
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL, HUMAN AND

MATHEMATICAL SCIENCES

Mathematical Sciences

Some Problems Relating To Simultaneous Confidence

Bands

by

Daniel Mark Tompsett

Thesis submitted for the degree of Doctor of Philosophy

April 2016





UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

Some Problems Relating To Simultaneous Confidence Bands

by Daniel Mark Tompsett

The thesis comprises two distinct areas of research involving the use of simultaneous

confidence bands, specifically relating to the Scheffé type simultaneous confidence band

of Scheffé (1953), and the constant width simultaneous confidence band of Gafarian

(1964).

The first relates to establishing the optimal design of experiments for simultaneous

confidence bands, considered over a finite range of a covariate. Methodology is devel-

oped for this area that focuses on establishing continuous optimal designs under two

optimality criteria specific to simultaneous confidence bands, the Average Width and

Minimum Area Confidence Set criteria. We develop a method of numeric investigation

which allows the search area to be constrained over intervals. From this, we conclude

that the optimal continuous designs for 95 percent simultaneous confidence bands, con-

sidered over the range [−1, 1] are D-optimal for specific values of N . Also investigated

is the application of traditional analytic methods used to obtain optimal continuous

designs.

Secondly, simultaneous confidence bands can be used to construct simultaneous

confidence sets for the Effective Doses (ED) of a the logistic regression model (cf.

Walter (1983)), by inverting the bounds of a Scheffé type simultaneous confidence

band. We introduce an improvement to this method, guaranteed to exhibit closer

to nominal simultaneous coverage by constructing specialised simultaneous confidence

sets for a specific number (k) of ED’s. Two sided sets are fully defined for k = 2

for a multiple covariate model, and k = 3 or more for a one covariate model. This

new methodology is then applied to construct simultaneous confidence sets for two

additional situations: (i) when the ED can be assumed to lie over a finite interval, (ii)

when one sided simultaneous confidence sets are sought. These methods may be applied

to any generalised linear model, and the improvements over the original methods are

illustrated with examples.

All numeric methods provided in the thesis, including illustrations, were carried out

by custom programs made in R, which are available by request.
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Chapter 1

Introduction

Linear regression is ubiquitous in statistics and dates back to the early 1800’s. The

method seeks to evaluate the relationship between a response y, some q covariates,

x1, . . . , xq, and some random error term ε, through the basic relation

y = β0 + x1β1 + . . .+ xqβq + ε. (1.1)

A simultaneous confidence band provides information on the plausible range of the

unknown linear regression line of this model, xᵀβ, where β = (β0, β1, . . . , βq) is the

parameter vector, and x = (1, x1, . . . , xq)
ᵀ contains the q covariates. Consider a vector

of covariates x = (x1, . . . , xq)
ᵀ. Then, in general (cf. Liu et al. (2008)), a two sided

simultaneous confidence band consists of an lower and upper function of the covariates

l(x) < u(x), such that the probability of the true regression line, xᵀβ, lying fully

between both functions for all x over some q-dimensional rectangular region is exactly

1 − α. This rectangular region is represented by two vectors of constants, a and A,

with entries ai ≤ xi ≤ Ai i = 1, . . . , q, that is x ∈ (a,A). The simultaneous confidence

band then sets

P {l(x) < xᵀβ < u(x) ∀x ∈ (a,A)} = 1− α.

The point of providing such a broad definition is that, despite being naturally applied

to, and indeed first developed, for the normal-error linear regression model around

eighty five years ago, a simultaneous confidence band may be constructed for the linear

regression line of any generalised linear model (GLM), by using the asymptotic normal

distribution.

The earliest work on simultaneous confidence bands can be traced back to the work

of Working and Hotelling (1929), in which a two sided simultaneous confidence band,

of hyperbolic shape, was considered for a single covariate over (a,A) = (−∞,∞), in

the special case of known variance. This band was most notably expanded upon in

Scheffé (1953), in which it was considered for multiple covariates over the whole real

space with an unknown variance parameter. This band is known as the Scheffé type

simultaneous confidence band and is the best known, and most recognisable in use. It

is this band type in particular that is constructed for GLM’s. The first example of this

was probably in Brand et al. (1973), which constructed a Scheffé type band on the one

1



covariate logistic regression model under asymptotic normality conditions. This work

was then extended to the multiple covariate case in Walter (1983).

There exists three main other types of confidence bands. The work of Gafarian

(1964) first introduced the concept of a constant width simultaneous confidence band,

taking the same width over the whole interval. This was then shown in Bowden and

Graybill (1966) to be a special case of a family of two sided three segment confidence

bands. These bands, and a similar family known as two segment bands (cf. Graybill

and Bowden (1967)) comprise the last two main types of confidence bands, but are only

covered briefly in this thesis. An excellent amalgamation of this work is given by Liu

(2011) and is a recommended starting point in the area.

The thesis is motivated by two long standing areas of research. The first seeks to

establish the optimal design of experiments for simultaneous confidence bands, consid-

ered over a finite range of the one covariate normal-error linear regression line. Two

optimality criteria exist for simultaneous confidence bands, the Average Width (AW)

criterion considered by Gafarian (1964) and Naiman (984a), and the more robust Min-

imum Area Confidence Set (MACS) criterion of Liu and Hayter (2007). We consider

both as criteria for an optimal design for both the Scheffé type, and constant width

type bands. The Scheffé type band is considered for its utility, and the constant width

band for its computational simplicity.

The second is to formulate an improvement to a method first considered by Brand

et al. (1973), which constructed simultaneous confidence sets on the Effective Dose

(ED) using the logistic regression model, by inverting the bounds of a Scheffé type

simultaneous confidence band. This method has been used by multiple authors such

as Buckley and Piegorsch (2008) and Carter et al. (1986), but is often noted (cf. Li

et al. (2008)) to be unduly conservative in terms of simultaneous coverage, particularly

for a small number of ED’s. The thesis develops new methodology to address this

problem by considering confidence bands that may be inverted to obtain simultaneous

confidence sets for a specific number of effective doses.

This chapter outlines the basics of normal-error linear, and generalised linear re-

gression as well as simultaneous confidence bands, and reviews the relevant work that

has gone before, and what is new that the thesis provides.

1.1 An Introduction To Normal-Error Linear Regression

Linear regression is a statistical technique which aims to evaluate the relationship

between a dependent response variable y, and a set of q covariates x1, . . . , xq. When

q = 1, we refer to the single covariate as x. For q > 1, we refer to x as the vector of

the covariates x = (x1, . . . , xq), and x is the vector x, with first entry as 1. Hence we

model the relation as

y =β0 + x1β1 + . . .+ xqβq + ε = xᵀβ + ε. (1.2)

2



where x = (1, x1, . . . , xq), and xᵀβ is the linear regression line. We assume y is a

continuous random variable following some normal distribution. The error term ε rep-

resents the random variation in the response not explained by the linear regression line.

For normal-error linear regression we assume that the random error follows a normal

distribution with mean 0 and variance σ2 > 0. It is then obvious that the distribution

of the response may be expressed as y ∼ N (xᵀβ, σ2). In practical applications, N

observations of the response and corresponding covariates are taken, giving N data

points of the form (yi, xi1, . . . , xiq) i = 1, . . . , N . We model each data point through

the relation in (1.2), with a common value for the parameters β1, . . . , βq as follows

yi = β0 + β1xi1 + . . .+ βqxiq + εi i = 1, . . . , N. (1.3)

This regression model is better represented in its matrix form

Y = Xβ + ε (1.4)

where

Y =




y1
...

yN


 ,X =




1 x11 . . . x1q
...

...
...

...

1 xN1 . . . xNq


 ,β =




β0

β1
...

βq



, ε =




ε1
...

εN


 .

The set of all N choices of (xi1, . . . , xiq) is known as the design of the experiment,

and is characterised by X, known as the design matrix, which represents the input

into the model controllable by the user. We assume that each yi is a realisation of

the random variable Yi, distributed as N (β0 + xi1β1 + . . . + xiqβq, σ
2), and the εi are

independent. Hence, Y ∼ NN (Xβ, Iσ2) and ε ∼ NN (0, Iσ2).

1.1.1 Parameter Estimation

We need to obtain estimates of the parameters of interest β and σ2 in order to un-

derstand and utilise the model. The least squares estimator β̂ minimises the sum of

squares of the errors of the model as follows

minβ0,β1,...,βq

N∑

i=1

ε2i =

N∑

i=1

(yi − β0 − β1x1i − . . .− βqxqi)2.

Note that

N∑

i=1

(yi − β0 − β1x1i − . . .− βqxqi)2

=(Y −Xβ)ᵀ(Y −Xβ)

=Y ᵀY − 2βᵀXᵀY + βᵀXᵀXβ.
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This is since Y ᵀXβ and its transpose βᵀXᵀY are both scalars and hence equal. There-

fore β̂ satisfies

∂

∂β
(Y ᵀY − 2βᵀXᵀY + βᵀXᵀXβ)

=− 2XᵀY + 2XᵀXβ

=0 at β = β̂.

This yields the well known least squares estimator

β̂ = (XᵀX)−1XᵀY . (1.5)

This estimator assumes the matrix (XᵀX)−1, known as the variance covariance matrix

of the model, exists. Its corresponding inverse (XᵀX), is known as the the information

matrix. The estimator of the random error ε̂ known as the residuals is given as

ε̂ =




ε̂1
...

ε̂N


 = Y −Xβ̂.

From this, an estimator for the variance σ2 takes the form

σ̂2 =

N∑
i=1

ε̂i
2

N − q − 1

=
ε̂ᵀε̂

N − q − 1

=
(Y −Xβ̂)ᵀ(Y −Xβ̂)

N − q − 1

=
‖Y −Xβ̂‖2
N − q − 1

.

These estimators may now be used to define an estimated least squares linear regression

model of the form

Y = Xβ̂ + ε̂. (1.6)

Furthermore, they may be used in equation (1.2) to define a least squares estimated

regression line of the form

β̂0 + β̂1x1 + . . .+ β̂pxp = xᵀβ̂ (1.7)

from which inference may be made.

1.1.2 Distributions of Parameter Estimators

To obtain any inference on the linear regression model, it is necessary to find the

probability distributions of the parameter estimators. The least squares estimator
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β̂ = (XᵀX)−1XᵀY is a linear transformation of Y ∼ NN (Xβ, INσ
2) and therefore

must also be normally distributed with mean

E(β̂) =E((XᵀX)−1XᵀY )

=(XᵀX)−1XᵀE(Y )

=(XᵀX)−1XᵀXβ

=β

and variance

V ar(β̂) =Cov(β̂, β̂)

=Cov((XᵀX)−1XᵀY , (XᵀX)−1XᵀY )

=(XᵀX)−1XᵀCov(Y ,Y )(XᵀX)−1Xᵀ

=σ2(XᵀX)−1.

Hence β̂ ∼ Nq+1(β, σ
2(XᵀX)−1) and thus β̂ is an unbiased estimator of β, a property

that makes the least squares estimate particularly useful. It is immediate from this

property that
(β̂ − β)ᵀXᵀX(β̂ − β)

σ2
∼ X 2

q+1, (1.8)

where X 2
q+1 is a chi square random variable with q + 1 degrees of freedom.

We note that ê = Y −Xβ̂ = (IN −X(XᵀX)−1Xᵀ)Y is also a linear combination

of Y , and therefore must also follow a normal distribution with mean

E(ê) =E((IN −X(XᵀX)−1Xᵀ)Y )

=(IN −X(XᵀX)−1Xᵀ)E(Y )

=(IN −X(XᵀX)−1Xᵀ)Xβ

=Xβ −X(XᵀX)−1XᵀXβ

=0

and variance

V ar(ê) =Cov(ê, ê)

=Cov((IN −X(XᵀX)−1Xᵀ)Y , (IN −X(XᵀX)−1Xᵀ)Y )

=(IN −X(XᵀX)−1Xᵀ)Cov(Y ,Y )(IN −X(XᵀX)−1Xᵀ)

=σ2(IN −X(XᵀX)−1Xᵀ)

since (IN −X(XᵀX)−1Xᵀ) is equal to its transpose. Thus

ê ∼ N (0, σ2(IN −X(XᵀX)−1Xᵀ)).
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Furthermore it can be shown (cf.Liu (2011)) that the estimator of the variance has

probability distribution

σ̂2 ∼
σ2X 2

N−q−1
N − q − 1

.

1.1.3 Independence of β̂ and σ̂2

We note that

Cov(β̂, ê) =Cov((XᵀX)−1XᵀY , (IN −X(XᵀX)−1Xᵀ)Y )

=σ2(XᵀX)−1Xᵀ(IN −X(XᵀX)−1Xᵀ)

=0.

Since β̂ and ê are normally distributed, and thus must be jointly normally distributed,

it follows that they must be independent random variables. Furthermore as σ̂2 = ε̂ᵀε̂
N−q−1

is a linear combination of ê, it follows immediately that β̂ and σ̂2 are also independent.

1.2 Introduction To Simultaneous Confidence Bands For

The Normal-Error Linear Regression Model

All bands considered in this thesis are symmetric around the least squares estimated

linear regression line xᵀβ̂. A 1−α Scheffé type simultaneous confidence band over a q

dimensional rectangular region x ∈ (a,A) takes the form

xᵀβ ∈ xᵀβ̂ ± cσ̂
√
xᵀ(XᵀX)−1x ∀x ∈ (a,A). (1.9)

When there is just one covariate, denoted x, the band is considered over the straight

line interval a ≤ x ≤ A. We denote c as the critical constant, which is set to ensure that

the confidence band has the nominal simultaneous coverage over the region of interest,

that is c satisfies

P
{
xᵀβ ∈ xᵀβ̂ ± cσ̂

√
xᵀ(XᵀX)−1x ∀x ∈ (a,A)

}
= 1− α.

The band takes a hyperbolic shape with the width given by 2cσ̂
√
xᵀ(XᵀX)−1x which

depends on the design through the matrix XᵀX. Hence the band is wider at more

extreme values of x. The band was first considered by Working and Hotelling (1929)

for one covariate over the whole real line for the case of known σ, and extended by

Scheffé (1953) to the multiple covariate case over the whole real space for unknown σ.

Two sided Scheffé type bands for one covariate over a finite interval (a,A) were con-

sidered by Uusipaikka (1983) and Wynn and Bloomfield (1971), and over a rectangular

region for the multiple covariate case via simulation methods in Liu et al. (2005b). For

one sided Scheffé type bands, Hochberg and Quade (1975) considered such bands over

the whole real space for a multiple covariate model, whilst Pan et al. (1975) constructed

such bands for a single, and constrained covariate.
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First considered by Gafarian (1964) for the case of q = 1, that is one covariate, a

constant width simultaneous confidence band takes the form

β0 + β1x ∈ β̂0 + β̂1x± σ̂c ∀x ∈ (a,A) (1.10)

where c is again set to satisfy the simultaneous coverage of the band. Constant width

bands are the simplest type, with the width equal to 2σ̂c over the whole range, de-

pending implicitly on the design through c. The constant width band is a special case

of a family of two sided three segment bands originally proposed for one covariate by

Bowden and Graybill (1966), which take the form

β0 + β1x ∈ β̂0 + β̂1x± σ̂H3(x) ∀x ∈ (a,A) (1.11)

with

H3(x) = 1
A−a


(x− a)c1

√√√√(1, A)(XᵀX)−1

(
1

A

)
+ (A− x)c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
.

In this instance the simultaneous coverage of the band is set by two critical constants,

c1 and c2. A unique pair is obtained by setting one as a function of the other, which

determines the type of three segment band. If we set

c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
= c1

√√√√(1, A)(XᵀX)−1

(
1

A

)
, (1.12)

then (1.11) becomes a constant width band with critical constant

c = c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
.

Hence c may be obtained using a method to calculate c1 and c2 for three segment bands

given by Bowden and Graybill (1966) under this relation. These methods are given in

Liu (2011), and Liu et al. (2005a).

1.3 A Review Of Optimal Designs For Simultaneous Con-

fidence Bands

Despite the width of each confidence band depending on the design of the experiment,

there is little work relating optimal design with simultaneous confidence bands.

The first notion of an ”optimal” simultaneous confidence band is found in Gafarian

(1964), who argued that a band that was smaller in width on average, gave a more

tightly bounded, and so better region for xᵀβ. This is known as the Average Width

(AW) criterion. However Gafarian gave only a passing note on the optimal design

that minimised the AW of the constant width band, offering a solution but without
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proof. Work on the AW criterion was followed on notably by Naiman (1983), and then

Naiman (984a) and Piegorsch (985b), which developed the weighted average width of

a band with respect to some probability measure. Yet this work exclusively focused on

comparing different band types over specific probability measures, with no direct work

on optimal design.

The Minimum Area Confidence Set (MACS) criterion was introduced by Liu and

Hayter (2007). Whilst again much of the work focused on intra-band comparison

(see Liu and Hayter (2007) and Liu and Ah-Kine (2010) for example), there exist

two analytical results for optimal designs under MACS, an equivalence between D

optimality and, (i), MACS optimal designs for Scheffé type bands over the whole real

space (Atkinson et al. (2007)), and (ii), MACS optimal designs for one covariate and

two sided two segment bands (Ah-Kine (2010)). The covariate in practice however is

often constrained over a finite range, and for constrained three segment and Scheffé

type bands, there is currently no work on optimal designs at all, save a useful numeric

investigation in Ah-Kine (2010) that could not constrain the search area to intervals,

and was reliant on a pre existing dataset. The motivation for this research follows

directly from this work.

All current work in the area relies on an exact design framework. When an ana-

lytic proof of an optimal design is required, it is typical to instead use a continuous

design framework (cf. Kiefer (1959) and Fedorov (1972)) and apply methods described,

amongst others, in Silvey (1980). We explore the application of these methods to the

MACS and AW criteria functions, for constrained, one covariate Scheffé type and con-

stant width bands. We develop numeric methods for continuous designs not dependent

on a dataset where the response surface, based on the elements of the continuous infor-

mation matrix, is constrained over a rectangular region. This is used to show that over

the range [−1, 1] the best design under AW and MACS is D optimal. We further ma-

nipulate the criteria functions into a manner that permits the use of analytic methods

in Silvey (1980), and discusses the difficulties in applying these methods in practice.

1.4 An Introduction To Logistic Regression

It is commonly of interest to assess data with a non normally distributed response.

This can be done using generalised linear regression. We assume the response data are

realisations of a random variable y following some distribution from the exponential

family, whose probability density function may be written as

f(y) = h(y)exp {ζᵀT (y)−A(ζ)} ,

with ζ a vector of the distribution parameters, and h, T and A appropriate functions.

Secondly, it is assumed that the expected value of y depends on some q independent

covariates x = (x1, . . . , xq), that is E(y) = µ(x). Under these circumstances a function

of the expectation b(µ(x)) is then chosen such that b(µ(x)) is both continuous and has

support −∞ < b(µ(x)) <∞, known as a link function.
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The link function can then be modelled as a linear combination of the q covariates

as follows

b(µ(x)) = xᵀβ

xᵀ = (1, x1, . . . , xq) β = (β0, β1, . . . , βq)
ᵀ .

This is known as a generalised linear model (GLM).

1.4.1 Logistic Regression Model

The logistic regression model is a popular generalised linear model for dichotomous

response data. We assume a Bernoulli distributed response variable y, taking two

values, 0 and 1, where the expectation, that is the probability of observing a success

(y=1) depends on the vector of q independent explanatory variables x = (x1, . . . , xq),

that is y ∼ Bernoulli(p(x)). In logistic regression the link function is set to be the log

odds of the probability of success, this gives the logistic model as

π(p(x)) = log

(
p(x)

1− p(x)

)
= xᵀβ (1.13)

or equivalently,

p(x) =
exp (xᵀβ)

1 + exp (xᵀβ)
(1.14)

xᵀ = (1, x1, . . . , xq) , β = (β0, β1, . . . , βq)
ᵀ .

The logistic regression model is notably used in drug dose response curves (Carter et al.

(1986)) and hazard assessment (Piegorsch and West (2005)). A key concept in any such

study is the Effective Dose (ED), which is defined as the specific combination(s) of x

required to elicit a certain probability of response (or log odds of a response) in the

model, that is

xp =

{
x : xᵀβ = π(p) = log

(
p

1− p

)}
=

{
x :

exp (xᵀβ)

1 + exp (xᵀβ)
= p

}
.

Further detail is provided in Chapter four of the thesis.

1.4.2 Parameter Estimation

In practice, a set of observations (yi, xi = (xi1, . . . , xiq)) are taken and each indepen-

dently modelled as in Equation (1.13) under the assumption that the yi are realisations

of Yi ∼ Bernoulli(p(xi)):

π(p(xi)) = log

(
p(xi)

1− p(xi)

)
= xᵀ

iβ i = 1, . . . , N, (1.15)

xi = (1, xi1, . . . , xiq)
ᵀ, β = (β0, β1, . . . , βq)

ᵀ.

This allows the estimation the parameter vector β using the maximum likelihood tech-

nique. In this case the estimator β̂ is set to maximise the log likelihood function of the
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observed responses as follows

maxβ l(β|Y1 = y1, . . . , YN = yN ) =
N∑

i=1

log(p(xi)
yi(1− p(xi))1−yi), (1.16)

where p(xi) is viewed as a function of β, through the relation in equation (1.15).

This has the effect of maximising the probability that the yi are realisations of Yi ∼
Bernoulli(p(xi)). We define the score vector as

u(β) =




∂
∂β0

l(β|Y1, . . . , YN )
∂
∂β1

l(β|Y1, . . . , YN )
...

∂
∂βq

l(β|Y1, . . . , YN )



.

It is then immediate that the vector β̂ = (β̂0, β̂1, . . . , β̂q)
ᵀ which maximises the likeli-

hood sets

u(β̂) = 0.

The vector β̂ is known as the maximum likelihood estimator (MLE) of β. Calculation of

β̂ involves solving a series of q+1 equations for q+1 variables. Therefore in practice the

MLE is found by using numerical methods such as Newton-Raphson, and is available in

any statistical package performing logistic regression. Furthermore we define a matrix

Σ as the inverse of the (q + 1)× (q + 1) matrix I (β), with (i, j) element equal to

I (β)ij = E
{
− ∂2

∂βi∂βj
l(β|Y1, . . . , YN )

}
, i, j = 0, . . . , q (1.17)

that is

I (β)−1 = Σ.

The matrix I (β) is known as the information matrix, and represents the variance

covariance matrix of u(β). In this instance the expectation is in reference to the yi.

Another important construct is the observed information matrix H, with entries

H(β)ij = − ∂2

∂βi∂βj
l(β|Y1, . . . , YN ) i, j = 0, . . . , q. (1.18)

In practice both matrices are unknown, however, observable estimations can be ob-

tained in the obvious way by substituting in the MLE β̂ for β, giving the observable

matrices I (β̂) and H(β̂) respectively. An estimator for Σ is then immediately given

as

Σ̂ = I (β̂)−1.

We also define the estimator of the inverse of the observed information matrix as

H(β̂)−1 = J−1.
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1.4.3 Large Sample Asymptotic Normality Of The MLE

When the MLE is obtained using a sufficiently large number of data points N , it can

be shown (see Walter (1983)) that β̂ has, approximately, a normal distribution with

variance covariance proportional to the matrix Σ, that is

√
N(β̂ − β)∼Nq+1 (0,Σ) . (1.19)

This is known as the large sample asymptotic normality of the MLE. It can be shown (cf.

Carter et al. (1986)) that Σ may be viewed as the asymptotic variance covariance matrix

of β̂ and, though unknown, for large N , Σ is consistenly estimated by Σ̂ = NJ−1.

Therefore for a sufficiently large N , the unknown Σ can be replaced by the observable

J−1, and we have the approximate distributional results

(β̂ − β)
d≈Nq+1

(
0,J−1

)
, (1.20)

and equivalently

(β̂ − β)ᵀJ(β̂ − β)
d≈X 2

q+1. (1.21)

We refer to J−1 as the observed variance covariance matrix of the MLE, which is quoted

by all statistical packages. In this thesis, it will be assumed that N is large enough

that the asymptotic results above are a reasonable approximation of the distribution

of the MLE.

1.5 Introduction To Simultaneous Confidence Bands For

GLM’s

For any GLM defined by some link function b(µ(x)), the asymptotic properties of

equations (1.20) and (1.21) apply in the same way as in logistic regression. Therefore,

recalling that a GLM has the general form, b(µ(x)) = xᵀβ, one may construct an

asymptotic Scheffé type simultaneous confidence band over the whole real space for

any GLM as

b(µ(x)) = xᵀβ ∈ xᵀβ̂ ± c
√
xᵀJ−1x ∀x ∈ (a,A), (1.22)

with c setting the simultaneous coverage probability to 1 − α. By applying the in-

verse of the link function, b−1(), to the simultaneous confidence band, we can define a

simultaneous confidence band directly on the mean µ(x), which is given as

µ(x) ∈ b−1
(
xᵀβ̂ ± c

√
xᵀJ−1x

)
∀x ∈ (a,A). (1.23)

This was first considered for the logistic regression model by Brand et al. (1973) for one

covariate, and for the multiple covariate case in Walter (1983). However, asymptotic

simultaneous confidence bands of this form have been applied to a wide variety of

different GLMs. The preface of Liu (2011) offers some varied examples, but focus is

often on bands constructed for dichotomous response models that are important in
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biological and medical statistics. We cite the logistic model, the hazard function (Lin

(1994)), the survival function (Hollander et al. (1997)) and less common models such

as the log-logistic and Weibull models in Buckley and Piegorsch (2008) as just some of

many examples.

1.6 A Review Of Confidence Sets For The Effective Dose

The importance of the estimation of the effective dose to biological assay and medical

statistics has been well noted in Finney (1978), and as such, construction of confidence

sets for a single ED is well studied. The two most notable methods are due to Fieller

(1954) and Cox (1990), and stem from theory establishing confidence sets for the ratio

of two random variables. However, there is significant motivation to identify simulta-

neous confidence sets for multiple ED’s. One particular example is when the minimal

effective dose and maximum tolerated dose are both of equal interest, as these two ED’s

constitute the therapeutic range of a drug.

Simultaneous inference on the effective dose often relies on a method first given

by Brand et al. (1973) for the case that the regression model only has one covariate,

and extended in Walter (1983) to the case of several covariates. This method involves

inverting the bounds of a (1 − α) Scheffé type simultaneous confidence band. It was

first formally applied to an effective dose framework in Carter et al. (1986), which gave

confidence sets on the effective dose involving multiple covariates, known as the mul-

tivariate effective dose (MED). This was simplified by Li et al. (2008) by constructing

simultaneous confidence sets on the MED, conditioned on q − 1 of the covariates. It

has also seen development for a variety of circumstances and models (see for example

Piegorsch and Casella (1988), Piegorsch and West (2005), Buckley and Piegorsch (2008)

and Deutsch and Piegorsch (2012)). All of these methods rely on the same fundamental

principle however, noted by many authors (for example Deutsch and Piegorsch (2012)

and Li et al. (2008)) to be unduly conservative in terms of the simultaneous coverage

for any finite number of ED’s.

In this thesis we define a new adaptation to this method by constructing simulta-

neous confidence sets for a specific number of effective doses at once, by constructing

specialised confidence bands that provide confidence sets offering closer to nominal cov-

erage than the current methods. We construct both two sided and one sided improved

simultaneous confidence sets for up to, but not limited to four effective doses at once.

The new method is shown to offer significant improvement over previous methods,

which is illustrated with some example datasets.

1.7 Outline Of The Thesis

In Chapter two, a review of the simultaneous confidence bands of interest is conducted.

Chapter three contains the work on optimal continuous experimental designs for simul-

taneous confidence bands with a constrained covariate. This includes numeric evidence

of D optimal designs being the best under the AW and MACS criteria, and theory on
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how an optimal design may be found by analytical proof. Chapter four outlines the

construction of one and two sided simultaneous confidence sets for a specific number

of effective doses, using a method which is shown to be less conservative than current

methodology. Chapter five adapts this work under the stipulation that the effective

doses lie over some sensible finite range. The work of Chapters four and five is applied

to both one and two sided simultaneous confidence sets, and the extent of improvement

in the size of each simultaneous confidence set is assessed and illustrated with examples.

In Chapter six, a review of the work is given along with conclusions and possibilities

for further work.
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Chapter 2

Simultaneous Confidence Bands

For Normal-Error Linear And

Logistic Regression Models

It is necessary to understand intimately the theory behind the construction of the

simultaneous confidence bands of interest, in particular the methods of calculation of

the critical constant. In this chapter we review the construction of the Scheffé type

band over the whole real space for the normal-error and logistic regression models, and,

for a one covariate normal-error linear model, the Scheffé type and constant width type

simultaneous confidence bands over a finite interval.

2.1 Preliminaries

The material of this section closely follows section 2.1 of Liu (2011), but is adapted

to apply to both normal-error linear and logistic regression models under an asymp-

totically normal MLE. In the case where results apply specifically to one model or the

other, this will be explicitly stated. We assume a one covariate model, that is q = 1 for

both the normal-error and logistic case.

1. Suppose β̂ follows a normal distribution with mean β, and variance involving some

covariance matrix V , that is V = (XᵀX)−1 for normal-error linear regression,

and V = J−1 for logistic regression.

Define P as the unique square root matrix of V that is

P 2 = V ⇒ P = V
1
2 .

It is clear by the properties of the variance covariance matrix that P = P ᵀ.

2. Define N as the random vector

N =
P−1(β̂ − β)

σ
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in the normal-error linear regression case and

N = P−1(β̂ − β)

in the asymptotic logistic regression case. It is immediate from the distributions

of β̂ in both cases that N is a standard bivariate normal random vector, that is

N ∼ N2(0, I2).

3. For the normal-error linear regression model define

T =
N
σ̂
σ

=
P−1(β̂ − β)

σ̂
.

We note that σ̂
σ ∼ 1√

N−q−1

√
X 2
N−q−1. Furthermore since N is a linear combi-

nation of β̂, and N and σ̂
σ are independent random variables, it is clear that T

follows the standard bivariate T2,N−2 distribution, with degrees of freedom N−2.

4. Suppose a function of the form

v(x) = xᵀV x.

This may be written as

xᵀV x = xᵀP 2x = xᵀP ᵀPx = {Px}ᵀPx = ‖Px‖2.

Additionally, it is simple to show that

|x(β̂ − β)| = |(Px)ᵀNσ|

for the normal case and

|(Px)ᵀN |

for the asymptotic logistic case.

5. Represent N in terms of its polar coordinates

N =

(
n1

n2

)
=

(
RNcosθN

RN sinθN

)
= RN

(
cosθN

sinθN

)
, RN ≥ 0, θN ∈ [0, 2π).

It can be shown (cf. Ross (1988)) that a standard bivariate normal vector in

polar coordinates has the following three properties.
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(a) RN ∼
√
X 2
2 , that is to say RN follows a standard Rayleigh distribution

with distribution function

FRN (x) = P(X ≤ x) = 1− exp

{
−x

2

2

}
. (2.1)

(b) θN follows a uniform distribution over the interval [0, 2π).

(c) RN and θN are independent random variables.

We also take note that

‖N‖ =
√

(RNcosθN )2 + (RN sinθN )2 = RN
√

(cosθN )2 + (sinθN )2 = RN .

6. Specifically for the normal-error linear regression model, the polar coordinates of

T are

T =

(
t1

t2

)
=

(
RT cosθT

RT sinθT

)
= RT

(
cosθT

sinθT

)
, RT ≥ 0, θT ∈ [0, 2π).

These may be written in terms of N via the simple transformation

RT =
RN
σ̂
σ

, θT = θN .

The unchanged angle means that properties 5(b) and 5(c) also hold for T . Also,

property 5(a) implies that R2
T is the ratio of two scaled chi square variables.

Therefore R2
T follows a scaled F distribution, specifically, RT ∼

√
2F2,N−2 with

cumulative distribution function

FRT (x) = 1−
(

1 +
x2

N − 2

)−N−2
2

.

2.2 Two sided Scheffé Type Bands For The Normal-Error

Linear Regression Model

In this section we review the construction of the Scheffé type simultaneous confidence

band for a multiple covariate model over the whole real space, and for one covariate

over a finite interval.

2.2.1 Scheffé Type Band Over The Whole Real Space

We look to establish a band of the form in Equation (1.9) where the value of c sets

P
{
xᵀβ ∈ xᵀβ̂ ± cσ̂

√
xᵀ(XᵀX)−1x ∀x ∈ Rq

}
= 1− α.

We see (cf. Liu (2011)) that
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P
{
xᵀβ ∈ xᵀβ̂ ± cσ̂

√
xᵀ(XᵀX)−1x ∀x ∈ Rq

}

=P





∣∣∣xᵀ(β̂ − β)
∣∣∣

σ̂
√
xᵀ(XᵀX)−1x

≤ c ∀x ∈ Rq




=P

{
sup
x∈Rq

|(Px)ᵀσN |
σ̂‖Px‖ ≤ c

}

=P

{‖N‖
σ̂/σ

(
sup
x∈Rq

|(Px)ᵀN |
‖Px‖‖N‖

)
≤ c
}

=P

{‖N‖
σ̂/σ

≤ c
}
, (2.2)

which is due to Point 4 of the preliminaries. Furthermore (2.2) occurs as a result of

the Cauchy-Schwartz inequality which states

sup
x∈Rq

|(Px)ᵀN |
‖Px‖‖N‖ = 1.

If we further note that

‖N‖ =

√(
P−1(β̂−β)

σ

)ᵀ
P−1(β̂−β)

σ =

√
(β̂−β)ᵀ

σ P−2 (β̂−β)σ =

√
(β̂−β)ᵀXᵀX(β̂−β)

σ ,

then Equation (2.2) implies that c is set to satisfy

P





√
(β̂ − β)ᵀXᵀX(β̂ − β)

σ

1

σ̂/σ
≤ c



 = 1− α

⇒P





(β̂−β)ᵀXᵀX(β̂−β)
σ2

(q + 1)

1

σ̂2/σ2
≤ c2

(q + 1)



 = 1− α.

Since, from Chapter one,
(β̂−β)ᵀXᵀX(β̂−β)

σ2

(q+1)
1

σ̂2/σ2 is the quotient of two chi squared random

variables, divided by their degrees of freedom, (q + 1) and (N − q − 1) respectively, it

must follow an Fq+1,N−q−1 distribution. We therefore have

P





(β̂−β)ᵀXᵀX(β̂−β)
σ2

(q + 1)

1

σ̂2/σ2
≤ f αq+1,N−q−1



 = 1− α, (2.3)

where f αq+1,N−q−1 is the (1 − α)’th quantile of the Fq+1,N−q−1 distribution. It is then

immediate that

c2

(q + 1)
= f αq+1,N−q−1 =⇒ c =

√
(q + 1)f αq+1,N−q−1.
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Thus a Scheffé type confidence band for a normal-error linear model over the real line

takes the form,

xᵀβ ∈ xᵀβ̂ ±
√

(q + 1)f αq+1,N−q−1σ̂
√
xᵀ(XᵀX)−1x, (2.4)

where

P
{
xᵀβ ∈ xᵀβ̂ ±

√
(q + 1)f αq+1,N−q−1σ̂

√
xᵀ(XᵀX)−1x ∀x ∈ Rq

}
= 1− α.

We illustrate this band with an example dataset modelling blood fat content with age.

This is given as file ”x09.txt” from Florida State University (2011), with N = 25. The

value of c is given as 2.616 and the band is shown in Figure 2.1 below.
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Figure 2.1: Scheffé type simultaneous confidence band for an example dataset modelling
blood fat content as a function of age
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2.2.2 Scheffé Type Band Over A Finite Covariate Region

A Scheffé type band considered over the whole real space is overly conservative in most

practical cases, where the predictors are usually considered over some finite range. It is

agreed by many researchers, such as Liu (2011), that it is more informative to consider

the band over some q dimensional rectangular region of the covariates. Recall that this

is represented by two vectors of constants a and A with entries ai ≤ Ai i = 1, . . . , q,

that is x ∈ (a,A). Establishing a Scheffé type band of this form for q > 1 is a significant

challenge, and is achieved by numeric simulation. Here we construct a Scheffé type band

for a single covariate x, constrained over some finite interval (a,A) using the method

first found in Wynn and Bloomfield (1971). The band takes the form

β0 + β1x ∈ β̂0 + β̂1x± cσ̂

√√√√(1, x)(XᵀX)−1

(
1

x

)
∀x ∈ (a,A)

with c set to satisfy

P{β0 + β1x ∈ β̂0 + β̂1x± cσ̂

√√√√(1, x)(XᵀX)−1

(
1

x

)
∀x ∈ (a,A)} = 1− α.

As before note that

P{β0 + β1x ∈ β̂0 + β̂1x± cσ̂

√√√√(1, x)(XᵀX)−1

(
1

x

)
∀x ∈ (a,A)}

=P





∣∣∣(1, x)(β̂ − β)
∣∣∣

σ̂

√√√√(1, x)(XᵀX)−1

(
1

x

) ≤ c ∀x ∈ (a,A)





=P





|(P
(

1

x

)
)ᵀN |

σ̂
σ‖P

(
1

x

)
‖
≤ c ∀x ∈ (a,A)





=P





|(P
(

1

x

)
)ᵀT |

‖P
(

1

x

)
‖
≤ c ∀x ∈ (a,A)





with T as defined in the preliminaries. By viewing T and P

(
1

x

)
as position vectors

from the origin, the term
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|{P
(

1

x

)
}ᵀT |

‖P
(

1

x

)
‖

is the absolute value of the scalar projection of T onto P

(
1

x

)
. Therefore, the

following set

Rh,2{x} =




T :

|{P
(

1

x

)
}ᵀT |

‖P
(

1

x

)
‖

< c




,

represents the set of all T of which lie in a region, formed by the two parallel lines that

are perpendicular to the directional vector P

(
1

x

)
and distance c from the origin.

We therefore have

= P





|{P
(

1

x

)
}ᵀT |

‖P
(

1

x

)
‖

< c;∀x ∈ (a,A)





= P
{
T ∈ ∩x∈(a,A)Rh,2{x}

}

= P {T ∈ Rh,2}

where Rh,2 is the intersection of all such sets Rh,2{x} for x ∈ (a,A). This takes the

form of a spindle region on the two dimensional T plane as illustrated by Liu (2011) in

Figure 2.2.

Figure 2.2: The region Rh,2 with b = A from Liu (2011)
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The angle between P

(
1

a

)
and P

(
1

A

)
, φ is given as

cos(φ) =

(1, a)(XᵀX)−1

(
1

A

)

√√√√(1, a)(XᵀX)−1

(
1

a

)
(1, A)(XᵀX)−1

(
1

A

) .

It is clear (cf. Liu (2011)) that the region is rotational invariant around the origin,

hence we consider the region R∗h,2, shown in Figure 2.3 which rotates rotates Rh,2 so

that φ bisects the t2 axis. We then have

P {T ∈ Rh,2} = P
{
T ∈ R∗h,2

}
. (2.5)

Figure 2.3: The region R∗h,2 as taken from Liu (2011)

From Figure 2.3, Equation (2.5) may be represented as the probability of T lying

within the circle of radius c, plus four times the probability of T lying within the far

right yellow shaded region. Represent T in terms in of its polar coordinates, then, by

using the standard formula, the probability of T lying within the circle is

P

{√
RT

2(sin2(θT ) + cos2(θT )) < c

}
= P{RT < c}.

Recall from the preliminaries that RT ∼
√

2F2,v, thus

P{RT < c} = FRT (c)
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= 1−
(

1 +
c2

v

)− v
2

. (2.6)

The probability of T lying within the yellow shaded region comprises three parts

• The angle θT ∈ (0, π−φ2 ).

• T lies outside the circle that is

RT > c.

• T lies below the straight line in the upper right region. This is given as

(
cos(

π − φ
2

), sin(
π − φ

2
)

)
RT

(
cos(θT )

sin(θT )

)
< c

=RT cos

(
π − φ

2
− θT

)
< c

=RT <
c

cos
(
π−φ
2 − θT

) .

We therefore have

P {T ∈ Yellow Region}

=P


θT ∈ [0,

π − φ
2

], c < RT <
c

cos
(
π−φ
2 − θT

)




=
1

2π

∫ π−φ
2

0
P


c < RT <

c

cos
(
π−φ
2 − θT

)


dθT

=
1

2π

∫ π−φ
2

0



FRT


 c

cos
(
π−φ
2 − θT

)


− FRT (c)



dθT

=
1

2π

∫ π−φ
2

0





(
1 +

c2

N − 2

)−N−2
2

−


1 +

c2

(N − 2)sin2
(
θT + φ

2

)



−N−2

2





dθT .

This occurs due to the preliminaries that RT and θT are independent, with θT having

a uniform distribution over (0, 2π) and RT ∼
√

2F2,N−2.
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Taking both of these results gives

P {T ∈ Rh,2}

=1−
(

1 +
c2

N − 2

)−N−2
2

+
4

2π

∫ π−φ
2

0





(
1 +

c2

N − 2

)−N−2
2

−


1 +

c2

(N − 2)sin2
(
θT + φ

2

)



−N−2

2





dθT

=1−
(

1 +
c2

N − 2

)−N−2
2

+
2

π

[(
1 +

c2

N − 2

)−N−2
2

θT

]π−φ
2

0

− 2

π

∫ π−φ
2

0


1 +

c2

(N − 2)sin2
(
θT + φ

2

)



−N−2

2

dθT

=1− φ

π

(
1 +

c2

N − 2

)−N−2
2

− 2

π

∫ π−φ
2

0


1 +

c2

(N − 2)sin2
(
θ + φ

2

)



−N−2

2

dθ (2.7)

with dummy variable θT = θ. The critical constant c now sets Equation (2.7) to 1−α.

This constitutes a numeric search involving one dimensional integration and can is

performed usng a custom search algorithm using the software package ”R”.

Figure 2.4 below illustrates the difference between the band considered over the

whole real line, and over a finite interval for the ”bloodfat” dataset. Over the whole

real line we had c = 2.616. This is reduced to 2.308 when considered for age over 20-35

years. The latter band is thus narrower on average over the considered range, and as a

result more informative, at a cost of computational complexity.
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Figure 2.4: A 95 percent Scheffé simultaneous confidence band over the region [20, 35],
and over the whole real line for the ”bloodfat” dataset.

2.3 Two Sided Constant Width Bands For Normal-Error

Linear Regression

In this section we consider the constant width band, which we recall takes the form

β0 + β1x ∈ β̂0 + β̂1x± σ̂c ∀x ∈ (a,A) (2.8)

where c is set to satisfy

P
{
β0 + β1x ∈ β̂0 + β̂1x± σ̂c ∀x ∈ (a,A)

}
= 1− α. (2.9)

This is a special case of the two sided three segment band of Bowden and Graybill

(1966)

β0 + β1x ∈ β̂0 + β̂1x± σ̂H3(x) ∀x ∈ (a,A) (2.10)
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with

H3(x) = 1
A−a


(x− a)c1

√√√√(1, A)(XᵀX)−1

(
1

A

)
+ (A− x)c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
.

If we set

c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
= c1

√√√√(1, A)(XᵀX)−1

(
1

A

)
, (2.11)

then (2.10) becomes a constant width band with critical constant c, such that

c = c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
.

Hence c may be obtained using a method to calculate c1 and c2 for three segment bands

given first by Bowden and Graybill (1966), and then applying this relation. We require

the c1 and c2 that satisfy the simultaneous confidence level

P
{
β0 + β1x ∈ β̂0 + β̂1x± σ̂H3(x) ∀x ∈ (a,A)

}
= 1− α,

this probability may immediately be written as

P

{
|(1, x)(β̂ − β)|

σ̂H3(x)
< 1 ∀x ∈ (a,A)

}

=P

{
Sup

x∈(a,A)

|(1, x)(β̂ − β)|
σ̂H3(x)

< 1

}

=P

{
|(1, x)(β̂ − β)|

σ̂H3(x)
< 1 for x ∈ {a,A}

}
.

This is since from Liu (2011) the function

∂

∂x

|(1, x)(β̂ − β)|
σ̂H3(x)

has a fixed sign, either positive or negative over x ∈ (−∞,∞). This implies that the

supremum must occur at one of the endpoints of the design range a or A. If we also

note that

H3(a) = c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
and H3(A) = c1

√√√√(1, A)(XᵀX)−1

(
1

A

)
,
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then we have

P

{
|(1, x)(β̂ − β)|

σ̂H3(x)
< 1 for x ∈ {a,A}

}

=P





∣∣∣(1, a)(β̂ − β)
∣∣∣

σ̂

√√√√(1, a)(XᵀX)−1

(
1

a

) ≤ c2 ∩

∣∣∣(1, A)(β̂ − β)
∣∣∣

σ̂

√√√√(1, A)(XᵀX)−1

(
1

A

) ≤ c1





=P





|(P
(

1

a

)
)ᵀT |

‖P
(

1

a

)
‖
≤ c2 ∩

|(P
(

1

A

)
)ᵀT |

‖P
(

1

A

)
‖
≤ c1





=P {T ∈ R3,2} , (2.12)

where R3,2 = R3,2(a) ∩R3,2(A) with

R3,2(a) =




T :

|{P
(

1

a

)
}ᵀT |

‖P
(

1

a

)
‖

< c2





and

R3,2(A) =




T :

|{P
(

1

A

)
}ᵀT |

‖P
(

1

A

)
‖

< c1




.

Similarly to the hyperbolic case, the probability of interest is reduced to the probability

that T lies within the intersection of the two striped regions R3,2(a) and R3,2(A), as

show in Figure 2.5, wth the angle φ the same as in the Scheffé band case.
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Figure 2.5: The region R3,2, image taken from Liu (2011)

This region is also rotationally invariant around the origin, hence we may rotate

this region so that the angle φ, sits on the t1 axis to form the region R∗3,2. We then

have

P {T ∈ R3,2} = P
{
T ∈ R∗3,2

}
.

Figure 2.6: The region R∗3,2, image taken from Liu (2011).

We define the two angles ξ1 and η1, shown in Liu (2011) as follows,

ξ1 = arcsin

(
c2 − c1cos(φ)√

c22 + c21 − 2c1c2cosφ

)

η1 = arccos

(
−c1sin(φ)√

c22 + c21 + 2c1c2cosφ

)
.
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The dotted lines on Figure 2.6 isolate an upper and right region of R∗3,2. By symmetry,

the relevant probability is then twice the sum of the probability of T lying in the upper

and right regions respectively. It is clear from Figure 2.6 that,

P{T ∈ Right Region}
=P{θT ∈ (η − π, ξ1),RT cos(θT ) ≤ c1}.

Furthermore

P{T ∈ Upper Region}
=P{θT ∈ (ξ1, η1),RT cos(θT − φ) ≤ c2}.

This can be seen by rotating R∗3,2 clockwise by π, so that the upper region is perpen-

dicular with the t1 axis. We therefore have

P{T ∈ R∗3,2}
=2P{θT ∈ (η − π, ξ1),RT cos(θT ) ≤ c1}+ 2P{θT ∈ (ξ1, η1),RT cos(θT − φ) ≤ c2}

=2

[∫ ξ1

η1−π

1

2π
P{RT cos(θT ) ≤ c1}dθT +

∫ η1−φ

ξ1−φ

1

2π
P{RT cos(u) ≤ c2}du

]

with u = θT −φ. As θT and u are variables of integration, they are replaced by dummy

variable θ. Using the preliminaries we then have

P{T ∈ R∗3,2}

=
1

π

{∫ ξ1

η1−π

(
1−

(
1 +

c21
(N − 2)cos2θ

)−N−2
2

)
dθ

}

+
1

π

{∫ η1−φ

ξ1−φ

(
1−

(
1 +

c22
(N − 2)cos2θ

)−N−2
2

)
dθ

}
. (2.13)

We use a numeric search algorithm to calculate the c1 and c2 which sets Equation (2.13)

to 1−α under the relation in (2.11). The value of c which satisfies Equation (2.9) then

takes the form c = c2

√√√√(1, a)(XᵀX)−1

(
1

a

)
. We give an example of this band for the

”bloodfat” dataset of Figure 2.1, for x ∈ (20, 40). The critical constant is calculated

using Equation (2.13) in ”R” code, and is available on request.
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Figure 2.7: An example of a 95 percent constant width band over (20, 60).

2.4 Optimality Criteria For Simultaneous Confidence Bands

An optimality criterion is a function for which its value assesses how good a statistical

construct is in eliciting a property of interest. A construct is considered optimal if

it minimises, or maximises the criterion function, compared to all other constructs

of interest. Optimality criteria are widely applied to design of experiment problems,

seeking to establish the best way to construct the matrix X of Equation (1.4), in order

to obtain the best inference in regression analysis. This is extensively studied in works

such as Fedorov (1972). For confidence bands, there exist two optimality criteria which

are covered in this section.

2.4.1 Average Width Criterion

First considered by Gafarian (1964) and formalised by Naiman (984a), the AW criterion

is based on the idea that a band that is narrower on average more tightly bounds the

area in which xᵀβ could lie, and thus offers a better idea of its real value. A confidence

band is therefore considered optimal if it has the smallest average width.

The average width of a Scheffé type band with corresponding critical constant c
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over [a,A] is given as

2cσ̂
1

A− a

∫ A

a

√
xᵀ(XᵀX)−1xdx,

whilst constant width bands with a corresponding c have a fixed width regardless of

the considered range at

2cσ̂.

2.4.2 Minimum Area Confidence Set

The AW criterion was explored by Liu and Hayter (2007), and was critical of the fact

that the range of interest can be too crucial a factor in determining the optimal simul-

taneous confidence band. This was demonstrated with an example involving two sided,

three segment bands. Liu and Hayter (2007) instead proposed judging a simultaneous

confidence band specifically by its underlying 1−α confidence set for β. This is defined

as those β for which xᵀβ lies within the 1− α simultaneous confidence band, that is

C =
{
β : xᵀβ ∈ xᵀβ̂ ± cg(x) ∀x ∈ [a,A]

}
(2.14)

with xᵀβ̂± cg(x) the form of a specific simultaneous confidence band. To this end, the

paper defined the Minimum Area Confidence Set (MACS) for a univariate linear model.

A confidence band is considered optimal under MACS if it minimises the area of this

confidence set. A smaller confidence set by area reduces the number of candidates for

β, and is as such more informative.

It is clear from Chapter two that for Scheffé type and constant width type bands,

the confidence set may be expressed as

Ch,2(β̂, σ̂) =

{
β :

P−1(β̂ − β)

σ̂
∈ Rh,2

}

and

C3,2(β̂, σ̂) =

{
β :

P−1(β̂ − β)

σ̂
∈ R3,2

}

respectively. Hence the area of each confidence set is related to areas of Rh,2 and R3,2

via the linear transformation P−1(β̂−β)
σ̂ , and easily allows direct comparison of different

band types (cf. Liu and Hayter (2007)).
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The area of Ch,2 can be given (cf. Ah-Kine (2010)) as

Area(Ch,2) =

∫ ∫

β∈Ch,2=β̂+σ̂PRh,2
1dβ

=

∫ ∫

w∈σ̂Rh,2
|P |dw (w = P−1(β̂ − β))

= |P | σ̂2
∫ ∫

p∈Rh,2
1dp (p =

w

σ̂
)

= |P | σ̂2Area(Rh,2)

=|P |σ̂2c2
{
φ+ 2cot

(
φ

2

)}

as the area of Rh,2 can be shown to be c2
{
φ+ 2cot

(
φ
2

)}
, where c and φ are as defined

in Chapter two for Scheffé type bands. The area of R3,2 can be shown to be, using the

area of a parallelogram, 4 c1c2
sin(φ) , and applying the same method gives

Area(C3,2) =σ̂2|P |
(

4
c1c2
sin(φ)

)

=σ̂2|P |




4c2

sin(φ)

√√√√(1, a)(XᵀX)−1

(
1

a

)
(1, A)(XᵀX)−1

(
1

A

)



,

substituting the values of c1 = c√√√√√√(1,A)(XᵀX)−1

 1

A


and c2 = c√√√√√√(1,a)(XᵀX)−1

 1

a


for

the constant width band.

2.4.3 Relation between D-Optimal and MACS Criteria

Perhaps the most well known optimality criterion in general, D optimality is a criterion

specifically designed to compare design of experiments. A design is considered optimal

under D optimality if it maximises the determinant of the information matrix |XᵀX|.
D optimal designs minimise the area of the implicit confidence ellipsoid for β, formed

by the least squares estimate β̂. From Equation (2.3), we have

(β̂ − β)ᵀ(XᵀX)(β̂ − β)

(q + 1)σ̂2
∼ Fq+1,N−q−1.

This immediately implies a 1− α confidence set on β, the area of which D optimality

seeks to minimise, as

Sβ = {β : (β̂ − β)ᵀ(XᵀX)(β̂ − β) ≤ (q + 1)σ̂2f αq+1,N−q−1}.
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The area of this set is always proportional to 1√
|XᵀX|

for a model with any number of

covariates q. An example is given in Ah-Kine (2010) for q = 1. Hence the area is min-

imised with respect to the design when
√
|XᵀX| or equivalently |XᵀX| is maximised.

This criterion function leads to one of the few results for optimal designs for simul-

taneous confidence bands. It is clear that MACS and D optimality are closely related

criteria, both looking to minimise the area of a confidence set for β. For a Scheffé type

band over the whole real space c =
√

(q + 1)f αq+1,N−q−1, hence the MACS criterion

looks to minimise the same F distributed confidence set as D optimality. If we view

Ch,2(β̂, σ̂) as the set of the form of Equation (2.14) for a Scheffé type band over the

whole real space, then we have

Ch,2(β̂, σ̂)

=
{
β : β0 + β1x ∈ β̂0 + β̂1x±

√
(q + 1)f αq+1,N−q−1σ̂

√
xᵀ(XᵀX)−1x ∀x ∈ (a,A)

}

=
{
β : (xᵀ(β̂ − β))ᵀ(xᵀ(β̂ − β)) ≤ (q + 1)f αq+1,N−q−1σ̂

2xᵀ(XᵀX)−1x ∀x ∈ (a,A)
}

=
{
β : xᵀx(β̂ − β)ᵀXᵀX(β̂ − β) ≤ (q + 1)f αq+1,N−q−1σ̂

2xᵀx ∀x ∈ (a,A)
}

=
{
β : (β̂ − β)ᵀXᵀX(β̂ − β) ≤ (q + 1)f αq+1,N−q−1σ̂

2
}

= Sβ.

Therefore in this instance D and MACS optimality are equivalent criteria. It is much

more difficult to establish a similar equivalence for bands over a finite interval as c

is not constant in terms of the design. This is the problem that is considered in the

following Chapter.

2.5 Two Sided Scheffé Type Band For Generalised Linear

Models

2.5.1 Two Sided Scheffé Type Band For The Logistic Regression Model

We construct a simultaneous confidence band of the form given by Section 1.5 for the

logistic regression model, originally considered by Brand et al. (1973) for q = 1, and

generalised to a multiple logistic model by Walter (1983). Recall for the logistic model

that b(µ(x)) = π(p(x)) = log
(

p(x)
1−p(x)

)
, hence the band takes the form

π(p(x)) = xᵀβ ∈ xᵀβ̂ ± c
√
xᵀJ−1x ∀ x ∈ Rq

where c sets

P
{
xᵀβ ∈ xᵀβ̂ ± c

√
xᵀJ−1x ∀ x ∈ Rq

}
= 1− α.

An equivalent 1− α confidence band for p(x) is then given by

p(x) ∈
exp

(
xᵀβ̂ ± c

√
xᵀJ−1x

)

1 + exp
(
xᵀβ̂ ± c

√
xᵀJ−1x

) ∀ x ∈ Rq.
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Under the asymptotic normality assumption of section 1.4.3 we have as similar to the

equivalent normal-error linear simultaneous confidence band

P
{
xᵀβ ∈ xᵀβ̂ ± c

√
xᵀJ−1x ∀ x ∈ Rq

}

= P

{
sup
x∈Rq

|(Px)ᵀN |
‖Px‖ ≤ c

}

= P

{
‖N‖

(
sup
x∈Rq

|(Px)ᵀN |
‖Px‖‖N‖

)
≤ c
}

= P {‖N‖ ≤ c}

by the Cauchy-Schwartz inequality. SinceN has approximately the multivariate normal

distribution N (0, Iq+1), then ‖N‖2 has approximately a chi square distribution with

q + 1 degrees of freedom, and therefore c =
√
Xαq+1, where Xαq+1 is the upper α point

of the chi square distribution. Hence an approximate 1− α confidence band takes the

form

xᵀβ ∈ xᵀβ̂ ±
√
Xαq+1

√
xᵀJ−1x ∀ x ∈ Rq, (2.15)

where

P
{
xᵀβ ∈ xᵀβ̂ ±

√
Xαq+1

√
xᵀJ−1x ∀ x ∈ Rq

}
= 1− α. (2.16)

This is of course in practice an approximate 1−α simultaneous confidence band, under

an asymptotically normal MLE. An equivalent band is then given as

p ∈
exp

(
xᵀβ̂ ±

√
Xαq+1

√
xᵀJ−1x

)

1 + exp
(
xᵀβ̂ ±

√
Xαq+1

√
xᵀJ−1x

) ∀ x ∈ Rq. (2.17)

This band is demonstrated for an example dataset with a Bernoulli response, found in

the software package ”R”, called ”mtcars”.
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Figure 2.8: An approximate 95 percent logistic simultaneous confidence band for the
”mtcars” dataset.

2.5.2 A Note On Two Sided Scheffé Type Bands for Other GLM’s

To generate a simultaneous confidence band for any generalised linear model, with a

linear regression line of some form b(µ(x)) = xᵀβ, we require only that the MLE of β is

asymptotically normal, with distribution (β̂−β) ∼ Nq+1 (0,V ), and V some covariance

matrix. Since the large sample asymptotic normality of the MLE β̂ in Section 1.2.4

always holds true regardless of the underlying model, simultaneous confidence bands

can be constructed for any linear GLM, in the exact same way as the logistic regression

model.
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Chapter 3

Optimal Continuous Designs For

Simultaneous Confidence Bands

Over A Finite Interval

Optimal design is the study of how best to assign the fixed values of the covariates

in an experiment. The early groundwork is usually attributed to two papers, the very

early work of Smith (1918), and that of Elfving (1952). However, perhaps the most well

known papers in the area are the works of Kiefer, in particular Kiefer (1958), Kiefer

(1959) and Kiefer and Wolfowitz (1960) which established the equivalence of D and G

optimality criteria. In particular, these are noted for forming the style, and structure

of most modern optimal design problems, in particular introducing the alphabetical

labeling of optimality criteria than is now standard.

In this Chapter, we detail work on establishing the optimal designs for the univariate

Scheffé type and constant width type bands, when the band, and the design lie in some

finite region x ∈ [a,A]. We consider both the average width (AW) and the minimum

area confidence set (MACS) criteria, detailed in Chapter two, as optimality criterion

functions. A numeric approach is considered, that identifies the optimal designs as

D-optimal for 95% bands over [−1, 1], up to some value of N . Also considered are the

best designs with design points lying on the ends of the considered range. Based on

this, an analytical approach is attempted using methods given in Silvey (1980), that are

based on the equivalence theorem of Kiefer and Wolfowitz (1960), but is unsuccessful.

In each case the problem is approached from a continuous design standpoint.
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3.1 Introduction

3.1.1 Overview

Recall that the N experimental observations of x, defined in (1.3), represent the con-

trollable input by the user into the analysis. They are termed the design of the

experiment, and are characterised by the design matrix X. In optimal design, the

objective is to judge designs against their ability to elicit a specific statistical property

of interest, assessed through an optimality criterion function. The best design min-

imises, or maximises, this function. An important property of all criterion functions,

including the AW and MACS criteria, are that they are functions of the design through

the information matrix XᵀX. Some well known criteria include, but are not limited to

D, G, I and A optimality criteria. We refer to Fedorov (1972) as an excellent reference

point for work in the area.

Optimal design problems for simultaneous confidence bands have an additional com-

plication. A design is considered optimal under the AW or MACS criteria, if the cor-

responding 1 − α simultaneous confidence band is optimal, compared to the 1 − α

simultaneous confidence bands formed using all other considered designs. Hence in

practice this constitutes an optimisation problem with respect to a constraint, that the

critical constant c is always set to maintain the simultaneous coverage of the band at

1 − α. That is for a simultaneous confidence band with bounds l(x, c) < u(x, c) and

criterion function f(XᵀX, c), the problem is broadly given as

Optimise f(XᵀX, c)

Such that P {l(x, c) < xᵀβ < u(x, c) ∀x ∈ (a,A)} = 1− α.

For Scheffé type bands over the whole real space, and two sided two segment bands,

the critical constant c is independent of the design. In this instance obtaining optimal

designs is a relatively simple problem with the optimal designs already available, and

coinciding with the D optimal designs for the corresponding model (cf. Ah-Kine (2010)).

However, as shown in Chapter 2, the simultaneous coverage probability expressions of

Scheffé type and three segment bands over a finite interval are complicated functions

of the design involving integration. In this instance c will change in a non obvious

way with the design and makes understanding the behaviour of any criterion function

significantly more difficult. There is currently no analytical work for optimal designs

under these circumstances. This Chapter looks to address this problem by applying it

to a continuous design framework.

3.1.2 Design Of Experiments: Exact and Continuous Designs

For one covariate, the simplest way to define a design is to map directly the value of

x for each run 1, 2, . . . , N of an experiment. This is an exact design, where we take a

number of distinct points n ≤ N on the covariate, x1 . . . xn, each given a number of
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replications r1 . . . rn ∈ Z+ in the experiment such that
n∑
i=1

ri = N . This defines an

exact design δ as

δ =

{
x1 x2 . . . xn

r1 r2 . . . rn

}
. (3.1)

The set of distinct points x1 . . . xn are known as the design points of the experiment.

An exact design relates to the design matrix from Chapter 1, X in the obvious way

X =




1 x1
...

...

1 x1
...

...

1 xn
...

...

1 xn







r1times

...



rntimes

.

. Let xi =

(
1

xi

)
, we may then relate an exact design δ to the information matrix as

M{δ} = XᵀX =




n∑
i=1

ri
n∑
i=1

rixi

n∑
i=1

rixi
n∑
i=1

rix
2
i


 =

n∑

i=1

rixixi
ᵀ.

Exact designs are limited in that they are reliant on the value on N . An optimal

design under an exact framework typically changes based on the value, and particularly

the parity of N . Outside of specific instances of distributional results, solutions are

typically found numerically. In this thesis we consider the more general measure of a

continuous design instead. In this case assigns a weight 0 < pi ≤ 1 to each design point

xi, indicating the proportion of runs to be allocated to the design point in an exact

framework as follows

η =

{
x1 x2 . . . xn

p1 p2 . . . pn

}
(3.2)

where
n∑
i=1

pi = 1. A continuous design has no dependence on N , and the pi, unlike the

ri are not constrained to be integers. This format does not have a direct relation to X

but we can define a weighted continuous information matrix as

M{η} =

n∑

i=1

pixixi
ᵀ =




n∑
i=1

pi
n∑
i=1

pixi

n∑
i=1

pixi
n∑
i=1

pix
2
i


 .

39



Note we may covert any exact design δ (cf. Silvey (1980)) to an equivalent continuous

design by setting pi = ri
N , which gives

ηN =





x1 x2 . . . xn

r1
N

r2
N . . . rn

N





(3.3)

where clearly
n∑
i=1

ri
N = 1. Hence we may broadly state the exact and continuous infor-

mation matrices are proportional to one another through the relation

M{δ} = XᵀX = NM{ηN}.

As optimality criteria are functions of the information matrix, this relation means that

optimal continuous design problems can be solved by simply inserting M{η} into the

criterion function in replacement of XᵀX. Solutions for continuous designs are a more

general concept and are often preferred to an exact method. Furthermore, powerful

analytical methods are available using functional derivatives (cf. Silvey (1980)), that

are shown later in the Chapter.

3.1.3 Support Of The Design

All experimental designs in practice are considered over some specific range, [a,A], of

the covariate known as the support of the design, or otherwise the design range. For

design problems for simultaneous confidence bands, it is sensible to assume that the

covariate range of the band, and the support are the same. We note that a design

over some support [a,A] can be converted to an equivalent design over support [−1, 1],

via a simple linear transformation without loss of generality. Hence, the work of this

chapter will focus on designs with support [−1, 1], but will also consider designs over

the support [2, 5], as optimal designs are not guaranteed (see Kotz and Johnson (1992))

to be invariant of this linear transformation.

3.2 AW and MACS Criteria For Continuous Designs

To search for optimal continuous designs for simultaneous confidence bands, we view

the criteria as functions of M{η}, instead of XᵀX. Noting that σ̂ has no dependence

on the design, it may be treated as a constant. Hence the relevant continuous AW

criterion functions for Scheffé type and constant width type bands are

c

∫ A

a

√
xᵀ(M{η})−1xdx (3.4)

and

c (3.5)
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respectively. For the MACS criteria, we obtain

|M{η}− 1
2 |c2

{
φ+ 2cot

(
φ

2

)}
(3.6)

and

|M{η}− 1
2 |




c2

sin(φ)

√√√√(1, a)(M{η})−1
(

1

a

)
(1, A)(M{η})−1

(
1

A

)




(3.7)

respectively. For all criteria, c sets the simultaneous coverage probability to 1−α, using

Equations (2.7) and (2.13) respectively. Recall that the AW criterion function repre-

sents an overall measure of the width of the simultaneous confidence band. A smaller

average width offers a more tightly bounded region, for which to consider candidates

for the true linear regression line. The MACS criterion function measures the size of

the implicit confidence set on β, formed by a simultaneous confidence band, with a

smaller set reducing the number of candidates for β. Hence, in each case, the optimal

continuous design minimises the criterion function. Note that we clearly have through

the relation XᵀX = NM{η}

cos(φ) =

(1, a)(XᵀX)−1

(
1

A

)

√√√√(1, a)(XᵀX)−1

(
1

a

)
(1, A)(XᵀX)−1

(
1

A

)

=

(1, a)(M{η})−1
(

1

A

)

√√√√(1, a)(M{η})−1
(

1

a

)
(1, A)(M{η})−1

(
1

A

) .

The dependence of φ on N is removed as expected, however Equations (2.7) and (2.13)

still rely on N through a power of N − 2 found in the terms inside the integrals. This

cannot be removed, and we thus have an implicit dependence on N , despite a continuous

framework, which must be taken as a constant. This must be taken into account in the

proceeding analysis.

41



3.3 A Numeric Approach To Optimal Designs For Simul-

taneous Confidence Bands

3.3.1 Rectangular Response Surface For Numeric Analysis

To find the optimal continuous design, we need only to optimise the criterion function

with respect to M{η}, considered for designs lying over some support [a,A]. The

optimal design then corresponds to the information matrix that gives the optimal value.

Note that

M{η} =
n∑

i=1

pixixi
ᵀ =




n∑
i=1

pi
n∑
i=1

pixi

n∑
i=1

pixi
n∑
i=1

pix
2
i


 =

(
1 m1

m1 m2

)
.

Hence we have only two unique entries, m1 =
n∑
i=1

pixi, and m2 =
n∑
i=1

pix
2
i . We may

therefore view any M{η}, and by extension any design η as a point on the two dimen-

sional surface m1 ×m2. Therefore the AW or MACS criterion functions of Equations

(3.4-3.7) may be viewed as functions of two variables (m1,m2). A similar technique

was implemented in Ah-Kine (2010), Section 2.5 for an exact design framework, but

the two variables could not be constrained to intervals. This limited the conclusions of

the resultant analysis. We can, however, show m1 and m2 are constrained to intervals

for a specific support in a continuous setting. This is given by the following theorem,

and proven in the appendix.

Theorem 3.1. For any continuous design η with support [a,A], the two variables

m1 =
n∑
i=1

pixi and m2 =
n∑
i=1

pix
2
i must lie within the regions [a,A] and [0, A2] respectively

when A + a ≥ 0, and [a,A] and [0, a2] when A + a ≤ 0. When a=-A, either case is

correct.

Hence, to numerically establish the optimal design over [a,A], for a specific N ,

it suffices to minimise Equations (3.4-3.7) with respect to (m1,m2), over the surface

[m1] × [m2] = [a,A] × [0, A2] or [a,A] × [0, a2]. We may then infer the corresponding

optimal design. This permits the use of optimisation algorithms to numerically search

for the best design. This method however has limitations.

3.3.2 Limitations of Numeric Methods

The result of Theorem 3.1 is not entirely appropriate. Although every possible design

over [a,A] is represented as a point on this rectangular surface, bounding m1 and m2

in this way assumes that they are independent variables, which is clearly not the case.

In practice, the ”true” surface, consisting only of (m1,m2) that can be attained by

real designs is some region, contained within the rectangular surface, with variable, as

opposed to fixed bounds on the value of m2. These bounds depend on the value of m1.

For example, over support [2, 5], the upper bound of m2 over the rectangular surface is
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25, and can be achieved by only one design, which has one design point x1 = 5, with

p1 = 1. This takes value of m1 = 5, and no other design with m1 6= 5 can achieve a

value of m2 = 25. In fact, at m1 = 5 the point (m1,m2) = (5, 25) is the only point

corresponding to a real design.

This means that there exist (m1,m2) over the surface given by Theorem 3.1, that do

not correspond to any real design, which we term ”false points”, and imposes limitations

on any numeric analysis in the following ways.

• The false points may affect the shape of the response surface, and could lead to

difficulty in coming to general conclusions. Furthermore this is likely to affect

any numeric search algorithms, leading to points and search pathways where the

criterion function cannot be evaluated.

• There is also a significant risk than any optimal point found by numeric methods

may be a false point, with no method to protect against this occurrence.

Hence a numeric search for the optimal will not always be appropriate, and it cannot be

predicted in what situations these limitations may affect analyses. However, provided

that the optimal (m1,m2) is shown to correspond to a real design, this must

be the optimal design over the support for a specific N . Hence this remains a

more powerful method than those used in previous work.

3.3.3 Numeric Investigation

We investigate the criterion functions of Equations (3.4-3.7), where c sets the simulta-

neous coverage to 1 − α = 0.95. We consider two regions for which to search, [−1, 1]

and [2, 5]. This means searching over the response surfaces [m1]× [m2] = [−1, 1]× [0, 1],

and [2, 5]× [0, 25] respectively.

We perform two numeric investigations. The first will investigate the response

surface of the optimality criteria, by calculating Equations (3.4-3.7) over a grid of

points on [m1] × [m2], with distance 0.1 between points on both axes. We provide

two figures, a plot of the response surface against the negative value of the criterion

function, for graphical purposes, and a plot of the determinant of M{η}, corresponding

to each pair of m1 and m2, against the value of the criterion function. This is performed

for N = 5 and 6.

Secondly we use the optimisation algorithm ”optim” from R, listed in the Appenidix

and available on request, to identify the optimal m1 and m2 in each case for select values

of N , and determine if the point corresponds to a real design. The list of R codes used

for this analysis are given in the appendix.
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AW Investigation For Scheffé Type Bands Over [−1, 1]
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Figure 3.1: Analysis Of The AW For Scheffé Type Bands Over [−1, 1] at N = 6
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Figure 3.2: Analysis Of The AW For Scheffé Type Bands Over [−1, 1] at N = 5
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AW Investigation For Scheffé Type Bands Over [2, 5]
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Figure 3.3: Analysis Of The AW For Scheffé Type Bands Over [2, 5] at N = 6
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Figure 3.4: Analysis Of The AW For Scheffé Type Bands Over [2, 5] at N = 5
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MACS Investigation For Scheffé Type Bands Over [−1, 1]
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Figure 3.5: Analysis Of The MACS Criterion For Scheffé Type Bands Over [−1, 1] at
N = 6
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Figure 3.6: Analysis Of The MACS Criterion For Scheffé Type Bands Over [−1, 1] at
N = 5
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MACS Investigation For Scheffé Type Bands Over [2, 5]
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Figure 3.7: Analysis Of The MACS Criterion For Scheffé Type Bands Over [2, 5] at
N = 6
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Figure 3.8: Analysis Of The MACS Criterion For Scheffé Type Bands Over [2, 5] at
N = 5
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AW Investigation For Constant Width Bands Over [−1, 1]

−1.0 −0.5  0.0  0.5  1.0

−
50

−
40

−
30

−
20

−
10

  0

0.0

0.2

0.4

0.6

0.8

1.0

m1

m
2

N
eg

at
iv

e 
A

W

(a) 1a

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

Determinant

A
W

(b) 1b

Figure 3.9: Analysis Of The AW Criterion For Constant Width Type Bands Over
[−1, 1] at N = 6
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Figure 3.10: Analysis Of The AW Criterion For Constant Width Type Bands Over
[−1, 1] at N = 5
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AW Investigation For Constant Width Bands Over [2, 5]
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Figure 3.11: Analysis Of The AW Criterion For Constant Width Type Bands Over
[2, 5] at N = 6
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Figure 3.12: Analysis Of The AW Criterion For Constant Width Type Bands Over
[2, 5] at N = 5
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MACS Investigation For Constant Width Bands Over [−1, 1]
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Figure 3.13: Analysis Of The MACS Criterion For Constant Width Type Bands Over
[−1, 1] at N = 6
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Figure 3.14: Analysis Of The MACS Criterion For Constant Width Type Bands Over
[−1, 1] at N = 5
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MACS Investigation For Constant Width Bands Over [2, 5]
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Figure 3.15: Analysis Of The MACS Criterion For Constant Width Type Bands Over
[2, 5] at N = 6
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Figure 3.16: Analysis Of The MACS Criterion For Constant Width Type Bands Over
[2, 5] at N = 5

3.3.4 Optimal Designs Over [−1, 1]

The response surface investigation shows strong evidence that in each case, the optimal

design follows D-optimality, under either AW or MACS criteria, and for both Scheffé

type or constant width type bands. This supports the evidence given in a similar

investigation in Ah-Kine (2010). There is a very strong trend of the AW or MACS

criterion function getting smaller, when the determinant of the information matrix gets

larger. This conclusion is the same for both N equal 5 and 6. Though the criteria

do not monotonically decrease with increasing determinant, this is likely as a result of

false points affecting the analysis. Furthermore, in each case the point on the surface
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that maximises the negative of the optimality criterion (used for graphical purposes),

gave m1 = 0, and m2 = 1, which corresponds to the information matrix which has the

largest determinant over the surface. Furthermore, this corresponds to a real design,

where half the points are allocated to -1 and 1 respectively as follows

η =

{
−1 1

0.5 0.5

}

This is well known as the D optimal design for one covariate over [−1, 1]. We now

use optimisation algorithms using custom made code in ”R”, which are listed in the

appendix, and available on request, to search for the optimal (m1,m2) for each case at

a number of specific values of N . The results are shown in the following tables.

Table 3.1: Numeric AW and MACS Optimal Designs For 95 Percent Scheffé type bands
over [−1, 1]

(a)

N Optimal (m1,m2) Optimal AW

5 (0,1) 4.789

6 (0,1) 4.088

10 (0,1) 3.283

20 (0,1) 2.936

50 (0,1) 2.784

100 (0,1) 2.740

(b)

N Optimal (m1,m2) Optimal MACS

5 (0,1) 62.171

6 (0,1) 44.305

10 (0,1) 29.220

20 (0,1) 23.365

50 (0,1) 21.009

100 (0,1) 20.352

Table 3.2: Numeric AW and MACS Optimal Designs For 95 Percent Constant Width
type bands over [−1, 1]

(a)

N Optimal (m1,m2) Optimal AW

5 (0,1) 5.601

6 (0,1) 4.783

10 (0,1) 3.844

20 (0,1) 3.439

50 (0,1) 3.262

100 (0,1) 3.211

(b)

N Optimal (m1,m2) Optimal MACS

5 (0,1) 15.683

6 (0,1) 11.438

10 (0,1) 7.388

20 (0,1) 5.913

50 (0,1) 5.320

100 (0,1) 5.154

The optimisation algorithm was quite unstable, with the false points causing nu-

meric errors in calculations. However, with a stable choice of initial points (m1,m2) =

(0, 0.5), all cases converged exactly to the optimal point which was given as (0, 1) for

all chosen N , and corresponds to the (m1,m2) of the D optimal design. Hence we may

conclude that the optimal AW and MACS continuous designs, for 95 percent Scheffé

type and constant width type bands over [−1, 1] are D optimal, up to a specific value

of N . We performed the same analysis for differing values of α, such as 0.01 and 0.1
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and gave the exact same conclusions. Resultantly, the numeric approach infers that the

values of both α and N do not affect the optimal design, we may therefore, tentatively,

offer this analysis as a full proof of the optimal design. In particular, any analytical

optimal must, with almost certainty, be D-optimal.

3.3.5 Optimal Designs Over [2, 5]

For a design over support [2, 5] the limitations of the numeric analysis causes significant

problems. Despite a clear correlation that the criterion function values are smaller as the

determinant increases, in this case, the point that minimises the criteria was not that

with the largest determinant. Once again, the optimality criteria do not monotonically

decrease with increasing determinant, and so in this case the analysis has been more

strongly influenced by false design points. Hence, evidence of the best design being D

optimal is less compelling than over [−1, 1]. Applying an optimisation algorithm in the

same way as before gave the following results, with initial point (m1,m2) = (3, 10).

Table 3.3: Numeric AW and MACS Optimal Designs For 95 Percent Scheffé type bands
over [2, 5]

(a)

N Optimal (m1,m2) Optimal AW

5 (2.808,25) 3.845

6 (2.855,25) 3.308

10 (2.931,25) 2.693

20 (2.971,25) 2.428

50 (2.991,25) 2.312

100 (2.996,25) 2.279

(b)

N Optimal (m1,m2) Optimal MACS

5 (2.427,25) 21.009

6 (2.477,25) 15.578

10 (2.556,25) 10.349

20 (2.597,25) 8.426

50 (2.618,25) 7.648

100 (2.624,25) 7.430

Table 3.4: Numeric AW and MACS Optimal Designs For 95 Percent Constant Width
type bands over [2, 5]

(a)

N Optimal (m1,m2) Optimal AW

5 (2.785,25) 3.992

6 (2.838,25) 3.436

10 (2.919,25) 2.798

20 (2.962,25) 2.523

50 (2.982,25) 2.402

100 (2.988,25) 2.368

(b)

N Optimal (m1,m2) Optimal MACS

5 (2.785,25) 5.312

6 (2.838,25) 3.935

10 (2.919,25) 2.609

20 (2.962,25) 2.121

50 (2.982,25) 1.924

100 (2.988.25) 1.869

Note that it can be shown that D optimality is invariant under linear transformation

of the support (see Kotz and Johnson (1992)) and therefore, for any support [a,A], the

D optimal design for simple linear regression always assigns weight p = 0.5 at the end

points of the design range, a and A. In this case, the optimal value of m2 was always
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at 25 which as previously shown, is only possible for the special case of a design with

one point x1 = 5 and p1 = 1, that is when m1 = 5. Hence none of the optimal points

found represent any real design.

To investigate, we performed the same search to various other design ranges, and

found that we could converge to a ”real” optimal (m1,m2) only when the support was

symmetric around zero, that is when of the form [−A,A]. This point was always D

optimal. For every case, the optimal value of m2 was at its maximum, and in fact, the

criterion function seems to always decrease as m2 gets larger. It is therefore likely that

the search algorithm is favouring points with the maximum value of m2, which would

suggest the method is unsuitable for non symmetric supports. For symmetric supports,

multiple designs can attain the maximum value of m2, with one of these happening to

be D optimal. This is not the case for non symmetric supports however, with only one

special design, with one support point, hitting the maximal m2. This cannot reasonably

be an optimal design. Hence any search algorithm will, with near certainty, converge

to false points with a a non symmetric support. A different approach is needed in this

instance.

3.3.6 Optimal End Point Designs For Non Symmetric Supports

We may consider a simpler approach for designs with support not symmetric around

the origin. In this section, we search for the optimal end point design, that is a design

with two fixed support points at the end points of the design range, with some weights

p, and 1− p as follows

η =

{
a A

p 1− p

}
.

This is a design of similar type to the D optimal design, where the support points also

lie at the ends of the design range with p = 0.5. This would not constitute a formal

proof of the optimal design, however if these end point designs can be shown to be D

optimal, it would strengthen the limited evidence of the previous section that optimal

designs, with non symmetric support are also D optimal. Note that with designs of

this type, m1 and m2 become ap + A(1 − p) and pa2 + (1 − p)A2 respectively. Hence

the problem reduces to a one dimensional search in terms of 0 ≤ p ≤ 1, which requires

only a minor change to the algorithms used in the previous analyses. A numeric search

is performed for a non symmetric support [2, 5], for select N , at α = 0.05 with initial

point p = 0.1. This gave the following results with the code titles given in the appendix.
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Table 3.5: AW and MACS Optimal End Point Designs For 95 Percent Scheffé type
bands over [2, 5]

(a)

N Optimal p Optimal AW

5 0.5 4.789

6 0.5 4.088

10 0.5 3.283

20 0.5 2.936

50 0.5 2.784

100 0.5 2.740

(b)

N Optimal p Optimal MACS

5 0.5 41.447

6 0.5 30.203

10 0.5 19.480

20 0.5 15.576

50 0.5 14.006

100 0.5 13.568

Table 3.6: AW and MACS Optimal End Point Designs For 95 Percent Constant Width
type bands over [2, 5]

(a)

N Optimal p Optimal AW

5 0.5 5.60

6 0.5 4.782

10 0.5 3.844

20 0.5 3.434

50 0.5 3.261

100 0.5 3.211

(b)

N Optimal p Optimal MACS

5 0.5 10.455

6 0.5 7.625

10 0.5 4.925

20 0.5 3.942

50 0.5 3.546

100 0.5 3.436

Tables 3.5 and 3.6 show that the optimal value of p in all cases is at 0.5, that

is the optimal end point designs up to some N are always D-optimal. The criterion

function values are larger than those given by the ”false” optimal designs in Tables 3.3

and 3.4, but the difference is relatively small, being between only 2 − 3 units larger

for the AW, and around 5 − 20 units larger for the MACS criterion. The response

surface investigation suggests these designs would be among those with the smallest

criterion function value. This adds additional weight to the best designs d=being D

optimal,however the best chance of a full proof of the optimal non symmetric design

remains an analytical approach. A natural extension of this work is to consider the

best design supported by any two design points, x1 and x2 over [a,A], which constitutes

the optimal minimally supported design (see Lin and Chang (2007)), but is not

considered here.

3.4 An Analytical Approach To Optimal Designs For Si-

multaneous Confidence Bands

Based on the numeric evidence, it is sensible to try and analytically show that the

optimal design under AW or MACS is also D optimal. This is attempted in this section

applying the method of calculus of variations as found in Silvey (1980). A summary of
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this work is given, and we show how to manipulate each problem into a format such

that these methods may be applied. However a full analytical proof is not given and

the difficulties discussed.

3.4.1 Preliminary Theory

A continuous design η may be viewed as a probability distribution on some random

variable x̃, where x̃ takes value xi, with probability pi, through the probability mass

function

fx̃(x) =





p1, x = x1

p2, x = x2

· · · , · · ·
pn, x = xn.

We may then define the set of all continuous designs over the support [a,A] as the set

of all probability distributions on x̃ over [a,A]

H[a,A] = {η : xi ∈ [a,A] , i ∈ 1, . . . , n}.

If we now consider the random matrix

x̃x̃ᵀ =

(
1

x̃

)
(1, x̃) =

(
1 x̃

x̃ x̃2

)
,

it is clear that

M{η} = E{x̃x̃ᵀ}

as

E{x̃} =
n∑

i=1

pixi and E{x̃2} =
n∑

i=1

pix
2
i .

We may then define

M[a,A] = {M{η} = E{x̃x̃ᵀ} : η ∈ H[a,A]}

as the set of all continuous information matrices for designs over the design range [a,A].

This framework carries an advantage that the set M[a,A] is a convex set, (see Silvey

(1980)). That is, for two elements M1,M2 ∈M[a,A] and λ ∈ [0, 1], (1− λ)M1 + λM2 ∈
M[a,A]. Searching for an optimal design over support [a,A] is therefore reduced to

searching over the set M[a,A].

Now define a functional Ψ(M{η}) as the criterion function acting on the continuous

information matrices M{η} ∈ M[a,A], and define ψ = −Ψ. To minimise Ψ, it is

sufficient to maximise ψ, hence we say that a design η∗ is optimal over the set H[a,A]

if it’s corresponding information matrix M{η∗} is such that

maxM{η}∈M[a,A]
ψ(M{η}) = ψ(M{η∗}).

56



It is assumed that ψ satisfies two properties.

1. ψ is a strictly increasing functions of the information matrices, that is forM1,M2 ∈
M[a,A], if M1−M2 is a non negative definite matrix (in the sense that M1−M2 ≥
0) then

ψ(M1) ≥ ψ(M2).

2. ψ is concave on M[a,A], that is for any 0 ≤ λ ≤ 1 and M1,M2 ∈M[a,A] we have

ψ(λM1 + (1− λ)M2) ≥ λψ(M1) + (1− λ)ψ(M2).

We define two generalised directional derivatives. The Gâteaux derivative is directly

analogous to a directional derivative for ψ. The Gâteaux directional derivative at the

matrix M1, in the direction of M2 is

Gψ{M1,M2} = limε→0+
1

ε
[ψ{M1 + εM2} − ψ{M1}] .

The Fréchet derivative is more specialised, and is given as

Fψ{M1,M2} = limε→0+
1

ε
[ψ{(1− ε)M1 + εM2} − ψ{M1}] .

It is easy to see that

Fψ{M1,M2} =limε→0+
1

ε
[ψ{(1− ε)M1 + εM2} − ψ{M1}]

=limε→0+
1

ε
[ψ{(M1 + ε(M2 −M1)} − ψ{M1}] = Gψ{M1,M2 −M1},

hence the Fréchet derivative exists as long as the Gâteaux derivative does. The max-

imisation of ψ then relies on the following theorem.

Theorem 3.2. If ψ is a strictly increasing and concave function onM[a,A], then M{η∗}
is optimal over M[a,A] if, and only if Fψ{M{η∗},xxᵀ} ≤ 0 ∀ x ∈ [a,A], provided that

Gψ{M{η∗},xxᵀ} always exists.

It is then immediate that η∗ must be the optimal design over H[a,A] for Ψ.

3.4.2 Framework for Analytical Proof

The primary difficulty in applying Theorem 3.2 to the AW or MACS criteria again lies

in the complicated relationship between the critical constant c, and M{η}, as a result

of the simultaneous coverage probability expressions. Suppose we take constant width

bands, each problem takes the the general form

MinM{η}∈M[a,A]
Ψ(M{η}, c)

w.r.t

∫ r(M{η})

q(M{η})
T (θ,M{η}, c) dθ +

∫ u(M{η})

l(M{η})
S(θ,M{η}, c) dθ = 1− α.

57



Note that Ψ(M{η}, c) is deliberately labeled to note that we cannot represent c directly

as a function of M{η}, and in this form, we cannot apply Theorem 3.2. It is easier to

consider the dual problem,

MaxM{η}∈M[a,A]

∫ r(M{η})

q(M{η})
T (θ,M{η}, c) dθ +

∫ u(M{η})

l(M{η})
S(θ,M{η}, c) dθ

w.r.t Ψ(M{η}, c) = K

where K is some constant. Noting that c is a multiplicative constant under the AW or

MACS criteria, we may easily set the dual constraint as a function directly of c, that is

c = KΨ−1(M{η}).

We can then immediately substitute in for c for the dual objective function and we get

MaxM{η}∈M[a,A]

∫ r(M{η})

q(M{η})
T (θ,M{η},KΨ−1(M{η})) dθ

+

∫ u(M{η})

l(M{η})
S(θ,M{η},KΨ−1(M{η})) dθ.

Intuitively the problem can be viewed as maximising the simultaneous coverage prob-

ability of the confidence band, given a fixed AW or area of confidence set, which are

used to get an expression for c directly in terms of the information matrix. This gives

a single expression one must maximise to obtain η∗, which we may set to ψ and then

apply theorem 3.2. For example, the the dual problem for a constant width band under

the AW is

MaxM{η}∈M[a,A]

1

π

∫ ξ1

η1−π

(
1−

(
1 +

c21
(N − 2)cos2θ

)−N−2
2

)
dθ

+

∫ η1−φ

ξ1−φ

(
1−

(
1 +

c22
(N − 2)cos2θ

)−N−2
2

)
dθ

w.r.t c = K.

It is then immediate that this is equivalent to solving

MaxM{η}∈M[a,A]

∫
ξ1

η1−π




1−




1 +
K2

(1, A)(M{η})−1
(

1

A

)
(N − 2)cos2θ




−N−2
2




dθ

+

∫
η1−φ

ξ1−φ




1−




1 +
K2

(1, a)(M{η})−1
(

1

a

)
(N − 2)cos2θ




−N−2
2




dθ
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using the relation between c1, c2 and c for a constant width band. Even with the sim-

plification the simultaneous coverage probability expressions are complicated functions

of the information matrix. For example, once c is expressed as a function of M{η},
the Gâteaux derivative for

∫ u(M{η})
l(M{η}) S(θ,M{η}) dθ is

G∫ u(M{η})
l(M{η}) S(θ,M{η}) dθ{M1,M2} = limε→0+

1

ε

∫ u(M1+εM2)

l(M1+εM2)
S(θ,M1 + εM2) dθ

−
∫ u(M1)

l(M1)
S(θ,M1) dθ,

and cannot be easily evaluated. The term inside the limit can be simplified as

∫ u(M1+εM2)

l(M1+εM2)
S(θ,M1 + εM2) dθ −

∫ u(M1)

l(M1)
S(θ,M1) dθ

=

∫ u(M1+εM2)

l(M1+εM2)
{S(θ,M1 + εM2)− S(θ,M1)} dθ +

∫ u(M1+εM2)

l(M1+εM2)
S(θ,M1) dθ

−
∫ u(M1)

l(M1)
S(θ,M1) dθ

=

∫ u(M1+εM2)

l(M1+εM2)
{S(θ,M1 + εM2)− S(θ,M1)} dθ

+

(∫ u(M1)

l(M1+εM2)
S(θ,M1) dθ +

∫ u(M1+εM2)

u(M1)
S(θ,M1) dθ

)

−
(∫ l(M1+εM2)

l(M1)
S(θ,M1) dθ +

∫ u(M1)

l(M1+εM2)
S(θ,M1) dθ

)

=

∫ u(M1+εM2)

l(M1+εM2)
{S(θ,M1 + εM2)− S(θ,M1)} dθ

+

∫ u(M1+εM2)

u(M1)
S(θ,M1) dθ −

∫ l(M1+εM2)

l(M1)
S(θ,M1) dθ,

since for sufficiently small ε, we can write l(M1) < l(M1+εM2) < u(M1) < u(M1+εM2).

The Gâteaux derivative hence involves three expressions, it is clear that, for the first

term

limε→0+

∫ u(M1+εM2)

l(M1+εM2)

1

ε
{S(θ,M1 + εM2)− S(θ,M1)} dθ

=

∫ u(M1)

l(M1)
GS(θ,M{η}){M1,M2}dθ.

Applying the first mean value mean value theorem for integrals to the final two terms

gives ∫ u(M1+εM2)

u(M1)
S(θ,M1) dθ = (u(M1 + εM2)− u(M1))S(s,M1),
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for some real value s ∈ (u(M1), u(M1 + εM2)). Clearly as ε → 0+, s → u(M1) this is

expressed as

limε→0+
1

ε
{(u(M1 + εM2)− u(M1))S(c,M1)} = Gu(M{η}){M1,M2}S(u(M1),M1).

Hence the full derivative is given as

G∫ u(M{η})
l(M{η}) S(θ,M{η}) dθ{M1,M2} =

∫ u(M1)

l(M1)
GS(θ,M{η}){M1,M2}dθ

+Gu(M{η}){M1,M2} S(u(M1),M1)−Gl(M{η}){M1,M2} S(l(M1),M1).

Clearly, the dual function will always consist of at least one integral of the form above,

hence we always require the evaluation of at least three separate Gâteaux derivatives,

of which is a significant challenge given its complicated nature. We found little or no

cancellation of terms in our efforts, which does not even consider an attempt to further

show the concavity of the function, or that it is strictly increasing. A proof of this

manner may be possible, but very difficult.

3.5 Concluding Remarks

The work of the Chapter obtains for the first time, results for the optimal design

of experiments for Scheffé type and constant width type bands over a finite interval,

not specific to a particular dataset. However the work has more limitations than was

intended, and presents new problems for further work.

For bands considered over the normalised covariate range x ∈ [−1, 1], numeric

analysis, for which the response surface may be constrained over intervals, found that,

conditioned on a value of N and α, the optimal continuous design for both bands was

D-optimal. This was the case for both MACS, and of particular note, AW criteria. The

analysis suggests that the optimal design is the same for any chosen N or α, from which

we may deduce that the analytical solution is almost certainly D-optimal. However this

method is limited by its search area being flawed, and was not, in its current state,

appropriate to obtain the optimal design over any non symmetric support.

Work has also been developed for the first time on obtaining an analytical optimal

design, using the method of calculus of variations. The relevant criterion functions were

manipulated into a correct form, but an analytic proof remains unfulfilled. Further work

into the analytical optimal designs, building on these functions is necessary.
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Chapter 4

An Improvement To

Simultaneous Confidence Sets

For Several Effective Doses

For the second part of the thesis we construct one and two sided simultaneous confi-

dence sets on the effective doses of the logistic regression model. This is achieved by

developing an adaption of an existing method, involving the construction of simulta-

neous confidence bands. These sets are shown to be less conservative than the current

methodology. This method is immediately applicable to any GLM under an asymp-

totically normal MLE, with a band of the form in section 1.5, and some link function

b(µ(x)). However, logistic regression has seen wide applications to medical and bio-

logical statistics over the years, a point noted early on by Finney (1971). It is a key

statistical tool in quantitative risk and hazard assessment, (Piegorsch and West (2005))

and in cohort and clinical trial studies assessing drug dose response curves Carter et al.

(1986), for which the Effective Dose (ED) is a particularly important construct. The

following work would have most impact, and is hence established, under the assumption

of a logistic regression model.

4.1 Introduction

4.1.1 The Effective Dose

Recall that the effective dose is defined as the value of the covariate(s) required to elicit

a specific probability of response, p, in the true regression model, or equivalently the

stimulus required to observe a response in a fixed proportion of the population. For

some p, the effective dose is defined as ED100p , which we term xp, and is defined as

xp =

{
x : xᵀβ = π(p) = log

(
p

1− p

)}
=

{
x :

exp (xᵀβ)

1 + exp (xᵀβ)
= p

}
. (4.1)
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For a single covariate (q = 1), the ED is a single point often viewed as the ratio

xp =
π(p)− β0

β1
(4.2)

with the most well known effective dose the ED50, that is x0.5. This represents the

point at which the odds p
1−p of observing a success is equal to 1. As π(0.5) = 0, the

ED50 can be simplified to

x0.5 =
−β0
β1

which is perhaps the most recognisable form of an effective dose. For a multiple co-

variate model (q > 1), Equation (4.1) is the multivariate effective dose (MED) and is

a surface, consisting of the set of x = (x1, . . . , xq) which satisfies the equation. This

can be a challenging construct, and in response Li et al. (2008) considered the MED

for a single xi, conditioned on values of the remaining q − 1 covariates. This is the

Conditioning Effective Dose (CED) and is given as

xCEDp =

{
x∗ = (x1, x

∗
2, . . . , x

∗
q) : x∗ᵀβ = π(p) = log

(
p

1− p

)}
.

Point estimation of the ED can be achieved by plugging in the MLE. It is of greater

interest, however, to establish a confidence region around the true ED’s.

4.1.2 Confidence Sets For A Single Effective Dose

The most well known methods to establish a confidence set for one ED are the Fieller

and Delta methods of Fieller (1954) and Cox (1990) respectively, which rely on separate

approximations of the variance of the ED, viewed as the ratio in Equation (4.2). Other

popular methods include the likelihood ratio method, as well as bootstrap and MCMC

numeric algorithms. These are widely used in particular for one covariate models, but

may be applied in a multiple covariate setting and, can be easily adapted for the CED,

as shown in Li et al. (2008). However, these methods are an aside to the current topic

as none can be suitably adapted to account for the Bonferroni correction of multiple

comparisons. Hence we refer to the following method. For the large sample logistic

regression model, recall from Equation (1.20) that for a specific value of x

xᵀ(β̂ − β)
d≈N (0,xᵀJ−1x)

=⇒ xᵀ(β̂ − β)√
x∗ᵀJ−1x∗

d≈N (0, 1).

It is then immediate that an approximate 1− α confidence interval on β is given as

P

{
|xᵀ(β̂ − β)|√
xᵀJ−1x

< z
α
2

}
≈ 1− α (4.3)

for any fixed q dimensional value of x, with z
α
2 the (1− α

2 )’th quantile of the standard

normal distribution. Using this result, we consider the following confidence set on an
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unknown x with a specific value of p

Cp =
{
x : π(p) ∈ xᵀβ̂ ± z

α
2

√
xᵀJ−1x

}
=

{
x :
|xᵀβ̂ − π(p)|√
xᵀJ−1x

< z
α
2

}
. (4.4)

We then see that this set constitutes an approximate 1−α confidence set for the EDp,

that is xp, as

P {xp ∈ Cp} =P




|xpᵀβ̂ − π(p)|√
xpᵀJ

−1xp

< z
α
2





=P




|xpᵀ(β̂ − β)|√
xpᵀJ

−1xp

< z
α
2



 ≈ 1− α.

This is since xᵀ
pβ = π(p), with xp = (1, xp)

ᵀ, by the logistic regression model. Note that

the term inside Cp is a Scheffé type confidence band over the whole range with c = z
α
2 .

By definition, the coverage coverage probability of this band at any single point on x is

1−α. This is known as a point wise confidence band. We may therefore interpret Cp

as the bounds on a region of the inverse dose response curve, which contains all such x,

that the bounds of the 1−α point-wise Scheffé type confidence band at x, includes π(p).

By definition of the confidence band, any point on this region is a plausible candidate

for xp with confidence level 1− α, illustrated in Figure 4.1 below.

10 15 20 25 30 35

0.
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0.
6
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Logistic Confidence Band

mpg

p

C0.5

Figure 4.1: An illustration of the Scheffé band method for the ED50 of the ”mtcars”
dataset.
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We term this the Scheffé band method. It can be shown (see Li et al. (2008)),

that applying this method to a point wise Scheffé type confidence band is equivalent

to Fiellers theorem. It is however more intuitive, and can be immediately applied to

the Multivariate or Conditional effective doses. Most of all, the Scheffé Band method

is easily adaptable to multiple comparisons simply by changing the critical constant of

the band c, which is the focus of this Chapter.

4.1.3 Simultaneous Confidence Sets For Several Effective Doses

For simultaneous inference on the effective dose, the methods of Brand et al. (1973)

and Walter (1983) invert the bounds of a Scheffé type simultaneous confidence band

over the whole real line, at particular values of π(p) (or equivalently p). Formally we

define this confidence set as

Cp =
{
x : π(p) ∈ xᵀβ̂ ±

√
χαq+1

√
xᵀJ−1x

}
=

{
x :
|xᵀβ̂ − π(p)|√
xᵀJ−1x

<
√
χαq+1

}
. (4.5)

Like before, Cp contains all such x that the Scheffé type simultaneous confidence band

at x includes π(p). In this case, however, it can be shown that the simultaneous coverage

probability of any k effective doses xpi , lying in the corresponding Cpi , for i = 1, . . . , k

is at least 1− α in the following way:

P {xpi ∈ Cpi for i = 1, . . . , k}

=P




|(xpi)ᵀβ̂ − π(pi)|√

(xpi)
ᵀJ−1xpi

<
√
χαq+1 for i = 1, . . . , k





≥P




|(xp)ᵀ(β̂ − β)|√

(xp)ᵀJ−1xp

<
√
χαq+1 ∀p ∈ (0, 1)



 (4.6)

=P




|xᵀ(β̂ − β)|√

(x)ᵀJ−1x
<
√
χαq+1 ∀x ∈ Rq



 (4.7)

=P
{
xᵀβ ∈ xᵀβ̂ ±

√
χαq+1

√
xᵀJ−1x ∀ x ∈ Rq

}
= 1− α.

The inequality in (4.6) occurs since xpi
ᵀβ = π(pi), and the inequality in (4.7) is formed

because the set of all effective doses is the same as the set of all x ∈ Rp. Consequently

we must have

P {xpi ∈ Cpi for i = 1, . . . , k} ≥ 1− α.

Note that just as in the case for one ED, in practice, the coverage probability of any

set of this form is approximate, based on the accuracy of the large sample probability

distribution of β̂ to the normal. We assume for the simplicity of mathematical labelling

in this thesis that the approximation is close enough to be considered exact. Nonethe-

less, this is a powerful method. We are guaranteed at least the nominal simultaneous

coverage 1−α regardless of the choice of k. However these confidence sets are unduly
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conservative in terms of simultaneous coverage, particularly when k is small. From the

expression in (4.6), we see that exact simultaneous coverage is only possible when sets

are sought for every effective dose at once, that is for all p ∈ (0, 1). The smaller the

k, the larger this inequality tends to be, and thus the more conservative it is. Many

papers utilising this method, such as Piegorsch and West (2005) note this problem. A

simulation study conducted in Li et al. (2008) in particular showed that, for small a k,

coverage sometimes reached nearly100%.

4.1.4 Methodology for Improved Simultaneous Confidence Sets

Applying the scheffé band method to the point-wise or simultaneous confidence band

represent two extremes. In this thesis, we develop the following adaptation to address

this problem. The simultaneous coverage of any set of the form Cp is determined by

the critical constant of the band, hence we establish simultaneous confidence sets of

the same form as in (4.5), but with a general critical constant c;

Cp =

{
x :
|xᵀβ̂ − π(p)|√
xᵀJ−1x

< c

}
, (4.8)

where c is specifically set, so that at least the nominal simultaneous coverage 1− α is

guaranteed for a specific number, k, of effective doses at once, that is

P {xpi ∈ Cpi for i = 1, . . . , k} ≥ 1− α. (4.9)

In summary, we replace a single confidence set applicable to any value of k, with a

series of specialised sets for each k. The methods derived in the following sections all

hinge on the following methodology. To establish the required c, it is sufficient to find

the k effective doses −∞ < xp1 , . . . , xpk < ∞ that minimise the probability in (4.9),

for any value of β ∈ Rq+1 or c > 0, that is

min
−∞<xp1 ,...,xpk<∞

P {xpi ∈ Cpi for i = 1, . . . , k} ∀β ∈ Rq+1 and ∀c > 0.

If the value of c is then set to satisfy

min
−∞<xp1 ,...,xpk<∞

P {xpi ∈ Cpi for i = 1, . . . , k} = 1− α

then Equation (4.9) must also be satisfied. Sets of this form are guaranteed, by design,

to exhibit closer to nominal simultaneous coverage than the existing methods. For the

case k = 2, the methods developed can be applied to the CED for a multiple model.

For k ≥ 3, our results are restricted to a univariate model with q = 1.
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4.2 Two Sided Simultaneous Confidence Sets For Several

Effective Doses

We first apply the methodology of Section 4.1.4 to establish two sided simultaneous

confidence sets for specific numbers of effective doses.

4.2.1 Simultaneous Confidence Sets For Two Effective Doses

We begin with the simplest situation, to construct a confidence set of the form in (4.8)

for k = 2. In this case, c is chosen such that for any two effective doses xp1 and xp2 we

have

P {xpi ∈ Cpi for i = 1, 2} ≥ 1− α. (4.10)

The value of c is set to satisfy

min
−∞<xp1 ,xp2<∞

P {xpi ∈ Cpi for i = 1, 2} = 1− α.

Note that

P {xpi ∈ Cpi for i = 1, 2} = P




|(xp)ᵀ(β̂ − β)|√

(xp)ᵀJ−1xp

< c i = 1, 2



 = P {|Zi| < c i = 1, 2}

where Zi =
(xpi )

ᵀ(β̂−β)√
(xpi )

ᵀJ−1xpi
is a standard normal variable due to (1.20). We then appeal

to Sidaks Inequality (cf. Hsu (1996)) which states that for any n values of Zi and ci

P {|Zi| < ci for i = 1, . . . , n} ≥
n∏

i=1

P {|Zi| < ci} .

It is then immediate that

min
−∞<xp1 ,xp2<∞

P {xpi ∈ Cpi for i = 1, 2} = (P {|Zi| < c})2 ,

provided there exists xp1 and xp2 for which Sidaks lower bound is reached. By the

principles of the normal distribution this must occur when Z1 and Z2 are independent

random variables, that is when

Cov(Z1,Z2) = Cov


 (xp1)ᵀ(β̂ − β)√

(xp1)ᵀJ−1xp1

,
(xp2)ᵀ(β̂ − β)√
(xp2)ᵀJ−1xp2




=
xᵀ
p1Cov(β̂, β̂)xp2√

(xp1)ᵀJ−1xp1

√
(xp2)ᵀJ−1xp2

=
xᵀ
p1J
−1xp2√

(xp1)ᵀJ−1xp1

√
(xp2)ᵀJ−1xp2

= 0
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i.e when xᵀ
p1J
−1xp2 = 0. Since we allow the effective doses xp1 and xp2 to lie over the

whole real space, there must exist xp1 and xp2 such that xᵀ
p1J
−1xp2 = 0, and as such

the lower bound can be reached. Therefore, c is set to satisfy,

{P {|Zi| < c}}2 = 1− α

and so

c = z
α2
2 = z

1−
√
1−α
2 ,

where (zβ) represents the 1−β’th quantile of the standard normal distribution. We note

that this method applies for any two effective doses for a univariate model, and for any

two CED’s for multiple covariates, which offers significant utility. As the MED is a set,

establishing a confidence bound would be a significantly different challenge. Clearly, for

an equivalent model, a smaller c generates a more tightly bounded confidence set, hence

this method is a clear improvement. Noting that c is independent of the design, for

q = 1 and α = 0.05, the confidence set of the original Scheffé band method of Section

4.1.3 sets c at 2.44, whilst this new confidence set has c = 2.236477, or approximately

2.24.

4.2.2 Simultaneous Confidence Sets For Three Effective Doses

We construct confidence sets of the the same form as in (4.8) for a univariate logistic

model (q = 1), where now c is chosen so that for k = 3.

P {xpi ∈ Cpi for i = 1, 2, 3} ≥ 1− α.

Once again c is set to satisfy

min
−∞<xp1 ,xp1 ,xp3<∞

P {xpi ∈ Cpi for i = 1, 2, 3} = 1− α. (4.11)

We note that the method for k = 2 relies on the independence of Zk. It is not possible

however to achieve this for k ≥ 3. Hence we consider a different method, specific to a

one covariate model. Recall that we may write

P {xpi ∈ Cpi for i = 1, 2, 3}

=P




|xᵀ
pi(β̂ − β)|√
xᵀ
piJ
−1xpi

< c for i = 1, 2, 3





=P





∣∣∣∣∣

{
P

(
1

xpi

)}ᵀ

N

∣∣∣∣∣
∥∥∥∥∥P

(
1

xpi

)∥∥∥∥∥

< c for i = 1, 2, 3





=P{N ∈ V(xp) for i = 1, 2, 3}
=P{N ∈ V3}

67



where N is a standard bivariate normal random vector, and

V(xp) =




N :

∣∣∣∣∣

{
P

(
1

xp

)}ᵀ

N

∣∣∣∣∣
∥∥∥∥∥P

(
1

xp

)∥∥∥∥∥

< c





is the region given in the N-plane by the stripe bounded by the two parallel lines that

are perpendicular to the directional vector P

(
1

xp

)
= Pxp, and c distance from the

origin, and V3 = ∩3i=1V(xpi). This is an analogous concept to the striped regions found

in Sections 2.2.2 and 2.3 on the T plane, and as such V3 is a 6 sided polygonal region,

with its shape determined by the three effective doses via the directions Px1, Px2 and

Px3, depicted in Figure 4.2.

n1

n2

P

(
1

xλ1

)

P

(
1

xλ2

)

P

(
1

xλ3

)

c

c

c

θ1
θ2

θ3

Figure 4.2: The region V3

We make the following observations on V3.

1. Just like the similar construct R3,2, V3 is rotation invariant around the origin,

furthermore the ordering of the directions Pxi is arbitrary. Hence we can assume

without loss of generality that V3 always takes shape as in Figure 4.2.

2. The probability of N in V3 depends on the effective doses through the angles be-

tween the three directions, θ1 and θ3 as in Figure 4.2. To minimise the expression
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in (4.11), it is sufficient to minimise P{N ∈ V3} with respect to θ1 and θ3.

3. If −∞ < xp1 , xp1 , xp3 < ∞, it is easy to see that the largest angle between any

two directions is π, hence we have 0 < θ1 < θ3 ≤ π.

From Figure 4.3 below, it is clear P {N ∈ V3} can be expressed as the probability of

N in the parallelogram region ABCD, which is clearly given by the intersection of the

sets V(xp1)∩V(xp3), less the probability of N lying in the grey shaded region. The grey

shaded region is given by P{N ∈ V(xp1) ∩ V(xp3) ∩ Vc(xp2)} where

Vc(xp) =




N :

∣∣∣∣∣

{
P

(
1

xp

)}ᵀ

N

∣∣∣∣∣
∥∥∥∥∥P

(
1

xp

)∥∥∥∥∥

> c





is the compliment set of V(xp).

n1

n2

P

(
1

xλ1

)

P

(
1

xλ2

)

P

(
1

xλ3

)

c

c

c

θ1
θ2

θ3

A B

CD

Figure 4.3: An alternative expression of the region V3

We first derive an expression for the probability of N in the parallelogram ABCD,

in a way similar to Section 2.3 of Liu (2011), and section 2.3 of the thesis. The par-

allelogram ABCD is depicted in Figure 4.4 after rotation so that two sides of the

parallelogram are perpendicular to the n1 axis with additional angles of interest.
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n1

n2

P

(
1

xλ1

)

P

(
1

xλ3

)θ3

A

B

C

D

ξ1
ξ2

[ξ2 − π, ξ1]
[ξ1, ξ2]

c

c

Figure 4.4: The parallelogram region with vertices ABCD.

It is clear that the problem is equivalent to the calculation of the probability of

T in R3,2 in Section 2.3, but on the N plane. The two additional angles ξ1 and ξ2,

correspond to the angles ξ1 and η1 in Section 2.3, and are given as

ξ1 = arcsin

(
c− ccos(θ3)√

c2 + c2 − 2c2cos(θ3)

)

ξ2 = arccos

(
−csin(θ3)√

c2 + c2 + 2c2cos(θ3)

)
.

Note that the parallelogram ABCD is in fact a diamond, hence it is straightforward to

show that

ξ1 =
θ3
2

and ξ2 =
π + θ3

2
.

It then follows directly from the same method of section 2.3, and the preliminaries of

section 2.1 in particular the distribution FRN (x), that

P(N ∈ ABCD)

=
1

π

{∫ ξ1

ξ2−π

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ ξ2−θ3

ξ1−θ3

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

=
1

π

{∫ θ3
2

θ3−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ π−θ3
2

− θ3
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}
.

(4.12)

To calculate the probability of N in the grey shaded region, we refer to Figure 4.5, an

enlargement of the top right section of Figure 4.3, with additional details on required
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angles. The distances l1 and l2 are the distances in the n1 axis from the origin and l3

is the distance in the n2 axis from the origin.

P

(
1
xλ1

)

P

(
1
xλ2

)

P

(
1
xλ3

)

n1

n2

θ1
θ3

θ3 − π
2

π − θ3

l1 l2

l3

c

c

a1

b

a2
c

π − θ3

π
2 − θ1

Figure 4.5: An enlargement of the shaded region of Figure 4.3.

It is clear that the upper grey region is bounded by three straight lines, line a2, line

b and line n2 = c. Since line a2 passes through the point (ccos(π2 − θ1), csin(π2 − θ1))
and is perpendicular to the vector (cos(π2 − θ1), sin(π2 − θ1)), its equation is given by

[
(n1, n2)−

(
ccos(

π

2
− θ1), csin(

π

2
− θ1)

)] [
cos(

π

2
− θ1), sin(

π

2
− θ1)

]ᵀ
= 0,

which simplifies to

n1 = −n2cot(θ1) +
c

sin(θ1)
.

Similarly, line b passes through the point (ccos(θ3 − π
2 ),−csin(θ3 − π

2 )) and is perpen-

dicular to (cos(θ3 − π
2 ),−sin(θ3 − π

2 )) and so its equation is given by

n1 = −n2cot(θ3) +
c

sin(θ3)
.

Now, l3 is simply the n2 coordinate of the intersection of a2 and b, and can be solved

from

−l3cot(θ3) +
c

sin(θ3)
= −l3cot(θ1) +

c

sin(θ1)
.
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This gives

l3 =
c(sin(θ3)− sin(θ1))

sin(θ3 − θ1)
.

It follows therefore that

P{N ∈ Grey Shaded Region}

=2

∫ c

c(sin(θ3)−sin(θ1))
sin(θ3−θ1)

∫ −n2cot(θ3)+
c

sin(θ3)

−n2cot(θ1)+
c

sin(θ1)

φ(n1)φ(n2)dn1dn2

=2

∫ c

l3

φ(n2)

[
Φ

(
−n2cot(θ3) +

c

sin(θ3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2. (4.13)

We therefore must have

P{N ∈ V3}

=
1

π

{∫ ξ1

ξ2−π

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ ξ2−θ3

ξ1−θ3

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

− 2

∫ c

l3

φ(n2)

[
Φ

(
−n2cot(θ3) +

c

sin(θ3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2. (4.14)

Minimising the equation in (4.11) has therefore been reduced to minimising Equation

(4.14) with respect to 0 < θ1 < θ3 ≤ π. This is given by the following theorem.

Theorem 4.1. Expression (4.14), and consequently P{N ∈ V3} is minimised at θ1 = π
3

and θ3 = 2π
3

The proof of this Theorem hinges on the following Theorem below.

Theorem 4.2. For given 0 < θ∗3 ≤ π, the probability 4.14 is minimised with respect to

θ1 ∈ (0, θ3), when θ1 =
θ∗3
2 .

Proof Of Theorem 4.2

Note that the probability of N lying in the parallelogram ABCD depends on θ3, but

not θ1. As a result, with a fixed value of θ3, Equation (4.14) varies only with the

probability of lying in the grey shaded region. It is therefore clear that minimising 4.14

with respect to θ1, given θ3 fixed at some θ∗3, is equivalent to maximising the probability

of N lying in the grey shaded region, that is

Maximise
0<θ1<θ3=θ∗3

{∫ c

l3

φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2

}
.

(4.15)

Hence, Theorem 4.2 is proven if it can be established that θ1 =
θ∗3
2 is a stationary point

of of the expression in (4.15), and is a maximum, which is immediately given by the

following two Sublemmas.
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Sublemma 4.1. We have

d

dθ1

{∫ c

l3

φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2

}

=
1√
2π

exp

{
−c

2

2

}
φ
(
c− ccos(θ1)
sin(θ1)

)
− φ




c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)




 . (4.16)

Sublemma 4.2. As a function of θ1 ∈ (0, θ∗3) with θ∗3 < π, the expression (4.16),

denoted D(θ1), has only one zero point at θ1 =
θ∗3
2 . Furthermore, D(θ1) > 0 for

θ1 ∈ (0,
θ∗3
2 ) and D(θ1) < 0 for θ1 ∈ (

θ∗3
2 , θ3).

These two results are proven below. We begin with Sublemma 4.1, label the ex-

pression inside the integral of Equation (4.15) as follows

φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
= g(n2, θ1).

Noting that l3 =
c(sin(θ∗3)−sin(θ1))

sin(θ∗3−θ1)
is now specifically a function of θ1, we apply the

Leibniz integral rule of the differential, given as

d

dz

∫ b(z)

a(z)
f(x, z)dx =

∫ b(z)

a(z)

df(x, z)

dz
dx+ f(b(z), z)

db

dz
− f(a(z), z)

da

dz
.

Then the differential of g(n2, θ1) may be reduced to

d

dθ1

∫ c

l3(θ1)
g(n2, θ1)dn2 =

∫ c

l3(θ1)

dg(n2, θ1)

dθ1
dn2 − g(l3, θ1)

dl3(θ1)

dθ1
.

Further noting that

g(l3, θ1) = φ(l3)

[
Φ

(
−l3cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−l3cot(θ1) +

c

sin(θ1)

)]
= 0

since −l3cot(θ∗3) + c
sin(θ∗3)

= (−l3cot(θ1) + c
sin(θ1)

, we have

d

dθ1

{∫ c

l3

φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2

}

=

∫ c

l3

d

dθ1
φ(n2)

[
Φ

(
−n2cot(θ∗3) +

c

sin(θ∗3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2

=−
∫ c

l3

d

dθ1
φ(n2)Φ

(
−n2cot(θ1) +

c

sin(θ1)

)
dn2

=

∫ c

l3

−φ(n2)
d

dθ1

[
Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2

=

∫ c

l3

−φ(n2)φ

(
−n2cot(θ1) +

c

sin(θ1)

)
d

dθ1

[
−n2cot(θ1) +

c

sin(θ1)

]
dn2

=

∫ c

l3

φ(n2)φ

(
−n2cot(θ1) +

c

sin(θ1)

)[
c(cos(θ1))− n2

sin(θ1)2

]
dn2. (4.17)
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We now simplify the term in Equation (4.17) given by

φ(n2)φ

(
−n2cot(θ1) +

c

sin(θ1)

)

=
1

2π
exp

{
−n

2
2

2
−

(−n2cot(θ1) + c
sin(θ1)

)2

2

}

=
1

2π
exp

{
−1

2

(
n22 +

c2

sin(θ1)2
− 2cn2cos(θ1)

sin(θ1)2
+ n22cot(θ1)

2

)}

=
1

2π
exp

{
−1

2

(
n22(1 + cot(θ1)

2) +
c2

sin(θ1)2
− 2cn2cos(θ1)

sin(θ1)2

)}

=
1

2π
exp

{
−1

2

(
n22

sin(θ1)2
+

c2

sin(θ1)2
− 2cn2cos(θ1)

sin(θ1)2

)}

=
1

2π
exp

{
− 1

2sin(θ1)2
[
(n2 − ccos(θ1))2 + c2 − (c2cos(θ1)

2)
]}

=
1

2π
exp

{
− 1

2sin(θ1)2
[
(n2 − ccos(θ1))2 + c2sin(θ1)

2
]}

=
1√
2π

exp

{
−c

2

2

}
1√
2π

exp

{
− 1

2sin(θ1)2
[
(n2 − ccos(θ1))2

]}

=
1√
2π

exp

{
−c

2

2

}
φ(z)

where z = n2−ccos(θ1)
sin(θ1)

and φ(z) is a standard normal pdf for z. Equation (4.17) now

becomes

∫ c

l3

1√
2π

exp

{
−c

2

2

}[
c(cos(θ1))− n2

sin(θ1)2

]
φ(z)dn2

=

∫ c

l3

ccos(θ1)

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2 −

∫ c

l3

n2

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2.

(4.18)

Equation (4.18) consists of two terms, which we evaluate individually. For the first

term we change the variable of integration to z, noting that

dz

dn2
=

1

sin(θ1)

which gives

∫ c

l3

ccos(θ1)

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2

=

∫ c−ccos(θ1)
sin(θ1)

l3−ccos(θ1)
sin(θ1)

ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
φ(z)dz

=

[
ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(z)

]t1

t2

=
ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
[Φ(t1)− Φ(t2)] (4.19)
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where t1 = c−ccos(θ1)
sin(θ1)

and t2 = l3−ccos(θ1)
sin(θ1)

. For the second term, we apply integration by

parts to give

∫ c

l3

n2

sin(θ1)2
√

2π
exp

{
−c

2

2

}
φ(z)dn2

=

[
n2

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(z)

]c

l3

−
∫ c

l3

1

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(z)dn2

=
1

sin(θ1)
√

2π
exp

{
−c

2

2

}
[n2Φ(z)]cl3 −

1√
2π

exp

{
−c

2

2

}∫ t1

t2

Φ(z)dz

=
1

sin(θ1)
√

2π
exp

{
−c

2

2

}
[n2Φ(z)]cl3 −

1√
2π

exp

{
−c

2

2

}
[zΦ(z) + φ(z)]t1t2 (4.20)

where the result
∫ t1
t2

Φ(z)dz = [zΦ(z) + φ(z)]t1t2 is an immediate consequence of integra-

tion by parts, given by Section 4.1, result 1, of Edward and Murray (1969). By using

the expressions (4.19) and (4.20), (4.18) can be expressed as,

ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
[Φ(z)]t1t2 −

1

sin(θ1)
√

2π
exp

{
−c

2

2

}
[n2Φ(z)]cl3

+
1√
2π

exp

{
−c

2

2

}
[zΦ(z) + φ(z)]t1t2

=

[(
ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t1)

)
−
(

ccos(θ1)

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t2)

)]

−
[(

c

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t1)

)
−
(

l3

sin(θ1)
√

2π
exp

{
−c

2

2

}
Φ(t2)

)]

+

[(
t1√
2π

exp

{
−c

2

2

}
Φ(t1)

)
−
(

t2√
2π

exp

{
−c

2

2

}
Φ(t2)

)]

+

[(
1√
2π

exp

{
−c

2

2

}
φ(t1)

)
−
(

1√
2π

exp

{
−c

2

2

}
φ(t2)

)]

=−
[(

t1√
2π

exp

{
−c

2

2

}
Φ(t1)

)
−
(

t2√
2π

exp

{
−c

2

2

}
Φ(t2)

)]

+

[(
t1√
2π

exp

{
−c

2

2

}
Φ(t1)

)
−
(

t2√
2π

exp

{
−c

2

2

}
Φ(t2)

)]

+

[(
1√
2π

exp

{
−c

2

2

}
φ(t1)

)
−
(

1√
2π

exp

{
−c

2

2

}
φ(t2)

)]

=
1√
2π

exp

{
−c

2

2

}
[φ(t1)− φ(t2)]

=
1√
2π

exp

{
−c

2

2

}
φ
(
c− ccos(θ1)
sin(θ1)

)
− φ




c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)




 (4.21)

which proves Sublemma 4.1.
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We now prove Sublemma 4.2. Denote Equation (4.21) (also given as Equation

(4.16)) as D(θ1). This expression is the difference of two standard normal pdf values,

multiplied by some constant term. Consequently, the behaviour of the differential with

respect to θ1 hinges on the relationship between the absolute values of the two terms

inside the pdf’s. Specifically, we are comparing

∣∣∣∣
c− ccos(θ1)
sin(θ1)

∣∣∣∣ to

∣∣∣∣∣∣

c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)

∣∣∣∣∣∣
.

Since φ(x)− φ(y) ≥ 0 if and only if |x| − |y| ≤ 0 we have

D(θ1) ≤ 0⇔ d(θ1) ≥ 0

where d(θ1) =

∣∣∣∣
c− ccos(θ1)
sin(θ1)

∣∣∣∣−

∣∣∣∣∣∣

c(sin(θ∗3)−sin(θ1))
sin(θ∗3−θ1)

− ccos(θ1)
sin(θ1)

∣∣∣∣∣∣

=
c

|sin(θ1)|
|1− cos(θ1)| −

∣∣∣∣
sin(θ∗3)− sin(θ1)

sin(θ∗3 − θ1)
− cos(θ1)

∣∣∣∣ .

Since c > 0 and θ1 ∈ (0, π), it is sufficient to focus on the sign of

g(θ1) = |1− cos(θ1)| −
∣∣∣∣
sin(θ∗3)− sin(θ1)

sin(θ∗3 − θ1)
− cos(θ1)

∣∣∣∣

=(1− cos(θ1))−
∣∣∣∣
sin(θ∗3)− sin(θ1)

sin(θ∗3 − θ1)
− cos(θ1)

∣∣∣∣

as (1− cos(θ1) must always be positive. We may also remove the absolute value on the

second term of g(θ1) by noting that

sin(θ∗3)− sin(θ1)

sin(θ∗3 − θ1)
− cos(θ1)

=
sin(θ∗3)− sin(θ1)− cos(θ1)sin(θ∗3 − θ1)

sin(θ∗3 − θ1)

=
sin(θ∗3)− sin(θ1)− [sin(θ∗3)− sin(θ1)cos(θ

∗
3 − θ1)]

sin(θ∗3 − θ1)

=
sin(θ1)

sin(θ∗3 − θ1)
(cos(θ∗3 − θ1)− 1)
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which must clearly always be negative as 0 < θ∗3 − θ1 ≤ π and so

g(θ1) = 1− cos(θ1)−
(
cos(θ1) +

sin(θ1)− sin(θ∗3)

sin(θ∗3 − θ1)

)

=1− 2cos(θ1)−
sin(θ1) + sin(θ∗3)

sin(θ∗3 − θ1)

=
sin(θ∗3 − θ1)− 2cos(θ1)sin(θ∗3 − θ1)− sin(θ1) + sin(θ∗3)

sin(θ∗3 − θ1)

=
sin(θ∗3 − θ1)− [sin(θ1 + (θ∗3 − θ1))− sin(θ1 − (θ∗3 − θ1))]− sin(θ1) + sin(θ∗3)

sin(θ∗3 − θ1)

=
sin(θ∗3 − θ1)− (sin(θ∗3)− sin(2θ1 − θ∗3))− sin(θ1) + sin(θ∗3)

sin(θ∗3 − θ1)

=
sin(θ∗3 − θ1) + sin(2θ1 − θ∗3)− sin(θ1)

sin(θ∗3 − θ1)

using the product to sum formulae. It is clear that, at θ1 = θ3∗
2 , g(θ1) = 0 and therefore

D(θ1) = 0. Thus θ1 = θ3∗
2 is a stationary point of D(θ1). For the sign of g(θ1) over

0 < θ1 < θ∗3 < π, it suffices to focus on the numerator

h(θ1) = sin(θ∗3 − θ1) + sin(2θ1 − θ∗3)− sin(θ1).

Let θ1 =
θ∗3
2 − ε for ε ∈ (0,

θ∗3
2 ), then

h(
θ∗3
2
− ε)

=sin(θ∗3 − θ1) + sin(2θ1 − θ∗3)− sin(θ1)|
θ1=

θ∗3
2
−ε

=sin(θ∗3 − (
θ∗3
2
− ε)) + sin(2(

θ∗3
2
− ε)− θ∗3)− sin(

θ∗3
2
− ε)

=sin(
θ∗3
2

+ ε) + sin(−2ε)− sin(
θ∗3
2
− ε)

=sin(
θ∗3
2

+ ε)− sin(2ε)− sin(
θ∗3
2
− ε)

=sin((
θ∗3
2
− ε) + 2ε)− sin(2ε)− sin(

θ∗3
2
− ε)

=sin(
θ∗3
2
− ε)cos(2ε) + cos(

θ∗3
2
− ε)sin(2ε)− sin(2ε)− sin(

θ∗3
2
− ε)

=sin(
θ∗3
2
− ε)cos(2ε) + sin(2ε)(cos(

θ∗3
2
− ε)− 1)− sin(

θ∗3
2
− ε)

<sin(
θ∗3
2
− ε)cos(2ε)− sin(

θ∗3
2
− ε) < 0

as (cos(
θ∗3
2 − ε)− 1) must always be negative. Furthermore, from this manipulation, we

immediately have

sin(
θ∗3
2

+ ε)− sin(2ε)− sin(
θ∗3
2
− ε) < 0.

It follows that

h(
θ∗3
2

+ ε) = −(sin(
θ∗3
2

+ ε)− sin(2ε)− sin(
θ∗3
2
− ε)) > 0.
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This tells us that d(θ1) is negative as the value of θ1 approaches the stationary point,

and hence D(θ1) is positive, and that the reverse is true as we move away past the

stationary point, which proves Sublemma 4.2. Theorem 4.2 follows now immediately,

as Sublemma 4.2 states that the point θ1 =
θ∗3
2 , is a maximum point, and hence satisfies

the Expression (4.15).

End Of Proof of Theorem 4.2

Proof Of Theorem 4.1

We can now prove Theorem 4.1. Due to the rotational invariance, and symmetry of

V3, the probability of N lying in V3 can be expressed as in Equation (4.14) using

any three adjacent directions from the six determined by the three directional vectors

P

(
1

xp1

)
, P

(
1

xp2

)
, and P

(
1

xp3

)
. This probability can always increase if one

direction does not partition the angle formed between the other two directions in equal

halves, as given by Theorem 4.2. Hence the minimum probability is attained only when

all directions lie equally spaced apart over the region 2π, which means V3 is a regular

hexagon and θ1 = π
3 and θ3 = 2π

3 .

End Of Proof Of Theorem 4.1

It is immediate from Theorem 4.1 that value of c that satisfies equation 4.11 must also

satisfy the following condition,

1

π

{∫ ξ1

ξ2−π

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ ξ2−θ3

ξ1−θ3

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

−2

∫ c

l3

φ(n2)

[
Φ

(
−n2cot(θ3) +

c

sin(θ3)

)
− Φ

(
−n2cot(θ1) +

c

sin(θ1)

)]
dn2 = 1− α,

where

θ1 =
π

3
, θ3 =

2π

3
and l3 =

c(sin(θ3)− sin(θ1))

sin(θ3 − θ1)
.

There does not exist an analytical solution to this problem with respect to c, how-

ever since the condition involves only one dimensional integration, various numerical

searches can be employed to find the correct value, for a specified value of α. Hence we

find c with the bisection method using a custom code in ”R”, available on request.
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Figure 4.6: The region V3, as a regular hexagonal region.
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4.2.3 Simultaneous Confidence Sets For More Than Three Effective

Doses

We may generalise the methods to obtain simultaneous confidence sets for k = 3, to

the case k > 3 for some specific k. Specifically we want to choose c such that for a

particular k > 3

min
−∞<xp1 ,...,xpk<∞

P {xpi ∈ Cpi for i = 1, . . . , k} = 1− α. (4.22)

It is immediate from the three effective dose case that we may write

P {xpi ∈ C for i = 1, . . . , k} = P{N ∈ Vk}

where Vk = ∩ki=1V(xp) is a 2k sided polygonal region on the N plane, with shaped

determined by the k directions Pxpi , depicted in figure 4.7 for k = 4.

n1

n2

P

(
1

xλ1

)

P

(
1

xλ2

)

c

c

c

P

(
1

xλ4

)

P

(
1

xλ3

)

c

θ12 θ23
θ34

θ14

θ13

θ24

Figure 4.7: The region V4, an example of Vk for four effective doses.

As before, P{N ∈ Vk} is rotation invariant around the origin, and the ordering of

the directions is arbitrary, hence we may assume without loss of generality that Vk is

oriented as in Figure 4.7, with Pxpi lying on the n2 axis. We denote the acute angle

between any two directional vectors Pxpi and Pxpj as θij . Hence the largest of all

such angles is θ1k which must be less than π. To establish c it is sufficient to minimise
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P{N ∈ Vk} with respect to 0 < θij ≤ π i, j = 1, . . . , k.

Referring to figure 4.8, we can form an expression for the probability of N in Vk as

the probability of N in the parallelogram ABCD, which is formed by the intersection

of the sets N ∈ V(xp1) and V(xpk), less twice the probability of lying in the k− 2 grey

shaded regions of the upper right corner. These are given by the regions where the

remaining k−2 directions Pxpi i = 2, . . . , k−1 intersect the parallelogram ABCD and

are given by

P
{
N ∈ V(xpi−1) ∩ V(xpk) ∩ Vc(xpi)

}
i = 2, . . . , k − 1.

n1

n2

P

(
1

xλ1

)

P

(
1

xλ2

)

c

c

c

P

(
1

xλ4

)

P

(
1

xλ3

)

c

θ12 θ23
θ34

θ14

θ13

θ24

A B

CD

Figure 4.8: The region V4, as a parallelogram less the four grey shaded regions.

It is clear that P(N ∈ ABCD) is the same problem as lying in the parallelogram

region for the case k = 3, with the angle equal to θik instead of θ3, hence

P(N ∈ ABCD) = P{N ∈ V(xp1) ∩ V(xpk)}

=
1

π

{∫ θ1k
2

θ1k−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ π−θ1k
2

− θ1k
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}
.

By rotational invariance we may place Pxpi−1 parallel with the n1 axis on the positive
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n2 plane, and then P
{
N ∈ V(xpi−1) ∩ V(xpk) ∩ Vc(xpi)

}
is the same problem of lying

in the grey shaded region as that for k = 3, with θ(i−1)i and θ1k taking the places of θ1

and θ3 respectively. Hence

P
{
N ∈ V(xpi−1) ∩ V(xpk) ∩ Vc(xpi)

}

= 2
∫ c
l3
φ(n2)

[
Φ
(
−n2cot(θ(i−1)k) + c

sin(θ(i−1)k)

)
− Φ

(
−n2cot(θ(i−1)i) + c

sin(θ(i−1)i)

)]
dn2

(4.23)

where

l3(k) =
c(sin(θ(i−1)k)− sin(θ(i−1)i))

sin(θ(i−1)k − θ(i−1)i)
.

As, by definition, none of these regions overlap, the probability of N lying in all k − 2

of these regions must the sum of the individual probabilities, therefore

P{N ∈ Vk} = P{N ∈ V(xp1) ∩ V(xpk)} −
k−1∑

i=2

P
{
N ∈ V(xpi−1) ∩ V(xpk) ∩ Vc(xpi)

}

=
1

π

{∫ ξ1

ξ2−π

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ ξ2−θ1k

ξ1−θ1k

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

−2
∑k−1

i=2

∫ c
l3(k)

φ(n2)
[
Φ
(
−n2cot(θ(i−1)k) + c

sin(θ(i−1)k)

)
− Φ

(
−n2cot(θ(i−1)i) + c

sin(θ(i−1)i)

)]
dn2.

(4.24)

Thus it is sufficient to minimise equation 4.24 with respect to the angles 0 ≤ θij ≤ π.

The following theorem gives the proposed minimum of 4.24.

Theorem 4.3. The probability P{N ∈ Vk} is minimised with respect to the θij when Vk
takes a regular 2k sided polygonal shape, that is when for all 1 ≤ i < j ≤ k θij = (j−i)π

k .

This relies on the following Lemma.

Lemma 4.1. Suppose that k−1 directional vectors Pxpi are fixed, and only one Pxpj
is allowed to vary between adjacent Pxpj−1 and Pxpj+1. Then P{N ∈ Vk} is minimised

when Pxpj lies halfway between Pxpj−1 and Pxpj+1.

Proof of Lemma 4.1

The region Vk may always be represented as the parallelogram formed by the in-

tersection of any two V(xpi), less the grey shaded regions formed by the intersec-

tion of this parallelogram and the remaining k − 2 V(xpi). Hence form Vk as the

intersection of V(xpj−1) and V(xpj+1), less the remaining k − 2 regions of the form

P
{
N ∈ V(xpj−1) ∩ V(xpj+1) ∩ Vc(xpi)

}
i 6= j − 1, j + 1. As demonstrated in Figure

4.9, if only Pxpj can vary then the probability of N in Vk depends only on the grey

shaded region P
{
N ∈ V(xpj−1) ∩ V(xpj+1) ∩ Vc(xpj )

}
. Due to rotational invariance of

P{N ∈ Vk}, The proof is then immediate by applying the proof of Theorem 4.2 to

P
{
N ∈ V(xpj−1) ∩ V(xpj+1) ∩ Vc(xpj )

}
.

End of Proof of Lemma 4.1
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Proof of Theorem 4.3

The proof of Theorem 4.3 is then immediate from repeated application of Lemma 4.1.

Since Vk is formed from any k of the available 2k adjacent directions, the minimum

arrangement must occur when they are all equally spaced from one another over a

region of 2π, and the result follows immediately.

End of Proof of Theorem 4.3
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P
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Figure 4.9: An alternative definition of the region V4, where the grey region is inde-
pendent of the parallelogram ABCD and the orange region.

Therefore c set the following equation to 1− α

1

π

{∫ ξ1

ξ2−π

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ ξ2−θ1k

ξ1−θ1k

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

−2
∑k−1

i=2

∫ c
l3(k)

φ(n2)
[
Φ
(
−n2cot(θ(i−1)k) + c

sin(θ(i−1)k)

)
− Φ

(
−n2cot(θ(i−1)i) + c

sin(θ(i−1)i)

)]
dn2,

where θij = (j−i)π
k ∀1 ≤ i < j ≤ k. The relevant value of c can then again be generated

for any k via a simple numeric search, for which a code is available for k = 3 and 4.
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4.3 One sided Simultaneous Confidence Sets For Several

Effective Doses

Two sided confidence sets are primarily sought to establish a region of candidate values

for the effective dose. However, there also exists a motivation to obtain a worst, or best

case scenario. To obtain information on the smallest or largest plausible dose needed to

elicit a specific response p. In this case, one sided sets offer less conservative information,

one such example can be seen in Deutsch and Piegorsch (2012), which constructed lower

one sided confidence sets to obtain the mimimum level of exposure, the bench mark

dose (BMD), to induce a certain bench mark response (BMR). This was obtained in

the intuitive way, by inverting the bounds of a one sided simultaneous confidence

band. We hence adapt the methodology in this thesis to establish simultaneous one

sided confidence sets for specific numbers of effective doses.

4.3.1 One Sided Simultaneous Confidence Sets For Two Effective Doses

We want to obtain simultaneous confidence sets that are a one sided equivalent of

Equation (4.8). This means inverting the bounds of a one sided confidence band with

some critical constant c. Hence, a lower one sided confidence set is obtained by inverting

an upper one sided confidence band, that is

C−p =

{
x :

xᵀβ̂ − π(p)√
xᵀJ−1x

< c

}
. (4.25)

Using the same methodology as in the two sided case, for k = 2, c is chosen such that

P
{
xp1 ∈ C−p1 ∩ xp2 ∈ C−p2

}
≥ 1− α, (4.26)

and therefore sets

min
xp1 ,xp2

P
{
xpi ∈ C−pi for i = 1, 2

}
= 1− α, (4.27)

∀β ∈ Rp+1.

We focus on the case q = 1. It is immediate from the two sided case that

P
{
xp ∈ C−p

}
= P{N ∈ V(xp)

−},

where

V(xp)
− =




N :

{
P

(
1

xp

)}ᵀ

N

∥∥∥∥∥P
(

1

xp

)∥∥∥∥∥

< c




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is the one sided equivalent of V(xp), that is the open region on the N-plane, which

includes the origin, and bounded by the line perpendicular to P

(
1

xp

)
with distance

c from the origin in the direction of P

(
1

xp

)
. Then it is clear that

P
{
xpi ∈ C−pi for i = 1, 2

}
= P{N ∈ V−2 }.

with V−2 ≡ V(xp1)− ∩ V(xp2)− as show in Figure 4.10.

n1

n2

P

(
1

xλ1

)

P

(
1

xλ3

)

c

c

θ3

B

Figure 4.10: The region V−2

Calculation of P{N ∈ V−2 } is an equivalent problem to that of establishing the

probability of lying in a one sided constant width band over a finite covariate range,

as seen in pages 41 − 44 of Liu (2011) but for a bivariate N , instead of T . As V−2 is

rotation invariant around the origin, it may be represented as in Figure 4.11.
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Figure 4.11: A rotation of V−2

The relevant equation is then

P{N ∈ V−2 } = 1
2π

{∫ π
2
ξ1−θ3 P {RNcos(θ) ≤ c} dθ +

∫ ξ1
−π

2
P {RNcos(θ) ≤ c} dθ

}
+ π−θ3

2π

=
1

2π

{∫ π
2

− θ3
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ θ3
2

−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}
+
π − θ3

2π

(4.28)

where ξ1 = θ3
2 . As in the two sided case, Equation (4.28) depends on the effective doses

through the angle θ3, therefore c sets the minimum of Equation (4.28) with respect to

0 < θ3 ≤ π to 1− α. This minimum of Equation (4.28) is then given by the following

Theorem.

Theorem 4.4. Equation (4.28) is minimised with respect to 0 < θ3 ≤ π at θ3 = π.

86



Proof of Theorem 4.4

We establish the differential of Equation (4.28) with respect to θ3 as follows

d

dθ3

{
1

2π

{∫ π
2

− θ3
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ θ3
2

−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}}

+
d

dθ3

{
π − θ3

2π

}

=
1

2π

{∫ π
2

− θ3
2

d

dθ3

(
1− exp

{
− c2

2cos(θ)2

})
dθ − (−1

2
)

(
1− exp

{
− c2

2cos(− θ3
2 )2

})}

+
1

2π

{∫ θ3
2

−π
2

d

dθ3

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

1

2

(
1− exp

{
− c2

2cos( θ32 )2

})}
− 1

2π

=
1

2π

{
1− exp

{
− c2

2cos( θ32 )2

}
− 1

}

=− 1

2π
exp

{
− c2

2cos( θ32 )2

}
(4.29)

as a result of cosine being an even function and the Leibniz integral rule. It is clear from

(4.29) that the derivative is negative for all θ3, thus Equation (4.28) is a monotonically

decreasing function of 0 < θ3 ≤ π. Furthermore, the stationary point of (4.29) satisfies,

− 1

2π
exp

{
− c2

2cos( θ32 )2

}
= 0⇔ lim

0<θ3≤π→u
cos
(u

2

)
= 0⇔ u = π.

Therefore θ3 = π is the only stationary point of (4.28) between 0 and π and this must

be the minimum as required.

End of Proof Of Theorem 4.4

Hence the critical constant sets Equation (4.28) at θ3 = π to 1− α. Note that P{N ∈
V−2 } at θ3 = π is a special case, equal to the probability that N lies in the region bound

by the two lines parallel to the n2 axis, with distance c from the origin in the direction

of the n1 axis. Therefore we may write

min
xp1 ,xp2

P{N ∈ V−2 } = P{−c ≤ n1 ≤ c,−∞ ≤ n2 ≤ ∞}

= P{−c ≤ n1 ≤ c}P{−∞ ≤ n2 ≤ ∞} = P{−c ≤ n1 ≤ c}

by the independence of n1 and n2. Since by definition n1 takes a univariate normal

distribution, it is immediately obvious that the relevant c value must be a regular z
α
2

value, the same as is used for establishing two sided confidence sets for a single effective

dose.
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4.3.2 One Sided Simultaneous Confidence Sets For Three Or More

Effective Doses

For values of k ≥ 3, we look to establish confidence sets of the form of Equation (4.25)

such that

P
{
xpi ∈ C−pi for i = 1, . . . , k

}
≥ 1− α, (4.30)

for some k ≥ 3. Once again c sets

min
xp1 ,...,xpk

P
{
xpi ∈ C−pi for i = 1, . . . , k

}
= 1− α, (4.31)

∀β ∈ Rp+1.

It is immediate that we may write

P
{
xpi ∈ C−pi for i = 1, . . . , k

}
= P{N ∈ V−k }.

Where V−k = ∩ki=1V(xp1)−. As before, denote the angle between any two directional

vectors Pxpi and Pxpj as θij . In the same way as in the two sided case, represent

P{N ∈ V−k } as that of N lying in the intersection N ∈ V(xp1)−∩V(xpk)−, less the sum

of probabilities of lying in the k−2 grey shaded regions V(xpi−1)
−∩V(xpk)−∩Vc(xpi)

−

as shown in Figure (4.12).
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Figure 4.12: The region V−4
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Since P{N ∈ V(xp1)− ∩V(xpk)−} is equivalent to P{N ∈ V−2 } with angle θ1k, and

the additional terms are identical to the single upper grey shaded regions given in the

two sided case, we must then have

P{N ∈ V−k }

=
1

2π

{∫ π
2

− θ1k
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ θ1k
2

−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

+
π − θ1k

2π
−
k−1∑

i=2

∫ c

l3(k)
φ(n2)

[
Φ

(
−n2cot(θ(i−1)k) +

c

sin(θ(i−1)k)

)]
dn2

−
k−1∑

i=2

∫ c

l3(k)
φ(n2)

[
−Φ

(
−n2cot(θ(i−1)i) +

c

sin(θ(i−1)i)

)]
dn2 (4.32)

with l3(k) as in the two sided case. We need to minimise Equation (4.32) with respect

to 0 ≤ θij ≤ π, 1 ≤ i < j ≤ k, hence we turn this into a one variable minimisation

problem through the following Theorem

Theorem 4.5. Let θik be the largest angle as depicted in Figure (6.3). Suppose that

Pxp1, Pxpk and subsequently θik are fixed. Then Equation (4.32) is minimised with

respect to the remaining angles θij when the remaining Pxpi lie equally spaced between

Pxp1 and Pxpk , that is θij = (j−i)θ1k
k .

Proof Of Theorem 4.5

We note that if θ1k is fixed and say only Pxp2 is allowed to change between the two

adjacent Pxp1 and Pxp3 , then P{N ∈ V−k } can be represented in the same way as

shown in Figure 4.9 and Lemma 4.1 in the equivalent two sided case. Then, when

Pxp2 changes between Pxp1 and Pxp3 , the probability of N in the parallelogram

P {N ∈ V(xp1)− ∩ V(xp3)−} does not change, only the probability of lying in the spe-

cific grey shaded region, P {N ∈ V(xp1)− ∩ V(xp3)− ∩ Vc(xp2)−}. As this is exactly

half the value of the equivalent two sided region, Lemma 4.1 applies and P{N ∈ V−k }
is minimised when Pxp2 is halfway between Pxp1 Pxp3 . The Theorem then follows

from repeated application of Lemma 4.1 on Pxp2 . . .Pxpk−1
.

End of Proof of Theorem 4.5

We still need to minimise P{N ∈ Vk} as given in Equation (4.32) with respect to

θ1k ∈ (0, π], with θij = (j−i)θ1k
k for all 1 ≤ i < j ≤ k − 1. While we are unable

to establish any analytical result, this minimisation may be easily done numerically

since only one variable is involved. Hence the minimum probability in Equation (4.31)

for a given c can be easily computed using Theorem 4.4, and a one variable numeric

search. By using the bisection method or other search algorithm on c, combined with a

numeric search for the minimum at each step, the c which sets the minimum probability

in Equation (4.32) to 1−α can be computed quickly and accurately, using the following

algorithm.
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1. Choose two constants, u and l for which the solution c is such l ≤ c ≤ u and set

c1 = (l+u)
2 .

2. Minimise the equation in (4.32) with respect to θ1k under the constraints, θij =
(j−i)θ1k

k for all 1 ≤ i < j ≤ k − 1 and 0 < θ1k ≤ π and c = c1.

3. Calculate the value of the equation in (4.32), if the value is greater than 1 − α,

set u = c1, else set l = c1.

4. Return to step 1 and repeat with until the value of Equation (4.32) converges to

1− α within tolerance level.

5. If we denote cn as the value of c in the n’th iteration of the algorithm and cn is

the value at convergence then we set c = cn and we have found the solution.

4.3.3 A Note On Upper One Sided Confidence Sets

To construct an upper one sided confidence set, we invert the bounds of a lower one

sided confidence band, that is

C+
p =



x :

−
(
xᵀβ̂ − π(p)

)

√
xᵀJ−1x

< c



 , (4.33)

where the relevant c sets

min
xp1 ,...,xpk

P
{
xpi ∈ C+

pi for i = 1, . . . , k
}

= 1− α, (4.34)

∀β ∈ Rp+1.

We immediately have

P
{
xpi ∈ C+

pi for i = 1, . . . , k
}

= P{N ∈ V+
k }

where V+
k = ∩ki=1V(xp1)+ and

V(xp)
+ =




N :

{
−P

(
1

xp

)}ᵀ

N

∥∥∥∥∥P
(

1

xp

)∥∥∥∥∥

< c




.

It is then clear to see that

P{N ∈ V+
k } = P{N ∈ V−k }

by rotational invariance. Constructing upper one sided simultaneous confidence sets is

therefore as simple as using the same c as the corresponding lower one sided problem.
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4.4 Table Of Critical Constants and Examples

4.4.1 Values Of c

In this section, we compare the simultaneous confidence sets obtained by the origi-

nal Scheffé band method (S), to the two sided confidence sets (AS2) and one sided

confidence sets (AS1) of the improved methodology. We have computed the critical

constants c for AS2, AS1 and S sets for k = 2, 3 and 4 in Table 4.1 below.

Table 4.1: Values of c for AS2, AS1 and S simultaneous confidence sets

AS2 AS1 S for q = 1 S for q = 2

k 1− α c
√
χα2

√
χα3

0.99 2.806225 2.575829 3.034854 3.368214

2 0.95 2.236477 1.960000 2.447747 2.795483

0.90 1.948822 1.644854 2.145966 2.500278

0.99 2.913494 2.712313 3.034854 3.368214

3 0.95 2.343701 2.123498 2.447747 2.795483

0.90 2.052293 1.823565 2.145966 2.500278

0.99 2.962385 2.787521 3.034854 3.368214

4 0.95 2.387280 2.195720 2.447747 2.795483

0.90 2.092173 1.89069 2.145966 2.500278

The relative size of each confidence set may be directly compared by the size of c. In

each case a smaller c indicates a smaller set or bound. Thus the relative improvement

over S type confidence sets at level 1− α is

∣∣∣∣∣

√
χαq+1 − c√
χαq+1

∣∣∣∣∣ ∗ 100.

For S type sets, c = 2.447747 for q = 1 and 2.795483 for q = 2. There is a clear

reduction therefore in the size of c, and by extension the set for all k. For α = 0.05

and q = 1, AS2 sets show a relative improvement of 8.6%, 4.25% and 2.5% for k = 2, 3

and 4 respectively. For AS1 sets, the equivalent improvements are 19.9%, 13.2% and

10.3%. AS2 sets for k = 2 can be used for multiple covariate models. For q = 2, there

is a significant jump in improvement, to approximately 23%.

It is clear that the improved methodology is at its most useful with AS2 type

sets for two effective doses, where the percentage improvement will only become more

significant with increased q. All other methods are limited in that they may only apply

to a univariate model, where S type sets are at their smallest. This is most noticeable

for AS2 sets, where the percentage improvement beyond k = 3 becomes marginal,

though less so for AS1 sets where the improvement remains beyond 10% at k = 4.

Establishing methodology for more than two effective doses that applies to a multiple

covariate model is therefore of significant interest.
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4.4.2 Examples

Example 1

In Walter (1983), the Ontario Exercise Heart Collaborative Study recorded data from

341 cases, and measured the chance of a Mycardial Infarction (MI) over a four year

period. Logistic analysis is performed on the odds of MI with respect to smoking status

(x1) and serum triglyceride level (x2), the model gave results,

β̂ = (−2.2791, 0.7682, 0.001952)ᵀ J−1 =




0.06511

−0.04828 0.09839

−0.0001915 −0.00003572 0.000002586


 .

We construct simultaneous confidence sets for two CED’s of Triglyceride level for Non

smokers (x1 = 0), at α = 0.05 corresponding to p = 0.4, 0.5, and 0.6.. We apply the the

S and AS2 methods for k = 2. For a confidence set for the EDp or CEDp, with critical

constant c, the lower bound is the value of x which solves,

p−




exp
(
xᵀβ̂ + c

√
xᵀJ−1x

)

1 + exp
(
xᵀβ̂ + c

√
xᵀJ−1x

)


 = 0,

with the upper bound given as,

p−




exp
(
xᵀβ̂ − c

√
xᵀJ−1x

)

1 + exp
(
xᵀβ̂ − c

√
xᵀJ−1x

)


 = 0.

In this case we set x = (x1, x2) = (1, x2) in order to establish the appropriate CED.

We calculate the implicit 95% confidence bands and confidence sets for p = 0.4, 0.5 and

0.6 in Figure 4.12 and Table 4.2 below.
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Figure 4.13: The implicit 95% confidence bands for the Scheffé band method and two
sided adapted Scheffé band method for k=2, for the Heart Exercise Data

Table 4.2: Cp at α = 0.05 for the S type, and AS2 type sets for k=2

AS2 For k = 2 S for q = 2

p Lower Upper Lower Upper

0.4 364.9 ∞ 315.9 ∞
0.5 442.0 ∞ 384.0 ∞
0.6 517.8 ∞ 450.4 ∞

It is clear that the AS2 method demonstrates a noticeable improvement over the

original S method. Figure 4.13 shows the confidence band that generates Cp, for AS2

sets, clearly has a significantly smaller average width over the whole range than the

simultaneous confidence band of the S method. This results in smaller confidence sets,

as demonstrated by Table 4.2, in which the sets constructed from the AS2 method have

an improved lower bound of around 50-70 units. There is no upper bound as a result

of the shape of the logistic curve, in fact we note that Cp is not guaranteed to be a

closed or even a single interval.
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Example 2

The first example illustrates the improvement in the size of simultaneous confidence

sets in a real world dataset. Here, we use the example dataset ”mtcars” to compare

simultaneous confidence sets at different values of k. This model has parameter esti-

mates

β̂ = (−2.2791, 0.7682, 0.001952)ᵀ J−1 =

(
5.5292778 −0.26495522

−0.2649552 0.01318859

)
.

We construct and compare S, AS2 and AS1 confidence sets for k = 2 and 3 for α = 0.05

below.
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Figure 4.14: The implicit 95% confidence bands for the Scheffé band method and two
sided adapted Scheffé band method for k=2 and 3, for the ”mtcars” dataset.

Table 4.3: Cp at α = 0.05 for the S type, and AS2 type sets for k=2 and 3

AS2 For k = 2 AS2 For k = 3 S for q = 1

p Lower Upper Lower Upper Lower Upper

0.4 14.39 26.46 13.29 27.73 11.67 29.71

0.2 −∞ 20.31 −∞ 20.48 −∞ 20.65

0.1 −∞ 18.07 −∞ 18.2 −∞ 18.32
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Figure 4.15: The implicit 95% confidence bands for the Scheffé band method and upper
one sided adapted Scheffé band method for k=2 and 3, for the ”mtcars” dataset.

Table 4.4: Cp at α = 0.05 for the S type, and AS1 type sets for k=2 and 3

AS1 For k = 2 AS1+ For k = 3 S for q = 2

p Lower Upper Lower Upper Lower Upper

0.4 N/A 24.57 N/A 25.53 11.67 29.71

0.2 N/A 19.90 N/A 20.14 N/A 20.65

0.1 N/A 17.73 N/A 17.93 N/A 18.32

From Tables 4.3 and 4.4 we note a noticeable reduction in the size of two sided

sets at p = 0.4, from approximately 18 units, to around 12 and 14.5 for k = 2 and

3, with the upper bound of one sided sets improved by 5 and 4 units. The extent of

the improvement is much less for p = 0.2 and 0.1, where the implicit bands are much

narrower. Indeed, in the case that the variance covariance matrix leads to particularly

narrow confidence bands, the extent of ”real” improvement in the size of each may not

be substantial. However, as we need only change c to adapt methods of constructing

S type sets to constructing AS1 and AS2 sets, there is no reason to use S sets over the

improved methodology when confidence sets for a specific number of ED’s are in mind.
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Chapter 5

Simultaneous Confidence Sets

For Several Effective Doses When

Constrained Over Some Finite

Region

The results of the previous Chapter make the assumption that the k effective doses

could take any value over the whole real line. However, particularly in clinical trials,

it can sometimes be assumed that the effective doses lie over some particular range of

interest. At the very least, most clinical trials may consider some general sensible range

for the ED, for example non negativity, or an upper bound on the sensible maximum

dosage. Hence one may consider the methods established in the previous chapter to

still be overly conservative. In this chapter, we fully define simultaneous confidence sets

for k effective doses at q = 1, using the methodology of Chapter 4, under the additional

constraint that the effective doses of the model xpi i = 1, . . . , k all lie within some

finite range [a, b]. In particular, the Chapter will address how the additional constraint

affects the current work established in the previous chapter, if at all, and seek to modify

existing work in order to account for this.
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5.1 Introduction

In the same way as in Chapter 4, we look to establish confidence regions of the form,

Cp =

{
x :
|xᵀβ̂ − π(p)|√
xᵀJ−1x

< c

}
(5.1)

where now we want the simultaneous confidence level to satisfy

P {xpi ∈ Cpi for i = 1, . . . , k|xpi ∈ [a, b] ∀ i = 1, . . . , k} ≥ 1− α, (5.2)

for finite constants a < b. Hence we want to find the c in 5.2 such that

min
xpi ,...,xpk

P {xpi ∈ Cpi for i = 1, . . . , k|xpi ∈ [a, b] for i = 1, . . . , k} = 1− α. (5.3)

It is immediate from Chapter 4 that we still have

P {xpi ∈ Cpi for i = 1, . . . , k} = P {N ∈ Vk} .

Recall that P {N ∈ Vk} depends on the choice of the xpi through the directions Pxpi
and subsequently the angles θij . Hence if all xpi ’s lie within [a, b], subsequently every

possible directional vector, Pxpi must also lie between P

(
1

a

)
and P

(
1

b

)
, that

is when the effective doses are chosen as the endpoints of the interval. Therefore we

denote the angle between P

(
1

a

)
and P

(
1

b

)
as

θab = acos




(1, a)J−1

(
1

b

)

√
v(1, a)v(1, b)



.

Under this restriction, we must have that θij ≤ θab ≤ π ∀ 1 ≤ i < j ≤ k, and therefore

P {xpi ∈ Cpi for i = 1, . . . , k|xpi ∈ [a, b] for i = 1, . . . , k}
=P {N ∈ Vk|0 < θij ≤ θab ≤ π for ∀ 1 ≤ i < j ≤ k} .

To establish the critical constant, we then solve

min
0<θij≤θab≤π

P {N ∈ Vk} = 1− α. (5.4)
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Figure 5.1: An illustration of the effect of the constraint on the angles θij for three
effective doses.

If we recall that in Chapter four, with unconstrained effective doses, the optimal

arrangement of Vk took the largest angle as θ1k = (k−1)π
k . We therefore have two

distinct cases under the new constraint.

1. In the case that θab ≥ (k−1)π
k , the minimum arrangement established in Chapter

four is still achievable and the values of c can hence be taken from the appropriate

case in Chapter four. Intuitively this suggests that the finite region of interest is

not a tight enough bound to offer significant additional information.

2. In the case that θab <
(k−1)π

k this global minimum cannot be reached. A new

minimum arrangement under the constraint needs to be developed which will

generate a smaller c, and a more tightly bounded set.

It is the latter situation that is the focus of this Chapter, and we restrict work to the

case q = 1.
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5.2 Two Sided Simultaneous Confidence Sets For Two Ef-

fective Doses

We need to establish the c such that

min
xp1 ,xp2

P {xpi ∈ Cpi for i = 1, 2| xp1 ,xp2 ∈ [a, b]} = 1− α. (5.5)

The method of Sidaks inequality from Chapter four does not offer information on the

minimum of Equation (5.5) when the lower bound cannot be reached. Hence in the

univariate case, we may represent Equation 5.5 as

min
θ1

P {N ∈ V2|0 < θ1 ≤ θab} = 1− α (5.6)

where V2 is the parallelogram region formed by V(xp1) ∩ V(xp2), and θ1 is the angle

between the two directional vectors P

(
1

xp1

)
and P

(
1

xp2

)
. This probability is

immediately given by Equation () with angle θ1. Also noting that, given the Z1 and

Z2 from the case k = 2 in Chapter four, and the calculation of the angles θij given in

Chapter 2

Cov(Z1,Z2) =
xpi1

ᵀJ−1xpi2√
(xpi1)ᵀJ−1xpi1

√
(xpi2)ᵀJ−1xpi2

= cos(θ1)

hence

Cov(Z1,Z2) = 0 ↔ θ1 =
π

2
.

This immediately implies that Sidaks lower bound may be reached when θab ≥ π
2 and

we may reduce the minimisation problem to

min
0<θ1≤θab<π

2

1

π

{∫ θ1
2

θ1−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ π−θ1
2

− θ1
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}
. (5.7)

We may evaluate the differential of the term inside Equation (5.7) as

1

π

{
d

dθ1

∫ θ1
2

θ1−π
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

d

dθ1

∫ π−θ1
2

− θ1
2

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}
.
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Let h(θ) = 1− exp
{
− c2

2cos(θ)2

}
, we have

=
1

π

{
h

(
θ1
2

)
d

dθ1

(
θ1
2

)
− h

(
θ1 − π

2

)
d

dθ1

(
θ1 − π

2

)}

+
1

π

{
h

(
π − θ1

2

)
d

dθ1

(
π − θ1

2

)
− h

(
−θ1

2

)
d

dθ1

(
−θ1

2

)}

=
1

2π

{
h

(
θ1
2

)
− h

(
θ1 − π

2

)
− h

(
π − θ1

2

)
+ h

(−θ1
2

)}

=
1

π

{
h

(
θ1
2

)
− h

(
θ1 − π

2

)}

=
1

π

{
exp

{
− c2

2sin( θ12 )2

}
− exp

{
− c2

2cos( θ12 )2

}}

=
1

π

{
h

(
θ1
2

)
− h

(
θ1 − π

2

)}

=
1

π

{
exp

{
− c2

2sin( θ12 )2

}
− exp

{
− c2

2cos( θ12 )2

}}

by applying the Leibniz integral rule to the differential, and noting that cos(−x) =

cos(x)⇒ h(−x) = h(x) and cos(x− π
2 ) = sin(x). Now since 0 ≤ sin(x) < cos(x) ∀x ∈

[0, π4 ), we have 0 ≤ sin( θ12 ) < cos( θ12 ) ∀θ1 ∈ [0, π2 ). This immediately implies that

− c2

2sin(
θ1
2
)2
< − c2

2cos(
θ1
2
)2
∀θ1 ∈ [0, π2 ) and hence

1

π

{
exp

{
− c2

2sin( θ12 )2

}
− exp

{
− c2

2cos( θ12 )2

}}
< 0 ∀θ1 ∈ [0,

π

2
).

This tells us that the expression in Equation (5.7) is a monotonically decreasing function

of θ1 over [0, π2 ), and therefore the minimum must occur at θ1 = θab. Hence, to establish

the value of c we calculate θab, if this is a least π
2 we use the method in Chapter 4,

otherwise apply a search algorithm to find the c that sets the expression in Equation

(5.7) to 1− α at θ1 = θab.

5.3 Two Sided Simultaneous Confidence Sets For Three

Or More Effective Doses

We now look to establish confidence sets of the form of Equation (5.1) for specific values

of k ≥ 3, in the case where the constraint has an effect on the value of c, that is when

θab <
(k−1)π

k . It is immediate from Section 5.1 and the expressions in Section 4.2.3, in

particular Equation (4.24), that c sets

min
θij

P

{
N ∈ Vk|0 < θij ≤ θab <

(k − 1)π

k
for 1 ≤ i < j ≤ k

}
= 1− α.
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min
0<θij≤θab< (k−1)π

k

1

π

{∫ ξ1

ξ2−π

(
1− exp

{
− c2

2cos(θ)2

})
dθ +

∫ ξ2−θ1k

ξ1−θ1k

(
1− exp

{
− c2

2cos(θ)2

})
dθ

}

−2
k−1∑

i=2

∫ c

l3(k)
φ(n2)

[
Φ

(
−n2cot(θ(i−1)k) +

c

sin(θ(i−1)k)

)]
dn2

−2

k−1∑

i=2

∫ c

l3(k)
φ(n2)

[
−Φ

(
−n2cot(θ(i−1)i) +

c

sin(θ(i−1)i)

)]
dn2. (5.8)

We may reduce this to a one dimensional minimisation problem in terms of the largest

angle θ1k using the following theorem.

Theorem 5.1. Let θik be the largest angle between all the Pxpi’s which is spanned by

Pxp1 and Pxpk . Furthermore, allow these two vectors, and therefore θik, to be fixed.

Then the expression of P{N ∈ Vk} in (5.8) is minimised , when Pxp2 , . . . ,Pxpk−1

are allowed to vary freely between Pxp1 and Pxpk at the configuration that the angle

between Pxpj and Pxpj+1 is equal to θ1k
k for all j = 1, . . . , k − 1.

We note that Theorem 4.3 still applies, and hence the proof is immediate from

repeated application of Theorem 4.3 on the vectors Pxp2 , . . . ,Pxpk−1
. We need then

only find the minimum probability in (5.8), with respect to θ1k ∈ (0, θab] with θij =
(j−i)θ1k

k for all 1 ≤ i < j ≤ k − 1 which may be done using the following algorithm.

1. Choose two constants, u and l for which the solution c is such l ≤ c ≤ u and set

c1 = (l+u)
2 .

2. Minimise the equation in 5.8 with respect to θ1k under the constraints θij =
(j−i)θ1k

k for all 1 ≤ i < j ≤ k − 1 and 0 < θ1k ≤ θab < (k−1)π
k and c = c1.

3. Calculate the value of the Equation in (5.8), if the value is greater than 1 − α,

set u = c1, else set l = c1.

4. Return to step 1 and repeat with until the value of Equation (5.8) converges to

1− α within tolerance level.

5. If we denote cn as the value of c in the i’th iteration of the algorithm and cn is

the value at convergence then we set c = cn and we have found the solution.

We can now fully specify confidence sets of the form of Equation 5.1 for any k ≥ 3

using the following method.

1. Calculate J−1 and choose a finite region [a, b].

2. Calculate θab using Section 5.1. If θab ≥ (k−1)π
k then calculate c using the methods

described in Chapter 4 for the appropriate k, otherwise, use the methods as

described in this section.
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5.4 One Sided Simultaneous Confidence Sets For Several

Constrained Effective

We now look to establish the equivalent methodology in the one sided case, that is we

construct confidence sets of the form of Equation (4.25) such that c sets

min
xpi ,...,xpk

P
{
xpi ∈ C−pi for i = 1, . . . , k|xpi ∈ [a, b] for i = 1, . . . , k

}
= 1− α. (5.9)

It is immediate from the theory of Sections 5.1 and 4.3 that

P
{
xpi ∈ C−pi for i = 1, . . . , k|xpi ∈ [a, b] for i = 1, . . . , k

}

=P
{
N ∈ V−k |0 < θij ≤ θab ≤ π for ∀ 1 ≤ i < j ≤ k

}

where θab is as described previously. Once again, it is therefore sufficient for c to solve

min
0<θij≤θab≤π

P
{
N ∈ V−k

}
= 1− α

with P
{
N ∈ V−k

}
given by Equation (4.28) for k = 2, and Equation (4.32) for k ≥ 3.

For k=2, the value of the largest angle, θ3 that minimises Equation (4.28) is at its

largest possible value, π, hence in theory there will always be a reduction in the value

of c for any θab. For k = 3 there is no reasonable way to determine at what value of

θab the minimum arrangement of Equation (4.32) changes and c decreases.

However, noting that for k ≥ 3, Theorem 4.5 still applies, minimising both of these

equations may be viewed as a one dimensional search in terms of the largest angles,

that is θ3 for k = 2, and θ1k for k ≥ 3. Hence c may be found using a small modification

to the algorithm used in Section 4.3.2. For k = 2, we apply steps 2 and 3 to Equation

(4.28), with the constraint in step 2 given as 0 < θ3 ≤ θab. For k ≥ 3, steps 2 and

3 apply to Equation (4.32), with the constraints in step 2 as θij = (j−i)θ1k
k for all

1 ≤ i < j ≤ k − 1 and 0 < θ1k ≤ θab.
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5.5 Values of c and Discussion

We apply thr algorithms of the previous section to obtain some example values of c for

3, 4 and 5 effective doses, with specific values of θab for one and two sided simultaneous

confidence sets. These are shown in the following two tables.

Table 5.1: Example Values of c For Two Sided Simultaneous Confidence Sets At Specific
Values of θab

c

k 1− α π π
2

π
3

0.99 2.806255 2.806255 2.794273

2 0.95 2.236477 2.236477 2.212128

0.90 1.948822 1.948822 1.916271

0.99 2.913494 2.892699 2.836824

3 0.95 2.343701 2.317184 2.245666

0.90 2.052293 2.023910 1.944533

0.99 2.962385 2.916309 2.846085

4 0.95 2.387280 2.335878 2.252412

0.90 2.092173 2.039958 1.950018

Table 5.2: Example Values of c For One Sided Simultaneous Confidence Sets At Specific
Values of θab

c

k 1− α π π
2

π
3

0.99 2.575829 2.574961 2.557816

2 0.95 1.960000 1.954508 1.916332

0.90 1.644854 1.632219 1.576989

0.99 2.712313 2.659548 2.596961

3 0.95 2.123498 2.028012 1.944581

0.90 1.823565 1.695619 1.598824

0.99 2.787521 2.681167 2.605202

4 0.95 2.195720 2.043793 1.950064

0.90 1.890690 1.708132 1.602907

It is notable from this table that it is possible to obtain a far more than marginal

reduction in the value of c, compared to the methods in Chapter 4, but may require a

particularly small value of θab, that may be difficult to obtain in practical situations.

For two sided simultaneous confidence sets, given in Table 5.1, as expected there is no

improvement in the value of c at θab = π, and θab = π
2 for k = 2, these are the same

values of c as given in Table 4.1. We note that for k = 2 and θab = π
3 there is only a very

minor reduction of about 0.025 units in c compared to the AS2 method at α = 0.05.

This is a particularly small angle to obtain practically. Improvement is however more
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noticeable for higher k and can then be obtained at θab = π
2 . As one would expect,

the size of c, and by extension the size of the confidence set increases as k increases,

however the extent of the improvement also increases.

The values of c are lower in all cases for the one sided sets of Table 5.2 compared

to those in Table 5.1 as expected. Furthermore, we note there exist more significant

reductions in the values of c for AS1 sets, compared to the methods of Chapter 4, than

in the AS2 case. This is particularly noticeable for θab = π
2 , when k = 3 and 4, and in all

cases for θab = π
3 . That we begin to see a smaller c at θab = π

2 for all cases would suggest

that the analytical minimal values of θ1k, for AS1 sets with an unconstrained effective

dose, are at least larger than π
2 . As expected, the improvements are more noticeable at

higherk and also at higher values of 1−α. Overall the extent of improvement is better

for one sided sets than two.

The main limitation of the methods of this chapter is that noticeable improvement

can seemingly only be obtained when θab is around π
3 , and rarely at π

2 . It may be

very difficult in practice to assume a small enough sensible range of the effective doses

to achieve these values. For the ”mtcars” dataset, it is sensible to assume a range the

same as the range of observed covariates, at [10−35], which gives θ10,35 = 2.508589 and

c = 2.236477 and 1.96 respectively for AS2 and AS1 confidence sets, which represents

a negligible improvement. The values of c were almost identical over[15 − 25] with

θ15,25 = 1.802701, and eventually with a very small sensible range of [20 − 25], we

get θ20,25 = 0.915296 with AS1 and AS2 c values as 2.197 and 1.898. However the

confidence set in this case, at p = 0.4 for AS2 sets gave an interval [14.68, 26.1] which

is much wider than the assumed range. As such, this small a sensible range was not

acceptable. More work in this area is needed to show that a sensible range can give a

small enough θab to achieve a significant, if at all, reduction in the value of c, over the

methods of Chapter 4.

105



106



Chapter 6

Conclusions and Further Work

The thesis conducts research into optimal designs for one covariate simultaneous con-

fidence bands constrained over a finite interval. Unlike previous work, the thesis has

focused on optimal designs under a continuous framework, and formulated the Average

Width and Minimum Area Confidence Set criterion functions for continuous designs.

In doing so, a method of numeric analysis has been developed where designs may be

defined over a two dimensional surface that is constrained within intervals. This ad-

dresses the limitation of the numeric analysis conducted in Ah-Kine (2010), and permits

a numeric search algorithm for the optimal. We showed numerically that for a Scheffé

type or constant width type band over [−1, 1], the best design was D optimal for both

criteria for a given constant N and α. We also showed strong evidence that this is the

case for all possible N and α. An analytical proof was also attempted for the first time

by applying the methods of Silvey (1980) to the dual objective function.

A method is also introduced to construct simultaneous confidence sets on the ef-

fective dose by inverting Scheffé type confidence bands, that are less conservative than

currently established methodology. The method hinges on establishing specialised val-

ues of the critical constant c, involving one dimensional integration, to obtain simulta-

neous confidence sets for a specific number of effective doses. Both one and two sided

simultaneous confidence sets are fully defined for two, three and four effective doses for

one covariate models, with two sided sets for two effective doses available for multiple

covariate models. The same sets are also constructed under the stipulation that the

effective doses lie over some sensible range. These are shown to be an improvement

over the previous methods with examples.

Furthermore, the thesis identifies a number of problems that may be of interest

in further research. An analytical proof of the optimal designs for Scheffé type and

constant width bands, constrained over a finite interval remains to be proven. The

thesis manipulates the criterion function into an appropriate function ψ, but ran into

difficulty applying Theorem 3.2 due to the complicated nature of the derivatives. Prov-

ing the required properties of these derivatives to apply this Theorem warrants further

investigation.

The numeric analysis is flawed in that bounding the variables m1 and m2 over a

rectangular interval is not entirely appropriate, as they are not independent of one
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another. This limited the utility of numeric methods. In practice the investigation

would be of greater utility if one could establish the surface area in which the points

(m1,m2) correspond only to real designs, of which is contained within the rectangular

bound. For [−1, 1] this area is likely parabolic, however the surface will likely change

with the number of design points, and the support.

For Chapter four, with the exception of two sided sets for k = 2, the main limitation

is that the improved methodology for simultaneous confidence sets on the effective dose

only applies to a univariate linear model. Trying to generalise the methods to obtain

the relevant c for a multiple covariate model represents a significant challenge. The

thesis considered a geometric approach. In order to extend this approach to a multiple

covariate problem, one would have to minimise, with respect to k effective doses, the

probability ofN lying in a 2k sided (or k in the one sided case) q+1 dimensional region.

As many interesting problems in real life involve multiple covariate models, this is an

area of further research of particular interest. An algebraic, or numeric approach could

be considered an alternative when more than one covariate is considered.

Finally we note that the critical constant for the confidence bands, used to gen-

erate the confidence sets of the Scheffé band method do not depend on the design,

the precise difficulty with the research conducted in Chapter three. Hence it is realis-

tically possible to obtain the optimal design of experiments that minimise the size of

the simultaneous confidence sets on the effective dose, including the original, and the

adapted methodology established in this thesis.

The most important contribution of the thesis is the method to construct improved

simultaneous confidence sets on the effective dose. These methods are immediately

applicable to univariate linear GLM, and are guaranteed to be at least as informative

as the current Scheffé band method. It can be easily used in replacement, provided the

number of effective doses is specified, by simply changing the value of c.

108



Appendices

A: Proof Of Theorem 3.1

If the support of the design is [a,A] then we may write xi = A−ei where ei ∈ [0, A−a].

We may then write

m1 =
n∑

i=1

pixi

=
n∑

i=1

pi(A− ei)

=A
n∑

i=1

pi −
n∑

i=1

piei

=A−
n∑

i=1

piei ≤ A

since both pi and ei are always at least zero. By instead setting xi = a+ei, ei ∈ [0, A−a]

we immediately have

m1 = a+
n∑

i=1

piei ≥ a.

Hence m1 ∈ [a,A] as required. It is immediately obvious that m2 is always at least

greater than zero, and may attain the value of zero when 0 ∈ [a,A], when the design is

a special case that has one design point x1 = 0 with p1 = 1. Let xi = A− ei, then
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m2 =

n∑

i=1

pix
2
i

=

n∑

i=1

pi(A− ei)2

=

n∑

i=1

pi(A
2 − 2Aei + e2i )

2

=A2
n∑

i=1

pi −
n∑

i=1

(−2Apiei) +

n∑

i=1

pie
2
i

=A2 +

n∑

i=1

pi(e
2
i − 2Aei)

=A2 +

n∑

i=1

pi(ei(ei − 2A)).

Therefore m1 ≤ A2 when
∑n

i=1 pi(ei(ei − 2A)) ≤ 0. This is guaranteed if ei − 2A ≤
0 ∀i = 1, . . . , n. As ei ∈ [0, A− a], its maxmum value is A− a and hence this condition

is guaranteed when A − a ≤ 2A, or A + a ≥ 0. With xi = a + ei a similar argument

gives

m2 = a2 +
n∑

i=1

pi(ei(ei + 2a)).

This is less than a2 when ei + 2a ≤ 0 with ei at its maximum at A − a, that is hence

when A − a + 2a ≤ 0 or when A + a ≤ 0 as required. When A = −a it is clear that

either case is correct. These conditions also clearly cover all possible a < A and the

proof is finished.
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B: List Of ”R” Codes For Numeric Analyses

R Codes For Datasets

• Linear reg bands.R” Simultaneous confidence bands for the ”bloodfat” dataset.

• ”Plotting confidence bands for logistic- final.R” Simultaneous confidence bands

and confidence sets for the heart exercise dataset.

• ”Logistic Confidence bands.R” Simultaneous confidence bands and confidence

sets for the ”mtcars” dataset.

Chapter 3

• ”Constant aw complete code.R” Response surface investigation for the Average

Width of a constant width band.

• ”Constant Macs complete code.R” Response surface investigation for the MACS

criterion of a constant width band.

• ”Hyperbolic aw complete code.R” Response surface investigation for the Average

Width of a Scheffé type band.

• ”Hyperbolic Macs complete code.R” Response surface investigation for the MACS

criterion of a Scheffé band.

• ”optimCAW.R” Optimisation algorithm for the Average Width of a constant

width band.

• ”optimCMACS.R” Optimisation algorithm for the MACS criterion of a constant

width band.

• ”optimHYAW.R” Optimisation algorithm for the Average Width of a Scheffé type

band.

• ”optimHYMACS.R” Optimisation algorithm for the MACS criterion of a Scheffé

band.

• ”optimCAWe.R” End point optimisation algorithm for the Average Width of a

constant width band.

• ”optimCMACSe.R” End point optimisation algorithm for the MACS criterion of

a constant width band.

• ”optimHYAWe.R” End point optimisation algorithm for the Average Width of a

Scheffé type band.

• ”optimHYMACSe.R” End point optimisation algorithm for the MACS criterion

of a Scheffé band.
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Chapter 4

• ”c values.R” Critical constants for two sided simultaneous confidence sets.

• ”c values one sided.R” Critical constants for one sided simultaneous confidence

sets.

Chapter 5

• ”c values for finite effective dose.R” Critical constants for two sided simultaneous

confidence sets for constrained effective doses.

• ”finite c one sided.R” Critical constants for one sided simultaneous confidence

sets for constrained effective doses.
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