated at q = 0 in final expressions. The trivial

β0 reflects the fact that in this case there are no conformal anomalies. The beta functions

are more involved, within the same scheme, in the case of exceptional dimensions, including

marginal directions, and β0 will be non-trivial due to the conformal anomalies [43].

These renormalised beta functions are related by the chain-rule relation (2.15) to the

Wilsonian (or boundary) ones, restricted to the renormalised manifold. Since we also have

the boundary couplings written in terms of the renormalised ones in (5.38), it is possible

to check this relation to O(vijk). The relation for βBj1j2 at O(vijk) reads

[
2∑
r=1

(
2s+(jr)(qr) + qµr

∂

∂qµr

)
−∆+

(i)

]
R21
j1j2;i(q1, q2;−q1 − q2)

+ 3R11
(i)(q1 + q2)R30

ij1j2;(−q1 − q2, q1, q2) = 0. (5.41)

Taking into account the relation between the R functions and some objects already defined,

this is exactly the equation for the O(vijk)-correction to the eigenperturbation tij1j2(q1, q2)

at order O(vijk) in (B.21). The relation for βBj at O((vijk)
0) is

[
2s+(i)(q)−∆+

(i) + qµ
∂

∂qµ

]
R11

(i)(q) = 0. (5.42)

This equation is nothing but (B.15), the equation for the leading order of the perturbation

in O((vijk)
0). The relation for βb0 to O((vijk)

0) reads

1

2
R11

(i)(q)R
11
(i)(−q) =

(
2ν−(i) − q

µ ∂

∂qµ

)
R02

(i)(q). (5.43)

We have checked that this relation holds using the analytic solutions. The rest of relations

(the O(vijk) order for βBj and for βB0 ) give similar relations between the R-functions.

To finish, let us see how the renormalisation scheme in this section is related to the

scheme of the field solutions studied in section 4.2. Let us call ḡiR(q) the renormalised

couplings of the latter scheme. These are nothing but the solutions at l. Writing them in

terms of the solution parametrised as in (5.12) and (5.13), we find the following relation

between couplings:

ḡiR(q) = ψi0(q) +

∫
ddq1d

dq2

(2π)d
δ(q + q1 + q2)ψj0(q1)ψk0 (q2)Ωi

jk(q, q1, q2) +O(v2
ijk), (5.44)

where,

ψi0(q) =
Γ(1− ν(i))

2ν(i)
qν(i)I−ν(q)ǧiR(q) =

[
1 +

q2

4− 4ν(i)
+O(q4)

]
ǧiR(q). (5.45)
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ψi0(q) is just a dimensionless version of φi0(ε, p), see (5.12). The chain rule gives the beta

functions in the solution scheme:

β̄i(ḡR)(q) =
δW

δφi

∣∣∣∣
φ=ḡR(q)

+

[
d+ qµ

∂

∂qµ

]
ḡiR(q)

= −2s−(i)(q)ḡ
i
R(q)− 3

∫
ddq1

(2π)d
ddq2

(2π)d
s−ijk (q1, q2, q)ḡ

j
R(q1)ḡkR(q2) +O(v2

ijk)

+

[
d+ qµ

∂

∂qµ

]
ḡiR(q). (5.46)

We have used the defining equation (5.14).

6 Conclusions

In this paper we have developed some details of the Wilsonian holographic RG formalism

proposed in ref. [20] and have used this formalism to investigate the large-N Wilsonian

structure of renormalised theories dual to field theories in asympotically-AdS spaces. Our

main purpose has been to show how the different features of holographic RG flows and

renormalisation precisely fit within a standard field-theoretical Wilsonian picture. We

have also put to work the general ideas and have obtained a few basic ingredients of

the holographic Wilsonian description of renormalised theories. In particular, we have

found fixed-points of the flow and the eigenperturbations of these fixed points that diag-

onalise the RG evolution at the linearised level. We have used two independent methods

to achieve this: i) the study of the first-order differential Hamilton-Jacobi equation that

dictates the RG evolution, performed in the appendices; and ii) the direct calculation of

the renormalised Wilson actions (or rather, of their Legendre conjugates, the renormalised

boundary actions), performed to leading order in the cubic interaction in section 5. The

second method, already employed in [18], directly provides the integrated solutions of the

Hamilton-Jacobi equation. It can be used to find the renormalised actions at arbitrarily-low

values of the cutoff.

We have discussed different holographic renormalisation schemes, paying special atten-

tion to the scheme in which the renormalised and running couplings are given by particular

solutions to the field equations of motion. We have written in detail the bijection between

these renormalised couplings and the corresponding renormalised boundary actions. Even

if the interpretation of field solutions as running couplings is quite standard, we believe

that the connection we find with the Wilsonian couplings is valuable, as it gives a precise

meaning to this interpretation.

Our formalism incorporates space-time dependent couplings and derivative terms in

the holographic RG evolution. This requires a careful treatment of the dilatation associ-

ated to RG transformations. The dilatation is equivalent to measuring lengths with the

induced metric at the sliding cutoff position. In AdS space, its isometry ensures that the

Hamilton-Jacobi equation written in the position-dependent units is an autonomous differ-

ential equation. Then, just as in field theory, the Wilsonian beta functions do not depend

on the scale, but only on the couplings. It is for this reason that we have only considered
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AdS space here. Departures from AdS background would introduce new scales into the

problem and preclude our simple usage of dimensional analysis. However, this problem is

automatically avoided when dynamical gravity is taken into account, as we comment below.

Local couplings are known to lead to conformal anomalies. We have not investigated this

issue here, partly because we have sticked to non-exceptional dimensions, but it would be

interesting to study how they arise in the Wilsonian context.

A complete treatment of RG flows should in fact include the backreaction on the geom-

etry, i.e. should treat the metric as a dynamical field. This is necessary to study realistically

the IR of non-trivial renormalised theories, since the size of relevant deformations increases

towards the IR and their impact on the geometry cannot be neglected at arbitrarily low

energies. Most of the work on non-Wilsonian holographic RG flows is actually based on

complete solutions of the gravity-scalar coupled equations [44–48]. A holographic Wilso-

nian formalism that incorporates dynamical gravity has been sketched by Heemskerk and

Polchinski in ref. [20]. A key point of the proposal is that the boundary action should not

satisfy the Hamiltonian constraint. The constraint applies, on the other hand, when the

boundary (or Wilson) action is used to calculate the partition function by integration of the

IR degrees of freedom.24 In this Wilsonian formulation, the treatment of the gauge-fixed

metric (or any gauge field) is similar to the one of matter fields. Therefore, we expect that

the analysis in this paper will qualitatively apply as well to an exact Wilsonian description

with dynamical gravity. Of course, many details, such as the form of the Hamilton-Jacobi

equation and the actual fixed-points and eigenperturbations will have to be modified (but

the perturbative calculations of scalar correlators should stay the same at leading order in

the couplings of the gravity-scalar theory). A crucial and welcomed new ingredient is the in-

variance under diffeomorphisms, which implies the absence of absolute scales in the theory.

Diffeomorphism invariance will play the role of the AdS isometry in this paper and guar-

antee that the RG equations are autonomous. Note also that, in contrast to the AdS/CFT

correspondence in the continuous limit, the presence of a UV cutoff makes d-dimensional

gravity dynamical on the field-theory side. This naturally leads to the local RG [49, 50],

which studies the response of the theory to Weyl transformations, rather than just rigid

scale transformations.25 Note also that to preserve manifest general covariance the metric

appears non-linearly in the field theory, as usual in general relativity and in contrast to

the couplings of scalar operators. The Legendre transform that relates the boundary and

Wilson actions will then have to substituted by a more complicated transform.

Once the holographic Wilsonian RG with dynamical gravity is developed in detail, we

hope that the insights in this paper will be helpful to make more precise the field-theoretical

interpretation of the holographic RG flows.

Note added. As we were finishing this paper, ref. [43] has appeared, with some overlap

with our section 5. This work studies in detail the renormalisation of three-point functions

24The (fake) superpotential in refs. [36–38] plays a role similar to W in this paper (the symbol we use is

no coincidence), generating classes of solutions.
25See [51, 52] for a non-Wilsonian interpretation of the holographic RG in terms of the local field-

theoretical RG.
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in conformal field theories (without IR cutoff) and includes a sample AdS calculation. The

authors focus on the cases of integer, marginal and exceptional conformal dimensions, in

which conformal anomalies appear. These cases are orthogonal to the ones with generic

dimensions discussed here. Nevertheless, many features, including the presence of non-local

subdivergences and their cancellation in (holographic) renormalisation, are qualitatively

the same. This is not surprising, as the results with integer, marginal and exceptional

dimensions can be obtained from our results by analytic continuation in the dimensions.

Some of these issues had also been addressed before, with different methods, in ref. [18].
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A Fixed points of the Hamilton-Jacobi equation

A.1 Boundary action

In this appendix we look for fixed points of the Hamilton-Jacobi evolution for a set of

scalar fields φi living in AdSd+1 space and subject to a potential V (φ). The Lagrangian

and Hamiltonian densities are given, respectively, by eqs. (3.24) and (3.25). We first work

in terms of boundary actions. As in the rest of the paper, we consider quasilocal actions

SB, which can be written as a integral over a function of the field and its derivatives at

each point:

SB(g)[ϕ] =

∫
ddxSB(g(x))

(
ϕ(x), ∂ϕ(x), ∂2ϕ(x), . . .

)
. (A.1)

This is consistent with the Hamilton-Jacobi evolution. We expand the density SB in

derivatives:

SB =
∞∑
n=0

SB(n)

=W(0)(ϕ) +W(2)
ij (ϕ)∂µϕ

i∂µϕj + . . . , (A.2)

where SB(n) is a function in which a total of n derivatives is distributed among the fields

ϕi and W(n) depends only on the value of the fields.

The fixed points SB∗ are solutions of the equation

Ĥ[ϕ,
δSB∗ [ϕ]

δϕ
] = 0, (A.3)

with Ĥ defined in (3.12). For our scalar theory,

Ĥ[ϕ,
δSB[ϕ]

δϕ
] =

∫
ddx

{
1

2

δSB[ϕ]

δϕi
δSB[ϕ]

δϕi
− 1

2
∂µϕ

i∂µϕi−V (ϕ)+
δSB[ϕ]

δϕi
xµ∂µϕ

i

}
. (A.4)
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We look for fixed points with constant couplings. Up to total derivatives, we can write the

fixed-point equation at the integrand level:

0 = −1

2

δSB∗
δϕi

δSB∗
δϕi

+ V (ϕ) +
1

2
∂µϕi∂µϕi + dSB∗ −NϕSB∗ , (A.5)

where
δSB∗
δϕi

=
∞∑
n=0

(−1)n∂n
∂SB∗
∂[∂nϕi]

(A.6)

and we have defined the linear differential operator

Nϕ =

∞∑
n=1

n∂nϕi
∂

∂ [∂nϕi]
. (A.7)

Note that this operator simply counts the number of derivatives of each term in the deriva-

tive expansion:

NSB(m) = mSB(m). (A.8)

We are ready to look for solutions to (A.5). As a warm up, we start with the potential

approximation (ignoring derivatives), which was also studied in ref. [20]:

0 = −1

2

[
∂W(0)

∗ (ϕ)
]2

+ dW(0)
∗ (ϕ) + V (ϕ), (A.9)

where ∂i = ∂/∂ϕi. This equation can be written as

∣∣∣∂iW(0)
∗ (ϕ)

∣∣∣ =

√
2
[
V (ϕ) + dW(0)

∗ (ϕ)
]
. (A.10)

Real solutions require

W(0)
∗ (ϕ) ≥ −1

d
V (ϕ). (A.11)

At the points where this inequality is strict, the solutions will be analytic. Notice that the

derivative does not vanish in these points for these solutions. On the other hand, even if

the solutions are generically non-analytic at points where the inequality is saturated, we

will see that analytic solutions exist about certain points. These are actually the solutions

that lead to physically meaningful renormalisable theories.

Let us look for analytic solutions of (A.9) about some point ϕ0 and work in perturba-

tion theory. We expand V and W(0)
∗ in powers of δi = ϕi − ϕi0,

V (ϕ) = vi1...inδ
i1 . . . δin , (A.12)

W(0)
∗ (ϕ) = wi1...inδ

i1 . . . δin , (A.13)

and insert these expansions in (A.9). Then we get the algebraic equations

wiw
i = 2(v0 + dw0) (A.14)

– 45 –



J
H
E
P
0
3
(
2
0
1
6
)
1
9
8

and

(n+ 1)wj1...jniw
i

= vj1...jn + dwj1...jn −
1

2

n−1∑
k=1

(k + 1)(n− k + 1)wi(j1...jkwjk+1...jn)i, n ≥ 1, (A.15)

where the parentheses around indices indicate their symmetrisation. If the inequality (A.11)

is strictly satisfied at ϕ0, (2.31) has a discrete set of solutions wi 6= 0, and for each of them

the tower of equations (A.15) can be iteratively solved. At each order, the mutiplicity of

the solutions increases. This is related to the fact that we are solving a non-linear partial

differential equation, so the solution is not determined in general by a finite set of integra-

tion constants. In fact, as discussed in section 3, we are interested in power expansions

at critical points of the boundary action, with wi = 0, which are conjugate to πi = 0.

Both (A.10) and (A.14) show that wi = 0 if and only if the inequality (A.11) is saturated

at ϕ0. The situation is pretty different in this case. Eq. (A.15) implies

vi = 0 (n = 1), (A.16)

2wi(j1wj2)i − dwj1j2 = vj1j2 (n = 2) . (A.17)

Eq. (A.16) shows that there is no analytic solution about a point ϕ0 with W(0)
∗ (ϕ0) =

−1
dV (ϕ0) unless ϕ0 is a critical point of the potential. Eq. (A.17) can be easily solved if we

use a base of fields diagonalizing the Hessian matrix vij = 1
2δijm

2
(i). If there are M fields,

we have 2M solutions (a sign ± is to be chosen for every field):

wij =
∆±(i)

2
δij , (A.18)

∆±(i) =
d

2
± ν(i) =

d

2
±
√
d2

4
+m2

(i). (A.19)

The remaining equations can then be written as,(
n∑
i=1

∆(i) − d

)
wj1...jn = −1

2

n−2∑
k=2

(k + 1)(n− k + 1)wi(j1...jkwjk+1...jn)i + vj1...jn n ≥ 3.

(A.20)

They can be solved iteratively. This shows there are exactly 2M analytic solutions about

a critical point of both the potential and W(0)
∗ .26 This guarantees a well-defined boundary

condition. In figure 6 we plot the different kinds of solutions to (A.10), obtained numeri-

cally, in the case of only one active scalar field. The standard and alternate solutions are the

only ones with the property of being analytic in the point where their derivative vanishes.

26For exceptional dimensions there is a subtlety: the main coefficient of the equation (A.20) may vanish

for some n when the alternate solution is taken for some field. The resulting equation has then no solution

for generic potentials. However, solutions exist for specific potentials, as in the case of five-dimensional

N = 8 gauged supergravity. Besides, non-analytic solutions exist that involve expansions with non-integer

exponents or logarithms.
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δ

Figure 6. Different numerical solutions of the one-dimensional (A.10). The lowest blue curve

corresponds to −V (δ)/d, which gives a lower bound to the solutions. The other two solid curves

are the only analytic solutions around the point where their derivative vanishes. From top to

bottom, they are associated to the standard (black) and alternate (red) quantisation. The dashed

curves are generic non-analytic solutions where their derivative vanishes. From left to right, they

correspond to a solution with an asymptotically behaviour δW(0)
∗ ∼ (δ− δ0)3/2 (brown curve), and

δW(0)
∗ ∼ ∆−

2 δ2 + wδd/∆−
(orange curve), both around the point where their derivative vanishes.

Now, let us proceed and study (A.5) taking into account the (unavoidable) derivative

terms. It is convenient to work in momentum space (with dimensionless momenta). The

field expansion of a general SB in momentum space reads

SB(s)[ϕ] = s0 +

∫
ddq1

(2π)d
si(q1)ϕ̌i(q1) +

∫
ddq1

(2π)d
ddq2

(2π)d
si1i2(q1, q2)ϕ̌i1(q1)ϕ̌i2(q2)

+
∑
n≥3

∫
ddqi1
(2π)d

. . .
ddqin
(2π)d

si1...in(q1, . . . , qn)ϕ̌i1(q1) . . . ϕ̌in(qn) , (A.21)

where ϕ̌ is the Fourier transform of ϕ. For the fixed point solution, since the couplings are

not space-time dependent, the couplings s simplify,

si1...in(q1 . . . qn) = si1...in(q1 . . . qn)(2π)dδ

(
n∑
r=1

qr

)
(A.22)

and

SB[ϕ] = (2π)ds0δ(0) + siϕ̌
i(0) +

∫
ddq1d

dq2

(2π)d
δ(q1 + q2)si1i2(q1, q2)ϕ̌i1(q1)ϕ̌i2(q2) (A.23)

+
∑
n≥3

∫
ddqi1
(2π)d

. . .
ddqin
(2π)d

(2π)dδ

(∑
k

qk

)
si1...in(q1, . . . , qn)ϕ̌i1(q1) . . . ϕ̌in(qn) .
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The functional derivative at a definite momentum is

δSB[ϕ]

δϕ̌i(q)
= (2π)

d
2 δ(0)si + 2

∫
ddq

(2π)d
si1i(−q, q)ϕ̌i1(−q) (A.24)

+
∑
n≥2

n

∫
ddq1

(2π)d
. . .

ddqn
(2π)d

(2π)dδ

q +
∑
j

qj

 si1...ini(q1, . . . , qn, q)ϕ̌
i1(q1) . . . ϕ̌in(qn).

Inserting these expansions in the momentum-space version of (A.3) we can write (A.4)

perturbatively as∑
i

s2i = 2 (v0 + ds0) , (n = 0), (A.25)

0 = −1

2

n∑
k=0

(k + 1)(n− k + 1) Sym
{(jk,qk)}nk=1

[
sij1...jk

(
−

k∑
a=1

qa, q1, . . . , qk

)
× sjk+1...jni

(
qk+1, . . . , qn,−

n∑
a=k+1

qa

)]
+ vj1...jn +

(
d−

n∑
r=1

qµr
∂

∂qµr

)
sj1...jn(q1, . . . , qn) +

1

2
δ2nq

2
1, n ≥ 1, (A.26)

where Sym symmetrises over the pairs {(jk, qk)}nk=1:

Sym
{(jk,qk)}nk=1

Aj1...jn [q1, . . . , qn] =
1

n!

∑
σ∈Sn

Ajσ(1)...jσ(n)
[qσ(1), . . . , qσ(n)]. (A.27)

The equations (A.26) only apply to on-shell momenta,
∑n

i=1 qi = 0, since sj1...jn(q1, . . . , qn)

is only defined under this condition.27 Guided by our discussion above, let us focus on

the analytic solutions at the critical point of the potential (si = 0). The equation for the

second-order coefficient si1i2(q,−q) = si1i2(q) is,

2si(j1sj2)i(q)− vj1j2 −
q2

2
−
(
d− qµ

∂

∂qµ

)
sj1j2(q) = 0. (A.28)

Working in a field basis with vj1j2 =
m2
i

2 δj1j2 , this differential equation is solved by

sij(q) = s(i)(q)δij =

d4 +
1

2

q
[
K ′ν(i)

(q) + ciI
′
ν(i)

(q)
]

Kν(i)
(q) + ciIν(i)

(q)

 δij , (A.29)

with ci an integration constant. Let us restrict ourselves to solutions that are also analytic

in momenta (at zero). For generic ν(i) /∈ N, there are 2n analytic solutions at q2 = 0,

27At first sight, the derivative ∂
∂q
µ
j

may seem to be affected by off-shell momenta. This is not the

case, since an off-shell correction, sj1...jn → sj1...jn + f(
∑n
i=1 qi) would give a vanishing contribution:∑

j
∂
∂q
µ
j
f(
∑n
i=1 qi) = 0 if

∑n
i=1 qi = 0.

– 48 –



J
H
E
P
0
3
(
2
0
1
6
)
1
9
8

corresponding to two values of ci for each i. If we choose ci =∞, we find the solution

s+(i)(q) =
d

4
+ q

I ′ν(i)
(q)

2Iν(i)
(q)

=
∆+

(i)

2
+

q2

4 + 4ν(i)
− q4

16[(1 + ν(i))2(2 + ν(i))]
+O(q6), (A.30)

while ci =
π csc(πν(i))

2 leads to

s−(i)(q) =
d

4
+ q

I ′−ν(i)
(q)

2I−ν(i)
(q)

=
∆−(i)

2
+

q2

4− 4ν(i)
− q4

16[(1− ν(i))2(2− ν(i))]
+O(q6). (A.31)

These two solutions are related to the standard and alternate quantisation in AdS space,

respectively [32, 34, 35]. The fixed-point boundary actions provide a regulated Wilsonian

version of the continuous fixed-point theory. The corresponding field theories are non-

unitary when ∆(i) < d/2 − 1, so these solutions seem not admissible in the cutoff version

of a unitary theory. On the other hand, there is no problem in using them in the action W

of section 4, as W is just a means of obtaining a parametrisation. Nevertheless, it should

be noticed that in these cases and when the integer part of νi is odd, s−(i)(q
2) diverges at

finite values of q2.

The higher-order equations are[
n∑
k=1

(
2s±(ik)(qk) + qµk

∂

∂qµk

)
− d
]
si1...in(q1, . . . , qn)

= vj1...jn −
1

2

n−2∑
k=2

(k + 1)(n− k + 1) (A.32)

× Sym
{(jk,qk)}nk=1

sij1...jk(−∑k
a=1 qa, q1, . . . , qk)sjk+1...jni(q1, . . . , qk,−

∑k
a=1 qa), n ≥ 3.

This set of equations allows to find recursively all the orders in the expansion. Because it

is a first order differential equation in wi1...in , there are infinitely many solutions, but only

one of them is analytic at qµi = 0. This can be shown expanding in powers of momenta

and noticing than the whole expansion is determined once the second-order term is fixed.

We need analytic solutions in momenta in order to get quasilocal Wilson actions with a

well-defined derivative expansion.

Summarizing, there is a discrete set of 2M fixed-point boundary actions that are ana-

lytic in both fields (at a critical point of the potential) and momenta (at zero). They are

characterized by their quadratic terms:

SB = −v0

d
+ ϕis±(i)

[√
−∂2

]
ϕi +O(ϕ3), (A.33)

with s±(i), as given in (A.30) and (A.31), and the higher-order terms determined by these

choices. These fixed points are isolated points in theory space. As we show in appendix B,
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they admit a numerable set of independent eigenperturbations. Thus, they can be used to

construct renormalisable theories, as described in the body of this paper. In addition to

these special solutions, there are also continuous sets of analytic fixed-point solutions at

non-critical points and non-analytic solutions, which we do not analyse further in this paper.

A.2 Wilson action

The fixed-point Wilson actions can be calculated by a Legendre transform of the SB∗ we have

found above. Alternatively, it is possible to look directly for solutions of the corresponding

fixed-point equation,

Ĥ

[
−δS∗[π]

δπ
, π

]
= 0. (A.34)

This is what we do in the following. For the scalar theory we are studying,

Ĥ

[
δS[π]

δπ
, π

]
= −

∫
ddx

{
1

2
π2
i −

1

2
∂µ
δS

δπi
∂µ

δS

δπi
− V

(
−δS
δπ

)
+
δS

δπi
xµ∂µπi + dπi

δS

δπi

}
.

(A.35)

Writing S∗ =
∫
ddxS[π(x), ∂π(x), . . .], and ignoring again total derivatives,

0 = − 1

2
π2
i +

1

2

(
∂µ
δS∗
δπi

)(
∂µ
δS∗
δπi

)
+ V

[
−δS∗
δπ

]
+ dS∗ − dπi

δS∗
δπi
−NπS∗, (A.36)

with
δS∗
δπi

=
∞∑
n=0

(−1)n∂n
∂S

∂[∂nπi]
. (A.37)

This equation has the same triangular property as (A.5), so we could find the solution

order by order in a derivative expansion if we wished. However, as above, we shall see that

it is possible to find compact formulas without resorting to such an expansion. To do this,

let us work in momentum space and expand in conjugate momenta π:

S[π] = (2π)dδ(0)s̃0 + s̃iπ̌i(0) +

∫
ddq1d

dq2

(2π)d
δ(q1 + q2)s̃i1i2(q1, q2)π̌i1(q1)π̌i2(q2) (A.38)

+
∑
n≥3

∫
ddqi1
(2π)d

. . .
ddqin
(2π)d

(2π)dδ

(∑
k

qk

)
s̃i1...in(q1, . . . , qn)π̌i1(q1) . . . π̌in(qn),

Note that this expansion about π = 0 is conjugate to the expansion of SB at a critical

point, with si = 0. Eq. (A.36) can be written as the set of equations

n∑
r=1

∑
Pnr

(k1 + 1) . . . (n− kr−1 + 1) Sym
{(js,qs)}ns=1

[Ui1...ir(p1, . . . , pr)s̃
i1j1...jk1 (p1, q1, . . . , qk1)

× s̃i2jk1+1...jk2 (p2, qk1+1, . . . , qk2) . . . s̃ir...jn(pr, . . . , qn)] (A.39)

=
1

2
δ2n +

[
d(n− 1) +

n∑
s=1

qµs
∂

qµs

]
s̃j1...jn(q1, . . . , qn), n ≥ 0
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where,

ps = −
∑

ks−1<l≤ks

ql, (A.40)

Ui1...ir(p1, . . . , pr) = vi1...ir + δr2
p2

1

2
, (A.41)

and Pnr are all the strictly increasing sequences {0 < k1 < k2 < . . . < kr−1 < kr ≡ n}. This

equation is to be evaluated only on shell,
∑n

k=1 qk = 0. The equations at the first two

orders, n = 0 and n = 1, read

s̃0 = −v0

d
, (A.42)∑

j

s̃ij(0, 0)vj = 0. (A.43)

Based on (A.43) we can distinguish two classes of solutions. First, the solutions with a

singular s̃ij have a non-analytic Legendre transform at the point ϕ0 conjugate to π = 0.

These are conjugate to the non-analytic SB∗ solutions at ϕ0 that we have found above, with

dW
(0)
∗ [ϕ0] + V [ϕ0] = 0 and ∂V (ϕ0) 6= 0. Second, there are solutions with a non singular

Hessian matrix around π = 0 when the potential has a critical point at s̃i, vi = ∂iV (s̃i) = 0.

Their Legendre transforms are the special analytic SB∗ with wi = 0 found above. We

continue discussing this class of solutions. The equation at order n = 2 is

1

2

(
m2

(i) + q2
)
s̃

(j1
i s̃j2)i(q)−

[
d+ qµ

∂

∂qµ

]
s̃j1j2(q) +

1

2
= 0, (A.44)

where, as above, we are using a base in which the mass matrix is diagonalized vij = 2m2
i δij .

Eq. (A.44) has two solutions s̃±ij(q) = s̃±(i)(q)δij that are analytic at q = 0, corresponding to

the standard (+) and alternate (−) quantisation:

s̃±(i)(q) = −
I±ν(i)

(q)

dI±ν(i)
(q) + 2qI ′±ν(i)

(q)

= − 1

2∆±i
+

q2

4∆±2
i (1± ν(i))

+O(q4). (A.45)

Finally, the higher orders are given by the iterative equations[
d+

n∑
k=1

[
m2

(ik)s̃
±
(ik)(qk)− d+ qµk

∂

∂qµk

]]
s̃i1...in(q1, . . . , qn) (A.46)

=

n∑
r=3

∑
Pnr

{
(k1 + 1) . . . (n− kr−1 + 1) Sym

{(is,qs)}ns=1

[
vj1...jr s̃

j1i1...ik1

(
−

k1∑
l=1
ql, q1, . . . , qk1

)

× s̃j2ik1+1...ik2

(
−

k2∑
l=k1+1

ql, qk1+1, . . . , qk2

)
. . . s̃jr...in

(
−

kr∑
l=kr−1+1

ql, . . . , qn

)]}
, n ≥ 3.

An expansion of s̃ in power series around q0 gives a unique solution, showing that, for

each choice of {s±(i)} there is exactly one analytic solution (in momenta, at qµ = 0) to the

differential equation, to any order n.
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B Eigenperturbations of the fixed points

B.1 Boundary action

In this appendix we study small deformations of the special fixed points we have found in

appendix A. Recall that these fixed points have a boundary action SB∗ that is analytic in

fields and in momenta at a critical point ϕ0 of both the potential and SB∗ itself. We want to

find the eigenperturbations, i.e. perturbations of the fixed point that, at the linearised order,

diagonalize the Hamilton-Jacobi evolution. Consider the density of a perturbed boundary-

action, S∗[ϕ(x), ∂ϕ(x), . . .] + δq(x)Q[ϕ(x), ∂ϕ(x), . . .]. At order δq, the Hamilton-Jacobi

equation reads

t
∂

∂t
Q〈t〉[ϕ(x), ∂ϕ(x), . . .] =

(
Ψ̂− xµ∂µ

)
Q〈t〉[ϕ(x), ∂ϕ(x), . . .], (B.1)

where we have defined the differential operator Ψ̂ = ψ̂ −Nϕ with

ψ̂ = −
∞∑
m=0

(
∂m

δH[ϕ, π]

δπi

∣∣∣∣
π=

SB∗ [ϕ]

δϕ

)
∂

∂[∂mϕi]
. (B.2)

As pointed out in appendix A, Nϕ simply counts the number of derivatives of each term.

The action of ψ̂ on an arbitrary term of the Taylor expansion of Q is

ψ̂
[
(∂n1ϕi1)(∂n2ϕi2) · · · (∂nrϕir)

]
(B.3)

= −
r∑
q=1

(∂n1ϕi1)(· · · ∂nq−1ϕiq−1)

(
∂nq

∂H[ϕ, π]

∂πi

∣∣∣∣
π=

δSB∗ [ϕ]

δϕ

)
(∂nq+1ϕiq+1) · · · (∂nrϕir),

It is obvious that ψ̂ commutes with differentiation. Since [Nϕ, ∂n] = n∂n, it follows that[
Ψ̂, ∂n

]
= −n∂n. (B.4)

Observe also that the operator Ψ̂ satisfies the Leibniz’s rule,

Ψ̂ (Q1Q2) = Q1Ψ̂Q2 +Q2Ψ̂Q1. (B.5)

The eigenperturbations are by definition given by

Ψ̂Q = −ΛQ. (B.6)

Let us call Λ the dimension of Q. If Q1 and Q2 are eigendirections of Ψ̂ with dimensions

Λ1 and Λ2, then Q1Q2 will also be an eigendirection, with dimension Λ1 + Λ2:

Ψ̂(Q1Q2) = Q1Ψ̂Q2 +Q2Ψ̂Q1 = −(Λ1 + Λ2)Q1Q2. (B.7)

This feature is dual to the factorisation of dimensions in the large N limit. Moreover,

from (B.4) we see that if Q is an eigendirection with dimension Λ, ∂nQ will be an eigendi-

rection with dimension Λ + n:

Ψ̂∂nQ = ∂nΨ̂Q− n∂nQ = −(Λ + n)∂nQ. (B.8)
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Our strategy will be to find minimal solutions Ti to the eigenvalue problem, which can

be used to construct general eigenperturbations by means of (B.7) and (B.8). We make

the ansatz

T (x) = αiϕ
i(x) +O(ϕ2) +O(∂ϕ). (B.9)

Inserting this expansion in (B.6) we get an iterative expression for the higher orders. To

find their form, we Fourier transform T and work in momentum space:

Ť (k) =

∫
dk

(2π)d
e−ikxT [ϕ(x), ∂ϕ(x), . . .],

=
∑
n≥1

Ť (n)(k) (B.10)

=
∑
n≥1

∫
ddq1

(2π)d
. . .

ddqn
(2π)d

ti1...in(q1, . . . , qn)ϕ̌i1(q1) · · · ϕ̌in(qn)(2π)dδ

(
n∑
r=1

qr − k

)
.

Note that Ť (k) is a functional of the fields ϕ̌. The momentum-space version of the operators

ψ̂ and N is

ψ̌ = −
∫
ddq

(
∂m

δH[ϕ, π]

δπ̌i(q)

∣∣∣∣
π̌=

SB∗ [ϕ]

δϕ̌

)
δ

δϕ̌i(q)
(B.11)

Nϕ̌ = d+ kµ
∂

∂kµ
+

∫
ddq

(2π)d
ϕ̌i(q)qµ

∂

∂qµ
δ

δϕ̌i(−q)
(B.12)

For the scalar theory we are studying,

ψ̌Ť (n)(k) = −
n∑

m=1

(m+1)(n−m+1) Sym
{(jk,qk)}nk=1

∫
ddq1 . . . d

dqn
(2π)nd

sij1...jm

(
−

m∑
r=1

qr, q1, . . . , qm

)
× tijm+1...jn

(
m∑
r=1

qr, qm+1, . . . , qn

)
(2π)dδ

(
n∑
r=1

qr−k
)
ϕ̌j1(q1) · · · ϕ̌jn(qn), (B.13)

Nϕ̌Ť (n)(k) =

∫
ddq1 . . . d

dqn
(2π)nd

[
n∑
r=1

qµr
∂

∂qµr
tj1...jn(q1, . . . , qn)

]
× (2π)dδ

(
n∑
r=1

qr−k
)
ϕ̌j1(q1) · · · ϕ̌jn(qn). (B.14)

At the leading order, (B.6) reads[
qµ

∂

∂qµ
+ 2s±(i)(q)− Λ

]
ti(q) = 0 . (B.15)

A general solution of this equation is

ti(q) = Ci exp

[∫
dq2

q2

(
Λ

2
− s±(i)(q)

)]
. (B.16)

Let us restrict ourselves to analytic solutions in momenta around q = 0. Then we need
Λ
2 − s±(i)(0) ∈ N ∀i, so the eigenvalues form a countable set. For generic field masses with

non-exceptional ∆(i), the only analytic solutions have

Ci = C(j)δij (B.17)

Λ = ∆(j) + 2n∂ , n∂ ∈ N, (B.18)
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for some j ∈ {1, . . .M}. Explicitly, the solutions are

t
(j,n∂)
i (q) = δji

q±ν(j)+2n∂

Γ(1± ν(j))2
ν(j)I±ν(j)

(q)
= δji

[
q2n∂ − q2+2n∂

4± 4ν(j)
+O(q4+2n∂ )

]
. (B.19)

The eigenfunctions with n∂ > 0 are descendants, which can be obtained from the ones

with n∂ = 0 using (B.8). We will call basic functions the minimal eigenperturbations with

leading order given by (B.19) with n∂ = 0. Their expansion in fields is of the form

T i(x) = ϕi(x) +O(ϕ2). (B.20)

The dimension of T i is ∆(i). These basic perturbations are in one-to-one correspondence

with the fields φi, and thereby with the single-trace primary operators of the dual theory.

The higher orders of (B.6) are[
n∑
k=1

(
qµk

∂

∂qµk
+ 2s±(ik)(qik)

)
−∆(a) − 2n∂

]
tai1...in(q1, . . . , qn)

= −
n∑

m=2

[
(m+ 1)(n−m+ 1)× Sym

{(jk,qk)}nk=1

s± ij1...jm

(
−

m∑
r=1

qr, q1, . . . , qm

)
× taijm+1...jn

(
m∑
r=1

qr, qm+1, . . . , qn

)]
. (B.21)

At the zero-momentum order and in the case of only one active field φ, the solutions can

be written in a closed form. Indeed, (B.6) reduces to

ΛT (0)(ϕ) =W(0) ′
∗ (ϕ)T (0) ′(ϕ), (B.22)

which is readily solved:

T (0)(ϕ) = C exp

{
Λ

∫
dϕ

W(0) ′
∗ (ϕ)

}
. (B.23)

Writing W(0) ′
∗ (ϕ) = ∆ϕ [1 + ϕZ(ϕ)], with Z analytic at ϕ = ϕ0 = 0, we have

T (0)(ϕ) = C

[
ϕe
∫
dϕ

Z(ϕ)
1+ϕZ(ϕ)

] Λ
∆

= C
[
ϕ+O(ϕ2)

] Λ
∆ . (B.24)

This equation shows that the ratio Λ/∆ has to be an integer for T (0) to be an analytic

function of ϕ. So the allowed dimensions are Λ = m∆, m ∈ N, in agreement with the

general result above. Theres is only one basic perturbation, given by (B.23) with Λ = ∆.

B.2 Wilson action

As explained in section 3, the eigenperturbations of the fixed-point Wilson actions can

be obtained by a Legendre transform of the eigenperturbations calculated above for the

boundary actions. Here we obtain them directly from the Hamilton-Jacobi equation
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for the Wilson action. At order δg, the Hamilton-Jacobi equation for a deformation

S∗[π(x), ∂π(x), . . .] + δgO[π(x), ∂π(x), . . .] is

t
∂

∂t
O〈t〉[π(x), ∂π(x), . . .] =

(
Ψ̃− xµ ∂

∂xµ

)
O〈t〉[π(x), ∂π(x), . . .], (B.25)

where Ψ̃ = ψ̃ −Nπ − dDπ, with

ψ̃ =
∞∑
m=0

(
∂m

δH[ϕ, π]

δϕi

∣∣∣∣
ϕ=− δS∗

δπ

)
∂

∂[∂mπi]
, (B.26)

Dπ =

∞∑
n=0

∂nπi
∂

∂ [∂nπi]
. (B.27)

The set of basic eigenoperators

Oi = πi +O(π2) +O(∂π), (B.28)

satisfying

Ψ̃Oi = −ΛOi (B.29)

can be found working in momentum space:

O(k) =
∑
n≥1

O(n)(k) (B.30)

=
∑
n≥1

∫
ddq1

(2π)n
. . .

ddqn
(2π)n

ri1...in(q1, . . . , qn)πi1(q1) . . . πin(qn)(2π)nδ

(
n∑
r=1

qr − k

)
.

We have

ψ̃O(n)(k) =

n∑
m=1

(n−m+ 1) Sym
{(jk,qk)}nk=1

∫
ddq1

(2π)n
. . .

ddqn
(2π)n

h j1...jm
i (q1, . . . , qm)

× rijm+1,...,jn
(
m∑
r=1

qr, qm+1, . . . , qn

)
(2π)nδ

(
n∑
r=1

qr − k
)
πj1(q1) . . . πjn(qn), (B.31)

(Nπ + dDπ)O(n)(k) =

∫
ddq1

(2π)n
. . .

ddqn
(2π)n

[
n∑
s=1

(
qµs

∂

∂qµs
+ d

)
ri1...in(q1, . . . , qn)

]
× πi1(q1) . . . πin(qn)(2π)nδ

(
n∑
r=1

qr − k
)
, (B.32)

where h j1j2...
i is defined by

δH[ϕ, π]

δϕi

∣∣∣∣
ϕ=− δS∗

δπ

=
∑
n≥1

∫
ddq1 . . . d

dqn

(2π)d(n−1)
h j1...jn
i (q1, . . . , qn)πj1(q1) . . . πjn(qn)δ

(
p+

∑
i

qi

)
.

(B.33)

The h j
i term can be readily obtained: h j

i (q) = h±(i)(q)δ
j
i , with

h±(i)(q) = 2(q2 +m2
i )s̃
±
(i)(q) = −

2(q2 +m2
i )I±ν(i)

(q)

dI±ν(i)
(q) + 2qI ′±ν(i)

(q)
. (B.34)
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The first order of (B.29) becomes,[
qµ

∂

∂qµ
+ d− h±(i)(q)− Λ

]
ri(q) = 0, (B.35)

which is solved by

ri(q) = Ci exp

[∫
dq2

q2

Λ− d+ h±(i)(q)

2

]
. (B.36)

Again, analyticity at q = 0 requires
Λ−d−h±

(i)
(0)

2 =
Λ−∆(i)

2 ∈ N ∀i. For non-exceptional

dimensions, the only possible analytic solutions have

Ci = C(j)δ
i
j (B.37)

Λ = ∆(j) + 2n∂ , n∂ ∈ N , (B.38)

for some j. The solutions read

ri(j,n∂)(q) = δij
2∆±(j)q

±ν(j)+2n∂

Γ(1± ν(j))2νa
[
dI±ν(j)

(q) + 2qI ′±ν(j)
(q)
]

= δij

[
q2n∂ −

∆±(j) + 2

∆±(j)
(
4± 4ν(j)

)q2+2n∂ +O(q4+2n∂ )

]
. (B.39)

The basic operators are the ones with n∂ = 0, while n∂ 6= 0 gives rise to their descendants.

The higher orders are[
n∑
k=1

(
qµk

∂

∂qµk
+ d− 2h±(ik)(qik)

)
−∆±(a) − 2n

]
ri1...ina (q1, . . . , qn)

=

n∑
m=2

[
(n−m+ 1) Sym

{(jk,qk)}nk=1

h i1...im
j

(
−

m∑
l=1
ql, q1, . . . , qm

)
× rjim+1...in

a

(
m∑
l=1
ql, qm+1, . . . , qn

)]
. (B.40)

The case of one single active field can be solved in a closed form in the zero momentum

approximation. Eq. (B.29) reduces to

ΛO(0)(π) =
[
V ′(−S ′∗(π)) + dπ

]
O′(0)(π). (B.41)

Its solution is

O(0)(π) = C exp

{
Λ

∫
dπ

V ′[−S ′∗(π)] + dπ

}
= C exp

{
−Λ

∫
dπ

π

δ2S∗
δπ2

}
= C

[
π +O(π2)

]Λ/∆
(B.42)

Analyticity at π = 0 requires Λ/∆ to be integer, so the allowed dimensions are Λ = n∆,

corresponding to the basic perturbation (n = 1) and its products. It can be readily checked

that (B.42) is the perturbative Legendre transform of (B.23).
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C Eigenperturbations with the method of characteristics

There is a close relation between the set of basic eigenperturbations and the solutions in

the gravity theory, as we have explained in sections 3 and 4 and illustrated in section 5.

This relation is at the core of holographic renormalisation. Interestingly, another relation

with solutions arises naturally when the eigenvalue problem is solved by the method of

characteristics.

Consider a solution φ̂t to the Hamilton-Jacobi equation, with a fixed point SB∗ as

principal Hamilton’s function:

t
∂

∂t
φ̂it(x) =

δĤ[φ̂t, Π̂t]

δ(Π̂t)i(x)

∣∣∣∣∣
Π̂t=

δSB∗ [φ̂t]

δφ̂t

=
δH[φ̂t, Π̂t]

δ(Π̂t)i(x)

∣∣∣∣∣
Π̂t=

δSB∗ [φ̂t]

δφ̂t

+ xµ
∂

∂xµ
φ̂it(x). (C.1)

These solutions can play the role of characteristic curves of the Hamilton-Jacobi partial

differential equation for small deformations of the fixed point SB∗ . To see this, consider any

local function of ϕ and its derivatives at x, Q[ϕ|x] = Q(ϕ(x), ∂ϕ(x), . . .). The composition

Q ◦ φ̂t obeys the following equation:

t
∂

∂t
Q[φ̂t|x] =

∑
n≥0

∂Q[φ̂t|x]

∂(∂nφ̂it)
t
∂

∂t
∂nφ̂it(x)

=
∑
n≥0

∂Q[φ̂t|x]

∂(∂nφ̂it)

∂n δH[φ̂t, Π̂t]

δ(Π̂t)i(x)

∣∣∣∣∣
Π̂t=

δSB∗ [φ̂t]

δφ̂t

+ n∂nφ̂it + xµ
∂

∂xµ
∂nφ̂it


= −Ψ̂Q[φ̂t|x] + xµ

∂

∂xµ
Q[φ̂t|x]. (C.2)

Taking (B.6) into account, we see that the eigenperturbations QΛ of the fixed point

SB∗ satisfy

t
∂

∂t
QΛ[φ̂t|x] = ΛQΛ[φ̂t|x] + xµ

∂

∂xµ
QΛ[φ̂t|x]. (C.3)

Analogously, we can work with Wilson actions and canonical momenta. Given a solution

Π̂t to the equation

t
∂

∂t
(Π̂t)i(x) = − δĤ[φ̂t, Π̂t]

δφ̂it(x)

∣∣∣∣∣
φ̂t=− δS∗[Π̂t]

δΠ̂t

+ d(Π̂t)i(x) + xµ
∂

∂xµ
(Π̂t)i(x), (C.4)

the eigenoperators OΛ around the fixed point S∗ satisfy

t
∂

∂t
OΛ[Π̂t|x] = −Ψ̃OΛ[Π̂t|x] + xµ

∂

∂xµ
OΛ[πt|x]

= ΛOΛ[Π̂t|x] + xµ
∂

∂xµ
OΛ[πt|x]. (C.5)
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The equations (C.1) and (C.4) can be solved perturbativally. To do so, notice that (for the

special analytic fixed points in appendix A)

δH[ϕ, π]

δπi(x)

∣∣∣∣
π=

δSB∗ [ϕ]

δϕ

= ∆(i)ϕ
i(x) +O(ϕ2) +O(∂2ϕ), (C.6)

δH[ϕ, π]

δϕi(x)

∣∣∣∣
ϕ=− δS∗[π]

δπ

+ dπi = ∆(i)πi(x) +O(π2) +O(∂2π). (C.7)

So, for φ̂t ≈ 0 and ∂nφ̂t ≈ 0 (and similarly for Π̂t), the solutions of (C.1) and (C.4) are

approximated by

φ̂it ≈ σit ≡ Ci(tx)t∆(i) , (C.8)

(Π̂t)i ≈ (σ̃t)i ≡ C̃i(tx)t∆(i) . (C.9)

The functions σit and σ̃it are solutions of

t
∂

∂t
σit(x) = ∆(i)σ

i
t(x) + xµ

∂

∂xµ
σit(x). (C.10)

Observe that this first-order equation is, crucially, identical to the equations (C.2)

and (C.5), with Λ = ∆(i). Thus, σi and σ̃i must be compositions of eigenperturbations of

dimension ∆(i) and solutions. The exact solutions can be found iteratively and written as

φ̂it(x) = σit(x) + F(σt, ∂σt, . . .), (C.11)

Π̂i
t(x) = σ̃it(x) + F̃(σ̃t, ∂σ̃t, . . .), (C.12)

with the functions

F(σt, ∂σt, . . .) = O(σ2) +O(∂2σ), F̃(σ̃t, ∂σ̃t, . . .) = O(σ̃2) +O(∂2σ̃) (C.13)

capturing the corrections to (C.8) and (C.9). Now, the point is that these functions can

be inverted to find σi and σ̃t (and thus Q∆(i)
and O∆(i)

composed with the solutions) as a

function of φ̂i and Π̂t, respectively:

σit(x) = φ̂it(x) +O(φ̂2
t ) +O(∂2φ̂t) (C.14)

(σ̃t)i(x) = (Π̂t)i(x) +O(Π̂2
t ) +O(∂2Π̂t). (C.15)

Comparing the first order, we see that σi and (σ̃) are equal to basic perturbations composed

with solutions:

σit(x) = T i[φ̂t|x], (C.16)

(σ̃t)i(x) = Oi[Π̂t|x]. (C.17)

Therefore, (C.14) and (C.15) show that the functional form of the basic eigenperturbations

T i and Oi about a fixed point SB∗ is determined by (and can be found from) the solutions

generated by SB∗ .
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