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ABSTRACT
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VARIANCE ESTIMATION OF CHANGE IN POVERTY RATES AND EMPIRICAL

LIKELIHOOD INFERENCE IN THE PRESENCE OF NUISANCE PARAMETERS

UNDER COMPLEX SAMPLING DESIGNS

by Melike Oguz-Alper

This thesis includes three papers. The first paper demonstrates how to estimate vari-

ance of change in poverty rates under rotating complex sampling designs. Measuring

variance of change enables practitioners to judge whether or not the observed changes

over time are statistically significant. The main difficulty in estimation of variance of

change under rotating designs arises in the estimation of correlations between cross sec-

tional estimates. This paper addresses a multivariate linear regression approach that

provides a valid correlation estimator. Furthermore, poverty rate is a complex statistic

that depends on a poverty threshold, which is estimated from the survey data. The

paper mainly contributes by taking into account the variability of the poverty threshold

in variance estimation of change. The approach is applied to the Turkish eu-silc survey

data. The second paper presents a design based inference in the presence of nuisance

parameters by using an empirical likelihood approach. The main contribution of the

paper is to develop an asymptotic theory to support the approach. The approach pro-

posed can be used for testing and confidence intervals for finite population parameters

such as (non)linear (generalised) regression parameters. For example, when comparing

two nested models, the additional parameters are the parameters of interest, and the

common parameters are the nuisance parameters. Sampling design and population level

information are taken into account with the approach. Confidence intervals do not rely

on resampling, linearisation, variance estimation, or design effects. The third paper

shows how the empirical likelihood approach proposed in the second paper is applied

to make inferences for regression coefficients when modelling hierarchical data collected

from a two-stage sampling design where the first stage units may be selected with un-

equal probabilities. Multilevel regressions are often employed in social sciences to analyse

data with hierarchical structure. This paper considers fixed effect regression parameters

that can be defined through ‘general estimating equations’. We use an ‘ultimate cluster

approach’ by treating the first stage sample units as the units of interest.
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Chapter 1

General Introduction

This thesis consists of three papers. The first paper demonstrates how to estimate vari-

ance of change in poverty rates under rotating complex sampling designs. The second

paper presents a design based inference in the presence of nuisance parameters by using

an empirical likelihood approach. The third paper investigates how the empirical likeli-

hood approach proposed in the second paper is applied to make inferences for regression

coefficients when modelling hierarchical data collected from a two-stage sampling de-

sign. The first paper is not directly connected to the other two papers that are based on

the use of an empirical likelihood approach even though there are some common points

among all.

The papers in this thesis approach the problems in the design based point of view

(Neyman, 1934). In this framework, the sample s is selected from a finite population U

with respect to a probability sampling design. The finite population values are treated

as fixed. The target population quantities are known functions of these fixed values

such as population totals, means, proportions, ratios or quantiles. We assume that all

the units included in the sample s are respondents. The randomness arises only due to

the random selection of the sample. Thus the sampling distribution is solely driven by

the sampling design. Inferences for the finite population quantities are made based on

the probability distribution denoted by P(s). This approach is called the design based

approach. The inference may refer to point estimation, confidence intervals or hypothesis

testing.

Inference for complex parameters is the main consideration of all the three papers. These

parameters are defined as known functions of totals. The first paper deals with a poverty

indicator, the poverty rate, that is computed as a ratio of two totals. It is a complex

statistic not only because of being a ratio but also depending on the poverty threshold

that is often computed from the median of the income distribution. The second pa-

per focuses on linear and logistic regression parameters. The main interest of the third

paper is the regression coefficients estimated under a correlated error structure when

1



2 Chapter 1 General Introduction

modelling hierarchical survey data. Special treatment is required to make inference for

those complex statistics. For example, linearisation (e.g. Deville, 1999) or resampling

techniques (e.g. Bruch et al., 2011) are often used for variance estimation or the estima-

tion of the design effect (Kish, 1965) may be required for testing (e.g. Rao and Scott,

1987) or confidence intervals (e.g. Wu and Rao, 2006). The last two papers present an

empirical likelihood approach for testing and confidence intervals that does not require

linearisation, resampling, variance estimation or design effect.

The first paper was published in the Journal of Official Statistics (see Oguz Alper and

Berger, 2015). The part of the second paper was published in the Proceedings of the

Joint Statistical Meeting 2014 (see Oguz-Alper and Berger, 2014). The second paper

has been submitted to a peer reviewed scientific statistical journal.

In Section 1.1, the main contributions of the papers are provided. In Section 1.2, the

contributions of the authors are laid out. In Sections 1.3–1.5, a detailed literature review

is provided respectively for each paper. The first paper is given in Chapter 2. The second

paper is presented in Chapter 3. The third paper is demonstrated in Chapter 4. The

supplementary materials including R (R Development Core Team, 2014) code for the

papers are respectively provided in Chapters A–C.

1.1 Contribution of the papers

The main contribution of the first paper is that the variability of the poverty threshold

is taken into account in the variance estimation of change in poverty rates. The poverty

rate is often computed from a proportion of the median of the income distribution (e.g.

Eurostat, 2003). As the median income is unknown and estimated from the survey data,

it is subject to sampling errors. There are numerous papers that consider the variability

of the threshold when estimating the cross sectional variances of the poverty rates (e.g.

Berger and Skinner, 2003; Verma and Betti, 2005; Osier, 2009). The estimators may be

biased when the fact that the median income is estimated is ignored. Variance estimates

are conservative in this case (e.g. Preston, 1995; Berger and Skinner, 2003; Verma and

Betti, 2011; Berger and Priam, 2016). However, this result may not necessarily hold

for the variance estimates of change (see Section 2.6). In this paper, we investigate the

effect of the variability of the poverty threshold on the variance estimates of change in

poverty rates. We use the multivariate linear regression approach proposed by Berger

and Priam (2016) to estimate the variance of change. The randomness of the median

income is captured through the generalised linearisation technique proposed by Deville

(1999). We demonstrate that the bias may be ignorable for the variance of change (see

Section 2.6), unlike cross sectional variances. Furthermore, variance estimates of change

may not be conservative. Another contribution of the first paper arises in derivation of

the linearised variables for the poverty rates over domains (see Appendix A.1). Osier
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(2009) derived an expression, by using the generalised linearisation technique, for the

linearised variable of the poverty rate over the whole data. This expression cannot be

applied directly to domain level poverty rates as the poverty rate is defined at domain

level while the poverty threshold is computed from the whole data (e.g. Osier, 2009).

A modification is required. We extend Osier’s (2009) approach to domain level poverty

rates. We apply the approach to the Turkish eu-silc data to estimate the variance of

change in poverty rates over several domains (see Section 2.7).

The main contribution of the second paper is to develop an asymptotic theory to sup-

port the empirical likelihood approach proposed for the inference in the presence of

nuisance parameters. There are numerous works regarding the use of empirical likeli-

hood inference in regression (e.g. Owen, 1991; Qin and Lawless, 1994; Wu and Sitter,

2001; Chaudhuri et al., 2008; Kim and Zhou, 2008; Zheng et al., 2012). The paper by

Chen and Keilegom (2009) includes an elaborate review of the existing literature. These

methods are based on the use of the empirical likelihood function given by Owen (1988)

that assumes independent and identically distributed observations. These approaches

cannot be used directly for the inference for regression parameters when modelling com-

plex survey data as the identical distribution assumption is not valid due to the selection

of the sample with unequal probabilities. We aim to fill this gap. We recall the empirical

likelihood function proposed by Berger and De La Riva Torres (2016). This approach

is limited to the single parameter case. It is not straightforward to extend this ap-

proach to the multidimensional parameter case. We propose profiling out the empirical

log-likelihood ratio function provided by Berger and De La Riva Torres (2016) over the

nuisance parameters. We show that the profile empirical log-likelihood ratio function

asymptotically follows a χ2 distribution under a set of regularity conditions. This prop-

erty allows us to test hypotheses and construct confidence intervals for the subvector

of parameters. The complexity of the sampling design such as stratification, clustering,

unequal probabilities are taken into account with the approach proposed. We show that

the population level information can be incorporated.

The main contribution of the third paper arises in the application of the profile empirical

likelihood approach proposed in the second paper to make inference for the regression

parameters when modelling hierarchical data. We assume that the hierarchy in the

population is the same as the sampling hierarchy. We consider a two stage sampling

design. We assume an ultimate cluster strategy (e.g. Hansen et al., 1953) so we consider

that the ultimate cluster units are the units of interest. We use general estimating

equations (gee) to define the finite population parameters. We show how the estimating

function is defined at the ultimate cluster level. We show how the design weights can

be incorporated in to the estimation of the working variance covariance matrix under a

uniform covariance structure.
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1.2 Authors’ contributions to the papers

My supervisor, Dr Yves G. Berger, and I both contributed to the first paper. The main

idea of the first paper was suggested by Dr Berger. He advised me to read a few key

papers to start with. He provided me the R (R Development Core Team, 2014) code.

I made amendments in the code, wherever it requires, to apply the approach to the

Turkish eu-silc data and to implement the linearisation approach. I obtained the data

from Turkish Statistical Institute (TurkStat) and prepared it for the analysis. I wrote

my own code to carry out the simulation study. Dr Berger suggested to me that I could

refer to the paper by Berger (2008) to generate the income variables for one wave. I

found out how to generate correlated income variables for two waves (see Appendix A.2).

I reviewed the relevant literature, conducted the numerical analysis and interpreted the

results. I derived the expression for the linearised variables for domain level poverty

rates (see Appendix A.1). I wrote the very first draft of the paper. Dr Berger revised

it and put the written work into a journal paper structure. I amended notations and

made further corrections in accordance with the comments and suggestions provided by

Dr Berger. The first paper was also amended on the grounds of the referees’ and the

Associate Editor’s comments. The version provided in this thesis is not the last version

that was published in the Journal of Official Statistics. It is the version before the proof

reading procedure.

Dr Berger and I have both participated in drafting the second paper. We both noticed

that profiling is required to make inference for the subvector of parameters in the mul-

tidimensional parameter case. Dr Berger suggested to me that I should read the paper

by Qin and Lawless (1994) and provided me a scribble of the proof to start with. I

found out, by following Qin and Lawless’s (1994) paper, how to derive the asymptotic

distribution of the profile empirical log-likelihood ratio function. I made the derivation

provided in Appendix B.1. I modified the asymptotic derivations provided by Berger

and De La Riva Torres (2016) for the inference in the presence of nuisance parame-

ters (see Appendix B.2). I did the literature review, conducted the simulation study

and analysed the numerical results. I wrote functions in R (R Development Core Team,

2014) that are required to implement the empirical likelihood approach proposed and the

other approaches used in the simulation study. Dr Berger recommended me to generate

the Hansen et al.’s (1983) population. He also advised me to work with a population

with outlying values. It was my idea to compare the approach that we propose with

the ‘pseudo likelihood’ approaches (e.g. Binder, 1983; Binder and Patak, 1994) and the

‘q-weighted’ approach (e.g. Pfeffermann and Sverchkov, 1999). Prof Li-Chun Zhang,

my second supervisor, suggested to me that I should perform a simulation on the sig-

nificance of the intercept for the Hansen et al. (1983) data. I wrote the first draft of

the paper including the asymptotic derivations. Dr Berger revised it and put it into a

journal paper format. He added Sections 3.8 and 3.9.3, Lemma B.1 and Corollaries B.1

and B.2. He helped me in the proof of Lemma B.2. He suggested some amendments in
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the notations. We both did proof reading and amended the paper several times until we

have the version provided in this thesis.

I have fully participated in the production of the third paper. My supervisors, Dr Berger

and Prof Zhang, provided me useful comments that inspired me to develop the concepts

underlying the third paper. I did the literature review, drafted the paper, conducted

the simulation study and analysed the numerical results.

1.3 Literature review on the first paper

Monitoring change in social and economic indicators may be a primary interest of data

users to evaluate to what extent agreed policy targets are achieved. The poverty rate is

an important policy indicator in the sense that it is one of the headline targets in the

Europe 2020 strategy. This rate is defined as the proportion of people with an equivalised

total net income below 60% of the national median income (Eurostat, 2003, p.2). It is

calculated from the European Union Statistics on Income and Living Conditions (eu-

silc) surveys (Eurostat, 2012) collecting yearly information on income, poverty, social

exclusion and living conditions from approximately 300,000 households across Europe.

Standard error estimation of change in poverty rates is required to judge whether or

not the observed changes are statistically significant. Several methods for estimating

the sampling variance of poverty rates like resampling and linearisation techniques have

been discussed in the literature (e.g. Preston, 1995; Deville, 1999; Berger and Skinner,

2003; Demnati and Rao, 2004; Verma and Betti, 2005; Osier, 2009; Goedemé, 2010;

Verma and Betti, 2011; Münnich and Zins, 2011; Osier et al., 2013; Berger and Priam,

2016). However, variance of change in poverty rate has been studied in only limited

number of papers (e.g. Betti and Gagliardi, 2007; Münnich and Zins, 2011; Osier et al.,

2013; Berger and Priam, 2016).

The estimation of variance of change requires estimation of covariances between two

estimates measured at different time points (waves). This estimation is especially chal-

lenging when the sampling data has a rotational structure. As a trivial solution, co-

variances can be estimated based on the common sample by assuming the covariance in

the common data is the same as the covariance between the two data at two different

waves. Kish (1965, p.457-458) proposed estimating the covariance in a way that the

correlation estimates based on the common sample is multiplied by the square roots

of the cross sectional variances estimated from the whole data at corresponding waves.

Population is treated as fixed. Simple random sampling with negligible sampling frac-

tions was considered. Tam (1984) proposed estimating the covariance solely from the

common sample unlike Kish (1965). Three sampling schemes that involve selections

with simple random sampling are considered. Dynamic changes in the population are
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not allowed. Tam’s (1984) approach is applicable to designs with large sampling frac-

tions. This approach can be extended to the case with unequal probabilities. However,

this requires the use of the second order inclusion probabilities. Laniel (1987) extended

Tam’s (1984) approach by allowing dynamic changes in the population. In all of these

approaches, sample sizes are assumed fixed. Nordberg (2000) introduced a rotation

plan that is based on the use of permanent random numbers. Sample sizes are random

with this approach. Dynamic changes in the population are taken into account. It is

applicable to stratified simple random sampling design. Units can change their strata

between two waves. The estimator is based on the conditional covariances. Holmes and

Skinner (2000, p.29) proposed an approach for rotational stratified two stage sampling

with unequal probabilities. Covariance is estimated from the variance of change and

the cross sectional variances estimated from the common sample. They assumed that

the primary sampling units are selected with replacement. They used ultimate cluster

approach for variance estimation. Covariance estimators based on the common sample

are biased and may provide negative variance estimates as noticed by Berger (e.g. 2004).

A design consistent variance estimator of change was proposed by Berger (2004). The

whole data at two waves is considered in variance estimation. The method is applicable

under the sampling designs that can be approximated by the conditional poisson sam-

pling. The covariance is estimated conditionally on the sample sizes that are fixed by

the design. Finite population corrections are taken into account. It can be applied to

the case with dynamic stratification. This method generally provides positive variance

estimates. Qualité and Tillé (2008) extended Tam’s (1984) approach by considering

nonresponse and calibration under a stratified simple random sampling design. An un-

biased estimator for the covariance was propose by Wood (2008). It can be applicable

to many rotational designs. Unequal probabilities and finite population corrections are

considered. However, his method involves determination of joint inclusion probabili-

ties. Berger and Priam (2016) propose using a multivariate regression in estimation of

correlations. Sampling fractions are assumed negligible. Sample sizes are fixed by the

design. Berger and Escobar (2015) extended this approach by accommodating the effect

of imputation.

The multivariate linear regression approach proposed by Berger and Priam (2016) pro-

vides a design consistent estimator for the correlation. They show that the variance

estimates of change is always positive. Unequal probabilities and dynamic stratification

are considered. It can be applicable to multi stage sampling designs by assuming an

ultimate cluster approach. It can be used to estimate variances of change in complex

statistics as long as the parameter of interest can be written as functions of totals. The

method does not require calculation of second order inclusion probabilities unlike the ap-

proaches proposed by Nordberg (2000) and Wood (2008). It can be easily implemented

in any statistical software. The effects of imputation and calibration can be taken into

account (e.g. Berger and Escobar, 2015). Since the regression parameters are not of the

primary interest, it is not required for the model to fit to the data for consistency.
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In Chapter 2, we show how Berger and Priam’s (2016) approach can be implemented

by taking into account the variability of the poverty threshold. We consider two cases.

In the first one, we treat the threshold as fixed, the simple ratio approach (see Section

2.3). In the second case, we consider the variability of the poverty threshold through

the generalised linearisation technique (Deville, 1999). We call the second approach the

linearisation approach (see Sections 2.4 and 2.5). We compare the variance estimators

obtained from both approaches in terms of the relative bias and the relative mean square

errors (see Section 2.6). Real data application is also provided (see Section 2.7).

1.4 Literature review on the second paper

Regression models are widely used in social sciences, biological sciences and economet-

rics. Models may be fitted to sample survey data that includes sample units selected

with unequal probabilities from a clustered and/or stratified population. In this case,

we do not have independent and identically distributed observations. Estimators based

on the assumption of independent and identically distributed observations may be in-

consistent and may produce invalid inferences when the sampling design is informative

and the effect of the design is not taken into account (e.g. Pfeffermann and Sverchkov,

1999, 2003). We consider a general class of multidimensional parameters defined as

the solution of a set of estimating equations. For example, this class includes complex

parameters such as (non)linear regression parameters, generalised linear regression pa-

rameters, ratios, proportions or means. We consider a semiparametric approach, where

the model is specified through estimating equations. We consider that the underlying

distribution is unknown. Hence, parametric likelihood is not feasible.

We consider that the parameter of interest is a subvector of the parameters. The remain-

ing parameters that are not of primary interest are called the ‘nuisance’ parameters. The

nuisance parameters are unknown by definition. There are numerous situations when

nuisance parameters are used (e.g. Binder and Patak, 1994; Qin and Lawless, 1994;

Godambe and Thompson, 2009; Zheng et al., 2012). In the parametric likelihood frame-

work, the scale parameters are often treated as nuisance (Kim and Zhou, 2008). In a

simple linear regression model, the intercept is the nuisance parameter when we want

to construct a confidence interval for the slope. When comparing two nested models,

the parameters of the more parsimonious model are the nuisance parameters while the

additional parameters that we wish to test for significance are the parameters of interest.

When we have heteroscedasticity and the variance function is unknown, the parameters

of the variance model are the nuisance parameters (e.g. Owen, 1991, p.1740). The infer-

ence for the parameter of interest in the presence of nuisance parameters was first pointed

out by Godambe and Thompson (1974). In the finite population context, this problem

was discussed by Binder and Patak (1994) and Godambe and Thompson (1999, 2009).

Owen (1990) demonstrated how to deal with the multidimensional parameter case under



8 Chapter 1 General Introduction

an empirical likelihood framework. Qin and Lawless (1994) provided a profile empiri-

cal log-likelihood ratio test statistic that is used for hypothesis testing and confidence

intervals when the observations are independent and identically distributed. Profiling

requires maximisation of the empirical log-likelihood function over the nuisance parame-

ters. This approach cannot be directly applied for complex survey data. We extend Qin

and Lawless’s (1994) approach by taking the sampling design and unequal probabilities

into account.

The profile empirical likelihood approach proposed is an extension of the empirical like-

lihood approach proposed by Berger and De La Riva Torres (2016). Their approach can

be used for a single parameter. We show that Berger and De La Riva Torres’s (2016)

approach can be extended for profiling by following Qin and Lawless’s (1994) approach.

This is not a trivial extension (see Appendix B.2). We show that the resulting profile

empirical log-likelihood function asymptotically follows a χ2-distribution. This property

can be used for testing and confidence intervals in the presence of nuisance parameters.

The approach proposed is different from Qin and Lawless’s (1994) approach in the sense

that the sampling design and unequal probabilities are considered with the approach

proposed.

Empirical likelihood is a general, flexible, practical and a valid way of nonparametric

inference. The leading triple works on empirical likelihood inference were provided by

Owen (1988, 1990, 1991). It has flourished in terms of research and applications, espe-

cially in econometrics, since the review by Owen (2001). Rao and Wu (2009) provided

an elaborate review on empirical likelihood inference in survey sampling. The use of

empirical likelihood in survey sampling was motivated by Hartley and Rao (1968, 1969)

with the well known ‘scale-load’ approach. This approach is applicable under simple

random sampling and sampling with replacement with unequal probabilities. Auxiliary

information can be incorporated. The scale-load approach is the same as the empirical

likelihood approach proposed by Owen (1988) under simple random sampling when the

sampling fraction is negligible. Chen and Qin (1993) formally used empirical likelihood

in survey sampling. They were interested in point estimation for mean, median and

cumulative distribution function by taking into account population level information.

They assumed that the sampling fraction is negligible. Their approach can be used for

the sampling with equal probabilities. Chen and Sitter (1999) introduced the ‘pseudo

empirical likelihood ’ approach. They defined a population level empirical log-likelihood

function by assuming that the finite population units are selected independently from

the infinite population. Sample empirical log-likelihood was defined as the design based

estimate of the population empirical log-likelihood. This approach can be used for point

estimation under without replacement sampling with unequal probabilities. Zhong and

Rao (2000) used the empirical log-likelihood function proposed by Chen and Qin (1993)

for stratified simple random sampling. They used overall population totals and means
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for point estimation. The sampling fraction within each stratum was assumed negligi-

ble. They also considered a confidence interval for the mean by adjusting the empirical

log-likelihood ratio function. This adjustment is based on variance estimates that need

to be computed. Wu and Sitter (2001) introduced a model calibrated pseudo empirical

likelihood approach that takes into account the individual level population information

(see also Chen et al., 2002). Wu and Rao (2006) reformulated the pseudo empirical

log-likelihood function by using normalised design weights. They considered confidence

intervals for the mean and cumulative distribution function. With this approach, the

pseudo empirical log-likelihood ratio function is adjusted by the design effect to obtain

a χ2-distribution under unequal probabilities. Kim (2009) and Chen and Kim (2014)

proposed an empirical likelihood under Poisson sampling. The population size should be

known to apply this approach. Berger and De La Riva Torres (2016) propose a novel em-

pirical likelihood approach that can be used under sampling with unequal probabilities.

They propose using a penalised empirical likelihood to make inference under unequal

probability sampling with large sampling fractions. They consider a wide range of finite

population quantities such as totals, means, proportions and quantiles. Population level

information can be incorporated with this approach.

Standard design based confidence intervals require variance estimates that are often

computed through linearisation (e.g Deville, 1999; Demnati and Rao, 2004) or resampling

techniques (e.g Rao et al., 1992). Confidence intervals are based on the assumption that

the point estimator is normally distributed. However, this assumption may not hold

when the data is skewed or includes outlying observations. Standard variance estimators

ignore the fact that the nuisance parameters are estimated. This may yield a bias in

the variance estimator. Standard confidence intervals may provide poor coverages and

unbalanced tail errors when the point estimator is not normal or the variance estimator

is biased or unstable. Empirical likelihood confidence intervals do require neither the

normality of the point estimator nor the variance estimation. The approach proposed

in this paper takes into account the randomness due to the nuisance parameters.

Binder (1983) proposed using estimating functions to make inference for complex param-

eters. Confidence intervals are based on the asymptotic normality of the point estimator.

Variance estimates are functions of the point estimates of the parameters. Binder and

Patak (1994) proposed a nonparametric version of the likelihood based score statistics

that can be used in the presence of nuisance parameters (see also Godambe and Thomp-

son, 1999, p.162). They proposed a method of inverse testing to construct confidence

intervals. The sampling distribution of the pivotal statistics is inverted to obtain the

lower and upper bounds. Binder and Patak (1994) demonstrated that the approach they

proposed may provide better coverages than the approach based on Taylor linearisation

(e.g. Binder, 1983). As pointed out by Godambe and Thompson (1999), model misspeci-

fication does not affect the performance of the inverse testing. Godambe and Thompson
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(2009, p.92) mentioned that the solutions for the boundaries may not always exist. Pf-

effermann and Sverchkov (1999, 2003) considered a semiparametric approach that may

require modelling the survey weights. Variances of the model parameters are estimated

through linearisation or resampling techniques (e.g. Pfeffermann and Sverchkov, 1999).

In Section 3.10, we shall compare numerically the approach that we propose with the

approaches proposed by Binder (1983), Binder and Patak (1994) and Pfeffermann and

Sverchkov (1999, 2003).

Chen and Sitter (1999) proposed an algorithm based on profiling the pseudoempir-

ical likelihood ratio function when strata totals of auxiliary variables are unknown.

Zhong and Rao (2000) presented the same algorithm for both point estimation and

confidence intervals under stratified simple random sampling. For confidence intervals,

the pseudoempirical likelihood needs to be adjusted by variance estimates to obtain a

χ2-distribution. This approach is limited to estimation of totals. There is no general

theory on profiling for the pseudoempirical likelihood approach.

The efficiency of the point estimators can be increased by incorporating population

level information, which may be available from administrative data, census data and/or

population projections (e.g. Deville and Särndal, 1992). The use of population level

information in empirical likelihood inference has been demonstrated in various papers

(e.g. Hartley and Rao, 1968; Chen and Qin, 1993; Qin and Lawless, 1994; Chen and

Sitter, 1999; Zhong and Rao, 2000; Wu and Sitter, 2001; Wu and Rao, 2006; Chaudhuri

et al., 2008; Kim, 2009; Berger and De La Riva Torres, 2016; Chen and Kim, 2014).

In econometrics, the generalised method of moments is commonly used to incorporate

population level constraints (e.g. Hansen, 1982). However, this method requires estima-

tion of the covariance matrix (e.g. Chen and Kim, 2014, p.18). In the parametric likeli-

hood, the constrained maximum likelihood estimator may be used to take into account

the population level information when estimating regression coefficients (e.g. Handcock

et al., 2000). However, this method may be computationally cumbersome especially

when the constraints are not linear (e.g. Chaudhuri et al., 2008). A two-step empirical

likelihood approach was proposed by Chaudhuri et al. (2008) to estimate regression pa-

rameters. In the first step, calibration weights are obtained by incorporating population

level information. In the second step, estimating equations that use these weights are

solved to obtain point estimates. They demonstrated that a large gain can be achieved

in the precision of the point estimators for the logistic regression parameters. This ap-

proach cannot be used directly for complex survey data as they assume independent and

identically distributed observations.

The empirical likelihood approach proposed allows incorporating population level infor-

mation in the presence of nuisance parameters. The effect of sampling design is taken

into account. Confidence intervals do not rely on resampling, linearisation, variance

estimation, or design effect. The approach proposed is simple to implement and less
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computer intensive than the bootstrap. The empirical likelihood confidence intervals

may provide better coverages than the standard methods especially when the sampling

distribution is not normal or the parameter of interest is not linear.

In Chapter 3, we demonstrate how to extend Berger and De La Riva Torres’s (2016)

approach to make inference in the presence of nuisance parameters. We provide an

algorithm to compute the profile empirical log-likelihood ratio function (see Section

3.6) and a set of regularity conditions under which the empirical likelihood inference

proposed is valid (see Section 3.7). We show that the profile empirical log-likelihood

ratio function can be used for hypothesis testing and confidence intervals (see Sections

3.5.1 and 3.9.2). We demonstrate that stratification, population level information and

clustering can be incorporated with the approach proposed (see Sections 3.8–3.9.3). We

compare the performance of the empirical likelihood confidence intervals and the power

of the empirical likelihood test with the standard approaches (see Sections 3.10–3.10.5).

We provide an asymptotic theory and show that the approach proposed produces a valid

inference under a set of regularity conditions (see Appendix B.2).

1.5 Literature review on the third paper

The data used in social, behavioral, health or biological sciences may have a hierarchical

structure due to the natural structure that occurs in the population of interest or due to

the sampling or the experimental design itself. Multilevel models (Goldstein, 1986) or

marginal models (e.g. Diggle et al., 2002) are often used to analyse such hierarchical data.

The data may be collected from samples that are selected from a multi stage sampling

design that may involve unequal probabilities at some or all stages of the selection. The

sampling design is called informative when the selection probabilities are associated with

the model outcome variable even after conditioning on the model covariates. Ignoring

an informative sampling may result in invalid inference for regression parameters (e.g.

Pfeffermann et al., 1998).

In standard, single level, regression models, sampling weights can be taken into account

by using the pseudo likelihood approach (e.g. Binder, 1983; Skinner, 1989; Binder and

Patak, 1994). With this approach, the population is fixed and population data is as-

sumed independent. Finite population parameters are known functions of the population

data. They can be defined as the solutions of the estimating equations. The population

estimating equation that defines the parameter of interest can be estimated from sample

data by using survey weights. In multilevel models, however, it is not straightforward to

apply the pseudo likelihood approach as the observations within higher levels of the hi-

erarchy are not independent. When this is the case, population totals cannot be written

as a single summation of the individual units (e.g. Grilli and Pratesi, 2004).
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Pfeffermann et al. (1998) proposed using probability weights, by relying on the pseudo

likelihood principle, in the iterative generalised least squares (igls) algorithm to estimate

multilevel regression parameters under a two stage sampling design. The regression

coefficients and the variance components are estimated iteratively. Pfeffermann et al.

(2006) proposed a model based approach involving Bayesian methods. They extended

the sample model approach proposed by Pfeffermann and Sverchkov (1999, 2003) to

multilevel models.

The igls estimation procedure may be computationally intensive as mentioned by

Kovačević and Rai (2003). Alternatively, the general estimating equations (GEE) (e.g.

Liang and Zeger, 1986; Diggle et al., 2002) that involve the use of working correla-

tion structure can be used to estimate regression parameters. Variance components are

treated fixed and replaced by their estimates when they are unknown. Liang and Zeger

(1986) showed that the gee estimator is fully efficient when the working correlation

structure is correctly specified. They also provided some empirical evidence that the

gain in efficiency obtained by using the gee estimator rather than the ordinary least

squares (ols) estimator can be considerably increased for large values of the correla-

tion coefficient. Crowder (1995) demonstrated that asymptotic properties of the gee

estimators may not always hold when the correlation structure depends on unknown

quantities. They suggested using an estimating equation that would always give a solu-

tion. Sutradhar and Das (1999) showed that the consistency of the estimators for the

regression parameters that are obtained by using Liang and Zeger’s (1986) approach is

usually valid. They demonstrated that the estimator obtained under the independence

assumption may be more efficient than the gee estimator when the true correlation

structure is exchangeable and the working correlation structure is misspecified.

The general estimating equations provided by Liang and Zeger (1986) do not involve

survey weights or the characteristics of the sampling design. Survey weights can be

incorporated into the general estimating equations by following the pseudo likelihood

approach (e.g. Binder, 1983; Skinner, 1989). The resulting approach is called the mul-

tilevel pseudo likelihood approach (e.g. Pfeffermann and La Vange, 1989; Kovačević and

Rai, 2003; Grilli and Pratesi, 2004; Asparouhov, 2006; Skinner and De Toledo Vieira,

2007; De Toledo Vieira and Skinner, 2008). Asparouhov (2006) provided conditions un-

der which the multilevel pseudo likelihood estimator is approximately unbiased. Skin-

ner and De Toledo Vieira (2007) noticed that the weighted igls estimator (Pfeffermann

et al., 1998) and the weighted gee estimator are expected to provide identical point

estimates under a working uniform correlation structure. Huang and Hidiroglou (2003)

considered estimation of fixed and random effects parameters in a linear mixed effect

model by taking the sampling design into account. Grilli and Pratesi (2004) showed that

the multilevel pseudo maximum likelihood estimation can be extended to multilevel lo-

gistic regression (see also Rabe-Hesketh and Skrondal, 2006). They demonstrated how

this approach can be implemented in SAS (SAS Institute Inc., 2011). The approach can
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also be implemented in Mplus (Muthén and Muthén, 1998-2012) (e.g. Asparouhov and

Muthén, 2006). Multilevel pseudo likelihood approach can be straightforwardly applied

to other two-level generalised models (e.g. Asparouhov, 2006; Asparouhov and Muthén,

2006). Sutradhar and Kovačević (2000) used the gee approach by incorporating sur-

vey weights to analyse longitudinal survey data with a polytomous response variable.

La Vange et al. (2001) analysed several clinical trials data by using logistic, propor-

tional hazards and proportional odds regression models. They considered the effect of

clustering in estimation of regression coefficients by using the gee approach.

A working covariance structure should be specified to apply the gee approach. Liang

and Zeger (1986) proposed using the estimates of the variance parameters when they are

unknown. Several methods have been suggested to estimate variance components under

a uniform covariance structure (e.g. Searle et al., 1992; Longford, 1995; Graubard and

Korn, 1996; Huang and Hidiroglou, 2003; Korn and Graubard, 2003; De Toledo Vieira

and Skinner, 2008). These methods are based on the method of moments estimation

technique (Henderson, 1953). Graubard and Korn (1996) accommodated survey weights

in the estimation of variance components under a simple multilevel model. Huang and

Hidiroglou (2003) investigated model and design based properties of various estimators

of the variance components including those that they developed. Korn and Graubard

(2003) proposed new estimators for the variance components that are approximately de-

sign unbiased. Some empirical evidence showing that the estimators proposed performed

well under small samples was provided for a simple random intercept model. However,

joint inclusion probabilities should be known to apply these estimators. De Toledo Vieira

and Skinner (2008) compared the multilevel pseudo maximum likelihood estimator and

several gls estimators of the variance components and their associated linearised vari-

ance estimators. Provided the empirical evidence by De Toledo Vieira and Skinner

(2008), the pseudo maximum likelihood estimators performed well overall.

Pfeffermann et al. (1998) proposed scaling the survey weights of the first level units to

reduce the sampling bias when estimating variance components under a two level model.

Scaling is not required at the ultimate cluster or at the highest level as the estimates of

the parameters are invariant to the scaling at this level (Pfeffermann et al., 1998). The

sum of the scaled weights within clusters provides some cluster level characteristics. For

example, weights can be scaled so that the sum of the scaled weights within a cluster

reduces to the observed cluster sample size or the effective cluster sample size (e.g.

Potthoff et al., 1992). Asparouhov (2006) compared the bias of the estimators of the

parameters that are obtained from several scaling methods. Some empirical evidence

was provided on whether or not the performance of the scaling methods was affected

by cluster sample sizes or the informativeness of the sampling design. However, there

is no theoretical evidence to support which scaling method is better for what kind of

parameters and under which sampling designs.
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The effect of multi stage sampling design can be accommodated by specifying the sam-

pling clusters as the model hierarchy (e.g. Huang and Hidiroglou, 2003). In this case,

the multilevel pseudo likelihood approach requires the knowledge of surveys weights of

the sampling units at each stage of the sampling hierarchy. However, these weights may

not be available to practitioners. Kovačević and Rai (2003) proposed using some proxy

weights of the first and second stage sampling units. They suggested using a conditional

retrospective sampling for the case when the design and model hierarchies are different.

However, the properties of the estimators that are obtained by using the proxy weights

have not been provided.

Standard confidence intervals relies on variance estimates. Variance estimators for the re-

gression parameters can be computed through Taylor linearisation, the sandwich type es-

timator, (e.g. Binder, 1983; Pfeffermann et al., 1998; Skinner and De Toledo Vieira, 2007;

Kovačević and Rai, 2003) or through bootstrap (e.g. Grilli and Pratesi, 2004). The latter

is very computationally intensive for hierarchical data. Skinner and De Toledo Vieira

(2007, p.5) showed how to incorporate stratification and clustering into the linearised

variance estimation of regression coefficients when modelling longitudinal complex sur-

vey data. They demonstrated the effect of clustering on variance estimation for the

regression coefficients (see also De Toledo Vieira and Skinner, 2008). When the param-

eter of interest is a subvector of the parameters, the approach proposed by Binder and

Patak (1994) can be followed to compute the conditional variance of the parameter of

interest. When there is a bias in the variance estimators, standard confidence intervals

may provide poor coverages.

Standard methods require the normality of the point estimators. The inference for the

parameters may not be valid when the normality assumption does not hold. We propose

using the profile empirical likelihood approach (e.g. Oguz Alper and Berger, 2015), which

is based on the empirical likelihood approach proposed by Berger and De La Riva Torres

(2016) to make inferences for regression parameters when modelling hierarchical data.

We incorporate the hierarchical structure through a general estimating equation. We

use an ultimate cluster approach (Hansen et al., 1953). We treat the ultimate clusters

as the units of interest. The empirical likelihood approach is applied at the ultimate

cluster level. Estimating functions are defined as the sum of the individual observations

within clusters. This summation takes into account the correlation between any two

observations in a given cluster.

Empirical likelihood inference allows us to investigate the design performance of the es-

timators. We assume that the sampling distribution is specified by the sampling design.

Hence, we use design based confidence intervals that do not require the specification

of the underlying model which may not be known. The model is used to define the

point estimators through general estimating equations. The sampling design is taken

into account with the approach proposed. The resulting point estimators of the re-

gression parameters are design consistent, which is a property often requested by the
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survey practitioners (e.g. You and Rao, 2002). The resulting empirical likelihood con-

fidence intervals may be better than the standard confidence intervals even when the

point estimator is not normal, the variance estimators are biased or unstable or the

individual error variances are heteroscedastic. The confidence intervals proposed do not

rely on resampling, linearisation, variance estimation or design effect. Population level

information can be accommodated to increase the precision of the estimators.

In Chapter 4, we demonstrate how the profile empirical likelihood approach proposed

in the second paper (see Chapter 3) can be applied to make inference for hierarchical

regression parameters. We consider a two stage of sampling design (see Section 4.2).

We assume that the model and design hierarchies are the same (see Section 4.3). The

parameter of interest is defined as the unique solution of the population gee (see Section

4.4). The empirical likelihood approach proposed relies on an ultimate cluster approach

(see Sections 4.5 and 4.8). We demonstrate how the cluster level general estimating

function is estimated based on the sample data (see Section 4.7). We consider scaling of

the weights of the first level units (see Section 4.7.1). We use the survey weights to esti-

mate the variance components (see Section 4.7.2). We do not consider the variability due

to the variance components estimated. We provide the profile empirical log-likelihood

ratio function under two stage sampling design (see Section 4.8). We compare the per-

formance of the empirical likelihood confidence intervals with the standard confidence

intervals (see Sections 4.9 and 4.9.1).
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Abstract

Interpreting changes between point estimates at different waves may be misleading, if

we do not take the sampling variation into account. It is therefore necessary to esti-

mate the standard error of these changes in order to judge whether or not the observed

changes are statistically significant. This involves the estimation of temporal correla-

tions between cross sectional estimates, because correlations play an important role in

estimating the variance of a change in the cross sectional estimates. Standard estima-

tors for correlations, based on common samples, cannot be used because of the rotation

used in most panel surveys, such as the European Union Statistics on Income and Living

Conditions (eu-silc) surveys. Furthermore, as poverty indicators are complex functions

of the data, they need a special treatment when estimating their variance. For example,

poverty rates depend on poverty thresholds which are estimated from medians. We pro-

pose using a multivariate linear regression approach to estimate correlations by taking

into account the variability of the poverty threshold. We apply the proposed approach

to the Turkish eu-silc survey data.

Keywords: Linearisation; multivariate regression; stratification; unequal inclusion prob-

abilities.
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2.1 Introduction

In order to monitor progress towards agreed policy goals, particularly in the context of

the Europe 2020 strategy, there is an interest in evaluating the evolution of social indica-

tors. For the purpose of interpreting changes between indicators at different waves, it is

important to estimate the standard error of these changes, so that we can judge whether

or not observed changes are statistically significant. The poverty rate is an important

policy indicator, especially within the context of the Europe 2020 strategy. This rate

is defined as the proportion of people with an equivalised total net income below 60%

of the national median income (Eurostat, 2003, p.2). This indicator is calculated from

the eu-silc surveys (Eurostat, 2012) collecting yearly information on income, poverty,

social exclusion and living conditions from approximately 300,000 households across Eu-

rope. The poverty rate is a complex statistic unlike population totals or means, since it

is based on a poverty threshold computed from the median of the income distribution.

Hence, there exist two sources of variability: one is due to the estimated threshold and

the other one comes from the estimated proportion given the estimated threshold (e.g.

Berger and Skinner, 2003; Verma and Betti, 2011).

Several methods to estimate the variance of the poverty rate like resampling and lin-

earisation techniques have been discussed in the literature (e.g. Preston, 1995; Deville,

1999; Berger and Skinner, 2003; Demnati and Rao, 2004; Verma and Betti, 2005; Osier,

2009; Goedemé, 2010; Verma and Betti, 2011; Münnich and Zins, 2011; Osier et al.,

2013; Berger and Priam, 2016). However, variance of change for the poverty rate has

been studied in a limited number of papers (e.g. Betti and Gagliardi, 2007; Münnich

and Zins, 2011; Osier et al., 2013; Berger and Priam, 2016). Berger and Priam (2010,

2016) proposed an estimator for the variance of change which takes into account the

complexities of the sampling design such as stratification, unequal probabilities, clus-

tering and rotation (see also Osier et al., 2013). The approach proposed relies neither

on the second order inclusion probabilities nor on the resampling methods unlike its

competitors (Betti and Gagliardi, 2007; Wood, 2008; Münnich and Zins, 2011, p.20).

It is based on a multivariate linear regression (general linear regression) approach that

can be easily implemented by any statistical software (Berger and Priam, 2016). Berger

et al. (2013) show how it can be implemented in spss.

In Section 2.2, rotating sampling designs are briefly introduced. In Section 2.3, we recall

the variance estimator of change proposed by Berger and Priam (2010, 2016). This

estimator ignores the sampling variability due to the poverty threshold by treating the

poverty rate as a ratio. In Sections 2.4 and 2.5, we show how this approach can be

adjusted to take into account the sampling variability of the poverty threshold. In Sec-

tion 2.6, we compare the approach proposed with the more simple approach proposed

by Berger and Priam (2010, 2016) (see also Osier et al., 2013) via a series of simula-

tion. In Section 2.7, we apply the approach proposed to the Turkish eu-silc survey
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data. The variance estimator proposed depends on a bandwidth used for the estimation

of the density. We also show how sensitive the variance estimates are to the chosen

bandwidth parameter by considering different bandwidth parameters. In Section 2.8, a

brief synopsis of our findings is given and some extensions are suggested. The supple-

mentary material including the R (R Development Core Team, 2014) code is provided

in Appendix A.

2.2 Rotating sampling designs

With rotating panel surveys, it is common practice to select new units in order to replace

old units that have been in the survey for a specified number of waves (e.g. Gambino and

Silva, 2009; Kalton, 2009). The units sampled in both waves usually represent a large

fraction of the first wave sample. This fraction is called the fraction of the common

sample. For example, for the annual eu-silc surveys, this fraction is 75%. For the

monthly Canadian labour force survey and the quarterly British labour force survey,

this fraction is 80%. For the quarterly Finnish labour force survey, this fraction is 60%.

We consider that the sample design is such that the common sample has a fixed number

of units. Throughout this paper, we assume that the sampling fraction is negligible,

that is, (1−πt;i) ≈ 1, where πt;i denotes the inclusion probability of unit i at wave t. In

the case of a multi stage sampling design, the sampling fraction is associated with the

primary sampling units, which are the units selected at the first stage of sampling. We

use an “ultimate cluster approach” (e.g. Hansen et al., 1953) in this case. Under this

approach, the ultimate cluster variance dominates the total variance when the sampling

fraction at the first stage of sampling is negligible.

2.3 Estimation of change of a poverty rate

Let s1 and s2 be the samples selected at wave 1 and wave 2 respectively. Suppose that

we wish to estimate the absolute net change ∆ = θ2−θ1 between two population poverty

rates θ1 and θ2, from wave 1 and wave 2 respectively. Suppose that ∆ is estimated by

∆̂ = θ̂2 − θ̂1; where θ̂1 and θ̂2 are the cross sectional estimators of poverty rates defined

by

θ̂1 =
τ̂1
τ̂2

=

∑
i∈s1 δ{y1;i ≤ 0.6Ŷ1;0.5}π−11;i∑

i∈s1 π
−1
1;i

and θ̂2 =
τ̂3
τ̂4

=

∑
i∈s2 δ{y2;i ≤ 0.6Ŷ2;0.5}π−12;i∑

i∈s2 π
−1
2;i

,

where yt;i is the “net equivalised income” (see Eurostat, 2003, p.2) of individual i at

wave t and Ŷt;0.5 is the estimate of the median of the population income distribution at

wave t (t = 1, 2). The function δ{A} = 1, when A is true, and δ{A} = 0 otherwise.
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The design-based variance of the estimator of change ∆̂ is given by

var(∆̂) = var(θ̂1) + var(θ̂2)− 2corr(θ̂1, θ̂2)

√
var(θ̂1)var(θ̂2) · (2.1)

Standard design-based estimators can be used to estimate the cross sectional variances

var(θ̂1) and var(θ̂2) (e.g. Deville, 1999). The correlation corr(θ̂1, θ̂2) is the most difficult

part to estimate as θ̂1 and θ̂2 are estimated from different samples because of the rotation.

Estimation of the covariance term has been discussed in several papers (Kish, 1965,

p.457-458; Tam, 1984; Laniel, 1987; Nordberg, 2000; Holmes and Skinner, 2000; Berger,

2004; Qualité and Tillé, 2008; Wood, 2008; Münnich and Zins, 2011).

Berger and Priam (2010, 2016) proposed a multivariate approach to estimate the corre-

lation between functions of totals by incorporating the information related to the whole

sample, s = s1 ∪ s2. This approach can be used to estimate the variance of change

between poverty rates when we ignore the sampling variability due to the estimated

poverty threshold 0.6Ŷt;0.5, that is, when we treat the poverty rates as simple ratios.

When we treat the threshold as fixed, the change becomes a smooth function of four

totals, that is, ∆̂ = g(τ̂ ), where τ̂ = (τ̂1, τ̂2, τ̂3, τ̂4)
T is the estimator of the vector of

population totals, τ = (τ1, τ2, τ3, τ4)
T. Berger and Priam (2010, 2016) showed that using

the first-order Taylor approximation, the design-based variance of ∆̂ can be estimated

by

v̂ar(∆̂) = ĝrad(τ̂ )Tv̂ar(τ̂ ) ĝrad(τ̂ ), (2.2)

where ĝrad(τ̂ ) is the gradient of g(τ̂ ) evaluated at τ̂ , that is,

ĝrad(τ̂ ) =
∂g(τ̂ )

∂τ̂
=

(
− 1

τ̂2
,− τ̂1

τ̂22
,

1

τ̂3
,− τ̂3

τ̂24

)
T,

and v̂ar(τ̂ ) is given by

v̂ar(τ̂ ) = D̂TΣ̂D̂,

with

D̂ = diag

{√
v̂ar(τ̂1)Σ̂

−1
11 ,

√
v̂ar(τ̂2)Σ̂

−1
22 ,

√
v̂ar(τ̂3)Σ̂

−1
33 ,

√
v̂ar(τ̂4)Σ̂

−1
44

}
,

where Σ̂ is the ordinary least squares (ols) estimator of the residual covariance matrix

Σ of the multivariate linear regression given in (2.3) proposed by Berger and Priam

(2010, 2016); v̂ar(τ̂k) is the design-based variance estimator of the Horvitz and Thomp-

son (1952) estimator of total τk, and Σ̂−1kk is the k-th diagonal element of Σ̂ (k = 1, 2, 3, 4).

Berger and Priam (2010, 2016) showed that the variance estimator (2.2) gives an ap-

proximately unbiased estimator for the variance of change.
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Let p̆t;i = δ{yt;i ≤ 0.6Ŷt;0.5}π−1t;i and wt;i = π−1t;i . The multivariate linear regression is

given as follows,
p̆1;i

w1;i

p̆2;i

w2;i

 =


α1;1z1;i + α1;2z2;i + α1;3z1;i × z2;i
β1;1z1;i + β1;2z2;i + β1;3z1;i × z2;i
α2;1z1;i + α2;2z2;i + α2;3z1;i × z2;i
β2;1z1;i + β2;2z2;i + β2;3z1;i × z2;i

+ εi. (2.3)

The vector of the residuals follows a multivariate distribution with mean 0 and covariance

Σ. The distribution of εi does not have to be specified as the covariance Σ is estimated

based on a least squares technique. Rotation of the sampling design is incorporated into

the model through the model covariates: zt;i = δ{i ∈ st} and z1;i×z2;i = δ{i ∈ s1, i ∈ s2}.
It should be noted that the correlations ĉorr(τ̂k, τ̂`), with (k, ` = 1, 2, 3, 4), are obtained

from the estimated residual covariance matrix Σ̂. The covariance terms on the non-

diagonal part of the matrix v̂ar(τ̂ ) are based on those estimated correlations ĉorr(τ̂k, τ̂`)

and the estimated cross sectional variance terms v̂ar(τ̂k). Note that this approach also

accounts for a multi stage sampling, using an “ultimate cluster approach” (e.g. Osier

et al., 2013; Di Meglio et al., 2013).

Berger and Priam (2010, 2016) showed that the multivariate approach gives estimates

which are approximately equal to the Hansen and Hurwitz (1943) variance estimator

(e.g. Holmes and Skinner, 2000).

The approach proposed can be easily extended to stratified sampling. In this case, we

assume that the sample sizes within each stratum are fixed (non-random) quantities.

The model covariates zt;i are replaced by the stratum wave indicators zth;i = δ{i ∈ sth},
where sth is the sample for the stratum h at wave t. As the rotation is done within each

stratum, we consider the interactions zth;i × z(t+1)h;i.

2.4 Allowing for the variability of the poverty threshold

Note that in the variance estimator (2.2), the variability of the poverty threshold is

not taken into account because we treat θ̂1 and θ̂2 as ratios. Treating the poverty

threshold as fixed might lead to over-estimation of the variances (e.g. Preston, 1995;

Berger and Skinner, 2003; Verma and Betti, 2011). Verma and Betti (2011) compared

the ratio variance estimator (i.e. when the poverty threshold is treated as fixed) with

linearisation and Jackknife repeated replication. They found that the ratio variance

estimator over-estimated the standard errors for all the poverty measures and several

complex statistics. However, these findings are related to the cross sectional estimators

and do not necessarily hold for the variance of change.
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Taking into account the whole variability means that the sampling variation of the

poverty threshold is also considered. However, the poverty rate is more complex than a

ratio and cannot be expressed as a function of totals. We propose using the linearisation

approach proposed by Deville (1999). The implementation of this approach for the

poverty rate and the inequality measures can be found in the literature (e.g. Berger and

Skinner, 2003; Verma and Betti, 2005; Osier, 2009; Münnich and Zins, 2011; Verma and

Betti, 2011).

The linearised variable Lt;i for individual i at wave t for the poverty rate is given by (see

Osier, 2009)

Lt;i =
1

N̂t

(
δ{yt;i ≤ 0.6Ŷt;0.5} − θ̂t

)
− 0.6

N̂t

f̂t(0.6Ŷt;0.5)

f̂t(Ŷt;0.5)

(
δ{yt;i ≤ Ŷt;0.5} − 0.5

)
, (2.4)

where f̂t(·) is an estimator of the density function, which is defined in (2.5). The second

term in (2.4) is an additional term which reflects the sample variation originating from

the randomness of the estimated median income.

The density functions can be estimated on the basis of the Gaussian kernel function as

follows (e.g. Preston, 1995):

f̂t(x) =
1

N̂tĥt

∑
i∈st

1

πt;i
K

(
x− yt;i
ĥt

)
(2.5)

where K(η) = (
√

2π)−1exp(−η2/2) is the Gaussian kernel, N̂t =
∑

i∈st π
−1
t;i is the Horvitz

and Thompson (1952) estimator of the population size at wave t (t = 1, 2), and ĥt is the

bandwidth parameter that can be defined in several ways (Silverman, 1986, p.45-48).

For a normally distributed population and smooth densities, the following bandwidth

parameter is recommended by Silverman (1986, p.46).

ĥt = 1.06σ̂
t;Ŷ
N̂
−1/5
t , (2.6)

where

σ̂
t;Ŷ

=

√√√√√ 1

N̂t

∑
i∈st

1

πt;i
y2t;i −

1

N̂t

∑
j∈st

1

πt;j
yt;j

2,
is the estimated standard deviation of the income distribution. However, for skewed and

long tailed distributions, Silverman (1986, p.47) proposed using the inter quartile range

instead of the standard deviation of the distribution; that is,

ĥt = 0.79Ŷt;iqrN̂
−1/5
t , (2.7)
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where Ŷt;iqr = Ŷt;0.75− Ŷt;0.25 is the weighted inter quartile range of the income distribu-

tion. Another bandwidth, which is very suitable for many densities, even for the modest

bimodal ones, was suggested by Silverman (1986, p.48) as follows:

ĥt = 0.9ÂtN̂
−1/5
t , (2.8)

where Ât = min(σ̂
t;Ŷ
, Ŷt;iqr/1.34). It should be noted that the bandwidth in (2.8) is

smaller than the other bandwidths in (2.6) and (2.7). Thus we are likely to obtain less

smooth densities with the bandwidth (2.8).

It is worth mentioning that choosing a bandwidth parameter is a crucial step in appli-

cations (e.g. Verma and Betti, 2005; Graf, 2013; Graf and Tillé, 2014). For example,

Verma and Betti (2005) showed that probability density functions are sensitive to the

chosen bandwidth parameter. A large value for the bandwidth parameter results in a

smoother density. Graf (2013, p.26-28) pointed out the potential danger of using stan-

dard deviation when estimating densities that might arise from extreme values in the

data observed (for example, with income data). In such cases, Graf (2013) proposed

using the logarithm to reduce the adverse impact of extreme values. He also remarked

a fixed-bandwidth parameter might be problematic when observations are heaped up

around some values. To avoid this problem, a more robust technique to estimate density

involving nearest neighbours with minimal bandwidth was suggested by Graf (2013).

Opsomer and Miller (2005) proposed a design-based criterion for selecting the band-

width parameter in the finite population estimation context. This approach provides

a data-driven bandwidth parameter selection. These alternative bandwidth parameter

selection methods are not considered in this paper.

2.5 Estimation of change within domains

In practice, we are often interested in change within domains of interest. For example,

we may be interested in change in poverty within different age groups. According to

the definition given by Eurostat (2003), the poverty threshold is calculated based on the

overall estimated median income rather than the estimated median income within the

domains. Hence, when we are interested in a domain, the threshold will be the same for

all domains.

Consider dt;i to be a domain indicator for individual i at wave t defined by

dt;i =

{
1 if i ∈ D at wave t,

0 if i /∈ D at wave t,
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where D refers to the domain of interest. The poverty rate over a domain is defined by

θ̂Dt =

∑
i∈st dt;iδ{yt;i ≤ Ŷt;0.5}π

−1
t;i∑

i∈st dt;iπ
−1
t;i

.

To estimate the variance of change within domains under the ratio approach (see ex-

pression (2.2)), we substitute p̆t;i by p̆Dt;i = dt;ip̆t;i, and wt;i by wDt;i = dt;iwt;i into the

model in (2.3). Note that the values of the response variables will be equal to zero for

units not included in the domain of interest.

For the linearisation approach, the linearised variables LDt;i for individual i in domain

D at wave t derived in Appendix A.1 (see expression (A.5)) are given by

LDt;i =
dt;i

N̂Dt

(
δ{yt;i ≤ 0.6Ŷt;0.5} − θ̂Dt

)
− 0.6

N̂t

f̂Dt(0.6Ŷt;0.5)

f̂t(Ŷt;0.5)

(
δ{yt;i ≤ Ŷt;0.5} − 0.5

)
,

where

N̂Dt =
∑
i∈st

dt;i
πt;i

,

f̂Dt(x) =
1

N̂DtĥDt

∑
i∈st

dt;i
πt;i

KD

(
x− yt;i
ĥDt

)
·

Here, ĥDt can be (2.6), (2.7), or (2.8) with N̂Dt, ŶDt;iqr = ŶDt;0.75 − ŶDt;0.25,

σ̂
Dt;Ŷ

=

√√√√√ 1

N̂Dt

∑
i∈st

dt;i
πt;i

y2t;i −
1

N̂Dt

∑
j∈st

dt;j
πt;j

yt;j

2,
and ÂDt = min(σ̂

Dt;Ŷ
, ŶDt;iqr/1.34). Let ∆̂D = θ̂D2 − θ̂D1 be the estimate of change in

poverty rate in domain D from wave 1 to wave 2. Thus the variance of domain change

is estimated by

v̂ar(∆̂D) = v̂ar(θ̂LD1) + v̂ar(θ̂LD2)− 2ĉorr(θ̂LD1, θ̂
L
D2)

√
v̂ar(θ̂LD1)v̂ar(θ̂LD2), (2.9)

with

θ̂LDt =
∑
i∈st

LDt;i
πt;i

· (2.10)

We use the approach proposed by Berger and Priam (2010, 2016) by treating θ̂LD1 and

θ̂LD2 in (2.10) as the estimators of totals. The correlation term ĉorr(θ̂LD1, θ̂
L
D2) in (2.9) is
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computed from the estimated residual covariance matrix of the following model, Σ̂,(
L̆D1;i

L̆D2;i

)
=

(
α1;1z1;i + α1;2z2;i + α1;3z1;i × z2;i
α2;1z1;i + α2;2z2;i + α2;3z1;i × z2;i

)
+ εi,

with L̆Dt;i = LDt;iπ
−1
t;i .

It should be noted that the domain information is incorporated into the model through

the response variables, in contrast to the stratification, which are defined via model

covariates (see Section 2.3). Note that the approach proposed can be used for stratum

domains and unplanned domains.

2.6 Simulation study

In this section, the variance estimators from the ratio and the linearisation approaches

are compared in terms of the relative bias (rb) and the relative root mean square

error (rrmse), respectively defined by expressions (2.11) and (2.12). Additionally, we

investigate whether the ratio approach gives more conservative estimates. The statistical

software R (R Development Core Team, 2014) was used.

The income variables at wave 1 and wave 2 were generated according to different

probability distributions (see Appendix A.2). For each wave, a gamma distribution

(shape=2.5, rate=1), a lognormal distribution (mean=1.119, standard deviation=0.602)

and a Weibull distribution (shape=0.8, scale=1) were used to generate populations with

a size of N = 20,940. As stated by Salem and Mount (1974) and McDonald (1984),

these distributions are good approximations of income distributions. For the Turkish

eu-silc survey data, the distribution of income variables are approximated by a lognor-

mal distribution with mean of 8.626 and standard deviation of 0.736. The correlation

coefficient between the variables of the first and the second wave is given by ρ = 0.94,

which is the correlation observed from the common sample of the Turkish eu-silc sur-

vey data. Note that this correlation and the correlation in (2.1) are different; in other

words, the correlation ρ = 0.94 is the population correlation between income variables

measured at two waves, whereas the correlation in (2.1) is the correlation between the

point estimators of poverty rates.

The population is assumed fixed and the same sample size was used for both waves. We

have 1047 primary sampling units in the Turkish eu-silc survey data. For this reason,

we used n1 = n2 = 1047 units for each wave. The fraction of the common sample is

75%. Hence, the number of units in the common sample is nc = 785. Unequal and equal

probabilities were used to select the samples. For unequal probability sampling (πps)

design, the Chao (1982) sampling design was used. The first wave samples were selected

without replacement with the inclusion probabilities proportional to a size variable xi,
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which was generated by the model xi = α + ρy1;i + ei, with ei ∼ N(0, (1 − ρ2)σ2y1),

α = 5, and ρ = 0.7, which represents the correlation between xi and y1;i. The inclusion

probabilities at first wave are given by π1;i = n1xi/
∑

i∈U1
xi, where U1 is the population

at first wave. As we consider a fixed size sampling design, we have
∑

i∈U1
π1;i = n1.

For the second wave, a simple random sample of nc units were selected from the sample

s1; and, n2 − nc units are selected with the probabilities proportional to size qi =

π1;i/(1−π1;i) from the population U\s1. It can be shown that π2;i ≈ π1;i (Christine and

Rocher, 2012). For equal probability sampling designs, π2;i = π1;i = n1/N .

We did six simulation studies for three populations and two sampling designs. For each

simulation, 10,000 samples were selected. For each sample, the rb and the rrmse were

computed for the cross sectional variance estimators, the variance estimator of change

and the estimator of the correlation. The rb and the rrmse are defined by

RB(σ̂) =
E(σ̂)− σ

σ
100%, (2.11)

RRMSE(σ̂) =

√
(B − 1)−1

∑B
b=1(σ̂b − σ)2

σ
100%, (2.12)

where E(σ̂) = B−1
∑B

b=1 σ̂b, with B = 10,000, is the empirical expectation; σ is either

the empirical variances or the empirical correlation in (2.1); σ̂ is the estimator of the

quantity σ; σ̂b is the estimate of the quantity σ for the bth sample. For the linearisation,

we considered three bandwidth parameters (see expressions (2.6)–(2.8)). The lineari-

sation based on (2.6), (2.7) and (2.8) are respectively labelled as Lin Sd, Lin Iqr, and

Lin A in Tables 2.1–2.2.

For a gamma distribution, the poverty rates are 24.2% and 23.6% for the first and the

second wave respectively. Hence, we have -0.59% point change between two waves. For

a lognormal distribution, the poverty rates are 19.4% and 19.9%. Thus there is a 0.54%

point change for this case. For a Weibull distribution, we have the highest poverty rates,

which are 36.6% and 37.3% respectively. Hence, the change is 0.66% point.

Table 2.1 shows the rb (%) of the variance and the correlation estimators for several

distributions and sampling designs. Overall, the linearisation approach has lower rb

than the ratio one. Thus we have more accurate estimates with the linearisation. Differ-

ences between the two approaches in terms of the rb is much more pronounced for the

Weibull distribution, which is the most skewed distribution. For all situations except

with the lognormal distribution, the ratio approach overestimates all the variances and

the correlations. Therefore, the ratio approach may not always give more conservative

estimates. However, note that whenever we have a positive bias, we obtain relatively
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Table 2.1: Empirical rb (%) of the variance and correlation estimators for the
poverty rates for three distributions and two sampling designs

Relative Bias (%)

Gamma

SRS πps

Ratio Lin Sd Lin Iqr Lin A Ratio Lin Sd Lin Iqr Lin A
Var Wave1 41.3 2.4 2.6 3.1 50.9 7.2 7.4 7.8
Var Wave2 42.8 5.1 5.3 5.8 41.1 2.9 3.0 3.5
Var Change 8.1 1.0 1.2 1.8 13.0 2.1 2.4 2.9
Correlation 23.2 2.6 2.6 2.5 22.0 2.7 2.6 2.5

Lognormal

SRS πps

Ratio Lin Sd Lin Iqr Lin A Ratio Lin Sd Lin Iqr Lin A
Var Wave1 15.6 0.9 2.2 2.9 22.7 -0.5 0.5 1.0
Var Wave2 24.1 6.4 7.6 8.2 28.9 4.2 5.1 5.6
Var Change -14.1 1.3 2.6 3.4 -8.7 0.5 1.7 2.4
Correlation 38.1 3.1 2.9 2.8 35.5 1.6 1.3 1.1

Weibull

SRS πps

Ratio Lin Sd Lin Iqr Lin A Ratio Lin Sd Lin Iqr Lin A
Var Wave1 140.1 4.3 6.5 6.7 132.9 2.9 4.8 5.1
Var Wave2 146.0 1.9 4.0 4.2 137.6 1.0 2.9 3.1
Var Change 26.6 0.9 4.2 4.4 28.3 2.0 5.2 5.5
Correlation 152.0 6.6 3.3 3.3 132.1 -0.4 -3.8 -3.8

larger variance estimates with the ratio approach. When we compare the three linearisa-

tion methods based on different bandwidth, we obtained the largest rb with the smallest

bandwidth (see expression (2.8)).

As far as the rrmse is concerned (see Table 2.2), we have more precise estimates with

the linearisation approach. We observe the smallest rrmse with the bandwidth (2.6)

and the largest rrmse with the bandwidth (2.8). The ratio approach gives less accurate

point estimates. The differences between the two approaches are notable, especially with

the Weibull distribution.

2.7 An application to the Turkish EU-SILC survey

The 2007 and 2008 cross sectional Turkish eu-silc survey data was used. The Turkish

eu-silc survey has a stratified two-stage cluster probability sampling design. For the

first stage, address blocks are selected within each stratum with a probability propor-

tional to size (πps) without replacement sampling design. Each block is composed of
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Table 2.2: Empirical rrmse (%) of the variance and correlation estimators for
the poverty rates for three distributions and two sampling designs

Relative Root Mean Square Error (%)

Gamma

SRS πps

Ratio Lin Sd Lin Iqr Lin A Ratio Lin Sd Lin Iqr Lin A
Var Wave1 41.5 4.8 5.1 5.9 51.2 8.2 8.4 9.0
Var Wave2 36.8 6.8 7.1 7.9 41.4 4.9 5.1 5.9
Var Change 10.9 7.9 8.1 8.6 15.4 8.7 8.8 9.4
Correlation 20.0 6.0 6.5 6.5 22.7 7.3 7.3 7.3

Lognormal

SRS πps

Ratio Lin Sd Lin Iqr Lin A Ratio Lin Sd Lin Iqr Lin A
Var Wave1 16.4 4.9 6.2 7.2 30.6 7.8 8.2 8.7
Var Wave2 24.6 8.1 9.8 10.8 35.2 8.9 9.8 10.5
Var Change 15.1 7.0 8.0 8.8 18.5 10.6 11.2 11.7
Correlation 38.5 7.1 7.0 7.0 37.4 11.1 11.0 11.0

Weibull

SRS πps

Ratio Lin Sd Lin Iqr Lin A Ratio Lin Sd Lin Iqr Lin A
Var Wave1 140.1 6.5 8.5 9.0 133.0 6.5 8.0 8.5
Var Wave2 146.0 5.5 7.1 7.7 137.7 6.2 7.4 7.9
Var Change 27.1 5.7 7.8 8.4 29.1 7.0 9.3 9.9
Correlation 152.2 16.7 16.3 16.6 132.4 16.2 17.2 17.5

approximately 100 addresses. Households within the selected address blocks are selected

with a systematic sampling design. All individuals within the selected households par-

ticipate in the survey. The cross sectional survey weights in the “personal register” file

(RB050) were used as inverses of the inclusion probabilities. The effect of calibration

was not taken into account, because we did not have any information about the auxiliary

variables. The effect of imputation was ignored for the same reason.

In Table 2.3, we have the estimates for several domains when the poverty threshold is

treated as fixed (see expression (2.2)). We observe a significant change for the domain

“tenant” at the 5% level.

In Table 2.4, we have the estimates obtained with the linearisation approach based on

the bandwidth in (2.6) described in Section 2.4. We also observe a highly significant

change for the domain “tenant”. We do not observe major differences in the p-values

between Table 2.3 and Table 2.4. We observe a slight decrease in the p-values when the

sampling variation of the poverty threshold is taken into account. This is due to the

fact that the variances of changes are larger in Table 2.3.
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The correlations in Table 2.4 are smaller than in Table 2.3 overall. Hence, the esti-

mated correlations are smaller when the variability of the poverty threshold is taken

into account.

By comparing Table 2.3 and Table 2.4, we also found that all variances were estimated

more conservatively when the threshold is treated as fixed. Preston (1995), Berger

and Skinner (2003), and Verma and Betti (2011) demonstrated that the cross sectional

variances are more conservative when the poverty threshold is treated as fixed. This

finding was explained by Preston (1995) by the fact that the two sources of variability

offset each other. This is more pronounced when the high fractions of the median are

used. For the variance of change, we cannot anticipate an increase in the variance when

Table 2.3: Estimates when the poverty threshold is treated as fixed (see expres-
sion (2.2))

Domain Pov’07(%) Var’07 Pov’08 Var’08(%) Change(in % point) Var Change Corr p-value

Turkey 23.4 0.616 24.1 0.644 0.7 0.447 0.65 0.297

Male 23.0 0.650 23.7 0.665 0.7 0.494 0.62 0.328
Female 23.8 0.639 24.6 0.678 0.7 0.465 0.65 0.299

Owner 24.9 0.739 23.8 0.872 -1.1 0.593 0.63 0.140
Tenant 18.5 1.395 25.3 1.511 6.7 1.522 0.48 0.000

0 14 33.5 1.164 34.5 1.258 1.1 0.882 0.64 0.263
15 24 24.2 1.162 25.3 1.181 1.1 1.118 0.52 0.296
25 49 19.8 0.527 20.7 0.548 0.9 0.405 0.62 0.178
50 64 14.4 0.568 15.0 0.719 0.6 0.569 0.56 0.404
65+ 17.7 1.077 16.2 0.929 -1.5 0.988 0.51 0.120

Source: 2007 and 2008 cross sectional data of the eu-silc survey for Turkey conducted by TurkStat.

the poverty threshold is treated as fixed for the following reason. Let us assume that the

cross sectional variances are equal: v̂ar (θ̂1) = v̂ar (θ̂2). Thus the variance estimator of

change is given by v̂ar (∆̂) = 2 v̂ar (θ̂1) (1− ĉorr (θ̂1, θ̂2)). Hence, the variance of change

is affected in the same direction by the variance term, and in the opposite direction by

the correlation term. Thus when both the variance and the correlation terms increase

or decrease concurrently, the direction of the effect on the variance of change cannot be

predicted. Therefore, we may not necessarily have more conservative estimates of the

variance of change when the poverty threshold is treated as fixed. With the Turkish

eu-silc survey data, we found that the variances of changes were more conservative,

although the differences between the two approaches were not as pronounced as the

differences between the cross sectional variances (see Table 2.3 and Table 2.4).

In Table 2.4, the bandwidth parameter is given by expression (2.6). We also investigate

the situations when the bandwidth parameter is given by expressions (2.7) and (2.8).
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Table 2.4: Estimates when the sampling variation of the poverty threshold is
taken into account (see Sections 2.4 and 2.5). The bandwidth parameter is based
on the standard deviation of the income distribution (see definition (2.6)).

Domain Pov’07(%) Var’07 Pov’08 Var’08(%) Change(in % point) Var Change Corr p-value

Turkey 23.4 0.292 24.1 0.290 0.7 0.372 0.36 0.252

Male 23.0 0.314 23.7 0.306 0.7 0.416 0.33 0.287
Female 23.8 0.327 24.6 0.327 0.7 0.390 0.40 0.257

Owner 24.9 0.417 23.8 0.495 -1.1 0.527 0.42 0.117
Tenant 18.5 1.121 25.3 1.238 6.7 1.435 0.39 0.000

0 14 33.5 0.796 34.5 0.793 1.1 0.787 0.50 0.236
15 24 24.2 0.790 25.3 0.919 1.1 1.050 0.39 0.281
25 49 19.8 0.255 20.7 0.252 0.9 0.362 0.29 0.154
50 64 14.4 0.403 15.0 0.491 0.6 0.476 0.47 0.361
65+ 17.7 0.929 16.2 0.807 -1.5 0.978 0.44 0.118

Source: 2007 and 2008 cross sectional data of the eu-silc survey for Turkey conducted by TurkStat.

The results are given in Table 2.5 and Table 2.6. By comparing Table 2.5 and Table 2.6

with Table 2.3, we also observed smaller cross sectional variances, variance of change

and correlation with the bandwidth parameters (2.7) and (2.8). When we compare

Tables 2.4–2.6 with each other, the estimates do not differ significantly between the three

linearisation approaches based on different bandwidth parameters, although we observe

slight differences between them in terms of the rb and the rrmse in the simulation

study (see Section 2.6).

2.8 Conclusion

We applied a approach, easy to implement, to estimate the variances of changes for the

poverty rates over several domains by using the 2007-2008 Turkish eu-silc survey data.

It involves a multivariate linear regression proposed by Berger and Priam (2010, 2016),

which can be easily applied. Survey characteristics such as rotation, stratification, and

cluster sampling are all taken into account. The approach proposed is flexible and can be

implemented for most of the eu-silc surveys as long as sampling fractions are negligible.

This assumption implies that the second order inclusion probabilities are not needed.

We have two ways to estimate the variances depending on whether we treat the poverty

threshold as fixed or not. When treated as fixed, we obtained more conservative vari-

ance estimates of change with the Turkish eu-silc survey data. However, our simulation

study shows that treating the threshold as fixed does not necessarily give more conserva-

tive variance estimates of change. For the lognormal distribution, for example, variances
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Table 2.5: Estimates when the sampling variation of the poverty threshold is
taken into account (see Sections 2.4 and 2.5). The bandwidth parameter is based
on the inter quartile range of the income distribution (see definition (2.7)).

Domain Pov’07(%) Var’07 Pov’08 Var’08(%) Change(in % point) Var Change Corr p-value

Turkey 23.4 0.292 24.1 0.290 0.7 0.372 0.36 0.252

Male 23.0 0.316 23.7 0.306 0.7 0.416 0.33 0.287
Female 23.8 0.325 24.6 0.328 0.7 0.391 0.40 0.257

Owner 24.9 0.418 23.8 0.497 -1.1 0.530 0.42 0.118
Tenant 18.5 1.117 25.3 1.226 6.7 1.428 0.39 0.000

0 14 33.5 0.802 34.5 0.814 1.1 0.805 0.50 0.241
15 24 24.2 0.787 25.3 0.907 1.1 1.038 0.39 0.278
25 49 19.8 0.256 20.7 0.251 0.9 0.361 0.29 0.154
50 64 14.4 0.403 15.0 0.491 0.6 0.476 0.47 0.361
65+ 17.7 0.946 16.2 0.791 -1.5 0.976 0.44 0.118

Source: 2007 and 2008 cross sectional data of the eu-silc survey for Turkey conducted by TurkStat.

Table 2.6: Estimates when the sampling variation of the poverty is threshold
taken into account (see Sections 2.4 and 2.5). The bandwidth parameter is
based on the parameter A (see definition (2.8)).

Domain Pov’07(%) Var’07 Pov’08 Var’08(%) Change(in % point) Var Change Corr p-value

Turkey 23.4 0.291 24.1 0.291 0.7 0.372 0.36 0.253

Male 23.0 0.316 23.7 0.306 0.7 0.416 0.33 0.287
Female 23.8 0.324 24.6 0.329 0.7 0.392 0.40 0.258

Owner 24.9 0.419 23.8 0.498 -1.1 0.531 0.42 0.119
Tenant 18.5 1.114 25.3 1.223 6.7 1.425 0.39 0.000

0 14 33.5 0.802 34.5 0.823 1.1 0.812 0.50 0.243
15 24 24.2 0.787 25.3 0.903 1.1 1.034 0.39 0.277
25 49 19.8 0.255 20.7 0.251 0.9 0.361 0.29 0.154
50 64 14.4 0.403 15.0 0.491 0.6 0.476 0.47 0.361
65+ 17.7 0.949 16.2 0.788 -1.5 0.977 0.44 0.118

Source: 2007 and 2008 cross sectional data of the eu-silc survey for Turkey conducted by TurkStat.

of changes were underestimated with the ratio method. On the other hand, differences

between the variance estimators of changes can be negligible in terms of the rb and

the rrmse even though we observed significant differences between the cross sectional

variances and the correlations. For the latter, the linearisation approach gave less biased

and more precise variance estimates. Thus based upon our results and due to the fact

that linearisation involves complex numerical computations, the simple ratio approach



32 Chapter 2 First Paper

may sound preferable to estimate the variance of change for the poverty rates. Albeit,

we should be careful with highly skewed distributions similar to a Weibull one. As in

this case, the linearisation approach is significantly better. For the Turkish eu-silc

survey, the ratio approach can be used as where the distribution of income variables are

approximated by lognormal distribution.

The approach proposed can also be used to estimate the variances of the other poverty

and income inequality measures such as the relative median at risk of poverty gap

(rmpg), the quantile share ratio (qsr) and the gini coefficient, which are included in

the “Laeken” indicators (Eurostat, 2003), by using linearisation (e.g. Berger, 2008). The

rmpg and the gini coefficient cannot be treated as a simple ratio, whereas the qsr can

be. The linearised variables of many complex parameters are given by Verma and Betti

(2005, 2011).

In this paper, we implemented the fixed-bandwidth kernel method for its simplicity

(Silverman, 1986, p.95). The bandwidth given by expression (2.8) is a suitable choice

for a wide range of densities as pointed out by Silverman (1986). If the distribution

is heavily skewed, then, an adaptive kernel method can be applied (Silverman, 1986,

chap.5). This method uses a variable bandwidth, that is, for each observed data point,

a different bandwidth is computed. It would be interesting to check if an adaptive

bandwidth improved the variance estimation in the presence of outliers.
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Abstract

Survey data are often collected with unequal probabilities from a stratified population.

Suppose we wish to fit a model to such survey data. We consider a design-based infer-

ence for model parameters defined through population estimating equations. In many

modelling situations, the parameter of interest is a subset of a set of parameters, with the

others treated as nuisance parameters. For example, when comparing two nested models,

the additional parameters are the parameters of interest, and the common parameters

are the nuisance parameters. We propose using a profile empirical log-likelihood ratio

function that minimises the empirical log-likelihood ratio function with respect to the

nuisance parameters. We show that the profile empirical log-likelihood ratio function,

follows a χ2-distribution asymptotically. This can be used to make inference for the

subparameter of interest. For example, it can be used to test if two nested models are

significantly different and to construct confidence intervals. We show how the approach

proposed can be generalised to incorporate population level information, stratification

and clustering. The approach is simple to implement and less computer intensive than

the bootstrap. The confidence interval proposed does not rely on resampling, linearisa-

tion, variance estimation, or design effect.

Keywords: Design based inference; estimating equations; empirical likelihood; regres-

sion parameters; unequal inclusion probabilities.
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3.1 Introduction

Statistical models are widely used in social sciences, biological sciences, econometrics and

finance. Suppose we wish to fit a model to sample data selected randomly with unequal

probabilities. In this case, we do not have independent and identically distributed (i.i.d)

observations. When the random selection of the sample (or sampling design) is ignored,

estimators based on the assumption of i.i.d observations may be inconsistent and may

produce invalid inferences especially when the sampling design is informative (e.g. Pf-

effermann and Sverchkov, 1999, 2003). We consider a general class of multidimensional

parameters defined as the solution of a set of estimating equations (see equation (3.2)).

For example, this class includes complex parameters such as (non)linear regression pa-

rameters, generalised linear regression parameters, ratios, proportions or means. We

consider a semiparametric approach, where the model is specified by estimating equa-

tions (see equation (3.2)). We consider that the underlying distribution is unknown.

Hence, parametric likelihood is not feasible.

Let U be a finite population of N units labelled i = 1, . . . N . Consider that n units are

selected independently with replacement with unequal probabilities pi (e.g. Hansen and

Hurwitz, 1943) from U , where
∑

i∈U pi = 1. Let

πi = npi, (3.1)

where n is the fixed number of draws. The sampling design may also be stratified (see

Section 3.9.3). Note that n is different from the number of distinct units selected, because

the units are selected with replacement. Let π denote the sampling fraction or the mean

of the πi: π = N−1
∑

i∈U πi = n/N . The approach proposed is also valid under without-

replacement sampling with first-order inclusion probabilities given by (3.1), when n/N

is negligible, as sampling with and without-replacement are asymptotically equivalent

in this case. This is usually the case with social surveys.

Let s denote the sample containing the labels of the units selected after n draws. The

probability distribution of s is called the sampling design and is denoted by P(s). Let

vi be a vector that contains the values of a set of variables for a unit i ∈ U . The

sample data, given by {vi : i ∈ s}, is a set of not identically distributed observations,

because the sample is selected with unequal probabilities. We consider that the vi are

fixed (nonrandom) vectors. This setting is often called the design based approach, as the

sampling distribution of the sample data is solely driven by the random selection of the

sample (Neyman, 1934).

Consider that the parameter of interest is a sub-vector of the parameters. The remain-

ing parameters, which are not part of the parameter of interest, are called ‘nuisance’

parameters. The nuisance parameters are unknown by definition. There are numerous

situations when nuisance parameters are used (e.g. Binder and Patak, 1994; Qin and
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Lawless, 1994; Godambe and Thompson, 2009; Zheng et al., 2012). For example, with

a regression estimator of a mean, the regression parameter is a nuisance parameter.

When testing if the slope of a simple regression is significant, the intercept is the nui-

sance parameter. When comparing two nested models, we want to test if the additional

parameters are significant. The nuisance parameters are the parameters of the more par-

simonious model and the parameters of interest are the additional parameters. When

we have heteroscedasticity, we may assume that the residual variance is a function of

nuisance parameters (e.g. Owen, 1991, p.1740). Another example is the correlation co-

efficient, where the means and variances are the nuisance parameters (e.g. Owen, 1990,

2001).

Standard design based approaches involve linearisation (Binder, 1983; Deville, 1999) or

resampling techniques for variance estimation. Standard variance estimators treat the

nuisance parameters as fixed values given by their estimates. For example, standard

variance estimators of the regression estimator ignore the randomness of the regression

parameter, despite the fact that it is an estimate. Furthermore, variance estimators may

be biased when the randomness of the nuisance parameter is ignored.

Confidence intervals are usually constructed by assuming that point estimators have a

normal distribution. However, point estimators may not have a normal distribution,

when we have outlying observations, and linearised variance estimators may be biased

for a moderate sample size. Empirical likelihood inference does not rely on variance esti-

mates or on the normality of the point estimator. It can also handle nuisance parameters;

that is, empirical likelihood confidence intervals takes into account the randomness of

the nuisance parameters.

The empirical likelihood approach is a well established topic under the classical i.i.d

framework (e.g. Owen, 1991; Qin and Lawless, 1994; Wu and Sitter, 2001; Chaudhuri

et al., 2008; Kim and Zhou, 2008; Zheng et al., 2012). The paper by Chen and Keilegom

(2009) includes an elaborate review of the existing literature. Chen and Sitter (1999)

proposed a pseudoempirical likelihood under unequal probability sampling. Wu and Rao

(2006) showed that pseudoempirical likelihood confidence intervals can be constructed by

using the design effect, which is estimated from variance estimates. Kim (2009) and Chen

and Kim (2014) proposed an empirical likelihood approach under Poisson sampling.

Berger and De La Riva Torres (2016) proposed an empirical likelihood approach for

unequal probability sampling. This approach does not rely on design effects, variance

estimates, linearisation or resampling. It deals with a wide range of nonlinear finite

population parameters.

Profiling consists in minimising the empirical log-likelihood ratio function over the nui-

sance parameters. This technique allows us to test and derive confidence intervals for

the sub-parameters of interest. Qin and Lawless (1994) showed that the profile empir-

ical log-likelihood ratio function follows a χ2-distribution with i.i.d observations. Qin
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and Lawless’s (1994) approach does not directly apply because it does not take into

account the sampling design and the unequal probabilities. One of our aims is to fill this

gap. Berger and De La Riva Torres’s (2016) approach is limited to single parameters

and cannot be straightforwardly extended for profiling. We show that the empirical

log-likelihood ratio function that was proposed by Berger and De La Riva Torres (2016)

can be profiled out over the nuisance parameter. We show that the profile empiri-

cal log-likelihood ratio function follows a χ2-distribution asymptotically. The approach

proposed is different from Qin and Lawless’s (1994) approach, because we shall take the

information about the sampling design into account, and we assume that the observa-

tions are selected with unequal probabilities.

Binder and Patak (1994) proposed a nonparametric version of the likelihood based score

statistics that can be used with nuisance parameters (see also Godambe and Thomp-

son, 1999, p.162). They proposed a method of inverse testing to construct confidence

intervals. They used a pivotal statistic defined by the square of the estimating function

divided by its variance. The bounds of a confidence interval are the solutions of a sys-

tem of equations that can be solved numerically. Godambe and Thompson (2009, p.92)

pointed out that solutions may not exist. Furthermore, this approach relies on variance

estimates.

Chen and Sitter (1999) and Zhong and Rao (2000) proposed an algorithm based on

profiling the pseudoempirical likelihood ratio function when stratum totals of auxiliary

variables are unknown. For confidence intervals, the pseudoempirical likelihood needs

to be adjusted by variance estimates. This approach is limited to estimation of totals.

There is no general theory on profiling for the pseudoempirical likelihood approach.

Pfeffermann and Sverchkov (1999, 2003) considered a semiparametric approach that may

require modelling the survey weights. The variances of the model parameters are esti-

mated through linearisation or resampling techniques (e.g. Pfeffermann and Sverchkov,

1999). In Section 3.10, we shall compare numerically the approach that we propose with

the semiparametric approach that was proposed by Pfeffermann and Sverchkov (1999,

2003).

Inferences about the population parameters can be improved by incorporating popula-

tion level information, which may be available from administrative data, census data

and/or population projections (e.g. Deville and Särndal, 1992; Chaudhuri et al., 2008).

The empirical likelihood approach proposed allows incorporation of population level

information in the presence of nuisance parameters.

In Section 3.2, we define the population parameter and provide some examples regarding

regression parameters (see Section 3.2.1). In Section 3.3, we introduce the empirical log-

likelihood function under unequal probability selection proposed by Berger and De La

Riva Torres (2016). In Section 3.4, the maximum empirical likelihood estimator is de-

fined. In Section 3.5, we define the profile empirical log-likelihood ratio function and
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show how it can be used for testing and constructing confidence intervals (see Section

3.5.1). In Section 3.6, we provide an algorithm to compute the profile empirical log-

likelihood ratio function. Section 3.7 describes the large sample properties of the profile

empirical log-likelihood ratio function. In Section 3.8, stratification is incorporated with

the approach proposed. In Sections 3.9–3.9.2, we show how to incorporate popula-

tion level information. In Section 3.9.3, we provide a trivial extension of the approach

proposed to stratified multi stage sampling designs in the presence of population level

information. Simulation results are presented in Sections 3.10–3.10.5. The supplemen-

tary material including asymptotic derivations and the R (R Development Core Team,

2014) code is provided in Appendix B.

3.2 Parameters and estimating equations

The parameter ψN ∈ Ψ ⊂ Rb (b = O(1)) is the b× 1 finite population vector that is the

unique solution of the population estimating equation (3.2) (Godambe, 1960), where Ψ

is compact.

G(ψ) =
∑
i∈U

gi(vi,ψ) = 0b; (3.2)

where gi(vi,ψ) is a b× 1 vector of estimating functions and vi is the vector of variables

for unit i. Here, 0b is a b × 1 vector of zeros. For simplicity, we replace gi(vi,ψ) by

gi(ψ). As we consider a design based approach, the parameter ψN is a fixed (nonrandom)

unknown quantity. The parameter ψN shall be estimated from the sample data. The

gi(ψ) may also depend on some known population parameters (see Sections 3.9–3.9.3).

Most finite population parameters can be defined by estimating equations (e.g. Binder,

1983; Binder and Patak, 1994; Qin and Lawless, 1994; Godambe and Thompson, 2009).

For example, ψN can be a vector of population means, totals, ratios, quantiles, low

income measures or regression coefficients.

3.2.1 Examples: regression parameters

Consider vi = (yi,xi
T)T, where yi is a scalar response variable and xi are some explana-

tory variables. Consider a nonlinear model with a smooth model (scalar) function µ(·).
The parameter ψN can be the nonlinear least squares parameter defined by

ψN = arg min
ψ∈Ψ

∑
i∈U

σ−1i {yi − µ(h(xi)
Tψ)}2 , (3.3)
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where h(·) is a known vector function and σi is a known variance function. In this case,

ψN is the solution of the estimating equation (e.g. Chen and Keilegom, 2009).

∑
i∈U

∂(h(xi)
Tψ)

∂ψ
{yi − µ(h(xi)

Tψ)}σ−2i = 0b (3.4)

For ordinary least squares parameters, we have h(xi) = xi, µ(h(xi)
Tψ) = xi

Tψ and

σ2i = σ, for some σ. Hence, equation (3.4) reduces to the normal equation.∑
i∈U

xi(yi − xiTψ) = 0b· (3.5)

Equation (3.5) can be extended to include instrumental variables.

For generalised linear models, we have µ(h(xi)
Tψ) = F−1(xiTψ), where F(·) is a link

function. For example, F(µ) = log(µ(1− µ)−1) with a logistic regression model. In this

case, equation (3.4) reduces to (e.g. Binder, 1983, p.285)

∑
i∈U

xi

{
yi −

exp(xi
Tψ)

1 + exp(xiTψ)

}
= 0b· (3.6)

3.3 Empirical log-likelihood function for unequal probabil-

ities

In this Section, we recall the approach that was proposed by Berger and De La Riva Tor-

res (2016). Consider the following empirical likelihood function.

L(m) =
∏
i∈s

mi, (3.7)

where the mi are unknown scale-loads allocated to data points i ∈ s (Hartley and Rao,

1968) and m is the n× 1 vector of the mi (i ∈ s). Hartley and Rao (1969) showed that

expression (3.7) is the empirical likelihood function for unequal probability sampling

with replacement (see also Kim, 2009; Berger and De La Riva Torres, 2016)

Let m̂i maximise the following empirical log-likelihood function

`(m) =
∑
i∈s

log (mi), (3.8)

with respect to the constraints: mi > 0 and∑
i∈s

mici = C, with C =
∑
i∈U

ci· (3.9)



Chapter 3 Second Paper 39

Here, the ci are r-vectors, where r = O(1). When we have a single stratum and when

we do not use any population level information, ci is defined by ci = π−1πi and r = 1,

where π = n/N . The constant π−1 can be removed from ci because it cancels out in

equation (3.9). The ci may also include population level information or stratification

variables. In this case, r > 1 and the ci are defined in a different way (see Sections

3.8–3.9.3).

We assume that the C is an inner point of the conical hull formed by
∑

i∈smici, so

that the set of m̂i is unique. We assume that ci and C satisfy the regularity conditions

(3.28)–(3.33) given (see Section 3.7). We also assume that there exists an r-vector t

such that tTci = πi. By using (3.9), we have that
∑

i∈smiπi = n, which specifies the

fact that a sample of size n is selected.

Berger and De La Riva Torres (2016) showed that by using the method of Lagrange

multipliers, we have

m̂i = (πi + ηTci)
−1, (3.10)

where the vector η is such that (3.9) and m̂i > 0 hold. A modified Newton-Raphson

algorithm as in Chen et al. (2002) can be used to compute η.

The ci incorporate the information about the sampling design and the population level

information (see Sections 3.9– 3.9.3). When we do not use any population level infor-

mation, we use ci = π−1πi. Then it can be shown that η = 0r and m̂i = π−1i which is

the standard Horvitz and Thompson (1952) weight for unit i. The definitions of ci and

C have to be modified with population level information (see Sections 3.9– 3.9.3) and

under stratified sampling (see Sections 3.8 and 3.9.3).

3.4 Maximum empirical likelihood point estimator

Let m̂∗i (ψ) maximise `(m) subject to the constraints mi > 0 and∑
i∈s

mi c
∗
i(ψ) = C∗ (3.11)

with

c∗i(ψ) = (ci
T, gi(ψ)T)T and C∗ = (CT,0T)T, (3.12)

for a given vector ψ = (θT,νT)T; where gi(ψ) is defined in Section 3.2. We assume that

c∗i(ψ) is differentiable with respect to ν for all i ∈ s in a neighbourhood around the true
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population value νN . The maximum value of `(m) under mi > 0 and (3.11) is given by

`(ψ) =
∑
i∈s

log (m̂∗i (ψ))· (3.13)

The maximum empirical likelihood estimator ψ̂ of ψN is the vector that maximises `(ψ)

over ψ. Berger and De La Riva Torres (2016) showed that ψ̂ is the unique solution of

the sample estimating equation.

Ĝ(ψ) = 0b, where Ĝ(ψ) =
∑
i∈s

m̂i gi(ψ), (3.14)

where m̂i is given by (3.10). We assume that the gi(ψ) is such that equation (3.14) has

a unique solution.

When m̂i = πi, Ĝ(ψ) is the Horvitz-Thompson estimator of G(ψ), for a given ψ, and

the estimator ψ̂ is the pseudo likelihood estimator that was proposed by Binder (1983).

In this case, the sample estimate ψ̂ is design consistent (e.g Godambe and Thompson,

2009).

3.5 Profile empirical log-likelihood ratio function in the

presence of nuisance parameters

Suppose that we would like to make inference about a p×1 sub-parameter θN ∈ Θ ⊂ Rp,
where p < b. Consider ψN = (θN

T,νN
T)T, where νN is a q × 1 sub-parameter (νN ∈ Λ ⊂

Rq) that are not of primary interest (q = b − p), where Θ and Λ are compact set.

The parameter νN is assumed unknown and may need to be estimated when making

inferences about θN . In this paper, the parameter νN is called the nuisance parameter .

In this Section, we assume that we do not use any population level information. In

Sections 3.9–3.9.2, we extend this Section’s approach for population level information.

We propose to test and construct a confidence region for the parameter of interest θN

by using the profile empirical log-likelihood ratio function defined by

r̂(θ) = 2

{
`(ψ̂)−max

ν∈Λ
`(θ,ν)

}
, (3.15)

where `(θ,ν) = `(ψ) with ψ = (θT,νT)T. The r̂(θ) is a random function of θ. We

assume that the gi(ψ) are differentiable with respect to ν. In Section 3.6, we propose

an algorithm to compute (3.15). It can be shown that

`(ψ̂) =
∑
i∈s

log (m̂i) (3.16)
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is the maximum value of `(m) under the constraints mi > 0 and (3.9), because (3.14)

holds for ψ̂. The maximum empirical likelihood estimator of θN minimises the function

(3.15).

In Section 3.7, we shall show that under a series of regularity conditions and for specific

choices of ci, the random variable r̂(θN ) asymptotically follows a χ2-distribution with p

degrees of freedom under unequal probability sampling, where p denotes the dimension

of θN ; that is,

r̂(θN )
d→ χ2

df=p· (3.17)

3.5.1 Hypothesis testing and confidence intervals

The r̂(θN ) is a pivotal statistic that can be used to make inference about the sub-

parameter θN . Suppose we wish to test H0 : θN = θ0N versus H1 : θN 6= θ0N , by using r̂(θ0N ).

The p-value is
∫∞
r̂(θ0N ) χ

2
df=p(x) dx, where χ2

df=p(x) is the density of a χ2-distribution

with p degrees of freedom. This p-value is obtained from a statistical table of the χ2-

distribution.

The pivotal statistic (3.15) can also be used to construct confidence intervals for a scalar

(p = 1) sub-parameter θN of ψN . In this case, νN denotes the remaining parameters of

ψN . Hence, r̂(θN ) follows asymptotically a χ2-distribution with one degree of freedom.

Thus the α% empirical likelihood Wilks’s (1938) type confidence interval for θN is given

by

{
θ : r̂(θ) 6 χ2

df=1(α)
}
,

where χ2
df=1(α) is the upper α-quantile of the χ2-distribution with one degree of freedom.

The r̂(θ) is a convex function of θ with a minimum value when θ is equal to the empirical

maximum likelihood estimator θ̂. Based on this property, the bisection method can be

used to find the lower and upper bounds. This involves calculating r̂(θ) for several values

of θ.

3.6 An algorithm to compute the profile empirical log-

likelihood ratio function

As the m̂∗i(ψ) maximise `(m) under the constraint (3.11), for a given ψ = (θT,νT)T,

we have that m̂∗i(ψ) = {πi+ ∗
η(ψ)Tc∗i(ψ)}−1 (see expression (3.10)), where

∗
η(ψ) is such

that constraint (3.11) holds or equivalently
∗
η(ψ) is the solution of

Γ1(η,ν) =
∑
i∈s

{
πi+

∗
η(ψ)Tc∗i(ψ)

}−1
c∗i(ψ)−C∗ = 0r+b· (3.18)
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Furthermore, by using (3.13) and `(ψ) = `(θ,ν), we have

`(θ,ν) = −
∑
i∈s

log
(
πi+

∗
η(ψ)Tc∗i(ψ)

)
· (3.19)

In order to compute (3.15), we need to maximise (3.19) over the nuisance parameter ν.

Let
◦
ν(θ) be the vector ν that maximises (3.19) for a given value of θ. Assuming that

c∗i(ψ) is differentiable with respect to ν, the vector
◦
ν(θ) is the solution of the equation.

∂`(θ,ν)

∂ν
=
∂
∗
η(ψ)T

∂ν

∑
i∈s

m̂∗i(ψ) c∗i(ψ) + Γ2(
∗
η(ψ),ν) = 0q, (3.20)

with

Γ2(
∗
η(ψ),ν) =

∗
η(ψ)T

∑
i∈s

m̂∗i(ψ)
∂c∗i(θ,ν)

∂ν
·

Here, c∗i(θ,ν) = c∗i(ψ), with ψ = (θT,νT)T. Equation (3.20) reduces to

Γ2(
∗
η(ψ),ν) = 0q, (3.21)

because
∑

i∈s m̂
∗
i(ψ) c∗i(ψ) = C∗, as the m̂∗i(ψ) satisfy the constraint (3.18) and

∗
η

(ψ)TC∗ = 0 (see Lemma B.1 in Appendix B).

Let
◦
ν =

◦
ν(θ) and

◦
η =

∗
η(
◦
ψ) with

◦
ψ= (θT,

◦
ν(θ)T)T. By definition, the vectors

◦
η and

◦
ν

satisfy the equations (3.18) and (3.21). In other words,
◦
η and

◦
ν are the solutions of

Γ(η,ν) = 0r+b+q· (3.22)

where

Γ(η,ν) = [Γ1(η,ν)T,Γ2(η,ν)T] T· (3.23)

A root-search algorithm, such as the Newton-Raphson algorithm or the Levenberg (1944)

and Marquardt (1963) algorithm, can be used to solve equation (3.22). These algorithms

are based on the Taylor approximation of Γ(η,ν) in the neighbourhood of (ηt
T,ν>t )T:

Γ(η,ν)− Γ(ηt,νt) l ∇̂(ηt,νt)

(
η − ηt
ν − νt

)
, (3.24)

where

∇̂(η,ν) =
∂Γ(η,ν)

∂(ηT,νT)T
· (3.25)
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The iterative Newton-Raphson algorithm consists in combining (3.22) and (3.24) to

obtain the following recursive formula.

∇̂(ηt,νt)

(
ηt+1 − ηt
νt+1 − νt

)
= −Γ(ηt,νt)· (3.26)

For the first iteration (t = 0), η0 = 0 and ν0 = ν̂, where ν̂ is the maximum empirical

likelihood estimate of νN . The solution (ηt+1,νt+1) of the system of equations (3.26)

gives a new set of vectors used for the next iteration. We repeat this process until

convergence. The values of
◦
η and

◦
ν are the values obtained at convergence.

Finally, by using the expression (3.19), we have

max
ν∈Λ

`(θ,ν) = `(θ,
◦
ν) = −

∑
i∈s

log
(
πi+

◦
η Tc∗i(θ,

◦
ν)
)
· (3.27)

We obtain the value of r̂(θ) by substituting the expression (3.27) into expression (3.15).

3.7 Asymptotic distribution of the profile empirical log-

likelihood ratio function

In this Section, we show that, under a set of regularity conditions, the property (3.17)

holds. We assume that n → ∞ and N → ∞. Let oP(·) and OP(·) be the order of

convergence in probability with respect to the sampling design P(s) (e.g. Isaki and

Fuller, 1982). We assume that the sampling design is such that the following regularity

conditions hold for ψN = (θN
T,νN

T)T.

max
i∈s
{ππ−1i } = OP(1), (3.28)

N−1‖Ĉ
∗
π(ψN )−C∗‖ = OP(n−1/2), (3.29)

max
i∈s
‖c∗i(ψN )‖ = oP(n1/2), (3.30)

‖Ŝ
∗
(ψN )‖ = OP(1), (3.31)

‖Ŝ
∗
(ψN )−1‖ = OP(1), (3.32)

πτ

n

∑
i∈s

1

πτi
‖c∗i(ψN )‖τ = OP(1), with τ = 2, 3 and 4, (3.33)

where π = nN−1,

Ĉ
∗
π(ψN ) =

∑
i∈s

1

πi
c∗i(ψN ),

Ŝ
∗
(ψN ) = − π

N

∑
i∈s

1

π2i
c∗i(ψN )c∗i(ψN )T· (3.34)
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Here, ‖·‖ denotes the Frobenius (Euclidean) norm. The quantities c∗i(ψ) and C∗ are

defined in expressions (3.12). We assume that c∗i(ψ) is differentiable with respect to ν

for all i ∈ s in a neighbourhood around the true population value νN .

The condition (3.28) can be found in Krewski and Rao (1981, p.1014). It guarantees

that the πi and π are of the same order of magnitude. The condition (3.29) assumes

that Ĉ
∗
π(ψN ) is

√
n design consistent. This can be justified by using Isaki and Fuller’s

(1982, p.91) sufficient conditions. Chen and Sitter (1999, Appendix 2) showed that

condition (3.30) holds for most unequal probability sampling designs. It can be shown

that conditions (3.31) and (3.32) hold when −Ŝ
∗
(ψN ) is positive definite and when there

exists a positive definite matrix −S such that ‖Ŝ
∗
(ψN ) − S‖ = oP(1) and ‖S‖ = O(1).

We shall see that we need to include the constant π−1 within the definition of ci to

ensures that the conditions (3.31) and (3.32) hold. However, the constant π−1 can be

omitted for the computation of the function (3.15), because this constant cancels out

in the constraint (3.9). The last condition (3.33) is a Liapounov type condition for the

existence of moments (e.g. Krewski and Rao, 1981, p.1014).

When we have a single stratum without population level information, we propose using

ci = π−1πi. This implies C = N . By using Corollary B.1 in Appendix B, we have that,

under the regularity conditions (3.28)-(3.33),

r̂(θN ) = Ĝπ(ψN )T
(
Ib − Âg

)
V̂
−1
gg Ĝπ(ψN ) +OP(n−1/2), (3.35)

where

Ĝπ(ψ) =
∑
i∈s
ği(ψ) (3.36)

and ği(ψ) = gi(ψ)π−1i . Here, Ib is a b× b identity matrix, with b = p+ q, and Âg is a

symmetric idempotent matrix, defined by

Âg = V̂
−1/2
gg ∇̂G

(
∇̂GTV̂

−1
gg ∇̂G

)−1
∇̂GT V̂

−1/2
gg , (3.37)

with

∇̂G =
∂Ĝπ(ψ)

∂ν

∣∣∣∣∣
ψ=ψN

=
∑
i∈s

∂ği(ψ)

∂ν

∣∣∣∣
ψ=ψN

, (3.38)

V̂ gg =
∑
i∈s
ği(ψN )ği(ψN )T − 1

n

∑
j∈s
ğj(ψN )

∑
k∈s

ğk(ψN )T· (3.39)

The estimator Ĝπ(ψN ) is the design unbiased Hansen and Hurwitz (1943) estimator of

G(ψN ). The matrix V̂ gg is the Hansen and Hurwitz (1943) variance estimator of the

variance of Ĝπ(ψN ), which is design consistent under unequal probability sampling with

replacement (e.g. Durbin, 1953). The ği(ψN ) are independent and standard large sample
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theory can be used to show the normality of Ĝπ(ψN ) (e.g. Prášková and Sen, 2009), i.e.

V̂
−1/2
gg Ĝπ(ψN )

d→N (0b, Ib) (3.40)

holds, where N (0b, Ib) denotes the standardised multivariate normal distribution. The

condition (3.40) is weaker than the conditions under which ψ̂ is known to be asymptot-

ically normally distributed.

The condition (3.40) and expression (3.35) imply that r̂(θN ) follows asymptotically a

χ2-distribution with p degrees of freedom, because (Ib − Âg) is an idempotent matrix

with a trace equal to p (e.g. Qin and Lawless, 1994). Hence, the property (3.17) holds.

3.8 Incorporating stratification

Suppose that a population U is stratified into H, strata denoted by U1, . . . , Uh, . . . ,

UH , where ∪Hh=1Uh = U . Suppose that a with-replacement sample sh of fixed size nh

is selected from Uh, with unequal probabilities. We assume that the number of strata

H is bounded (H = O(1)). We propose using the functions (3.13) and (3.15), with ci

replaced by ci = π−1zi, where zi are the values of the design (or stratification) variables

defined by

zi = (zi1, . . . , ziH)T, (3.41)

where zih = πi for i ∈ Uh and zih = 0 otherwise. We have C = π−1n, where n =

(n1, . . . , nH)T denotes the vector of the stratum sample sizes. By using Theorem B.1

of the supplementary materials (see Appendix B), we obtain the consistent stratified

Hansen and Hurwitz (1943) variance estimator (B.46) in the right hand side of (3.35).

Hence, the property (3.17) holds under the condition (3.40).

3.9 Incorporating known population level information

Since Hartley and Rao (1968) first introduced population level information within the

empirical likelihood framework, it became a key feature of empirical likelihood (e.g.

Owen, 2001; Chaudhuri et al., 2008; Rao and Wu, 2009). Berger and De La Riva Torres

(2016) proposed an empirical likelihood approach for a single parameter in the presence

of population level information, under unequal probability sampling. In this Section, we

extend this approach for the multiparameter case in which we have a nuisance parameter.

Let ϕN be a vector of known population level parameters, which is is not subject to any

uncertainty. We consider that ϕN can be defined as the unique solution of the population
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estimating equation ∑
i∈U

fi(vi,ϕ) = 0· (3.42)

We assume that fi(vi,ϕ) is a function that does not depend on ψN . For simplicity, we

replace fi(vi,ϕ) by fi(ϕ) in what follows. For example, ϕN may be known population

means, totals, ratios, proportions, variances, quantiles or distribution functions of some

of the variables within vi. If the ϕN are the population means of an auxiliary variable

xi (a sub-vector of vi), we use fi(ϕ) = xi − ϕ. If ϕN is a vector of population totals,

we use fi(ϕ) = xi − ϕπin−1. The fi(ϕ) do not have to be differentiable. For example,

fi(ϕ) is not differentiable when ϕN contains population quantiles. The gi(ψ) can be a

function that depends on ϕN . We assume that the fi(ϕN ) are such that the conditions

(3.29)–(3.33) hold.

3.9.1 Maximum empirical likelihood point estimator under population

level information

Let ci = (π−1πi, fi(ϕN )T)T, with C = (N,0T)T. Let m̂∗i(ψ,ϕN ) maximises `(m) under

the constraints mi > 0 and (3.11), with c∗i(ψ) = (ci
T, gi(ψ)T)T. The gi(ψ) may also be

a function of known population level parameters. The maximum value of `(m) is

`(ψ | ϕN ) =
∑
i∈s

log (m̂∗i(ψ,ϕN ))· (3.43)

The maximum empirical likelihood estimate ψ̂ is defined as the vector ψ which maximises

expression (3.43). It can be shown that ψ̂ is the solution of the estimating equation (see

Section 3.4).

Ĝ(ψ,ϕN ) =
∑
i∈s

m̂i(ϕN ) gi(ψ) = 0b, (3.44)

where m̂i(ϕN ) maximises `(m) subject to mi > 0 and (3.9). The m̂i(ϕN ) are given by

m̂i(ϕN ) = (πi + ηTci)
−1, (3.45)

with ci = (π−1πi, fi(ϕN )T)T (see expression (3.10)).

Here, the m̂i(ϕN ) play the role of survey weights. The m̂i(ϕN ) are positive weights. They

are also calibrated weights, because
∑

i∈s m̂i(ϕN ) fi(ϕN ) = 0. The calibration property

is the consequence of the maximisation of `(m) and the fact that ϕN is known.
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In Appendix B (see Section B.1), we show that under the regularity conditions (3.28)–

(3.33) and for ψ such that

π2

n

∑
i∈s

1

π2i
‖gi(ψ)‖2 = OP(1), (3.46)

we have

Ĝ(ψ,ϕN ) = Ĝreg(ψ,ϕN ) + oP(Nn−1/2), (3.47)

where Ĝreg(ψ,ϕN ) is the following regression estimator.

Ĝreg(ψ,ϕN ) = Ĝπ(ψ)− B̂(ψ,ϕN )T f̂π(ϕN ), (3.48)

where f̂π(ϕN ) =
∑

i∈s fi(ϕN )π−1i and Ĝπ(ψ) =
∑

i∈s gi(ψ)π−1i and B̂(ψ,ϕN ) is the

regression coefficient

B̂(ψ,ϕN ) = V̂
−1
ff V̂ fg, (3.49)

where

V̂ ff =
∑
i∈s

f̆i(ϕN )f̆i(ϕN )T − 1

n

∑
j∈s

f̆j(ϕN )
∑
k∈s

f̆k(ϕN )T, (3.50)

V̂ fg =
∑
i∈s

f̆i(ϕN )ği(ψ)T − 1

n

∑
j∈s

f̆j(ϕN )
∑
k∈s

ğk(ψ)T·

Here, f̆i(ϕN ) = fi(ϕN )π−1i . The matrix V̂ ff is the Hansen and Hurwitz (1943) variance

estimator of f̂π(ϕN ). The matrix V̂ fg is the covariance estimator between Ĝπ(ψ) and

f̂π(ϕN ).

The expression (3.47) implies that the maximum empirical likelihood estimator of ψN

is design consistent. The estimator (3.48) is the asymptotic design optimal regression

estimator under with replacement sampling (Montanari, 1987; Rao, 1994; Berger et al.,

2003).

3.9.2 Hypothesis testing and confidence intervals under population

level information

The profile empirical likelihood log-likelihood ratio function in the presence of population

level information is defined by

r̂(θ | ϕN ) = 2

{
`(ψ̂ | ϕN )−max

ν∈Λ
`(θ,ν | ϕN )

}
· (3.51)
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where `(θ,ν | ϕN ) = `(ψ | ϕN ) with ψ = (θT,νT)T. It can be shown that

`(ψ̂ | ϕN ) =
∑
i∈s

log (m̂i(ϕN )),

where the m̂i(ϕN ) are given by (3.10), with ci = (π−1πi, fi(ϕN )T)T.

In Appendix B, Corollary B.2 shows that under the regularity conditions (3.28)–(3.33),

we have that

r̂(θN | ϕN ) = Ĝreg(ψN ,ϕN )T
(
Ib − Â•g

)
V̂
•−1
gg Ĝreg(ψN ,ϕN ) +OP(n−

1
2 ), (3.52)

where Â•g is a symmetric and idempotent matrix that is defined by

Â•g = V̂
•−1/2
gg ∇̂

•
G

(
∇̂
•T
G V̂

•−1
gg ∇̂

•
G

)−1
∇̂
•T
G V̂

•−1/2
gg , (3.53)

with

∇̂
•
G =

∂Ĝreg(ψ,ϕN )

∂ν

∣∣∣∣∣
ψ=ψN

=
∑
i∈s

∂ğ•i (ψ,ϕN )

∂ν

∣∣∣∣
ψ=ψN

,

V̂
•
gg =

∑
i∈s
ğ•i (ψN ,ϕN ) ğ•i (ψN ,ϕN )T − 1

n

∑
j∈s
ğ•j (ψN ,ϕN )

∑
k∈s

ğ•k(ψN ,ϕN )T,

ğ•i (ψN ,ϕN ) = ği(ψN )− B̂(ψN ,ϕN ) Tf̆i(ϕN ) (3.54)

and B̂(ψN ,ϕN ) is given by expression (3.49).

The V̂
•
gg is the Hansen and Hurwitz (1943) variance estimator of the regression estimator

Ĝreg(ψN ,ϕN ). The asymptotic normality of the regression estimator is shown by Scott

and Wu (1981). Hence, we assume that

V̂
•−1/2
gg Ĝreg(ψN ,ϕN )

d→N (0b, Ib) (3.55)

holds. By using expression (3.52) and condition (3.55), the random variable r̂(θN | ϕN )

given by expression (3.51) follows asymptotically a χ2-distribution with p degrees of

freedom, because (Ib − Â•g) is an idempotent matrix with a trace equal to p, where p is

the dimension of θ. Hence, the property (3.17) holds. Thus r̂(θ | ϕN ) can be used to

test hypotheses and to construct confidence intervals (see Section 3.5.1).

3.9.3 Stratified and clustered population

We propose using the approaches of Sections 3.9.1 and 3.9.2, after replacing ci by

ci = (π−1zi
T, fi(ϕN )T)T, (3.56)
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where zi are defined by expression (3.41). By using Theorem B.2 in Appendix B, we

obtain the consistent variance estimator (B.50) in the right hand side of equation (3.52).

Hence, the property (3.17) holds under the condition (3.55).

The population may be subdivided into a large number M of small disjoint subsets called

clusters, denoted Ũi, where i = 1, . . . ,M . Suppose that a stratified with-replacement

sample s of n clusters is sampled with unequal probabilities and a sample of units

is sampled within each selected cluster. For example, the clusters may be selected

with probabilities proportional to their size. Let gij(ψ) = gij(vij ,ψ) be the estimating

function for a unit j ⊂ Ũi, where vij is the corresponding vector of variables. Let ψN be

the unique solution of the following population estimating equation:

M∑
i=1

gi·(ψ) = 0b, (3.57)

where gi·(ψ) =
∑

j∈Ũi
gij(ψ). We propose using an ultimate cluster approach (e.g.

Hansen et al., 1953) described as follows. Let ĝi·(ψ) be the Hansen and Hurwitz (1943)

estimator of gi·(ψ) for a given ψ. The approach proposed in Section 3.9.1 can be used

by using expression (3.56) and by treating the clusters as sampling units. That is, we

substitute gi(ψ) by ĝi·(ψ) within (3.12). Now, πi = npi, where pi is the selection prob-

ability of the i-th cluster. With population level information, the fi(ϕN ) in (3.56), are

defined at cluster level. When ϕN is a function of unit level variables as in function (3.57),

fi(ϕN ) are replaced by unbiased estimates (e.g Estevao and Särndal, 2006). We assume

that the regularity conditions (3.29)–(3.33) hold with ĝi·(ψ). The result (3.52) shows

that r̂(θN | ϕN ) is approximated by a quadratic form with an ultimate cluster covariance

matrix which is consistent as long as the sampling fraction is negligible n/M = o(1) (e.g.

Särndal et al., 1992, Ch.4). Hence, r̂(θN | ϕN ) has a χ2-distribution asymptotically and

the property (3.17) holds.

3.10 Simulation study

In this Section, we present simulation studies for parameters of linear and logistic re-

gression models. Population data are either generated from models or based on the first

quarter of the 2011 UK Labour Force Survey (lfs) data. In all cases, we selected 1000

random samples by using the randomised systematic sampling design (Hartley and Rao,

1962).

We compare the Monte-Carlo performance of the empirical likelihood confidence in-

tervals proposed with nonparametric confidence intervals based on pseudo likelihood

(Binder and Patak, 1994), linearisation (Binder, 1983) and rescaled bootstrap (Rao

et al., 1992). We also consider parametric and semiparametric confidence intervals re-

spectively based on Wald’s test statistics and the Q-weighted approach for informative
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sampling (Pfeffermann and Sverchkov, 1999). We used the Hartley and Rao (1962)

variance estimator for the approaches that require variance estimates.

The pseudo likelihood confidence intervals rely on a variance estimator of an estimating

equation, for a given value of θ. Binder and Patak (1994) mentioned two versions,

which are denoted by pseudo likelihood 1 and 2 in this paper. For the pseudo likelihood

1 confidence interval, we substitute θ by its estimate within the variance estimator. For

the pseudo likelihood 2 confidence interval, the variance estimator is kept as a function

of θ. For the pseudo likelihood 1, ν is replaced by ν̂. For the pseudo likelihood 2, the

nuisance parameter is kept as a function of θ. Godambe and Thompson (2009, p.92)

noticed that it may not always be possible to find the confidence interval bounds by

using the pseudo likelihood 2 approach.

Linearisation is based on Binder’s (1983) approach. The rescaled bootstrap (Rao et al.,

1992, p.214) consists in selecting B = 1000 bootstrap samples of size m = n − 1. The

quantiles of the 1000 bootstrap sample estimates are used to compute the confidence

intervals.

The Q-weighted approaches are based on a Q-weighted estimator of the estimating

equation (3.2) (Pfeffermann and Sverchkov, 1999, 2003). Q-weighted confidence intervals

are based on linearised variances. We consider two versions, which are denoted by Q-

weighted 1 and 2, in this paper. The Hartley and Rao (1962) variance estimator is used

for the Q-weighted 1 approach. The conditional variance estimator (e.g. Pfeffermann

and Sverchkov, 2003) is used for the Q-weighted 2 approach.

The Wald’s approach is the standard model-based approach based on the assumption

of normality and i.i.d observations. Least squares estimators and model-based variance

estimators are used. The effect of the sampling design and the sampling weights are not

taken into account with this method.

We consider a nominal level of 95% for the confidence intervals. ‘Std. length’ is the

standardised length given by al/(2× 1.96×
√
mse) (see Kovar et al., 1988, p.32), where

mse is the Monte-Carlo mean squared error of the point estimator and ‘al’ is the average

length of the confidence intervals. ‘ratio al’ is the al divided by the al of the empirical

likelihood confidence intervals. ‘Sdl’ is the standard deviation of the lengths of the

confidence intervals. ‘Ratio sdl’ is the sdl divided by the sdl of the empirical likelihood

confidence intervals. Shapiro and Wilk’s (1965) test is used to test the normality of the

point estimators. In Tables 3.1–3.6, we have the observed coverages, the observed lower

and upper tail errors, the std. length, the ratio al, the ratio sdl, and Shapiro and

Wilk (1965) p-value, for each confidence interval. Significance of observed coverages and

tail errors was tested by using a z-test for proportions given by z2 = (p− P0)
2/(P0(1−

P0)/1000), where p is observed coverage or tail error rate and P0 is the nominal value

equal to 0.95 or 0.025. We have asymptotically z2 → χ2
df=1 in distribution as the

distribution of z-statistic is approximated by a standard normal distribution under large
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sample (De Moivre, 1733). The statistical software R (R Development Core Team, 2014)

was used.

3.10.1 Linear regression with the Hansen, Madow and Tepping popu-

lation

We generate a population of sizeN = 10,000 according to the model proposed by Hansen,

Madow and Tepping (1983); that is, the values yi are generated from the conditional

gamma distribution

yi|xi ∼ gamma(shape = 0.04x
−3/2
i (8 + 5xi)

2, scale = 1.25x
3/2
i (8 + 5xi)

−1), (3.58)

where xi ∼ gamma(shape = 2, scale = 5). The values generated are treated as fixed. We

selected 1000 randomised systematic samples of size n = 500, from this population, with

unequal probabilities. The πi are proportional to the measure of size zi = 5+yi+xi+εi,

where εi ∼ exponential(rate = 1)− 1.

Suppose we want to fit the linear regression model

yi = ν + θxi + x
3/4
i ei, (3.59)

to the sample data, by using the least-square equation (3.3), where ψ = (θ, ν)T and the

ei are residuals with an unknown distribution with mean zero and a residual variance

σ2 = 0.0625 that does not depend on i. Let ψN = (θN , νN )T be the solution of the least-

square equation (3.3) with σ2i ∝ x
3/2
i . The data population generated gives the finite

population parameters θN = 0.25 and νN = 0.4.

Suppose that the parameter of interest is the slope θN . The intercept term νN is treated

as the nuisance parameter. In Table 3.1, we observe that the coverage of θN with the

Wald and bootstrap confidence intervals are significantly different from the nominal

level (95%). The empirical likelihood confidence intervals are more stable than the

pseudo likelihood approaches as the ratio sdl is smaller. Shapiro & Wilk’s test suggests

that all the estimators do not deviate from normal distribution. The Wald confidence

interval gives a poor coverage because we have biased point and variance estimators,

as this approach does not take into account the unequal probabilities. The coverage is

larger than 95% with the Q-weighted approaches. The pseudo likelihood 2 approach

has better coverage than the pseudo likelihood 1 approach because the pivotal statistic

of the pseudo likelihood 2 approach is normally distributed. For some samples, it may

not be possible to construct confidence intervals with the pseudo likelihood 2 approach

(see Section 3.10.3). With the rescaled bootstrap, we observe an over-coverage and the

largest confidence intervals on average (see ratio al). In linear models, the pseudo

likelihood 1 approach reduces to the linearisation approach (Binder, 1983). This is the

reason why we observe the same results for these approaches.
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Table 3.1: 95% confidence intervals for the slope of linear regression (3.59).
N = 10,000. n = 500. hmt population.

Approaches Observed Lower Upper std. ratio ratio Shapiro
coverages tail err. tail err. length al sdl & Wilk
% rates % rates % p-value

Empirical likelihood 94.8 3.1 2.1 0.98 1.00 1.00 0.89
Wald 76.6* 23.8* 0.1* 0.63 0.96 0.53 0.64
Q-weighted 1 95.7 3.0 1.3* 0.99 0.86 0.63 0.49
Q-weighted 2 96.2 2.7 1.1* 1.03 0.89 0.64 0.49
Pseudo likelihood 1 94.0 3.5* 2.5 0.95 0.97 1.07 0.89
Pseudo likelihood 2 94.8 3.3 1.9 0.97 0.99 1.09 0.89
Bootstrap 96.5* 2.4 1.1* 1.03 1.05 0.91 0.89
Linearisation 94.0 3.5* 2.5 0.95 0.97 1.07 0.89

∗ Coverages (or tail error rates) significantly different from 95% (or 2.5%). p-value ≤ 0.05.

3.10.2 Testing the significance of the intercept

Hansen et al. (1983) pointed out that model-based approaches may not detect that the

slope in (3.59) is different from zero, when the data are generated from (3.58). We

should reject with a large probability the null hypothesis that the intercept is equal to

zero, as νN = 0.4. We can test the significance (level α = 0.05) of the intercept by

considering that the intercept is the parameter of interest and the slope is the nuisance

parameter. The empirical likelihood test statistics is given by expression (3.15). In Table

3.2, we have the observed powers (or rejection rate) of the empirical likelihood test, the

model-based F-test, the Wald-test, the pseudo likelihood tests and the Q-weighted tests.

Our results are different from Hansen et al. (1983), because Hansen et al. (1983) used a

stratified simple random sampling design, which is different from the design used here.

For sample sizes larger than 300, we observe a power above 99%, except for the pseudo

likelihood 2 test, which is the least powerful test. As expected, the power decreases with

the sample size. We observe the largest power for the empirical likelihood test, followed

by the pseudo likelihood 1 and the Q-weighted tests. The model-based tests, F-test and

Wald-test, are less powerful.

3.10.3 Linear regression with outlying values

We consider a population of size N = 10,000. The population values yi are generated

from the model yi = 1 + xi + σei, where xi ∼ N(8, 1), ei ∼ N(0, 1) and σ = 0.75.

5% of the yi are replaced by very small values generated randomly from mini∈U{yi} to

{Y0.25(y)− 1.5× (Y0.75−Y0.25)}, where Y0.25 and Y0.75 are the lower and upper quartiles

of the generated values {yi : i ∈ U}. 5% of the yi are replaced by very large values

generated randomly from {Y0.75 + 1.5× (Y0.75 − Y0.25} to maxi∈U{yi}.
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Table 3.2: Observed powers (in %) for testing the hypothesis that the intercept
is equal to zero, at the significance level α = 0.05. The population size is 10, 000
in all cases.

Sample EL test Wald-test F-test Pseudo Pseudo Q-weighted Q-weighted
size Lik.1 test Lik.2 test 1 test 2 test

50 60.4 45.4 43.3 58.3 16.0 54.3 54.7
100 82.1 72.3 71.9 79.5 37.4 78.5 78.5
150 94.2 89.0 88.7 91.7 54.0 92.6 92.6
200 97.6 94.7 94.7 96.5 65.3 96.8 96.8
300 99.6 99.0 99.0 99.4 75.1 99.6 99.5
400 100.0 100.0 100.0 100.0 81.2 100.0 100.0

The parameter ψN is the solution of the least-square equation (3.5) with xi = (1, xi)
T.

The slope is the parameter of interest and the intercept is the nuisance parameter.

We selected 1000 simple random samples of size n = 500. The simulation results are

given in Table 3.3. We omit the pseudo likelihood 2 approach because the confidence

interval cannot be obtained with some samples. This is an issue that was pointed out

by Godambe and Thompson (see 2009, p.92).

The empirical likelihood approach gives the best coverages and tail error rates. The

distribution of the point estimator deviates from normal distribution as the Shapiro &

Wilk p-value is 0.057. This explains the lower coverages of the alternative approaches.

However, the alternative confidence intervals are slightly shorter and more stable.

Table 3.3: 95% confidence intervals for the slope of the model (3.5). N =
10,000. n = 500. Simple random sampling. In all cases, the Shapiro & Wilk
p-value is 0.057. Population with outliers.

Approaches Observed Lower Upper std. ratio ratio
coverages tail err. tail err. length al sdl
% rates % rates %

Empirical likelihood 95.0 2.5 2.5 1.05 1.00 1.00
Wald 94.1 2.8 3.1 0.96 0.91 0.33
Q-weighted 1 93.3* 4.9* 1.8 0.97 0.93 0.69
Q-weighted 2 93.7 4.6* 1.7 1.00 0.95 0.71
Pseudo likelihood 1 93.3* 4.9* 1.8 0.97 0.93 0.69
Bootstrap 94.1 4.1* 1.8 1.00 0.95 0.71
Linearisation 93.3* 4.9* 1.8 0.97 0.93 0.69

∗ Coverages (or tail error rates) significantly different from 95% (or 2.5%). p-value ≤ 0.05.

3.10.4 Logistic regression

In this Section, we use the 2011 UK Labour Force Survey (lfs) data on individuals

who are of working age (i.e 16 − 60 years old for females and 16 − 65 years old for
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Table 3.4: 95% confidence intervals for the slope of the logistic regression (3.6).
N = 13,048. n = 600. lfs data. Systematic sampling. In all cases, the Shapiro
& Wilk p-value is larger than 0.6 and the MSE of the point estimator is 0.0318

Approaches Observed Lower Upper std. ratio ratio
coverages tail err. tail err. length al sdl
% rates % rates %

Empirical likelihood 94.9 2.4 2.7 1.01 1.00 1.00
Wald 94.2 3.4 2.4 1.00 0.97 0.92
Q-weighted 1 94.4 2.5 3.1 0.99 0.98 0.97
Q-weighted 2 95.1 2.2 2.7 1.01 1.00 0.99
Pseudo likelihood 1 94.2 3.0 2.8 0.99 0.98 1.01
Pseudo likelihood 2 94.3 2.9 2.8 0.99 0.98 1.04
Bootstrap 94.6 2.4 3.0 1.01 1.00 1.86
Linearisation 94.4 2.5 3.1 0.99 0.98 0.97

males). The missing observations are removed from the dataset. We quadrupled the

dataset to create an artificial population of size N = 13,048. The variable yi is the

binary unemployment variable: yi = 1 if the individual i is unemployed for one year

or more; yi = 0 otherwise. The variable xi specifies the gender (xi = 1 for male and

xi = 0 for female). We consider the logistic regression model with the response variable

yi and one explanatory variable, xi. Let ψN be the solution of the least-square equation

(3.6) with xi = (1, xi)
T. The parameter of interest is the slope. The intercept is the

nuisance parameter. 1000 randomised systematic samples, of size n = 600, are selected

with unequal probabilities proportional to the inverse of the survey weights (provided

in the lfs dataset).

The simulation results are given in Table 3.4. We observe the same mean squared error

(mse), 0.0318, for all the point estimators. The observed coverages and tail errors are not

significantly different from 95% with all approaches. The rescaled bootstrap confidence

intervals are less stable, because its sdl is 1.86 times the sdl of the empirical likelihood

confidence intervals. The Q-weighted 1 approach reduces to the linearisation approach

(Binder, 1983), because the same variance estimator is used for both approaches and

the point estimators are the same as xi is a binary variable. This is the reason why we

observe the same results for these approaches.

3.10.5 Logistic regression with population level information

In this Section, we consider the logistic regression and the lfs population introduced

in Section 3.10.4. Suppose we have known population level information given by the

population proportion ϕN = 0.37 of individuals unemployed for more than one year;

that is, ϕN is the population mean of the binary response unemployment variable yi (see
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Table 3.5: 95% confidence intervals for the slope of the logistic regression (3.6).
With population level information. N = 13,048. n = 600. lfs data. Systematic
sampling. In all cases, the MSE of the point estimator is 0.0318 and the Shapiro
& Wilk p-value is larger than 0.8.

Approaches Observed Lower Upper std. ratio ratio
coverages tail err. tail err. length al sdl
% rates % rates %

Empirical likelihood 95.0 2.3 2.7 1.009 1.00 1.00
Pseudo likelihood 1 94.2 3.0 2.8 0.992 0.98 0.94
Pseudo likelihood 2 94.3 2.9 2.8 0.993 0.98 0.96
Bootstrap 94.6 2.4 3.0 1.011 1.00 1.73
Linearisation 94.4 2.5 3.1 0.988 0.98 0.91

Section 3.10.4). Hence, the associated estimating function is fi(vi, ϕN ) = yi − ϕN (see

equation (3.42)).

The regression weights (Deville and Särndal, 1992, p.377) are used for the linearisation,

the pseudo likelihood, and the rescaled bootstrap approaches. The variance estimator

proposed by Deville and Särndal (1992) is used. The regression weights are adjusted

for each bootstrap sample. The Wald approach and the Q-weighted approaches are not

considered because they do not take into account the population level information.

In Table 3.5, we have the results when the slope is the parameter of interest. We do

not observe major differences between Tables 3.4 and 3.5. All the methods provide

correct coverages and tail error rates. The rescaled bootstrap confidence intervals are

less stable, as we observe a large ratio sdl. The use of a population level information

has not improved the point estimation of the slope, because we observe the same mse

(0.0318) with and without population level information (see Tables 3.4 and 3.5).

In Table 3.6, we have the results when the intercept is the parameter of interest. With

population level information (values in parentheses), the empirical likelihood confidence

interval has better coverage than the other methods. The bootstrap confidence intervals

are less stable than the other confidence intervals. The population level information

gives a slightly more precise point estimator, because the mse is 0.0123 with population

level information and 0.0195 without population level information.
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Table 3.6: 95% confidence intervals for the intercept of the logistic model (3.6).
N = 13,048. n = 600. lfs data. Systematic sampling. In parentheses, we
have the values with population level information. Without population level
information, the MSE of the point estimator is 0.0195. With population level
information, the MSE of the point estimator is 0.0123. In all cases, the Shapiro
& Wilk p-value is larger than 0.4.

Approaches Observed Lower Upper std. ratio ratio
coverages tail err. tail err. length al sdl
% rates % rates %

Emp. lik. 94.5(94.7) 2.3(2.9) 3.2 (2.4) 1.00(1.01) 1.00(1.00) 1.00(1.00)
Pseudo lik. 1 93.8(93.9) 2.3(3.0) 3.9*(3.1) 0.99(0.99) 0.99(0.98) 1.02(0.99)
Pseudo lik. 2 93.9(94.0) 2.2(2.9) 3.9*(3.1) 0.99(1.00) 0.99(0.99) 1.03(1.00)
Bootstrap 94.1(94.4) 2.4(2.9) 3.5*(2.7) 1.01(1.01) 1.00(1.00) 1.29(1.17)
Linearisation 94.0(94.2) 2.8(3.5*) 3.2 (2.3) 0.98(0.99) 0.98(0.98) 0.97(0.96)

∗ Coverages (or tail error rates) significantly different from 95% (or 2.5%). p-value ≤ 0.05.

3.11 Conclusion

There are numerous situations where the parameter of interest depends on nuisance pa-

rameters. A statistical test on the parameter of interest needs to take into account the

estimation of the nuisance parameters. In Section 3.7, we show that the profile empiri-

cal log-likelihood ratio function (3.15) is a pivotal statistic that follows a χ2-distribution

asymptotically, under the sampling distribution specified by the sampling design. The

function (3.15) can be used to test the parameter of interest, and to construct confi-

dence intervals that take into account the estimation of the nuisance parameters (see

Sections 3.5.1 and 3.9.2). These confidence intervals do not rely on variance estimates,

linearisation (e.g Binder, 1983; Deville, 1999; Demnati and Rao, 2004) or resampling.

The empirical likelihood confidence intervals do not rely directly on the normality of the

point estimator. Our simulation studies show that the empirical likelihood confidence

interval based on the function (3.15) achieves better coverages and tail error rates than

standard approaches, which involve linearisation or resampling.

The approach proposed can be applicable to nonlinear models such as generalised linear

models (see Sections 3.2.1 and 3.10.4. The approach proposed is not limited to regression

parameters. It can be applied to any finite population parameters that are uniquely

defined as the solution of a set of estimating equations (see equation (3.2)).

The approach proposed is less computer intensive than the bootstrap and simpler to

implement than linearisation, because it does not involve the derivation of linearised

variables. Standard confidence intervals based on variance estimates may give poor

coverages, when normality does not hold. This can be the case with skewed data and

outlying values. Even when the normality holds, heteroscedasticity or model misspeci-

fication may affect the coverage of standard confidence intervals (e.g Owen, 1991; Rao
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and Wu, 2009). Furthermore, the coverage may also be affected by the bias of linearised

or resampling variance estimators.

In Section 3.9, we show that population level information can be taken into account. The

empirical likelihood survey weights (3.45) appear naturally because of the maximisation

of the empirical log-likelihood function (3.43), and the fact that a know population

parameter is fixed within the function (3.43). The survey weights (3.45) are always

positive and calibrated. There are some analogies between empirical likelihood and

calibration (Deville and Särndal, 1992), although they are different. First, the empirical

likelihood approach does not always require population level information (see Sections

3.5, 3.7 and 3.8). Secondly, the calibration distance function is only used to derive

calibration weights for point estimation, and plays no role in testing or constructing

confidence intervals. The empirical log-likelihood ratio function (3.51) is used for point

estimation, testing and confidence intervals. The empirical likelihood weights are also

asymptotically optimal for the estimation of totals and means. Calibration weights

(Deville and Särndal, 1992) can be negative and not asymptotically optimal.
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Abstract

The data used in social, behavioral, health or biological sciences may have a hierarchical

structure due to the natural structure that occurs in the population of interest or due

to the sampling or the experimental design itself. Multilevel or marginal models are

often used to analyse such hierarchical data. The data may include sample units that

may be selected with unequal probabilities from a clustered and stratified population.

Inferences for the regression coefficients may be invalid when the sampling design is in-

formative. We apply the profile empirical likelihood approach proposed by Oguz Alper

and Berger (2015) to the regression parameters under a correlated error structure. The

effect of the sampling design is taken into account. This approach can be used for point

estimation, hypothesis testing and confidence intervals for the subvector of parameters.

It asymptotically provides valid inference for the finite population parameters under a

set of regularity conditions. We consider a two stage sampling design, where the first

stage units may be selected with unequal probabilities. We assume that the model and

sampling hierarchies are the same. We use general estimating equations to define the

regression parameters under correlated error structures. We treat the ultimate clusters

as the units of interest by using an ultimate cluster approach.

Keywords: Design based inference; general estimating equations; empirical likelihood;

two stage sampling; uniform correlation structure; regression coefficients; unequal inclu-

sion probabilities.
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4.1 Introduction

The data used in social, behavioral, health or biological sciences may have a hierarchical

structure due to the natural structure that occurs in the population of interest or due to

the sampling or the experimental design itself. Multilevel models (Goldstein, 1986) or

marginal models (e.g. Diggle et al., 2002) are often used to analyse such hierarchical data.

The data may be collected from samples that are selected from a multi stage sampling

design that may involve unequal probabilities at some or all stages of the selection. The

sampling design is called informative when the selection probabilities are associated with

the model outcome variable even after conditioning on the model covariates. Ignoring

an informative sampling may result in invalid inference for regression parameters (e.g.

Pfeffermann et al., 1998).

In standard, single level, regression models, sampling weights can be taken into account

by using the pseudo likelihood approach (e.g. Binder, 1983; Skinner, 1989; Binder and

Patak, 1994). With this approach, the population is fixed and population observations

are assumed to be independent. In multilevel models, however, it is not straightforward

to apply the pseudo likelihood approach as the observations within higher levels of the

hierarchy are not independent. When this is the case, population totals cannot be

written as a single summation of the individual units (e.g. Grilli and Pratesi, 2004).

Pfeffermann et al. (1998) proposed using probability weights, by relying on the pseudo

likelihood principle, in the iterative generalised least squares (igls) algorithm to estimate

multilevel regression parameters under two stage sampling design. They proposed scaling

the survey weights of first level units to reduce the sampling bias when estimating

variance components (see also Clogg and Eliason, 1987; Potthoff et al., 1992; Longford,

1995; Graubard and Korn, 1996; Asparouhov, 2006).

The igls estimation procedure may be computationally intensive as mentioned by

Kovačević and Rai (2003). Alternatively, the general estimating equations (GEE) (e.g.

Liang and Zeger, 1986; Diggle et al., 2002) that involve the use of a working correla-

tion structure can be used to estimate regression parameters. Variance components are

treated as fixed and replaced by their estimates when they are unknown. Liang and

Zeger (1986) showed that the gee estimator is fully efficient when the working correla-

tion structure is correctly specified. More discussion about the asymptotic properties of

the gee estimators together with some empirical evidence can be found in the literature

(e.g. Liang and Zeger, 1986; Crowder, 1995; Sutradhar and Das, 1999).

The general estimating equations provided by Liang and Zeger (1986) do not involve

survey weights or the characteristics of the sampling design. Survey weights can be in-

corporated into the general estimating equations by following the pseudo likelihood ap-

proach (e.g. Binder, 1983; Skinner, 1989). The resulting approach is called the multilevel

pseudo likelihood approach (e.g. Pfeffermann and La Vange, 1989; Kovačević and Rai,
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2003; Grilli and Pratesi, 2004; Asparouhov, 2006; Skinner and De Toledo Vieira, 2007;

De Toledo Vieira and Skinner, 2008). Asparouhov (2006) provided conditions under

which the multilevel pseudo likelihood estimator is approximately unbiased. Skinner and

De Toledo Vieira (2007) noticed that the weighted igls estimator (Pfeffermann et al.,

1998) and the weighted gee estimator are expected to provide identical point estimates

under a working uniform correlation structure. Multilevel pseudo maximum likelihood

estimation can be straightforwardly extended to multilevel generalised regression mod-

els (e.g. Sutradhar and Kovačević, 2000; La Vange et al., 2001; Grilli and Pratesi, 2004;

Asparouhov, 2006; Asparouhov and Muthén, 2006; Rabe-Hesketh and Skrondal, 2006).

Standard confidence intervals rely on variance estimates. Variances of the estima-

tors for the regression parameters can be computed through Taylor linearisation, the

sandwich type estimator, (e.g. Binder, 1983; Pfeffermann et al., 1998; Skinner and

De Toledo Vieira, 2007; Kovačević and Rai, 2003) or through the bootstrap (e.g. Grilli

and Pratesi, 2004). The latter is very computationally intensive for hierarchical data.

When the parameter of interest is a subvector of the parameters, the approach pro-

posed by Binder and Patak (1994) can be applied to compute the conditional variance

of the parameter of interest. When there is a bias in the variance estimators, standard

confidence intervals may provide poor coverages.

Standard methods require the normality of the point estimators. The inference for the

parameters may not be valid when the normality assumption does not hold. We propose

using the profile empirical likelihood approach (e.g. Oguz Alper and Berger, 2015), which

is based on the empirical likelihood approach proposed by Berger and De La Riva Torres

(2016) to make inferences for regression parameters when modelling hierarchical data.

We incorporate correlated error structure through the gee (see Section 4.4). We use

an ultimate cluster approach (Hansen et al., 1953). We treat the ultimate clusters

as the units of interest. The empirical likelihood approach is applied at the ultimate

cluster level. Estimating functions are defined as the sum of individual observations

within clusters. This summation takes into account the correlation between any two

observations in a given cluster.

Empirical likelihood inference allows us to investigate the design performance of the es-

timators. We assume that the sampling distribution is specified by the sampling design.

Hence, we use design based confidence intervals that do not require the specification of

the underlying model which may not be known. The model is used to define the point

estimators through gee (see Section 4.4). The sampling design is taken into account

with the approach proposed. The resulting point estimators of the regression parameters

are design consistent, which is a property often requested by survey practitioners (e.g.

You and Rao, 2002). The resulting empirical likelihood confidence intervals may be bet-

ter than the standard confidence intervals even when the point estimator is not normal,

the variance estimators are biased or unstable or the individual error variances are het-

eroscedastic. The confidence intervals proposed do not rely on resampling, linearisation,
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variance estimation or design effect. Population level information can be accommodated

with the approach proposed.

In Section 4.2, we describe the two stage sampling design that we consider. In Section

4.3, we define the working model. In Section 4.4, we define the parameter of interest

through gee. In Section 4.5, we introduce the empirical log-likelihood function that

we aim to maximise under a set of constraints. In Section 4.6, we demonstrate how

the maximum empirical likelihood estimators of the regression coefficients are obtained

under two stage sampling design. In Section 4.7, we explain how the estimating function

is computed at the ultimate cluster level under a uniform covariance structure. We

provide an expression for the inverse of the within covariance matrix that involves survey

weights. In Section 4.7, we demonstrate how the cluster level general estimating function

is estimated based on the sample data. In Section 4.7.1, we provide a scaling factor to

scale the weights of the first level units. In Section 4.7.2, we show how the variance

components can be estimated by incorporating survey weights. In Section 4.8, we define

the profile empirical log-likelihood ratio function. In Sections 4.9-4.9.1, we compare the

performance of the empirical likelihood confidence intervals with the standard confidence

intervals. In Section 4.10, we briefly present our findings and discuss about possible

extensions. The R (R Development Core Team, 2014) code is provided in Appendix B.

4.2 Two stage sampling design

Let U be a finite population comprised of N disjoint clusters Ui of sizes Ki, with i =

1, . . . , N . Let s be the sample of clusters, called the primary sampling units (psus), of

size n selected with replacement with unequal probabilities pi (e.g. Hansen and Hurwitz,

1943) from U , where
∑

i∈U pi = 1. We assume that both n and N are large. When

the sampling fraction denoted by n/N is negligible, without replacement sampling with

first-order inclusion probabilities given by

πi = npi, (4.1)

where n is the fixed number of draws, is asymptotically equivalent to with-replacement

sampling. In this case, the approach proposed is valid under selection of the psus

without replacement with unequal probabilities given by (4.1). Let si be the sample of

secondary sampling units (ssus), of size ki, with j = 1, . . . , ki, selected with conditional

probabilities πj|i within the ith psu selected at the first stage. Thus the unconditional

probability of unit j in cluster i is given by πij = πj|i πi.

Let vij be a vector of the values of a set of variables associated with unit j ∈ Ui. We

consider a design-based approach, where the sampling distribution of the sample data,

{vij : j ∈ si and i ∈ s}, is only specified by the sampling design P(s). Thus we consider

that the vij are fixed, non-random, vectors.
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The sample data does not contain independent and identically distributed observations

under two-stage sampling design. The identical distribution assumption does not hold

because of the selection of first stage units, psus, with unequal probabilities. The in-

dependence assumption is broken due to the correlation expected between the second

stage sampling units, ssus, within the psus selected.

4.3 Working model

Consider vij = (yij ,x
T
ij)

T, where the yij are the observed values of a scalar variable

of interest and the xij is the vector of values of the explanatory variables associated

with the jth unit within the ith cluster, where j = 1, . . . ,Ki and i = 1, . . . , N . Let

y be the vectors obtained from stacking the vectors yi = (yi1, . . . , yiKi
)T and X be a

fixed known data matrix obtained from stacking the Ki × b dimensional data matrices

Xi = (x
(1)
i · , · · · ,x

(b)
i · ), where x

(l)
i · = (x

(l)
i1 , · · · , x

(l)
iKi

)T, with l = 1, . . . , b. Here, b is the

number of covariates. Consider the general linear regression

y = Xβ + ε, (4.2)

where β is a b × 1 vector of fixed unknown parameters and ε is the vector of residuals

with a vector of mean 0 and a block-diagonal covariance structure V , where the Ki×Ki

covariance matrices V i are on the main diagonal and zeros elsewhere. The vector of

residuals ε is obtained from stacking the vectors εi = (εi1, . . . , εiKi
)T. The random

variables εij , j = 1, · · · ,Ki, are expected to be correlated within clusters. We specify a

covariance structure for V i to estimate unknown parameters β.

Suppose that the uniform correlation model (Diggle et al., 2002, p.55) holds for the

population data, {vij : j ∈ Ui and i ∈ U}. Under this model, the same correlation coef-

ficient, ρ, is assumed between any given two observations within the same cluster. The

uniform correlation model is equivalent to the following two-level model (e.g. Goldstein,

2011).

yij = xT
ijβ + ui + eij , (4.3)

where the ui and the eij are independent random variables with means zero and variances

σ2u and σ2e respectively. Here, the subscripts i and j are associated respectively with level-

two and level-one of model (4.3). We will consider that the level-two units correspond

to clusters while the level-one units refer to the units within clusters. We call the model

(4.3) the working model (e.g. Skinner and De Toledo Vieira, 2007). This model is a

particular case of mixed effects models. It is commonly used for small area estimation of

means and called the nested error model in that context (e.g. Battese et al., 1988). Park

and Fuller (2009) proposed a survey regression estimator based on a mixed model. They

provide the conditions under which the mixed model estimator is design consistent for
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finite population mean. Here, we only consider the inference for the finite population

value of β. It would be interesting to extend this work to make inference for the finite

population mean of yij .

The covariance matrices V i, under the uniform correlation structure, are given by

V i = σ2e IKi
+ σ2u (1Ki

× 1T
Ki

), (4.4)

where IKi
is the Ki ×Ki identity matrix and 1Ki

is the Ki × 1 column vector of ones

(e.g. Rao, 2003, p.135). The correlation coefficient, ρ, is given by σ2u/(σ
2
u + σ2e). The

same covariances σ2u appear on the non diagonal parts of the matrices V i. Because of

this, the structure is also called the uniform covariance structure under model (4.3).

4.4 Target finite population parameter and general esti-

mating equation

Suppose that the working model (4.3) holds for the population data. We consider the

b× 1 finite population parameter vector βN , with b = O(1), that is the unique solution

of the following population estimating equation (Godambe, 1960).

G(β) =

N∑
i=1

gi·(vij ,σ,β) = 0b,

where gi·(vij ,σ,β) is a b× 1 vector of estimating functions associated with the second-

level units under model (4.3), clusters, vij is the vector of variables corresponding to the

unit j in the ith cluster and σ is a vector of variance components, that is, σ = (σ2e , σ
2
u)T.

We will use the notation gi·(β) in substitution for gi·(vij ,σ,β) for simplicity.

Under the uniform correlation model, equivalently model (4.3), the parameter βN is

defined as the unique solution of the general estimating equation (gee) (e.g. Liang and

Zeger, 1986) given by

G(β) =

N∑
i=1

gi·(β) =

N∑
i=1

XT
i V
−1
i (yi −Xiβ) = 0b, (4.5)

where the Xi are known data matrices and the yi are the vectors of response variables

that are defined in Section 4.3 and the covariances V i are given by expression (4.4).

The cluster level estimating functions gi·(β) are the functions of the first-level unit

observations, vij . The correlation between observations within a cluster is incorporated

through the V i. The inverses of the covariance matrices V i are given by Rao (2003,

p.135) as follows.

V −1i = σ−2e {IKi
−K−1i γi (1Ki

× 1T
Ki

)}, (4.6)
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where IKi
and 1Ki

are defined in Section 4.3 and the constants γi are given by

γi = σ2u/(σ
2
u + σ2e/Ki)· (4.7)

Under a set of regularity conditions given by Liang and Zeger (1986), the solution

of the gee (4.5) provides a consistent estimator of the infinite population parameter

β. Furthermore, the resulting estimator is fully efficient when the working model is

correctly specified. The estimator βN is also called the generalised least square (gls)

estimator. The gls estimator is the maximum likelihood estimator when the vector

of response variables y in (4.2) follows a multivariate normal distribution with known

block-diagonal covariance structure V . Under the independence assumption, that is,

ρ = 0, the gls estimator reduces to the ordinary least square (ols) estimator of β.

The parameter βN can also be obtained from solving the mixed model equations (Hen-

derson et al., 1959). As shown by Rao (2003, p.97), the solution of (4.5) and the solution

of the mixed model equations are identical. The use of the gee (4.5) may be more con-

venient than the latter in the sense that we may specify other covariance structures in

equation (4.5) that would work for the data. The choice of the covariance structure

does not affect the consistency but only the efficiency of the inference for the regression

parameter β (Liang and Zeger, 1986; Diggle et al., 2002).

The variance components are replaced by their estimates in (4.7) when they are un-

known. In this case, the asymptotic properties of the estimator βN may not always

hold (e.g. Crowder, 1995). However, the consistency will be usually valid as shown by

Sutradhar and Das (1999).

4.5 Empirical log-likelihood function

We consider the empirical likelihood approach that was proposed by Berger and De La

Riva Torres (2016). The empirical log-likelihood function is given by

`(m) =

n∑
i=1

logmi, (4.8)

where the mi, with i ∈ s, are unknown scale-loads allocated to data points i ∈ s (Hartley

and Rao, 1968) andm is the n×1 vector of the scale-loads mi. Here, the subscript i refers

to the psus selected with inclusion probabilities πi (4.1) from the finite population U , s

includes the psus selected and n is the sample size of the psus (see Section 4.2). Hartley

and Rao (1969) showed that expression (4.8) is the empirical log-likelihood function for

unequal probability sampling with replacement (see also Kim, 2009; Berger and De La

Riva Torres, 2016).
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The maximum empirical likelihood estimators m̂i are obtained by maximising the em-

pirical log-likelihood function (4.8) with respect to the constraints: mi > 0 and

n∑
i=1

mici = C, with C =

N∑
i=1

ci, (4.9)

where ci = {π−1ziT, fi(ϕN )T}T and C = (π−1nT,0T)T. Here, π = n/N is the sampling

fraction at the first stage of selection. The solution to this maximisation is invariant to

π as it is a constant. It is only required to justify the asymptotic results (e.g. Berger and

De La Riva Torres, 2016). Hence the sampling fraction π can be removed from both ci

and C when applying the approach. The zi are the values of the stratification variables.

Suppose that the population U is stratified into H strata denoted by U1, . . . , UH , with

∪Hh=1Uh = U . Let sh be a sample of psus of fixed size nh selected from Uh with unequal

probabilities with replacement. We assume that the number of strata H is bounded:

H = O(1). The design variables zi are defined by (zi1, . . . , ziH)T, where zih = πi for

i ∈ Uh and zih = 0 otherwise. The n is the vector of stratum sample sizes defined by

n = (n1, . . . , nH)T. With this constraint, we take into account the fact that samples of

fixed sizes nh are selected from each stratum Uh.

The efficiency of the inference for β can be increased by incorporating population level

information, which may be available from administrative data and/or census data (e.g.

Deville and Särndal, 1992; Chaudhuri et al., 2008). We can put this information into

the ci through estimating functions fi(ϕN ) (e.g. Berger and De La Riva Torres, 2016).

Here, ϕN is a vector of known population level parameters that is the unique solution of

the population estimating equation
∑N

i=1 fi(ϕ) = 0. We assume that the fi(ϕ) do not

depend on βN . When ϕN is a function of variables associated with the ssus , the fi(ϕN )

are replaced by their unbiased estimates (e.g Estevao and Särndal, 2006). For example,

suppose that ϕN is a population mean that is defined by ϕN =
∑N

i=1

∑Ki
j=1 ζij/

∑N
i=1Ki,

where ζij is a vector of auxiliary variables. In this case, an unbiased estimate is given

by f̂i(ϕN ) =
∑

j∈si (ζij −ϕN )π−1j|i .

We assume that the C is an inner point of the conical hull formed by
∑n

i=1mici. Hence

the set of m̂i is unique. We assume that ci and C satisfy the regularity conditions given

by Berger and De La Riva Torres (2016). As shown by Berger and De La Riva Torres

(2016), using the method of Lagrange multipliers, we have

m̂i(ϕN ) = (πi + ηTci)
−1, (4.10)

where the vector η is such that (4.9) and mi > 0 hold. A modified Newton–Raphson

algorithm as in Chen et al. (2002) can be used to compute η. When we have a single

stratum and do not use any population level information, we have ci = π−1πi. In this

case, it can be shown that η = 0 and m̂i(ϕN ) = m̂i = π−1i , which is the standard Horvitz

and Thompson (1952) weight for the ith psu.
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4.6 Maximum empirical likelihood point estimator under

two stage sampling designs

Let m̂∗i (β,ϕN ) maximize `(m) subject to the constraints mi > 0 and

n∑
i=1

mi c
∗
i (β) = C∗ (4.11)

with

c∗i (β) = {ciT, ĝi·(β)T}T and C∗ = (CT,0T)T,

where ĝi·(β) is a sample based estimate of the gi·(β) defined by expression (4.5) for a

given parameter vector β. The maximum value of `(m) under mi > 0 and (4.11) is

given by

`(β | ϕN ) =
n∑
i=1

log m̂∗i (β,ϕN )· (4.12)

The maximum empirical likelihood estimator β̂ of βN is the vector that maximizes ex-

pression (4.12) over β for a given value of ϕN . Berger and De La Riva Torres (2016)

showed that β̂ is the unique solution of the following sample level gee.

Ĝ(β,ϕN ) =
n∑
i=1

m̂i(ϕN ) ĝi·(β) = 0b, (4.13)

where the m̂i(ϕN ) are given by (4.10). We assume that there exists a design consis-

tent estimator, the ĝi·(β), for the gi·(β). We also assume that the ĝi·(βN ) satisfy

the regularity conditions given by Berger and De La Riva Torres (2016). As shown

by Berger and De La Riva Torres (2016), Ĝ(β,ϕN ) is approximately equivalent to the

asymptotic design optimal regression estimator. Under a one stratum design where no

population level information is used, we have m̂i(ϕN ) = m̂i = π−1i . This yields the

Horvitz-Thompson estimator of G(β) when β = βN . In this case, the estimator β̂ is

design-consistent (e.g Godambe and Thompson, 2009) and called the multilevel pseudo

likelihood estimator (e.g. Pfeffermann and La Vange, 1989; Kovačević and Rai, 2003;

Grilli and Pratesi, 2004; Asparouhov, 2006; Skinner and De Toledo Vieira, 2007). Skin-

ner and De Toledo Vieira (2007) noticed that the weighted igls estimator (Pfeffermann

et al., 1998) and the weighted gee estimator, that is, the estimator β̂, are expected to

provide identical point estimates under a working uniform correlation structure. Both

the number of psus selected, n, and the sample sizes of clusters, ki, should be large for

design consistency. Pfeffermann et al. (1998, p.29) showed that consistency of β̂ can be

obtained by only assuming that n is large.
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4.7 Estimation within clusters

Let ĝi·(β) be the sample based estimates of gi·(β) that are defined by

ĝi·(β) = XT
i V̂

−1
i (yi −Xiβ), (4.14)

where the V̂ i are called the working covariance matrices (e.g. Liang and Zeger, 1986).

The inverse matrices V̂
−1
i can be viewed as sort of weights. Based on the expression

given by Rao (2003, p.135), we derive the V̂
−1
i as follows.

V̂
−1
i = σ̂−2e {diag1≤j≤ki(wj|i)− γ̂iw

−1
i· (wiw

T
i )}, (4.15)

where wj|i = (πj|iai)
−1, wi = (w1|i, . . . , wki|i)

T, with j = 1, . . . , ki and i = 1, . . . , n,

where the ai are some constants defined at cluster level, wi· =
∑ki

j=1wj|i and the γ̂i are

defined by

γ̂i = σ̂2u/(σ̂
2
u + σ̂2ei), (4.16)

where σ̂2ei = σ̂2e/wi·. Here, σ̂2e and σ̂2u are sample based estimates, which are respectively

given by expressions (4.21) and (4.22), for the variance components σ2e and σ2u. The

first-level error variance σ2e has a multiplicative factor w−1j|i in equation (4.15). In the

expression given by Rao (2003, p.135), the constants that specify the heterogeneity of

error variances are used as a multiplicative factor.

We call the constants ai the scaling factors (e.g. Pfeffermann et al., 1998). The γ̂i (4.16)

is a design consistent estimator of γi (4.7) when ai = 1 and σ̂2e and σ̂2u are both design

consistent. Pfeffermann et al. (1998, p.29) suggested scaling to reduce the bias in the

estimators of variance components when cluster sample sizes ki are small. In this case,

variance components’ estimators are not consistent. Bias reduction is achieved when the

sampling design at the selection stage of the ssus is ignorable. Consistency of β̂ is still

valid under scaling provided n is large and the scaling factors ai are independent from

the response variable yij (Pfeffermann et al., 1998, p.29).

When we plug the estimate ĝi·(β) (4.14) into the sample level gee (4.13) and solve it

for β, we obtain the estimator

β̂ =


n∑
i=1

m̂i(ϕN )a−1i

ki∑
j=1

xij(xij − γ̂i xi)Tπ−1j|i


−1

n∑
i=1

m̂i(ϕN )a−1i

ki∑
j=1

xij(yij − γ̂i yi)π−1j|i

 ,

(4.17)

where m̂i is defined by (4.10) and xi and yi are weighted sample means corresponding

to the ith cluster that are respectively defined by xi =
∑

j∈si xijπ
−1
j|i /

∑
j∈si π

−1
j|i and

yi =
∑

j∈si yijπ
−1
j|i /

∑
j∈si π

−1
j|i .
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Under the independence assumption and when ai = 1, the inverse covariance matrices

V̂
−1
i are proportional to conditional design weights of ssus , that is, V̂

−1
i = (σ̂2eπj|i)

−1.

In this case, the ĝi·(β) is the Horvitz and Thompson (1952) estimator of gi·(β) for a

given value of β. Together with the independence assumption, when we have m̂i(ϕN ) =

m̂i = π−1i in (4.13), the solution of the expression (4.13) gives the simple probability

weighted least squares estimator.

β̂ =


n∑
i=1

ki∑
j=1

xijx
T
ijπ
−1
ij


−1

n∑
i=1

ki∑
j=1

xijyijπ
−1
ij

 , (4.18)

where the πij = πiπj|i is the joint inclusion probability associated with the jth unit in

the ith cluster. The estimator β̂ is consistent for the finite population parameter βN

with respect to the sampling distribution (e.g. Isaki and Fuller, 1982).

4.7.1 Scaling

Several scaling methods have been proposed (e.g. Clogg and Eliason, 1987; Potthoff

et al., 1992; Longford, 1995; Graubard and Korn, 1996; Pfeffermann et al., 1998). We

consider the scaling method proposed by Potthoff et al. (1992), where the scaling factors

are defined by

ai =
∑
j∈si

π−2j|i /
∑
j∈si

π−1j|i · (4.19)

This scaling method was motivated by You and Rao (2002) through linking a cluster

level model, which is assumed to be valid for the sample data, and the direct design-

based estimators yi of cluster means. This model may be obtained from aggregating the

unit level model (4.3) as follows (Rao, 2003, p.149).

yi =xT
i β + ui + εi (4.20)

whereyi,xi and εi are the sample means that are respectively defined byyi =
∑

j∈si yijπ
−1
j|i

/
∑

j∈si π
−1
j|i , xi =

∑
j∈si xijπ

−1
j|i /

∑
j∈si π

−1
j|i and εi =

∑
j∈si εijπ

−1
j|i /

∑
j∈si π

−1
j|i . Under

model (4.20), var(εi) ≡ σ2ei = σ2eai/K̂i (see also Potthoff et al., 1992, p.385).

The sum of the scaled weights, wi·, was considered as the effective sample size by Potthoff

et al. (1992). They proposed adjusting survey weights by using the scaling coefficients

(4.19) to take into account the effect of the sampling design when making inferences

for infinite population parameters. They also considered the case in which the error

variances differ and are proportional to some known constants. The scaling method

based on (4.19) is called scaling method 1 by Pfeffermann et al. (1998). They interpreted

the scaling factor (4.19) as a design effect.
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Under simple random sampling at both stages of the sampling design and when m̂i(ϕN ) =

m̂i = π−1i , the estimator (4.17) reduces to the standard empirical best linear unbiased

prediction (eblup) estimator of βN after applying this scaling method. The standard

estimator under simple random sampling is not obtained if the scaling is not applied

(Huang and Hidiroglou, 2003).

Scaling is used as a tool to reduce the bias of the estimators when cluster sample sizes

are small. Asparouhov (2006) compared the empirical biases of the estimators under

several scaling methods. However, there has been no theoretical evidence supporting

which scaling method is better for what kind of parameters and under what type of

sampling designs. The consistency for βN is achieved regardless of the scaling method

provided the number of clusters n is large and the scaling factors ai are independent from

the response variable yij (Pfeffermann et al., 1998, p.29). However, how the efficiency of

the inference about the regression parameters and the variance components are affected

by the chosen scaling method has not been clearly specified in the literature. In this

respect, it is worth developing a general theory for scaling as a future work.

4.7.2 Estimation of variance components

The assumption of known variance components, σ2e and σ2u, may not be ideal in practice.

Several approaches have been considered to estimate variance components (e.g. Prasad

and Rao, 1990; Searle et al., 1992; Longford, 1995; Graubard and Korn, 1996; Pfeffer-

mann et al., 1998; You and Rao, 2002; Huang and Hidiroglou, 2003; Korn and Graubard,

2003; Breidt et al., 2005; De Toledo Vieira and Skinner, 2008). Design and model prop-

erties of some of those estimators are discussed by Korn and Graubard (2003) and Huang

and Hidiroglou (2003). Prasad and Rao (1990) (see also You and Rao, 2002) proposed

variance estimators that are based on the method of moments. As noted by Rao (2003,

p.138), these estimators are the same as those obtained from the method of fitting-of-

constants, which is also known as Henderson’s (1953) Method III. We incorporate survey

weights into these estimators as seen in the equations (4.21) and (4.22).

σ̂2e =
1∑n

i=1 π
−1
i

(∑ki
j=1wj|i − 1

)
− b+ 1

n∑
i=1

π−1i

ki∑
j=1

wj|i ε̂
2
ij , (4.21)

where the wj|i are the scaled weights defined in Section 4.7, b is the dimension of

the covariates xij in model (4.3), the ε̂ij are the residuals obtained from the OLS

regression of yij − yi on xij − xi without intercept, where the xij is the b × 1 vec-

tor of covariates for the jth unit in the ith cluster, yi =
∑

j∈si yijwj|i/
∑

j∈si wj|i and

xi =
∑

j∈si xijwj|i/
∑

j∈si wj|i.

σ̂2u =
1

M∗


n∑
i=1

π−1i

ki∑
j=1

wj|i υ̂
2
ij −

 n∑
i=1

π−1i

ki∑
j=1

wj|i − b

 σ̂2e

 , (4.22)
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where the υ̂ij are the residuals obtained from the OLS regression of yij on xij with

intercept and

M∗ =
n∑
i=1

ki∑
j=1

wij − tr


 n∑
i=1

π−1i

ki∑
j=1

wj|i xij x
T
ij

−1 n∑
i=1

π−1i

 ki∑
j=1

wj|i

2

xix
T
i

 ,

with wij = π−1i wj|i. The estimators (4.21) and (4.22) are equivalent to the estimators

that are given by Graubard and Korn (1996) under model (4.3) with b = 1 and x = 1.

They are approximately unbiased when both n and ki are large (Korn and Graubard,

2003). Scaling reduces the bias when ki is small (see Pfeffermann et al., 1998, p.29).

Huang and Hidiroglou (2003) recommended using these estimators without scaling of

weights under informative sampling at both stages of selection. Korn and Graubard

(2003) proposed estimators that are approximately design unbiased. However, these

estimators require second order inclusion probabilities. Huang and Hidiroglou (2003,

p.1901) provided adjusted versions of the estimators (4.21) and (4.22). They showed

that the adjusted versions are both design and model consistent. Breidt et al. (2005)

used the restricted maximum likelihood sample-weighted estimating equations for the

estimation of the variance components. The solutions to those estimating equations are

design-consistent for σ2e and σ2u (Breidt et al., 2005, p.838).

Poor estimation of the variance components may result in some lost in efficiency of the

inference for the finite population parameter βN . However, the consistency will still

hold provided the number of psus n is large (e.g. Pfeffermann et al., 1998). Park and

Fuller (2009) showed that the mixed model estimator they proposed is design consistent

even when the variance component σ2u is poorly estimated. The empirical study they

conducted shows that the poor estimation of σ2u causes a modest lost in efficiency of

the inference for the finite population mean. It would be interesting to investigate how

sensitive the inference for the regression parameter βN would be to the chosen estimation

method for variance components.

4.8 Empirical likelihood inference under two stage sam-

pling design: testing and confidence intervals

Let βN = (θT
N ,ν

T
N )T be the (p+ q)× 1 vector of parameters that is the unique solution

of the population gee (4.5). Let Θ and Λ be compact sets. Suppose that θ ∈ Θ ⊂ Rp

is the p × 1 vector of the parameter of interest and ν ∈ Λ ⊂ Rq is the q × 1 vector

of parameters that are not of primary interest (Oguz Alper and Berger, 2015). The

latter is called the nuisance parameter (e.g. Qin and Lawless, 1994). We recall the

profile empirical log-likelihood ratio function proposed by Oguz Alper and Berger (2015)

to make inferences for θN in the presence of nuisance parameters νN . We treat the
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estimates of variance components σ2e and σ2u as fixed. Hence we do not consider the fact

that they are estimated. The profile empirical log-likelihood ratio function is defined by

r̂(θ | ϕN ) = 2

{
`(β̂ | ϕN )−max

ν∈Λ
`(θ,ν | ϕN )

}
, (4.23)

where `(θ,ν | ϕN ) = `(β | ϕN ) with β = (θT,νT)T and `(β̂ | ϕN ) =
∑

i∈s log m̂i(ϕN ),

where the m̂i(ϕN ) are defined by (4.10). Under a set of regularity conditions given by

Berger and De La Riva Torres (2016) and assuming that fi(ϕN ) and ĝi·(β) satisfy those

conditions, Oguz Alper and Berger (2015) showed that the empirical log-likelihood ratio

function r̂(θ | ϕN ) asymptotically converges to an expression with a quadratic form that

depends on the estimator (4.13) and the Hansen and Hurwitz (1943) estimator of the

variance of (4.13). We consider applying an ultimate cluster approach (Hansen et al.,

1953). In this approach, the variance estimator corresponds to the variance among

the psus. It is consistent when the sampling fraction of the psus is negligible, that is,

n/N = o(1) (e.g. Särndal et al., 1992, Ch.4). The square root of the quadratic form

follows a normal distribution as the estimator (4.13) is approximately equivalent to the

regression estimator that is normally distributed as shown by Scott and Wu (1981) and

the variance estimator is consistent when n/N = o(1). Hence Oguz Alper and Berger

(2015) showed that

r̂(θN | ϕN ) ∼ χ2
df=p· (4.24)

The property (4.24) can be used for testing and constructing confidence intervals. Sup-

pose we wish to test H0 : θN = θ0N versus H1 : θN 6= θ0N . The p-value is
∫∞
r̂(θ0N ) χ

2
df=p(x) dx,

where χ2
df=p(x) is the density of a chi-squared distribution with p degrees of freedom.

We consider construction of confidence intervals for a scalar, p = 1, by using the

property (4.24). Let θN be a scalar subparameter of βN . In this case, r̂ (θN | ϕN )

follows asymptotically a chi-squared distribution with one degree of freedom. Thus

the α% empirical likelihood Wilks’s (1938) type confidence interval for θN is given by

{θ : r̂ (θ | ϕN ) 6 χ2
df=1(α)}, where χ2

df=1(α) is the upper α-quantile of the chi-squared

distribution with one degree of freedom. The r̂ (θ | ϕN ) is a convex function of θ, for

given value of ϕN , with a minimum value when θ is equal to the empirical maximum

likelihood estimator θ̂ that is the unique solution of (4.13). The bisection method can

be used to find the lower and upper bounds. This involves calculating r̂ (θ | ϕN ) for

several values of θ.

4.9 Simulation study

In this Section, we present some numerical results for the parameters of a hierarchical

linear model defined by (4.3). Our simulation study shows the design performance of
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the confidence intervals. We selected 1000 random samples with respect to a two-stage

sampling design from a finite population that is a realisation of the infinite population

model given by

yij = β0 + β1x
(1)
ij + β2x

(2)
ij + ui + eij , (4.25)

where β0 = 20, β1 = β2 = 1, x
(1)
ij ∼ rgamma(Ki, shape = 2, scale = α1) and x

(2)
ij ∼

rgamma(Ki, shape = 2, scale = α2), where α1 and α2 are selected randomly with re-

placement among the values (1, 2, 3) and (1, 2, 3, 4) respectively. The Ki are the cluster

sizes generated from a lognormal distribution and defined by Ki = 100 exp(τi), with

τi ∼ N(0, 0.2). Here, the number of clusters is N = 3000. The minimum and the max-

imum values of the cluster sizes are respectively 47 and 207. The ui are the random

effects following a normal distribution with mean zero and standard deviation σu. The

eij are the level one residuals that were generated from a chi-squared distribution, that

is, eij ∼ χ2(σ2e/2)−σ2e/2, where σ2e is the variance of eij . The values of the variances σ2e

and σ2u were chosen based on the intra-cluster correlation that is defined by ρ = σ2u/σ
2,

where σ2 = σ2e + σ2u. The total variance, σ2, was kept fixed at 12. We considered seven

different values for the correlation coefficient that lie in the range [0.04, 0.50]. Population

size is
∑N

i=1Ki = 305,305. The finite population parameters, (β0N , β1N , β2N ) (see Table

4.1), under model (4.25) are obtained by solving the population gee (4.5).

We selected samples with respect to a two-stage sampling design. At the first stage, a

sample of clusters, psus,, s, of size n = 150 was selected with randomized systematic

sampling with unequal probabilities πi proportional to the measure of size δi = b0 +

ui + b1εi, where εi ∼ exponential(rate = 1) − 1 and corr(δi, ui) ≈ 0.85. The constant

b0 was used to avoid very small inclusion probabilities for the psus. The constant b1

was used to control the correlation between δi and ui. At the second stage, samples of

the ssus, the si, of sizes ki = αKi were selected with simple random sampling without

replacement within the psus selected at the first stage, where α = 0.25 in Tables 4.1–4.2

and α = {0.10, 0.25, 0.40} in Tables 4.3–4.4. The ranges of sample sizes within clusters

are given by [5, 21] when α = 0.10, [12, 52] when α = 0.25 and [19, 83] when α = 0.40.

We compare the Monte Carlo design-based performance of the empirical likelihood con-

fidence interval with the standard parametric confidence interval and a non-parametric

confidence interval that is based on the pseudo likelihood approach (e.g. Binder, 1983;

Pfeffermann and La Vange, 1989; Binder and Patak, 1994; Skinner and De Toledo Vieira,

2007). The pseudo likelihood confidence interval relies on variance estimation. We used

the (Hartley and Rao, 1962) variance estimator for this approach.

The pseudo likelihood confidence interval is obtained by solving a system of equations

that rely on an estimating function and its variance estimator. The estimating function is

defined by using Binder and Patak’s (1994) approach that takes into account the nuisance

parameters. Variance estimator is computed at point estimates of the parameters. Here,
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the pseudo likelihood confidence interval is the same as the one that relies on a linearised

variance estimator that is obtained by using the ‘delta method’ (e.g. Binder, 1983;

Pfeffermann et al., 1998; Skinner and De Toledo Vieira, 2007). This approach assumes

the normality of the point estimator.

Standard parametric confidence intervals involve maximum likelihood estimation. This

method is based on the normality assumption. The hierarchical structure is considered

by fitting a two level model with a uniform covariance structure. Survey weights are

not taken into account with this approach. Point estimates of the parameters and their

standard errors were obtained by using the ‘lme’ function in R (R Development Core

Team, 2014).

We consider 95% confidence intervals for finite population parameters that are esti-

mates of regression coefficients in working model (4.25). We used Shapiro and Wilk’s

(1965) test statistics to test the normality of the point estimators. Significance of ob-

served coverages and tail errors was tested by using a z-test for proportions given by

z2 = (p − P0)
2/(P0(1 − P0)/1000), where p is observed coverage or tail error rate and

P0 is the nominal value equal to 0.95 or 0.025. We have asymptotically z2 → χ2
df=1

in distribution as the distribution of z-statistic is approximated by a standard nor-

mal distribution under large sample (De Moivre, 1733). We also considered the per-

centage relative bias (%) of the point estimators and the standard error estimators

with respect to the sampling design. The percentage relative bias (%) is defined by

rb% = [{E(φ̂) − φ}/φ] ∗ 100%, where E(φ̂) = M−1
∑M

m=1 φ̂m, with M = 1000, is the

empirical expectation of the estimator φ̂, where φ is the quantity of interest and φ̂m is

an estimate of the quantity φ in the mth sample. Here, the quantity φ may refer to

the finite population parameter when φ̂ = β̂N or the empirical standard error (se) when

φ̂ = ŝe(β̂N ), where β̂N = {β̂0N , β̂1N , β̂2N}. The empirical standard error is computed

by (M − 1)−1
∑M

m=1 (φ̂m − E(φ̂))2, with φ̂ = β̂N . We consider two estimators denoted

by β̂
el

N and β̂
ml

N in Table 4.1, where β̂
el

N = (β̂el0N , β̂
el
1N , β̂

el
2N )T and β̂

ml

N = (β̂ml0N , β̂
ml
1N , β̂

ml
2N )T.

Weights are incorporated with the empirical likelihood approach. The estimator β̂
el

N is

the solution of the sample gee (4.13). We have the same estimator with the pseudo

likelihood approach as we did not use population level information and the weights are

equivalent to the Horvitz and Thompson (1952) weights in this case (see Section 4.6).

The estimator β̂
ml

N does not involve weights. In Table 4.3, the point estimators are

identical due to the equal selection probabilities.

In Table 4.1, we have the finite population values of regression coefficients and the

relative bias (%) of their estimators. There is a bias in the estimator of the intercept,

β̂ml0N , when the sampling weights are not incorporated. The relative bias (%) is negligible

for the estimators of the fixed effects, β1N and β2N . It is not surprising to observe a bias

in the estimator β̂ml0N as the selection of the psus are proportional to random effects given

in (4.25). Relative bias (%) increases with the intra-cluster correlation. We observe that

the relative bias (%) is negligible for the estimators that involve weights.
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Table 4.1: Finite population values of the regression coefficients in working
model (4.25) and the relative bias (%) of their estimators. Two stage sam-
pling design. Unequal probability selection of the psus. N = 3000, n = 150,
range(ki) = [12, 52].

Intra-cluster Population Relative bias (%)
correlation value unweighted weighted

ρ β0N β1N β2N β̂ml0N β̂ml1N β̂ml2N β̂el0N β̂el1N β̂el2N

0.04 20.001 1.002 1.002 0.64 -0.01 -0.09 0.03 -0.02 -0.07
0.08 20.013 1.003 1.000 0.86 0.00 -0.08 0.05 0.00 -0.07
0.17 20.030 1.004 0.999 1.55 0.14 0.02 -0.03 0.03 0.05
0.25 20.047 0.998 1.000 1.99 0.08 0.06 -0.05 0.08 0.02
0.33 20.038 1.003 1.000 2.09 0.08 0.07 -0.03 -0.02 0.01
0.42 20.056 1.002 1.001 2.40 -0.13 -0.16 -0.04 -0.06 -0.11
0.50 20.059 1.000 1.001 2.60 -0.02 -0.07 -0.02 -0.01 -0.08

In Table 4.2, we have the observed coverages of the 95% confidence intervals. All cov-

erages for the intercept are significantly different from the nominal level (0.95%) with

maximum likelihood approach. The Shapiro & Wilk’s test of normality shows that the

normality of point estimators are not rejected at significance level 0.05. This may not

necessarily hold at significance level 0.10. We observe that coverages for the maximum

likelihood estimate of the intercept, β0N , decrease with the intra-cluster correlation.

This may be because of the fact that the point estimator has higher bias for large values

of the correlation (see Table 4.1). We observe slightly poor coverages with the pseudo

likelihood approach in most cases. The empirical likelihood confidence intervals have

better coverages overall.

4.9.1 Population with outlying values

In this Section, we investigate the performance of the empirical likelihood confidence

intervals in the presence of outlying values in the population. We generated the same

population as in Section 4.9, except that here, the random variables eij follow a normal

distribution with mean zero and standard deviation σe. We replaced 20% of the yij

randomly by very large values. Half of the new values was generated from Y0.75 + 1.5×
(Y0.75−Y0.25) + τij , where τij ∼ gamma(shape = 2, scale = 2)− 4. Here, Y0.25 and Y0.75

are the lower and upper population quartiles of the yij , where j ∈ Ui and i ∈ U . The

other half was obtained from maxj∈Ui,i∈U (yij) + τij .

Sample units were selected with simple random sampling without replacement at both

stages of the sampling design. We consider small and large sample sizes, varying from

10% to 40% of cluster sizes, Ki, for the ssus in Table 4.4. Sample sizes respectively

lie in the ranges [5, 21], [12, 52] and [19, 83]. In Table 4.4, we only present the results

for ρ = 0.50 as we obtained very similar results for the other values of the intra-cluster
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Table 4.2: 95% confidence intervals for the estimates of regression coefficients
in working model (4.25). Two stage sampling design. Unequal probability
selection of the psus. N = 3000, n = 150, range(ki) = [12, 52].

Intra-cluster Parameter Empirical Maximum Pseudo Shapiro
correlation βN likelihood likelihood likelihood Wilk p-value
ρ (%) (%) (%)

EL ML Pseudo

0.04 β0N 95.4 83.4* 94.7 0.83 0.85 0.83
β1N 94.8 95.8 94.4 0.77 0.73 0.77
β2N 94.8 95.6 94.0 0.95 0.95 0.95

0.08 β0N 95.1 76.3* 94.8 0.30 0.44 0.30
β1N 96.1 97.1* 95.5 0.18 0.06 0.18
β2N 94.8 94.4 94.2 0.63 0.29 0.63

0.17 β0N 94.1 47.3* 93.5* 0.71 0.90 0.71
β1N 94.8 94.9 93.9 0.72 0.80 0.72
β2N 95.0 95.7 94.5 0.23 0.35 0.23

0.25 β0N 95.2 33.2* 94.7 0.17 0.76 0.17
β1N 94.1 94.2 93.2* 0.37 0.07 0.37
β2N 94.4 95.4 93.7 0.75 0.30 0.75

0.33 β0N 94.7 37.6* 95.0 0.16 0.54 0.16
β1N 95.2 95.5 94.3 0.58 0.51 0.58
β2N 94.8 94.5 94.5 0.76 0.66 0.76

0.42 β0N 95.2 32.1* 94.6 0.79 0.52 0.79
β1N 95.1 95.8 93.7 0.11 0.10 0.11
β2N 94.0 95.1 93.8 0.65 0.08 0.65

0.50 β0N 95.2 28.5* 94.6 0.59 0.68 0.59
β1N 93.1* 93.8 92.6* 0.34 0.47 0.34
β2N 94.9 96.3 94.2 0.35 0.71 0.35

∗ Coverages significantly different from 95%. p-value ≤ 0.05.

correlation that were used to generate the yij before introducing outlying values. This

is because of the fact that the estimate of between cluster variance σ2u was relatively too

small comparing with the estimate of within cluster variance σ2e after introducing the

outlying values. Empirical expectation of the estimator of the intra-cluster correlation

was approximately equal to 0.06 for all cases.

Table 4.3 presents the relative bias (%) of the point estimators and the standard error

estimators. The point estimators are the same for all methods due to the equal selection

probabilities. The estimator β̂2N slightly underestimates the population parameter β2N .

There is a large positive bias in the standard error estimators, ŝe(β̂1N ) and ŝe(β̂2N ), with
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the maximum likelihood approach. We observe that the standard errors of the point

estimators are slightly underestimated with the pseudo likelihood approach for all cases,

except the case with the estimator β̂1N and ki = 0.40Ki.

Table 4.3: Relative bias (%) of the point estimators and the standard error es-
timators. Population with outlying values. Two stage sampling design. Simple
random sampling at both stages. N = 3000, n = 150, range(ki) = [5, 21] when
ki = 0.10Ki, range(ki) = [12, 52] when ki = 0.25Ki and range(ki) = [19, 83]
when ki = 0.40Ki.

Approach Second stage Relative bias (%)
sample size

(ki) β̂0N β̂1N β̂2N ŝe(β̂0N ) ŝe(β̂1N ) ŝe(β̂2N )

Maximum 0.10Ki 0.34 -0.07 -2.07 -1.15 14.75 17.15
likelihood 0.25Ki 0.15 0.41 -1.19 -0.06 15.13 19.01

0.40Ki 0.11 0.12 -0.78 1.72 19.41 19.12

Pseudo 0.10Ki 0.34 -0.07 -2.07 -3.16 -0.81 -2.36
likelihood 0.25Ki 0.15 0.41 -1.19 -2.93 -0.75 -1.29

0.40Ki 0.11 0.12 -0.78 -1.39 2.29 -1.33

Table 4.4: 95% confidence intervals for the estimates of regression coefficients
in working model (4.25). Population with outlying values. Two stage sam-
pling design. Simple random sampling at both stages. N = 3000, n = 150,
range(ki) = [5, 21] when ki = 0.10Ki, range(ki) = [12, 52] when ki = 0.25Ki

and range(ki) = [19, 83] when ki = 0.40Ki.

Second stage Parameter Empirical Maximum Pseudo Shapiro
sample βN likelihood likelihood likelihood Wilk
size (ki) (%) (%) (%) p-value

0.10Ki β0N 94.8 94.2 94.0 0.01
β1N 95.1 97.5* 94.2 0.98
β2N 93.8 97.2* 93.6* 0.16

0.25Ki β0N 94.7 94.6 94.2 0.37
β1N 94.9 97.3* 94.1 0.60
β2N 94.3 97.8* 93.7 0.64

0.40Ki β0N 94.1 94.5 93.5* 0.11
β1N 95.4 97.4* 95.0 0.48
β2N 95.0 97.7* 94.5 0.86

∗ Coverages significantly different from 95%. p-value ≤ 0.05.

Table 4.4 demonstrates observed coverages of the 95% confidence intervals for the pa-

rameters of the population with outlying values. We have better coverages with the

empirical likelihood approach comparing with the maximum likelihood and the pseudo
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likelihood approaches. The coverages of maximum likelihood confidence intervals for the

slope parameters are significantly different from the nominal level, 95%. Point estimates

are the same for all the three approaches due to the equal probability selection. The

Shapiro & Wilk p-value provides evidence that the point estimator of the parameter

β0N does not follow a normal distribution when ki = 0.10Ki. This may be the reason

for poor coverages of the maximum likelihood and the pseudo likelihood confidence in-

tervals. The empirical likelihood approach proposed provides a better coverage in this

case. The large positive bias in the standard error estimators (see Table 4.3) might be

the reason for over coverage for the parameters β1N and β2N with the maximum likeli-

hood approach. Under coverage with the pseudo likelihood approach may be due to the

negative bias in the standard error estimators (see Table 4.3).

4.10 Conclusion

We proposed using an empirical likelihood approach to make design based inference for

regression parameters when modelling hierarchical data. We considered two stage sam-

pling (see Section 4.2). We assumed a working model with a uniform covariance struc-

ture for the population data (see Section 4.3). We used a general estimating equation

to define the parameter of interest (see Section 4.4). We assumed that the population

model and the sampling design had the same hierarchical structure. The profile em-

pirical log-likelihood ratio function was defined at the first stage of selection by using

an ultimate cluster approach (see Section 4.8). As demonstrated in Section 4.8, the

inference can be made for the subvector of regression parameters by profiling out the

empirical log-likelihood ratio function over the nuisance parameters, the parameters that

are not of primary interest. Stratification and population level information can be easily

incorporated (see Section 4.5).

The empirical likelihood approach proposed does not depend on variance estimation,

resampling, linearisation and second order inclusion probabilities. Neither does it rely

on the normality of the point estimator. It may provide better inference, even when the

point estimator is not normal, the data is skewed or includes outlying values, than the

standard approaches that are based on the normality assumption and variance estimates

(see Sections 4.9 and 4.9.1). The empirical evidence shows that the performance of

the empirical likelihood confidence intervals is not affected by the number of ssus (see

Section 4.9.1).

Standard confidence intervals for regression coefficients may have poor coverages when

variance estimators are biased or not stable. This may be the case with linearised

variance estimator when sample sizes are not large enough or data includes outlying

values (see Section 4.9.1). Standard parametric confidence intervals may produce invalid

inference when the sampling design is informative (see Section 4.9).



Chapter 4 Third Paper 79

The approach proposed requires knowledge of the first order inclusion probabilities.

When samples are selected with equal probabilities at the second stage, totals within

clusters can be estimated without using the weights of the ssus as the scaled weights

reduce to one in this case (see Section 4.7.1).

In this work, we considered linear multilevel regression parameters. It is straightforward

to extend the empirical likelihood approach proposed to generalised multilevel regression

parameters by using generalised estimating equations (e.g. Grilli and Pratesi, 2004). We

used cross sectional hierarchical data. In social sciences, data with repeated measures

is also commonly used. In this case, it is expected that the measures belonging to the

same unit at different time points are correlated. Individual units followed over time

form the first level of hierarchy. These units may be selected with respect to a multi stage

sampling design. This may form another level of hierarchy. It would be interesting to

implement the empirical likelihood approach proposed to that sort of data. We assumed

a uniform covariance structure. Longitudinal data may have more complex correlation

structures. We assumed the same hierarchy for the model and the sampling design. This

may not be the case in practice. It would be good to extend the approach proposed to

these situations.





Chapter 5

General Conclusion

In this thesis, three papers were respectively presented in Chapters 2–4. A general

introduction that includes the main contribution of the papers (see Section 1.1), the

author’s contributions to the papers (see Section 1.2) and detailed literature review for

each paper (see Sections 1.3–1.5) were given in Chapter 1.

We considered design-based inference for finite population quantities throughout this

thesis. In this context, we assumed a sample s is selected from a finite population

U with respect to a probability sampling design. The sampling distribution is solely

driven by the sampling design as we assume all units in the sample are respondent. The

finite population values are assumed fixed, non-random, quantities. The target finite

population quantities are defined as (non)linear functions of these fixed values. In the

thesis, we considered poverty rates, linear regression, generalised linear regression and

general linear regression coefficients. We proposed methods that provide valid design-

based inferences for those complex statistics.

In the first paper (see Chapter 2), a multivariate regression approach proposed by Berger

and Priam (2016) was introduced to estimate the variance of change in poverty rates.

This approach provides a valid way to estimate the correlation between two samples at

different waves. The whole sample data is considered unlike the standard approaches

that only rely on the common sample.

Two methods were considered to estimate the variance of change. In the first approach,

called the ‘ratio approach’, the poverty threshold was assumed fixed. The poverty rate

was treated as a simple ratio (see Section 2.3). Thus the sampling variability that

arises from the estimation of the poverty threshold was ignored. As demonstrated in

the numerical results (see Section 2.6), this may yield biased variance estimators. In the

second approach, namely the ‘linearisation approach’, the randomness due to the esti-

mated poverty threshold was accommodated (see Sections 2.4–2.5). This approach relies

on a bandwidth parameter that needs to be estimated. We used several fixed bandwidth

81
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parameters. In the numerical results, we observe that the variance estimators of change

in poverty rates are not significantly affected by the chosen bandwidth parameter (see

Sections 2.6–2.7). This may be because of the fact that the bandwidth parameter plays

a role in both numerator and denominator in the expression of the linearised variable

for the poverty rate (2.4) (see Section 2.4). This may remove the effect of the band-

width parameter on variance estimates. However, this may not be the case for complex

statistics other than the poverty rate.

Treating the poverty threshold as fixed may yield serious bias in cross sectional variance

estimators. However, the bias considerably decreases for the variance estimator of change

although it may not be negligible for highly skewed income distributions (see Section

2.6). Thus the ratio method should be used with caution. Our research also reveals

that the variance estimates of change may not be conservative with the ratio approach,

contrary to cross sectional variance estimates.

The multivariate regression can be used to estimate the variances of the other poverty

and income inequality measures such as relative median at risk of poverty gap (rmpg),

quantile share ratio (qsr) and gini coefficient by applying the linearisation approach

(e.g. Verma and Betti, 2005; Berger, 2008; Verma and Betti, 2011). The approach

proposed can be easily implemented in any statistical software.

In the second paper, we proposed a profile empirical likelihood approach to make in-

ference for the subvector of parameters. We recalled the empirical likelihood approach

proposed by Berger and De La Riva Torres (2016) (see Section 3.3). We extended Berger

and De La Riva Torres’s (2016) approach to the multidimensional parameter case. The

inference for the subvector of parameters requires profiling that relies on maximisation

of the empirical log-likelihood function over the nuisance parameters, which are not of

primary interest. We showed that the profile empirical log-likelihood ratio function (see

expressions (3.15) and (3.51)) asymptotically follows a χ2-distribution under a set of

regularity conditions (see Section 3.7). The asymptotic derivations are provided in the

supplementary material (see Appendix B.2). This property allows us to test hypotheses

and construct confidence intervals. The empirical likelihood confidence interval does not

depend on the normality of the point estimator. It may provide better coverages and

tail errors than the standard approaches that rely on symmetric confidence intervals or

resampling methods (see Sections 3.10-3.10.5). Standard confidence intervals based on

variance estimates may give poor coverages especially when the sampling distribution is

skewed or the data includes outlying values (see Section 3.10.3).

In the third paper, we implemented the profile empirical likelihood approach proposed in

the second paper to regression parameters under correlated error structure. As demon-

strated in the numerical work (see Sections 4.9 and 4.9.1), empirical likelihood confi-

dence intervals may provide better coverages than the standard approaches even when

the point estimator is not normal, the data is skewed or includes outlying values. We
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observed that the standard parametric confidence intervals may provide considerably

lower coverages when the design is informative.

The empirical likelihood confidence interval demonstrated in the second and the third

papers does not rely on normality, resampling, linearisation, variance estimation or de-

sign effect. Variance estimator may not be reliable with heavily skewed data including

outlying values even it is asymptotically unbiased. The normality may not hold either

with such data. Our simulation studies show that the empirical likelihood approach pro-

posed outperforms the alternative approaches based on variance estimates (see Sections

3.10.3 and 4.9.1). Bootstrap can be an alternative approach and may be preferred from

practical point of view. Our simulation studies show that bootstrap confidence inter-

vals may be more unstable (see Sections 3.10-3.10.5). Besides, the empirical likelihood

approach proposed is easier to implement and less computer intensive than bootstrap.

Population level information can be incorporated with the empirical likelihood approach

proposed. The approach proposed provides survey weights (3.45), which are intuitively

calibrated as a result of the maximisation of the empirical log-likelihood function (3.43)

with a fixed known population parameter ϕN . They are always positive and asymptot-

ically design optimal. Calibration weights (Deville and Särndal, 1992) can be negative

and not necessarily asymptotically optimal. Standard calibration weights are derived

for point estimation. The empirical log-likelihood ratio function (3.51) is used for point

estimation, testing and confidence intervals. Population level information does not have

to be in the form of totals or means. It belongs to a wider class of parameters that can

be defined as the unique solutions to the population estimating equations (3.42).

The approaches proposed in this thesis satisfy the properties usually required by survey

practitioners. Design consistency is one of them. In the first paper, we proposed using

a design consistent estimator for correlation when estimating variance of change under

rotating panel surveys. In the second and the third papers, we show that the empir-

ical likelihood point estimator is design consistent. For survey practitioners, it is also

important to consider the characteristics of the complex survey data to make a valid in-

ference. With the approaches proposed in the thesis, unequal probabilities, stratification

and clustering are all taken into account. A panel rotation plan is also considered in the

first paper when estimating variance of change in the poverty rates. We show that the

empirical log-likelihood statistic provides a valid design-based inference for finite pop-

ulation parameters. Our simulation studies show that the standard confidence interval

may provide poor coverage when the design is ignored under informative sampling (see

Table 3.1 and 4.2).

Second order inclusion probabilities are required for without replacement sampling to

obtain unbiased variance estimator. However, these probabilities are usually unknown

to survey practitioners or hard to compute. Second order inclusion probabilities are not

required for variance estimation or confidence intervals with the approaches proposed in
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this thesis. The asymptotic variance estimators in the pivotal statistics (3.40) and (3.55)

are design consistent when the sampling fraction is negligible. In this case, sampling

with replacement and large entropy sampling without replacement are equivalent (e.g.

Hájek, 1981; Berger, 2011). In all three papers, we assume that the sampling design

has a large entropy. Most sampling designs used in practice can be approximated by a

large-entropy sampling design, except non-randomised systematic sampling (e.g. Berger,

2011).

The approaches proposed in the thesis provide valid inferences under sampling designs

with negligible sampling fractions. In the case of a multi-stage sampling design, we

assume negligible sampling fraction at the first stage of selection. This assumption

usually hold with household surveys. However, this may not be valid, for example, if

the number of strata is large, which is usually the case with business surveys. The

multivariate regression approach in the first paper cannot be used in this case. Other

approaches should be used instead (e.g. Nordberg, 2000; Berger, 2004; Wood, 2008). It

would be very useful to generalise the profile empirical likelihood approach to designs

with large sampling fractions.

We ignored the effect of nonresponse and calibration in the first paper. When the auxil-

iary information is correlated with the variable of interest, a huge gain can be obtained in

the precision of the estimator. Ignoring the fact that the estimated totals are calibrated

against known population totals may result in the overestimation of the variance. On

the contrary, variances may be underestimated when the effect of imputation is ignored.

It is important to investigate how the variance estimation of change might be affected

under these circumstances. It would be also very useful to extend the multivariate re-

gression approach when calibration is performed at both waves. Berger and Escobar

(2015) showed that the approach can be implemented under nonresponse when hot-deck

imputation is used for unit nonresponse.

The empirical likelihood approach in the third paper can be straightforwardly extended

to generalised multilevel regression parameters by using the generalised estimating equa-

tions (e.g. Grilli and Pratesi, 2004). We used a cross sectional hierarchical data by as-

suming that the model and the design hierarchies are the same. It would be interesting

to extend the empirical likelihood approach to the circumstance when the hierarchies

differ. It would also be good to implement it on data with repeated measures. This

sort of data may bring about dealing with correlation structures other than the uniform

correlation structure. Hence, it would be good to extend the approach proposed to other

correlation structures.

The empirical likelihood approach proposed in the thesis requires the knowledge of the

first order inclusion probabilities. However, these probabilities may not be available to

survey practitioners. It would be interesting to develop the theory in such a way that
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the empirical log-likelihood statistic (3.52) is valid when the survey weights are available

but not the inclusion probabilities.

The linearisation approach is proposed in the first paper to take into account the fact that

the poverty threshold is estimated, thereby allowing approximately unbiased variance

estimator. However, the empirical likelihood approach can be a better alternative to

measure the design uncertainty of the poverty rate as it does not rely on any analytic

derivation. Even linearised variables are analytically derived, the variance estimator

may not be reliable if the data contains outlying values. With the empirical likelihood

approach proposed, the poverty rate will be the parameter of interest and the median of

the income distribution will be the nuisance parameter. However, we assumed that the

empirical log-likelihood function is differentiable with respect to the nuisance parameters

(see Sections 3.6 and 3.7). Thus the approach cannot be directly applied to poverty rates

as the median income is not a smooth statistic. It would be very useful to develop the

theory in the second paper to consider the parameters defined through non-smooth

estimating equations. This would allow us to make inference for a subset of a set of

more general class of parameters including quantiles. The poverty rate defined in the

first paper is a very good example to this situation.

Empirical likelihood is a cutting-edge approach in survey sampling. Hence, the theory

could be taken forward in to many directions. Some of them have been mentioned

above. Small domain estimation, estimation in the presence of nonresponse, estimation

and inference from combined data sources are some of the other areas to which the

empirical likelihood approach proposed can be extended. The working model (4.3)

assumed in the third paper responds to many practical situations. For example, it is

mostly used in small domain estimation. It would be very useful to extend the empirical

likelihood approach proposed to make inference for small domain means. A synthetic

type of regression estimator (e.g. Rao, 2003, p.46) based on the regression parameter

(4.3) may be used by assuming that the domain specific characteristics are the same as

those of the whole population or a larger group of domains (e.g. Gonzales, 1973). In this

case, the domain means will the parameter of interest while the regression parameters

will be the nuisance parameters, thereby taking into account the fact that the regression

parameters are estimated.
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A.1 Derivation of the influence function of the poverty

rate over a domain

Let M be a measure that assigns a unit mass to each unit i in the population U . For

example, the population size N can be written as N =
∫
dM =

∑
i∈U 1 and the total of

a variable y can be expressed as Y =
∫
ydM =

∑
i∈U yi (Deville, 1999). Let F(M, x) be

the income distribution function at x over the population U , that is,

F(M, x) =
1

N

∑
i∈U

δ{yi ≤ x}.

Then, the income distribution function at the median of the income distribution is given

by F(M,Med(M)) = 0.5. Thus the influence function of the functional F(M,Med(M))

is equal to 0 for all i, that is, IFi(M,Med(M)) = 0. By using the “Rule 7” in Deville

(1999, p.198), the influence function of F at i (see also Osier, 2009, p.181-183) can be

derived as follows:

IFi(M,Med(M)) = IFi(M,Med(M) |Med(M) fixed) +
∂F(M, x)

∂x
|x=Med(M)IMedi(M) = 0,

(A.1)

where IMedi(M) is the influence function of the median income defined by (A.2).
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The influence function of F(M,Med(M) at i, when the median is fixed, is given by

IFi(M,Med(M) |Med(M) fixed) =
1

N
[δ{yi ≤Med} − 0.5].

Thus the influence function of the functional Med(M) is obtained as

IMedi(M) = − 1

N

1

f(Med)
[δ{yi ≤Med} − 0.5], (A.2)

where

f(Med) =
∂F(M, x)

∂x
|x=Med(M)

is the probability density function at the median of the income distribution.

Now define the income distribution function at x over a domain D as follows:

FD(M, x) =
1

ND

∑
i∈U

diδ{yi ≤ x}.

Hence, the income distribution function over a domain D at the poverty threshold T is

defined by

FD(M, T (M)) =
1

ND

∑
i∈U

diδ{yi ≤ T (M)},

where T (M) = 0.6Med(M) and di is the domain indicator, that is, 1 when i ∈ D, and

0 otherwise. FD(M, T (M)) is equivalent to the povery rate over a domain D (i.e. RD).

Thus we can obtain the influence function of the poverty rate analogously to (A.1), that

is,

IFD;i(M, T (M)) = IFD;i(M, T (M)) | T (M) fixed) +
∂FD(M, x)

∂x
|x=T (M)ITi(M) = IRD;i.

The influence function of FD, when the threshold is fixed, is given by

IFD;i(M, T (M)) | T (M) fixed) =
di
ND

[δ{yi ≤ T} −RD].

Hence, the influence function of the poverty rate is obtained as follows:

IRD;i =
di
ND

[δ{yi ≤ T} −RD] + fD(T )ITi(M), (A.3)

where

fD(T ) =
∂FD(M, x)

∂x
|x=T (M)
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is the probability density function at the poverty threshold. The influence function of

the functional T (M) at i is given by

ITi(M) = 0.6 IMedi(M). (A.4)

If we substitute IMedi(M) in (A.2) into (A.4), we obtain the following:

ITi(M) = −0.6

N

1

f(Med)
[δ{yi ≤Med} − 0.5].

Therefore, the influence function of the poverty rate at i over a domain D given in (A.3)

can be rewritten as follows:

IRD;i =
di
ND

[δ{yi ≤ T} −RD]− 0.6

N

fD(T )

f(Med)
[δ{yi ≤Med} − 0.5]. (A.5)

Note that we assume the derivatives of F and FD exist and are strictly non-negative for

all x.

A.2 Generation of random variables

For the gamma random variables, we used the algorithm proposed by Schmeiser and Lal

(1982, p.358). First, three independent random variables were generated by a gamma

distribution as follows:

Y1 ∼ gamma(α1 − ρ
√
α1
√
α2, 1),

Y2 ∼ gamma(α2 − ρ
√
α1
√
α2, 1),

Y3 ∼ gamma(ρ
√
α1
√
α2, 1),

with α1 = 2.5, α2 = 2.6, and ρ = 0.94. Then, the income variables were obtained by the

following expressions: y1;i = Y1 + Y3 and y2;i = Y2 + Y3, so that y1;i ∼ gamma(2.5, 1),

y2;i ∼ gamma(2.6, 1), and ρ(y1;i, y2;i) ≈ 0.94.

The Cholesky decomposition was used to generate the correlated lognormal variables.

Hence, the log income variables with the correlation of ρ = 0.95 , a mean of µ = 1.119

and a standard deviation of σ = 0.602 were generated by

log(y1;i) = µ+ σX1,

log(y2;i) = µ+ ρσX1 +
√

1− ρ2σX2,

where X1 and X2 are independent standard normal variables. The correlation coefficient

between the income variables is approximately 0.94.
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For correlated Weibull variables, we followed the algorithm proposed by Feiveson (2002,

p.117). First, two correlated standard normal variables Y1 and Y2 with a correla-

tion of ρ = 0.95 were generated by using the Cholesky decomposition: Y1 = X1 and

Y2 = ρX1 +
√

1− ρ2X2, where X1 and X2 are independent standard normal variables.

Secondly, correlated uniform variables were obtained by the standard normal cumu-

lative distribution function transformation; such that U1 = Φ(Y1) and U2 = Φ(Y2),

where Φ(·) is the cumulative distribution function of a standard normal distribution.

Finally, uniform random variables were transformed by the inverse of the Weibull cu-

mulative distribution function to achieve the correlated income variables as follows:

y1;i = F−1U (U1) = (− ln(1 − U1))
5/4 and y2;i = F−1U (U2) = (− ln(1 − U2))

5/4, so that

y1;i, y2;i ∼Weibull(0.8, 1) and ρ(y1;i, y2;i) ≈ 0.94.

A.3 R code for the first paper

By Melike Oguz-Alper and Yves G. Berger

University of Southampton, SO17 1BJ, Southampton, U.K.

M.OguzAlper@soton.ac.uk Y.G.Berger@soton.ac.uk

rm(list=ls())

memory.size(max=TRUE)

#---------------------------------------------------------------------

# Load the ’sampling_YGB ’ package from the library

#---------------------------------------------------------------------

Path <- paste(Sys.getenv (" R_HOME "),"\\ library \\ sampling_YGB \\",sep ="")

source(paste(Path ," initsampling",sep =""))

load.sampling(Path)

#=====================================================================

# Load packages required

#=====================================================================

library(lpSolve)

library(sampling)

library(boot)

library(MASS)

library(laeken)

library(mixtools)

#=====================================================================

# Generate random variables

#=====================================================================

N< -20940

#---------------------

# Gamma

#---------------------

rho.Income < -0.94

set.seed (15)

Y1<-rgamma(N,2.5-rho.Income*sqrt (2.5)* sqrt (2.6) ,1)

set.seed (6)

Y2<-rgamma(N,2.6-rho.Income*sqrt (2.5)* sqrt (2.6) ,1)

set.seed (15)

Y3<-rgamma(N,rho.Income*sqrt (2.5)* sqrt (2.6) ,1)

Income.Wave1 <-Y1+Y3
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Income.Wave2 <-Y2+Y3

#---------------------

# Lognormal

#---------------------

rho.Income < -0.95

set.seed (6)

Z1<-rnorm(N,0,1)

set.seed (1)

Z2<-rnorm(N,0,1)

Y1 < -0.602*Z1 +1.119

Y2<-rho.Income *0.602* Z1+sqrt(1-ro ^2)*0.602* Z2 +1.119

Income.Wave1 <-exp(Y1)

Income.Wave2 <-exp(Y2)

#---------------------

# Weibull

#---------------------

rho.Income <-0.95

set.seed (6)

X1<-rnorm(N,0,1)

set.seed (3)

X2<-rnorm(N,0,1)

cor(X1 ,X2)

Y1<-X1

Y2<-rho.Income*X1+sqrt(1-rho.Income ^2)*X2

U1<-pnorm(Y1)

U2<-pnorm(Y2)

Income.Wave1 <-(-log(1-U1 ))^(1/0.8)

Income.Wave2 <-(-log(1-U2 ))^(1/0.8)

#=====================================================================

# Generate measure of size variable

#=====================================================================

rho <-0.7

var.ei <-(1-rho ^2)* var(Income.Wave1)

ei<-rnorm(N,0,sqrt(var.ei))

xi <-5+ro*Income.Wave1+ei

#=====================================================================

# Inclusion probabilities

#=====================================================================

n<-1047

Inc.Prob <-PI.PROPORTIONAL(xi,n)

Weight <-1/Inc.Prob

#=====================================================================

# START SIMULATION

#=====================================================================

#------------------------------------------------------------------

# Output matrices (Only includes ratio and linearisation.SD cases)

#------------------------------------------------------------------

NB.Simulations < -10000

NB.Col.Ratio <- 7

NB.Row.Ratio <- NB.Simulations

Result.Ratio <- data.frame(matrix(rep(0,times=NB.Col.Ratio*NB.Row.Ratio),

ncol=NB.Col.Ratio ,nrow=NB.Row.Ratio))

colnames(Result.Ratio) <- c("%Pov 1","Var 1","%Pov 2","Var 2"," Change",

"Var Change","Corr")

Label.Row.Ratio <- 0

NB.Col.Lin.SD <- 7

NB.Row.Lin.SD <- NB.Simulations
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Result.Lin.SD <- data.frame(matrix(rep(0,times=NB.Col.Lin.SD*NB.Row.Lin.SD),

ncol=NB.Col.Lin.SD,nrow=NB.Row.Lin.SD))

colnames(Result.Lin.SD) <- c("%Pov 1","Var 1","%Pov 2","Var 2"," Change",

"Var Change","Corr")

Label.Row.Lin.SD <- 0

#---------------------

# Start loop

#---------------------

for (Simulation in 1:NB.Simulations)

{

#------------------------

# Simple random sampling

#------------------------

# (Adjust the code for Chao (1982) sampling by using the function

# CHAO.SAMPLING in package ’sampling_YGB ’

#-----------------------------------------------------------------

#--------------------------------

# Sample selection at first wave

#--------------------------------

Sample.Wave1 <-srswor(n,N)

Labels.Wave1 <-as.numeric(labels(Sample.Wave1 ))[ Sample.Wave1 ==1]

#---------------------------------

# Sample selection at second wave

#---------------------------------

Sample.Wave2 <-rep(0,N)

Fraction < -0.75

Sample.Common <-srswor(round(n*Fraction),n)

Labels.Common <-Labels.Wave1[Sample.Common ==1]

Sample.Not.Common <-srswor(n-round(n*Fraction),N-n)

Labels.Not.Common <-as.numeric(labels(Sample.Wave1[-Labels.Wave1 ]))

[Sample.Not.Common ==1]

Sample.Wave2[c(Labels.Common ,Labels.Not.Common)]<-1

#-----------------------------

# Weights of the sample units

#-----------------------------

Weight.Wave1 <-Weight*Sample.Wave1

Weight.Wave2 <-Weight*Sample.Wave2

#-------------

# Sample data

#-------------

Select <-Sample.Wave1 ==1 | Sample.Wave2 ==1

Data.Sample <-data.frame(cbind(Income.Wave1[Select],Income.Wave2[Select],

Weight.Wave1[Select],Weight.Wave2[Select],Sample.Wave1[Select],

Sample.Wave2[Select ]))

names(Data.Sample)<-c(" Income.Wave1","Income.Wave2","Weight.Wave1","Weight.Wave2",

"Sample.Wave1","Sample.Wave2 ")

Data.Sample$Income.Wave1[Data.Sample$Sample.Wave1 ==0]<-0

Data.Sample$Income.Wave2[Data.Sample$Sample.Wave2 ==0]<-0

#----------------------------------

# Weighted median and poverty rate

#----------------------------------

Median.Wave1 <-weightedMedian(Data.Sample$Income.Wave1 ,weights=Data.Sample$

Weight.Wave1)

Median.Wave2 <-weightedMedian(Data.Sample$Income.Wave2 ,weights=Data.Sample$

Weight.Wave2)

Poverty.Wave1 <-as.numeric(Data.Sample$Income.Wave1 <=0.6* Median.Wave1)

Poverty.Wave2 <-as.numeric(Data.Sample$Income.Wave2 <=0.6* Median.Wave2)

Data.Sample$Poor.Wave1 <-Data.Sample$Weight.Wave1*Poverty.Wave1
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Data.Sample$Poor.Wave2 <-Data.Sample$Weight.Wave2*Poverty.Wave2

#----------------------------------

# Point estimate of poverty rate (%)

#----------------------------------

Poor1 <-sum(Data.Sample$Poor.Wave1)

Total1 <-sum(Data.Sample$Weight.Wave1)

Point.Estimate1 < -100* Poor1/Total1

Poor2 <-sum(Data.Sample$Poor.Wave2)

Total2 <-sum(Data.Sample$Weight.Wave2)

Point.Estimate2 < -100* Poor2/Total2

#-------------------------------------------

# Point Estimate of change in poverty rates

#-------------------------------------------

Point.Estimate.Change <- Point.Estimate2 - Point.Estimate1

#----------------------------------------------------

# Derivation of linearised variables for poverty rate

#----------------------------------------------------

# Indicator at median income

#==========================

Iinc.MED1 <-as.numeric(Data.Sample$Income.Wave1 <= Median.Wave1)

Iinc.MED2 <-as.numeric(Data.Sample$Income.Wave2 <= Median.Wave2)

#-----------------------------------------------------------------

# Weighted standard deviation

# (Adjust for IQR and A by using:

# IQR <-wIQR(W,Y)) and A<-min(SD ,IQR /1.34)

#=============================

Y1<-Data.Sample[Data.Sample$Sample.Wave1 ==1,] $Income.Wave1

W1<-Data.Sample[Data.Sample$Sample.Wave1 ==1,] $Weight.Wave1

var1 <-(sum(W1*Y1*Y1)-sum(W1*Y1)*sum(W1*Y1)/sum(W1))/sum(W1)

SD1 <-sqrt(var1)

Y2<-Data.Sample[Data.Sample$Sample.Wave2 ==1,] $Income.Wave2

W2<-Data.Sample[Data.Sample$Sample.Wave2 ==1,] $Weight.Wave2

var2 <-(sum(W2*Y2*Y2)-sum(W2*Y2)*sum(W2*Y2)/sum(W2))/sum(W2)

SD2 <-sqrt(var2)

#-----------------------------------------------------------------

# Smoothing parameter (bandwidth) for kernel density function

# Adjust for IQR and A by using:

# h.IQR < -0.79* IQR/exp (0.2* log(sum(W)))

# h.A<-0.9*A/exp (0.2* log(sum(W)))

#============================================================

h1.SD < -1.06* SD1/exp (0.2* log(sum(W1)))

h2.SD < -1.06* SD2/exp (0.2* log(sum(W2)))

#-----------------------------------------------------------------

# Estimation of F’( quantile=MED(M)) for quantile =0.5

#===============================================

F1.MED.SD<-sum(exp(-(Median.Wave1 -Y1)^2/h1.SD/h1.SD/2)*W1)/sum(W1)/h1.SD/sqrt (2*pi)

F2.MED.SD<-sum(exp(-(Median.Wave2 -Y2)^2/h2.SD/h2.SD/2)*W2)/sum(W2)/h2.SD/sqrt (2*pi)

#-----------------------------------------------------------------

# Linearised variable for at-risk -of-poverty threshold

#======================================================

IARPT1.SD <--0.6*( Iinc.MED1 -0.5)/ F1.MED.SD/sum(W1)

IARPT2.SD <--0.6*( Iinc.MED2 -0.5)/ F2.MED.SD/sum(W2)

#-----------------------------------------------------------------

# Computation of F’(beta*quantile=ARPT) for beta =0.6 and quantile =0.5

#====================================================================

F1.ARPT.SD<-sum(exp ( -(0.6* Median.Wave1 -Y1)^2/h1.SD/h1.SD/2)*W1)/sum(W1)/h1.SD/

sqrt (2*pi)
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F2.ARPT.SD<-sum(exp ( -(0.6* Median.Wave2 -Y2)^2/h2.SD/h2.SD/2)*W2)/sum(W2)/h2.SD/

sqrt (2*pi)

#-----------------------------------------------------------------

# Poverty rate

#==============

ARPR1 <-Point.Estimate1 /100

ARPR2 <-Point.Estimate2 /100

#-----------------------------------------------------------------

# Linearised variable for at-risk -of-poverty rate

#================================================

IARPR1.SD < -100*(( Poverty.Wave1 -ARPR1)/sum(W1)+F1.ARPT.SD*IARPT1.SD)

IARPR2.SD < -100*(( Poverty.Wave2 -ARPR2)/sum(W2)+F2.ARPT.SD*IARPT2.SD)

#-----------------------------------------------------------------

# Merge linearised variables with the sample data

#====================================================

Data.Sample$Pseudo.Wave1.SD<-Data.Sample$Weight.Wave1*IARPR1.SD

Data.Sample$Pseudo.Wave2.SD<-Data.Sample$Weight.Wave2*IARPR2.SD

#------------

# RATIO CASE

#------------

# Variance estimation at wave1

#=============================

Data.Sample1 <- Data.Sample[Data.Sample$Sample.Wave1 ==1,]

Y.Ratio <- cbind(Data.Sample1$Poor.Wave1 ,Data.Sample1$Weight.Wave1)

Fit.Ratio <- lm(formula=Y.Ratio~-1+ Sample.Wave1 , data=Data.Sample1)

Var.Cov.Matrix1.Ratio <- (n - 1) * as.matrix(estVar(Fit.Ratio))

Var1.Ratio <- diag(Var.Cov.Matrix1.Ratio)

Gradient.Ratio <- matrix(c( (1/ Total1) , (-Poor1*Total1 ^(-2))), ncol =1)

Variance1.Ratio <- 100^2 * t(Gradient.Ratio )%*% Var.Cov.Matrix1.Ratio %*%

Gradient.Ratio

#-----------------------------------------------------------------

# Variance estimation at wave2

#=============================

Data.Sample2 <- Data.Sample[Data.Sample$Sample.Wave2 ==1,]

Y.Ratio <- cbind(Data.Sample2$Poor.Wave2 ,Data.Sample2$Weight.Wave2)

Fit.Ratio <- lm(formula=Y.Ratio~-1+ Sample.Wave2 , data=Data.Sample2)

Var.Cov.Matrix2.Ratio <- (n - 1) * as.matrix(estVar(Fit.Ratio))

Var2.Ratio <- diag(Var.Cov.Matrix2.Ratio)

Gradient.Ratio <- matrix(c( (1/ Total2) , (-Poor2*Total2 ^(-2))), ncol =1)

Variance2.Ratio <- 100^2 * t(Gradient.Ratio )%*% Var.Cov.Matrix2.Ratio %*%

Gradient.Ratio

#-----------------------------------------------------------------

# Variance estimation for change

#=======================

Y.Ratio <- cbind(Data.Sample$Poor.Wave1 ,Data.Sample$Weight.Wave1 ,Data.Sample$

Poor.Wave2 ,Data.Sample$Weight.Wave2)

Fit.Ratio <- lm(formula=Y.Ratio~-1+ Sample.Wave1*Sample.Wave2 , data=Data.Sample)

Var.Cov.Matrix.Reg.Ratio <- Fit.Ratio$df * as.matrix(estVar(Fit.Ratio))

Vect.D.Ratio <- sqrt(c(Var1.Ratio ,Var2.Ratio) / diag(Var.Cov.Matrix.Reg.Ratio ))

Matrix.D.Ratio <- diag(Vect.D.Ratio)

Var.Cov.Matrix.Ratio <-t(Matrix.D.Ratio )%*% Var.Cov.Matrix.Reg.Ratio %*% Matrix.D.Ratio

Gradient.Ratio <-matrix(c((-1/ Total1),(Poor1*Total1 ^( -2)) ,(1/ Total2),(-Poor2*

Total2 ^(-2))), ncol =1)

Variance.Change.Ratio < -100^2*t(Gradient.Ratio )%*% Var.Cov.Matrix.Ratio %*%

Gradient.Ratio

#-----------------------------------------------------------------

# Correlation

#============

Correlation.Ratio <- ( Variance1.Ratio + Variance2.Ratio - Variance.Change.Ratio )/
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( 2 * sqrt(Variance1.Ratio * Variance2.Ratio) )

#--------------------

# LINEARISATION CASE

#--------------------

# Variance estimation at wave1

#=============================

Y.Lin.SD <- Data.Sample1$Pseudo.Wave1.SD

Fit.Lin.SD <- lm(formula=Y.Lin.SD~-1+ Sample.Wave1 , data=Data.Sample1)

Variance1.Lin.SD <- anova(Fit.Lin.SD)[2,2]

#-----------------------------------------------------------------

# Variance estimation at wave1

#=============================

Y.Lin.SD <- Data.Sample2$Pseudo.Wave2.SD

Fit.Lin.SD <- lm(formula=Y.Lin.SD~-1+ Sample.Wave2 , data=Data.Sample2)

Variance2.Lin.SD <- anova(Fit.Lin.SD)[2,2]

#-----------------------------------------------------------------

# Variance estimation for change

#======================

Y.Lin.SD <- cbind(Data.Sample$Pseudo.Wave1.SD,Data.Sample$Pseudo.Wave2.SD)

Fit.Lin.SD <- lm(formula=Y.Lin.SD~-1+ Sample.Wave1*Sample.Wave2 , data=Data.Sample)

Var.Cov.Matrix.Reg.Lin.SD <- Fit.Lin.SD$df * as.matrix(estVar(Fit.Lin.SD))

Vect.D.Lin.SD<-sqrt(c(Variance1.Lin.SD,Variance2.Lin.SD)/

diag(Var.Cov.Matrix.Reg.Lin.SD))

Matrix.D.Lin.SD<-diag(Vect.D.Lin.SD)

Var.Cov.Matrix.Lin.SD<-t(Matrix.D.Lin.SD)%*% Var.Cov.Matrix.Reg.Lin.SD%*%

Matrix.D.Lin.SD

Gradient.Lin <-matrix(c(-1,1),ncol =1)

Variance.Change.Lin.SD <- t(Gradient.Lin) %*% Var.Cov.Matrix.Lin.SD %*%

Gradient.Lin

#-----------------------------------------------------------------

# Correlation

#============

Correlation.Lin.SD <-( Variance1.Lin.SD+Variance2.Lin.SD-Variance.Change.Lin.SD )/

( 2 * sqrt(Variance1.Lin.SD * Variance2.Lin.SD) )

#-----------------------------------------------------------------

# Save output for the ratio case

#===============================

Label.Row.Ratio <- Label.Row.Ratio + 1

j <- 1

Result.Ratio[Label.Row.Ratio ,j] <- Point.Estimate1

j <- j + 1

Result.Ratio[Label.Row.Ratio ,j] <- Variance1.Ratio

j <- j + 1

Result.Ratio[Label.Row.Ratio ,j] <- Point.Estimate2

j <- j + 1

Result.Ratio[Label.Row.Ratio ,j] <- Variance2.Ratio

j <- j + 1

Result.Ratio[Label.Row.Ratio ,j] <- Point.Estimate.Change

j <- j + 1

Result.Ratio[Label.Row.Ratio ,j] <- Variance.Change.Ratio

j <- j + 1

Result.Ratio[Label.Row.Ratio ,j] <- Correlation.Ratio

# Save output for the linearisation.SD case

#==========================================

Label.Row.Lin.SD <- Label.Row.Lin.SD+ 1

j <- 1

Result.Lin.SD[Label.Row.Lin.SD,j] <- Point.Estimate1

j <- j + 1
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Result.Lin.SD[Label.Row.Lin.SD,j] <- Variance1.Lin.SD

j <- j + 1

Result.Lin.SD[Label.Row.Lin.SD,j] <- Point.Estimate2

j <- j + 1

Result.Lin.SD[Label.Row.Lin.SD,j] <- Variance2.Lin.SD

j <- j + 1

Result.Lin.SD[Label.Row.Lin.SD,j] <- Point.Estimate.Change

j <- j + 1

Result.Lin.SD[Label.Row.Lin.SD,j] <- Variance.Change.Lin.SD

j <- j + 1

Result.Lin.SD[Label.Row.Lin.SD,j] <- Correlation.Lin.SD

}

#---------------------

# End loop

#---------------------

#=====================================================================

# END SIMULATION

#=====================================================================
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B.1 Proof of expression (3.47)

Under the regularity conditions (3.28)–(3.33), and for ψ such that condition (3.46) holds,

the result of the Appendix A in Berger and De La Riva Torres (2016) can be used to

show that

Ĝ(ψ) = Ĝπ(ψ)−
∑
i∈s

gi(ψ)ci
T

π2i

(∑
i∈s

cici
T

π2i

)−1(
0

f̂π(ϕN )

)
+ oP(Nn−1/2)· (B.1)

The inverse of the block matrix
∑

i∈s cici
Tπ−2i is given by

(∑
i∈s

cici
T

π2i

)−1
=

(
• −n−1 V̂

−1
ff f̂π(ϕN )

• V̂
−1
ff

)
, (B.2)

where V̂ ff is defined by (3.50). We do not need to compute the submatrices denoted by

•, since we multiply those components by zero in equation (B.1). Replacing equation

(B.2) into equation (B.1), we obtain equation (3.47). This completes the proof.
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B.2 Proofs of the asymptotic results

Lemma B.1. Let m̂∗i = (πi+
∗
η Tc∗i )

−1, where
∗
η is such that

∑
i∈s m̂

∗
i c
∗
i = C∗ holds, with

c∗i = (π−1zi
T, gi

T)T and C∗ = (π−1nT,0b
T)T, where zi and n are H × 1 vectors that

specify the stratification information (see definition (3.41)). The vector gi could be any

b× 1 vector. Then we have that
∗
η TC∗ = 0.

With a single stratum, zi = πi and n = n (see Section 3.9.3). Hence, the Lemma B.1

holds with c∗i = (π−1πi, gi
T)T and C∗ = (π−1n,0b

T)T.

Proof of Lemma B.1. We have that m̂∗i = (πi(1 + v∗i ))
−1, where v∗i = π−1i c

∗T
i
∗
η. Thus

m̂∗i = π−1i − {πi(1 + v∗i )}
−1 v∗i = π−1i −

{
π2i (1 + v∗i )

}−1
c∗Ti

∗
η. Hence, we have that∑

i∈s
m̂∗i c

∗
i = Ĉ

∗
π − Σ̃

∗ ∗
η, (B.3)

where Ĉ
∗
π =

∑
i∈s π

−1
i c

∗
i and

Σ̃
∗

=
∑
i∈s

c∗i c
∗T
i

π2i (1 + v∗i )
· (B.4)

As
∑

i∈s m̂
∗
i c
∗
i = C∗, the equation (B.3) can be re-written as

Σ̃
∗ ∗
η = Ĉ

∗
π −C∗ =

(
0r

T,
∑
i∈s

gi
T

πi

)
T, (B.5)

where 0r is an r × 1 vector of zeros, where r = H. Consider L = (1r
T,0b

T)T; where 1r

is an r × 1 vector of ones and 0b is a b× 1 vector of zeros. We have

LTΣ̃
∗ ∗
η = 0, (B.6)

because L and Σ̃
∗ ∗
η are orthogonal (see expression (B.5)). As m̂∗i = (πi(1 + v∗i ))

−1, the

equation (B.6) can be re-written as

1r
Tπ−1

∑
i∈s

m̂∗i
πi
zizi

Tη∗r + 1r
T
∑
i∈s

m̂∗i
πi
zigi

Tη∗b = 0, (B.7)

where η∗r is sub-vector of the first r components of
∗
η and η∗b is the vector of the remaining

components of
∗
η; that is,

∗
η = (η∗Tr ,η

∗T
b )T. As 1r

Tzi = πi, the equation (B.7) reduces to

π−1
∑
i∈s

m̂∗i zi
Tη∗r +

∑
i∈s

m̂∗i gi
Tη∗b = 0 (B.8)

or equivalently π−1nTη∗r = 0, as
∑

i∈s m̂
∗
i c
∗
i = C∗ implies

∑
i∈s m̂

∗
i zi = n and

∑
i∈s m̂

∗
i gi =

0, by definition of zi and C∗. As the last b components of C∗ are equal to zero, we have
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that C∗T
∗
η = π−1nTη∗r . Thus C∗T

∗
η = 0, because π−1nTη∗r = 0. This completes the

proof.

Lemma B.2. Let
◦
νN and

◦
ηN be the solution of (3.22), with θ = θN . In other words,

◦
νN =

◦
ν(θN ) and

◦
ηN =

∗
η(
◦
ψN ), with

◦
ψN = (θN

T,
◦
ν(θN )T)T. Assuming that c∗i(ψN ) and C∗

are such that the regularity conditions (3.28)–(3.32) hold, we have

◦
ηN = (Ir+b − Â

∗
)Σ̂
∗−1

(Ĉ
∗
π(ψN )−C∗) + π ê, (B.9)

where ê is such that ‖ê‖ = OP(n−1), where Ir+b is an (r + b)× (r + b) identity matrix

with b = p+ q, and Â
∗

is an (r+ b)× (r+ b) symmetric and idempotent matrix defined

by

Â
∗

= Σ̂
∗−1/2

∇̂
∗
C(∇̂

∗T
C Σ̂

∗−1
∇̂
∗
C)−1∇̂

∗T
C Σ̂

∗−1/2
, (B.10)

where

Σ̂
∗

= −Nπ−1Ŝ
∗
(ψN ) =

∑
i∈s

1

π2i
c∗i(ψN )c∗i(ψN )T (B.11)

∇̂
∗
C =

∑
i∈s

1

πi

∂c∗i(ψ)

∂ν

∣∣∣∣
ψ=ψN

· (B.12)

Proof of Lemma B.2. This proof has two parts. In part 1, we derive the first order

approximation of
◦
ηN (the right hand side of (B.9)). In part 2, we show that ‖ê‖ =

OP(n−1).

Part 1:

Consider the function Γ(η,ν) defined by expression (3.23). A first order Taylor approx-

imation of Γ(η,ν) around Γ(0,νN ) gives

Γ(η,ν) l Γ(0,νN ) + ∇̂(0,νN ) ((η − 0)T, (ν − νN )T) T,

or equivalently (
η

ν − νN

)
l ∇̂(0,νN )−1 (Γ(η,ν)− Γ(0,νN )) , (B.13)

where ∇̂(0,νN ) is the value of the derivative (3.25), with η = 0 and ν = νN . It can be

shown that

∇̂(0,νN ) =

(
Σ̂
∗

∇̂
∗
C

∇̂
∗T
C 0q

)
,
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where Σ̂
∗

and ∇̂
∗
C are respectively defined by (B.11) and (B.12). We also have that

Γ(0,νN ) =

(
Ĉ
∗
π(ψN )−C∗

0q

)
, (B.14)

Γ(
◦
ηN ,

◦
νN ) = 0r+b+q, (B.15)

as
◦
ηN and

◦
νN are the solutions of (3.22). Thus when η =

◦
ηN and ν =

◦
νN , the expression

(B.13) reduces to( ◦
ηN

◦
νN − νN

)
l

(
Σ̂
∗

∇̂
∗
C

∇̂
∗T
C 0

)−1(
C∗ − Ĉ

∗
π(ψN )

0q

)
, (B.16)

by using (B.14) and (B.15). By taking the inverse of the block matrix in (B.16), we

obtain the right hand side of equation (B.9) excluding the remainder term π ê.

Part 2:

Now, we show that ‖ê‖ = OP(n−1). Let

‖ê‖ = OP(n−t) (B.17)

for some t. The Lemma is proven if t = 1. In the rest of this proof, we show that t = 1.

By multiplying both sides of the equation (B.9) by (Ir+b − Â
∗
), we obtain

(Ir+b − Â
∗
)
◦
ηN = (Ir+b − Â

∗
)Σ̂
∗−1

(Ĉ
∗
π(ψN )−C∗) + π(Ir+b − Â

∗
)ê, (B.18)

as (Ir+b − Â
∗
)(Ir+b − Â

∗
) = (Ir+b − Â

∗
). It can be shown that

Ĉ
∗
π(ψN )−C∗ =

∑
i∈s

1

πi
c∗i(ψN )v∗i −

∑
j∈s

1

πj
c∗j(ψN )γj , (B.19)

where

v∗i = π−1i c
∗
i(ψN )T

◦
ηN , (B.20)

γj = (1 + v∗j )
−1 − 1 + v∗j (B.21)

= (πj +
◦
ηN

Tc∗j(ψN ))−1 πj − 1 + v∗j ·

By using the definition (B.11) and the expression for v∗i , it can be shown that

(Ir+b − Â
∗
)Σ̂
∗−1∑

i∈s

1

πi
c∗i(ψN )v∗i = (Ir+b − Â

∗
)
◦
ηN · (B.22)
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By using equation (B.19) and (B.22), we obtain the following expression.

(Ir+b − Â
∗
)Σ̂
∗−1

(Ĉ
∗
π(ψN )−C∗) = (Ir+b − Â

∗
)
◦
ηN − π ê1, (B.23)

where

ê1 = π−1(Ir+b − Â
∗
)Σ̂
∗−1∑

i∈s
c∗i(ψN )

γi
πi
· (B.24)

By substituting expression (B.23) within equation (B.18), we obtain

ê1 = (Ir+b − Â
∗
)ê,

which implies

‖ê1‖2 = ‖(Ir+b − Â
∗
)ê‖2

= tr(êT(Ir+b − Â
∗
)T(Ir+b − Â

∗
)ê)

= tr(êT(Ir+b − Â
∗
)ê)

= tr(êTê)− tr((Â
∗
ê)T(Â

∗
ê))

= ‖ê‖2 − ‖Â
∗
ê‖2· (B.25)

We have that ‖Â
∗
‖ = [tr(Â

∗
)]1/2 = dim(νN )1/2 = O(1), as the nuisance parameter νN is

of finite dimension. Thus equation (B.17) implies that ‖Â
∗
ê‖ 6 ‖Â

∗
‖ ‖ê‖ = OP(n−t),

or equivalently

‖Â
∗
ê‖ = OP(n−t), (B.26)

Thus by combining (B.17), (B.25) and (B.26), we obtain

‖ê1‖ = OP(n−t)· (B.27)

Now, we derive the order of ê1 to find the value of t. The equation (B.24) implies that

‖ê1‖ 6
1

N
‖D̂‖

∑
i∈s

|γi|
πi
‖c∗i(ψN )‖, (B.28)

where ‖D̂‖ = Nπ−1‖Ir+b − Â
∗
‖ ‖Σ̂

∗−1
‖ = ‖Ir+b − Â

∗
‖ ‖Ŝ

∗
(ψN )−1‖. As (Ir+b − Â

∗
) is

a symmetric and idempotent matrix, we have that

‖(Ir+b − Â
∗
)‖ = [tr((Ir+b − Â

∗
)T(Ir+b − Â

∗
))]1/2 = [tr((Ir+b − Â

∗
))]1/2

= [r + b− dim(νN )]1/2 = O(1), (B.29)
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because dim(νN ) = O(1), r = O(1) and b = O(1). Thus the condition (3.32) and the

equation (B.29) imply that

‖D̂‖ = Op(1)· (B.30)

The definition (B.21) implies that

|γj | 6 |(1 + v∗j )
−1 − 1 + v∗j | 6 v∗2j + |εj |,

where εj is such that Pr(|εi| 6 κ|v∗j |3, j ∈ s)→ 1, for some finite constant κ > 0. Thus

the definition (B.20) implies that

|γj | 6
1

π2j
‖c∗j(ψN )‖2‖ ◦ηN‖

2
+ |εj |· (B.31)

Under the regularity conditions given by (3.28)-(3.31), Berger and De La Riva Torres

(2016) showed that

π−1‖ ◦ηN‖ = OP(n−1/2)· (B.32)

By combining equation (B.28) and (B.31), and by using |v∗i |
3 6 π−3i ‖c∗i(ψN )‖3‖ ◦ηN‖3 we

have

‖ê1‖ 6 ‖D̂‖‖ ◦ηN‖
2 1

N

∑
i∈s

1

π3j
‖c∗j(ψN )‖3 +

1

N
‖D̂‖

∑
i∈s

|εj |
πi
‖c∗i(ψN )‖

6 ‖D̂‖‖ ◦ηN‖
2 1

N

∑
i∈s

1

π3j
‖c∗j(ψN )‖3 + ‖D̂‖‖ ◦ηN‖

3 κ

N

∑
i∈s

1

π4j
‖c∗j(ψN )‖4

6 ‖D̂‖N
2

n2
‖ ◦ηN‖

2 π3

n

∑
i∈s

1

π3j
‖c∗j(ψN )‖3 + ‖D̂‖N

3

n3
‖ ◦ηN‖

3
κ
π4

n

∑
i∈s

1

π4j
‖c∗j(ψN )‖4

= OP(n−1) +OP(n−3/2) = OP(n−1), (B.33)

by using the condition (3.33), and the expressions (B.30) and (B.32). Thus the expres-

sions (B.27) and (B.33) imply t = 1. The Lemma follows from the expression (B.17).

Lemma B.3. Under the regularity conditions (3.28)–(3.33), we have that

2

{
`(π)−max

ν∈Λ
` (θN ,ν)

}
= (Ĉ

∗
π(ψN )−C∗)T(Ir+b − Â

∗
)Σ̂
∗−1

(Ĉ
∗
π(ψN )−C∗) +OP(n−1/2),

(B.34)

where

`(π) = −
∑
i∈s

log(πi), (B.35)

Σ̂
∗

is defined by equation (B.11) and Â
∗

is defined by equation (B.10).
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Proof of Lemma B.3. From Section 3.6, we have that

max
ν∈Λ

` (θN ,ν) = `
(
θN ,

◦
νN
)

= −
∑
i∈s

log
(
πi +

◦
ηN

T c∗i(
◦
ψN )

)
, (B.36)

where
◦
ψN = (θN

T,
◦
νN

T)T. Here,
◦
νN and

◦
ηN be the solutions of (3.22), with θ = θN . The

equation (B.36) implies

2

{
`(π)−max

ν∈Λ
` (θN ,ν)

}
= 2

∑
i∈s

log (1+
◦
%i), (B.37)

with

◦
%i= π−1i c

∗
i(
◦
ψN )T

◦
ηN ·

The expression (B.37) is a function of (
◦
ηN

T,θN
T,
◦
νN

T)T. A multivariate Taylor expansion

of this function around (0r
T,θN

T,νN
T)T is given by

2

{
`(π)−max

ν∈Λ
` (θN ,ν)

}
= 2

∑
i∈s

%i −
∑
i∈s

%2i + 2
∑
i∈s

ϕi, (B.38)

where

%i = π−1i c
∗
i(ψN )T

◦
ηN (B.39)

and ϕi is such that Pr{|ϕi| 6 κ|%3i |, i ∈ s} → 1 for some finite κ > 0. By using the

expressions (B.9) and (B.39); and the fact that
◦
ηN

TC∗ = 0 (see Lemma B.1), we obtain

∑
i∈s

%i =
∑
i∈s

c∗i(ψN )T

πi

◦
ηN = (Ĉ

∗
π(ψN )−C∗)T ◦ηN +

◦
ηN

TC∗

= C̃
∗
π(ψN )T(Ir+b − Â

∗
)Σ̂
∗−1
C̃
∗
π(ψN ) + πC̃

∗
π(ψN )Tê, (B.40)

where

C̃
∗
π(ψN ) = Ĉ

∗
π(ψN )−C∗· (B.41)

Furthermore, by using the expressions (B.9) and (B.11), we obtain

∑
i∈s

%2i =
◦
ηN

T
∑
i∈s

1

π2i
c∗i(ψN )c∗i(ψN )T

◦
ηN

=
◦
ηN

TΣ̂
∗ ◦
ηN

= C̃
∗
π(ψN )TÊ

∗
Σ̂
∗
Ê
∗
C̃
∗
π(ψN ) + 2πC̃

∗
π(ψN )TÊ

∗
Σ̂
∗
ê+ π2êTΣ̂

∗
ê, (B.42)
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where Ê
∗

is a symmetric matrix such that Ê
∗

= (Ir+b− Â
∗
)Σ̂
∗−1

. We have Ê
∗
Σ̂
∗
Ê
∗

=

Ê
∗

as (Ir+b − Â
∗
) is an idempotent matrix. Thus equation (B.42) reduces to∑

i∈s
%2i = C̃

∗
π(ψN )T(Ir+b − Â

∗
)Σ̂
∗−1
C̃
∗
π(ψN ) + 2πC̃

∗
π(ψN )T(Ir+b − Â

∗
)ê+ π2êTΣ̂

∗
ê·

(B.43)

We also have that

|
∑
i∈s

ϕi| 6 κ
∑
i∈s
|%i|3 6 κ‖ ◦ηN‖3

∑
i∈s

1

π3i
‖c∗i(ψN )‖3 = OP(n−1/2), (B.44)

by using (3.33) and (B.32). Thus by using the expressions (B.40) and (B.43), and

inequality (B.44), the equation (B.38) reduces to

2

{
`(π)−max

ν∈Λ
` (θN ,ν)

}
= C̃

∗
π(ψN )T(Ir+b − Â

∗
)Σ̂
∗−1
C̃
∗
π(ψN ) + 2πC̃

∗
π(ψN )Â

∗
ê− π2êTΣ̂

∗
ê

+OP(n−1/2)

= C̃
∗
π(ψN )T(Ir+b − Â

∗
)Σ̂
∗−1
C̃
∗
π(ψN ) +OP(n−1/2), (B.45)

because |C̃
∗
π(ψN )TÂ

∗
ê| = OP(Nn−3/2) and |êTŜ

∗
(ψN )ê| = OP(n−2), by using ‖Â

∗
‖ =

O(1), the regularity conditions (3.29) and (3.31), and ‖ê‖ = OP(n−1) (see Lemma B.2).

The Lemma follows from (B.41) and (B.45).

Theorem B.1. Let ci = π−1zi, where the zi are the stratification variables defined by

(3.41). Suppose that the regularity conditions (3.28)–(3.33) hold for c∗i(ψN ) defined by

expression (3.12), under an unequal probability (with replacement) stratified sampling

design. We have that

r̂(θN ) = Ĝπ(ψN )T(Ib − Âg|z)V̂
−1
gg|z Ĝπ(ψN ) +OP(n−1/2),

where r̂(θN ) and Ĝπ(ψN ) are respectively defined by (3.15) and (3.36), and Âg|z is given

by

Âg|z = V̂
−1/2
gg|z ∇̂G

(
∇̂GTV̂

−1
gg|z∇̂G

)−1
∇̂GT V̂

−1/2
gg|z ,

where ∇̂G is defined by (3.38). Here, V̂ gg|z is the Hansen and Hurwitz (1943) stratified

variance estimator given by

V̂ gg|z = Σ̂gg − Σ̂zg
TΣ̂
−1
zz Σ̂zg, (B.46)
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with

Σ̂gg =
∑
i∈s
ği(ψN ) ği(ψN )T,

Σ̂zz =
∑
i∈s
z̆i z̆i

T, (B.47)

Σ̂zg =
∑
i∈s
z̆i ği(ψN )T·

Here, ği(ψN ) = gi(ψN )π−1i and z̆i = ziπ
−1
i .

Berger and De La Riva Torres (2016) show that V̂ gg|z is an alternative expression for

the Hansen and Hurwitz (1943) stratified variance estimator.

Proof of Theorem B.1. As ci = π−1zi, the vector η in expression (3.10), which satisfies

the constraint (3.9), is given by η = 0r. Hence, the unique solution is m̂i = π−1i . The

expression (3.16) implies that `(ψ̂) = `(π) where `(π) is defined by expression (B.35).

Thus r̂(θN ) = 2{`(π)−maxν∈Λ ` (θN ,ν)} (see definition (3.15)) and by using (B.34), we

have that

r̂(θN ) = (Ĉ
∗
π(ψN )−C∗)T(Ir+b − Â

∗
)Σ̂
∗−1

(Ĉ
∗
π(ψN )−C∗) +OP(n−1/2), (B.48)

by using Lemma B.3, where Â
∗

is defined by expression (B.10) and Σ̂
∗

is defined by

expression (B.11). It can be shown that

Σ̂
∗

=

(
π−2Σ̂zz π−1Σ̂zg

π−1Σ̂gz Σ̂gg

)
,

Ĉ
∗
π(ψN )−C∗ = (0r

T, Ĝπ(ψN )T)T·

Hence, expression (B.48) implies that

r̂(θN ) = (0r
T, Ĝπ(ψN )T)(Ir+b − Â

∗
)Σ̂
∗−1

(0r
T, Ĝπ(ψN )T)T +OP(n−1/2)

= Ĝπ(ψN )T(Ib − Âg|z)(Σ̂gg − Σ̂gzΣ̂
−1
zz Σ̂zg)

−1 Ĝπ(ψN ) + OP(n−1/2),

by using the Schur complement of Σ̂zz in Σ̂
∗
. The Theorem follows.

Corollary B.1. Let ci = π−1πi. Suppose that the regularity conditions (3.28)–(3.33) hold

for c∗i(ψN ) defined by expression (3.12), under an unequal probability (with replacement)

sampling design, with a single stratum. Then the expression (3.35) holds.

Proof of Corollary B.1. When we have a single stratum, we have zi = πi. This implies

Σ̂zz = n, Σ̂zg =
∑

i∈s ği(ψN )T and Âg|z = Âg. Thus the expression (B.46) reduces to

expression (3.39). Hence, the result (3.35) holds, when we have a single stratum.
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Theorem B.2. Let ci = (π−1zi
T, fi(ϕN )T)T, where the zi are the stratification variables

defined by (3.41) and the fi(ϕN ) are defined in Section 3.9. Suppose that the regularity

conditions (3.28)–(3.33) hold for c∗i(ψN ) defined by expression (3.12), under an unequal

probability (with replacement) stratified sampling design. We have that

r̂(θN | ϕN ) = Ĝreg(ψN ,ϕN , z)T(Ib − Â◦g|z)V̂
◦−1
gg|zĜreg(ψN ,ϕN , z) +OP(n−1/2), (B.49)

where r̂(θN | ϕN ) is defined by expression (3.51) and

V̂
◦
gg|z = Σ̂

◦
gg − Σ̂

◦T
zgΣ̂

−1
zz Σ̂

◦
zg, (B.50)

where Σ̂zz is defined by (B.47),

Σ̂
◦
gg =

∑
i∈s
ğ◦i (ψN ,ϕN )ğ◦i (ψN ,ϕN )T,

Σ̂
◦
zg =

1

π

∑
i∈s
z̆i ğ

◦
i (ψN ,ϕN )T,

ğ◦i (ψN ,ϕN ) = ği(ψN )− B̂(ψN ,ϕN , z)Tf̆i(ϕN ), (B.51)

B̂(ψN ,ϕN , z) = V̂
−1
ff |zV̂ fg|z,

V̂ ff |z = Σ̂ff − Σ̂zf
T Σ̂

−1
zz Σ̂zf , (B.52)

V̂ fg|z = Σ̂fg − Σ̂zf
T Σ̂

−1
zz Σ̂zg,

Σ̂ff =
∑
i∈s

f̆i(ϕN ) f̆i(ϕN )T,

Σ̂zf =
∑
i∈s
z̆i f̆i(ϕN )T,

Σ̂fg =
∑
i∈s

f̆i(ϕN ) ği(ψN )T,

Σ̂zg =
1

π

∑
i∈s
z̆iği(ψN )T,

Ĝreg(ψN ,ϕN , z) = Ĝπ(ψN )− B̂(ψN ,ϕN , z)T f̂π(ϕN ),

f̂π(ϕN ) =
∑
i∈s

f̆i(ϕN ),

Ĝπ(ψN ) =
∑
i∈s
ği(ψN ),

Â◦g|z = V̂
◦−1/2
gg|z ∇̂

◦
G

(
∇̂
◦T
G V̂

◦−1
gg|z∇̂

◦
G

)−1
∇̂
◦T
G V̂

◦−1/2
gg|z ,

∇̂
◦
G =

∑
i∈s

∂ğ◦i (ψ,ϕN )

∂ν

∣∣∣∣
ψ=ψN

·

Here, f̆i(ϕN ) = fi(ϕN )π−1i , ği(ψN ) = gi(ψN )π−1i .
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Proof of Theorem B.2. The regularity conditions (3.29)–(3.33) imply

N−1‖Ĉπ −C‖ = OP(n−1/2), (B.53)

max
i∈s
‖ci‖ = oP(n1/2), (B.54)

‖Ŝ‖ = OP(1), (B.55)

‖Ŝ
−1
‖ = OP(1), (B.56)

πτ

n

∑
i∈s
‖c̆i‖τ = OP(1), with τ = 2, 3 and 4, (B.57)

where c̆i = ciπ
−1
i and

Ĉπ =
∑
i∈s
c̆i,

Ŝ = − π
N

∑
i∈s
c̆ic̆i

T· (B.58)

Berger and De La Riva Torres (2016) showed that the conditions (3.28) and (B.53)–

(B.57) imply

2{`(π)− `(ψ̂ | ϕN )} = (Ĉπ −C)TΣ̂
−1
cc (Ĉπ −C) +OP(n−1/2), (B.59)

where

Σ̂cc =
∑
i∈s
c̆ic̆i

T =

(
π−2Σ̂zz π−1Σ̂zf

π−1Σ̂zf
T Σ̂ff

)
·

As Ĉπ −C = (0H
T, f̂π(ϕN )T)T, the expression (B.59) gives

2{`(π)− `(ψ̂ | ϕN )} = (0H
T, f̂π(ϕN )T)Σ̂

−1
cc (0H

T, f̂π(ϕN )T)T +OP(n−1/2),

which implies that

2{`(π)− `(ψ̂ | ϕN )} = f̂π(ϕN )TV̂
−1
ff |z f̂π(ϕN ) +OP(n−1/2), (B.60)

by using the Schur complement V̂ ff |z of Σ̂zz in Σ̂cc.

Lemma B.3 gives

2{`(π)−max
ν∈Λ

`(θN ,ν | ϕN )} = (Ĉ
∗
π(ψN )−C∗)T(Ir+b − Â

∗
)Σ̂
∗−1

(Ĉ
∗
π(ψN )−C∗) +OP(n−1/2),

(B.61)

where Â
∗

and Σ̂
∗

are respectively defined by expressions (B.10) and (B.11). We have

Ĉ
∗
π(ψN )−C∗ = (0H

T, Ŵ π
T)T, (B.62)



108 Appendix B Supplementary Material for the Second Paper

where

Ŵ π =
∑
i∈s
w̆i(ψN ,ϕN ) = (f̂π(ϕN )T, Ĝπ(ψN )T)T,

w̆i(ψ,ϕN ) = (f̆i(ϕN )T, ği(ψ)T)T·

Thus expressions (B.61) and (B.62) imply that

2{`(π)−max
ν∈Λ

`(θN ,ν | ϕN )} = (0T
H , Ŵ

T

π)T(Ir+b − Â
∗
)Σ̂
∗−1

(0T
H , Ŵ

T

π) +OP(n−1/2),

(B.63)

which reduces to

2{`(π)−max
ν∈Λ

`(θN ,ν | ϕN )} = Ŵ
T

π(Ir−H+b − Âw)V̂
−1
ww|zŴ π +OP(n−1/2)· (B.64)

Here, Âw is a symmetric and idempotent matrix defined by

Âw = V̂
−1/2
ww|z ∇̂W (∇̂

T

W V̂
−1
ww|z ∇̂W )−1 ∇̂

T

W V̂
−1/2
ww|z, (B.65)

with

V̂ ww|z = Σ̂ww − Σ̂
T

zwΣ̂
−1
zz Σ̂zw, (B.66)

Σ̂ww =
∑
i∈s
w̆i(ψN ,ϕN )w̆i(ψN ,ϕN )T,

Σ̂zw =
∑
i∈s
z̆i w̆i(ψN ,ϕN )T,

∇̂W =
∑
i∈s

∂w̆i(ψ,ϕN )

∂ν

∣∣∣∣
ψ=ψN

,

It can be shown that expression (B.64) is equivalent to

2{`(π)−max
ν∈Λ

`(θN ,ν | ϕN )} = Ŵ
◦T
π (Ir−H+b − Â◦w)V̂

◦−1
ww|zŴ

◦
π +OP(n−1/2), (B.67)

where

Ŵ
◦
π =

∑
i∈s
w̆◦i (ψN ,ϕN ) = (f̂π(ϕN )T, Ĝreg(ψN ,ϕN , z)T)T,

w̆◦i (ψN ,ϕN ) = (f̆i(ϕN )T, ğ◦i (ψN ,ϕN )T)T· (B.68)

The matrix Â◦w is defined by expression (B.65), after substitutingwi(ψN ,ϕN ) byw◦i (ψN ,ϕN ),

and V̂ ww|z by V̂
◦
ww|z defined by

V̂
◦
ww|z = Σ̂

◦
ww − Σ̂

◦T
zwΣ̂

−1
zz Σ̂

◦
zw,
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where

Σ̂
◦
ww =

∑
i∈s
w̆◦i (ψN ,ϕN ) w̆◦i (ψN ,ϕN )T,

Σ̂
◦
zw =

∑
i∈s
z̆i w̆

◦
i (ψN ,ϕN )T·

As ğ◦i (ψN ,ϕN ) and fi(ϕN ) are orthogonal, V̂
◦
ww|z reduces to a block-diagonal matrix;

that is,

V̂
◦
ww|z =

(
V̂ ff |z 0

0 V̂
◦
gg|z

)
, (B.69)

where V̂ ff |z is defined by expression (B.52) and V̂
◦
gg|z is defined by expression (B.50).

Hence, by substituting the expressions (B.68) and (B.69) into (B.67), we obtain

2{`(π)−max
ν∈Λ

`(θN ,ν | ϕN )} = f̂π(ϕN )TV̂
−1
ff |z f̂π(ϕN ) + Ĝreg(ψN ,ϕN , z)T(Ib − Â◦g|z)

V̂
◦−1
gg|zĜreg(ψN ,ϕN , z) +OP(n−1/2), (B.70)

The definition (3.51) implies

r̂(θN | ϕN ) = 2

{
`(π)−max

ν∈Λ
`(θN ,ν | ϕN )

}
− 2

{
`(π)− `(ψ̂ | ϕN )

}
(B.71)

Finally, by substituting the expressions (B.60) and (B.70) into (B.71), we obtain (B.49).

The Theorem follows.

Corollary B.2. Let ci = (π−1πi, fi(ϕN )T)T, where the fi(ϕN ) are defined in Section 3.9.

Suppose that the regularity conditions (3.28)–(3.33) hold for c∗i(ψN ) defined by expression

(3.12), under an unequal probability (with replacement) sampling design, with a single

stratum. We have that the expression (3.52) holds.

Proof of Corollary B.2. With a single stratum, we have zi = πi. It can be shown that

this implies B̂(ψN ,ϕN , z) = B̂(ψN ,ϕN ), Ĝreg(ψN ,ϕN , z) = Ĝreg(ψN ,ϕN ), Â◦g|z = Â•g,

ğ◦i (ψN ,ϕN ) = ğ•i (ψN ,ϕN ) and V̂
◦
gg|z = V̂

•
gg. Hence, the expression (B.49) reduces to

expression (3.52). The Corollary follows.
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B.3 R code for the second paper

By Melike Oguz-Alper

University of Southampton, SO17 1BJ, Southampton, U.K.

M.OguzAlper@soton.ac.uk

#-------------------------------------------------------------------

# Clear the workspace

#-------------------------------------------------------------------

rm(list=ls(all=TRUE))

#-------------------------------------------------------------------

# Load packages required

#-------------------------------------------------------------------

library(rootSolve)

library(MASS)

library(lpSolve)

library(sampling)

library(minpack.lm)

#-------------------------------------------------------------------

# FUNCTIONS FOR LINEAR REGRESSION

#-------------------------------------------------------------------

# Estimating functions for linear regression parameters

#===================================================================

# DEFINITIONS OF THE PARAMETERS USED IN THE FOLLOWING FUNCTIONS

# (unless otherwise stated)

#-------------------------------------------------------------------

# p:factor of heteroskedasticity

# Constant residual variance when p=1

# Theta: a given value of Theta

# Lambda: a given value of Lambda

# Here , Lambda: is the nuisance (intercept ); Theta: is the parameter

# of interest (slope)

# n: sample size

# xi.Sample: nx1 vector of covariate

# yi.Sample: nx1 vector of response variable

# W: design weights

# Inc.Prob: nx1 vector of inclusion probabilities

# LambdaDot: a given initial value of Lambda

# Tol1: tolerance value for the difference between lower and upper bounds

# Tol2: tolerance value for the difference between the ELLR value and

# the table value of the chi -squared distribution

# a: significance level

# Pr: first -order inclusion probabilities

# f: sum(Inclusion.Probabilities ^2)/n: Here , summation is taken over the

# population.

# Gamma: known population value (population mean)

#===================================================================

Fun.EF.Linear <-function(Theta ,Lambda ,p)

{

Wi<-xi.Sample^(-p)

gi.Lambda <-(yi.Sample -Lambda -Theta*xi.Sample )*Wi

gi.Theta <-xi.Sample *(yi.Sample -Lambda -Theta*xi.Sample )*Wi

matrix(c(gi.Lambda ,gi.Theta),nrow=length(yi.Sample),ncol=2,byrow=FALSE)

}

#-------------------------------------------------------------------

# Estimating equations for linear regression parameters

#===================================================================
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# W: nx1 vector of weights

#-------------------------------------------------------------------

Fun.EE.Linear <-function(X,W,p)

{

gi<-Fun.EF.Linear(X[2],X[1],p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

Fun1 <-sum(gi.Lambda*W)

Fun2 <-sum(gi.Theta*W)

c(Fun1 ,Fun2)

}

#------------------------------------------------------------------------------

# Function for solving Lambda for a given value of Theta (in linear regression)

#==============================================================================

Fun.LHat.Linear <-function(X,Theta ,W,p)

{

gi<-Fun.EF.Linear(Theta ,X,p)

gi.Lambda <-gi[,1]

Fun <-sum(gi.Lambda*W)

c(Fun)

}

#-------------------------------------------------------------------

# FUNCTIONS FOR EMPIRICAL LIKELIHOOD

#===================================================================

#-----------------------------------------------------------------------------

# Function for solving lagrange coefficients for given values of parameters

#=============================================================================

Fun.Eta <-function(Eta ,Theta ,Lambda ,p)

{

gi<-Fun.EF.Linear(Theta ,Lambda ,p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

Fun1 <-sum(Inc.Prob/(Inc.Prob+Eta [1]* Inc.Prob+Eta [2]*gi.Lambda+Eta [3]*gi.Theta))

-length(Inc.Prob)

Fun2 <-sum(gi.Lambda /(Inc.Prob+Eta [1]* Inc.Prob+Eta [2]*gi.Lambda+Eta [3]*gi.Theta ))

Fun3 <-sum(gi.Theta /(Inc.Prob+Eta [1]* Inc.Prob+Eta [2]*gi.Lambda+Eta [3]*gi.Theta))

c(Fun1 ,Fun2 ,Fun3)

}

#---------------------------------------------------------------------------

# Function for finding the value of the empirical log -likelihood ratio (ELLR)

# funtion when all parameters are given

#===========================================================================

ELLR <-function(Theta ,Lambda ,p)

{

Roots.Eta <-nls.lm(par=c(0,0,0), lower=NULL ,upper=NULL ,fn=Fun.Eta ,jac=NULL ,Theta=

Theta ,Lambda=Lambda ,p=p)$par

gi<-Fun.EF.Linear(Theta ,Lambda ,p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

mi.Hat <-1/(Inc.Prob+Roots.Eta [1]* Inc.Prob+Roots.Eta [2]*gi.Lambda+Roots.Eta [3]*

gi.Theta)

if(range(mi.Hat )[1] <0)

{

s<-5e-05

a<-1
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while(range(mi.Hat )[1] <0)

{

Roots.Eta <-nls.lm(par=c(a*s,a*s,a*s),lower=NULL ,upper=NULL ,fn=Fun.Eta ,jac=NULL ,

Theta=Theta ,Lambda=Lambda ,p=p)$par

mi.Hat <-1/(Inc.Prob+Roots.Eta [1]* Inc.Prob+Roots.Eta [2]*gi.Lambda+Roots.Eta [3]*

gi.Theta)

a<-a+1

}

}

ELLR.Function <-2*sum(log(mi)-log(mi.Hat))

return(c(ELLR.Function ,Roots.Eta ,range(mi.Hat)))

}

#---------------------------------------------------------------------------

# PROFILING

#===========================================================================

#---------------------------------------------------------------------------

# Function for solving lagrange coefficients for a given value of Theta

# Nuisance parameter Lambda is unknown (PROFILING)

#===========================================================================

Fun.X<-function(X,Theta ,p)

{

gi<-Fun.EF.Linear(Theta ,X[4],p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

Wi<-xi.Sample^(-p)

Fun1 <-sum(Inc.Prob/(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*gi.Theta))-

length(Inc.Prob)

Fun2 <-sum(gi.Lambda /(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*gi.Theta))

Fun3 <-sum(gi.Theta /(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*gi.Theta))

Fun4 <-sum((X[2]+X[3]*xi.Sample )*Wi/(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*

gi.Theta ))

c(Fun1 ,Fun2 ,Fun3 ,Fun4)

}

#---------------------------------------------------------------------------

# Function for finding the value of empirical log -likelihood ratio (ELLR)

# funtion for a given value of Theta

# Nuisance parameter Lambda is unknown (PROFILING)

#===========================================================================

# mi: design weights

#---------------------------------------------------------------------------

ELLR.Nuisance <-function(Theta ,LambdaDot ,p)

{

Roots.X<-nls.lm(par=c(0,0,0, LambdaDot),lower=NULL ,upper=NULL ,fn=Fun.X,jac=NULL ,

Theta=Theta ,p=p)$par

gi<-Fun.EF.Linear(Theta ,Roots.X[4],p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

mi.Hat <-1/(Inc.Prob+Roots.X[1]* Inc.Prob+Roots.X[2]*gi.Lambda+Roots.X[3]*gi.Theta)

if(range(mi.Hat )[1] <0)

{

s<-5e-05

a<-1

while(range(mi.Hat )[1] <0)

{
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Roots.X<-nls.lm(par=c(a*s,a*s,a*s,LambdaDot),lower=NULL ,upper=NULL ,fn=Fun.X,

jac=NULL ,Theta=Theta ,p=p)$par

gi<-Fun.EF.Linear(Theta ,Roots.X[4],p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

mi.Hat <-1/(Inc.Prob+Roots.X[1]* Inc.Prob+Roots.X[2]*gi.Lambda+Roots.X[3]*gi.Theta)

a<-a+1

}

}

ELLR.Function <-2*sum(log(mi)-log(mi.Hat))

return(c(ELLR.Function ,Roots.X[4], range(mi.Hat)))

}

#---------------------------------------------------------------------------

# EMPIRICAL LIKELIHOOD CONFIDENCE INTERVALS

#===========================================================================

# Theta: a given initial value of Theta

# Lambda: a given initial value of Lambda

#---------------------------------------------------------------------------

# Lower bound

#===========================================================================

EL.LowerBound <-function(Theta ,Lambda ,Tol1 ,Tol2 ,a,p)

{

k<-0.05

q<-qchisq(1-a,1)

Boundary.Lower <-Theta -2*k*abs(Theta)

Boundary.Upper <-Theta

Difference1 <-abs(Boundary.Upper -Boundary.Lower)

Difference2 <-1

while (Difference1 >Tol1 | Difference2 >Tol2 )

{

Thetadot <-(Boundary.Lower+Boundary.Upper )/2

Vector.ELLR <-ELLR.Nuisance(Thetadot ,Lambda ,p)

ELLR.Function <-Vector.ELLR [1]

if(ELLR.Function >q) Boundary.Lower <-Thetadot

if(ELLR.Function <=q) Boundary.Upper <-Thetadot

Difference1 <-abs(Boundary.Upper -Boundary.Lower)

Difference2 <-q-ELLR.Function

if(Difference1 <=Tol1 & Difference2 >Tol2) {k<-k+0.05 ; Boundary.Lower <-

Boundary.Lower -2*k*abs(Boundary.Lower)}

Difference1 <-abs(Boundary.Upper -Boundary.Lower)

Lambda <-Vector.ELLR [2]

}

Lower.Bound <-(Boundary.Lower+Boundary.Upper )/2

return(Lower.Bound)

}

#---------------------------------------------------------------------------

# Upper bound

#===========================================================================

EL.UpperBound <-function(Theta ,Lambda ,Tol1 ,Tol2 ,a,p)

{

k<-0.05

q<-qchisq(1-a,1)

Boundary.Lower <-Theta

Boundary.Upper <-Theta +2*k*abs(Theta)

Difference1 <-abs(Boundary.Upper -Boundary.Lower)

Difference2 <-1



114 Appendix B Supplementary Material for the Second Paper

while (Difference1 >Tol1 | Difference2 >Tol2 )

{

Thetadot <-(Boundary.Lower+Boundary.Upper )/2

Vector.ELLR <-ELLR.Nuisance(Thetadot ,Lambda ,p)

ELLR.Function <-Vector.ELLR [1]

if(ELLR.Function >q) Boundary.Upper <-Thetadot

if(ELLR.Function <=q) Boundary.Lower <-Thetadot

Difference1 <-abs(Boundary.Upper -Boundary.Lower)

Difference2 <-q-ELLR.Function

if(Difference1 <=Tol1 & Difference2 >Tol2) {k<-k+0.05 ; Boundary.Upper <-

Boundary.Upper +2*k*abs(Boundary.Upper)}

Difference1 <-abs(Boundary.Upper -Boundary.Lower)

Lambda <-Vector.ELLR [2]

}

Upper.Bound <-(Boundary.Lower+Boundary.Upper )/2

return(Upper.Bound)

}

#---------------------------------------------------------------------------

# FUNCTIONS FOR PSEUDO LIKELIHOOD METHODS

#===========================================================================

#---------------------------------------------------------------------------

# HARTLEY & RAO (1962) VARIANCE ESTIMATOR

#===========================================================================

# y: variable of interest

#---------------------------------------------------------------------------

Var.Sys <-function(y,n,Pr ,f)

{

Total <-0

for(k in 1:n-1)

{

wi <-1/Pr

Inc.Prob.Trun <-Pr[(k+1):n]

mi.Trun <-wi[(k+1):n]

y.Trun <-y[(k+1):n]

Sum.k<-sum((1-Pr[k]-Inc.Prob.Trun+f)*(wi[k]*y[k]-mi.Trun*y.Trun )^2)

Total <-sum(Total+Sum.k)

}

return(Total/(n-1))

}

#---------------------------------------------------------------------------

# JACOBIAN FOR LINEAR REGRESSION PARAMETERS

#===========================================================================

Fun.Jacobian.Linear <-function(p)

{

Wi<-xi.Sample^(-p)

J1.i<--xi.Sample*Wi

J2.i<--Wi

matrix(c(J1.i,J2.i),nrow=length(xi.Sample),ncol=2,byrow=FALSE)

}

#---------------------------------------------------------------------------

# Variance estimation of new estimating function (gi.Star)

# (Pseudo likelihood 1)

#===========================================================================

# Theta: estimate of Theta

# Lambda: estimate of Lambda

#---------------------------------------------------------------------------

Varyans.Pseudo1 <-function(Theta ,Lambda ,W,f,p)

{
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gi<-Fun.EF.Linear(Theta ,Lambda ,p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

J.i<-Fun.Jacobian.Linear(p)

J1.i<-J.i[,1]

J2.i<-J.i[,2]

J1<-sum(J1.i*W)

J2<-sum(J2.i*W)

gi.Star <-gi.Theta -J1/J2*gi.Lambda

Var.gi.Star <-Var.Sys(gi.Star ,length(W),1/W,f)

return(Var.gi.Star)

}

#---------------------------------------------------------------------------

# PSEUDO LIKELIHOOD 1 CONFIDENCE INTERVALS

#===========================================================================

#---------------------------------------------------------------------------

# Lower bound (replace -1.96 by +1.96 for upper bound)

#===========================================================================

# Theta: estimate of Theta

# Lambda: estimate of Lambda

#---------------------------------------------------------------------------

Fun.X.LB.Pseudo1 <-function(X,Theta ,Lambda ,W,f,p)

{

gi<-Fun.EF.Linear(X[2],X[1],p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

Var.gi.Star <-Varyans.Pseudo1(Theta ,Lambda ,W,f,p)

Fun1 <-sum(gi.Lambda*W)

Fun2 <-sum(gi.Theta*W)/sqrt(Var.gi.Star )-1.96

c(Fun1 ,Fun2)

}

#---------------------------------------------------------------------------

# PSEUDO LIKELIHOOD 2 CONFIDENCE INTERVALS

#===========================================================================

#---------------------------------------------------------------------------

# Lower bound (replace -1.96 by +1.96 for upper bound)

#===========================================================================

Fun.X.LB.Pseudo2 <-function(X,W,f,p)

{

gi<-Fun.EF.Linear(X[2],X[1],p)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

J.i<-Fun.Jacobian.Linear(p)

J1.i<-J.i[,1]

J2.i<-J.i[,2]

J1<-sum(J1.i*W)

J2<-sum(J2.i*W)

gi.Star <-gi.Theta -J1/J2*gi.Lambda

Var.gi.Star <-Var.Sys(gi.Star ,length(W),1/W,f)

Fun1 <-sum(gi.Lambda*W)

Fun2 <-sum(gi.Theta*W)/sqrt(Var.gi.Star )-1.96

c(Fun1 ,Fun2)

}

#---------------------------------------------------------------------------
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# RESCALED BOOTSTRAP (Rao et al. 1992)

#===========================================================================

# m: bootstrap sample size

# B: number of bootstrap samples

#---------------------------------------------------------------------------

Rescaled.Boot <-function(m,n,W,B,p)

{

Vector.Boot.Theta <-NULL

for (k in 1:B)

{

Boot <-srswr(m,n)

mi.Boot <-((1-(m/(n -1))^0.5)+((m/(n -1))^0.5)*n/m*Boot)*W

Temp <-nls.lm(par=c(0,0), lower=NULL ,upper=NULL ,fn=Fun.EE.Linear ,jac=NULL ,

W=mi.Boot ,p=p)$par [2]

Vector.Boot.Theta <-c(Vector.Boot.Theta ,Temp)

}

return(Vector.Boot.Theta)

}

#---------------------------------------------------------------------------

# START EXAMPLES

#---------------------------------------------------------------------------

# APPLICATION OF THE FUNCTIONS PROVIDED ABOVE

# A PART OF THE MAIN CODE

# (Excludes generation of population and sample selection)

#===========================================================================

# Beta1.Pop: population value of the slope (OLS estimate)

#---------------------------------------------------------------------------

# Point estimation , ELLR value and EL confidence interval

#===========================================================================

Beta.Est <-nls.lm(par=c(0,0), lower=NULL ,upper=NULL ,fn=Fun.EE.Linear ,jac=NULL ,

W=W,p=p)$par

Beta0.Est <-Beta.Est[1]

Beta1.Est <-Beta.Est[2]

ELLR.Value <-ELLR.Nuisance(Beta1.Pop ,Beta0.Est ,p)[1]

LB.EL<-EL.LowerBound(Beta1.Est ,Beta0.Est ,1e-08,1e-06,0.05,p)

UB.EL<-EL.UpperBound(Beta1.Est ,Beta0.Est ,1e-08,1e-06,0.05,p)

#---------------------------------------------------------------------------

# Pseudo likelihood confidence intervals

#===========================================================================

LB.Initial <-Beta1.Est -2*0.05* abs(Beta1.Est)

UB.Initial <-Beta1.Est +2*0.05* abs(Beta1.Est)

LB.Pseudo1 <-nls.lm(par=c(Beta0.Est ,LB.Initial),lower=NULL ,upper=NULL ,fn=

Fun.X.LB.Pseudo1 ,jac=NULL ,W=W,f=f,Theta=Beta1.Est ,Lambda=Beta0.Est ,p=p)$par [2]

UB.Pseudo1 <-nls.lm(par=c(Beta0.Est ,UB.Initial),lower=NULL ,upper=NULL ,fn=

Fun.X.UB.Pseudo1 ,jac=NULL ,W=W,f=f,Theta=Beta1.Est ,Lambda=Beta0.Est ,p=p)$par [2]

LB.Pseudo2 <-nls.lm(par=c(Beta0.Est ,LB.Initial),lower=NULL ,upper=NULL ,fn=

Fun.X.LB.Pseudo2 ,jac=NULL ,W=W,f=f,p=p)$par [2]

UB.Pseudo2 <-nls.lm(par=c(Beta0.Est ,UB.Initial),lower=NULL ,upper=NULL ,fn=

Fun.X.UB.Pseudo2 ,jac=NULL ,W=W,f=f,p=p)$par [2]

#---------------------------------------------------------------------------

# Bootstrap confidence interval

#===========================================================================

Vector.Boot.Beta1 <-Rescaled.Boot(n-1,n,W,1000,p=p)

CI.ResBoot <-Percentile.CI(Vector.Boot.Beta1 ,0.05)

#---------------------------------------------------------------------------

# END EXAMPLES

#---------------------------------------------------------------------------

#-------------------------------------------------------------------

# FUNCTIONS FOR LOGISTIC REGRESSION (WITH AUXILIARY INFORMATION)
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#===================================================================

# Estimating functions for logistic regression parameters

#===================================================================

Fun.EF.Logistic <-function(Theta ,Lambda)

{

gi.Lambda <-yi.Sample -exp(Lambda+Theta*xi.Sample )/(1+ exp(Lambda+Theta*xi.Sample ))

gi.Theta <-xi.Sample *(yi.Sample -exp(Lambda+Theta*xi.Sample )/(1+ exp(Lambda+Theta*

xi.Sample )))

matrix(c(gi.Lambda ,gi.Theta),nrow=length(yi.Sample),ncol=2,byrow=FALSE)

}

#-------------------------------------------------------------------

# Estimating equations for logistic regression parameters

#===================================================================

# W: nx1 vector of weights

#-------------------------------------------------------------------

Fun.EE.Logistic <-function(X,W)

{

gi<-Fun.EF.Logistic(X[2],X[1])

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

Fun1 <-sum(gi.Lambda*W)

Fun2 <-sum(gi.Theta*W)

c(Fun1 ,Fun2)

}

#--------------------------------------------------------------------------

# Function for solving Lambda for a given value of Theta (in logistic regression)

#==========================================================================

# W: nx1 vector of weights

#-------------------------------------------------------------------

Fun.LHat.Logistic <-function(X,Theta ,W)

{

gi<-Fun.EF.Logistic(Theta ,X)

gi.Lambda <-gi[,1]

Fun <-sum(gi.Lambda*W)

c(Fun)

}

#-------------------------------------------------------------------

# Estimating function for known population mean

#===================================================================

# vi.Sample: sample values of the auxiliary variable V

#-------------------------------------------------------------------

Fun.EF.Aux <-function(Gamma)

{

gi.Gamma <-vi.Sample -Gamma

}

#---------------------------------------------------------------------------

# FUNCTIONS FOR EMPIRICAL LIKELIHOOD (WITH AUXILIARY INFORMATION)

#===========================================================================

#---------------------------------------------------------------------------

# Function for solving lagrange coefficients given population

# level information

#===========================================================================

Fun.Eta.Aux <-function(Eta ,Gamma)

{

gi.Gamma <-Fun.EF.Aux(Gamma)

Fun1 <-sum(Inc.Prob/(Inc.Prob+Eta [1]* Inc.Prob+Eta [2]*gi.Gamma))-length(Inc.Prob)

Fun2 <-sum(gi.Gamma /(Inc.Prob+Eta [1]* Inc.Prob+Eta [2]*gi.Gamma ))

c(Fun1 ,Fun2)

}
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#---------------------------------------------------------------------------

# EL weights in the presence of population level information

#===========================================================================

EL.Calib.Weight <-function(Gamma)

{

Roots.Eta <-nls.lm(par=c(0,0),lower=NULL ,upper=NULL ,fn=Fun.Eta.Aux ,jac=NULL ,

Gamma=Gamma)$par

gi.Gamma <-Fun.EF.Aux(Gamma)

mi.Hat <-1/(Inc.Prob+Roots.Eta [1]* Inc.Prob+Roots.Eta [2]*gi.Gamma)

if(range(mi.Hat )[1] <0)

{

s<-5e-05

a<-1

while(range(mi.Hat )[1] <0)

{

Roots.Eta <-nls.lm(par=c(a*s,a*s),lower=NULL ,upper=NULL ,fn=Fun.Eta.Aux ,jac=NULL ,

Gamma=Gamma)$par

mi.Hat <-1/(Inc.Prob+Roots.Eta [1]* Inc.Prob+Roots.Eta [2]*gi.Gamma)

a<-a+1

}

}

return(mi.Hat)

}

#---------------------------------------------------------------------------

# PROFILING

#===========================================================================

#---------------------------------------------------------------------------

# Function for solving lagrange coefficients for given value of Theta and

# population level information Gamma

# Nuisance parameter Lambda is unknown (PROFILING)

#===========================================================================

Fun.X<-function(X,Theta ,Gamma)

{

gi<-Fun.EF.Logistic(Theta ,X[5])

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

gi.Gamma <-Fun.EF.Aux(Gamma)

Fun1 <-sum(Inc.Prob/(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*gi.Theta+X[4]*

gi.Gamma))-length(Inc.Prob)

Fun2 <-sum(gi.Lambda /(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*gi.Theta+X[4]*

gi.Gamma ))

Fun3 <-sum(gi.Theta /(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*gi.Theta+X[4]*

gi.Gamma ))

Fun4 <-sum(gi.Gamma /(Inc.Prob+X[1]* Inc.Prob+X[2]*gi.Lambda+X[3]*gi.Theta+X[4]*

gi.Gamma ))

Fun5 <-sum((X[2]+X[3]*xi.Sample )*(exp(X[5]+ Theta*xi.Sample )/(1+ exp(X[5]+ Theta*

xi.Sample ))/(1+ exp(X[5]+ Theta*xi.Sample )))/( Inc.Prob+X[1]* Inc.Prob+X[2]*

gi.Lambda+X[3]*gi.Theta+X[4]*gi.Gamma))

c(Fun1 ,Fun2 ,Fun3 ,Fun4 ,Fun5)

}

#---------------------------------------------------------------------------

# Function for finding the value of the empirical log -likelihood ratio (ELLR)

# funtion for a given value of Theta and population level information Gamma

# Nuisance parameter Lambda is unknown (PROFILING)

#===========================================================================

# mi.Star: EL weights in the presence of auxiliary information

# and computed by using function ’EL.Calib.Weight ’

#---------------------------------------------------------------------------

ELLR.Nuisance <-function(Theta ,LambdaDot ,Gamma)
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{

Roots.X<-nls.lm(par=c(0,0,0,0, LambdaDot),lower=NULL ,upper=NULL ,fn=Fun.X,jac=

NULL ,Theta=Theta ,Gamma=Gamma)$par

gi<-Fun.EF.Logistic(Theta ,Roots.X[5])

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

gi.Gamma <-Fun.EF.Aux(Gamma)

mi.Hat <-1/(Inc.Prob+Roots.X[1]* Inc.Prob+Roots.X[2]*gi.Lambda+Roots.X[3]*gi.Theta+

Roots.X[4]*gi.Gamma)

if(range(mi.Hat )[1] <0)

{

s<-5e-05

a<-1

while(range(mi.Hat )[1] <0)

{

Roots.X<-nls.lm(par=c(a*s,a*s,a*s,a*s,LambdaDot),lower=NULL ,upper=NULL ,fn=Fun.X,

jac=NULL ,Theta=Theta ,Gamma=Gamma)$par

gi<-Fun.EF.Logistic(Theta ,Roots.X[5])

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

gi.Gamma <-Fun.EF.Aux(Gamma)

mi.Hat <-1/(Inc.Prob+Roots.X[1]* Inc.Prob+Roots.X[2]*gi.Lambda+Roots.X[3]*gi.Theta+

Roots.X[4]*gi.Gamma)

a<-a+1

}

}

ELLR.Function <-2*sum(log(mi.Star)-log(mi.Hat))

return(c(ELLR.Function ,Roots.X[5]))

}

#---------------------------------------------------------------------------

# FUNCTIONS FOR PSEUDO LIKELIHOOD METHODS UNDER POPULATION LEVEL INFORMATION

#===========================================================================

#---------------------------------------------------------------------------

# CALIBRATION WEIGHTS

#===========================================================================

# W: design weights or bootstrap weights

#---------------------------------------------------------------------------

Calib.Weight <-function(Gamma ,W)

{

gi.Gamma <-Fun.EF.Aux(Gamma)

L<--sum(gi.Gamma*W)/sum(gi.Gamma*gi.Gamma*W)

W.Calib <-(1+gi.Gamma*L)*W

return(W.Calib)

}

#---------------------------------------------------------------------------

# HARTLEY & RAO (1962) VARIANCE ESTIMATOR under population level information

#===========================================================================

# y: variable of interest

# W: calibration weights (use function ’Calib.Weight ’ provided above)

#---------------------------------------------------------------------------

Var.Sys.Aux <-function(y,n,Pr,W,f)

{

Total <-0

for(k in 1:n-1)

{

wi<-W
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Inc.Prob.Trun <-Pr[(k+1):n]

wi.Trun <-wi[(k+1):n]

y.Trun <-y[(k+1):n]

Sum.k<-sum((1-Pr[k]-Inc.Prob.Trun+f)*(wi[k]*y[k]-wi.Trun*y.Trun )^2)

Total <-sum(Total+Sum.k)

}

return(Total/(n-1))

}

#---------------------------------------------------------------------------

# JACOBIAN FOR LINEAR REGRESSION PARAMETERS

#===========================================================================

Fun.Jacobian.Logistic <-function(Theta ,Lambda)

{

J1.i<--xi.Sample*exp(Lambda+Theta*xi.Sample )/(1+ exp(Lambda+Theta*xi.Sample ))/

(1+ exp(Lambda+Theta*xi.Sample ))

J2.i<--exp(Lambda+Theta*xi.Sample )/(1+ exp(Lambda+Theta*xi.Sample ))/(1+ exp(Lambda+

Theta*xi.Sample ))

matrix(c(J1.i,J2.i),nrow=length(xi.Sample),ncol=2,byrow=FALSE)

}

#---------------------------------------------------------------------------

# Variance estimation of new estimating function (gi.Star)

# (Pseudo likelihood 1) in the presence of auxiliary information

#===========================================================================

# Theta: estimate of Theta

# Lambda: estimate of Lambda

# W: calibration weights

#---------------------------------------------------------------------------

Varyans.Pseudo1 <-function(Theta ,Lambda ,Gamma ,W,Pr ,f)

{

gi<-Fun.EF.Logistic(Theta ,Lambda)

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]

gi.Gamma <-Fun.EF.Aux(Gamma)

J.i<-Fun.Jacobian.Logistic(Theta ,Lambda)

J1.i<-J.i[,1]

J2.i<-J.i[,2]

J1<-sum(J1.i*W)

J2<-sum(J2.i*W)

gi.Star <-gi.Theta -J1/J2*gi.Lambda

Beta <-sum(gi.Star*gi.Gamma*W)/sum(gi.Gamma*gi.Gamma*W)

ei<-gi.Star -Beta*gi.Gamma

Var.ei <-Var.Sys.Aux(ei,length(Pr),Pr,W,f)

return(Var.ei)

}

#---------------------------------------------------------------------------

# PSEUDO LIKELIHOOD 2 CONFIDENCE INTERVALS under POPULATION LEVEL INFORMATION

#===========================================================================

#---------------------------------------------------------------------------

# Lower bound (replace -1.96 by +1.96 for upper bound)

#===========================================================================

# W: calibration weights

#---------------------------------------------------------------------------

Fun.X.LB.Pseudo2 <-function(X,Gamma ,W,Pr ,f)

{

gi<-Fun.EF.Logistic(X[2],X[1])

gi.Lambda <-gi[,1]

gi.Theta <-gi[,2]
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gi.Gamma <-Fun.EF.Aux(Gamma)

J.i<-Fun.Jacobian.Logistic(X[2],X[1])

J1.i<-J.i[,1]

J2.i<-J.i[,2]

J1<-sum(J1.i*W)

J2<-sum(J2.i*W)

gi.Star <-gi.Theta -J1/J2*gi.Lambda

Beta <-sum(gi.Star*gi.Gamma*W)/sum(gi.Gamma*gi.Gamma*W)

ei<-gi.Star -Beta*gi.Gamma

Var.ei <-Var.Sys.W(ei ,length(Pr),Pr ,W,f)

Fun1 <-sum(gi.Lambda*W)

Fun2 <-sum(gi.Theta*W)/sqrt(Var.ei)-1.96

c(Fun1 ,Fun2)

}

#---------------------------------------------------------------------------

# RESCALED BOOTSTRAP (Rao et al. 1992) under POPULATION LEVEL INFORMATION

#===========================================================================

# m: bootstrap sample size

# B: number of bootstrap samples

#---------------------------------------------------------------------------

Rescaled.Boot <-function(m,n,Gamma ,W,B)

{

Vector.Boot.Theta <-NULL

for (k in 1:B)

{

Boot <-srswr(m,n)

mi.Boot <-((1-(m/(n -1))^0.5)+((m/(n -1))^0.5)*n/m*Boot)*W

mi.Boot.Calib <-Calib.Weight(Gamma ,mi.Boot)

Temp <-nls.lm(par=c(0,0), lower=NULL ,upper=NULL ,fn=Fun.EE.Logistic ,jac=NULL ,W=

mi.Boot.Calib)$par [2]

Vector.Boot.Theta <-c(Vector.Boot.Theta ,Temp)

}

return(Vector.Boot.Theta)

}

#---------------------------------------------------------------------------

# START EXAMPLES

#---------------------------------------------------------------------------

# APPLICATION OF THE FUNCTIONS PROVIDED FOR LOGISTIC REGRESSION

# IN THE PRESENCE OF AUXILIARY INFORMATION

#===========================================================================

# Beta1.Pop: population value of the slope (GLS estimate)

#---------------------------------------------------------------------------

# EL point estimation and ELLR value in the presence of

# auxiliary information

#===========================================================================

mi.Star <-EL.Calib.Weight(Gamma)

Beta.Est <-nls.lm(par=c(0,0),lower=NULL ,upper=NULL ,fn=Fun.EE.Logistic ,jac=NULL ,

W=mi.Star)$par

Beta0.Est <-Roots.Beta [1]

Beta1.Est <-Roots.Beta [2]

Vector.ELLR <-ELLR.Nuisance(Beta1.Pop ,Beta0.Est ,Gamma )[1]

#---------------------------------------------------------------------------

# The following functions for the EL confidence interval in the presence of

# auxiliary information can be written in a similar manner as what has been

# provided for linear regression (see above)

#---------------------------------------------------------------------------
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LB.EL<-EL.LowerBound(Beta1.Est ,Beta0.Est ,Gamma ,1e-08,1e-06 ,0.05)

UB.EL<-EL.UpperBound(Beta1.Est ,Beta0.Est ,Gamma ,1e-08,1e-06 ,0.05)

#---------------------------------------------------------------------------

# Pseudo likelihood point estimation and confidence intervals

# in the presence of population level information

#===========================================================================

wi<-Calib.Weight(Gamma ,W)

Beta.Pseudo.Est <-nls.lm(par=c(0,0),lower=NULL ,upper=NULL ,fn=Fun.EE.Logistic ,jac=

NULL ,W=W)$par

LB.Initial <-Beta.Pseudo.Est [2] -2*0.05* abs(Beta.Pseudo.Est [2])

UB.Initial <-Beta.Pseudo.Est [2]+2*0.05* abs(Beta.Pseudo.Est [2])

#---------------------------------------------------------------------------

# The following functions for the pseudo likelihood 1 confidence interval

# in the presence of auxiliary information can be written in a similar

# manner as what has been provided for linear regression (see above)

#---------------------------------------------------------------------------

LB.Pseudo1 <-nls.lm(par=c(Beta.Pseudo.Est[1],LB.Initial),lower=NULL ,upper=NULL ,

fn=Fun.X.LB.Pseudo1 ,jac=NULL ,Theta=Beta.Pseudo.Est[2], Lambda=Beta.Pseudo.Est[1],

Gamma=Gamma ,W=wi,Pr=Inc.Prob ,f=f)$par [2]

UB.Pseudo1 <-nls.lm(par=c(Beta.Pseudo.Est[1],UB.Initial),lower=NULL ,upper=NULL ,

fn=Fun.X.UB.Pseudo1 ,jac=NULL ,Theta=Beta.Pseudo.Est[2], Lambda=Beta.Pseudo.Est[1],

Gamma=Gamma ,W=wi,Pr=Inc.Prob ,f=f)$par [2]

#===========================================================================

LB.Pseudo2 <-nls.lm(par=c(Beta.Pseudo.Est[1],LB.Initial),lower=NULL ,upper=NULL ,

fn=Fun.X.LB.Pseudo2 ,jac=NULL ,Gamma=Gamma ,W=wi,Pr=Inc.Prob ,f=f)$par [2]

UB.Pseudo2 <-nls.lm(par=c(Beta.Pseudo.Est[1],UB.Initial),lower=NULL ,upper=NULL ,

fn=Fun.X.UB.Pseudo2 ,jac=NULL ,Gamma=Gamma ,W=wi,Pr=Inc.Prob ,f=f)$par [2]

#---------------------------------------------------------------------------

# Bootstrap confidence interval in the presence of auxiliary information

#===========================================================================

# wi: calibration weights

#---------------------------------------------------------------------------

Vector.Boot.Beta1 <-Rescaled.Boot(n-1,n,Gamma ,wi ,1000)

CI.ResBoot <-Percentile.CI(Vector.Boot.Beta1 ,0.05)

#---------------------------------------------------------------------------

# END EXAMPLES

#---------------------------------------------------------------------------
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C.1 R code for the third paper

#-------------------------------------------------------------------

# Clear the workspace and maximise the memory

#-------------------------------------------------------------------

rm(list=ls(all=TRUE))

memory.size(TRUE)

memory.limit(size =4095)

#-------------------------------------------------------------------

# Load packages required

#-------------------------------------------------------------------

library(rootSolve)

library(MASS)

library(lpSolve)

library(sampling)

library(minpack.lm)

library(nlme)

library(lattice)

library(Matrix)

#-------------------------------------------------------------------

# FUNCTIONS FOR TWO -LEVEL REGRESSION UNDER UNIFORM COVARIANCE

#-------------------------------------------------------------------

#===================================================================

# DEFINITIONS OF THE PARAMETERS USED IN THE FOLLOWING FUNCTIONS

# (unless otherwise stated)

#-------------------------------------------------------------------

# data: sample data frame including nine columns of variables: individual ID ,

# cluster ID, response variable , intercept (column vector of 1s),covariate 1,

# covariate 2, inclusion probabilities of the PSUs ,inclusion probabilities of

123
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# the SSUs , joint inclusion probabilities (Inc.Prob.PSU*Inc.Prob.SSU)

# d: number of sample PSUs

# size: dx1 size vector where sizes are the number of secondary sample units

# (SSUs) within associated sample cluster (PSU)

# id: total sample sizex1 vector of sample cluster ID that take values id=1,...,d.

# Units in the same cluster take the same id.

# adj.w: total sample sizex1 vector of scaled weights of SSUs

# psu.w: dx1 vector of design weights of PSUs

# n: number of sample PSUs

# ni: nx1 size vector where sizes are the number of SSUs within associated

# sample PSU

# u: estimate (true value if known) of second level residual variance (between

# PSU variance)

# W: inverse of scaled weights of SSUs (’effective ’ sample size)

# e: estimate (true value if known) of first level residual variance (within PSU

# variance)

# PsuID: total sample sizex1 vector of sample cluster ID that take values

# id=1,...,n. Units in the same cluster take the same id.

# Beta0: a given value of Beta0

# Beta1: a given value of Beta1

# Beta2: a given value of Beta2

# DomainData0: first object of the output of function ’TwoStage.EF ’.

# DomainData1: first object of the output of function ’TwoStage.EF ’.

# DomainData2: third object of the output of function ’TwoStage.EF ’.

# Theta: a given value of Theta (Here , Theta is the parameter of interest)

# a: 1,2 or 3 depending on which regression coefficient is the parameter

# of interest. For example , a=1 when the par. of int. is the ’intercept ’.

# Nu: vector of initial values for the nuisance parameters

# f: sum(Inclusion.Probabilities ^2)/n: Here , summation is taken over population

# clusters. Inclusion probabilities are assosiacated to PSUs.

#---------------------------------------------------------------------------

# Function for estimating variance components (weights are incorporated)

#===========================================================================

EBLUP.VarEst <-function(data ,d,size ,id,adj.w,psu.w)

{

psu.w.i<-1/data[,7]

y<-data[,3]

Intercept <-data[,4]

x1<-data[,5]

x2<-data[,6]

W<-psu.w.i*adj.w

yd.bar <-NULL

x1d.bar <-NULL

x2d.bar <-NULL

Nd.Hat <-NULL

for(i in 1:d){

temp.y<-sum(y[id==i]*adj.w[id==i])/sum(adj.w[id==i])

temp.x1 <-sum(x1[id==i]*adj.w[id==i])/ sum(adj.w[id==i])

temp.x2 <-sum(x2[id==i]*adj.w[id==i])/ sum(adj.w[id==i])

temp.Nd <-sum(adj.w[id==i])

yd.bar <-c(yd.bar ,temp.y)

x1d.bar <-c(x1d.bar ,temp.x1)

x2d.bar <-c(x2d.bar ,temp.x2)

Nd.Hat <-c(Nd.Hat ,temp.Nd)
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if(is.nan(yd.bar[i])) yd.bar[i]<-0

if(is.nan(x1d.bar[i])) x1d.bar[i]<-0

if(is.nan(x2d.bar[i])) x2d.bar[i]<-0

}

ydi.bar <-rep(yd.bar ,size)

x1di.bar <-rep(x1d.bar ,size)

x2di.bar <-rep(x2d.bar ,size)

Temp.yi <-(y-ydi.bar)

Temp.x1i <-(x1-x1di.bar)

Temp.x2i <-(x2-x2di.bar)

fit.ols.nointercept <-lm(Temp.yi~-1+Temp.x1i+Temp.x2i)

k0<-length(fit.ols.nointercept$coef)

VarEst.e<-sum(fit.ols.nointercept$resid ^2*W)/(sum(W)-sum(psu.w)-k0)

fit.ols <-lm(y~x1+x2)

k1<-k0+1

X.Mat=cbind(Intercept ,x1,x2)

XW.Mat=cbind(Intercept*W,x1*W,x2*W)

xd.bar.Mat <-matrix(c(Nd.Hat ,x1d.bar*Nd.Hat ,x2d.bar*Nd.Hat),nrow=k1,ncol=d,byrow=

TRUE)

xdW.bar.Mat <-matrix(c(Nd.Hat*psu.w,x1d.bar*Nd.Hat*psu.w,x2d.bar*Nd.Hat*psu.w),

nrow=k1 ,ncol=d,byrow=TRUE)

Sum.xd.bar <-xd.bar.Mat %*%t(xdW.bar.Mat)

n.Star <-sum(W)-sum(diag(solve(t(X.Mat )%*%XW.Mat )%*% Sum.xd.bar))

VarEst.u<-(sum(fit.ols$resid ^2*W)-(sum(W)-k1)* VarEst.e)/n.Star

if (VarEst.u<0) VarEst.u<-0

return(c(VarEst.e,VarEst.u))

}

#---------------------------------------------------------------------------

# Function for computing totals from SSUs to form estimating functions at first

# level

#===========================================================================

# data: sample data frame including columns of variables: response variable ,

# covariate 1, covariate 2.

#---------------------------------------------------------------------------

TwoStage.EF<-function(n,ni,u,W,e,PsuID ,data)

{

gj1.Beta0 <-rep(0,n)

gj2.Beta0 <-rep(0,n)

gj3.Beta0 <-rep(0,n)

gj4.Beta0 <-rep(0,n)

gj1.Beta1 <-rep(0,n)

gj2.Beta1 <-rep(0,n)

gj3.Beta1 <-rep(0,n)

gj4.Beta1 <-rep(0,n)

gj1.Beta2 <-rep(0,n)

gj2.Beta2 <-rep(0,n)

gj3.Beta2 <-rep(0,n)

gj4.Beta2 <-rep(0,n)

y<-data[,1]

x1<-data[,2]

x2<-data[,3]
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for(i in 1:n)

{

x0i.Sample.Temp <-rep(1,ni[i])

VarMat <-x0i.Sample.Temp %*%t(x0i.Sample.Temp)*u+diag(e*W[PsuID==i])

InvVarMat <-solve(VarMat)

yi.Sample.Temp <-y[PsuID==i]

x1i.Sample.Temp <-x1[PsuID ==i]

x2i.Sample.Temp <-x2[PsuID ==i]

Part1 <-InvVarMat %*%yi.Sample.Temp

Part2 <-InvVarMat %*%x0i.Sample.Temp

Part3 <-InvVarMat %*%x1i.Sample.Temp

Part4 <-InvVarMat %*%x2i.Sample.Temp

gj1.Beta0[i]<-as.vector(x0i.Sample.Temp %*% Part1)

gj2.Beta0[i]<-as.vector(x0i.Sample.Temp %*% Part2)

gj3.Beta0[i]<-as.vector(x0i.Sample.Temp %*% Part3)

gj4.Beta0[i]<-as.vector(x0i.Sample.Temp %*% Part4)

gj1.Beta1[i]<-as.vector(x1i.Sample.Temp %*% Part1)

gj2.Beta1[i]<-as.vector(x1i.Sample.Temp %*% Part2)

gj3.Beta1[i]<-as.vector(x1i.Sample.Temp %*% Part3)

gj4.Beta1[i]<-as.vector(x1i.Sample.Temp %*% Part4)

gj1.Beta2[i]<-as.vector(x2i.Sample.Temp %*% Part1)

gj2.Beta2[i]<-as.vector(x2i.Sample.Temp %*% Part2)

gj3.Beta2[i]<-as.vector(x2i.Sample.Temp %*% Part3)

gj4.Beta2[i]<-as.vector(x2i.Sample.Temp %*% Part4)

}

gj.Data.Beta0 <-cbind(gj1.Beta0 ,gj2.Beta0 ,gj3.Beta0 ,gj4.Beta0)

gj.Data.Beta1 <-cbind(gj1.Beta1 ,gj2.Beta1 ,gj3.Beta1 ,gj4.Beta1)

gj.Data.Beta2 <-cbind(gj1.Beta2 ,gj2.Beta2 ,gj3.Beta2 ,gj4.Beta2)

return(list(gj.Data.Beta0 ,gj.Data.Beta1 ,gj.Data.Beta2))

}

#-------------------------------------------------------------------

# Estimating functions associated with the first stage sample units (PSUs)

#===================================================================

Fun.EF.Linear.GEE <-function(Beta0 ,Beta1 ,Beta2 ,DomainData0 ,DomainData1 ,DomainData2)

{

m<-length(DomainData0 [,1])

gi.Beta0 <-DomainData0 [,1]-Beta0*DomainData0 [,2]-Beta1*DomainData0 [,3]-Beta2*

DomainData0 [,4]

gi.Beta1 <-DomainData1 [,1]-Beta0*DomainData1 [,2]-Beta1*DomainData1 [,3]-Beta2*

DomainData1 [,4]

gi.Beta2 <-DomainData2 [,1]-Beta0*DomainData2 [,2]-Beta1*DomainData2 [,3]-Beta2*

DomainData2 [,4]

matrix(c(gi.Beta0 ,gi.Beta1 ,gi.Beta2),nrow=m,ncol=3,byrow=FALSE)

}

#-------------------------------------------------------------------

# Estimating equations associated with the first stage sample units (PSUs)

#===================================================================

# W: nx1 vector of weights

#-------------------------------------------------------------------

Fun.EE.Linear.GEE <-function(X,W,DomainData0 ,DomainData1 ,DomainData2)

{

gi<-Fun.EF.Linear.GEE(X[1],X[2],X[3], DomainData0 ,DomainData1 ,DomainData2)

gi.Beta0 <-gi[,1]
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gi.Beta1 <-gi[,2]

gi.Beta2 <-gi[,3]

Fun1 <-sum(gi.Beta0*W)

Fun2 <-sum(gi.Beta1*W)

Fun3 <-sum(gi.Beta2*W)

c(Fun1 ,Fun2 ,Fun3)

}

#---------------------------------------------------------------------------

# FUNCTIONS FOR EMPIRICAL LIKELIHOOD

#===========================================================================

#---------------------------------------------------------------------------

# PROFILING

#===========================================================================

#---------------------------------------------------------------------------

# Function for solving lagrange coefficients for a given value of the

# parameter of interest

# Nuisance parameters are unknown (PROFILING)

#===========================================================================

# W: design weights of PSUs

#---------------------------------------------------------------------------

Fun.X.No.GEE <-function(X,Theta ,DomainData0 ,DomainData1 ,DomainData2 ,W,a)

{

m<-length(DomainData0 [,1])

pi <-1/W

if(a==1) gi<-Fun.EF.Linear.GEE(Theta ,X[5],X[6], DomainData0 ,DomainData1 ,DomainData2)

if(a==2) gi<-Fun.EF.Linear.GEE(X[5],Theta ,X[6], DomainData0 ,DomainData1 ,DomainData2)

if(a==3) gi<-Fun.EF.Linear.GEE(X[5],X[6],Theta ,DomainData0 ,DomainData1 ,DomainData2)

gi.Beta0 <-gi[,1]

gi.Beta1 <-gi[,2]

gi.Beta2 <-gi[,3]

Denom <-pi+pi*X[1]+gi.Beta0*X[2]+gi.Beta1*X[3]+gi.Beta2*X[4]

Fun1 <-sum(pi/Denom)-m

Fun2 <-sum(gi.Beta0/Denom)

Fun3 <-sum(gi.Beta1/Denom)

Fun4 <-sum(gi.Beta2/Denom)

Fun5 <-sum(-( DomainData0 [,2]*X[2]+ DomainData1 [,2]*X[3]+ DomainData2 [,2]*X[4])/ Denom)

Fun6 <-sum(-( DomainData0 [,3]*X[2]+ DomainData1 [,3]*X[3]+ DomainData2 [,3]*X[4])/ Denom)

Fun7 <-sum(-( DomainData0 [,4]*X[2]+ DomainData1 [,4]*X[3]+ DomainData2 [,4]*X[4])/ Denom)

Fun.Der <-c(Fun5 ,Fun6 ,Fun7)

Fun.Der <-Fun.Der[-a]

c(Fun1 ,Fun2 ,Fun3 ,Fun4 ,Fun.Der)

}

#---------------------------------------------------------------------------

# Function for finding the value of empirical log -likelihood ratio (ELLR)

# funtion for a given value of Theta

# Nuisance parameter Lambda is unknown (PROFILING)

#===========================================================================

# W: design weights fo the primary sampling units (PSUs)

#---------------------------------------------------------------------------

ELLR.Nuisance.GEE <-function(Theta ,Nu,DomainData0 ,DomainData1 ,DomainData2 ,W,a)

{

k<-length(Nu)+2

pi <-1/W

X<-nls.lm(par=c(rep(0,k),Nu),lower=NULL ,upper=NULL ,fn=Fun.X.No.GEE ,jac=NULL ,Theta=

Theta ,DomainData0=DomainData0 ,DomainData1=DomainData1 ,DomainData2=DomainData2 ,W=W,

a=a)$par
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if(a==1) gi<-Fun.EF.Linear.GEE(Theta ,X[5],X[6], DomainData0 ,DomainData1 ,DomainData2)

if(a==2) gi<-Fun.EF.Linear.GEE(X[5],Theta ,X[6], DomainData0 ,DomainData1 ,DomainData2)

if(a==3) gi<-Fun.EF.Linear.GEE(X[5],X[6],Theta ,DomainData0 ,DomainData1 ,DomainData2)

gi.Beta0 <-gi[,1]

gi.Beta1 <-gi[,2]

gi.Beta2 <-gi[,3]

Denom <-pi+pi*X[1]+gi.Beta0*X[2]+gi.Beta1*X[3]+gi.Beta2*X[4]

mi.Hat <-1/ Denom

if(range(mi.Hat )[1] <0.01)

{

s<-5e-09

l<-1

while(range(mi.Hat )[1] <0.01)

{

X<-nls.lm(par=c(s,rep(0,(k-1)),X[5],X[6]), lower=NULL ,upper=NULL ,fn=Fun.X.No.GEE ,

jac=NULL ,Theta=Theta ,DomainData0=DomainData0 ,DomainData1=DomainData1 ,DomainData2=

DomainData2 ,W=W,a=a)$par

if(a==1) gi<-Fun.EF.Linear.GEE(Theta ,X[5],X[6], DomainData0 ,DomainData1 ,DomainData2)

if(a==2) gi<-Fun.EF.Linear.GEE(X[5],Theta ,X[6], DomainData0 ,DomainData1 ,DomainData2)

if(a==3) gi<-Fun.EF.Linear.GEE(X[5],X[6],Theta ,DomainData0 ,DomainData1 ,DomainData2)

gi.Beta0 <-gi[,1]

gi.Beta1 <-gi[,2]

gi.Beta2 <-gi[,3]

Denom <-pi+pi*X[1]+gi.Beta0*X[2]+gi.Beta1*X[3]+gi.Beta2*X[4]

mi.Hat <-1/ Denom

l<-l+1

}

}

ELLR.Function <-2*sum(log(W)-log(mi.Hat))

return(ELLR.Function)

}

#---------------------------------------------------------------------------

# FUNCTIONS FOR PSEUDO LIKELIHOOD METHOD

#===========================================================================

#---------------------------------------------------------------------------

# HARTLEY & RAO (1962) VARIANCE ESTIMATOR

#===========================================================================

# y: variable of interest

# n: sample size

# Pr: first -order inclusion probabilities

# f: sum(Inclusion.Probabilities ^2)/n. Here , summation is taken over the population.

#---------------------------------------------------------------------------

Var.Sys <-function(y,n,Pr ,f)

{

Total <-0

for(k in 1:n-1)

{

wi <-1/Pr

Inc.Prob.Trun <-Pr[(k+1):n]

mi.Trun <-wi[(k+1):n]

y.Trun <-y[(k+1):n]

Sum.k<-sum((1-Pr[k]-Inc.Prob.Trun+f)*(wi[k]*y[k]-mi.Trun*y.Trun )^2)

Total <-sum(Total+Sum.k)

}

return(Total/(n-1))
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}

#---------------------------------------------------------------------------

# Variance estimation of new estimating function (gi.Star) that is computed

# at PSU level

#===========================================================================

# Beta0: estimate of Beta0

# Beta1: estimate of Beta1

# Beta2: estimate of Beta2

# W: design weights fo the primary sampling units (PSUs)

#---------------------------------------------------------------------------

Varyans.Pseudo.TwoStage <-function(Beta0 ,Beta1 ,Beta2 ,DomainData0 ,DomainData1 ,

DomainData2 ,W,f,a)

{

gi<-Fun.EF.Linear.GEE(Beta0 ,Beta1 ,Beta2 ,DomainData0 ,DomainData1 ,DomainData2)

gi.Beta0 <-gi[,1]

gi.Beta1 <-gi[,2]

gi.Beta2 <-gi[,3]

Sum.DomainData0 <- -c(sum(DomainData0 [,2]*W),sum(DomainData0 [,3]*W),

sum(DomainData0 [,4]*W))

Sum.DomainData1 <- -c(sum(DomainData1 [,2]*W),sum(DomainData1 [,3]*W),

sum(DomainData1 [,4]*W))

Sum.DomainData2 <- -c(sum(DomainData2 [,2]*W),sum(DomainData2 [,3]*W),

sum(DomainData2 [,4]*W))

if(a==1) Der.Theta <- Sum.DomainData0[-a]

if(a==2) Der.Theta <- Sum.DomainData1[-a]

if(a==3) Der.Theta <- Sum.DomainData2[-a]

if(a==1) Der.Lambda <-matrix(c(Sum.DomainData1[-a],Sum.DomainData2[-a]),nr=2,nc=2,

byrow=TRUE)

if(a==2) Der.Lambda <-matrix(c(Sum.DomainData0[-a],Sum.DomainData2[-a]),nr=2,nc=2,

byrow=TRUE)

if(a==3) Der.Lambda <-matrix(c(Sum.DomainData0[-a],Sum.DomainData1[-a]),nr=2,nc=2,

byrow=TRUE)

J<-as.vector(Der.Theta %*% solve(Der.Lambda ))

if(a==1) gi.Star <-gi.Beta0 -J[1]*gi.Beta1 -J[2]*gi.Beta2

if(a==2) gi.Star <-gi.Beta1 -J[1]*gi.Beta0 -J[2]*gi.Beta2

if(a==3) gi.Star <-gi.Beta2 -J[1]*gi.Beta0 -J[2]*gi.Beta1

Var.gi.Star <-Var.Sys(gi.Star ,length(W),1/W,f)

return(Var.gi.Star)

}

#---------------------------------------------------------------------------

# PSEUDO LIKELIHOOD CONFIDENCE INTERVALS

#===========================================================================

#---------------------------------------------------------------------------

# Lower bound (replace -1.96 by +1.96 for upper bound)

#===========================================================================

# Beta0: estimate of Beta0

# Beta1: estimate of Beta1

# Beta2: estimate of Beta2

# W: design weights fo the primary sampling units (PSUs)

#---------------------------------------------------------------------------

Fun.X.LB.Pseudo.TwoStage <-function(X,Beta0 ,Beta1 ,Beta2 ,DomainData0 ,DomainData1 ,

DomainData2 ,W,f,a)

{

gi<-Fun.EF.Linear.GEE(X[1],X[2],X[3], DomainData0 ,DomainData1 ,DomainData2)

gi.Beta0 <-gi[,1]

gi.Beta1 <-gi[,2]
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gi.Beta2 <-gi[,3]

Var.gi.Star <-Varyans.Pseudo.TwoStage(Beta0 ,Beta1 ,Beta2 ,DomainData0 ,DomainData1 ,

DomainData2 ,W,f,a)

Fun1 <-sum(gi.Beta0*W)

Fun2 <-sum(gi.Beta1*W)

Fun3 <-sum(gi.Beta2*W)

Fun.Lambda <-c(Fun1 ,Fun2 ,Fun3)

Fun.Lambda <-Fun.Lambda[-a]

if(a==1) Fun4 <-sum(gi.Beta0*W)/sqrt(Var.gi.Star ) -1.96

if(a==2) Fun4 <-sum(gi.Beta1*W)/sqrt(Var.gi.Star ) -1.96

if(a==3) Fun4 <-sum(gi.Beta2*W)/sqrt(Var.gi.Star ) -1.96

c(Fun.Lambda ,Fun4)

}

#---------------------------------------------------------------------------

# START EXAMPLES

#---------------------------------------------------------------------------

# APPLICATION OF THE FUNCTIONS PROVIDED FOR TWO -LEVEL MODEL WITH UNIVARIATE

# COVARIANCE STRUCTURE

#===========================================================================

# Beta.Pop: vector of population values of regression coefficients

#---------------------------------------------------------------------------

# Point estimation for regression coefficients and computing ELLR function

#===========================================================================

VarEst <-EBLUP.VarEst(data ,d,size ,id,adj.w,psu.w)

e.Value <-VarEst [1]

u.Value <-VarEst [2]

Cluster.EFs <-TwoStage.EF(d,size ,u.Value ,W,e.Value ,id,data)

Beta.Est <-nls.lm(par=c(rep(0,3)), lower=NULL ,upper=NULL ,fn=Fun.EE.Linear.GEE ,

jac=NULL ,DomainData0=Cluster.EFs[[1]] , DomainData1=Cluster.EFs[[2]], DomainData2=

Cluster.EFs[[3]],W=psu.w)$par

Vector.ELLR <-NULL

for(a in 1:3)

{

Temp <-ELLR.Nuisance.GEE(Beta.Pop[a],Beta.Est[-a],Cluster.EFs [[1]] , Cluster.EFs[[2]],

Cluster.EFs[[3]],psu.w,a)

Vector.ELLR <-c(Vector.ELLR ,Temp)

}

#---------------------------------------------------------------------------

# Computing observed coverage of EL confidence interval for a given value of ELLR

# by using p-value

#===========================================================================

# test: a given value for ELLR function

# Y: true population value of the parameter of interest

# y: estimate of the parameter of interest

# a: significance level

#---------------------------------------------------------------------------

CP.TailErrors.PValue <-function(test ,Y,y,a)

{

if ((1- pchisq(test ,1))<a) {CP <-0} else {CP <-1}

if (CP==0 && Y<y) {LE <-1} else {LE <-0}

if (CP==0 && Y>y) {UE <-1} else {UE <-0}

return(c(CP,LE,UE))

}

EL.CP<-NULL

for(a in 1:3)

{
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Temp <-CP.TailErrors.PValue(Vector.ELLR[a],Beta.Pop[a],Beta.Est[a] ,0.05)[1]

EL.CP<-c(EL.CP,Temp)

}

#---------------------------------------------------------------------------

# Observed coverage of pseudo likelihood confidence interval

#===========================================================================

# Y: true population value of the parameter of interest

# lb: lower bound

# ub: upper bound

#---------------------------------------------------------------------------

CP.TailErrors <-function(Y,lb,ub)

{

if(Y<lb) LE <-1 else LE <-0

if(Y>ub) UE <-1 else UE <-0

if(LE+UE==0) CP <-1 else CP <-0

return(c(CP,LE,UE))

}

Pseudo.CP<-NULL

for (a in 1:3)

{

LB.Initial <-Beta.Est[a] -2*0.05* abs(Beta.Est[a])

UB.Initial <-Beta.Est[a]+2*0.05* abs(Beta.Est[a])

LB.Initial.Par <-Beta.Est

LB.Initial.Par[a]<-LB.Initial

LB.Pseudo <-nls.lm(par=LB.Initial.Par ,lower=NULL ,upper=NULL ,fn=

Fun.X.LB.Pseudo.TwoStage ,jac=NULL ,Beta0=Beta.Est[1],Beta1=Beta.Est[2],Beta2=

Beta.Est[3], DomainData0=Cluster.EFs[[1]], DomainData1=Cluster.EFs[[2]], DomainData2=

Cluster.EFs[[3]],W=psu.w,f=f,a=a)$par[a]

UB.Initial.Par <-Beta.Est

UB.Initial.Par[a]<-UB.Initial

UB.Pseudo <-nls.lm(par=UB.Initial.Par ,lower=NULL ,upper=NULL ,fn=

Fun.X.UB.Pseudo.TwoStage ,jac=NULL ,Beta0=Beta.Est[1],Beta1=Beta.Est[2],Beta2=

Beta.Est[3], DomainData0=Cluster.EFs[[1]], DomainData1=Cluster.EFs[[2]], DomainData2=

Cluster.EFs[[3]],W=psu.w,f=f,a=a)$par[a]

Temp <-CP.TailErrors(Beta.Pop[a],LB.Pseudo ,UB.Pseudo )[1]

Pseudo.CP<-c(Pseudo.CP ,Temp)

}

#---------------------------------------------------------------------------

# END EXAMPLES

#---------------------------------------------------------------------------
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Hájek, J. (1981), Sampling from a Finite Population, New York: Marcel Dekker.

Handcock, M. S., Huovilainen, S. M., and Rendall, M. S. (2000), “Combining registration

system and survey data to estimated birth probabilities,” Demography, 37, 187–192.

Hansen, L. P. (1982), “Large sample propeties of generalized method of moments esti-

mators,” Econometrica, 50(4), 1029 – 1054.

Hansen, M. H., and Hurwitz, W. N. (1943), “On the Theory of Sampling from Finite

Populations,” The Annals of Mathematical Statistics, 14(4), pp. 333–362.

Hansen, M. H., Madow, W. G., and Tepping, B. J. (1983), “An evaluation of model-

dependent and probability-sampling inferences in sample surveys,” Journal of the

American Statistical Association, 78(384), 776–793.

Hansen, M., Hurwitz, W., and Madow, W. (1953), Sample Survey Methods and Theory,

volume I, New York: John Wiley and Sons.

http://www.cros-portal.eu/content/14a01ericgraf
http://www.cros-portal.eu/content/14a01ericgraf


BIBLIOGRAPHY 137

Hartley, H. O., and Rao, J. N. K. (1962), “Sampling with unequal probabilities without

replacement,” Ann. math. Statist. Assoc., 33, 350–374.

Hartley, H. O., and Rao, J. N. K. (1968), “A new estimation theory for sample surveys,”

Biometrika, 55(3), 547–557.

Hartley, H. O., and Rao, J. N. K. (1969), “A new estimation theory for sample surveys,

II,” New Developments in survey Sampling (Johnson, N.L., and Smith, H.Jr., Eds.)

Wiley, New York, pp. 147–169.

Henderson, C. R. (1953), “Estimation of variance and variance components,” Biometrics,

9, 226–252.

Henderson, C. R., Kempthorne, O., Searle, S. R., and von Krosigk, C. M. (1959), “The

Estimation of Environmental and Genetic Trends from Records Subject to Culling,”

Biometrics, 15(2), 192–218.

Holmes, D. J., and Skinner, C. J. (2000), “Variance estimation for Labour Force Survey

estimates of level and change,” Government Statistical Service Methodology Series, .

The Office for National Statistics, London, United Kingdom, 21, 40pp.

Horvitz, D. G., and Thompson, D. J. (1952), “A Generalization of Sampling Without

Replacement From a Finite Universe,” Journal of the American Statistical Associa-

tion, 47(260), 663–685.

Huang, R., and Hidiroglou, M. (2003), “Design consistent estimators for a mixed linear

model on survey data,” Proceedings of the Survey Research Method Section of the

American Statistical Association, Joint Statistical Meetings, San Francisco, pp. 1897–

1904.

Isaki, C. T., and Fuller, W. A. (1982), “Survey design under the regression super-

population model,” Journal of the American Statistical Association, 77, 89–96.

Kalton, G. (2009), “Design for surveys over time,” Handbook of Statistics: Design,

Method and Applications: D. Pfeffermann and C.R. Rao.(editors). Elsevier, 29A, 89–

108.

Kim, J. K. (2009), “Calibration estimation using empirical likelihood in survey sam-

pling,” Statistica Sinica, 19, 145–157.

Kim, M. O., and Zhou, M. (2008), “Empirical likelihood for linear models in the presence

of nuisance parameters,” Statistics and Probability Letters, 78, 1445–1451.

Kish, L. (1965), Survey Sampling Wiley.

Korn, E., and Graubard, B. (2003), “Estimating variance components by uisng survey

data,” Journal of the Royal Statistical Society. Series B, 65, 175–190.

Kovar, J. G., Rao, J. N. K., and Wu, C. F. J. (1988), “Bootstrap and other methods to

measure errors in survey estimates,” The Canadian Journal of Statistics, 16, 25–45.
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