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ABSTRACT 
 
  It has become generally recognized that hyperbolic (i.e. Lobachevskian) space can be represented upon one 

sheet of a two-sheeted cylindrical hyperboloid in Minkowski space-time. This paper aims to clarify the 

derivation of this result and to describe some further related ideas.  
  Firstly a simple justification is given of the stated property, which seems somewhat lacking in the literature.  
This is straightforward once it is shown that differential displacements on the hyperboloid surface are space-

like elements in Minkowski space-time. This needs certain preliminary remarks on Minkowski space-time. 
Two other derivations are given which are valid in any pseudo-Euclidean space of the same type. 
 An alternative view comes from regarding Minkowski space-time projectively as a velocity space. This is 

possible with Minkowski's original representation but is best seen when Minkowski space-time is regarded 

differentially as a special case of the metric of General Relativity. Here the space may also be considered as 

differential space-time in the sense of Minkowski'. It may be considered as a projective space and in this 

case, as a velocity space which is a Lobachevsky space with hyperboloid representation. Projection of the 

hyperboloid to a disc or spherical ball gives an associated Beltrami-Klein representation of velocity space.  
  This geometrical representation has important application in physics being related to the hyperbolic theory 

of Special Relativity which was first proposed by Varićak in 1910 following Einstein's original 1905 paper. 

The Cayley metric for the velocity space representation leads to relativistic addition of two velocities.  
  The paper emphasizes the importance of Weierstrass coordinates as they are highly appropriate to the 

relativity application. They also show the close relation between the hyperboloid representation and the 

equivalent spherical one, the hyperbolic space being then regarded as a sphere of imaginary radius which  
has historically been a guiding idea and one closely related to Special Relativity.  
 

 

 

 

 

 

 

 

 

 

 

 



1. Spherical and hyperbolic metrics 

 

The relation between the metrics is here first illustrated in the familiar 3–dimension case. 

 

The sphere: 

 

           x²+y²+z²=R²                                       (1.1) 

 

If ρ is arc length from the pole and φ = ρ/R, the  

usual spherical parameterization is 

 

           x = R sin φ cos θ = R sin (ρ/R) cos θ 

           y = R sin φ sin θ = R sin (ρ/R) sin θ 

           z = R cos φ         = R cos (ρ/R) 

                                                                           (1.2)                           

The spherical metric is then                                                fig: A hemisphere in 3 dimensions 

 

          ds² = = dx²+dy²+dz² = R² (dφ² + sin²φ dθ²) = dρ² + R² sin² (ρ/R) dθ²                        (1.3) 

 

Cylindrical hyperboloid in two sheets: 

 

           –x²–y²+z² = R²                                        (1.4) 

 

Using hyperbolic functions the upper half–sheet it has 

parameterization similar to the spherical case: 

 

           x = R sinh u cos θ = R sinh (ρ/R) cos θ 

           y = R sinh u sin θ  = R sinh (ρ/R) sin θ 

           z = R cosh u          = R cosh (ρ/R) 

                                                                            (1.5)                        

Here u = ρ/R where ρ is arc length from the vertex V.  

A hyperbolic (i.e. Lobachevsky) metric arises if it is            fig: Upper sheet of a 2-sheeted  

calculated according to                                                                 cylindrical hyperboloid  

 

          ds² = dx²+dy²– dz² = R² (du² + sinh²u dθ²) = dρ² + R² sinh² (ρ/R) dθ²                      (1.6) 

 

R is here the radius of negative curvature.  

 

Remarks:  

(1) Because of the negative sign before dz² the embedding space cannot be Euclidean; it must in 

fact be pseudo-Euclidean i.e. Euclidean form with a non-positive-definite metric. The most well-

known example of such a space is Minkowski space (or Minkowski space-time) described below 

occurring in the Theory of Special Relativity. Positive-definiteness of the quadratic form for ds
2
  

can be shown in several ways, most simply by an algebraic proof of Carathéodory but also using  

the Cayley metric (see the appendix) or from the properties of Minkowski space (see below).  

(2) The metrics for spherical and hyperbolic cases are interchangeable by substituting iR for R.  

The same is true for the equations for x and y though not for z. That also becomes interchangeable 

on rewriting the equation using a new variable t (= z/R) to give t = cosh (ρ/R). This is done with 

Weierstrass coordinates described below. 

 

 

 



2. Minkowski space–time 

 

Minkowski space-time (or just Minkowski space) is a 4 dimensional pseudo-Euclidean space  

of event-vectors (t, x, y, z) specifying events at time t and spatial position at x, y, z as seen by an 

observer assumed to be at (0, 0, 0, 0). The space has an indefinite metric form depending on the 

velocity of light c: 

 

          c
2 

t
2 
– x

2
 – y

2 
– z

2
                                                                                                            (2.1) 

 

This is invariant under a group of linear Lorentz transformations relating event-vectors (vectors for  

shortness) to those of other moving observers.   

 

Vectors are classified in relation to the two sided light cone 

 

   c
2 

t
2
 = x

2 
+ y

2 
+ z

2                                                                                                                                                             
(2.2) 

 

They are time-like if c
2 

t
2
 > x

2
+y

2
+z

2 
or space-like if c

2 
t
2
 < x

2
+y

2
+z

2
. Here they will be restricted  

to the forward cone t > 0 so that ct >√{x
2
 + y

2
 + z

2
} for time-like vectors implying that (t, x, y, z)  

is accessible by a light signal from (0, 0, 0, 0). 

 

The scalar product of two vectors (t, x, y, z), (t', x', y', z') is defined as 

 

             ct ct' – x x' – y y' – z z'      (2.3)  

 

Lemma: The scalar product of two time-like vectors (t, x, y, z), (t', x', y', z') is positive: 

 

             ct ct' – xx' – yy' – zz'   >  0       (2.4) 

 

This follows from the Cauchy inequality (t, t' > 0 assumed): 

 

             xx' + yy' + zz'  ≤ √{x
2
 + y

2
 + z

2
}√{x '

2
 + y'

2
 + z '

2
}  <  ct ct'         (2.5) 

 

Corollary: if two vectors (t, x, y, z), (t', x', y', z') satisfy 

 

             ct ct' – xx' – yy' – zz'   =  0                                                                                           (2.6) 

 

at least one must be space-like. 

 

Remark: it is possible to prove the stronger reversed Cauchy inequality for two time-like vectors  

(t, x, y, z), (t', x', y', z'): 

 

             ct ct' – xx' – yy' – zz'  ≥ √ {c
2
t
2
 – x

2
 – y

2
 – z

2
}√{ c

2
t'

2
 – x'

2
 – y'

2
 – z '

2
}                        (2.7) 

 

with equality only if the vectors are proportional. See the appendix 

 

 

 

 

 

 

 

 



3. The cylindrical hyperboloid in Minkowski space 

 

From what has been said it can be deduced that in Minkowski space the upper sheet of a 

hyperboloid with equation 

          c
2 

t
2 
– (x

2
+y

2
+z

2
) = const. > 0                                                                                       (3.1) 

 

is a hyperbolic (Lobachevsky) space. This will follow once the method of calculating the metric is 

verified. All vectors lying on this hyperboloid are time-like and, by differentiation, the following 

condition holds 

  

          ct.cdt – x.dx – y.dy – z.dz = 0                                                                                      (3.2) 

 

Since (t, x, y, z) is time-like by equation (3.1) it follows from the preceding corollary for (2.6)  

that (dt, dx, dy, dz) must be space-like satisfying 

 

           dx
2
+dy

2
+dz

2
 – c

2 
dt

2
 > 0                                                                                              (3.3) 

 

The same conclusion follows from the two alternative derivations in note (a) of the appendix. 

 

To calculate the metric it is convenient to introduce the proper time from (0, 0, 0, 0) defined as 

 

           τ = √{t
2 

– (x
2
+y

2
+z

2
)/c

2
}                                                                                              (3.4) 

 

This is invariant under Lorentz transformation and so independent of observer. It is the same for 

all events represented by the hyperboloid (3.1) which gives the totality of events having the same 

proper time τ. Using τ, the hyperboloid can now be written 

 

          c
2 

t
2 
– (x

2
+y

2
+z

2
) = c

2 
τ

2                                                                                                                                                
(3.5) 

 

Parameterization using spherical coordinates with ρ as arc length from the vertex will be 

   

          t   =  τ cosh (ρ/cτ) 

          x  = cτ sinh (ρ/cτ) sin φ cos θ 

          y  = cτ sinh (ρ/cτ) sin φ sin θ 

          z  = cτ sinh (ρ/cτ) cos φ                                                                                      (3.6) 

 

The metric is then found in Lobachevsky form as 

 

         ds
2
 = dx

2
+dy

2
+dz

2
 – c

2 
dt

2 
= dρ

2
 + (cτ)

2 
sinh

2
(ρ/cτ) (dφ

2
 + sin

2
φ dθ

2
)                           (3.7) 

 

 

 

 

 

 

 

 

 

 

 

 



4. Weierstrass coordinates 
 

Weierstrass coordinates for spherical and hyperbolic surfaces resemble rectangular Cartesian 

coordinates but depend only on the surface and not on the embedding space. They are suitable for 

discussing the hyperboloid in pseudo-Euclidean space and its relation to the spherical analogue. 

 

Weierstrass spherical coordinates: These are here illustrated for the 2-dimensional surface of a  

3-dimensional sphere of radius R. The geodesics are great circle arcs. From an origin O on the 

sphere, two such arcs are constructed at right angles giving axes here called the ξ-axis and the  

η-axis.  A point P on the sphere can be specified by the length ρ of the radial arc from P to the origin 

O together with the angle θ this arc makes with the ξ-axis. These give polar coordinates analogous 

to Cartesian polar coordinates. Alternatively, coordinates may be defined by constructing the arcs 

from P meeting the axes at right angles. These give inner coordinates (ξ, η) and outer coordinates 

(ξ’, η’) as in the diagram. Unlike Euclidean Cartesian coordinates, these are distinct. 

 

The three Weierstrass coordinates x, y, t of the point P are most simply defined using the polar 

representation as 

 

          x = R sin(ρ/R) cos θ 

          y = R sin(ρ/R) sin θ 

          t =     cos(ρ/R)                                                 (4.1) 

 

Alternatively, by the spherical sine-rule, x, y are 

  

          x = R sin(ξ’/R)                                                                                                                                                                                                                                            

          y = R sin(η’/R)                                                (4.2)                             fig: The spherical case 

 

These Weierstrass coordinates satisfy 

 

          x
2
 + y

2
 + R² t² = R²                                                                             (4.3) 

            dx
2
 + dy

2
 + R

2
 dt

2
 = dρ

2
 + R

2
 sin

2
 (ρ/R) dθ

2
                                      (4.4) 

 

Of course in the Euclidean representation the ratios ξ/R, η/R, ρ/R correspond to angles at 

the centre of the sphere and Rt to the z distance for axes having origin at the sphere centre 

 

Weierstrass hyperbolic coordinates: These are similar but use the equations 

of hyperbolic trigonometry with R now the radius of negative curvature. 

 

          x = R sinh(ρ/R) cos θ = R sinh(ξ’/R) 

          y = R sinh(ρ/R) sin θ  = R sinh(η’/R) 

          t =    cosh(ρ/R)                                                       (4.5)                                                                          

 

The hyperbolic sine-rule is used here. These coordinates satisfy                                                                       
                                                                                                                                                                                                                

           –x
2
 – y

2
 + R²t² = R²                                                (4.6)                      fig: The hyperbolic case 

              d x
2
 + dy

2
 – R

2
 dt

2
 = dρ

2
 + R

2
 sinh

2
 (ρ/R) dθ

2
       (4.7) 

 

There is now a complete analogy between the spherical and hyperbolic cases and one transforms  

into the other by the substitution of iR for R. The limiting case as R tends to infinity is a Euclidean 

plane at t=1 with d x
2
 + dy

2
 = dρ

2
 + ρ

2
dθ

2
 and with (x, y) = (ξ, η) = (ξ’, η’) 

 

 



5. Hyperbolic Weierstrass coordinates in 3 dimensions 

 

The Weierstrass coordinates for the 2-dimensional surfaces given in the last section generalize to  

3 dimensions by choosing an origin O at any point and then constructing geodesic arcs Oξ, Oη, Oζ 

mutually orthogonal at O as axes. The position of any point P may be specified by the length ρ of 

the arc OP together with the direction cosines l, m, n which OP makes at the origin with the three 

axes Oξ, Oη, Oζ.  

 

In the hyperbolic case Weierstrass coordinates x, y, z, t can then be defined as 

  

          x = R sinh (ρ/R) l 

          y = R sinh (ρ/R) m 

          z = R sinh (ρ/R) n 

           t =    cosh (ρ/R)                                                                                                             (5.1) 

 

These equations may be written more shortly as 

 

           t = cosh (ρ/R).  (x, y, z) = R sinh (ρ/R) (l, m, n)                                                           (5.2) 

 

The Weierstrass coordinates x, y, z, t give the hyperboloid representation 

 

          – x
2
 – y

2
 – z

2
 + R

2
 t

2
 = R

2
 
                                                                                                                                            

(5.3) 

 

From this, ρ can be identified as arc length from the vertex at (0, 0, 0, 1). 

 

Using spherical coordinate representation, l, m, n are expressible as 

 

          (l, m, n) = (sin φ cos θ, sin φ sin θ, cos φ)                                                                     (5.4) 

 

This gives the parameterization 

 

           x = R sinh(ρ/R) sin φ cos θ 

  y = R sinh (ρ/R) sin φ sin θ 

  z = R sinh (ρ/R) cos φ 

  t =     cosh (ρ/R)                                                                                                            (5.5) 

 

The metric is then found as 

 

          dx
2
 + dy

2
 + dz

2
 – R

2
 dt

2
 = dρ

2
 + R

2
 sinh

2
(ρ/R) (dφ

2
 + sin

2
φ dθ

2
)                                   (5.6) 

 

These equations all transform to the corresponding spherical case on changing R to iR. 

 

Remarks:  

(1) The definition obviously extends to a space of any dimension. 

(2) In the case of Minkowski space, R has the value c and it can be seen that the hyperboloid 

previously considered in section 3, equation (3.5) does not have the Weierstrass coordinate form 

unless new variables are taken as t/τ, x/τ, y/τ, z/τ.  This is the velocity vector for Minkowski space 

as usually considered (i.e. suitable for motions with uniform velocity starting at the origin at t=0),  

It gives a special case of the velocity interpretation described in the next section. It was discussed  

in the conference paper [8]. 

 

 



6. Differential Minkowski space and velocity space  
 

 Minkowski space is frequently regarded as a special case occurring in General Relativity when  

the metric has constant coefficients. This view leads naturally to differential Minkowski space of  

4-vectors (dt, dx, dy, dz) satisfying the usual rules of Minkowski space. This space of differential 

vectors is also a projective space of their ratios i.e. of velocities, having as absolute the cone 

 

          c²dt² – (dx² + dy² + dz²) = 0                                                                                             (6.1) 

 

This is a real conic so the resulting projective space is hyperbolic. Vectors lying within the cone  

are time-like, i.e.  

 

          dx² + dy² + dz² < c² dt          (dt > 0 assumed)                                                                  (6.2) 

 

They represent physically feasible motions having velocity less than that of light: 

 

          (dx/dt)² + (dy/dt)² + (dz/dt) < c²                                                                                        (6.3) 

 

It is consequently possible to define the proper time differential 

 

           dτ = √{dt² – (dx² + dy² + dz²)/c²} =  √{1 – v²/c²} dt                                                         (6.4) 

 

where v is velocity. From this follows  

 

          c² (dt/dτ)² – (dx/dτ)² – (dy/dτ)² – (dz/dτ)² = c²                                                                    (6.5) 

 

This is the Weierstrass form of a hyperbolic space having c as radius of negative curvature. 

  

The Cayley-Klein metric: The projective distance u between two differential vectors is  

 

          u = arcosh             (c² dtdt' – dxdx' – dydy' – dzdz')                    . 

                            √(c² dt² – dx² – dy² – dz²)√(c² dt'² – dx'² – dy''² – dz'²)                                      (6.6) 

 

           = arcosh {c² (dt/dτ) (dt'/dτ’) – (dx/dτ) (dx'/dτ’) – (dy/dτ) (dy'/dτ’) – (dz/dτ) (dz'/dτ’)}     (6.7) 

 

 With θ as angle between the two velocity vectors 

 

           v = (dx/dt, dy/dt, dz/dt),   v’ = (dx'/dt’, dy/dt, dy'/dt’, dz’/dt’)                                            (6.8) 

 

the distance u is seen to be  

 

          u = arcosh              c
2 

– v.v'           = arcosh      c
2
– v v' cos θ 

                           √(c
2
 – v.v)√(c

2
 – v'.v')                √(c

2
 – v

2
)√(c

2
 – v’

2
)                                         (6.9) 

 

On changing from velocities to rapidities by v = c tanh w, v’ = c tanh w’ (6.9) gives 

 

           cosh u = cosh w cosh w' – cos θ sinh w sinh w'                                                                                                 (6.10) 

  

This equation is the hyperbolic cosine rule for triangles in Lobachevsky space showing that u is a 

rapidity and is the sum of rapidities w, w' for a triangle having sides w, w’ with included angle θ.  

It also has an interpretation of relative rapidity if the w, w’ are vectors, one following the other. 

 



7. Beltrami–Klein representation 

 

This representation is of particular importance as it relates to a space where geodesic arcs are 

represented by straight lines. For illustration consider the previous hyperboloid representation  

 

          - x² – y² + R² t² = R²                                                                                                     (7.1) 

 

with parameterization  

 

          t = cosh (ρ/R)    (x, y) = R sinh (ρ/R) (l, m)                                                                 (7.2) 

 

By projection from the centre O of the hyperboloid the upper surface maps on to the disc inside a 

circle centred at the vertex V and conversely. Point (t, x, y) corresponds to a point with coordinates 

X, Y called Beltrami coordinates given by 

 

          (X, Y) = (x/t, y/t) = R tanh (ρ/R) (l, m)              (7.3) 

 

Its radial distance from the centre of the disc is 

 

          r = √(X
2
+ Y

2
) = R tanh (ρ/R)                              (7.4) 

so 

          ρ = R artanh
 
(r/R)                                                (7.5)  

 

It may be shown that the disc is a Lobachevsky space where 

Euclidean distance is replaced by a distance defined 

projectively (Klein’s definition).                                                fig: Central projection to a disc 

 

Relativity application: in its relativity form in differential Minkowski space, R becomes c and  

the hyperboloid takes the form (6,5) .  The parameterization now becomes 

 

          V0 = c cosh (U/c), (V1, V2, V3) = c sinh (U/c) (l, m, n)                                                (7.6) 

 

In this equation U is the arc length of the geodesic from the vertex V.  After projection into the 

sphere of radius c the velocity components (vx, vy, vz) are found by division as 

          (vx, vy, vz) = c tanh (U/c) (l, m, n)                                                                                (7.7) 

with velocity of magnitude 

           v = √ (vx
2 

+ vy
2 

+ vy
2
) = c tanh U/c.                                                                             (7.8) 

so that 

           U = c artanh (v/c)                                                                                                        (7.9) 

This identifies U as the hyperbolic or relativistic velocity (defined as scalar multiple cw of rapidity 

w which approximates v when v << c). Geometrically it is the length of the geodesic arc from the 

vertex, and it can be thought of as projecting into the normal velocity v represented by the length of 

the radial vector in a sphere of radius c. 

 

 

 



                                                   APPENDIX & NOTES  
 

1. Metrics for spherical and hyperbolic coordinates 

 
Two methods are given here to justify the calculation of the metric element in the hyperbolic case 

(a) The algebraic derivation of Carathéodory (Variationsrechnung ... 1935 [1]) 

(b) The Riemannian metric derived from the Cayley-Klein metric (as e.g. in Veblen & Young's: 

Projective Geometry, (Ginn 1909).) 

 

(a) Carathéodory's derivation 

Lemma: (Original notation) From (i), (ii) below follows the positive-definiteness of (iii) 

(i)     y0
2
 – y1

2
 – y2

2
 – y3

2
 = 1 

(ii)    η1y1 + η2y2 + η3y3 – η0y0 = 0 

(iii)   Q = η1
2
 + η2

2
 + η3

2
 – η0

2  

 

Proof: for any value of ρ 

          0 = ρ
2
(y1

2
 + y2

2
 + y3

2
 – y0

2
 + 1) + 2ρ(η1y1 + η2y2 + η3y3 – η0y0)+ (–Q +  η1

2
 + η2

2
 + η3

2
 – η0

2
) 

             =  – Q + (ρy1 + η1)
2
 + (ρy2 + η2)

2
 + (ρy3 + η3)

2
 – (ρy0 + η0)

2
 + ρ

2 

 

On putting ρ = - η0/y0 Q is seen to be non–negative since it takes the form 

 

          Q = (1/y0)
2
{(η0y1 – η1y0)

2
 + (η0y2 – η2y0)

 2
 +

 
(η0y3 – η3y0)

2
 + η0

2
} 

 

Lemma: (In the notation of the present paper) From (i), (ii) follows positive-definiteness of (iii): 

 (i)       c
2
t
2
 – x

2
 – y

2
 – z

2
 = const. 

 (ii)      x.dx + y.dy + z.dz – c
2 

t.dt = 0 

 (iii)     dx
2
 + dy

2
 + dz

2
– c

2 
t
2  

 

(b) Using Cayley-Klein metric:  

For a bilinear form B(x, x’) the projective distance ρ between coordinate vectors x, x' is 

 

           cosh ρ  =           B(x, x')___ 

                          √B(x, x) √B(x', x') 

So 

  sinh 
2
ρ  = {B(x, y)² – B(x, x).B(y, y)} 

      {B(x, x) B(y, y)} 

 
If y = x + dx, ρ is infinitesimal so that sh 

2
ρ = ρ

2
 = ds

2
. Keeping only infinitesimals of second order 

on the right-hand side, there is found the relation of Riemannian to Cayley-Klein metrics 

 

  ds² =   B(x, dx)² – B(dx, dx) 

              B(x, x)²       B(x, x) 

 

 Tangential displacements dx to a surface B(x, x) = C (const.>0) satisfy B(x, dx) = 0 so have 

  

   ds² = – B(dx, dx) /C 

 

In particular, on setting B(x, x) = x0
2 
– x1

2
 – x2

2
 – x3

2
 

 

             ds
2
 = (dx1

2
 + dx2

2
 + dx3

2 
– dx0

2
)/C 

 

 



2. Minkowski space 

 

(a) Minkowski described this space in his 1908 Cologne lecture "Space and Time" [2] published 

posthumously in 1909. Minkowski’s notation is used in the present paper as it relates easily to 

Weierstrass coordinates which is not so with other notations e.g. (x1, x2, x3, x4), (x0, x1, x2, x3). 

 

(b) The inverse Cauchy inequality: for two time-like vectors (t, x, y, z), (t', x', y', z'): 

  

          ct ct' – xx' – yy' – zz'  ≥  √{(ct)
2 

– x
2 

–  y
2 

–  z
2
} √{(ct')

2 
– x' 

2  
– y' 

2  
–  z' 

2
} 

 

Equality holds only if the vectors are proportional.   

 

Proof: The following simple proof is due to Aczél 1956 [3].  Let 

 

          f(λ) = λ
 2

{(ct)
2 

– x
2 
– y

2 
– z

2
} - 2 λ{ct ct' – xx' – yy' – zz'}+ {(ct')

2 
– x'

2  
– y'

2  
– z'

2
} 

                 = (λ ct – ct')
2
 – (λx – x')

2
 – (λy – y')

2
 – (λz – z')

2
 

 

When λ → ± ∞, f(λ) > 0 while when λ = t'/t, f(λ) ≤ 0 being zero only for proportional vectors.  

So f(λ) = 0 has both roots real implying the discriminant of the quadratic f(λ) is non-negative i.e.  

 

          (ct ct' – xx' – yy' – zz')
2
 ≥ {(ct)

2  
–  x

2  
– y

2  
– z

2
}{(ct')

2  
– x' 

2  
– y'

2  
–  z'

2
} 

 

The result follows since the quantity inside the left hand brackets has been proved to be positive. 
 

3. The hyperboloid in Minkowski space 

 

(a) Minkowski commented on the relevance of non-Euclidean geometry to the geometry of space-

time in his 1907 paper (reproduced with discussion in the paper of Scott-Walter 1999 [4])  

Note that Minkowski's 4-velocity differs there from the current definition. This appears to have 

been a mistake. Minkowski changed it in his 1908 ‘Die Grundgleichungen ….’ paper equation (19). 

(b) The representation of a Lobachevsky space on a hyperboloid has recently become known as the 

hyperboloid model. The paper of Reynolds 1993 [5] gives details of the geometry (though in a 

different presentation to that here) together with useful historical comments. 

(c) The observation that events having the same proper time lie on a Lobachevsky space was made 

from a different point of view in the paper of Törnebohm 1964 [6]. 
 

4. Weierstrass coordinates 

 

These were introduced by Killing who attended Weierstrass' 1872 lectures (now lost). The subject is 

not widely treated in current literature. An older book giving clear treatment is that of Sommerville 

1914 reprinted in 2005 [7]. The geometrical figures occurring here, usually called Lambert quadri-

laterals, were described by the 13
th

 century Arab scholar Ibn al-Haytham  (Alhazen). 

 
5. Hyperbolic Weierstrass coordinates in 3 dimensions 

 

In the velocity interpretation only the ratios of the coordinates t, x, y, z are important which 

corresponds to a projective geometry as described in the next section. The interpretation is valid 

inside the cone of vectors satisfying the condition for time-like vectors in Minkowski space. 

However it applies only to uniform motion starting at time t = 0 from the origin. It was described  

in the writer's conference paper of 1996 [8]. 

 

 



6. Differential Minkowski space and velocity space 

 
(a) An early account of velocity representation on a hyperboloid in Minkowski space was given  

by Wick [9] for application in physics. 

(b) The idea of treating the Lobachevsky interpretation by differential space representation was  

proposed briefly many years ago by Pauli in connection with Varićak's reinterpretation of Special 

Relativity in Lobachevsky space (see the footnote to p.74 in the English version of Pauli's 'Theory 

of Relativity' [10]). However details were not given and the idea was not followed up.  Differential 

Minkowski space was discussed in relation to Carathéodory's approach to the Special Relativity in 

the writer's paper [11] and in the 2006 monograph revised as [12] 

(c) The idea of rapidity space goes back to Varićak (see below}. More recently it was discussed by 

Rhodes & Simon [13], Giulini [14] and Ungar [15] as well as the writer [12]. 

(d) The equation (6.5) may equally be expressed in terms of the Minkowski velocity 4-vector: 

 

          (V0, V1, V2, V3) = (c dt/dτ, dx/dτ, dy/dτ, dz/dτ) 

as  

           V0² – V1² – V2² – V3² = c²  

 

and the Cayley-Klein metric as 

 

           arcosh {V0 V'0   – V1 V'1 – V2 V'2 – V3 V'3} 

 

But this representation is here less appropriate than that with Weierstrass coordinates. 

(d) The hyperbolic theory of special relativity largely developed from a generalization of the 

classical addition of velocities that v, v' inclined to each other at an angle θ have resultant 

                   __________________ 

          v = √(v
2
 + 2 v v' cos θ + v'

2
)  

  

the direction being found geometrically by simple vector addition. In the 1905 Special Theory of 

Relativity, Einstein showed that, relativistically, this formula should be replaced by 

 

          v = √{(v
2
 + 2 v v'' cos θ + v''

2
) – (v v' sin θ)

2
/c

2
} 

                                        1 + v v' cos θ/c
2
 

 

But the geometrical interpretation was left unclear. In 1909 Sommerfeld [16] showed how, by using 

Minkowski's complex space-time representation, velocities are added vectorially on the surface of a 

sphere of imaginary radius. Varićak 1910 [18], (1912) [19], then gave a corresponding interpretation 

in Lobachevsky space. As shown above, this addition formula follows directly from the geometrical 

view of the present paper. 

 

7. The Beltrami-Klein representation 

 

Beltrami published in 1868 soon after posthumous publication of Riemann's famous dissertation 

and he was the first to use Riemannian geometry for spaces of negative curvature. Klein in 1872 

used projective geometry for Beltrami's representation. Beltrami also described two other 

representations of hyperbolic geometry usually ascribed to Poincaré who discussed them many 

years later. The papers of Beltrami and Klein are available in the book of Stillwell 1996 [19]  

in English translation with a commentary. 
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