
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL AND HUMAN SCIENCES

School of Mathematics

Models and Algorithms for Assignment and
Cache Allocation Problems in Content

Distribution Networks

by

Narges Haghi

Thesis for the Degree of Doctor of Philosophy

June 2016

i

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

SCHOOL OF MATHEMATICS

Doctor of Philosophy

Models and Algorithms for Assignment and Cache Allocation Problems in

Content Distribution Networks

by Narges Haghi

This thesis considers two difficult combinatorial optimization problems for request routing

and client assignment in content distribution networks. The aim is to introduce lower and

upper bounds to estimate optimal solutions. Existing solution methods and techniques

for similar problems have been reviewed. The first problem consists of minimizing the

total network cost for request routing with no origin server by considering the delay

function. The second problem is cache allocation problem. Lagrangian relaxation and

two perspective cuts are used to linearize first problem and to find valid lower bounds. Two

different linearization methods are implemented for cache allocation problem. Iterated

Variable Neighborhood Descent and Tabu Search are two solution methods which are

suggested to find best upper bounds. Different local search operators are introduced

to improve objective function values as follows: swap, remove-insert, insert from origin

server to a proxy, insert from one proxy to another proxy, swap between origin server and

a proxy, swap between two proxies and cyclic exchange. All computational results are

presented on randomly generated instances.

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contribution and Objective of Our Research 3

1.3 Overview of the Thesis . 5

2 Literature Review 7

2.1 Background . 7

2.2 Literature Review on CDN . 10

2.2.1 Client Assignment Problems . 11

2.2.2 Cache Allocation Problems . 19

2.3 Optimization Models for Assignment and cache Allocation Problems 23

2.3.1 Object Retrieval and Request Routing 25

2.3.2 Objects in a Network of Caches . 26

2.4 Solution Methodologies . 28

2.4.1 Computational Complexity Theory 28

2.4.2 Exact Solution Methods . 30

2.4.2.1 Branch and Bound . 30

2.4.2.2 Bin Packing . 31

2.4.2.3 Lagrangian Relaxation . 32

2.4.3 Integer Programming Formulation Based on Linearization 33

2.4.3.1 Relaxation by Linearization Methods for Mixed 0-1 Poly-

nomial Problem . 34

2.4.4 Heuristics and Metaheuristics . 36

iii

2.4.4.1 Local Search . 37

2.4.4.2 Variable Neighbourhood Descent 38

2.4.4.3 Iterated Local Search . 39

2.4.4.4 Iterated Variable Neighbourhood Descent 40

2.4.4.5 Tabu Search . 41

2.5 Discussion . 43

3 Lower Bounding Techniques and Metaheuristics for Object Retrieval

and Request Routing Problem 46

3.1 Introduction . 46

3.2 Problem Definition and Formulation . 48

3.3 Lower Bound Techniques . 50

3.3.1 Lagrangian relaxation and Decomposition 50

3.3.1.1 Lagrangian Relaxation . 51

3.3.1.2 Solving LRX . 52

3.3.1.3 Solving LRF . 53

3.3.1.4 Solving LRZ . 54

3.3.2 Solving the Relaxed Problem . 55

3.3.3 Linearization Schemes . 56

3.3.3.1 Scheme I . 57

3.3.3.2 Scheme II . 57

3.3.4 Comparison Scheme I & Scheme II 58

3.4 Metaheuristics . 59

3.4.1 Neighbourhoods . 60

3.4.1.1 Swap . 61

3.4.1.2 Remove-Insert . 62

3.4.2 Constructive Heuristic Algorithm to Find Initial Solutions 63

3.4.3 Variable Neighbourhood Descent (VND) 64

3.4.4 Iterated Variable Neighbourhood Descent (IVND) 64

3.4.5 Tabu Search . 65

iv

3.5 Computational Results . 67

3.5.1 Design of Instances . 67

3.5.2 Computational Results for Small Instances 70

3.5.3 Computational Results for Large Instances 72

3.5.3.1 Lower Bound Results . 72

3.5.4 Upper Bound Results . 74

3.5.5 Comparison Lower Bounds and Upper Bounds 77

3.6 Discussion . 80

4 Lower Bounding Techniques and Metaheuristics for Cache Allocation

Problem 84

4.1 Problem Definition and Formulation . 85

4.2 Linearization Techniques . 88

4.2.1 Linearization I . 89

4.2.2 Linearization II . 90

4.3 Metaheuristics . 91

4.3.1 Neighbourhoods . 91

4.3.1.1 Insert from Origin Server to a Proxy 92

4.3.1.2 Insert From One Proxy to Another Proxy 92

4.3.1.3 Swap Between Origin Server and a Proxy 93

4.3.1.4 Swap Between Two Proxies 94

4.3.1.5 Cyclic Exchange . 94

4.3.1.6 Remove-Insert . 95

4.3.2 Heuristics Algorithms to Find Initial Solution 96

4.3.3 Variable Neighbourhood Descent (VND) for Cache Allocation Prob-

lem . 98

4.3.4 Iterated Variable Neighbourhood Descent (IVND) for Cache Allo-

cation Problem . 99

4.3.5 Tabu Search (TS) for Cache Allocation Problem 100

4.4 Computational Results . 101

v

4.4.1 Design of Instances . 102

4.4.2 Computational Results for Linearizations 102

4.4.3 Computational Results for Metaheuristics 106

4.4.3.1 Parameter Setting . 106

4.4.3.2 Upper Bounds Results . 108

4.4.3.3 Comparison Upper Bounds and Lower Bounds 109

4.5 Discussion . 111

5 Concluding Remarks and Future Work 114

5.1 Research Outcomes . 114

5.2 Further Research . 117

5.3 Final Remark . 118

A Computational Results for Small Instances 119

B Computational Results 122

B.1 Report of the Results on the Network Transfer Cost and Delay Cost Indi-

vidually . 123

B.2 Finding the Best Maximum Number for Iteration in Lagrangian Relaxation 125

B.3 Mixed Integer Programming (MIP) and Linear Programming Relaxation

(LPR) . 134

B.4 Lagrangian Relaxation and Linear Programming Relaxation 140

B.5 Finding the Best Number for the Size of Shaking 157

B.6 Finding the Best Computational Time for Instances 164

B.7 Finding the Best Size for Tabu List . 165

B.8 Computational Results for Iterated Variable Neighbourhood Descent and

Tabu Search . 168

B.9 Computational Results for Best Upper Bound and Best Lower Bound . . . 177

B.10 Computational Results for Lagrangian Relaxation and Tabu Search 186

B.11 Computational Results for Lagrangian Relaxation and Iterated Variable

Neighbourhood Descent . 196

vi

B.12 Computational Results for Tabu Search and Linear Programming Relaxation206

C Computational Results for Cache Allocation Problem 215

C.1 Finding the Best Percentage for Capacity of Proxy 216

C.2 Upper Bound Computational Results . 219

References 231

List of Figures

2.1 Model of CDN . 8

3.1 Lower Bound for Four Different Instances Respect to Iterations 69

B.1 Global Bound Respect to 100 Iterations 1 127

B.2 Global Bound Respect to 100 Iterations 2 129

B.3 Global Bound Respect to 100 Iterations 3 131

B.4 Global Bound Respect to 100 Iterations 4 133

B.5 Calculating the size of shaking (1) . 159

B.6 Calculating the size of shaking (2) . 161

B.7 Calculating the size of shaking (3) . 163

List of Tables

3.1 List of Acronyms for Table 3.2 . 70

3.2 Computational Results for Small Instances 71

3.3 Gaps Between Mixed Integer Programming and Linear Programming Re-

laxation . 73

3.4 Gaps Between Iterated Variable Neighbourhood Descent and Tabu Search . 76

3.5 Comparison Best Lower Bound with Best Upper Bound 78

4.1 List of Acronyms for Tables 4.2 and 4.3 . 103

4.2 Linearization I & II Capacity of Each Proxy is 5% 104

4.3 Linearization I & II Capacity of Each Proxy is 7.5% 105

4.4 Finding the Best Computational Time Limit 107

4.5 Finding the Best Size for Shaking . 107

4.6 Finding the Best Size for Tabu List . 108

4.7 Gaps Between Iterated Variable Neighbourhood Descent and Tabu Search . 109

4.8 Comparison Best Upper Bound and Best Lower Bound 110

A.1 Computational Results for Small Instances (1) 120

A.2 Computational Results for Small Instances (2) 121

B.1 Results for Network Transfer Cost and Delay Cost 124

B.2 |I|=10, |J|=15, |K|=200, δ=0.8, δ′=0.9 . 126

B.3 |I|=10, |J|=15, |K|=400, δ=0.8, δ′=0.9 . 128

B.4 |I|=50, |J|=5, |K|=40, δ=0.9, δ′=0.9 . 130

B.5 |I|=100, |J|=5, |K|=40, δ=0.8, δ′=0.8 . 132

ix

B.6 Mixed Integer Programming and Linear Programming Relaxation(1) 134

B.7 Mixed Integer Programming and Linear Programming Relaxation (2) . . . 135

B.8 Mixed Integer Programming and Linear Programming Relaxation (3) . . . 135

B.9 Mixed Integer Programming and Linear Programming Relaxation (4) . . . 136

B.10 Mixed Integer Programming and Linear Programming Relaxation(5) 136

B.11 Mixed Integer Programming and Linear Programming Relaxation (6) . . . 137

B.12 Mixed Integer Programming and Linear Programming Relaxation (7) . . . 137

B.13 Mixed Integer Programming and Linear Programming Relaxation (8) . . . 138

B.14 Final Gaps Between Mixed Integer Programming and Linear Programming

Relaxation . 139

B.15 Lagrangian Relaxation and Linear Programming Relaxation I (1) 141

B.16 Lagrangian Relaxation and Linear Programming Relaxation I (2) 142

B.17 Lagrangian Relaxation and Linear Programming Relaxation I (3) 143

B.18 Lagrangian Relaxation and Linear Programming Relaxation I (4) 144

B.19 Lagrangian Relaxation and Linear Programming Relaxation I (5) 145

B.20 Lagrangian Relaxation and Linear Programming Relaxation I (6) 146

B.21 Lagrangian Relaxation and Linear Programming Relaxation I (7) 147

B.22 Lagrangian Relaxation and Linear Programming Relaxation I (8) 148

B.23 Lagrangian Relaxation and Linear Programming Relaxation II (1) 149

B.24 Lagrangian Relaxation and Linear Programming Relaxation II (2) 150

B.25 Lagrangian Relaxation and Linear Programming Relaxation II (3) 151

B.26 Lagrangian Relaxation and Linear Programming Relaxation II (4) 152

B.27 Lagrangian Relaxation and Linear Programming Relaxation II (5) 153

B.28 Lagrangian Relaxation and Linear Programming Relaxation II (6) 154

B.29 Lagrangian Relaxation and Linear Programming Relaxation II (7) 155

B.30 Lagrangian Relaxation and Linear Programming Relaxation II (8) 156

B.31 Calculating the size of shaking (1) . 158

B.32 Calculating the size of shaking (2) . 160

B.33 Calculating the size of shaking (3) . 162

B.34 Finding the Best Computational Time for Instances 164

x

B.35 Finding the Best Tabu List Size δ=0.8 . 166

B.36 Finding the Best Tabu List Size δ=0.9 . 167

B.37 Iterated Variable Neighbourhood Descent and Tabu Search (1) 169

B.38 Iterated Variable Neighbourhood Descent and Tabu Search (2) 170

B.39 Iterated Variable Neighbourhood Descent and Tabu Search (3) 171

B.40 Iterated Variable Neighbourhood Descent and Tabu Search (4) 172

B.41 Iterated Variable Neighbourhood Descent and Tabu Search (5) 173

B.42 Iterated Variable Neighbourhood Descent and Tabu Search (6) 174

B.43 Iterated Variable Neighbourhood Descent and Tabu Search (7) 175

B.44 Iterated Variable Neighbourhood Descent and Tabu Search (8) 176

B.45 Best Upper Bound and Best Lower Bound (1) 178

B.46 Best Upper Bound and Best Lower Bound (2) 179

B.47 Best Upper Bound and Best Lower Bound (3) 180

B.48 Best Upper Bound and Best Lower Bound (4) 181

B.49 Best Upper Bound and Best Lower Bound (5) 182

B.50 Best Upper Bound and Best Lower Bound (6) 183

B.51 Best Upper Bound and Best Lower Bound (7) 184

B.52 Best Upper Bound and Best Lower Bound (8) 185

B.53 List of Acronyms for Table B.62 . 186

B.54 Lagrangian Relaxation and Tabu Search (1) 187

B.55 Lagrangian Relaxation and Tabu Search (2) 188

B.56 Lagrangian Relaxation and Tabu Search (3) 189

B.57 Lagrangian Relaxation and Tabu Search (4) 190

B.58 Lagrangian Relaxation and Tabu Search (5) 191

B.59 Lagrangian Relaxation and Tabu Search (6) 192

B.60 Lagrangian Relaxation and Tabu Search (7) 193

B.61 Lagrangian Relaxation and Tabu Search (8) 194

B.62 Gaps Between Lagrangian Relaxation and Tabu Search 195

B.63 List of Acronyms for Table B.64 . 196

B.64 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (1) . 197

xi

B.65 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (2) . 198

B.66 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (3) . 199

B.67 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (4) . 200

B.68 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (5) . 201

B.69 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (6) . 202

B.70 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (7) . 203

B.71 Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (8) . 204

B.72 Gaps between Lagrangian Relaxation and Iterated Variable Neighbourhood

Descent . 205

B.73 Gaps between Tabu Search and LPR1 (δ=0.8) (1) 207

B.74 Gaps between Tabu Search and LPR1 (δ=0.8) (2) 208

B.75 Gaps between Tabu Search and LPR2 (δ=0.8) (1) 209

B.76 Gaps between Tabu Search and LPR2 (δ=0.8) (2) 210

B.77 Gaps between Tabu Search and LPR1 (δ=0.9) (1) 211

B.78 Gaps between Tabu Search and LPR1 (δ=0.9) (2) 212

B.79 Gaps between Tabu Search and LPR2 (δ=0.9) (1) 213

B.80 Gaps between Tabu Search and LPR2 (δ=0.9) (2) 214

C.1 Test Instance Linearization I . 217

C.2 Test Instance Linearization II . 218

C.3 TS with Constructive Heuristic Algorithm with 5% Capacity 219

C.4 TS with Greedy Heuristic Algorithm with 5% Capacity 220

C.5 IVND with Constructive Heuristic Algorithm with 5% Capacity 221

C.6 IVND with Greedy Algorithm with 5% Capacity 222

C.7 Compare TS and IVND with Constructive Heuristic Algorithm with 5%

Capacity . 223

C.8 Compare TS and IVND with Greedy Algorithm with 5% Capacity 224

C.9 TS with Constructive Heuristic Algorithm with 7.5% Capacity 225

C.10 TS with Greedy Algorithm with 7.5% Capacity 226

C.11 IVND with Constructive Heuristic Algorithm with 7.5% Capacity 227

C.12 IVND with Greedy Algorithm with 7.5% Capacity 228

xii

C.13 Compare TS and IVND with Constructive Heuristic Algorithm with 7.5%

Capacity . 229

C.14 Compare TS and IVND with Greedy Algorithm with 7.5% Capacity 230

List of Algorithms

1 Steps of Local Search (Descent) . 37

2 Steps of Basic VND . 38

3 Iterated Local Search . 40

4 Iterated Variable Neighbourhood Descent 41

5 Tabu Search . 43

6 Solving the Assignment Problem (LRX) 53

7 Dynamic Programming (LRZ) . 55

8 Sub-gradient Optimisation Algorithm . 56

9 The Method of Computing the Value of xijk 60

10 Swap Algorithm . 61

11 Remove-Insert Algorithm . 62

12 Constructive Heuristic Algorithm to Find Initial Solution 63

13 Variable Neighbourhood Descent (VND) 64

14 Iterated Variable Neighbourhood Descent (IVND) 65

15 Tabu Search . 66

16 Insert from Origin Server to a Proxy . 92

17 Insert From One Proxy to Another Proxy 93

18 Swap Between Origin Server and a Proxy 93

19 Swap Between Two Proxies . 94

20 Cyclic Exchange . 95

21 Remove-Insert . 96

22 Constructive Heuristic Method to Find Initial Solution 97

xiv

23 Greedy Algorithm to Find Initial Solution 97

24 Variable Neighbourhood Descent (VND) for Cache Allocation Problem . . 98

25 Iterated Variable Neighbourhood Descent (IVND) for Cache Allocation

Problem . 99

26 Tabu Search for Cache Allocation Problem 100

Declaration of Authorship

I, Narges Haghi, declare that the thesis entitled “Models and Algorithms for Assignment

and Cache Allocation Problems in Content Distribution Networks” and the work presented

in the thesis are both my own, and have been generated by me as the result of my own

original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly attributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• none of this work has been published before submission.

Signed:...

Date:..

xvi

Acknowledgements

Thanks to Almighty God for graciously bestowing me the perseverance to undertake this

research. I would like to express my deep gratitude and appreciation to my supervisor

Professor Chris Potts for his invaluable advice and his enthusiasm and inspiration has

always stimulated me to take steps forward. This thesis would not be possible without

generous support in all aspects of my graduate study specially from last year. Also, I

would like to express my appreciation to my supervisor Dr Güneş Erdoğan.

I would like to thank my family, my parents Ahmad Haghi and Ghodsi Hejazi, for sup-

porting me spiritually throughout my life. My sincere thanks also go to all of my friends

for their love, encouragement and support during my studies. A special thank to Paul

and Lorraine Abeyta, their prayer for me was what sustained me thus far.

I would like to express appreciation to my beloved husband Farshad for the love, kindness

and support he has shown during the past two years, it has taken me to finalize this thesis.

Without him, this thesis would not exist. I would like to thank my daughter, Melika to

accommodate with her patient with new situation.

To

My Dearest Husband

Farshad

&

My Lovely Daughter

Melika

Chapter 1

Introduction

1.1 Background

Over the past years, the Internet has had an important effect on the way business trans-

actions are carried out. For most businesses, the performance of Web connections has

a direct impact on their profit. For example, the lack of network management, in turn,

makes it very difficult to guarantee satisfactory proper performance and to deal with

related problems. The available network bandwidth and server capacity continue to be

exhausted by the increasing number of users and by the accelerating growth of request

for bandwidth intensive content.

The delays experienced by end users have important economic consequences, especially in

electronic marketing. It is controversial as to what constitutes an acceptable waiting time

for a typical Web page download (Bailey and Schaffer, 2001). A typical client is likely to

abandon a Web site failing to respond to download requests in approximately 8 seconds,

according to the report by Zona marketing bulletin (Zona, 2001), which states that “the

amount of time taken for Web pages to load is one of the most critical factors in determin-

ing the success of a site and the satisfaction of its users.” As a result, quality of Internet

services as perceived by customers is becoming unpredictable and unsatisfactory. On the

other hand, the result of the study by Nah (2004) suggests that the time that users are

willing to wait for a Web page to be downloaded before abandoning it, is approximately

1

2 seconds. Selvidge (1999) believes that there is no difference in users’ frustration levels

between a 1 second and 20 seconds delay, but there is difference between a 1 second and

30 seconds delay.

Web page download time is affected by different items such as the structure of the Web

page requested, the network traffic and the speed of the Internet connection. In this

thesis, we focus on network traffic. One of the techniques that reduces the overall traffic

in the network is caching. Caching can be described as holding frequently accessed con-

tent in storage centers called caches, to where future accesses to specific content are made.

The first type of caching implements caching at the client site and since these caches

are usually of limited size, only a restricted amount of content can be stored. When new

content needs to be stored, it must replace an existing object. This brings the need for a

replacement policy to determine which objects should be replaced by new ones. Client-

based caching is therefore rarely used, since it can only serve a relatively small population

of clients. But the real problem with such an approach is that the content provider has

limited control over the content once it has been downloaded from the origin server and

placed into caches (Kangasharju et al., 2002). The second type, server-based caching, is

performed by installing additional caches at various places within the server. The third

type of caching is usually performed using a Web proxy located somewhere between the

client site and an origin server. When a client issues a request, the proxy will intercept

the request and serve the client if the requested content is located in the cache; otherwise,

the request will be sent to the server and the content will be accessed from the server

itself. A copy will be stored at the proxy to serve further requests. These proxies are at

different locations on the network, so they can serve a large number of clients and are

very effective in reducing the network traffic.

Efforts to overcome delays in Internet traffic has given way to a new emerging tech-

nology called Content Distribution Network (CDN). According to Buyya et al. (2008).

CDN is an effective approach to improve Internet service quality which is used in this

2

study and will be discussed in Chapter 3 and 4 in this thesis. It replicates the content

from the place of origin to replica servers over the Internet and serves the request from

a replica server close to where request originates. A CDN aims at moving content as

close as possible to clients. Therefore, a CDN can significantly improve performance of a

network and reduce the total cost associated with distributing content, since clients are

no longer served by origin server, but from a proxy server located nearby.

A content provider who issues the content for public use, may choose to resort to a

commercial CDN to have its content efficiently distributed to its users. It is often the

case that there is some kind of a Service Level Agreement (SLA) between the publisher

and the CDN provider, usually the hosting service, that includes some kind of a Quality of

Service (QoS) requirement. QoS refers to a wide collection of networking techniques and

technologies. The aim of QoS is to provide guarantees on the ability of a network to de-

liver predictable results. Elements of network performance within the scope of QoS often

include availability, bandwidth, latency, error rate and security of the service. Therefore,

in performing the distribution operations, CDN must also take into account QoS (Peng,

2004).

1.2 Contribution and Objective of Our Research

The main contribution of this thesis is to create two new models to use in a CDN, and

to design methods for obtaining solutions. This has been achieved by considering two

optimization models in CDN with added delay and cache allocation, respectively. Se-

lecting the best proxy for client with lowest response time by reducing expenditure is a

major consideration in CDN. Usually, from the perspective of CDN provider, reducing

expenditure helps to minimize the total cost.

Two models will be used to minimize the total access cost, which is the main objec-

tive of this study. In this thesis, one of the main objectives is to examine the effect of

adding delay consideration into one of the CDN problems. The first model is to use one

3

of the CDN models together with an added delay consideration. This model is related to

the data placement problem on a network with no origin server, which consists of placing

objects to minimize the average access cost, subject to the availability of system resources

and traffic patterns. The traffic in the new formulation will be less than or equal to the

capacity of the link. Lagrangian relaxation and decomposition approaches will be consid-

ered to find lower bounds due to the large scale and complexity of the problem making

exact solution methods unsuitable. Also, two complicating constraints which are related

to the amount of traffic in the link and the assignment will be used to relax this prob-

lem. The problem is non-linear and can be challenging to solve. Due to the non-linearity,

an integer programming formulation based on linearization through perspective cuts will

be proposed by using tangents of the function as valid inequalities to provide a lower

bound. In order to improve results and achieve stronger bounds, between consecutive

integer points in the function, we will consider linear segments instead of tangents where

the segments pass through two consecutive integer points.

The second model is cache allocation. This problem explores the benefit of collabora-

tion of objects, which refers to the sharing objects between a network of proxy caches. In

such a network, if one proxy does not have an object, a neighbouring proxy can provide

service. The point of using this strategy is that if an object is demanded from the cache

that does not have a copy of the required object, it can be found in a neighbour cache.

Each object can be assigned to each proxy at most once, which makes it difficult to solve.

This strategy results in cost reduction, because instead of going to the origin server to get

the objects, they can be retrieved from neighbouring caches. A local cluster of proxies

will be considered by putting an object in each proxy to avoid having to use slower ori-

gin server. Essentially all proxies will be identical, but of different sizes in general. The

objective function assumes that there is no difference where to place the object as each

proxy has the same cost.

For both models as discussed above, Iterated Variable Neighbourhood Descent (IVND)

and Tabu Search (TS) will be used to find upper bounds. IVND combines the strengths

4

of Iterated Local Search (ILS) and Variable Neighbourhood Descent (VND). In addition,

IVND performs well over a range of problem types and is usually competitive with other

heuristic and metaheuristics. Also, IVND is flexible and problem independent, and is

easy to implement. Tabu search is another method that is competitive across a range of

problem types.

For the first model, optimal solution will be found by the NEOS server and compared

with integer programming techniques and Lagrangian relaxation for lower bounds and It-

erated Variable Neighbourhood Descent (IVND) and Tabu Search (TS) for upper bounds.

Also, Iterated Variable Neighbourhood Descent (IVND) and Tabu Search (TS) will be

applied to the second model for upper bounds and linearizations for lower bounds. For

the two models, the aim is to evaluate the quality of lower bounds and upper bounds by

calculating the gap between them.

1.3 Overview of the Thesis

The remainder of thesis is categorized as follows: In Chapter 2, a more extensive review

of Content Distribution Network (CDN) and optimization models is provided since this

is the main focus of this research. This chapter also includes various concepts and dif-

ferent solution methodologies such as: computational complexity theory; heuristics and

metaheuristics; exact solution methods and integer programming formulations based on

linearization. Optimization models have been divided into two independent problems.

Chapter 3 presents an optimization model related to object retrieval and request rout-

ing problem. Also, this chapter contains a problem description, a new formulation with

delay function, lower bound techniques, and metaheuristics that are normally used to

solve problems related to CDN, as well as computational results alongside design of test

instances.

Chapter 4 deals with the second problem, which is cache allocation. This study pro-

poses a new model by considering a local cluster of proxies and placement of each object

5

in an appropriate proxy to avoid having to use the slower origin server. Demand is mea-

sured by expected requests and can be satisfied by any proxy that holds the object of

interest. This chapter also presents two different linearizations and two metaheuristic

methods. Computational results with test instances and a discussion of results are pro-

vided for the proposed approaches. Finally, concluding remarks and some future research

directions are given in Chapter 5.

6

Chapter 2

Literature Review

2.1 Background

The term content refers to any kind of information that is available to the public on the

Word Wide Web such as Web pages, text documents, and multimedia files. An object

refers to a specific item of the content, such as a sound file or a text document. Three

main entities are in a CDN as follows:

• Content Provider (or customer): origin servers where original Web objects to be

distributed are stored.

• CDN Provider: a company or organization that provides fundamental facilities

to content providers in order to maintain copies of the content. This allows the

providers to deliver content with high performance and high availability.

• End-user (or client): the end-users who access content from the Web sites of the

content provider.

CDN providers use caching or replica servers located in different areas of the world to

replicate content. CDN cache servers are called edge servers or surrogates. The edge

server of a CDN is called Web cluster. A CDN distributes contents to surrogates, so all

of them can share the same content. When a client requests an object, it is redirected to

a nearby surrogate and the requested content is delivered to the client. After that, the

7

surrogate sends accounting information for the delivered content to the accounting system

of the CDN and reports traffic and billing data. Figure 2.1 shows a CDN network where

content is distributed to a set of Web servers, broadcasted over the world for delivering

content to clients. Each client is served by a nearby surrogate Web server. The objective

is to provide high availability of the content and quick response.

CDN Content
Distributed

China

USA

Europe

Russia

India

Surrogate Server in Russia

Surrogate Server in USA

Surrogate Server in Europe

Surrogate Server in India

Surrogate Server in China

Origin Server

Figure 2.1: Model of CDN

CDN can be considered as a graph when a set of proxies with objects inside them connect

together. The interconnected proxies are called vertices (nodes) and the links that connect

some pairs of vertices are called edges (lines). A CDN focuses on building its network

infrastructure to provide different services such as: cache management, delivery of data,

storage and management of content and distribution of content among edge servers. A

content provider (customer) uses a CDN provider for service and to have its content on

the cache servers. Typically customers of a CDN are media and Internet advertisement

companies, Internet service providers (ISPs), mobile operators and other carrier compa-

nies. Each of these customers want to deliver their contents to end users on the Internet

in a reliable and timely manner.

8

Clients can interact with the CDN by specifying the content request through a cell phone,

laptop, small phone or desktop (Pathan et al., 2008). CDN providers charge their cus-

tomers according to the content delivered (i.e. traffic) to the end users by their edge

servers. CDNs have an accounting mechanism that collects and tracks client usage infor-

mation in real time according to request routing, distribution and delivery. The average

cost of charging of CDN services is high. The most important factors affecting the price

of CDN services include: bandwidth cost, variation of traffic distribution (pricing under

different situations of traffic), size of content replicated over surrogate server and the

number of edge servers.

The efficiency of distributing electronic content is affected by increasingly popularity of the

World Wide Web and the high demand for electronic information. The size of delivered

content and number of users grow steadily, thus resulting in increased loads for servers

and network congestion, and unacceptable delays for end users often occur. Because of

these reasons, distribution of electronic content has become an important problem. The

main objective of CDN is to replicate content from the origin server to geographically

distributed proxy servers, and then deliver requested content to clients from proxy servers

rather than the origin server.

A CDN tries to improve the performance of the network by reducing the total cost related

to distributing content, when the client is no longer served by the origin server, but instead

is served by a nearby proxy server. Because of this reason, CDNs try to move content as

close as possible to the clients. Due to the limited capacity of the proxy servers and the

high cost of replication, it is not practical to replicate the whole content to each proxy

server in a CDN. Therefore, to use network resources efficiently, a CDN must replicate

the subsets of the content in an intelligent way. This problem is referred to as the object

placement problem. Another challenge for CDN is to identify the best proxy server that

should respond to a given request from a client. This problem is referred to as the client

assignment problem.

9

2.2 Literature Review on CDN

Two problems that we are trying to solve have the characteristic of facility location and

knapsack problems. The facility location problem is a critical element in strategic planning

for a wide range of private or public firms. A CDN is a system of distributed networks that

deliver Web pages and other Web content to a client based on the geographic locations

of the client. This service is effective in speeding up the delivery of the content of Web

sites with high traffic and Web sites that have global reach. If the client is close enough

geographically to the CDN server, then the content will be delivered to the client faster.

Therefore, a CDN has the characteristic of a facility location problem. The development

of a new facility is typically costly and time-sensitive project. So, before purchasing or

constructing a facility, suitable locations must be identified and appropriate facility ca-

pacity specifications must be determined (Owen and Daskin, 1998).

In a CDN, one of the models that connects the client’s request for an object directly

to the origin server, when the object is not available in any other proxy servers, is the

client assignment problem (Thomas and VanderMeer, 2003). When the storage capacities

of proxy servers are limited, there are many requests forwarded to the origin server. The

client assignment mechanism is generally route requests to the best CDN serve (Barbir

et al., 2003). The objective function is to minimize the total cost to retrieve all objects

that are requested at a particular time.

Also, the proposed models have a knapsack problem characteristic because each proxy

has a capacity and each object has a size, and we are choosing a subset of n objects and

trying to fill each proxy without exceeding its capacity. All knapsack problems belong to

the family of NP-hard problems, meaning that it is unlikely that anyone can devise poly-

nomial algorithms for these problems. The outcome of several decades of research which

have exposed the special structural properties of knapsack problems, make the problems

easy to solve. Martello and Toth (1990) believe that all knapsack algorithms have the

exponential worst-case solution time, but several large-scale instances may be solved to

10

optimality in fractions of a second.

2.2.1 Client Assignment Problems

Different techniques for redirecting user requests to a suitable CDN server to reduce re-

quest latency and to balance load are studied in Qiu et al. (2001). The authors explore

the problem of Web server replica placement and believe that the assumption of the tree

topology makes it possible to obtain an optimal solution to the placement problem when

the constraints are satisfied. In a more general setting it does not perform as well as the

heuristics that work in general graph topologies. Moreover, its high computational com-

plexity (O(n3m2) for choosing m proxies among n potential sites) prevents its practical

use in topologies with thousands of nodes.

Qiu et al. (2001) describe two versions of the center placement problem: one is the

uncapacitated or capacitated facility location problem, and the other is the minimum

K-median problem, both of which are NP-hard. They prefer to use the uncapacitated

minimum K-median problem where they restrict the maximum number of replicas, but

not the number of requests served by each replica. They state that this is a reasonable

model because increasing the number of replica sites is significantly more difficult than

increasing the capacity of a site. They also ignore the cost of placing replicas.

An assortment of algorithms such as: a tree-based algorithm, a greedy algorithm, a ran-

dom algorithm and a hot-spot algorithm are proposed for solving the minimum K-median

problem. A tree-based algorithm performs better than random placement, but not as well

as the algorithms for general graph topologies. A greedy algorithm that places replicas

based upon both a distance metric and request load, performs the best. Also, a hot-spot

algorithm based upon request load, performs nearly the same. The main conclusion of

their work is that a greedy algorithm for Web server, replica placement can provide con-

tent distribution networks with performance that is close to optimal.

On the Internet, an Autonomous System (AS) is the unit of router policy, either a group

11

of networks or a single network that is controlled by a common network administrator

or a group of administrators on behalf of a single administrator entity (such as a univer-

sity) that presents a common, clearly defined routing policy to the Internet. Kangasharju

et al. (2002) propose a model where each Internet Autonomous System (AS) is a node

with finite storage capacity for replicating objects. The average number of AS traversed

is minimized when client can get the requested object from the nearest CDN server.

Kangasharju et al. (2002) formulate the problem as combinatorial optimization problem

and prove that this optimization problem is NP-complete. They develop four heuristics

and compare them numerically by using real Internet topology data. A CDN ensures its

content servers are close to users by placing content servers and clients at the same nodes.

They conclude that each client is usually served by only one proxy server for security

reasons, and the result of retrieving a whole object from a single proxy server is much

better than retrieving different parts of an object from multiple servers.

Thomas and VanderMeer (2003) propose a model with proxy servers and an origin server.

The model considers three different costs: the cost of retrieving an object where the re-

quest is directed from a proxy which has the object, the cost of retrieving an object where

the request is directed to a proxy which does not have the object, so additional cost occurs

to retrieve the object from the origin server, and the cost when the request is routed to

the origin server.

Demand for accessing large files is expected to require high bandwidth capacity and a

high storage server and this is one of the reasons that motivates multimedia providers to

optimize the delivery distance, as well as electronic content allocation. In Cidon et al.

(2002), a distributed algorithm for solving electronic content allocation over a distribu-

tion (directed) tree is presented. This algorithm minimizes the overall cost for storage

and communication of media provider and allows for different costs at different servers

for storing the same object.

12

Cidon et al. (2002) assume that users access content on-demand. Generally, combin-

ing media transmissions from the same server for two different users would be impossible,

even for the same program, because users may start viewing the program or access file at

different times. They assume non-server nodes cannot store content. When the second

user accesses the server, then a second transmission from the server must start. They use

dynamic programming to solve their problem.

An analytical model for the operation of CDN is discussed in Ercetin (2002). Their

aim is to minimize the user latency by intelligently distributing content and serving user

requests from the most efficient sites. Their models closely resemble the current network

structure where the users are selfish, non-cooperative and try to maximize their own ben-

efit regardless of others. They consider the distributed resource allocation strategy for

both content dissemination and the routing problems observed in the CDN. Their results

rely on non-cooperative game theory to show that an equilibrium exists to the aforemen-

tioned system and develop a resource allocation algorithm. They identified two types of

optimization problems in their model: publisher revenue optimization and surrogate rev-

enue maximization. Finally, they discuss the joint problem of dissemination and routing,

conduct numerical experiments and show that the resulting framework can give significant

gains with respect to more conventional methods due to capacity.

Networks with storage servers for providing multimedia content are discussed in Xuanping

et al. (2003), where the authors investigate the problem of optimally replicating objects

at candidate proxies in a CDN. They assume that proxies can be chosen from a number

of candidate servers distributed in the network. Each proxy in the set of candidates has

a finite storage capacity for replicating objects and incurs a fixed fee for replication. The

optimization problem is to find a set of proxies from a candidate set to minimize the total

access cost, subject to constraints that total weight of objects placed in the proxy should

not exceed the storage capacity of the proxy and the total fee charges by the proxies

should not exceed a pre-specified budget. They formulate this problem as a combinato-

rial optimization problem and show that it is NP-complete. They develop two heuristic

13

algorithms. To evaluate the performance of two heuristics, Xuanping et al. (2003) com-

pare their algorithms with a random method that randomly picks up one candidate proxy

and stores as many as possible objects. It is shown that both heuristics perform better

than random methods when proxy storage capacities and the total budget are limited,

and the relative cost is reduced as the number proxy candidates become higher. One of

the heuristic algorithms performs slightly better than the other because it takes the fee

charge of each proxy into account.

A model for replica placement in CDN for multimedia applications is studied in Yang

and Fei (2003), which is the allocation of objects in a network of proxies that collab-

orate to serve requests from clients. They propose a new model for replica placement

and perform theoretical analysis on the cost of distributing multimedia files over CDNs.

Their results indicates that deploying as many replicas as possible is not always a good

strategy. Because of that, they chose finite capacities and a finite number of proxies in

their model as is common in multimedia environments. Two well-known graph problems

have been used to model the replica placement problem, the first one is the K-median

problem and other one is the capacitated facility location problem. They propose several

replica placement algorithms that can determine the optimal number of replicas which

are selected from a given set of potential sites.

A resource allocation problem in a graph, and the joint optimization of capacity allocation

decisions and object placement decisions with a single capacity constraint is studied in

Laoutaris et al. (2004). The solution of the problem is based on a multi-commodity gen-

eralization of the single commodity K-median problem. The authors describe a two-step

exact solution algorithm: a decomposition step is first responsible for the solution of a

series of K-median problems relating to the original problem and a composition step then

selects of a number of optimal solution components from the first step. The composition

step is a packing problem that selects among the optimally solved K-median solutions.

When combined together, these steps yield an optimal solution for the original capacity

allocation problem. They formulate specific instances for their problem and propose a

14

heuristic algorithm for them.

The problem of replica placement and client request routing is addressed in Almeida

et al. (2004). They model the Internet as a graph where each node represents either a

router or an Autonomous System (AS) and a link. The objective is one of minimizing the

total delivery cost, which includes network and server delivery costs. They show that the

variety of realistic scenarios can be solved exactly using available optimization software.

Almeida et al. (2004) develop both exact and approximation methods for determining the

number and placement of replicas, and the routing of requests as to minimize the total

delivery cost. Therefore, six heuristics are described that are able to find near-optimal

solutions at lower computational cost than the exact algorithm. The best algorithms use

a greedy min-cost Traveling Salesman Problem (TSP) placement heuristic, and either

shortest path routing or a greedy min-cost heuristic for routing client requests. Exact

and approximate methods are considered for determining the number and placement of

replicas, as well as the routing of requests and multi-cast streams, to minimize the total

delivery cost.

A new technique for the problem of designing a CDN is studied in Bektaş et al. (2007),

which is the technology used for efficiently distributed electronic content among an exist-

ing IP network. Their design consists of the number and placement of proxy servers on

a given set of potential nodes and replicating content on the proxy servers, and finally

routing the requests for content to a suitable proxy server such that the total cost of

distribution is minimized. Bektaş et al. (2007) also describe a fast and efficient greedy

heuristic algorithm that can be used to obtain near-optimal solutions for the problem

is introduced. Their approach considers a similar problem with respect to the objective

function but differs from the related studies considering the situation in which requested

objects are not found in any proxy server. The proposed model includes a quadratic

objective function, which is linearized, and the linearized model is solved by a Benders

decomposition algorithm. Bektaş et al. (2007) provide computational experiments that

are based on randomly generated data. Internet topologies suggest that the proposed al-

15

gorithm is superior to CPLEX and is very efficient especially when the number of clients is

large and the number of objects is relatively small. The algorithm is also a demonstration

of an exact solution technique that can be used for similar integer models with quadratic

objective functions. Bektaş et al. (2007) believe that an exact solution approach is useful

for relatively small networks, but a faster heuristic algorithm is required for very large

networks, such as the Internet itself.

Two exact algorithms for the joint problem of object placement and request routing

in a CDN, one based on Benders decomposition and the other based on Lagrangian re-

laxation and decomposition, are described in Bektaş et al. (2008). The proposed models

capture the fundamental characteristics of the problem, and the necessity to support a

certain level of Quality of Service (QoS). A non-linear integer programming formulation

is described for the problem which is linearized in three different ways. Computational

experiments are performed using randomly generated data, where some real-life aspects

of a content distribution environment also incorporated in the data generation process.

A powerful heuristic is described for realistic instances. The proposed heuristic algorithm

is a two-level implementation of the well-known simulated annealing metaheuristic intro-

duced by Kirkpatrick et al. (1983), and the algorithm is simple, easy to implement, and

able to produce good-quality solutions within reasonable computing times.

Luss (2010) presents a model for content distribution network, works on Video-On-

Demand (VOD) services and formulates an integer programming model and develops

a dynamic programming formulation. He considers a tree network when each node has

demands for multiple different VOD program families, where all similar programs are

considered as a program family. This model has a different cost for servers, cost for

assigning program families to servers and cost of link bandwidths used to broadcast pro-

grams. The demand for specific program is assigned to the nearest server that has this

program along the route that connect the requesting node to the root of the tree network.

Luss uses a dynamic programming method that determines optimal server locations and

optimal program assignments for minimizing the sum of all these three costs. His algo-

16

rithm starts from the end nodes of the tree network and determines optimal solution of

the subtrees. Eventually by reaching to the root node, optimal solution for the entire

network are achieved. This model has flexibility for large service providers that may have

overlapping, by adding a new layer of decision to the tree where demands will be assigned.

Neves et al. (2010) propose exact and heuristic approaches to solve replica placement

and request routing problem in CDN. The objective is to find the best servers to hold the

replicas and to handle requests, so the traffic cost in the network is minimized without

violating server and Quality of Service (QoS) requirements. QoS constraints are given

by a required minimal bandwidth and the maximum delay that the client’s request has

until being served. Their assumption are: all contents are positioned in the origin server

and a server is allowed to serve client’s request partially or totally, and the request may

also be served by several servers partially at the same time or served in several periods

of time. The problem of finding the best set of servers to place content replicas over the

CDN is NP-complete. Two heuristics are proposed for this problem and an analysis of

them indicates that the gap between these two is caused by the natural difference between

exact and heuristics methods.

Deane et al. (2012) develop a multi-objective CDN model for optimal cost and perfor-

mance. The purpose of considering both cost and performance as objectives is to avoid

the requirement to create bounds, and the decision maker is totally flexible to compromise

between cost and performance. They assume the proxy servers are fixed and each node

in the network is an Internet Autonomous System (AS) or proxy server that represents

a server location; thus the origin server would be a possible AS. The cost includes the

cost of object storage and the cost of object transfer. They calculate storage cost based

on object collection size by using a cost per gigabyte stored, and object transfer cost is a

bandwidth usage cost that is charged based on gigabytes of data transferred. They utilize

a case example to illustrate the feasibility of solving their model for a CDN of reasonable

size. Their model finds optimal strategies for distributing content objects among various

proxy sites to address multiple objectives, assuming that the decisions on which objects

17

to cache and when to cache them have been made. Integer programming is used to solve

their problem.

Coutinho et al. (2012) design and implement an algorithm for a request routing prob-

lem as a transportation problem to find the best server for each customer’s request in

CDN, in order to minimize the overall cost. A distributed algorithm is proposed to

solve their problem. The algorithm is composed of two independent parts: a distributed

heuristic that finds an initial solution for the problem and a distributed transportation

simplex algorithm, also not requiring global information about the content requests. They

compare their algorithm with a sequential version of transportation simplex and with an

auction-based distributed algorithm and they find that their algorithm has a performance

similar to its sequential counterpart, despite not requiring global information about the

content requests.

Drwal and Jozefczyk (2013) formulate a data placement problem as quadratic binary

programming problem. They consider a model as a directed graph, and the vertices

represent access routers of local area networks and edges represent bidirectional commu-

nication links. Users of the local area network announce their demands to the Internet

Service Providers (ISPs) that manage the routers, as the ISP is responsible for serving

the users in local networks behind each routers. Each access router is equipped with a

cache server that can store copies of objects and each cache memory is connected to the

router via a very fast transmission bus. If an object is stored inside a cache server, it

can be served directly to the users; otherwise, it can be accessed by a node from any

cache server storing that object. In computer system design, the overall performance of

the system is determined by processing time (CPU time), memory and communication

bandwidth. From the system’s operator point of view, optimal design can be stated as

follows: given a user’s demand and limited resources, allocate the resources to the de-

mand to minimize the total cost of service. They consider three types of costs that are

all expressed in time units. Each of the costs is related to the service latency on a router

and related to a cache server, and the total cost is the sum of the costs carried by all

18

access routers. They propose heuristic methods and two decompositions-based solution

approaches: the Lagrangian relaxation and randomized rounding leading to two different

solution approaches. The purpose of decomposition is a reduction of complexity of the

original problem that allows for applying specialized algorithms for solving smaller sub-

problems.

Sen et al. (2014) introduce a new model for the Data Partitioning Problem (DPP) and

Segment Allocation Problem (SAP). The DPP is a decision problem that decides how

the files are clustered into segments, and the SAP is a decision problem that identifies

potential sites, locates the segments, and routes the requests in such a way that cost

is minimized. They consider files as units of allocation in a cost optimization problem

that solves three problems: locations of servers, file placement and user assignment. They

build a data partitioning method using facility location models and show that the method

partitions the database within a reasonable limit of error. After formulating the problem

as an MILP exact solution approaches are used to solve large-scale problems. A Ben-

der’s decomposition algorithm is also developed and the superiority of this decomposition

approach is shown through computational results.

2.2.2 Cache Allocation Problems

The problem of placing caches in a network is studied in Krishnan et al. (2000), where the

problem is formulated as a location problem both for general caches and for Transparent

En-Route Caches (TERC). In TERC, caches are only located along routes from clients

to servers, where clients can detect them easily. An en-route cache blocks any request

that passes through and then forwards the request towards the server along the regular

routing path. Krishnan et al. (2000) present a computationally efficient dynamic pro-

gramming algorithm for the problem defined on a tree network with a single source. They

observe that a small number of TERC, when placed at optimal locations, are sufficient

to reduce the network traffic significantly. These optimal locations are not specifically at

the edge of individual networks, where providers currently intend to place them. They

also compare their exact algorithm against a greedy algorithm and report on their relative

19

performance. The effectiveness of a proxy is primarily determined by locality, which is

largely influenced by the location of the Web proxy. Putting a Web proxy in the wrong

place is not only costly, but also does little improve the system performance.

Li et al. (1999) investigate the optimal placement of Web proxies in the Internet. They

focus on two major factors: the overall traffic and access latency, and the objective is

to minimize the overall latency of searching, subject to the system resources and traffic

pattern. They formulate the optimal placement problem into dynamic programming and

obtain an optimal solution for tree topology in O(n3m2) time, where n is potential sites

and m is multiple Web proxies.

Woeginger (2000) reformulate the dynamic program of Li et al. (1999), and prove that

one of the underlying cost functions in this problem carries a Monge structure. He finds a

faster algorithm compare to Li et al. (1999) according to time complexity. Monge struc-

ture is used in a variety of applications such as transportation problems, search problems,

traveling salesman problems, etc. Usually, this additional structure helps to find polyno-

mial time solution algorithms or at least helps to speed up algorithms.

The optimal placement of a limited number of Web proxies in an environment where

a Web site is replicated is discussed in Jia et al. (2001). They optimize two important ob-

jectives of proxy placement: minimization of overall cost for all clients to access the Web

server in the system, and minimization of longest delay for any client to access the Web

server in the system. Both problems are formulated using dynamic programming through

which optimal solutions can be obtained in polynomial time. Proxies are considered as

transparent en-route proxies, which are only located along the routes from clients to a

Web server and are transparent to the clients. If a client’s request meets a proxy on its

way to the server and the requested data is available at this proxy, it will be served by the

proxy; otherwise, it has to go all the way to the server to be served, even though the client

is close to the proxy. Simulations are conducted to demonstrate the performance of their

proposed algorithms and it is demonstrated that optimal algorithm can significantly re-

20

duce the overall access cost and improve the response time for client to access Web servers.

Placement problems in proxy servers with transparent data replication is considered in

Xu et al. (2002). The study presents a hybrid transparent replication model which com-

bines the advantages of the en-route replication model with the hierarchical replication

model. The placement issues result in replication of proxies and data, with the objective

of minimizing the total data transfer cost, given that a maximum number of proxies are

allowed. First, they present optimal solutions for a single object in a tree network, with or

without constraints on the number of replicas. Xu et al. (2002) split the problem into two

sub-problems: the problem of proxy placement in the network and the problem of replica

placement on the installed proxies. For proxy placement, two schemes are proposed for the

replication proxy placement problem. For replica placement, an exact algorithm is pre-

sented that runs in linear time. Simulation experiments are conducted over a wide range

of system parameters so that the results would be applicable for a wide variety of settings.

Laoutaris et al. (2005) study the position of proxies in CDN, and emphasise that the

most suitable proxies are transparent to clients since they are easier to manage and re-

quire no cooperation from clients. The storage capacity allocation problem is addressed

for CDN, which takes into account the optimal location and capacity of the proxies and

the objects that should be placed in each of them. All relevant sub-problems are com-

bined, concerning node location, node sizes, and object placement, and solved jointly in

a single optimization algorithm. A linear-time efficient heuristic algorithm is proposed.

Two techniques to decrease delay, as experienced by clients, are caching and replication.

Bakiras and Loukopoulos (2005) investigate the potential performance when CDN server

is considered as replicator and proxy server at the same time. They develop an analytical

model to describe the benefit of each technique and propose a greedy algorithm to solve

the combined problem of caching and replica placement. They consider geographically dis-

tributed servers each with a total storage capacity, and the communication cost between

two servers is the cost of the shortest path between two nodes which is symmetric. They

21

consider several Web sites that have subscribed to the CDN provider’s hosting service and

each Web site consists of different objects and the popularity of these objects follows the

Zipf-like distribution. According to their replication policy, there is one primary copy for

each Web site in the network. Every server stores two records: the primary Web site and

the nearest server which holds the replica. So the storage capacity for each server can be

considered as replication and caching. Whenever a client request the Web site, in terms

of the network distance, will reply if the requested object is neither replicated nor cached

locally, the client request will be redirected to the appropriate server. Their simulation

results indicate that there is much room for performance improvement compared to using

a replication or caching mechanism individually.

Sun et al. (2011) propose an optimization model with server storage capacity constraints

for the replica placement problems. They divide replica placement problems into two

sub-problems: the number of each replica and the identity of servers to store the replicas.

They consider the total storage capacity limit of all CDN servers, in order to record the

number of replicas. After the number of replicas has been fixed, the replica placement

problem is transformed into P-median problems.

Jabraili et al. (2013) propose a model to find an optimal placement of objects within

replica servers, so users are able to receive contents from the nearest replica server. They

use a heuristic approach that considers the object frequency, object latency and object

load in order to decide the replica server in which the content is to be placed. They

solve replication problem and develop an analytic simulation environment to test the pro-

posed scheme which can be used independently. The results of simulation show that their

method significantly improves the response time of requests.

A new hybrid heuristic for replica placement and request distribution in CDN is studied

in Neves et al. (2014). In their problem, every request must be handled fully, servers

bandwidth and storage capacity must be satisfied and at least one replica for each con-

tent exists in each period (one period is necessary to download a content). The servers

22

are allowed to handle requests if, and only if, they have a copy of desired contents. A

new hybrid heuristic is proposed that uses a network traffic model for solving the request

distribution problem and a formulation, based on a generalized assignment problem is pro-

vided for solving replica placement problem. The results show that the hybrid network

heuristic works better with less computational time compare to solving the mathematical

formulation of the problem.

Few strategies to improve the cache management architecture by considering browser

with proxy caches server, where the browser cache acts as proxy server by sharing its

content through hybrid architecture is proposed by Imtiaz et al. (2014). Their main aim

of the new architecture is to distribute the load of proxy server, to minimize the respond

time, to reduce Web traffic and reduce the amount of bandwidth used by a client, this is

also client that can save money if he is paying for the traffic. Two basic caching archi-

tecture that use multiple caching servers to work together are: Distributed caching and

Hierarchical caching. Distributed caching spreads the cached Web objects across two or

more caching servers, where all these servers are all on the same level of the network so

caching is more efficient in terms of disk space usage. However, hierarchical caching works

differently; caching servers are placed at different levels on the network, so that caching

is more efficient in terms of bandwidth usage. Imtiaz et al. (2014) combine these two

caching architectures (distributed caching and hierarchical caching) to create a hybrid

caching architecture which improves the performance and efficiency of the network.

2.3 Optimization Models for Assignment and cache

Allocation Problems

The CDN architecture is described in Figure 2.1, with the origin server and five proxy

servers with different clients for each proxy server, where each client is connected to a single

proxy server. The problem consists of deciding on the following issues: the assignment

of a client to a single or multiple proxy server, the location and number of proxy servers

to be installed in a CDN on a given set of potential sites, and the objects to be located

23

in each proxy server. The perspective of the cost minimization models is studied for

the CDN provider because their aim is to deliver content to content providers with high

performance and high availability at the lowest expense. When the client requests an

object, the request is served by the associated proxy, if the object is already stored there;

otherwise, other proxies are not contacted and the request is forwarded to the origin

server, from where the client is able to access the request from the origin server via the

path from the corresponding proxy server. This strategy is regarded as non-cooperative

caching. The second strategy allows a client to connect to more than one proxy server to

fetch a requested object. This strategy is named as cooperative caching. The notations

used in formulating our models are presented below:

Sets Notation

Set of clients I

Set of proxies J

Set of objects K

Set of proxies with origin server J0 = J
⋃
{0}

Set of nodes I ∪ J V

Set of links E = {(i, j) : i ∈ I, j ∈ J} E

Complete network G = (V,E) G

Parameters Notation

Cost for transferring an unit size object over link (i, j) ∈ E, cij

Capacity of the potential proxy j ∈ J sj

Integer size of each object k ∈ K bk

Probability of client i ∈ I requesting object k ∈ K over a given time interval λik

Expected demand for object k ∈ K at proxy j ∈ J ejk

Cost of transferring an object from the proxy (locally) cl

Cost of transferring an object from other proxies in the network cn

Cost of transferring an object from origin server co

Variables

xijk equal to 1 if client i ∈ I requests object k ∈ K that is served by proxy j ∈ J ; and 0 otherwise

zjk equal to 1 if proxy j ∈ J holds object k ∈ K; and 0 otherwise

mk equal to 1 if object k ∈ K is acquired from the origin server; and 0 otherwise

24

2.3.1 Object Retrieval and Request Routing

First we start with one of the basic models, the objective of the model being to minimize

the total access cost (the cost for a client i ∈ I to access object k ∈ K from proxy j ∈ J is

bkλikcij). Baev and Rajaraman (2001) consider the data placement of cooperative caching

that determines a static placement of replicated objects between nodes in the network

with a given access pattern and try to minimize the average access cost taken over all

nodes and all objects. Their problem formulation is most suitable for applications where

the objects are read-only because there is a different mechanism to maintain consistency

among the replicas. Baev and Rajaraman (2001) assume any request at a node is satisfied

by a copy of the requested object which is nearest to the node. They consider set of nodes,

which means each node can act as both a client and a proxy server and each proxy server

j ∈ J has a capacity sj. Each object k ∈ K has size bk and the sum of all objects stored

in any proxy j ∈ J must be at most the capacity of the proxy sj.

The probability of client i ∈ I requesting object k ∈ K over a given time interval is

λik, and the cost of transferring an object over link (i, j) is cij per unit size. A binary

variable xijk indicates if client i ∈ I is assigned to access a copy of object k ∈ K stored in

proxy j. Also, another binary variable zjk denotes if object k ∈ K is held in proxy j ∈ J .

Baev and Rajaraman (2001) proposed the mathematical model as below:

min
∑
i∈I

∑
j∈J

∑
k∈K

bkλikcijxijk (2.3.1)

s.t.
∑
j∈J

xijk = 1 ∀i ∈ I, k ∈ K, (2.3.2)∑
k∈K

bkzjk ≤ sj ∀j ∈ J, (2.3.3)

xijk ≤ zjk ∀i ∈ I, j ∈ J, k ∈ K, (2.3.4)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K, (2.3.5)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K. (2.3.6)

25

The objective function expresses the expected total cost of serving requests for all proxies

and objects. Constraint (2.3.2) indicates that each client and object pair must be assigned

to exactly one proxy server. Constraint (2.3.3) relates to the limited capacity sj of each

proxy j ∈ J . Constraint (2.3.4) implies that an assignment to a proxy can only be made

if that specific proxy is holding the requested object.

2.3.2 Objects in a Network of Caches

The process of replicating Web content that can be easily accessed by users is called

caching according to Tawarmalani et al. (2009), which is a process to reduce the overall

traffic in the network. Caching holds an accessed content in storage centers called caches,

which is the process of replicating Web contents in locations where they can be easily

accessed by end-users. There are three different kinds of caching: client-based caching,

server-based caching and proxy-based caching.

The first type implements caching at the client site and only serves the requests made

from this specific location. In these caches, only a restricted amount of content can be

stored because of capacity limits. Therefore, when the new content needs to be stored,

it must replace existing content. The problem with this approach is that the content

provider has limited control over the content once it has been downloaded from the origin

server and placed into caches.

The second approach is performed by installing additional caches in different places within

the server. This type of caching helps to share the load on the server and reduce the in-

coming traffic to the server to a small amount.

The third type uses a web proxy located somewhere between the client site (such as

a university or a company) and the origin server. When the client requests an object, if

the requested object is located in the cache, the proxy intercepts the request and serves

the client. Otherwise, the request will be sent to the origin server and the copy will be

stored at the proxy to serve further requests. All proxies in this approach are located at

26

different places on the network. Therefore, a large number of clients can be served while

network traffic is reduced.

The key motivation to use proxy-based caching is that, when a requested object is not

held by a cache, a neighbour cache that holds the object can deliver the object faster than

the origin server. Therefore, cooperative caches are designed as follows: if the requested

object is not held in local cache, the object could be found in neighbour caches; failing

that, the request is forwarded to the origin server. Tawarmalani et al. (2009) analyze

the allocation of objects in a network of caches that collaborate to service requests from

customers.

The binary variable zjk indicates if object k ∈ K is held in proxy j ∈ J . The authors

allocate the objects to the caches to minimize the network cost. The model is named

Cache Allocation Problem as follows:

min
∑
j∈J

{
(cl − cn)

∑
k∈K

ejkzjk + cn
∑
k∈K

ejk + (co − cn)
∑
k∈K

ejk
∏
j∈J

(1− zjk)

}
(2.3.7)

s.t.
∑
k∈K

zjk ≤ sj ∀j ∈ J, (2.3.8)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (2.3.9)

Constraint (2.3.8) imposes a capacity of sj for each proxy j ∈ J . In this model, the cost of

serving the object locally from the proxy where it is requested is cl, from the origin server

is co and from other neighbouring proxies in the network is cn. The object is obtained

from neighbour only when it is not held locally and at least one of the neighbors holds

that object, and the object is obtained from origin server when it is not accessible either

locally or from the neighbors. It is possible that cn > co when the caches access the

objects from the origin server rather than from the network. To allow for this case, cn

may be replaced by min{cn, co}.

27

First of all, Tawarmalani et al. (2009) consider a unit size for each object with fixed

capacity for each proxy, and assume that a reasonable estimate of demand for each ob-

ject is available. They look at centralizing scenarios linearized by the model using the

techniques of Glover and Woolsey (1974), and provide a transportation algorithm for the

problem. Secondly, they discuss the generalization of their results to objects with arbi-

trary sizes. In terms of complexity, the problem becomes much harder. The objects are

not allowed to be split and are stored in individual parts in different proxies. The reason

is that, if the object can be divided into packets for transmission, to access the object

from one source or different sources, then reassembly of the object may be required, so

the cost of combining different parts of an object may be too high to be ignored.

2.4 Solution Methodologies

An optimization problem is designated as combinatorial if a finite number of feasible so-

lutions exist or continuous if it has an infinite number of feasible solutions. The objective

of an optimization problem is to find a feasible solution that maximizes or minimizes the

value of a given objective function. In this section, we introduce some of the methods

which can be used to solve combinatorial optimization problems. To find near-optimal

solutions, heuristic algorithms are recommended, and for optimal solutions exact meth-

ods are considered. The theoretical complexity of a combinatorial optimization problem

indicates if it is appropriate to apply exact methods or not.

2.4.1 Computational Complexity Theory

One of the major research areas of computer science is computational complexity the-

ory, which focuses on classifying computational problems according to their difficulty and

relates to finding a set of problems having the same complexity class as each other. Ac-

cording to Tovey (2002), NP (Non-deterministic Polynomial) is one of the complexity

classes of decision problems, for which the feasibility of a solution can be checked in poly-

nomial time.

28

Garey and Johnson (2002a) believe that two different problems are related to each other

with respect to their difficulty. The principle technique is that of reducing one to the

other by giving a constructive transformation, for which any instance of the first problem

is assigned into an equivalent instance of the second problem. That means any algorithm

which solves the second problem is being converted to the corresponding algorithm that

solves the first problem. This reduction process is fundamental to NP-completeness.

The foundation for the theory of NP-completeness is due to Cook (1971). He empha-

sizes the polynomial time reducibility, that is the reductions for required transformation

can be done by a polynomial time algorithm. Also, he focuses on the class NP of decision

problems that can be solved in polynomial time by a non-deterministic computer which

has ability to pursue an unbounded number of independent computational operations

is parallel. Cook proves that, for one particular problem in NP called the satisfiability

problem, every other problem in NP can be polynomially reduced to it. This means that

if the satisfiability problem can be solved in polynomial time, then every other problem

in NP can be solved polynomially and if any problem in NP is intractable, then satisfia-

bility problem is also intractable. Finally, he suggests that the satisfiability problem are

considered as the hardest members in NP.

Afterwards, Karp (1972) presents the collection of Cook results and proves that many

well-known combinatorial problems are as hard as the satisfiability problem. Also, a wide

variety of other problems have been proved equivalent in difficulty to these problems with

the same class, all these problems are categorized as hardest problems in NP and have

been given a name: the class of NP-complete problems. There is no known polynomial

time algorithm already for any NP-complete problem and there is no proof that a poly-

nomial time algorithm exists or not for any of them, so this issue is a open question in

complexity theory.

The complexity class P is formed of these problems which are solvable in polynomial time

and is contained in NP. The relationship between P and NP (P ⊆ NP) is fundamental

29

for NP-completeness theory. Every decision problem in P can be solved by a polynomial

time deterministic algorithm and can be solved by a polynomial time non-deterministic

algorithm. This problem is categorized as NP-hard since it is as hard as NP-complete

problem. Therefore, if decision problem is NP-complete, then the corresponding opti-

mization problem is NP-hard.

2.4.2 Exact Solution Methods

Exact solution methods are techniques that are used to solve difficult problems to opti-

mality. For NP-hard problems, they are mainly based on principle of enumeration, which

gives an exact solution for the problem. The performance of these methods is often mea-

sured by size of problems that can be solved in reasonable computation time. Lower

bounds and upper bounds are often used to restrict search as much as possible and are

derived by applying relaxation and computing solutions using heuristics. Relaxation is an

approximation of a difficult problem that involves removing some of a problem complexity

so that becomes easier to solve. One of the methods that we use to find lower bounds is

Lagrangian relaxation and another that is useful for non-linear problems is to linearize

the non-linear functions.

2.4.2.1 Branch and Bound

Branch and bound is a structured search of the space of all feasible solutions and is used

for solving integer and discrete optimization problems (Land and Doig, 1960). A branch

an bound algorithm consists of a systematic enumeration of candidate solutions, in which

successive configurations of an instance are considered as the best solution. The set of

candidate solutions are considered as a rooted tree with the full set of root. The algo-

rithm explores branches of this tree, that represent subsets of solution set. The space

of all feasible solutions is repeatedly partitioned into smaller and smaller subsets and at-

tempts are made to omit a node based on a lower bound of the objective function, which

is called bounding. In each partitioning, the lower bound for a subset is checked as upper

and lower estimated bounds on optimal solution, which could be the value of an initial

feasible solution found using a heuristic approach.

30

For brevity, we describe branch and bound for minimization problems. If a cost cri-

teria is available, the node to be expanded next, is one with the best cost within the

queue (branch). In such a case, the cost function may also be used to discard from queue

nodes that can be determined to be expensive (bound). If lower bound is more than

the best known objective value, the node is pruned, because it cannot produce a better

solution, than the best one found by the algorithm so far. The partitioning continues

until a feasible solution is found (Lawler and Wood, 1966). Before branch and bound, to

find upper bound heuristic can be applied, that is considered as initial upper bound, or

upper bound can be calculated in every node of search tree. Tightness and easy calcu-

lation of lower bound in addition to quality of initial solution affect the efficiency of this

method. The main disadvantage of branch and bound is usually its heavy computational

requirements because of large number of nodes.

2.4.2.2 Bin Packing

Characteristic of bin-packing application is to pack a collection of objects into different

regions, so the amount of wasted space is minimized (Coffman J. et al., 1984). Basic idea

is making efficient use of time or space (or both). The advantage of this method is to

have guaranteed packing performance bounds. In computational complexity theory, bin

packing is a combinatorial NP-hard problem, so optimal solutions to very large instances

can be produced with sophisticated algorithms (Garey and Johnson, 2002b).

Bin-packing mostly concerns on polynomial-time approximation algorithms such as first-

fit, first-fit decreasing and full-bin packing. In first-fit algorithm when items place in

order they come in first bin in which they fit. In this algorithm items are fitting neatly

and efficiently inside a large bin. This method is quick and easy to perform but does not

usually leads to an optimal solution. In first-fit decreasing algorithm when an alternative

strategy first orders the objects from largest to smallest, then places sequentially in first

bin in which they fit. This algorithm is fast and easy to perform and better solution from

first algorithm but does not always guarantees an optimal solution. Third algorithm is

31

full-bin packing by arranging objects into size of container and try to use the least possible

numbers of container. This algorithm usually gets an optimal solution but can be difficult

to perform when numbers awkward. All of these algorithms mostly focus on the quality

of solution rather than optimal solutions (Korf, 2002).

2.4.2.3 Lagrangian Relaxation

Lagrangian relaxation is one of the basic tools in constrained optimization problems to

deal with difficult constraints. A general constrained optimization problem is as below

(Nedić, 2011):

min f(x) (2.4.1)

s.t. gj(x) ≤ 0 j = 1, ...,m, (2.4.2)

hi(x) = 0 i = 1, ..., r, (2.4.3)

x ∈ X (2.4.4)

Where f :Rn → R, gj:R
n → R for j = 1, ...,m, hi:R

n → R for i = 1, ..., n and X ⊆ Rn.

Two set of constraints gj(x) ≤ 0 and hi(x) = 0 are brought into the objective function

by assigning a non-negative scalar µj to the inequality constraint gj(x) ≤ 0 and assigning

an unrestricted scalar δi to the constraint hi(x) = 0. Then new objective function for

problem is defined as:

L(µ, δ) = min f(x) +
m∑
j=1

µjgj(x) +
r∑
i=1

δihi(x), (2.4.5)

where µ=(µ1, ..., µm) and δ=(δ1, ..., δr) and constraints (2.4.2) and (2.4.3) are removed.

Normally, µj and δi are referred to as Lagrangian multiplies and the minimization in (2.4.5)

is Lagrangian problem. The value of L(µ, δ) is a lower bound on optimal solution value

of original problem for any given δ and µ ≥ 0. The problem max L(µ, δ) for µ ≥ 0 and

any δ is known as dual problem.

32

Subgradient optimization is a method to heuristically solve a Lagrangian dual problem.

It iteratively adjusts Lagrangian multipliers to find values that produce the best or nearly

the best lower bound. It relies on an upper bound for optimal objective value of origi-

nal problem. An upper bound could be calculated by finding a feasible solution with a

heuristic for original problem. Given initial values µ0 and δ0, sequences {µk} and {δk}

are generated as below:

µk+1 = µk + Sµgj(x
k), δk+1 = δk + Sδhi(x

k), (2.4.6)

where xk is an optimal solution of L(µk, δk) in (2.4.5). Also, Sµ = λk
UB−LB
||gj(xn)||2 and

Sδ = λk
UB−LB
||hi(xn)||2 are positive scalar step sizes and λk is a scalar satisfying 0 < λ ≤ 2

(Fisher, 2004). UB is an upper bound is obtained by applying heuristic and LB=L(µk, δk)

is a lower bound of (2.4.5). Often the sequence λk is determined by setting λ0 = 2 and

whenever objective function has failed to increase for fixed number of iterations, halving

λk. Justification of these formulas is given in Held et al. (1974).

Lagrangian relaxation is the most successful, when Lagrangian sub-problem can be solved

efficiently. Lagrangian relaxation has been used by Geoffrion (1974) in his highly success-

ful work to develop theory and explore benefit of Lagrangian relaxation in branch and

bound and also by Fisher (2004) in his algorithms for a number of important problems

in areas of routing, location, scheduling, assignment and set covering.

2.4.3 Integer Programming Formulation Based on Linearization

A common solution method for non-linear integer and mixed integer programming prob-

lems is linearization. Let f(x) be a non-linear and convex function and define non-linear

integer programming problem P (1) as below:

P (1) min f(x) (2.4.7)

33

s.t. Ax ≥ b, (2.4.8)

x ∈ N. (2.4.9)

In (2.4.8) A is m×n matrix, x is m×1, and b is column vector. By applying linearization

approach of Erdoğan et al. (2010) and constructing following valid inequalities, we can

solve function P(1) through P(2), where w is an auxiliary variable.

P (2) max w (2.4.10)

s.t. Ax ≥ b, (2.4.11)

w ≥ f ′(x∗)x+ f(x∗)− f ′(x∗)x∗ ∀x∗ : Ax∗ ≥ b, x∗ ∈ N, (2.4.12)

x ∈ N. (2.4.13)

Where all constraints are linear. The tangent point of approximating line is (x∗, f(x∗))

and slope of that line will be f ′(x∗). The main point is finding tangent line of the point

and then using that line to provide a lower bound for value of function. The main reason

for using this technique, called perspective cut, for our problem is non-linearity of problem

due to delay function. We can apply linearization constraints at only integer values of x.

2.4.3.1 Relaxation by Linearization Methods for Mixed 0-1 Polynomial Prob-

lem

In real-world, there are many problems such as job scheduling and network design which

are formulated as mixed 0-1 problems. Non-linear models should be transformed into

linear form by using auxiliary constraints and additional 0-1 variables. Many efforts are

made to develop and improve previous methods based on reducing the number of extra

variables or auxiliary constraints. Some improvement are provided by Watters (1967) who

discuss the method that reduce 0-1 polynomial formulation to 0-1 linear formulation. Also

for Multi-dimensional Nonlinear Knapsack Problem (MNKP) with a single constraint by

considering the fact that the problem is separable is studied in Chen et al. (2006), when

34

Li et al. (2009) develop a convergent Lagrangian and cut method for solving MNKP.

Kettani and Oral (1990) develop a linearization technique, which has been accepted as

the most efficient linearization method. This technique requires the least number of addi-

tional continuous variables and auxiliary constraints. However, for mixed integer problems

with higher order polynomials terms, it is difficult to extend. A new general method for

linearizing different orders of mixed integer problems not previously solved by Kettani

and Oral (1990), is proposed by Chang (2000). This model can be applied to polynomial

mixed-integer terms that appear in objective function or in constraints. Most techniques

for solving polynomial programming problems can only find locally optimal solutions. Li

and Chang (1998) propose a method that finds approximately globally optimal solutions

for practical polynomial problems. Later, Chang and Chang (2000) modify Li and Chang

(1998)’s model by reducing number of variables and auxiliary constraints. After testing

the method for different numbers of variables, they conclude that this model uses less

CPU time and has fewer iterations compare with Li and Chang (1998) model, while find-

ing same optimal solutions.

Adams and Sherali (1990) proposed a method for solving quadratic problems, which finds

lower bounds with a proposed branch and bound scheme which is proven to converge to a

globally optimal solution. After that Sherali and Tuncbilek (1992) use a similar approach

to solve polynomial programming problems only consisting of continuous variables. The

quality of local optimum for both of them is dependent on selected initial solutions. On

the other hand, finding the global optimum for many optimization problems is much

more important rather than listing different local optima. Both of proposed methods

have restrictions when solving practical polynomial problems where it is required to find

global optimal solution. For example Adams and Sherali (1990) can only solve problems

that have quadratic cross-product terms while Sandgren (1990) can only solve continuous

polynomial problems and it is very difficult to use these two methods for solving general

polynomial problems since their methods need to generate a huge numbers of constraints

to find solution.

35

To overcome these difficulties, Li (1994) proposed a global approach for solving mixed

0-1 non-linear problems that include convex or separable continuous functions and used

a branch and bound method to obtain global optima. As discussed above, method of Li

(1994) finds the global optima for general polynomial problems and method proposed by

Ghezavati and Saidi-Mehrabad (2011) tries to reduce number of constraints to decrease

computation required to find global optima. A computational study by Taha (1972)

conjectures that neither non-linear approach nor transformed linear approach has an ad-

vantage over the other one, sometimes one of them works better but other times another

one works very well.

It is clear that linear 0-1 methods are easier to program and many more techniques are

available for linear problems compared with non-linear problems. Glover and Woolsey

(1973) have proposed different rules for achieving more economical linear representations

of polynomial programming problems that makes possible to replace polynomial cross

product terms by continuous variables rather than integer variables.

2.4.4 Heuristics and Metaheuristics

Heuristics methods are used to find approximate solution for NP-hard problems when the

exact methods require too much computational time (Polya, 2008). Many optimization

problems are NP-hard and heuristic solution methods are required to find satisfactory

solutions. Heuristics often get complex and involve many parameters. Due to the depen-

dency on parameters, their effectiveness may increase or decrease. Heuristics are broadly

classified as constructive or improvement heuristics.

Constructive heuristics build solutions from their constituting elements rather than im-

prove complete solutions with one element being added to a partial solution at a time.

Improvement heuristics start with an initial solution and by perturbation improve the so-

lution. Perturbation is the key for improvement method. General frameworks for building

heuristics are called metaheuristics which are solution methods that facilitate an interac-

36

tion between local improvement procedures and higher level strategies to create a method

that can escape from local optima (Glover and Kochenberger, 2003).

2.4.4.1 Local Search

A widely used heuristic is local search, which is often referred to as descent. Local search

has become popular to solve complicated real-world optimization problems. It is very

important to define a suitable neighbourhood in local search because it determines the

search mechanism. A neighbourhood defines the solution search space and demonstrates

how attempt are made to reach the best solution.

Local search methods for constraint satisfaction and optimization problems proceed by

performing a sequence of local search moves on an initial solution, each improving the

value of objective function, until a local optimum is found. In each iteration, a newly

found solution is compared with current solution. If it is better, the current solution

should be replaced by new solution until no further improvement is found.

Algorithm 1 solves a minimization problem where F is a real-valued function (Burke

and Kendall, 2005). In an initialization step, an initial solution is found possibly by ap-

plying a constructive heuristic. The main part of the algorithm finds the best solution

in neighbourhood and compares the solution with previous solution. If new solution is

better, it is considered as the best-known solution and searching proceeds from this new

solution; otherwise, the procedure terminates.

Algorithm 1 Steps of Local Search (Descent)
Initialization:
Given an initial solution x and a neighbourhood structure N
Local search:
Find the best solution x′ in the neighbourhood N(x)
if F (x′) < F (x) then

Set x ← x′

Go to Local search
else

Stop
end

Local search often terminates with a local optimum that is only of moderate quality.

37

One way of trying to avoid this, is to apply Variable Neighbourhood Descent (VND)

which performs several local search (descent) with different neighbourhoods until a local

optimum for all considered neighbourhoods is achieved.

2.4.4.2 Variable Neighbourhood Descent

Mladenovic and Hansen (1997) propose a new optimization technique is called Variable

Neighbourhood Search (VNS). The basic idea of VNS is to define different neighbour-

hoods to explore solution space and reduce risk of becoming trapped in a local optimum.

Hertz and Mittaz (2001) describe another form of VNS which performs several local search

(Descent) with different neighbourhoods until a local optimum for all considered neigh-

bourhoods is achieved.

Algorithm 2 describes the steps of VND by considering an initial solution x and different

neighbourhoods (Burke and Kendall, 2005). The exploration strategy of neighbourhoods

is the key in this algorithm. The aim is to find a direction of steepest descent from x,

within a neighbourhood Nk, and move to minimum of F (x) in neighbourhood along that

direction; if there is no direction of descent, VND stops; otherwise it is iterated. In other

words, we start with the first neighbourhood and compare the result with initial solution.

If there is not any improvement, we switch to another neighbourhood; otherwise, we stay

with same neighbourhood until no improvement is obtained.

Algorithm 2 Steps of Basic VND
Initialization:
Given an initial solution x and neighbourhood structures Nk = 1, 2, ..., kmax

Set k ← 1
while k ≤ kmax do

Exploration of neighbourhood: find the best neighbour x′ ∈ Nk(x)
if F (x′) < F (x) then

Set x← x′ and k ← 1
else

Set k ← k + 1
end

end

This particular version of VNS is called Variable Neighbourhood Descent (VND), which

is an enhanced local improvement strategy that is usually used as a component in other

38

heuristics (Hu and Raidl, 2006). In VND, changes of neighbourhood are performed in a

deterministic way. Several different neighbourhoods are explored with the process iterat-

ing over each neighbourhood while improvements are found (applying local search until

a local optimum in each neighbourhood is achieved). Only strictly better solutions are

accepted after each neighbourhood search (Ruiz and Naderi, 2009).

The process of changing neighbourhood in case of no improvement diversifies the search

especially by following a dynamic neighbourhood strategy. If a poor-quality solution is

found in one neighbourhood, it could be lead to a better by searching in another neigh-

bourhood. Moreover, a solution that is locally optimal with respect to one neighbourhood

is probably not a local optimum in another neighbourhood, so the search strategy per-

forms differently on different neighbourhoods (Blum and Roli, 2003). VND will produces

a local optimum with respect to all of neighbourhoods considered, but each neighbour-

hood may have various local optima that are better than the one found with VND. Thus,

a method is needed to explore several local optima within a neighbourhood. One such

method is called Iterated Local Search (ILS), that is explained in next section.

2.4.4.3 Iterated Local Search

Iterated Local Search (ILS) is a powerful metaheuristic algorithm and simple and easy

to implement. It applies local search to an initial solution until it finds a local optimum,

then shakes the local optimum and restarts local search again from that point. Blum and

Roli (2003) explain the importance of shaking: too small shaking might not enable an

escape from local optimum already found; on the other hand, too large shaking would

produce an algorithm similar to random restart local search. Sometimes shaking involves

doing n random moves in the local search neighbourhood, where n is determined by ex-

perimentation.

Algorithm 3 explains Iterated Local Search (ILS). Given an initial solution x, local search

is applied to find the best current solution x′. Then shaking is applied to x′, which leads

to an intermediate solution x′′. Next, local search is applied to x′′ and the solution xbest is

39

reached. If xbest is feasible, it becomes the next element of the walk in x′′; otherwise, one

returns to x′. This Iterated Local Search (ILS) procedure leads to find a reasonable local

optimum as long as shaking is neither too small nor too large (Lourenço et al., 2003).

Algorithm 3 Iterated Local Search
Initialization:
Set computation time limit
Given an initial solution x, and a neighbourhood structure N
Apply local search method to find the best solution x′ ∈ N(x)
while computation time < computation time limit do

By shaking solution x′, generate x′′

Apply local search with starting solution x′′ and find the best solution xbest
if F (xbest) < F (x′) then

Set x′ ← xbest
end
Determine computation time

end

Generally, an ILS walk will not be reversible, but this aspect of procedure does not

prevent ILS from being very effective in practice. Shaking may take form of performing

n random moves in neighbourhood N . Therefore, ILS has only one parameter n that

requires setting. However, this may also be a disadvantage in that nature of shaking is

such that some parts of the solution space are not explored. Thus, a more elaborate

shaking scheme may provide better-quality solutions. Iterated Variable Neighbourhood

Descent (IVND), which is explain in next section, partly solves this problem.

2.4.4.4 Iterated Variable Neighbourhood Descent

Iterated Variable Neighbourhood Descent (IVND) combines the strengths of ILS and

VND (Lourenço et al., 2003). Firstly, an initial solution x is built. Then an attempt

is made to improve the solution x by a VND procedure which finds a local optimum

solution x′′. Once a local optimum is found, IVND performs shaking. Generate a point

x′, by picking a random k and a random neighbour, x′ ∈ Nk(x
′′). A new VND starts and

produces a new local optimum. The process of shaking and applying VND is repeated

until a computational time limit is reached. The framework of the proposed algorithm

for IVND is given in Algorithm 4.

40

Algorithm 4 Iterated Variable Neighbourhood Descent
Initialization:
Set computation time limit
Given an initial solution x and set of shaking neighbourhood structures Nk for k= 1,2,...,kmax

Apply VND method to find the best solution x′′

Start:
while computation time < computation time limit do

Shaking: generate a point x′ by picking a random k ∈ {1, ..., kmax} and a random neighbour from
x′ ∈ Nk(x′′)
Apply VND with starting solution x′ and find the best solution x′′

if F (x′′) < F (x′) then
Set x′ ← x′′

end
Determine computation time

end

IVND performs well and is competitive relative to other heuristics and metaheuristics.

Additionally, IVND is flexible and problem independent, as well as easy to implement

compared with some other heuristic methods.

2.4.4.5 Tabu Search

Tabu search (TS), created by Glover (1986), is the most cited metaheuristic. It provides

very good quality solutions for solving combinatorial optimization problems, designed to

guide other methods to escape the trap of local optimality by using memory structures

that characterize the visited solutions. TS begins in same way as local search, proceeding

from one solution to another until a chosen termination criterion is met. TS permits

moves that worsen from the current objective function value but the moves are chosen

from a modified version of neighbourhood Nk where some moves are forbidden.

Short-term and long-term memory structures in TS are responsible for modifying Nk(x).

For strategies based on a short-term aspect, Nk′(x) is a subset of Nk(x) and tabu classi-

fication serves to identify elements of Nk(x) without considering Nk(x
′). In TS strategies

based on a longer-term aspect, Nk(x
′) may be expanded to include solutions that are

not found in Nk(x), such as solutions found and evaluated previously, or identified as

high-quality neighbours of these previous solutions, so TS is viewed as a dynamic neigh-

bourhood method. This means that the neighbourhood of Nk(x) is not a static set, but

rather is a set that can change according to the history of the search.

41

TS uses attributive memory, that records information about solution properties (at-

tributes) that change when moving from one solution to another. Recency-based memory

and frequency-based are the most common attributive memory. Recency-based mem-

ory keeps track of solutions attributes that have changed during the recent past, while

frequency-based memory consists of ratios about the number of iterations for which a

certain attribute has or has not changed (Glover and Laguna, 1999). TS explores the

neighbourhood of each solution as the search progresses. The solutions concluded in a

neighbourhood are determined by the use of memory structure, which is known as a tabu

list. The tabu list is the short-term memory containing attributes of a set of solutions

that have been visited in the past and usually a fixed limited quantity of information

about these solutions is recorded.

There are several possibilities for recording information. One could record complete solu-

tions, but this requires a lot of storage and is very expensive to check whether a move is

tabu or not. The tabu list helps to keep track of all recently visited solutions and prevent

any moves towards them. The most common tabu list is implemented on circular lists of

fixed length (Gendreau and Potvin, 2010). In a TS method, tabu lists are sometimes too

powerful and may prohibit attractive moves, even when there is no danger of cycling. It

is necessary to use an algorithmic device that will allow cancellation of tabu status. This

is called an aspiration criterion. When a solution with an objective function value that

is better than current best-known solution (while new solution has not been previously

visited), the move is allowed even if it is tabu (Gendreau and Potvin, 2010). Algorithm 5

describes the basic TS by implementing a best improvement local search. This version of

TS allows the use of multiple neighbourhoods.

42

Algorithm 5 Tabu Search
Initialization:
Set computation time limit
Given an initial solution x and set of neighbourhood structures Nk for k= 1,2,...,kmax

Set x′′ ← x
Set Tabu list ← ∅
while computation time < computation time limit do

X=∅
x0 = x
while x0 = x do

Apply a local search method and find the best neighbour x′ ∈ N1(x)
⋃
...
⋃
Nkmax

(x) \X
if x′ is not tabu, or x′ is tabu but satisfies the aspiration criterion then

Set x← x′

if F (x) < F (x′′) then
x′′ ← x

end

else
X = X

⋃
{x′}

end

end
Update Tabu list and aspiration criterion
Determine computation time

end

We can add more algorithmic devices to TS to make it more effective. If all the design

choices are suitably chosen, a good solution will usually result. TS has a similar framework

with local search but has two differences as follows: some neighbours are not allow to be

accepted because they are tabu and if the best neighbour is worse, we still may accept

that move.

2.5 Discussion

This chapter presented background materials require to understand a Content Distribu-

tion Network (CDN). We show a diagram of CDN network, where a content is distributed

to a set of Web server and broadcast over the world for delivering content to clients.

Client assignment and cache allocation are considered as two design models in CDN and

literature review is written according to these two designs.

Object retrieval and request routing is one of the optimization models for client assign-

ment problem, which is related to data placement of cooperative caching. This model

43

determines a placement of replicated objects between nodes in the network with a given

access pattern and try to minimize the average access cost. The objective function ex-

presses total cost of serving requests for all proxies and objects (Baev and Rajaraman,

2001). This model does not take into account any degradation (the quality of service),

when the usage of the system is close to the capacity. In Chapter 3, we propose a new

model which overcomes the disadvantage of previous models by introducing delay in for-

mulation. The objective is to minimize overall latency of searching the target Web server,

subject to the availability of system resources and the traffic pattern.

Another optimization model is objects in a network of caches (Tawarmalani et al., 2009),

related to cache allocation problem. The problem analyzes the allocation of objects in a

network of caches that collaborate to service requests from customers. Problem is proxy-

based caching, because when a requested object is not held by a proxy, a neighbouring

proxy that holds that object can deliver the object faster than origin server. Therefore,

customer can access to the requested object in a short time. In original problem there

is a demand for each object and proxy, but in our propose formulation, we introduce

a demand that we can assign to any proxy that holds the object of interest. From the

formulation, it is clear that each object can be allocated at most once, that means we

cannot put all the objects in the proxy because solution will be dominated. We consider

set of proxies, origin server and objects with different sizes. We are looking at simpler

model of cache allocation problem which have local cluster of proxies and trying to put an

object in each proxy to avoid having to use slower origin server. Essentially all proxies are

identical, that might be in different sizes in general. However, for computational testing,

we consider all proxies to have the same size. In objective function there is no difference

to put the object in which proxy; the cost will be the same.

Solution methodologies are categorized as follows: complexity theory, heuristic and meta-

heuristic methods (Local Search (LS), variable Neighbourhood Descent (VND), Iterated

Local Search (ILS), Iterated Variable Neighbourhood Descent (IVND) and Tabu Search

(TS)) are categorized according to their advantages and explained alongside of their al-

44

gorithms also, exact solution methods (Branch and Bound, Bin Packing and Lagrangian

Relaxation) and integer programming formulation are explained. In exact solution meth-

ods branch an bound, Lagrangian relaxation and linearization methods are explained and

mainly are used in this thesis. In next chapter, we will propose a new mathematical for-

mulation for delay function, and start with static data placement problem on a network

with no origin server which consists of placing objects to minimize the total expected

access cost. The objective is to minimize overall latency of searching Web server, subject

to the availability of system resources and the traffic pattern. Lagrangian relaxation and

two other linearization will be used to find lower bounds. In metaheuristic, constructive

heuristic is introduced to find an initial solution for this problem. Variable Neighbour-

hood (VND), Iterated Variable Neighbourhood Descent (IVND) and Tabu Search (TS)

with two neighbourhoods are suggested to solve the problem.

45

Chapter 3

Lower Bounding Techniques and

Metaheuristics for Object Retrieval

and Request Routing Problem

3.1 Introduction

As discussed in the previous chapter, Model (2.3.1) is considered as one of the cost min-

imization models for the CDN provider. The main aim of a CDN provider is to deliver

content to content providers with high performance and high availability at lowest ex-

pense. The performance of system tends to degrade when the flow gets closer to the

capacity. Sometimes delay is caused by switching between two nodes, when size of object

being transferred is large. Therefore, the overall traffic and delay will be the key perfor-

mance factors of a CDN provider.

We propose a new model which overcomes the disadvantage of previous models by in-

troducing delay in formulation. This model is related to data placement of cooperative

caching, which determines a placement of replicated objects between nodes in a network

having a given access pattern and aims to minimize the average access cost. The objective

is to minimize overall latency of searching the target Web server, subject to the availabil-

ity of system resources and the traffic pattern.

46

Dynamically selecting the best proxy for a client with lowest respond time is another

scheme that can be considered in CDN, which reduces expenses. From the perspective of

the CDN provider, wishing to reduce expenditure is expressed as minimizing total cost,

by knowing that the major factor that causes the cost to increase or decrease is a delay

function.

We introduce a model with a delay function
Dfij

Qij−fij associated with the delay of a message

carried over the link (i, j) ∈ E, where Qij is the capacity of the link, D is the unit delay

cost of the message that has delay in the network, and fij is the amount of traffic carried

on the link (i, j) per unit of time (Gavish, 1991). A higher investment in the network is

the reason that leads to have lower queuing delays and costs. Thus our aim is to create

a new design to minimize the total cost of serving requests for all proxies and objects.

Lower and upper bounds are two aspects that are considered in this chapter. Different

techniques can be used to find lower bounds for non-linear problems such as Lagrangian

relaxation and non-linear programming relaxation. Because the size of our problem is

large and constraints are complex, Lagrangian relaxation combined with a decomposition

approach is one of the best options to find a lower bound.

Another method is an integer programming formulation based on linearization through

perspective cuts by using tangents of the function as valid inequalities to provide a

lower bound using auxiliary variables that represent the non-linear terms. Then, to have

stronger bounds, a linear segment is used between consecutive integer points in the func-

tion rather than a tangent.

Another section of this chapter is about metaheuristics, which are approximate meth-

ods, designed for complex optimization problems where exact optimization methods are

not efficient (Osman and Laporte, 1996). A metaheuristic guides the heuristic algorithm

to efficiently produces high-quality solutions. Metaheuristics may consider a single solu-

47

tion or a collection of solutions at each iteration. There are typically two components

in metaheuristics, diversification and intensification. Diversification refers to the explo-

ration of all the areas of the search space, and intensification refers to exploitation which

means attempting to find the best solution in an area of the solution space (Blum and

Roli, 2003). We propose a heuristic method to solve large problems which are outside the

scope of exact methods. The results from applying a heuristic are upper bounds that can

be compared with lower bounds from Lagrangian relaxation and linearizations. Through

that we can assess the quality of the heuristics that we use.

Section 3.1 is general introduction about the chapter. In Section 3.2, a problem defi-

nition for a new formulation with a delay function is proposed. Section 3.3 contains lower

bound techniques: Lagrangian relaxation and decomposition, and also an overview of

integer programming formulations based on linearization with two different approaches.

Section 3.4 describes metaheuristics that search two different neighbourhoods. Also, a

constructive heuristic algorithm to find an initial solution for the problem is proposed.

Moreover, Iterated Variable Neighbourhood Descent (IVND) and Tabu Search (TS) are

discussed in this section. In Section 3.5, computational results obtained by implement-

ing Lagrangian relaxation and two different linearizations, and computational results for

Iterated Variable Neighbourhood Descent (IVND) and Tabu Search (TS) are reported.

Grouping of our results is by size, namely small and large instances, and with respect to

the number of clients, proxies and objects. Finally, a discussion of the findings in this

chapter are given in Section 3.6.

3.2 Problem Definition and Formulation

We consider the complete network G = (V,E), where V = I ∪ J is set of nodes and E

is set of links. A set of clients is represented by I ⊂ V , and set of proxies by J ⊂ V .

Problem (2.3.1) from the literature review is considered. In this model, when traffic gets

close to capacity, the performance of the system degrades and causes delay.

48

According to Gavish (1991), a delay function
Dfij

Qij−fij is associated with delay when mes-

sages are carried over a link (i, j) ∈ E, where Qij is capacity of the link, D is the unit

delay cost of message that has delay in the network and fij is amount of traffic carried

on the link (i, j) per unit of time, and all these are major factors that cause the cost

to increase or decrease. Bear in mind that throughout this thesis, the total delay for a

client to access an object cannot exceed the QoS requirement.We propose a new mathe-

matical formulation for delay function, and start with static data placement problem on

a network with no origin server which consists of placing objects to minimize the total

expected access cost (the cost for a client i ∈ I to access object k ∈ K from proxy j ∈ J is

bkλikcij). The size of all objects that are contained in the proxy j ∈ J which are requested

by client i ∈ I is considered to be the amount of traffic in the link (fij =
∑
k∈K

bkxijk for

∀i ∈ I, j ∈ J). The traffic in the new formulation is constrained to be the capacity of

a link. We assume that the capacity Qij and the size bk of each object k are integer. A

binary variable xijk indicates if client i ∈ I is assigned to access a copy of object k ∈ K

stored in proxy j. Also, another binary variable zjk denotes if object k ∈ K is held in

proxy j ∈ J . A new mathematical model for this problem is given below.

min
∑
i∈I

∑
j∈J

∑
k∈K

bkλikcijxijk +
∑
i∈I

∑
j∈J

Dfij
Qij − fij

(3.2.1)

s.t.
∑
j∈J

xijk = 1 ∀i ∈ I, k ∈ K, (3.2.2)∑
k∈K

bkzjk ≤ sj ∀j ∈ J, (3.2.3)

fij =
∑
k∈K

bkxijk ∀i ∈ I, j ∈ J, (3.2.4)

xijk ≤ zjk ∀i ∈ I, j ∈ J, k ∈ K, (3.2.5)

fij ≤ Qij − 1 ∀i ∈ I, j ∈ J, (3.2.6)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K, (3.2.7)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K. (3.2.8)

49

The new formulation presented above is a non-linear integer programming model. The

objective function has two parts: first term is the cost for clients to access objects from a

proxy and second term is the delay function.

Constraint (3.2.2) indicates that each client and object pair must be assigned to exactly

one proxy server. Constraint (3.2.3) relates to the limited capacity of each proxy j ∈ J .

Constraint (3.2.4) refers to the fact that amount of traffic in the link (i, j) must be equal

to the size of all objects that are contained in proxy j ∈ J which are requested by client

i ∈ I. Constraint (3.2.5) implies that an assignment to a proxy can only be made if that

specific proxy is holding requested object. Constraint (3.2.6) implies that the amount

of traffic carried on the link is less than the capacity of the link by assuming that the

capacity and the size of each object are integer (because size of each object bk, amount

of traffic fij and capacity of the link Qij are integer, so we can write the constraint as

fij ≤ Qij − 1). Constraints (3.2.7) and (3.2.8) denote the integrality restriction of the

decision variables.

3.3 Lower Bound Techniques

In this section, two different methods are explained. Because the size of the proposed

problem is large and constraints are complicated, Lagrangian relaxation is an appropriate

technique to find lower bounds. The second technique is linearization through perspective

cuts by using tangents of the function as valid inequalities to provide lower bounds for the

auxiliary variables that represent the non-linear term. Also to improve the bounds, linear

segment between two consecutive integer points are recommended instead of tangents.

3.3.1 Lagrangian relaxation and Decomposition

Lagrangian relaxation and decomposition approaches are widely used to address prob-

lems with large-sized formulations with complex constraints. For this reason, the for-

mulation should be partitioned into sub-problems with smaller size that can be solved

easily, (Fisher, 2004). The lower bound is sometimes exact and an optimal solution can

50

be found. The general idea behind Lagrangian relaxation is to remove constraints that

are interfering by incorporating a violation of that constraints in the objective function,

hopefully producing a problem that is easy to solve. The aim is to find decompositions

where the non-linearities present in the problem are easy to solve (Bektaş et al., 2009).

3.3.1.1 Lagrangian Relaxation

For Lagrangian relaxation, we choose Constraints (3.2.4) and (3.2.5) and introduce mul-

tipliers αij and βijk, where αij is unrestricted and βijk ≥ 0. The resulting formulation is

reported below:

min
∑
i∈I

∑
j∈J

∑
k∈K

bkλikcijxijk +
∑
i∈I

∑
j∈J

Dfij
Qij − fij

+

∑
i∈I

∑
j∈J

αij(fij −
∑
k∈K

bkxijk) +
∑
i∈I

∑
j∈J

∑
k∈K

βijk(xijk − zjk)
(3.3.1)

s.t.
∑
j∈J

xijk = 1 ∀i ∈ I, k ∈ K, (3.3.2)∑
k∈K

bkzjk ≤ sj ∀j ∈ J, (3.3.3)

fij ≤ Qij − 1 ∀i ∈ I, j ∈ J, (3.3.4)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K, (3.3.5)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K. (3.3.6)

The relaxed problem decomposes into three sub-problems with respect to x, f and z under

the name of LRX, LRF and LRZ respectively.

(LRX) min
∑
i∈I

∑
j∈J

∑
k∈K

(bkλikcij − αijbk + βijk)xijk (3.3.7)

s.t.
∑
j∈J

xijk = 1 ∀i ∈ I, k ∈ K,

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K.

51

(LRF) min
∑
i∈I

∑
j∈J

(
D

Qij − fij
+ αij)fij (3.3.8)

s.t. 0 ≤ fij ≤ Qij − 1.

(LRZ) max
∑
i∈I

∑
j∈J

∑
k∈K

βijkzjk (3.3.9)

s.t.
∑
k∈K

bkzjk ≤ sj ∀i ∈ I, j ∈ J,

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K.

Note that LRZ is written as a maximization problem because the origin of βijkzjk in (3.3.1)

is negative. In the next sub-section, we show how each problem can be solved efficiently.

3.3.1.2 Solving LRX

After relaxation, LRX reduces to an assignment problem. Let Ĉijk=(bkλikcij−αijbk+βijk):

min
∑
i∈I

∑
j∈J

∑
k∈K

Ĉijkxijk (3.3.10)

s.t.
∑
j∈J

xijk = 1 ∀i ∈ I, k ∈ K, (3.3.11)

Problem (3.3.10) decomposes into a sub-problem for each pair i and k. For given i and

k, let x̂j = xijk and Ĉijk = Ĉj and the sub-problem becomes:

min
∑
j∈J

Ĉjx̂j (3.3.12)

52

s.t.
∑
j∈J

x̂j = 1, (3.3.13)

x̂j ∈ {0, 1} ∀j ∈ J. (3.3.14)

Therefore, the optimal solution for LRX is as follow:

x̂j =

1 for j = j∗,

0 for j 6= j∗.

(3.3.15)

Algorithm 6 explains the step-by-step the solution process for this assignment problem.

Algorithm 6 Solving the Assignment Problem (LRX)
Initialization :
Set Ĉijk = (bkλikcij − αijbk + βijk) ∀i ∈ I, j ∈ J, k ∈ K
for i ∈ I do

for k ∈ K do

Find j∗ such that Ĉij∗k= minj∈J Ĉijk
Set xij∗k =1, and xijk=0 ∀j ∈ J\{j∗}

end

end

3.3.1.3 Solving LRF

The optimal solution for the sub-problem LRF is calculated as follows:

Let F (fij) =
Dfij

Qij−fij + αijfij

Proposition 3.1: The value f ∗ij that minimizes F (fij) is given by:

f ∗ij =

 max{Qij +

√
-DαijQij

αij
, 0} if α < 0

0 if α ≥ 0

Proof. The derivative of F (fij) is dF
dfij

=
DQij

(Qij−fij)2 + αij. Setting dF
dfij

= 0, yields to the

quadratic equation αijf
2
ij − 2αijQijfij + (αijQ

2
ij + DQij) = 0. Using the discriminant

(−4DαijQij) to find the roots, results in R1 = Qij−
√
−DαijQij

αij
and R2 = Qij +

√
−DαijQij

αij
.

If αij ≥ 0, F (fij) is monotonically increasing and is therefore minimized in the range

0 ≤ f ∗ij ≤ Qij − 1, with f ∗ij = 0. Alternatively suppose that αij < 0, then R1 =

53

Qij −
√
−DαijQij

αij
> Qij and the resulting solution is infeasible. If R2 ≥ 0, then fij = R2

minimizes F (fij); otherwise, fij = 0 minimizes F (fij).

3.3.1.4 Solving LRZ

LRZ is a collection of knapsack problems, one for each j ∈ J . Knapsack problems are

commonly tackled using dynamic programming. Dynamic programming is a technique

which appears to be a useful tool in many areas of operational research. Dynamic pro-

gramming can be useful, because an optimal solution of our problem is a combination of

optimal solutions of sub-problems according to Kellerer et al. (2004a). In Algorithm 7,

we add objects iteratively to problem as is usual in dynamic programming. The basic

idea of dynamic programming applied to the knapsack problem.

Suppose that an optimal solution of knapsack problem for a subset of all objects and

capacities are already computed, and now we want to add one object to this subset and

check if the optimal solution needs to be changed. This procedure of adding an object is

iterated until all objects are considered and a final optimal solution is found. We intro-

duce the following sub-problem that contains set of objects {1, ..., k} for k = 1, 2, ..., |K|

and knapsack capacity r ≤ sj for r = 0, 1, ..., sj. We initialize by setting z0(r) = 0 for

j = 0, 1, ..., sj consider a given j ∈ J .

The optimal solution value is zk(r) for objects k ∈ K and capacity sj when bk is the

weight of the object k and vjk is the profit of object k where vjk =
∑
i∈I

βijkzjk. If zk−1(r)

is known for all capacity values r = 0, 1, ..., sj , then additional item k can be considered

by applying the following recursive formula (Kellerer et al., 2004b).

zk(r) =

 zk−1(r) if bk > sj

maxzk−1(r), zk−1(sj − bk) + vjk if bk ≤ sj
(3.3.16)

For r = 0, 1, ..., sj and k = 1, 2, ..., |K|. If the considered object is too large for the

knapsack (sj < bk) then the optimal value does not change, but if object k fits into

54

the knapsack (sj ≥ bk) there are two possibilities: either object k is not packed into the

knapsack so the optimal value is unchanged as before or object k is added to the knapsack

and this will affect the optimal solution value and reduce the remaining capacity of the

knapsack (the appointed capacity will be zk−1(sj − bk)). The optimal solution value is

given by max r = 0, 1, ..., sj, Z|K|(r), and the corresponding obtained solution is found by

backtracking.

Algorithm 7 Dynamic Programming (LRZ)
Initialization:
for j ∈ J do

sj ← Capacity of knapsack

Set vjk ←
∑
i∈I

βijkzjk ∀k ∈ K

for r=0 to sj do
Set zj0(r)← 0

end
for k=1 to K do

for r=0 to bk−1 do
zjk(r) = zjk−1(r)

end
for r=bk to sj do

if zjk−1(r − bk) + vjk > zjk−1(r) then
zjk(r) = zjk−1(r − bk) + vjk

else
zjk(r) = zjk−1(r)

end

end

end
Find the optimal solution value maxr=0,...,sjzjk(r), and identify the corresponding values zjk,∀k ∈ K

end

3.3.2 Solving the Relaxed Problem

After solving each sub-problem and finding different values for xijk, fij and zjk we sub-

stitute them to find each sub-gradient so that αij and βijk can be updated. As we

have two different relaxed constraints, we initialized a sub-gradient for each. Thus,

δij = fij −
∑
k∈K

bkxijk is the sub-gradient for multiplier αij and γijk = xijk − zjk is the

sub-gradient for multiplier βijk.

To upgrade multipliers, we need to calculate step lengths for updating αij and βijk .

The step length for αij is computed as sα = λh
UB−LB
‖δ‖ and for βijk is computed as

55

sβ = λh
UB−LB
‖γ‖ , where the norm of sub-gradient δ is ‖δ‖, the norm of sub-gradient γ

is ‖γ‖, UB is an upper bound, LB is the current lower bound and λh is a convergence

parameter that satisfied 0 < λh ≤ 2.

We set the convergence parameter λh = 1 initially and divided by 0.5 if there is not

any improvement in the best known lower bound for five consecutive iterations. After

finding step lengths, we next update multipliers αij and βijk using: αn+1
ij = αnij + δsα and

βn+1
ijk = βnijk + γsβ, where n is the iteration number. Algorithm 8 explains step-by-step

solution process for this relaxed problem.

Algorithm 8 Sub-gradient Optimisation Algorithm
Initialization:
Set iteration limit
Set α1

ij ← 0

Set β1
ijk ← 0

Set n← 1
while n < iteration limit do

Solve (3.3.1)

δij ← fij −
∑
k∈K

bkxijk ∀i ∈ I, j ∈ J

γijk ← xijk − zjk ∀i ∈ I, j ∈ J, k ∈ K
Update sα and sβ
Update multiplier as αn+1

ij = αnij + δsα
Update multiplier as βn+1

ijk = βnijk + γsβ
Set n←− n+ 1

end

3.3.3 Linearization Schemes

In Model (3.2.1) the term
∑
i∈I

∑
j∈J

Dfij
Qij − fij

is convex. So, two different linearization

techniques are proposed in this section to solve this model. In the first scheme perspective

cuts are considered by using tangents of the function as valid inequalities to provide

lower bounds for the auxiliary variables that represent the non-linear term. In second

scheme to improve the bounds, linear segment between two consecutive integer points are

recommended instead of tangents.

56

3.3.3.1 Scheme I

We focus on non-polynomial function with all integer decision variables, only if the size

of object (bk) is integer. To find a lower bound through perspective cuts, tangents of the

function are used as valid inequalities to provide a lower bound for the auxiliary variables

representing the non-linear terms (Erdoğan, 2012). As part of the linearization scheme,

we define wij as an auxiliary variable and qij as an integer point. We define function

gij(f) =
Dfij

Qij−fij that linearization constraints are established. We construct the following

valid inequalities by applying linearization approach of Erdoğan et al. (2010):

wij ≥
dgij(qij)

dfij
fij + gij(qij)−

dgij(qij)

dfij
qij, ∀qij ∈ [0, ..., Qij − 1],∀i ∈ I, j ∈ J. (3.3.17)

The linearized version of (3.2.1) is given as below:

min
∑
i∈I

∑
j∈J

∑
k∈K

bkλikcijxijk +
∑
i∈I

∑
j∈J

wij (3.3.18)

s.t. wij ≥
DQij

(Qij − qij)2
(fij − qij) +

Dqij
Qij − qij

,∀qij ∈ [0, ..., Qij − 1],∀i ∈ I, j ∈ J.

(3.3.19)

3.3.3.2 Scheme II

To improve the result and find better lower bound, another linearization is considered. So,

instead of tangent, the linear segment between two consecutive integer points is considered

to yield stronger bounds. Suppose that the coordinates of these points are (qij, h(qij))

and (qij + 1, h(qij + 1)). The line passing through these two integer points is used as the

linearization constraint. We define h(qij) as:

h(qij) =
Dqij

Qij−qij ∀qij ∈ [0, ..., Qij − 1],∀i ∈ I, j ∈ J

The slope for the segment which passes through two points qij and qij + 1 is:

h(qij+1)−h(qij)
qij+1−qij = h(qij + 1)− h(qij),

57

So a new inequality for auxiliary variable wij is:

wij ≥ (h(qij + 1)− h(qij))fij + h(qij)− (h(qij + 1)− h(qij))qij,

∀qij ∈ [0, ..., Qij − 2],∀i ∈ I, j ∈ J.
(3.3.20)

After simplifying (3.3.20), we have a new equation as below:

wij ≥ (h(qij + 1)− h(qij)) (fij − qij) + h(qij),∀qij ∈ [0, ..., Qij − 2], ∀i ∈ I, j ∈ J.

(3.3.21)

The new version of linearization with new constraint is given as below:

min
∑
i∈I

∑
j∈J

∑
k∈K

bkλikcijxijk +
∑
i∈I

∑
j∈J

wij (3.3.22)

s.t. wij ≥
DQij

(Qij − qij − 1)(Qij − qij)
fij −

Dq2ij +Dqij

(Qij − qij − 1)(Qij − qij)
,

∀qij ∈ [0, ..., Qij − 2],∀i ∈ I, j ∈ J,
(3.3.23)

3.3.4 Comparison Scheme I & Scheme II

Proposition 1. Linearization scheme II improves compared to linearization scheme I.

Proof. Linearization constraint from scheme I as below:

wij ≥
dgij(qij)

df
fij + gij(qij)−

dgij(qij)

df
qij, ∀qij ∈ [0, ..., Qij − 1],∀i ∈ I, j ∈ J. (3.3.24)

Linearization constraint from scheme II as below:

wij ≥ (h(qij + 1)− h(qij)) (fij − qij) + h(qij),

∀qij ∈ [0, ..., Qij − 2],∀i ∈ I, j ∈ J.

The aim is to prove linearization constraint from scheme II dominates the linearization

constraint of scheme I. We use Constraints (3.3.19) from scheme I and (3.3.23) from

58

scheme II and we want to establish as below:

DQij

(Qij − qij)2
(fij − qij) +

Dqij
Qij − qij

≤

DQij

(Qij − qij − 1)(Qij − qij)
fij −

Dq2ij +Dqij

(Qij − qij − 1)(Qij − qij)
,

⇒
(

DQij

(Qij − qij − 1)(Qij − qij)
− DQij

(Qij − qij)2

)
(fij − qij) ≤ 0,

⇒ (fij − qij)
DQij

(Qij − qij − 1)(Qij − qij)2
≤ 0.

D, Qij and (Qij−qij)2 are positive. We need to prove (fij−qij) ≤ 0 and (Qij−qij−1) ≥ 0.

If (fij − qij) ≤ 0 then fij ≤ qij which is correct, according to the constraint fij ≤ Qij − 1.

If (Qij − qij − 1) ≥ 0, then Qij ≥ qij + 1 which is right because qij ∈ [0, ..., Qij − 1].

3.4 Metaheuristics

Optimization algorithms can be broadly categorized into two different levels: exact al-

gorithm and heuristics. Exact algorithms guarantee to find an optimal solution, but in

heuristics there is no guarantee and sometimes the solution is worse than optimal so-

lution. Exact algorithms not only have to allocate this solution in the solution space

but also have to prove that the solution is optimal (Sörensen, 2013). For this purpose,

an exact algorithm must consider implicitly or explicitly every single solution in the so-

lution space. In this section, two different local search neighbourhoods are considered:

swap and remove-insert. Also, a constructive heuristic is introduced to find an initial

solution. Moreover, Variable Neighbourhood Descent (VND), Iterated Variable Neigh-

bourhood Descent (IVND) and Tabu Search (TS) are introduced to find upper bounds.

The main objective function (3.2.1) is defined as F for all the algorithms in this chapter.

These are three associated constraints as below.

• Capacity: means placing objects in each proxy and checking the capacity of each

proxy according to
∑
k∈K

bkzjk ≤ sj ∀j ∈ J ,

• Assignment: indicates that each client must be assigned to exactly one proxy server,

59

due to
∑
j∈J

xijk = 1 ∀i ∈ I, k ∈ K,

• Flow: checks the capacity of the link for all the objects that can pass through the

link by checking the constraint fij ≤ Qij − 1 ∀i ∈ I, j ∈ J .

If placement and flow constraints are violated, the assignments should be changed. When

placement, assignment and flow are satisfied, solution is found. In the Algorithm 9 the

method of computing the value of xijk is explained.

Algorithm 9 The Method of Computing the Value of xijk
F (O)← Objective function value of problem (3.2.1)
Initialization:
Set

∑
j∈J

xijk = 1 ∀i ∈ I, k ∈ K

if xijk ← 1 then
Set zjk ← 1

else
Set zjk ← 0

end
for i=1 to |I| do

for j=1 to |J | do
for k=1 to |K| do

Calculate fij =
∑
k∈K

bkxijk

if bkzjk ≤ sj and fij ≤ Qij − 1 violated then
Back to initialization and do another assignment

else
Calculate F (O)

end

end

end

end

Algorithm 9 shows the way of computing xijk. Randomly pick one of the xijk and try

random solution, if it works we keep xijk; otherwise, we change another randomization. If

we cannot find any solution with this assignment, the new assignment should be applied.

3.4.1 Neighbourhoods

Local search for combinatorial optimization is performed by evaluating changes in a solu-

tion by performing moves in a given neighbourhood. When the value of objective function

cannot be improved, then the solution is identified as a local optimum. Some heuristics

60

or metaheuristics try to avoid being trapped in the local optimum by changing neigh-

bourhood in the search (Mladenović and Hansen, 1997). Swap and remove-insert are

two different neighbourhoods employed in this chapter. The main reason to use these

two neighbourhoods is to explore the search space in order to improve our solutions and

find near-optimal solutions. An effective method is obtained by changing these neigh-

bourhoods within the local search algorithm, choosing one of the neighbourhoods until

no more improvement is obtained and then switching to the other neighbourhood. We

repeat this procedure until no more improvement is found. In both algorithms Fbest is the

value of the best solution, and initially set to infinity.

3.4.1.1 Swap

Swap changes the placement of an object in a proxy with placement of another object in

a different proxy, while respecting the capacities of both proxies. We look at all possible

pair of proxies with any pair of objects that is already in that proxies and swap them,

after checking the capacity of each proxy.

Algorithm 10 Swap Algorithm
Fbest =∞
F (O)← Objective function value (3.2.1) for sets Oj (j ∈ J)
Initialization:
Set Oj ← Set of objects in proxy j
Set Ōj ← Temporary set of objects in proxy j
Set O∗j ← Best set of objects in proxy j
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j, j′ ∈ J j < j′ do
for k ∈ Oj do

for k′ ∈ Oj′ do
Ōj ← (Oj\{k})

⋃
{k′}

Ōj′ ← (Oj′\{k′})
⋃
{k}

B̄j = Bj − bk + bk′

B̄j′ = Bj′ − bk′ + bk
if B̄j ≤ sj ; and B̄j′ ≤ sj′ ; and F (Ō) < Fbest; then

Set Fbest ← F (Ō)
O∗j = Ōj O∗j′ = Ōj′

O∗
ĵ

= Oĵ ĵ ∈ J\{j, j′}
end

end

end

end

61

Algorithm 10 explains the swap neighbourhood. All objects in the proxy j are considered

as a set (Oj). Before an object is removed from a proxy, capacity needs to be checked

by considering the size of new object. If the size of objects are less than the residual

capacities of the proxies then swap can be performed; otherwise, we should swap another

pair of objects.

3.4.1.2 Remove-Insert

One of the local search operators is remove-insert. By inserting a new object, residual

capacity of proxy is compared with size of new object. The action can be completed if

capacity allows this move; otherwise, another object should be considered.

Algorithm 11 Remove-Insert Algorithm
Fbest =∞
F (O)← Objective function value (3.2.1) for sets Oj (j ∈ J)
Initialization:
Set Oj ← Set of objects in proxy j
Set Ōj ← Temporary set of objects in proxy j
Set O∗j ← Best set of objects in proxy j
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j ∈ J do
for k ∈ Oj do

B̄j = Bj − bk
Ōj = (Oj\{k})
for k′ ∈ K\{Oj} do

if B̄j + bk′ ≤ sj then
Ōj = Ōj

⋃
{k}

if F (Ō) < Fbest then
Set O∗j ← Ōj

Set O∗
ĵ
← Oĵ ĵ ∈ J\{j}

Fbest = F (Ō)
end

end

end

end

end

Algorithm 11 explains remove-insert procedure clearly when all objects in the proxy j

are considered as a set (Oj). After checking capacity of proxy, object k is removed from

proxy j, then object k′ is inserted in proxy j. Note that object k′ was not in the proxy

62

j. If the solution of temporary set of objects in proxy j is better than Fbest, then we can

consider solution of temporary set as the best found solution so far and continue.

3.4.2 Constructive Heuristic Algorithm to Find Initial Solutions

Algorithm 12 explains how a random initial solution can be generated. Two different

phases are considered in the algorithm. In the first phase, objects from origin server, one

by one will be allocated in one of the proxies randomly. This allocation depends on the

size of each object and capacity of receiving proxy. In the second phase, to maximize the

usage of remaining capacity of each proxy, we pick random object from origin server and

allocate to the random proxy. This phase has limited flexibility of matching objects and

proxies.

Algorithm 12 Constructive Heuristic Algorithm to Find Initial Solution
F (O)← Objective function value of problem (3.2.1) for set Oj (j ∈ J)
Initialization:
Set Oj ← ∅ ∀j ∈ J
Set Bj ← 0 ∀j ∈ J
for k ∈ K do

Set J̄ ← J
while k /∈ O1

⋃
...
⋃
O|J| do

Randomly pick a proxy j ∈ J̄
Set J̄ ← J̄\{j}
if bk ≤ sj −Bj then

Oj = Oj
⋃
{k}

Bj = Bj + bk
end

end

end
for j ∈ J do

Set K̄ = K\Oj
while K̄ 6= ∅ do

Randomly pick an object k ∈ K̄
Set K̄ ← K̄\{k}
if bk ≤ sj −Bj then

Oj ← Oj
⋃
{k}

Bj ← Bj + bk
end

end

end
Calculate F (O)

Note that each object can be repeatedly assumed to different proxies as long as repetition

is not permitted within the same proxy. Finally, each object will find the space allocated

63

in a proxy. All the objects in each proxy are considered as a set (Oj) which is empty at

starting point.

3.4.3 Variable Neighbourhood Descent (VND)

Algorithm 13 describes the steps of Variable Neighbourhood Descent (VND). Two neigh-

bourhood structures are considered: swap neighbourhood (N1) and remove-insert neigh-

bourhood (N2). An initial solution O is built by the constructive heuristic method from

Algorithm 12.

Algorithm 13 Variable Neighbourhood Descent (VND)
F (O)← Objective function value of problem (3.2.1) for sets Oj from Algorithm 12
Initialization:
Given an initial solution O and a neighbourhood structure N1 and N2, where N1=swap, N2=remove-
insert
kmax=2
Set k ← 1
while k ≤ kmax do

Find the best neighbour Ō ∈ Nk(O)
if F (Ō) < F (O) then

Set O ← Ō and k ← 1
else

Set k ← k + 1
end

end

This algorithm considers the first neighbourhood. If the new solution is better than the

previous solution, then this solution is accepted as the best known solution, and the search

continues with the same neighbourhood; otherwise, change to the next neighbourhood and

attempt to find an improvement.

3.4.4 Iterated Variable Neighbourhood Descent (IVND)

Iterated Variable Neighbourhood Descent (IVND) is a metaheuristic for solving optimiza-

tion problem and integrates the strengths of ILS and VND (Lourenço et al., 2003). We

first attempt to determine the best number of shaking. It is essential to note that n

represents the number of shaking. For example, if n = 4, represents a move that relocate

one, two, three and four objects at a time respectively. Note that the solution of each n is

obtained based on the objective function value. More details regarding to n are explained

64

later. An initial solution O is built by a constructive heuristic method. Variable Neigh-

bourhood Descent (VND) is applied to an initial solution until it finds a local optimum

solution O′. Once a local optimum is found, IVND performs shaking. Generate a point

O′′ , by picking a random n and swap neighbourhood. Just to remind that only swap

neighbourhood is considered as a shaking neighbourhood. The process of shaking and

applying VND is repeated until a computational time limit is reached. The framework of

the proposed algorithm for IVND is given in Algorithm 14. Stopping criterion is usually is

maximum computing time since the last improvement, or maximum number of iteration.

In Algorithm 14, the limit for computational time is considered for stopping condition.

Algorithm 14 Iterated Variable Neighbourhood Descent (IVND)
Initialization:
Given an initial solution O and a shaking neighbourhood structure N = NSwap
Apply Algorithm 13 to find the best solution O′′

Set O ← O′

while computation time < computation time limit do
Shaking: Generate a point O′ by applying n random moves from neighbourhood N in succession to
O′′

Generate a solution O′′ by applying Algorithm 13 to O′

if F (O′′) < F (O′) then
Set O′ ← O′′

end
Determine computation time

end

Bear in mind that different moves have different complexity. If moves involve too many

elementary changes, the resulting heuristic may be very slow and often takes more time

than an exact method.

3.4.5 Tabu Search

Tabu Search (TS) is another metaheuristic that provides very good quality solutions for

solving optimization problems, designed to guide other methods to escape the trap of lo-

cal optimality by using memory structures based on visited solutions, (Glover, 1986). In

TS, instead of recording full solutions, attribute memory structures are used. Usually at-

tribute memory are based on recording information about solution properties (attribute)

that change in moving from one solution to another. If a potential solution has been

65

previously visited within a certain period or if it has violated a rule, it is marked as

“tabu” (forbidden), so the algorithm does not consider that solution again. The stopping

criterion is usually is maximum computing time since the last improvement, or maximum

number of iteration.

TS uses neighbourhood search procedure to iteratively moves from one potential solu-

tion to an improved solution in the same neighbourhood until a stopping criterion has

been satisfied. TS explores the neighbourhood of each solution as the search progress.

The solutions admitted to the new neighbourhood are determined by the tabu list. The

tabu list is a short-term set of solutions that have changed by moving from one solution

to another. In Algorithm 15, an initial solution is the current best known solution from

Algorithm 12. Swap (Algorithm 10) and remove-insert (Algorithm 11) are considered as

two different neighbourhoods to find the best non-tabu solutions.

Algorithm 15 Tabu Search
Initialization:
Set computation time limit
Given an initial solution O and set of neighbourhood structures Nk, with N1 = NSwap, N2 = NRemove
kmax=2
Set Ô ← O
Set Tabu list ← ∅
while computation time < computation time limit do

X=∅
O0=O
while O0=O do

Apply VND method and find the best neighbour Ō ∈ N1(O)
⋃
...
⋃
Nkmax

(O) \X
if Ō is not tabu, or Ō is tabu but satisfies the aspiration criterion then

Set O ← Ō
if F (O) < F (Ô) then

Ô ← O
end

else
X = X

⋃
{Ō}

end

end
Update Tabu list and aspiration criterion
Determine computation time

end

In this algorithm, we consider an aspiration criterion because TS method is too restrictive,

and may prohibit attractive moves, even when there is no danger of cycling. So it is

66

necessary to use an algorithmic device that allows one to cancel tabu statues. In aspiration

criteria, when the solution value is better than the current best-known solution, the move

is allowed (Gendreau and Potvin, 2010). There are three main approaches to define

tabu list size: fixed to a predetermined value, randomly chosen from a specific range, or

dynamically changing by adjusting its value, (Salhi, 2002). Later in this chapter, we will

find the appropriate tabu list size for our experiments.

3.5 Computational Results

In this section, we first present the results of computational experiments comparing lower

bounds and upper bounds. The first method for lower bound is Lagrangian relaxation by

relaxing problem (3.2.1), and another two methods are integer programming formulations

based on two different linearizations. Iterated Variable Neighbourhood Descent (IVND)

and Tabu Search (TS) are used to calculate upper bounds. All algorithms were coded

in Visual C++ 2012 and C and run on a PC with Intel(R) Core(TM), 3.10GHz and

4GB RAM. IBM ILOG CPLEX Optimization Studio (often informally referred to simply

as CPLEX) is an optimization software package, that is used for solving linearization

scheme I and II to find lower bounds, that is implemented through the C programming

language. The quality of lower bounds is evaluated on some small scale problem using

optimal solution obtain with the package BONMIN, a powerful non-linear programming

solver for integer non-linear programming problem to solve problem (3.2.1) to optimality

(available at http://www.neos-server.org/neos/).

3.5.1 Design of Instances

For the experiments, all the instances are categorized as small and large instances. All the

computational experiments in this chapter are performed using randomly generated data

and follow Bektaş et al. (2008) to generate all test instances. Our problem has a multi-

objective function with two terms, where both contribute significantly to the overall cost.

We try to set up a problem where the two terms are balanced. According to Huang and

Abdelzaher (2005) “ average network latency of downloading a file is roughly proportional

67

to its size when file size is between 1KB and 100KB ”. Therefore, we generate the size

of each object (bk) to be an integer random variable in the interval [1,100]. The capacity

of each proxy is sj = δ
∑
k∈K

bk, when bk is the size of each object and δ is a coefficient

which is assigned with different values of 0.8 and 0.9 of total size of all objects. The

capacity of link (i, j) is Qij = δ′
∑
k∈K

bk when δ′ is a coefficient that is assigned with four

different values, namely 0.6, 0.7, 0.8 and 0.9 of the total size of all objects
∑
k∈K

bk. Upon

on our experiments, δ cannot be less than 0.8 and δ′ may not be less than 0.6 according

to capacity restriction. The network cost of transferring a unit size object cij is a random

number in [20,60], and finally the probability of requesting an object λik is a random

number in [0,1]. For both small and large instances the parameters that are explained

above are common parameters that we use in both set of instances .

The first category of small instances is generated with following specifications: the num-

ber of clients (|I|) is 2, the number of potential proxy server (|J |) is 3 and the number

of objects (|K|) is 5. The small category of instances defines capacity of proxies to be

sj = s where sj is in range of [15,30], unit delay cost in range of [250,1000] and ca-

pacity of the link in range of [10,25]. There are sixteen different combination according

to the different size of proxy and different unit delay cost (D) that can be seen in Table 3.2.

In large instances, in order to achieve more realistic numbers of clients, proxies and

objects, we have used long computation times. Therefore, this category has the following

specifications: number of clients (|I|) are chosen as 10, 50 or 100, the number of potential

proxies (|J |) as 5, 25 or 50 and the number of objects (|K|) as 40, 200 or 400. There

are twenty seven different combinations of these dimension parameters as may be seen in

Table 3.4.

According to Formula (3.2.1), we decided to calculate each component of cost separately

to check if they are approximately the same size. Table B.1 in Appendix B, clearly shows

the computational results for each part of the objective function separately. The values

68

of part one of our objective function (
∑
i∈I

∑
j∈J

∑
k∈K

bkλikcijxijk) is in one of the columns

under the name of network transfer cost, and the value of second part (
∑
i∈I

∑
j∈J

Dfij
Qij − fij

)

is in another column of the table with the name of delay cost. Delay cost has a bigger

value than the other cost, and when number of objects increases, the delay cost follows

accordingly. Also, more objects means more access needed for each object from different

proxies, which increases the traffic. In order to clarify why delay cost is bigger, we use

different value of unit delay cost of message delay in the network (D), that balances two

terms of problem, that is randomly chosen between 250 and 1000 for small instances and

is calculated for large instances as the summation of total cost of all links divided by

number of links as follows:
∑
i∈I

∑
j∈J

∑
k∈K

bkλikcij
|I||J |

. Figure 3.1 is the graph that use to secure

the best calculation of the Lagrangian relaxation bound in terms of setting the maximum

number of iterations.

Figure 3.1: Lower Bound for Four Different Instances Respect to Iterations

Each graph is a sample taken out of twenty seven instances and sample values of δ and

69

δ′. In each graph n is the number of iteration in the horizontal axis and global bound

is the best found lower bound for that specific iteration, what is considered in vertical

axis. In each graph the number of clients |I|, the number of potential proxy servers |J|

and the number of objects |K| are shown. All details are in Appendix B (B.2 - B.5). All

of the four plots show that after 50 iterations, there is “no” or “very little” improvement.

Therefore, we implement Lagrangian relaxation for 100 iterations for each instance to get

the best lower bound from Lagrangian relaxation in a reasonable computation time. Note

that for computational results, when we use gap, we are calculating relative percentage

gap.

3.5.2 Computational Results for Small Instances

We provide the results of computational experiments to demonstrate the quality of the

proposed methods for finding a lower bound. Table 3.1 provides a list of acronyms for

Table 3.2.

Instance Ins.

Unit delay Cost D

Lagrangian Relaxation LR

Linear Programming Relaxation scheme I LPR1

Linear Programming Relaxation scheme II LPR2

NEOS server Neos

Gap between LR and LPR1 gapLR−LPR1

Gap between LR and LPR2 gapLR−LPR2

Gap between NEOS server and LR gapN−LR

Gap between NEOS server and LPR1 gapN−LPR1

Gap between NEOS server and LPR2 gapN−LPR2

LR Computation Time (second) TLR

LPR1 Computation Time(second) TLPR1

LPR2 Computation Time (second) TLPR2

Table 3.1: List of Acronyms for Table 3.2

Table 3.2 is based on small instances when |I|=2, |J |=3 and |K|=5 to obtain optimality.

70

As instances are small, the NEOS would be suitable for getting optimality for prob-

lem (3.2.1). Lagrangian Relaxation (LR) is used to find lower bounds, also Linear Pro-

gramming Relaxation (LPR1 and LPR2) are two methods that use to linearize the prob-

lem. In this table sixteen instances are categorized based on capacity of each proxy (sj)

and unit delay cost (D), where (sj) will be allocated by four different numbers of 15, 20,

25, 30, and D will be 250, 500, 700, 1000 (initial experiments show that the value of D

gave the suitable balance between different components of objective function) and at the

end, capacity of the link (Qij) is a random numbers between 10 to 25.

Ins. sj D gapLR−LPR1 gapLR−LPR2 gapN−LR gapN−LPR1 gapN−LPR2 TLR TLPR1 TLPR2

1 15 250 -7.02% -7.02% 37.16% 32.75% 32.75% 1.78 0.06 0.05

2 15 500 -5.74% -5.74% 36.67% 33.04% 33.04% 1.81 0.06 0.06

3 15 700 1.96% -6.43% 36.44% 37.68% 32.35% 2.05 0.06 0.05

4 15 1000 2.21% -6.20% 37.00% 38.39% 33.09% 1.68 0.06 0.05

5 20 250 2.94% 2.94% 20.26% 22.60% 22.60% 2.47 0.06 0.07

6 20 500 3.05% 3.05% 20.29% 22.73% 22.73% 3.53 0.06 0.06

7 20 700 10.05% 2.94% 20.43% 28.43% 22.76% 2.00 0.09 0.08

8 20 1000 10.18% 3.05% 20.36% 28.47% 22.79% 2.56 0.08 0.08

9 25 250 2.94% 2.94% 20.26% 22.60% 22.60% 2.47 0.05 0.04

10 25 500 3.05% 3.05% 20.29% 22.73% 22.73% 3.53 0.05 0.05

11 25 700 2.94% 2.94% 20.43% 22.76% 22.76% 2.00 0.03 0.03

12 25 1000 3.05% 3.05% 20.36% 22.79% 22.79% 2.56 0.03 0.03

13 30 250 9.88% 9.88% 14.12% 22.60% 22.60% 1.95 0.01 0.01

14 30 500 10.07% 10.07% 14.07% 22.73% 22.73% 1.71 0.02 0.01

15 30 700 10.10% 10.10% 14.09% 22.76% 22.76% 1.73 0.03 0.02

16 30 1000 10.08% 10.08% 14.13% 22.79% 22.79% 1.67 0.03 0.03

Average 4.36% 2.42% 22.90% 26.61% 25.24% 2.22 0.05 0.05

Table 3.2: Computational Results for Small Instances

71

We are looking at the size of gaps between LR and LPR1 (LR−LPR1
LR

100%) also LR and

LPR2 (LR−LPR2
LR

100%). The negative results are due to the situation when LPR is bigger

than LR, which is not accountable for all analysis. The minimum gap between LR and

LPR1 is reached when sj equals to 15 and D is in range of [250,1000]. Also, the minimum

gap between LR and LPR2 occurs when sj is in range of [15,25], but for any value of D.

When sj=30, the worst situation occurs for both (LR & LPR1) and (LR & LPR2), but

the value of D has no influence on the gap. In a simple conclusion, sj=15 will provides the

least value of 2% and most desirable gap. The comparison of gap value between NEOS

and LR (NEOS−LR
NEOS

100%) shows when sj=15, the gap value is high and for sj=30 the gaps

decrease.

The value of D for different instances has a consistency, and does not affect the gap

results. For gap between NEOS and LPR1 (NEOS−LPR1
NEOS

100%) and gap between NEOS

and LPR2 (NEOS−LPR2
NEOS

100%), the same pattern as (NEOS-LR) is achieved, and mostly

the results are the same except four results from LPR2 that have smaller average gap.

Simple conclusion for the three columns, shows if we want smaller gap, we should have

highest possible value for sj. The last three columns are used to highlight the time taken

to compute each of these bounds. A quick glance, shows LR takes far longer time to com-

pute for each of sixteen individual instances, considering LPR1 and LPR2 have quicker

time of computation for each similar instance. Therefore, when all parameters and in-

stances fall in right place, linear programming relaxation is a better method rather than

Lagrangian relaxation when computation time is limited. There are more details can be

found in Appendix A (A.1 - A.2).

3.5.3 Computational Results for Large Instances

3.5.3.1 Lower Bound Results

Two different linearization schemes are proposed to linearize model (3.2.1), as explained

before. Also, each linearization solves individually through MIP (Mixed Integer Pro-

gramming) and Linear Programming Relaxation (LPR). In Table 3.3 shows the summary

72

results when |K|=40 and different variations between δ and δ′ are kept with the same

pattern as explained before. gap1 is a gap percentage between MIP1 and LPR1 and

gap2 is between MIP2 and LPR2 and are calculated as: gap1=
MIP1−LPR1

MIP1
100%, and

gap2=
MIP2−LPR2

MIP2
100% for each instance.

Ins. |I| |J| |K| δ δ′ gap1 TMIP1 gap2 TMIP2

1 10 5 40 0.9 0.8 0.02% 7200.07 0.02% 7200.04

2 10 10 40 0.9 0.8 0.03% 7200.29 0.02% 7200.38

3 10 15 40 0.9 0.8 0.07% 7211.08 0.07% 7212.97

4 50 5 40 0.9 0.8 0.07% 7264.53 0.14% 7234.19

5 50 10 40 0.9 0.8 0.16% 7197.25 0.18% 7197.26

6 50 15 40 0.9 0.8 0.25% 7219.51 0.31% 7389.49

7 100 5 40 0.9 0.8 0.11% 7216.98 0.13% 7222.52

8 100 10 40 0.9 0.8 0.28% 7241.80 0.30% 7231.05

9 100 15 40 0.9 0.8 1.58% 7234.14 0.49% 7559.48

10 10 5 40 0.9 0.9 0.02% 7200.01 0.02% 7200.04

11 10 10 40 0.9 0.9 0.03% 72001.24 0.03% 7200.38

12 10 15 40 0.9 0.9 0.06% 7200.76 0.06% 7198.87

13 50 5 40 0.9 0.9 0.04% 7207.67 0.04% 7200.71

14 50 10 40 0.9 0.9 0.13% 7327.34 0.13% 7248.84

15 50 15 40 0.9 0.9 0.23% 7707.82 0.25% 7233.77

16 100 5 40 0.9 0.9 0.07% 7196.08 0.08% 7186.37

17 100 10 40 0.9 0.9 0.26% 7268.40 0.24% 7344.85

18 100 15 40 0.9 0.9 0.43% 7274.95 0.41% 7442.48

AVG 0.21% 0.16%

Table 3.3: Gaps Between Mixed Integer Programming and Linear Programming Relax-
ation

73

TMIP1 and TMIP2 are computational time for running MIP1 and MIP2. At the end of the

Table 3.3, AVG is the average gap value for each column. The results from table shows

that linearization scheme II is working better compare with linearization scheme I. As the

table shows, none of the instances, are solved to optimality. More results can be found in

Appendix B (Tables B.6 - B.13).

For the next step, we use CPLEX for linearization scheme I and linearization scheme

II through LPR for all twenty seven instances. So, CPLEX is required to be scaled to

avoid huge values bigger than 109. To clarify scaling down, we describe that in main

formulation (3.2.1) the terms in objective function had achieved values bigger than 109,

so they were divided by 106 to restrict the size of numbers in CPLEX. Still by implement-

ing scaling, we could not find any solution for LPR, when the number of clients, proxies

and objects increase. Some dashes can been seen in results on intersection of gap col-

umn and instance row, when we compare Lagrangian relaxation with LPR. These dashes

are due to incapability of CPLEX in finding a lower bound. All the results for compar-

ing Lagrangian relaxation with LPR1 and Lagrangian relaxation with LPR2 appear in

“Lagrangian Relaxation and Linear Programming Relaxation”, Appendix B (Tables B.15

- B.30).

3.5.4 Upper Bound Results

In this section we compare the computational results for IVND and TS. Referring to our

twenty seven instances of |I|, |J | and |K| and relevant δ and δ′ for each instance, we took

a sample of δ=0.9 and δ′=0.9 to help us find out the best number for the size of shaking.

We start with n = 2,3,...,10 and run IVND against different values of n.

We choose same instances that we are working for all the experiments in this chapter. We

are looking to find the minimum of IVND and relevant number of n for each twenty seven

instances. The three graphs in Appendix B show the trend of each minimum amount. At

the end, the value 7 is selected as the size of shaking. All the details are in Appendix

B (B.31 - B.33).

74

Based on initial experiments, we found out that reasonable results could be obtained

with modest computation time of up to 20 minutes . So, in order to establish a suitable

computational time for different combination of instances of each |I|, |J | and |K|, we use

four different instances out of twenty seven, and run each one for four different time limits

of 5, 10, 15 and 20 minutes. Table B.34 shows there is no any significant difference on

the results of computation if we run for 10, 15 and 20 minutes. Thus, we conclude that

5 minutes is sufficient to find solutions of good quality.

Also, we are looking for the appropriate tabu list size. Different computations for four

instances with several numbers of tabu list size are conducted. We set size of tabu list

equals to 10, 15, 20, 25 and 30 in steps of 5 if an improvement can be found. Otherwise,

the experiment stops after several setting numbers which show no further improvements.

We use the same stopping condition as we use for our algorithms to provide a basis for

comparison. The details results are given in Appendix B (B.35 - B.36).

From tables, it is observed that when tabu list size greater than 20, there is no more

improvement. Therefore, we stop the experiment. Note here that different variations

between δ and δ′ are kept with the same pattern that will be explained in computational

results section. The gap is calculated by IV ND−TS
IV ND

100%. Because we are evaluating up-

per bounds and in most of the instances the gap value is positive, it is simply concluded

that TS is a better method to find upper bounds for this formulation. It is only a few

average value we can see a significant rise of the gap value and consequently the average

for that particular row. In this particular instances, IVND is considerably larger than TS.

Another perspective of the average results for each column shows smallest average values

when δ=0.9. The highest average values occur when δ=0.8 and δ′=0.6, which means if

we use the minimum capacity of the link and proxy, then the complexity and gap value

will be the biggest value. Table 3.4 lists gaps between IVND and TS as below:

75

Ins. |I| |J| |K| δ′=0.6 δ=0.8 δ′=0.7 δ=0.8 δ′=0.8 δ=0.8 δ′=0.9 δ=0.8 δ′=0.6 δ=0.9 δ′=0.7 δ=0.9 δ′=0.8 δ=0.9 δ′=0.9 δ=0.9 Average

1 10 5 40 0.02% 7.20% 0.02% 0.02% 0.08% 0.09% 0.10% -0.01% 0.94%

2 10 5 200 0.05% 0.08% 0.00% 0.00% 0.07% 1.39% 1.54% 0.11% 0.40%

3 10 5 400 0.00% 5.05% 0.04% 0.00% 0.03% 0.00% 0.00% -0.17% 0.62%

4 10 10 40 0.00% 0.00% 2.82% 6.28% 7.91% 0.00% 5.91% 1.13% 3.01%

5 10 10 200 0.00% 0.00% 0.89% 0.77% 0.00% 0.99% 1.11% 0.55% 0.54%

6 10 10 400 0.76% 0.00% 0.67% 0.72% 0.00% 0.16% 0.84% 0.15% 0.41%

7 10 15 40 0.00% 0.00% 9.83% 0.00% 9.41% 0.00% 0.00% 3.26% 2.81%

8 10 15 200 1.02% 0.00% 0.00% 1.24% 0.00% 0.00% 0.00% 0.87% 0.39%

9 10 15 400 -0.55% 0.00% 0.60% 0.00% 0.00% 0.72% 0.25% -0.07% 0.12%

10 50 5 40 15.10% 3.48% 2.61% 1.11% 4.06% 6.84% 1.13% 5.50% 4.98%

11 50 5 200 30.38% 29.45% 26.38% 25.38% 16.32% 14.57% 13.23% 13.42% 21.14%

12 50 5 400 1.10% 0.56% 0.93% 0.89% 0.70% 0.60% 0.60% 0.52% 0.74%

13 50 10 40 5.72% 1.30% 7.21% 3.78% 3.55% 0.00% 0.70% 2.15% 3.05%

14 50 10 200 6.18% 0.00% 0.00% 1.17% 0.00% 0.48% 0.81% 1.06% 1.21%

15 50 10 400 0.00% 0.22% 0.84% 0.00% 0.85% 0.00% 0.40% 0.34% 0.33%

16 50 15 40 0.00% 0.00% 0.00% 4.10% 0.00% 6.43% 4.50% 3.14% 2.27%

17 50 15 200 0.00% 0.00% 0.35% 1.33% 0.00% 0.71% 0.17% 0.05% 0.33%

18 50 15 400 92.31% 22.36% 22.24% 21.92% 11.18% 10.94% 11.19% 11.01% 25.39%

19 100 5 40 5.00% 13.03% 3.08% 1.81% 5.91% 9.92% 8.35% 7.21% 6.79%

20 100 5 200 31.80% 28.36% 28.19% 25.86% 15.89% 14.15% 13.73% 13.62% 21.45%

21 100 5 400 0.36% -4.23% 0.00% 0.00% 0.26% 0.00% 0.00% 0.03% -0.45%

22 100 10 40 9.39% 8.06% 2.95% 8.18% 5.08% 4.26% 8.44% 3.30% 6.21%

23 100 10 200 0.93% 0.00% 0.22% 0.66% 1.43% 1.47% 0.23% 1.27% 0.78%

24 100 10 400 0.07% 0.01% 0.01% 0.57% 0.01% 0.01% 0.01% 11.30% 1.50%

25 100 15 40 8.50% 0.43% 8.90% 0.93% 7.09% 1.74% 6.08% 3.49% 4.64%

26 100 15 200 0.56% 1.38% 1.52% 0.53% 1.74% 0.04% 0.58% 0.31% 0.83%

27 100 15 400 0.15% 0.46% 0.14% 0.14% -0.04% 0.01% 0.87% 0.48% 0.28%

Average 7.74% 4.34% 4.46% 3.98% 3.39% 2.80% 2.99% 3.11% 4.10%

Table 3.4: Gaps Between Iterated Variable Neighbourhood Descent and Tabu Search

76

In other word, TS would be defiantly the best method when we are working with minimum

capacity of the link and proxy. The reason is TS provides the smaller upper bounds which

are close to optimality. The overall average in gap Table 3.4 is 4.10% which is positive

and shows that IVND provides a large upper bound compared to TS. Also, we compare

Lagrangian relaxation with TS and IVND for each δ and δ′ that are found in sixteen

different tables. All the tables can be seen in Appendix B (B.54 - B.61) and (B.64 -

B.71).

3.5.5 Comparison Lower Bounds and Upper Bounds

CPLEX could not find a solution value for number of instances, so we were not able to

compare all three methods of lower bounds together. Therefore, in Table 3.5 we found

the best lower bounds and compare with the best upper bounds which is given by Tabu

Search (TS). In this table, smallest average gap is, when both capacity of proxy and ca-

pacity of the link have the maximum size.

Gap column values are the average percentage difference between tabu search and re-

lated the best lower bounds and calculated as: gap=TS−bestlowerbound
TS

100%, respectively

for each instance in each table. In Table 3.5 it is clear that when we have maximum

size of proxy (δ=0.9) and link (δ′=0.9) upper bounds and lower bounds are close to each

other. The maximum capacity of proxy (δ=0.9) and minimum capacity of link (δ′=0.6)

gives the largest average gap value. When number of objects increase with number of

proxies, average gap value is higher, especially when number of clients is 50 or 100. When

number of objects is 200 and number of proxies is 5, the average gap values are smallest.

If we divide these eight columns of results into two categories according to capacity of

proxy 0.8 and 0.9, we observe that the minimum average gap of 17.53% and 15.69% both

belongs to δ′=0.9. This means minimum average of gap occurs when we have maximum

capacity of link and capacity of proxy does not have any affect. The average gap for the

table is 18.57% which shows upper bounds and lower bounds are not too far from each

other but are not close either. All tables with details are in Appendix B (B.45 - B.52).

Table 3.5 lists gaps between IVND and TS as below:

77

Ins. |I| |J| |K| δ′=0.6 δ=0.8 δ′=0.7 δ=0.8 δ′=0.8 δ=0.8 δ′=0.9 δ=0.8 δ′=0.6 δ=0.9 δ′=0.7 δ=0.9 δ′=0.8 δ=0.9 δ′=0.9 δ=0.9 Average

1 10 5 40 16.76% 11.87% 9.56% 8.34% 12.70% 9.71% 8.27% 7.57% 10.60%

2 10 5 200 3.60% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.45%

3 10 5 400 0.82% 0.75% 9.86% 9.57% 9.91% 9.46% 9.10% 9.72% 7.40%

4 10 10 40 10.06% 8.36% 7.50% 7.09% 8.68% 7.58% 7.09% 6.95% 7.92%

5 10 10 200 25.36% 7.85% 22.15% 20.31% 25.71% 22.89% 20.85% 19.30% 20.55%

6 10 10 400 14.54% 13.44% 12.79% 12.29% 14.29% 13.21% 12.84% 12.48% 13.24%

7 10 15 40 10.91% 9.20% 8.18% 7.57% 41.03% 8.28% 7.57% 7.22% 12.49%

8 10 15 200 10.10% 38.23% 37.29% 6.36% 38.90% 30.16% 6.36% 3.00% 21.30%

9 10 15 400 43.00% 40.89% 39.36% 37.23% 40.70% 38.55% 36.76% 5.47% 35.24%

10 50 5 40 3.98% 12.36% 8.50% 7.50% 13.75% 9.78% 7.49% 6.13% 8.68%

11 50 5 200 11.27% 11.01% 10.71% 10.45% 0.95% 1.72% 2.08% 2.54% 6.34%

12 50 5 400 11.48% 10.94% 10.67% 10.57% 15.42% 15.10% 14.59% 14.51% 12.91%

13 50 10 40 10.01% 7.98% 6.71% 5.85% 8.39% 6.84% 5.85% 5.17% 7.10%

14 50 10 200 20.38% 20.59% 20.28% 19.97% 20.34% 19.72% 19.75% 19.44% 20.06%

15 50 10 400 21.05% 20.56% 20.45% 20.74% 20.61% 20.61% 20.43% 19.87% 20.54%

16 50 15 40 8.92% 7.33% 6.25% 5.48% 7.67% 6.37% 5.48% 4.84% 6.54%

17 50 15 200 55.46% 54.57% 54.09% 53.57% 53.65% 51.04% 52.70% 52.30% 53.42%

18 50 15 400 40.89% 42.26% 41.79% 41.20% 48.74% 47.73% 47.35% 46.85% 44.60%

19 100 5 40 16.56% 11.07% 7.93% 6.06% 12.22% 8.24% 6.06% 4.70% 9.11%

20 100 5 200 11.54% 11.31% 10.93% 5.81% 1.00% 1.77% 2.01% 2.50% 5.86%

21 100 5 400 3.70% 9.43% 10.87% 10.74% 15.56% 15.27% 14.89% 14.66% 11.89%

22 100 10 40 10.86% 8.43% 6.92% 5.88% 8.41% 6.59% 5.42% 3.93% 7.05%

23 100 10 200 2.57% 21.93% 21.82% 21.68% 21.37% 21.22% 21.45% 19.48% 18.94%

24 100 10 400 17.81% 21.15% 21.67% 21.81% 21.41% 21.46% 21.32% 21.11% 20.97%

25 100 15 40 8.60% 6.94% 5.82% 5.01% 7.38% 6.04% 5.13% 4.46% 6.17%

26 100 15 200 56.95% 56.57% 56.28% 56.01% 56.00% 55.41% 55.13% 54.69% 55.88%

27 100 15 400 57.09% 56.75% 56.47% 56.25% 56.01% 55.57% 55.28% 54.83% 56.03%

Average 18.68% 19.32% 19.44% 17.53% 21.51% 18.90% 17.45% 15.69% 18.57%

Table 3.5: Comparison Best Lower Bound with Best Upper Bound

78

Also, we compare Lagrangian Relaxation (LR) as lower bound and Tabu Search (TS)

for upper bound. All tables studies exactly the same instances and same configuration

between δ and δ′ but through TS method. Gap column values are the average percentage

difference between LR and TS and calculated as gap=TS−LR
TS

100%, respectively for each

instance in the table. All the results can be seen in eight tables in Appendix B (B.54

- B.61). Table B.62 shows gap value can be low for a suitable combination of instance

parameters, i.e. the second instance configuration (|I|=10, |J |=5 and |K|=200) provides

the least value of gap between TS and LR. On the other hand, instance 25 (|I|=100,

|J |=15 and |K|=40), 26 (|I|=100, |J |=15 and |K|=200) and 27 (|I|=100, |J |=15 and

|K|=400) might be one of the worst configuration of |I|, |J | and |K|, which provide a

large value of gap between TS and LR.

Another approach observing the results on gap column shows that regardless of differ-

ent combination between δ and δ′, for |J |=15 we are likely to end up having a big gap

percentage. As a simple explanation, having 5 or 10 potential proxies is a much better

choice. We may also learn, in an instance when |J | and |K| values are bigger, then the

gap value would also be high. Instances 9 (|I|=10, |J |=15 and |K|=400), 18 (|I|=50,

|J |=15 and |K|=400) and 27 (|I|=100, |J |=15 and |K|=400) which all have |J |=15 and

|K|=400 have resulted in high gap values. It is clear that the pattern of high value of gaps

also repeats for all different values combination of δ and δ′. We have also learn that |I|

value (number of clients) has far less influence to increase the gap value, comparing to |J |

(number of potential proxies) and |K| (number of objects). By looking at average value

of each gap column, the combination of δ=0.8 and δ′=0.9 conclude the lowest average

of 25%. This table shows instances such as |I|=10, |J |=5 and |K|=200 that provides

least gap value irrespective of the combination of δ and δ′. On the other hand |I|=100,

|J |=15 and |K|=400 provides highest gap value, which again is not related to the δ and

δ′ combination.

For another comparison, we compare Lagrangian Relaxation (LR) as lower bounds and

Iterated Variable Neighbourhood Descent (IVND) considering for upper bounds. All ta-

79

bles consider exactly the same instances and the same configuration between δ and δ′,

but focus on the IVND method. Gap column values are the average percentage differ-

ence between LR and IVND and calculated as gap= IV ND−LR
IV ND

100%, respectively for each

instance in the table. All the tables are in Appendix B (B.64 - B.71). With no change, in

Table B.72 instance number 2 (|I|=10, |J |=5 and |K|=200) is the best configuration so

far for the lowest gap value and instance 27 (|I|=100, |J |=15 and |K|=400) yet creates a

gap value that is highest. It is simply indicates that the TS algorithm would be providing

good quality solution comparing with IVND algorithm.

Table B.62 provides gaps between Lagrangian relaxation and TS, and Table B.72 shows

the gaps between Lagrangian relaxation and IVND. By looking at these two tables (B.62

and B.72), it is clear that the average gap value for each gap column produces a higher

value in Table B.72. Therefore, the proposed IVND algorithm compared to the TS algo-

rithm will always provides a higher average gap value.

The last comparison is TS with LPR1 and LPR2. This time we compare only instances

where CPLEX gives the solution for that instance. All the results are in Appendix B (B.73

- B.80). In the tables, LPR2 has the lower gap compare with LPR1 when capacity of the

proxy is 0.8. LPR1 and LPR2 have the same average when capacity of the proxy is 0.9.

As a general overview to these tables, what we learn from gap values is that LPR2 is a

slightly better method of calculation by providing less gap. Note that all tables studies

exactly the same instances and same configuration between δ and δ′.

3.6 Discussion

In this chapter, we propose a new non-linear integer programming formulation which

overcome disadvantages of previous models by introducing delay in the formulation. The

aim is to minimize overall latency of searching Web server due to availability of system

resources and traffic pattern. Lagrangian relaxation and decomposition approaches are

used to address this problem. Two complicated constraints, which are related to the

80

amount of traffic in the link and the assignment, are used to relax the problem with two

different set of multipliers. The relaxed problem decomposes into three sub-problems with

respect to the component involving variables x, f and z. To upgrade the multipliers, step

lengths for each multiplier are computed independently of each other. Also, two different

sub-gradients are considered for each multiplier. We set 100 sub-gradient optimization

iterations for each instance to get good performance from Lagrangian relaxation. Two

different linearization schemes are also introduced. The first linearization (Scheme I) finds

a lower bound through perspective cuts when tangents of the function are used as valid

inequalities to provide a lower bound for auxiliary variables. The second linearization

(Scheme II) uses a previous linear segment between pairs of consecutive integer points.

The approach which is provided in scheme II has stronger bounds compare to scheme I.

Iterated Variable Neighbourhood Descent (IVND) is one of the metaheuristics method

that we use to find upper bounds. Also, Tabu Search (TS) is another metaheuristic pro-

viding very good quality solutions for solving our optimization problem. Two local search

operators are used: swap and remove-insert to improve. Constructive heuristic method

is introduced to find an initial solution. It randomly assigns objects to proxies and cal-

culates the capacity of each proxy by adding new object every time, until all objects find

space allocated in a proxy and no proxy is left out.

In this chapter, for the computational experiments, two different designs are introduced

as small and large for instances. The first category for small instances is generated with

the following specifications: the number of clients (|I|) is 2, the number of potential proxy

servers (|J |) is 3 and the number of objects (|K|) is 5. For small instances, we consider

NEOS to get optimality. Mixed Integer Programming (MIP) and Linear Programming

Relaxation (LPR) are two methods that run in CPLEX. We are looking at the minimum

value of gap between Lagrangian relaxation and Linear Programming Relaxation (LPR).

When sj (capacity of proxy) equals to 15 and D is in range of [700,1000] minimum gap

is reached between Lagrangian relaxation and LPR with scheme I. Also, the minimum

gap between LR and LPR with scheme II is achieved, when sj is in range of [20-25], but

81

the value of D could float between all ranges. As the conclusion, for smaller gap, highest

possible value for sj should be considered. The computation time for each instance con-

figuration is set to two hours (7200 seconds). Majority of instances, just passed two hours

computational time with no optimality, so the results would be achievement of upper

bound for both LPR from scheme I and II, but no optimality.

The second category of large instances has following specifications: number of clients

(|I|) are chosen as 10, 50 or 100, the number of potential proxies (|J |) as 5, 25 or 50

and the number of objects (|K|) as 40, 200 or 400. There are twenty seven different

combinations of these parameters. For large instances, Lagrangian relaxation, Iterated

Variable Neighbourhood Descent (IVND) and Tabu Search (TS) are considered to find

lower bounds and upper bounds. According to the capacity restriction, different variations

between δ and δ′ which are coefficient of sj and Qij (capacity of the link) are considered.

Each percentage gap is calculated as: gap=upperbound−lowerbound
upperbound

100%. The best number of

shaking is considered 7 for all experiments (B.31 - B.33). Also, to get the best solution,

five minutes is suggested for computational time (B.34). Mixed Integer Programming

(MIP) and Linear Programming Relaxation (LPR) are compared together. Also, IVND

and TS are compared together and concluded that TS is better method for upper bounds.

From all lower bounds and upper bounds techniques that we use in this chapter, the best

lower bounds and upper bounds are compared together. For more challenge, we compare

Lagrangian relaxation with IVND and TS. In linearizations with two schemes, LPR from

scheme I and II compared with Lagrangian relaxation, and finally, TS is compared with

LPR1 and LPR2.

In next chapter, we are looking at one of the models of cache allocation problem which

has local cluster for proxies by considering origin server. Also, all the proxies are identical

and there is no difference to put object in which proxy. Two different linearization meth-

ods are introduced to find lower bounds. In metaheuristic section, two different methods

are introduced to find initial solution: constructive heuristic and greedy algorithm. vari-

able Neighbourhood (VND), Iterated Variable Neighbourhood Descent (IVND) and Tabu

82

Search (TS) with six neighbourhoods are suggested in next chapter.

83

Chapter 4

Lower Bounding Techniques and

Metaheuristics for Cache Allocation

Problem

Caching is the process of replicating Web contents in different locations where clients can

access objects easily. Caching can be performed at various levels: at the proxy server,

at the browser and Web server (Mookerjee and Tan (2002) and Hosanagar et al. (2005)).

Dynamic replacement is focused on minimizing the cost for the cache under certain con-

ditions, whereas cooperative caching refers to the sharing of objects between networks of

proxy caches. In one of the articles about Web caches, Wong (2002) suggest savings of

about 40% in download time regardless of the link speed by using cache proxies. This

analysis shows that saving from a Web cache proxy might be insignificant, if download

or network charges are considered, but the main reason to have cache proxies is to save

time when multiple users are utilizing the limited available bandwidth. This value may

be small for an individual or instance, but multiplied over a huge number of users and

time, considerable productivity can be achieved.

Tawarmalani et al. (2009) explain the benefit of collaboration of objects which refers

to the sharing objects between network of proxy caches (i.e., proxy servers serving as

caches). We use this strategy, if an object is demanded from a cache that does not have

84

a copy of the required object, then it can be found in neighbour caches. This strategy

results in cost reduction, because instead of going to the origin server to get the object, it

can be retrieved from neighbouring caches. The basic formulation that we study in this

chapter regarding the cache allocation problem is based on an idea from Tawarmalani

et al. (2009). To find lower bounds for this formulation, two different linearizations are

proposed to solve this proposed mixed integer problem to obtain a global optimal solu-

tion. We claim that these two linearization methods give equivalent formulations of the

original problem with regards to integer solutions.

Also, Iterated Variable Neighbourhood Descent (IVND) and Tabu Search (TS) are two

metaheuristics methods which are developed to find upper bounds. Six different local

search operators are suggested as follows: insert from origin server to a proxy, insert from

one proxy to another proxy, swap between origin server and a proxy, swap between two

proxies, a cyclic exchange and remove-insert. Also, a constructive heuristic and a greedy

algorithm are two methods which are introduced to find an initial solution.

In Section 4.1, the cache allocation problem and the way that we simplify the formu-

lation is explained. In Section 4.2, two linearizations are suggested based on different

studies. Section 4.3 presents metaheuristic algorithms for proposed problem, by using

two different approaches to find initial solutions. In Section 4.4, our computational re-

sults are presented and finally, a discussion of the findings in this chapter are given in

Section 4.5.

4.1 Problem Definition and Formulation

Tawarmalani et al. (2009) analyze the allocation of objects in a network of caches that

collaborate to service requests from clients. Let k ∈ K denotes a set of objects with

different sizes and j ∈ J represents a set of caches. The caches j ∈ J have capacities

that are denoted by sj. According to the description of model (4.1.1), suppose the cost of

serving an object locally from the cache, where it is requested, is cl, from the other caches

85

in the network is cn, and from the origin server is co. Even if, cl, cn and co are dependent

on the proxy, we treat them as constants. The expected total cost for cache allocation

problem from the Tawarmalani et al. (2009) model is as follows:

min
∑
j∈J

{
(cl − cn)

∑
k∈K

ejkzjk + cn
∑
k∈K

ejk + (co − cn)
∑
k∈K

ejk
∏
j′∈J

(1− zj′k)

}
(4.1.1)

s.t.
∑
k∈K

bkzjk ≤ sj ∀j ∈ J, (4.1.2)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (4.1.3)

where zjk is 1 if object k is held in cache j and 0 otherwise. The first term in (4.1.1)

accounts for the objects served locally, and the second and third terms account for the

ones retrieved from neighbouring caches and origin server, respectively. Obviously, an

object is obtained from a neighbour only when it is not held locally and at least one of

the neighbours holds it. The object is obtained from the origin server when it is not

accessible locally or from the neighbouring caches.

Tawarmalani et al. (2009) analyse centralizing scenarios, linearize the objective function

by using the techniques of Glover and Woolsey (1974). Next, they discuss the generaliza-

tion of their results to objects with arbitrary sizes. In terms of complexity, the problem

becomes much harder. The objects are not allowed to be split and stored in individual

parts in different proxies. This is due to the fact that, if the object can be divided into

packets for transmission, to access to the object from one source or different sources would

require assembly to recreate the object, whether the whole object is brought from one

source or different sources. Thus, the cost of combining different parts of an object may

be too high to be ignored.

The proposed Formulation is non-linear due to the last term of objective function as

a result of multiplication of zjk for different value of j′. The Multi-dimensional Non-linear

Knapsack Problem (MNKP) is a bounded non-linear integer programming problem that

86

maximize a separable non-decreasing function subject to separable non-decreasing con-

straints. Non-linear knapsack problems have various applications in different fields, for

instance, marketing, networking, production planing and so on. In our case, because we

cannot separate the objective function, there is not a straightforward way to use MNKP

to solve our problem. So, we work on finding an efficient linearization technique by re-

ferring to different papers. In the original model, Tawarmalani et al. (2009) consider a

demand ejk for each proxy j, but our model has dk as a demand that we can assign to any

proxy that holds the object of interest. Demand for object k is measured by bkθk where

bk is the size of the popular object k, and θk measures how popular object k is going to be.

From the formulation, it is clear that each object can be allocated at most once, that

means we cannot put all the objects in the proxy because solution will be dominated.

We consider set of proxies |J |, origin server (J0 = J
⋃
{0}) and objects (k ∈ K) with

different sizes. We are looking at simpler model of cache allocation problem which have

local cluster of proxies and trying to put an object in each proxy to avoid having to use

slower origin server. Essentially all proxies are identical, that might be in different sizes

in general. However, for computational testing, we consider all proxies to have the same

size. In objective function there is no difference to put the object in which proxy; the cost

will be the same. Basically we consider cl = cn in the model of Tawarmalani et al. (2009),

which means whenever demand occurs in the network, if some proxy j contains object

k, it will be considered as local cost; alternative, k is obtained from the origin server.

Another explanation is that when object k is not in a proxy, the cost is codk and when

object k is in a proxy the cost is cldk . By considering above explanation, the propose

model for the cache allocation problem can be written as follows:

min
∑
k∈K

{
cldk + (co − cl)

(
dk
∏
j∈J

(1− zjk)

)}
(4.1.4)

s.t.
∑
k∈K

bkzjk ≤ sj ∀j ∈ J, (4.1.5)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (4.1.6)

87

The objective function consists of two parts, the first part is
∑
k∈K

cldk where cl and dk are

positive constants. The second part is a mixed 0-1 polynomial term , (co−cl)dk
∏
j∈J

(1−zjk),

where z0k, z1k, z2k, . . . , z|J |k are 0-1 integer variables, and co and cl are positive constants,

where cn=cl . If
∏
j∈J

(1− zjk)=1, then all of zjk for j ∈ J are zero, and if
∏
j∈J

(1− zjk)=0,

means zjk=1 for at least one value j ∈ J .

4.2 Linearization Techniques

There are many problems in network design which are formulated as mixed 0-1 problems.

To solve non-linear models, a transformation should be applied by using auxiliary con-

straints and additional 0-1 variables. The reason is that there are many powerful software

tools for linear problems but the tools are not very good for non-linear problems. Also,

solving non-linear problems is costly compared with linear problems. Some improvements

are provided by Watters (1967) who discuss the method that reduces a 0-1 polynomial

formulation to a 0-1 linear formulation. Also, Chen et al. (2006) use this method for the

Multi-dimensional Nonlinear Knapsack Problem (MNKP) with a single constraint by con-

sidering the fact that the problem is separable, and Li et al. (2009) develop a convergent

Lagrangian and cut method for solving the MNKP.

Equation (4.1.4) is a 0-1 polynomial. We solve the problem to optimality by two dif-

ferent models for linearization, to convert the original mixed 0-1 polynomial formulation

to 0-1 linear program. The aim is to find out which one of the linearization models is

more efficient and better respect to computational time. Therefore, the feasible region

will be the same for different linearization models. The validity of each linearization is

proved to show the equivalency between the original objective function and the linearized

objective function.

88

4.2.1 Linearization I

We linearize (4.1.4)- (4.1.6) by using the method of Tawarmalani et al. (2009) for arbi-

trary object sizes without splitting the object, by introducing an auxiliary variable mk to

represent
∏
j∈J

(1− zjk), and adding linear constraints to impose the non-linear relationship

between zjk variables. In our model zjk=1 if object k ∈ K is in proxy j ∈ J , and zjk=0;

otherwise. The model defined by (4.1.4), (4.1.5) and (4.1.6) with new auxiliary variables

and constraints are given below:

min cl
∑
k∈K

dk + (co − cl)
∑
k∈K

dkmk (4.2.1)

s.t. mk ≥ 1−
∑
j∈J

zjk ∀k ∈ K, (4.2.2)∑
k∈K

bkzjk ≤ sj ∀j ∈ J, (4.2.3)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K, (4.2.4)

mk ≥ 0 ∀k ∈ K. (4.2.5)

Proposition 4.1: Linearization I is a valid formulation for cache allocation problem.

Proof. Note that Constraint sets (4.2.3) and (4.2.4) are identical to (4.1.5) and (4.1.6),

hence any solution that is feasible for Linearization I is also feasible for cache allocation

problem. We just need to show that the objective function values of the two solutions are

the same. Variable mk accounts for the term
∏
j∈J

(1− zjk) in (4.1.4).

Case 1:
∑
j∈J

zjk ≥ 1,

In this case, Constraint (4.2.5) dominates constraint (4.2.2) and results in mk ≥ 0. Since

co − cl ≥ 0 the optimal solution is m∗k = 0, which is equal to
∏
j∈J

(1− zjk) = 0.

Case 2:
∑
j∈J

zjk = 0,

In this case, Constraint (4.2.2) results in mk ≥ 1. Similar to the previous case, the optimal

solution is m∗k = 1, which is equal to
∏
j∈J

(1− zjk) = 1.

89

4.2.2 Linearization II

Ghezavati and Saidi-Mehrabad (2011) develop a new linearization method by creating a

set of auxiliary linear constraints that can be solved by exact algorithms such as branch

and bound. They decrease the number of additional constraints and this considerably

affects the computational time. Let σk be an auxiliary variable to represent
∏
j∈J

(1 −

zjk). The model define by (4.1.4), (4.1.5) and (4.1.6) with new auxiliary variables and

constraints are given below.

min cl
∑
k∈K

dk + (co − cl)
∑
k∈K

dkσk (4.2.6)

s.t. (1− z1k) + . . .+ (1− z|J |k) ≥ |J |σk, ∀k ∈ K, (4.2.7)

(1− z1k) + . . .+ (1− z|J |k)− |J |+ 1 ≤ |J |σk, ∀k ∈ K, (4.2.8)∑
k∈K

bkzjk ≤ sj ∀j ∈ J, (4.2.9)

σk ∈ {0, 1} ∀k ∈ K, (4.2.10)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (4.2.11)

Proposition 4.2: Linearization II is a valid formulation for the cache allocation problem.

Proof. Note that Constraints (4.2.9) and (4.2.11) are identical to (4.1.5) and (4.1.6), so

any solution that is feasible for linearization II is also feasible for cache allocation problem.

We just need to show that the objective function values for the two solutions are the same.

Case 1:
∑
j∈J

zjk ≥ 1,

In this case, Constraint (4.2.7) will imply σk < 1 and Constraint (4.2.10) will force σ∗k = 0,

which is equal to
∏
j∈J

(1− zjk) = 0.

Case 2:
∑
j∈J

zjk = 0,

In this case, Constraint (4.2.8) will imply σk > 0, and Constraint (4.2.10) will force σ∗k = 1,

which is equal to
∏
j∈J

(1− zjk) = 1.

90

4.3 Metaheuristics

Metaheuritics are affective methods by providing a sufficiency good solution to an opti-

mization problem. Two powerful metaheuristics are used to solve the propose cache al-

location problem in this chapter. Iterated Variable Neighbourhood Descent (IVND) and

Tabu Search (TS) are considered to find upper bounds for our new model. We describe

six different neighbourhoods for new model. In the next section, all neighbourhoods with

related algorithm are explained. An initial solution is achieved by two different algorithms

as follows: a constructive heuristic and a greedy algorithms.

4.3.1 Neighbourhoods

Metaheuristics may try to avoid being trapped in a local optimum by changing neigh-

bourhood in the search (Mladenović and Hansen, 1997). Therefore, introducing a variety

of different neighbourhoods for the cache allocation problem is relevant. We can assign

each object to at most once to a proxy, so many objects are not assigned to any proxy and

will be unassigned and stay in origin server. In each algorithm, Fbest represents the best

solution we currently found in that particular neighbourhood. Before we start searching

the neighbourhood, Fbest is infinity, because we do not have a neighbour solution, but

when search the neighbourhood Fbest is gradually decreased.

Six different local search operators (neighbourhoods) are suggested as: insert from origin

server to a proxy (Algorithms 16), insert from one proxy to another proxy (Algorithms 17),

swap between origin server and a proxy (Algorithms 18), swap between two proxies (Al-

gorithms 19), cyclic exchange (Algorithms 20) and remove-insert (Algorithms 21). For all

neighbourhoods, the objective function value F (O) is evaluated for set of objects in each

proxy, where F (O) is evaluated from (4.1.4).

91

4.3.1.1 Insert from Origin Server to a Proxy

Algorithm 16 Insert from Origin Server to a Proxy
Fbest =∞
F (O)← objective function value (4.1.4) for sets Oj (j ∈ J) and O0

Initialization:
Set O0 ← set of objects in origin server
Set Oj ← set of objects in proxy j ∀j ∈ J
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j ∈ J do
for k ∈ O0 do

if Bj + bk ≤ sj then
Set Ōj′ ← Oj′ ∀j′ ∈ J\{j}
Set Ōj ← Oj

⋃
{k}

Set Ō0 ← O0\{k}
if F (Ō) < Fbest then

Set O∗j ← Ōj ∀j ∈ J0
Fbest ← F (Ō)

end

end

end

end

In Algorithm 16 object k is chosen from origin server and inserted to a proxy j after

checking the capacity of the proxy (sj).

4.3.1.2 Insert From One Proxy to Another Proxy

In this neighbourhood, an object k from one of the proxies j inserts into another proxy j′

after checking the capacity of proxy (sj′). Algorithm 17 explains for this neighbourhood.

92

Algorithm 17 Insert From One Proxy to Another Proxy
Fbest =∞
F (O)← objective function value (4.1.4) for sets Oj (j ∈ J)
Initialization:
Set Oj ← set of objects in proxy j
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j ∈ J do
for j′ ∈ J do

for k ∈ Oj do
if Bj′ + bk ≤ sj′ then

Set Ōj′′ ← Oj′′ ∀j′′ ∈ J0\{j, j′}
Set Ōj′ ← Oj′

⋃
{k}

Set Ōj ← Oj\{k}
if F (Ō) < Fbest then

Set O∗j′′ ← Ōj′′ ∀j′′ ∈ J0
Fbest ← F (Ō)

end

end

end

end

end

4.3.1.3 Swap Between Origin Server and a Proxy

Algorithm 18 Swap Between Origin Server and a Proxy
Fbest =∞
F (O)← objective function value (4.1.4) for sets Oj (j ∈ J)
Initialization:
Set O0 ← set of objects in origin server
Set Oj ← set of objects in proxy j
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j ∈ J do
for k ∈ Oj do

for k′ ∈ O0 do
if Bj + bk′ − bk ≤ sj then

Set Ōj′ ← Oj ∀j′ ∈ J\{j}
Set Ōj ← Oj\{k}

⋃
{k′}

Set Ō0 ← O0\{k′}
⋃
{k}

if F (Ō) < Fbest then
Set O∗j′ ← Ōj′ ∀j′ ∈ J0
Fbest ← F (Ō)

end

end

end

end

end

93

In Algorithm 18 an object k in proxy j swaps with another object k′ from the origin

server.

4.3.1.4 Swap Between Two Proxies

In this neighbourhood two proxies with two different objects are considered. First we

select two objects from two different proxies then check the capacity of each proxy, then

objects can be interchanged. Note that if the capacity constraints are satisfied the swap

can be applied.

Algorithm 19 Swap Between Two Proxies
Fbest =∞
F (O)← objective function value (4.1.4) for sets Oj (j ∈ J)
Initialization:
Set Oj ← set of objects in proxy j ∀j ∈ J
Set Ōj ← temporary set of objects in proxy j
Set O∗j ← best set of objects in proxy j
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j, j′ ∈ J j < j′ do
for k ∈ Oj do

for k′ ∈ Oj′ do
if Bj + bk′ ≤ sj and Bj′ + bk ≤ sj′ then

Set Ōj′′ ← Oj′′ ∀j′′ ∈ J0\{j, j′}
Set Ōj ← Oj\{k}

⋃
{k′}

Set Ōj′ ← Oj′\{k′}
⋃
{k}

if F (Ō) < Fbest then
Set O∗j′′ ← Ōj′′ ∀j′′ ∈ J
Set Fbest ← F (Ō)

end

end

end

end

end

4.3.1.5 Cyclic Exchange

Algorithm 20 explains how we can manage a triple swap between two assigned objects

which are already allocated in two different proxies with an unassigned object from the

origin server. All the objects which are in proxies, are assigned as a set. The idea is that

such a triple swap allows a large search of the neighbourhood solutions.

94

Algorithm 20 Cyclic Exchange
Fbest =∞
F (O)← objective function value (4.1.4) for sets Oj (j ∈ J)
Initialization:
Set O0 ← set of objects in origin server
Set Oj ← set of assigned objects in proxy j ∀j ∈ J
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j, j′ ∈ J j 6= j′ do
for k ∈ O0 do

for k′ ∈ Oj do
for k′′ ∈ Oj′ do

if Bj + bk − bk′ ≤ sj and Bj′ + bk′ − bk′′ ≤ sj′ then
Set Ōj′′ ← Oj′′ ∀j′′ ∈ J0\{j, j′}
Set Ōj ← (Oj\{k′})

⋃
{k}

Set Ōj′ ← (Oj′\{k′′})
⋃
{k′}

Set Ō0 ← (O0\{k})
⋃
{k′′}

if F (Ō) < Fbest then
Set O∗j ← Ōj′′ ∀j′′ ∈ J0
Set Fbest ← F (Ō)

end

end

end

end

end

end

4.3.1.6 Remove-Insert

Algorithm 21 explains the steps of neighbourhood remove-insert. We take one object out

of proxy and try to put in several objects from the origin server. We are trying to put

the objects in proxy with the highest demand, also we want small size objects. Therefore

sequence π is a ratio of dk
bk

where dk is demand, that is generating the popularity of that

particular object, when bk is the size of each object. All objects in origin server are sorted

in descending order from largest to smallest. The aim is to put more objects in proxy

if the capacity allows. If objective function value is better than previous one, the set is

considered as the best set; otherwise, the process starts again.

95

Algorithm 21 Remove-Insert
Fbest =∞
F (O)← objective function value (4.1.4) for sets Oj (j ∈ J)
Initialization:
Set O0 ← set of assigned objects in origin server
Set Oj ← set of assigned objects in proxy j ∀j ∈ J
Start:
Set Bj ←

∑
k∈Oj

bk ∀j ∈ J

for j ∈ J do
for k ∈ Oj do

Set B̄j ← Bj − bk
Set Ōj′ ← Oj′ ∀j′ ∈ J0\{j}
Set Ōj ← (Oj\{k})
Set Ō0 ← (O0

⋃
{k})

Set k̂ ← |O0| and compute

Sequence π of objects in O0 such that
dπ(1)

bπ(1)
≥dπ(2)

bπ(2)
≥ ... ≥ dπ(k̂)

bπ(k̂)

for k′ = 1, ..., k̂ do
if B̄j + bπ(k′) ≤ sj then

Set B̄j ← B̄j + bπ(k′) ,
Set Ōj ← Ōj

⋃
{π(k′)}

Set Ō0 ← Ō0\{π(k′)}
end
if F (Ōĵ) < F (O∗j) then

Set O∗j←Ōĵ ∀ĵ ∈ J0
end

end

end

end

4.3.2 Heuristics Algorithms to Find Initial Solution

Initial solution is used as a starting point for Variable Neighbourhood Descent (VND)

and Tabu Search (TS). Two different methods are used to find an initial solution. The

first method is a constructive heuristic that generates a solution from scratch by random

assignment and the second one is a greedy algorithm. In both algorithms, each object can

be used at most once, so some of the objects remains unassigned and therefore are placed

in the origin server. In the constructive heuristic algorithm, each proxy j is considered

in turn. An random sequence of objects in the origin server is created, and these are

considered in turn as candidates to be inserted in the proxy. If the remaining capacity

of the proxy allows, then the object will be inserted in the proxy. Algorithm 22 is a

constructive heuristic method that describes this heuristic algorithm.

96

Algorithm 22 Constructive Heuristic Method to Find Initial Solution
F (O)← Objective function value of problem (4.1.4) for set Oj (j ∈ J)
Initialization:
Set Oj ← ∅ ∀j ∈ J
Set Bj ← 0 ∀j ∈ J
for k ∈ K do

Set J̄ ← J
while k /∈ O1

⋃
...
⋃
OJ do

Randomly pick a proxy j ∈ J̄
Set J̄ ← J̄\{j}
if bk ≤ sj −Bj then

Set Oj ← Oj
⋃
{k}

Set Bj ← Bj + bk
Update Bj

end

end

end
Calculate F (O)

In the greedy algorithm, the capacity of each proxy has a different size and the proxies

are sorted descending of their sizes. First, we consider the biggest proxy. Each proxy is

empty to start. Before putting each object in a proxy, the capacity should be checked;

if there is insufficient space another object is considered. This process is implemented

proxy by proxy until all proxies are considered. Algorithm 23 explains the steps of greedy

procedure, where space depends on the number of available proxies. So, at the end, maybe

some of the objects remains unassigned.

Algorithm 23 Greedy Algorithm to Find Initial Solution
Initialization
Index the proxies so that s1 ≥ ... ≥ s|J|
Set k̂ = |K|
Set Oj = ∅ ∀j ∈ J
for j=1 to |J | do

Set s← sj

Compute sequence π of unassigned objects such that
dπ(1)

bπ(1)
≥ dπ(2)

bπ(2)
≥ ... ≥ dπ(k̂)

bπ(k̂)

Set k̄=0
for k=1 to k̂ do

if bπ(k) ≤ s then
Oj ← Oj

⋃
π(k)

Set k̄ ← k̄ + 1
Set s← s− bπ(k)

end

Set k̂ ← k̂ − k̄
end

end

97

We are trying to put small objects with highest demand in proxies to avoid the extra cost

((co−cl)dk). For this reason, we consider sequence of unassigned objects (in origin server)

and sorted respect to their demand to size ratio (dk
bk

) in descending order from largest to

smallest.

4.3.3 Variable Neighbourhood Descent (VND) for Cache Allo-

cation Problem

VND is a local improvement strategy which is a sub-ordinate in Variable Neighbourhood

Search (VNS) and most heuristics methods. The idea behind VND is to switch between

different neighbourhoods structures. Starting with first neighbourhood, VND implements

local search until no more improvement is obtained. Algorithm 24 describes the steps of

VND for cache allocation problem as below.

Algorithm 24 Variable Neighbourhood Descent (VND) for Cache Allocation Problem
F (O)← objective function value (4.1.4) for sets Oj from Algorithms 22 or 23
Initialization:
Given an initial solution O and a neighbourhood structures Nk = 1, 2, ..., kmax

kmax=6
Set k ← 1
while k ≤ kmax do

Find the best neighbour Ō ∈ Nk(O)
if F (Ō) < F (O) then

Set O ← Ō and k ← 1
else

Set k ← k + 1
end

end

From this local optimum, VND continues local search with next neighbourhood, If an

improvement solution is found, VND remains in the same neighbourhood; otherwise, it

continues with next neighbourhood and so forth. If last neighbourhood has been explored

and no improvement has occurred, then the solution represents a local optimum with

respect to all neighbourhoods and VND terminates (Hu and Raidl, 2006). For all algo-

rithms, six different neighbourhoods are defined as follows: N1= Insert from origin server

to a proxy (Algorithms 16), N2= Insert from one proxy to another proxy (Algorithms 17),

N3= Swap between origin server and a proxy (Algorithms 18), N4= Swap between two

98

proxies (Algorithms 19), N5= Cyclic exchange (Algorithms 20) and N6= Remove-insert

(Algorithms 21). For all neighbourhoods, the objective function value F (O) is evaluated

for set of objects in each proxy, where F (O) is evaluated from (4.1.4).

4.3.4 Iterated Variable Neighbourhood Descent (IVND) for Cache

Allocation Problem

Iterated Variable Neighbourhood Descent (IVND) is another metaheuristic method that

is applied to our formulation to find upper bounds. IVND integrates the strengths of ILS

and VND (Lourenço et al., 2003) and is flexible and easy to implement compare with other

heuristic methods. Algorithm 25 explains IVND and considers N5= Cyclic exchange for

shaking neighbourhood.

Algorithm 25 Iterated Variable Neighbourhood Descent (IVND) for Cache Allocation
Problem
Initialization:
Given an initial solution O and a shaking neighbourhood structure N = Ncyclic−exchange
Apply Algorithm 24 to find the best solution O′′

Set O ← O′

while computation time < computation time limit do
Shaking: Generate a point O′ by applying n random moves from neighbourhood N in succession to
O′′

Generate a solution O′′ by applying Algorithm 24
if F (O′′) < F (O′) then

Set O′ ← O′′

end
Determine computation time

end

An initial solution O is found in two different ways: a constructive heuristic method and

a greedy algorithm that can be found in Algorithms 22 and 23. Variable Neighbourhood

Descent (VND) is applied to an initial solution until it finds a local optimum O′. Once a

local optimum is found, IVND performs shaking. The computational experiment regard-

ing to find the best usage of the shake is explained later. Then by knowing this size n, we

generate a point O′′, by knowing the shaking neighbourhood. If the value is better than

local optimum (F (O′′) < F (O′)), the search is re-centered there (O′ ← O′′). Otherwise,

should be back to initial solution and repeat the process again, until a computational time

99

limit is reached. Stopping criterion is usually the maximum computing time since the last

improvement, or the maximum number of iterations. In Algorithm 25, computational

time is considered as the stopping condition. We use the limit of 6 minutes, the reason

for which is explained later.

4.3.5 Tabu Search (TS) for Cache Allocation Problem

TS is a higher level heuristic procedure for optimization problems to obtain near optimal

solutions. Tabu search continues the search whenever a local optimum is encountered by

allowing non-improving moves. Also, cycling back to previous visited solution is avoided

because a tabu list records recent attributes of moves. Therefore, moves from one potential

solution to search for an improved solution with the same neighbourhood continue until

some stopping criteria is met. Algorithm 26 describes TS for cache allocation problem.

Algorithm 26 Tabu Search for Cache Allocation Problem
Initialization:
Set computation time limit
Given an initial solution O and a set of neighbourhood structures Nk for k= 1,2,...,kmax

kmax=6
Set Ô ← O
Set Tabu list ← ∅
while computation time < computation time limit do

Set X ← ∅
Set O0 ← O
while O0=O do

Apply VND method and find the best neighbour Ō ∈ N1(O)
⋃
...
⋃
Nkmax

(O) \X
if Ō is not tabu, or Ō is tabu but satisfies the aspiration criterion then

Set O ← Ō
if F (O) < F (Ô) then

Ô ← O
end

else
X = X

⋃
{Ō}

end

end
Update Tabu list and aspiration criterion
Determine computation time

end

In TS, instead of recording full solutions, attribute memory structures are used. Usually

attribute memory are based on recording information about solution properties (attribute)

that change in moving from one solution to another. If a potential solution has been pre-

100

viously visited within a certain period or if it has violated a rule, it is marked as “tabu”

(forbidden), so the algorithm does not consider that solution again. Tabu lists are too

powerful and sometimes prohibit attractive moves, even when there is no danger of cy-

cling. So it is important to use an algorithmic device (aspiration criterion) that allows

cancelation of tabu status. In aspiration criteria, when a solution value is better than the

current best-known solution, the move is allowed even if it is tabu.

TS uses neighbourhood search procedure to iteratively move from one potential solu-

tion to a new improved solution in the neighbourhood until a stopping criterion has been

satisfied. TS explores neighbourhood of each solution as the search progress. The so-

lutions admitted to the new neighbourhood, are determined by the tabu list. The tabu

list is a short-term set of solutions that have changed by moving from one solution to

another. There are three main approaches to define tabu list size: fixed to a predeter-

mined value, randomly chosen from a specific range, or dynamically change by adjusting

the value (Salhi, 2002). We use 20 as the size of tabu list. Reasons are explained later in

this chapter.

4.4 Computational Results

In this section, we present the results of computational experiments comparing lower

bounds and upper bounds. Linearizations obtained using two different methods employed

in computing the lower bounds. Also, Iterated Variable Neighbourhood Descent (IVND)

and Tabu Search (TS) are the methods for upper bounds.

All algorithms were coded in Visual C++ 2012 and C and run on a PC with Intel(R)

Core(TM), 3.10GHz and 4GB RAM. IBM ILOG CPLEX Optimization Studio (often

informally referred to simply as CPLEX) is an optimization software package, that is

used for solving all linearizations to find lower bounds, that are implemented in the C

programming language.

101

4.4.1 Design of Instances

Tawarmalani et al. (2009) present computational results when the number of proxies are

seven. According to that, for all the experiments in this chapter we consider number of

proxy servers (|J |) is 10. Number of objects (|K|) is generated with following specifica-

tion: ten integer numbers with steps of 50 in the interval [50,500], five integer numbers

with step of a hundred in the interval [600,1000] and nine integer numbers with steps of

a thousand in the interval [2000,10000]. Therefore, there are twenty four different combi-

nation according to the different size of objects.

We generate size of each object (bk) to be an integer random variable in the interval

[1,100]. The capacity for each proxy is calculated as sj = δ
∑
k∈K

bk, when bk is the size of

each object k and δ is a coefficient which is calculated as γ
|J | . Test instances are calculated

to find the best number for γ. When γ is one (10% of total capacity) nearly all the objects

can go to proxies easily, so the problem is not particularly interesting. The number of γ

should be small enough to limit the capacity, so many objects cannot fit into the proxies

easily. Because of this reason, we choose 0.75 (7.5% of total size of all objects) and 0.5

(5% of total size of all objects) to have challenging instances. More details can be found

in Appendix C (C.1 - C.2).

Probability for each object k ∈ K is θk as a random number in interval [0,1]. Also

co is a network cost to deliver an object from origin server and cl is network cost to de-

liver an object from network locally. The ratio between cl and co are important because it

shows how having caches create a saving in Internet cost. Wong (2002) believes that web

cache proxies saves 40% Internet cost, so if the aim is to save Internet cost, we should try

the ratio near 40%. Therefore, we consider co=5 and cl=2 for our instances.

4.4.2 Computational Results for Linearizations

We provide the results of computational experiments to demonstrate the efficiency of two

proposed solution procedure for linearization. Optimization studio (CPLEX) is considered

102

to solve the models, with the same data for both linearizations. The time limit is two CPU

hours (7200 seconds) for each instance. For those instances that prove optimality before

the set time, we consider the results as optimal solution and for the rest of instances the

results count as an upper bound. Table 4.1 below is the list of acronyms for Tables 4.2

and 4.3.

Instance Ins.

Number of objects |K|

Integer Programming IP

Linear Programming LP

Number of objects in proxies Nobject

Computational time of the IP TIP

Table 4.1: List of Acronyms for Tables 4.2 and 4.3

Tables 4.2 and 4.3 describe computational results for linearization I and linearization II

when capacity of each proxy is 5% and 7.5% of total size of all objects. In both Tables 4.2

and 4.3 we solve the integer program and the linear programming relaxation when time

is set to two hours. It is clear that, Tables 4.2 for 5% capacity, linearization II has fastest

computational time compared with linearization I. Also, computation time is getting big-

ger for |K| ≥2000. For one specific instance when |K|=900, linearization II takes 1178.41

seconds while linearization I takes 159.04 seconds, but when |K| is smaller than 2000,

both linearizations have fairly small computational time.

Table 4.3 compares linearization I and linearization II when capacity of each proxy is

7.5% of total size of all objects. Linearization I has fastest computational time compare

with linearization II. Computational time is getting bigger when |K| increases, especially

for K ≥=5000. Just for one specific instance (|K|=300), both linearizations take nearly

two hours to solve the problem. As a conclusion, For 7.5% capacity, on average, lineariza-

tion I has fastest computational time compared with linearization II.

103

Linearization I Linearization II

Ins. | K| IP LP TIP IP LP TIP

1 50 38,772 38,096 340.55 38,772 38,096 3.26

2 100 158,062 157,089 1.62 158,062 158,055 1.03

3 150 344,013 340,253 3.26 344,021 340,733 2.62

4 200 556,423 556,423 2.01 556,423 556,423 1.55

5 250 905,661 905,593 4.03 905,661 905,593 2.72

6 300 1,242,402 1,236,318 3.93 1,242,458 1,238,290 3.12

7 350 1,683,366 1,683,293 1.43 1,683,360 1,683,293 2.9

8 400 2,281,415 2,273,341 7.19 2,281,431 2,273,341 4.23

9 450 2,907,556 2,890,297 4.98 2,907,382 2,891,418 4.98

10 500 3,471,393 3,457,982 6.79 3,471,297 3,457,982 4.9

11 600 5,198,983 5,177,227 9.63 5,198,999 5,177,858 7.38

12 700 6,791,495 6,772,326 15.43 6,791,495 6,773,535 8.53

13 800 9,049,558 9,031,618 15.43 9,049,563 9,031,618 12.45

14 900 11,986,783 11,982,900 159.04 11,986,795 11,982,900 1178.41

15 1000 14,512,502 14,489,600 30.39 14,512,482 14,489,600 22.82

16 2000 56,988,235 56,938,365 7206.64 56,988,261 56,941,200 4350.62

17 3000 130,228,446 130,208,000 7198.43 130,229,002 130,208,000 7237.37

18 4000 225,593,807 225,402,581 7204.05 225,593,503 225,417,000 5718.09

19 5000 359,745,118 359,690,820 7200.40 359,744,891 359,707,000 7339.71

20 6000 522,840,568 522,791,265 1571.07 522,840,566 522,806,000 2836.96

21 7000 718,498,348 718,351,737 7208.21 718,498,302 718,359,000 7235.98

22 8000 931,897,309 931,664,698 7207.40 931,896,538 931,705,000 7138.76

23 9000 1,178,351,539 1,178,306,631 4301.20 1,178,350,822 1,178,310,000 417.08

24 10000 1,439,815,907 1,439,672,376 1541.45 1,439,815,867 1,439,720,000 394.34

Average 2135.19 sec Average 1830.41 sec

Table 4.2: Linearization I & II Capacity of Each Proxy is 5%

104

Linearization I Linearization II

Ins. | K| IP LP TIP IP LP TIP

1 50 18043 17500 0.39 18043 18000 0.48

2 100 75677 71609 1852.67 75677 71788 1.76

3 150 157154 154509 2.08 157152 154663 3.00

4 200 254188 253639 3.29 254188 254029 2.54

5 250 410471 407046 3.06 410509 407821 2.76

6 300 584002 569745 7202.38 584092 571331 6989.89

7 350 758392 757222 5.80 758392 757950 4.32

8 400 1043436 1041283 3.52 1043340 1042998 5.43

9 450 1321291 1311676 7.38 1321201 1311728 8.53

10 500 1557948 1557813 8.13 1557948 1557948 6.88

11 600 2390527 2379367 8.75 2390594 2381839 9.61

12 700 3091745 3082626 14.32 3091623 3084146 13.46

13 800 4152082 4120777 18.67 4152188 4121541 14.63

14 900 5517771 5492808 20.31 5518008 5495972 14.26

15 1000 6634749 6630400 270.85 6634673 6632839 341.56

16 2000 25817505 25767054 27.99 25817459 25776200 187.81

17 3000 59023393 58958130 150.95 59023366 58963000 205.19

18 4000 103308823 103117562 190.63 103308664 103135000 73.76

19 5000 165010986 164884378 7209.15 165011691 164904000 5139.08

20 6000 238398170 238314949 628.19 238397969 238316000 6495.54

21 7000 328166133 328064783 1477.10 328166152 328094000 7193.00

22 8000 425416785 425086808 7263.24 425416920 425089000 7285.22

23 9000 538442611 537934360 7191.65 537996800 537960000 1205.98

24 10000 662239395 661726319 7450.75 662240360 661782000 7178.17

Average 1708.80 Average 1765.95

Table 4.3: Linearization I & II Capacity of Each Proxy is 7.5%

105

In Tables 4.2 and 4.3 most instances solved easily, that means integer programming is

more successful to solve our problem. The reason why integer programming is successful

is linear programming relaxation gives good lower bounds. As we can see in tables, integer

programming and linear programming relaxation’s results are close together.

4.4.3 Computational Results for Metaheuristics

In previous section, two different linearizations for proposed model are introduced to find

lower bounds. In this section, to obtain optimality for our formula (4.1.1), two known

different methods are considered to find upper bounds: Iterated Variable Neighbourhood

Descent (IVND) and Tabu Search (TS). The results from applying a heuristic are upper

bounds that can be compared with the lower bounds that are the results from lineariza-

tions. Through that we can assess the quality of the heuristics that we use. An initial

solution is found in two different ways: constructive heuristic method and greedy al-

gorithm that can be seen in Algorithms 22 and 23. As explained above two different

capacities also are considered for computational results for metaheuristics, which are 5%

and 7.5% of total size of all objects. Bear in mind that each object can go to proxy at

most once, so when we decide the location of each object, then we can determine where

clients can get the objects.

4.4.3.1 Parameter Setting

Before starting, we need to set a computational time limit, the best size for shaking and

the best size for tabu list. For these reasons, we used four different instances out of twenty

four, with two different capacities for our test instances. Based on initial experiments, we

found out that reasonable results could be obtained with modest computation time of up

to 10 minutes . In order to find the best computational time for our algorithms, we run

each test instance on a five different time limits of 2, 4 , 6, 8 and 10 minutes. From the

results, there is no significant difference on the results of computations if we run for 6, 8

and 10 minutes. Thus, we conclude that 6 minutes is sufficient enough to find the results

we need. Objective function values are shown in Table 4.4.

106

Capacity is 5% of total size of all objects
Ins. |K| 2 min 4 min 6 min 8 min 10 min
1 500 3,785,885 3,787,802 3,781,446 3,780,480 3,780,480
2 1000 14,928,056 14,926,895 14,926,525 14,925,716 14,925,716
3 5000 388,978,631 378,617,960 361,073,306 361,073,306 361,073,306
4 10000 1,528,880,555 1,550,024,163 1,530,070,928 1,447,424,886 1,447,424,886

Capacity is 7.5% of total size of all objects
Ins. K 2 min 4 min 6 min 8 min 10 min
1 500 1,739,522 1,744,134 1,649,974 1,649,974 1,649,974
2 1000 7,614,109 7,181,605 7,089,519 7,089,519 7,089,519
3 5000 176,582,332 176,316,226 175,354,922 175,354,922 175,354,922
4 10000 727,597,321 720,647,718 672,427,516 671,973,632 671,973,632

Table 4.4: Finding the Best Computational Time Limit

Now we try to determine the best size for shaking. It is essential to note that n represents

the size of shake. The solution of each n is considered as an objective function value. We

start with n=2,3,...,10 and run IVND against different values of n. The aim is to find the

minimum objective function value and the relevant value of n for each test instance. As

we can observe in Table 4.5, minimum objective function values are more frequent when

n=4. Therefore, we use n=4 for the size of shaking for our experiments.

Capacity is 5% of total size of all objects

Ins. |K| n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

1 500 5,466,998 4,245,321 3,801,256 5,115,708 4,999,465 5,791,343 5,683,221 5,575,100 5,521,039

2 1000 15,865,151 16,402,730 15,776,935 15,837,058 14,881,255 16,129,298 16,389,882 15,933,502 16,214,013

3 5000 366,950,540 370,631,635 362,596,004 361,932,120 366,190,849 369,391,270 378,559,517 364,908,373 371,826,279

4 10000 1,449,334,669 1,459,693,579 1,442,065,979 1,455,129,118 1,459,819,197 1,455,702,144 1,448,676,414 1,450,228,145 1,453,845,361

Capacity is 7.5% of total size of all objects

Ins. |K| n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

1 500 2,223,819 2,191,362 2,021,924 2,110,222 2,158,906 2,126,450 2,093,993 2,028,187 2,088,547

2 1000 8,138,951 7,375,708 7,489,792 7,828,614 7,455,684 7,852,298 7,919,560 7,637,221 7,466,210

3 5000 188,645,259 175,354,922 179,414,817 181,240,146 182,552,912 180,365,249 179,614,023 177,375,279 178,490,320

4 10000 685,998,873 690,046,279 689,261,350 678,892,533 687,622,209 699,638,458 696,901,369 694,382,852 686,184,234

Table 4.5: Finding the Best Size for Shaking

Finally, we are trying to find an appropriate tabu list size. The purpose of this is to find

the best tabu list size for all problem instances. In our test instances, we set the size of

tabu equals to 10, 15, 20, 25 and 30, in steps of five. We use same stopping condition as

used for all algorithms (6 minutes) to provide a basis for comparison. In Table 4.6, after

107

size 20, it is observed that there is no more improvements for the rest of sizes. Therefore,

we set 20 as the size of tabu list in our final experiments for all instances.

Capacity is 5% of total size of all objects

Ins. |K| size 10 size 15 size 20 size 25 size 30

1 500 5,553,567 4,859,572 4,684,139 5,016,630 4,728,601

2 1000 18,335,041 17,918,205 17,702,919 18,709,585 18,437,632

3 5000 417,040,766 392,239,076 377,771,938 381,408,235 446,392,385

4 10000 1,823,525,464 1,675,836,536 1,581,840,062 1,853,012,039 1,711,124,426

Capacity is 7.5% of total size of all objects

Ins. |K| size 10 size 15 size 20 size 25 size 30

1 500 1,773,361 1,760,217 1,748,727 2,099,004 2,096,462

2 1000 8,287,151 8,815,430 8,025,195 8,976,563 8,274,716

3 5000 192,965,315 190,566,233 186,867,741 187,605,532 191,716,162

4 10000 710,879,064 677,202,483 675,495,203 687,315,019 693,939,666

Table 4.6: Finding the Best Size for Tabu List

4.4.3.2 Upper Bounds Results

As explained above, the instances are the same that we use for linearizations. We provide

the results of computational experiments to demonstrate the effectiveness of two meta-

heuristics algorithms: IVND and TS. Note that in the table gapc represents the gap when

the initial solution for IVND and TS is achieved through the constructive heuristic and

gapg when the initial solution is from the greedy algorithm. Two different capacities are

considered for each proxy as explained before.

The greedy algorithm provides the better results compared with the constructive heuristic

algorithm, for both capacities. The gap in each column represents the relative percentage

gap that is calculated as IV ND−TS
IV ND

100%. Also, from the table, it is clear that except two

of the results the rest are positive that shows TS provides better upper bounds compared

with IVND. We can observe this difference, especially when initial solution is calculated

through constructive heuristic algorithm. Moreover, for both capacities (5% and 7.5%) the

recommended method for initial solution will be greedy algorithm rather than construc-

tive heuristic due to the big average difference. Table 4.7 shows two different gap values

108

are calculated, depending on whether the initial solution is attained from the constructive

heuristic or the greedy algorithms for both IVND and TS.

capacity is 5% of total
size of all objects

capacity is 7.5% of to-
tal size of all objects

Ins. |K| gapc gapg gapc gapg

1 50 11.69% 0.25% 7.12% -1.20%

2 100 25.68% 1.83% 16.79% 12.97%

3 150 11.79% 0.13% 16.91% 14.36%

4 200 19.89% 0.58% 29.00% 21.67%

5 250 28.06% 0.17% 26.56% 14.72%

6 300 22.60% 0.22% 36.88% 27.51%

7 350 25.94% 0.07% 26.91% 15.75%

8 400 26.88% 0.09% 19.41% 12.04%

9 450 2.29% 0.08% 18.17% 10.07%

10 500 0.71% 0.52% 24.67% 18.40%

11 600 4.32% 0.02% 27.72% 20.54%

12 700 4.91% 0.27% 10.16% 28.76%

13 800 0.73% 6.73% 6.05% 7.18%

14 900 0.50% 0.01% 5.48% 6.40%

15 1000 2.54% 5.39% 1.23% 5.34%

16 2000 3.36% 3.35% 5.72% 5.05%

17 3000 2.17% 2.54% 10.62% 4.59%

18 4000 2.42% 1.00% 0.59% -0.64%

19 5000 1.41% 0.42% 2.00% 2.26%

20 6000 1.31% 1.81% 4.45% 4.36%

21 7000 0.79% 1.04% 3.42% 2.68%

22 8000 1.30% 7.77% 1.29% 2.11%

23 9000 0.83% 0.30% 0.44% 1.23%

24 10000 0.71% 0.07% 1.61% 1.02%

Average 8.45% 1.44% 12.63% 9.88%

Table 4.7: Gaps Between Iterated Variable Neighbourhood Descent and Tabu Search

4.4.3.3 Comparison Upper Bounds and Lower Bounds

For the last part of computational results, we decide to compare the best lower bound

with the best upper bounds. Table 4.8 shows the percentage of deviation between upper

109

bounds and lower bounds. When the capacity of proxy is 5% of total size of all objects,

linearization II shows better results compare with linearization I for lower bounds, while

linearization I is better than linearization II when the capacity is 7.5%. Also, for upper

bounds TS is more powerful compare with IVND for both capacities. Therefore, when

capacity is 5%, linearization II is compared with TS, and for capacity 7.5% linearization

I is contrasted with TS. The percentage of deviation is calculated as: TS−LP
TS

100% when

TS is the best upper bound and LPR is relevant linear programming relaxation for each

capacity that is explained earlier. The superscript TS-LP shows the comparison between

TS and LP (Linear Programming Relaxation). Each gap has a subscribe c or g that

represents the constructive heuristic or the greedy algorithm that are used to find initial

solutions.

capacity is 5% of total
size of all objects

capacity is 7.5% of to-
tal size of all objects

Ins. |K| gapTS−LPc gapTS−LPg gapTS−LPc gapTS−LPg

1 50 12.71% 6.45% -0.25% 3.58%

2 100 11.63% 3.45% 6.16% 5.31%

3 150 25.85% 7.56% 2.43% 1.86%

4 200 14.43% 1.44% 7.45% 2.88%

5 250 8.79% 4.86% 4.60% 3.23%

6 300 15.49% 2.12% 3.85% 2.01%

7 350 17.44% 6.35% 7.33% 4.53%

8 400 14.04% 4.95% 1.14% 0.35%

9 450 33.45% 0.04% 3.41% 1.21%

10 500 26.18% 8.55% 10.91% 5.58%

11 600 32.86% 0.92% 13.18% 2.92%

12 700 24.33% 1.97% 22.50% 6.00%

13 800 25.25% 0.26% 23.66% 8.20%

14 900 25.56% 0.87% 20.37% 4.52%

15 1000 18.15% 2.93% 17.35% 6.44%

16 2000 12.74% 7.00% 11.84% 8.79%

17 3000 12.08% 7.13% 9.32% 7.50%

18 4000 7.81% 5.09% 12.62% 6.15%

19 5000 4.78% 0.38% 11.75% 5.96%

20 6000 5.24% 3.86% 8.66% 4.59%

21 7000 8.56% 5.08% 5.28% 3.79%

22 8000 5.76% 1.44% 5.28% 2.76%

23 9000 6.43% 3.08% 3.27% 1.95%

24 10000 8.98% 0.09% 2.03% 1.52%

Average 15.77% 3.58% 8.92% 4.23%

Table 4.8: Comparison Best Upper Bound and Best Lower Bound

110

It is obvious that greedy algorithm for initial solution is much more powerful compared

with constructive heuristic algorithm for both capacities. Especially, when capacity is

5%, to find initial solution, the greedy algorithm is recommended.

4.5 Discussion

In this chapter, we propose a new version of cache allocation problem from Tawarmalani

et al. (2009), where the formulation leads to an allocation of objects in a network of caches

that collaborate in serving requests from clients. According to the original version of this

model, the unit cost of serving an object locally from a cache where it is requested is cl,

from other caches in the network is cn and from the origin server is co. Even if cl, cn

and co are in practice dependent on the proxy j , we assume them to be constants. Also,

each object is allocated at most once, and interesting instances of the problem have the

property that all of the objects cannot be put in the proxies.

The demand dk for an object k can be assigned to any proxy that holds object k. In

new propose model, we consider a local cluster of proxies and aim to put every object in a

proxy to avoid having to service requests from the slower origin server. Thus, cl=cn in our

model. All proxies are identical except for their capacity, and there is no difference in cost

according to the choice of proxy for any object since cl=cn . This means that whenever a

demand for some object k occurs in the network, if some proxy j contains object k, then

it will be considered as local cost. Therefore, two different costs are introduced: a local

cost cldk when object k is in a proxy and an origin server cost codk when object is not in

any of the proxies.

The proposed model is solved to optimality by two different linearizations that are used

to convert the original mixed 0-1 polynomial formulation into a 0-1 linear program. The

computational results for linearization I and linearization II are compared with each other.

The aim is to discover which of the two linearization models is more efficient and better

with respect to computational time, when the feasible region will be the same for both

111

linearization models. The validity of each linearization is proved, to show the equivalence

between the original objective function and the linearized objective function.

With a view to designing metaheuristics, six different local search operators involving

the insertion and swapping of objects are suggested as follows: insert from origin server

to a proxy; insert from one proxy to another proxy; swap between origin server and a

proxy; swap between two proxies; a cyclic exchange of three objects in which there is an

insert from the origin server to a proxy j, an insert from proxy j to another proxy j′

and an insert from proxy j′ to the origin server; and remove-insert in which an object is

inserted from a proxy j to the origin server and several objects are inserted from the orig-

inal server to proxy j. Also, a randomized constructive heuristic and a greedy algorithm

are two methods are introduced to find initial solutions. These initial solutions and the

six neighbourhoods are used in Iterated Variable Neighbourhood Descent (IVND) and

Tabu Search (TS), which are two metaheuristic methods that aim to find good-quality

solutions of our optimization problem.

A range of different types of test instances have been generated. The instances all have

10 proxies, and the number of objects ranges from 50 to 10,000 with their sizes being

generated from a uniform distribution. Each proxy has an identical capacity, and two

different capacities are considered that correspond to scenarios involving fairly tight ca-

pacity constraints (a significant number of objects cannot be placed in the proxies) and

looser capacity constraints (many of the objects can be placed in the proxies).

In this chapter, we provide the results of computational experiments to demonstrate

the efficiency of two proposed solution procedure for linearization. Optimization studio

(CPLEX) is considered to solve the models, with the same data for both linearizations.

The time limit is two CPU hours for each instance. We prove that with 5% capacity,

linearization II has fastest computational time compared with linearization I and with

7.5% capacity, linearization I is faster. Also, in both linearizations, integer programming

is more successful because linear programming relaxation gives good lower bounds. In

112

metaheuristics, we compare percentage gap value for IVND and TS with two initial solu-

tions and two different capacities. Finally, we compare percentage gap value for the best

upper bounds (TS) with the best lower bounds (LPR).

Next chapter is concluding remarks and future works. We provide an overall conclu-

sion of the results presented in this thesis and also given an outline of some research

which are worthwhile investigating in the future.

113

Chapter 5

Concluding Remarks and Future

Work

This chapter provides an overall conclusion of the findings presented in this thesis and

also given an outline of some research directions which are worthwhile investigating in

the future.

5.1 Research Outcomes

This thesis presents background materials require to understand a Content Distribution

Network (CDN). A CDN focuses on building its network infrastructure to provide dif-

ferent services such as: cache management, delivery of data, storage and management of

content and distribution of content among edge servers. A content provider (customer)

uses a CDN provider for service and having its content on the cache servers. Typically,

customers of a CDN are media and Internet advertisement companies, Internet service

providers (ISPs), mobile operators and other carrier companies. Each of these customers

wants to deliver its contents to end-users on the Internet in a reliable timely and manner.

These days, the efficiency of distributing electronic content is affected by increasingly

popularity of the World Wide Web and high demand for electronic information. Unac-

ceptable delays for end-users often occur because the size of delivered content and number

114

of users grow gradually. Because of these reasons, distribution of electronic content has

become an important problem. CDN tries to improve the performance of a network by

reducing the total cost related to distributing content. This is achieved through the client

no longer being served by the origin server, but instead is served by a nearby proxy server.

For this reason, a good design for a CDN is to locate content as close as possible to the

clients.

Object retrieval and request routing is one of the optimization models studied in Chapter

3. A novel feature of the model is the introduction of a delay term into the objective

function. The performance of a CDN degrades when it is operating close to capacity,

and the new model captures this loss of performance by introducing a new term into the

objective function. This model is related to data placement of cooperative caching, which

determines a placement of replicated objects between nodes in the network with a given

access pattern and aims to minimize the average access cost. The objective is to minimize

overall latency of searching the target Web server, subject to the availability of system

resources and traffic pattern.

Another contribution of this thesis is to introduce in Chapter 3 suggested methodolo-

gies to deal with non-linear terms that are introduced into the objective function in this

chapter. Lagrangian relaxation and decomposition approaches are used to find a lower

bound for this problem. Two complicating constraints, which are related to the amount

of traffic in a link and the consistency between assignment variables, are relaxed to form

the Lagrangian problem. The relaxed problem decomposes into three sub-problems. To

update the multipliers, two different sub-gradients are considered for each category of

multiplier. Also, two different linearization schemes are introduced for this problem. The

first linearization (Scheme I) finds a lower bound through perspective cuts when tangents

of the function are used as valid inequalities to provide a lower bound for auxiliary vari-

ables representing the non-linear terms. The second linearization (Scheme II) uses linear

segments between two consecutive integer points. Computational results indicate that

the approach with Scheme II provides stronger lower bound compared to Scheme I.

115

Also, we design a new set of instances for the object retrieval and request routing prob-

lem. Test instances are categorized as small with 2 clients, 3 proxies and 5 objects, or

large with 10, 50 or 100 clients, 5, 10 or 15 proxies, and 40, 200 or 400 objects. The

capacity of each proxy for the large instances is 0.8 or 0.9 of the total size of all objects,

and the capacity of each link is 0.6, 0.7, 0.8 of 0.9 of the total size of all objects. Thus,

each size of the large instances is categorized as one of 8 types depending on the different

combinations of these capacities.

Another contribution of this thesis is new optimization model in Chapter 4, which involves

caching in a network (cache allocation problem). Caching is the process of replicating Web

content in different locations so that clients can gain access to objects easily. Caching

can be performed at various levels: at the proxy server, at the browser and Web server.

The main idea for a basic formulation is from Tawarmalani et al. (2009). All the objects

cannot put in any proxy because its capacity is limited. We consider a set of proxies of

varying size, an origin server, and different size for objects. Further, the cache allocation

problem that is addressed has a local cluster of proxies and attempts to put each object in

a proxy so that the use of a slower origin server is avoided. In the objective function, there

is no difference in cost between putting an object in one proxy or another. The cache

allocation problem is naturally a non-linear model. Sometimes non-linear models can be

transformed into linear form by using auxiliary constraints because there are many pow-

erful software tools for linear problems but the tools are less good for non-linear problems.

Also, solving non-linear problems is costly comparing with linear problems. Two different

linearizations are considered for this problem to convert the original mixed polynomial

formulation to linear program. The aim is to find out which one of the linearization model

is more efficient with respect to computation time.

The next contribution is designing new set of instances and test instances. The test

instances that we use each have 10 proxies, and the number of objects ranges from 50

to 10,000 with their sizes being generated from a uniform distribution. Each proxy has

116

an identical capacity, and two different capacities (5% and 7.5% of total size of all ob-

jects) are considered that reflect the tightness of the capacity constraints of the proxies

and hence the need for requests to be served from the origin server. It is clear that lin-

earization II has smaller computational time compare with linearization I. Linearization

I has smaller computational time compare with linearization II when capacity of proxy

is 7.5% of total size of all objects, but when the capacity of 5% of total size of objects,

Linearization II is faster. Integer programming is more successful to solve our problem,

because each instance easily solved. The reason why integer programming is successful

is linear programming relaxation gives good lower bounds. Our results show that integer

programming and linear programming relaxations produce solution values that are close

to each other.

As a general conclusion, Iterated Variable Neighbourhood Descent (IVND) from liter-

ature is supposed to be a good method but we found the better algorithm with Tabu

Search (TS).

5.2 Further Research

The current trend in metaheuristics to design hybrids that incorporate evolutionary strate-

gies and local search, and focus on balancing the quality of solutions with diversity. For

further research, these strategies can be applied to our proposed optimization models in

this thesis.

Moreover, origin server redirection can be studied, which is the problem of connecting

the client’s request for an object directly to the origin server, when the object is not avail-

able in any other proxy servers. When the storage capacities of proxy servers are limited,

there are many requests forwarded to the origin server, which creates issues regarding

bandwidth. Also, other request routing techniques can also be considered to direct client

requests for objects to a proxy that could best serve that content, rather than other

proxies. In the cache allocation problem, an object can be divided for transmission and

117

irrespective of whether the entire object is brought from one source or different sources,

and assembly would be provided to regenerate the original object.

In cache allocation problem a new method can be created to highlight what percent-

age of objects are allocated in proxies and what percentage of full capacity of each proxy

has been consumed. Also, generalization of different costs can be considered for this

problem where costs depends on which proxy stores the object.

5.3 Final Remark

Overall, we believe that the work presented in this thesis contributes positively to scientific

research in the design and operation of a Content Distribution Network (CDN). This study

provides an insight into assignment and cache allocation problems. All the algorithm that

are used in this research can be integrated within larger frameworks as an optimization

tools, thereby saving more on Internet costs.

118

Appendix A

Computational Results for Small Instances

119

Ins. sj D LR LPR1 LPR2 gapLR−LPR1 gapLR−LPR2 TLR TLPR1 TLPR2

1 15 250 4,326.12 4,629.64 4,629.64 -7.02% -7.02% 1.78 0.06 0.05

2 15 500 8,633.97 9,129.64 9,129.64 -5.74% -5.74% 1.81 0.06 0.06

3 15 700 11,960.85 11,726.32 12,729.64 2.0% -6.40% 2.05 0.06 0.05

4 15 1000 17,071.43 16,694.64 18,129.64 2.20% -6.20% 1.68 0.06 0.05

5 20 250 4,758.89 4,619.20 4,619.20 2.94% 2.94% 2.47 0.06 0.07

6 20 500 9,406.46 9,119.2 9,119.20 3.05% 3.05% 3.53 0.06 0.06

7 20 700 13,103.94 11,786.64 12,719.20 10.05% 2.94% 2.00 0.09 0.08

8 20 1000 18,690.18 16,786.64 18,119.20 10.18% 3.05% 2.56 0.08 0.08

9 25 250 4,758.89 4,619.20 4,619.20 2.94% 2.94% 2.47 0.05 0.04

10 25 500 9,406.46 9,119.2 9,119.20 3.05% 3.05% 3.53 0.05 0.05

11 25 700 13,103.90 12,719.20 12,719.20 2.94% 2.94% 2.00 0.03 0.03

12 25 1000 18,690.18 18,119.20 18,119.20 3.05% 3.05% 2.56 0.03 0.03

13 30 250 5,125.38 4,619.20 4,619.20 9.88% 9.88% 1.95 0.01 0.01

14 30 500 10,140.50 9,119.20 9,119.20 10.07% 10.07% 1.71 0.02 0.01

15 30 700 14,148.33 12,719.20 12,719.20 10.10% 10.10% 1.73 0.03 0.02

16 30 1000 20,151.26 18,119.20 18,119.20 10.08% 10.08% 1.67 0.03 0.03

Average 4.36% 2.42%

Table A.1: Computational Results for Small Instances (1)

120

Ins. sj D Neos LR LPR1 LPR2 gapN−LR gapN−LPR1 gapN−LPR2 TLR TLPR1 TLPR2

1 15 250 6,884.06 4,326.12 4,629.64 4,629.64 37.16% 32.75% 32.75% 1.78 0.06 0.05

2 15 500 13,634.06 8,633.97 9,129.64 9,129.64 36.67% 33.04% 33.04% 1.81 0.06 0.06

3 15 700 18,817.48 11,960.85 11,726.32 12,729.64 36.44% 37.68% 32.35% 2.05 0.06 0.05

4 15 1000 27,095.86 17,071.43 16,694.64 18,129.64 37.00% 38.39% 33.09% 1.68 0.06 0.05

5 20 250 5,967.85 4,758.89 4,619.20 4,619.20 20.26% 22.60% 22.60% 2.47 0.06 0.07

6 20 500 11,801.18 9,406.46 9,119.20 9,119.20 20.29% 22.73% 22.73% 3.53 0.06 0.06

7 20 700 16,467.85 13,103.94 11,786.64 12,719.20 20.43% 28.43% 22.76% 2.00 0.09 0.08

8 20 1000 23,467.85 18,690.18 16,786.64 18,119.20 20.36% 28.47% 22.79% 2.56 0.08 0.08

9 25 250 5,967.85 4,758.89 4,619.20 4,619.20 20.26% 22.60% 22.60% 2.47 0.05 0.04

10 25 500 11,801.18 9,406.46 9,119.20 9,119.20 20.29% 22.73% 22.73% 3.53 0.05 0.05

11 25 700 16,467.85 13,103.90 12,719.20 12,719.20 20.43% 22.76% 22.76% 2.00 0.03 0.03

12 25 1000 23,467.85 18,690.18 18,119.20 18,119.20 20.36% 22.79% 22.79% 2.56 0.03 0.03

13 30 250 5,967.85 5,125.38 4,619.20 4,619.20 14.12% 22.60% 22.60% 1.95 0.01 0.01

14 30 500 11,801.18 10,140.50 9,119.20 9,119.20 14.07% 22.73% 22.73% 1.71 0.02 0.01

15 30 700 16,467.85 14,148.33 12,719.20 12,719.20 14.09% 22.76% 22.76% 1.73 0.03 0.02

16 30 1000 23,467.85 20,151.26 18,119.20 18,119.20 14.13% 22.79% 22.79% 1.67 0.03 0.03

Average 22.90% 26.61% 25.24%

Table A.2: Computational Results for Small Instances (2)

121

Appendix B

Computational Results

122

B.1 Report of the Results on the Network Transfer

Cost and Delay Cost Individually

123

Ins. |I| |J| |K| Network Transfer Cost Delay Cost

1 10 5 40 371,105.46 1,278,372.39

2 10 5 200 1,927,993.41 7,772,358.92

3 10 5 400 3,943,996.16 16,930,451.96

4 10 10 40 379,196.53 1,258,931.50

5 10 10 200 1,887,121.32 7,730,474.53

6 10 10 400 3,973,599.00 18,364,950.97

7 10 15 40 351,910.91 1,575,147.85

8 10 15 200 1,849,996.86 8,008,598.72

9 10 15 400 4,223,647.02 18,155,606.59

10 50 5 40 1,801,436.90 43,421,562.78

11 50 5 200 9,519,853.62 266,236,610.03

12 50 5 400 19,305,714.56 681,954,106.98

13 50 10 40 2,204,211.92 58,370,305.55

14 50 10 200 9,583,798.10 330,062,970.20

15 50 10 400 19,180,366.94 778,614,747.38

16 50 15 40 1,790,170.61 72,254,717.58

17 50 15 200 9,267,876.60 389,792,107.40

18 50 15 400 19,577,354.86 895,162,693.15

19 100 5 40 3,563,283.10 175,837,824.75

20 100 5 200 18,720,121.52 111,542,725.44

21 100 5 400 36,759,229.03 2,830,357,715.06

22 100 10 40 3,489,486.34 250,714,405.69

23 100 10 200 19,128,528.96 1,436,316,890.60

24 100 10 400 37,647,216.91 3,347,091,897.44

25 100 15 40 3,648,877.09 325,223,475.65

26 100 15 200 19,121,116.97 1,783,398,778.56

27 100 15 400 38,143,072.88 3,994,147,011.56

Table B.1: Results for Network Transfer Cost and Delay Cost

124

B.2 Finding the Best Maximum Number for Itera-

tion in Lagrangian Relaxation

125

Iteration Global bound Iteration Global bound Iteration Global bound Iteration Global bound

0 1,007,729.54 26 6,265,142.33 52 6,901,911.52 78 6,925,558.19

1 1,007,729.54 27 6,344,894.92 53 6,905,360.98 79 6,925,667.85

2 1,007,729.54 28 6,415,513.37 54 6,908,738.45 80 6,925,724.38

3 1,007,729.54 29 6,481,852.74 55 6,910,651.30 81 6,925,777.03

4 1,007,729.54 30 6,522,224.28 56 6,912,330.01 82 6,925,832.26

5 1,007,729.54 31 6,565,263.62 57 6,914,130.28 83 6,925,884.49

6 1,007,729.54 32 6,605,095.32 58 6,915,774.94 84 6,925,938.68

7 1,007,729.54 33 6,642,256.25 59 6,917,532.72 85 6,925,967.39

8 1,007,729.54 34 6,681,449.00 60 6,918,446.49 86 6,925,993.43

9 1,081,811.02 35 6,705,991.93 61 6,919,271.58 87 6,926,021.25

10 1,439,458.94 36 6,730,832.39 62 6,920,176.43 88 6,926,047.11

11 1,777,085.59 37 6,752,498.36 63 6,920,993.51 89 6,926,074.44

12 2,175,920.75 38 6,772,950.70 64 6,921,877.61 90 6,926,088.77

13 2,460,286.78 39 6,792,601.62 65 6,922,329.37 91 6,926,102.30

14 4,206,335.24 40 6,806,950.84 66 6,922,748.33 92 6,926,115.81

15 4,317,412.60 41 6,819,340.21 67 6,923,191.53 93 6,926,129.10

16 4,589,779.53 42 6,832,574.02 68 6,923,607.97 94 6,926,142.38

17 4,904,905.59 43 6,844,503.89 69 6,924,040.40 95 6,926,149.69

18 5,125,119.34 44 6,856,276.30 70 6,924,270.90 96 6,926,156.54

19 5,407,857.24 45 6,863,601.34 71 6,924,477.22 97 6,926,163.24

20 5,575,503.72 46 6,870,712.08 72 6,924,701.76 98 6,926,169.97

21 5,724,965.87 47 6,877,587.69 73 6,924,907.67 99 6,926,169.97

22 5,853,914.04 48 6,884,377.55 74 6,925,126.26

23 5,968,789.05 49 6,891,103.85 75 6,925,239.99

24 6,079,109.45 50 6,894,954.05 76 6,925,343.50

25 6,183,368.88 51 6,898,527.06 77 6,925,455.31

Table B.2: |I|=10, |J|=15, |K|=200, δ=0.8, δ′=0.9

126

F
ig

u
re

B
.1

:
G

lo
b
al

B
ou

n
d

R
es

p
ec

t
to

10
0

It
er

at
io

n
s

1

127

Iteration Global bound Iteration Global bound Iteration Global bound Iteration Global bound

0 2,109,497.05 26 13,963,290.10 52 15,392,414.05 78 15,449,529.86

1 2,109,497.05 27 14,128,529.70 53 15,400,592.46 79 15,449,794.29

2 2,109,497.05 28 14,285,593.28 54 15,409,007.09 80 15,449,928.03

3 2,109,497.05 29 14,423,963.12 55 15,413,416.51 81 15,450,057.02

4 2,109,497.05 30 14,546,911.25 56 15,417,495.57 82 15,450,189.26

5 2,109,497.05 31 14,641,631.27 57 15,421,828.97 83 15,450,317.68

6 2,109,497.05 32 14,734,507.45 58 15,425,875.05 84 15,450,448.09

7 2,109,497.05 33 14,814,458.25 59 15,430,119.38 85 15,450,517.33

8 2,109,497.05 34 14,883,166.07 60 15,432,274.32 86 15,450,580.49

9 2,109,497.05 35 14,947,223.67 61 15,434,320.80 87 15,450,648.27

10 2,677,616.25 36 15,000,362.62 62 15,436,464.37 88 15,450,710.77

11 3,370,565.38 37 15,051,455.53 63 15,438,498.89 89 15,450,777.82

12 4,256,120.44 38 15,097,042.28 64 15,440,612.02 90 15,450,810.36

13 4,696,305.15 39 15,139,664.15 65 15,441,698.04 91 15,450,843.43

14 9,106,665.61 40 15,171,392.42 66 15,442,711.73 92 15,450,875.68

15 9,453,071.19 41 15,202,383.01 67 15,443,790.05 93 15,450,908.59

16 10,026,266.64 42 15,229,030.35 68 15,444,800.40 94 15,450,940.42

17 10,838,945.75 43 15,256,561.35 69 15,445,864.33 95 15,450,957.99

18 11,459,041.00 44 15,284,880.21 70 15,446,399.12 96 15,450,973.92

19 11,916,189.61 45 15,301,219.04 71 15,446,911.37 97 15,450,990.73

20 12,353,274.62 46 15,317,756.93 72 15,447,444.73 98 15,451,006.47

21 12,741,656.07 47 15,334,406.70 73 15,447,953.75 99 15,451,006.47

22 13,064,760.28 48 15,350,602.61 74 15,448,480.28

23 13,346,301.36 49 15,366,499.94 75 15,448,752.79

24 13,556,401.60 50 15,375,431.67 76 15,449,008.61

25 13,805,933.28 51 15,383,766.60 77 15,449,276.01

Table B.3: |I|=10, |J|=15, |K|=400, δ=0.8, δ′=0.9

128

F
ig

u
re

B
.2

:
G

lo
b
al

B
ou

n
d

R
es

p
ec

t
to

10
0

It
er

at
io

n
s

2

129

Iteration Global bound Iteration Global bound Iteration Global bound Iteration Global bound

0 1,187,135.81 26 35,974,297.29 52 36,552,128.38 78 36,570,119.05

1 1,187,135.81 27 36,059,191.16 53 36,555,902.08 79 36,570,151.22

2 1,187,135.81 28 36,120,381.64 54 36,555,902.08 80 36,570,243.15

3 1,187,135.81 29 36,181,391.21 55 36,557,893.40 81 36,570,327.08

4 1,187,135.81 30 36,253,005.74 56 36,560,733.95 82 36,570,331.87

5 9,015,113.81 31 36,282,342.69 57 36,560,733.95 83 36,570,416.49

6 11,814,699.62 32 36,319,876.71 58 36,562,871.54 84 36,570,420.09

7 14,434,257.32 33 36,342,932.72 59 36,562,871.54 85 36,570,476.32

8 20,966,659.81 34 36,378,416.74 60 36,563,581.75 86 36,570,512.10

9 25,556,962.07 35 36,417,716.37 61 36,565,208.94 87 36,570,523.51

10 27,057,973.06 36 36,417,716.37 62 36,565,265.01 88 36,570,557.19

11 27,886,899.28 37 36,448,050.77 63 36,566,625.51 89 36,570,569.74

12 30,805,124.02 38 36,448,050.77 64 36,566,625.51 90 36,570,600.51

13 31,532,180.23 39 36,476,935.42 65 36,566,968.29 91 36,570,602.05

14 31,900,011.40 40 36,494,705.10 66 36,567,831.01 92 36,570,624.58

15 33,008,230.75 41 36,494,705.10 67 36,567,886.39 93 36,570,624.58

16 33,665,812.13 42 36,509,824.76 68 36,568,536.74 94 36,570,645.02

17 34,158,584.44 43 36,509,824.76 69 36,568,536.74 95 36,570,649.78

18 34,559,095.26 44 36,522,123.57 70 36,568,924.02 96 36,570,659.66

19 34,832,887.38 45 36,530,632.60 71 36,569,226.76 97 36,570,660.93

20 35,128,774.46 46 36,530,632.60 72 36,569,257.32 98 36,570,671.32

21 35,387,748.21 47 36,539,347.59 73 36,569,560.65 99 36,570,671.32

22 35,493,158.11 48 36,539,347.59 74 36,569,586.24

23 35,636,119.82 49 36,546,221.69 75 36,569,798.30

24 35,756,437.52 50 36,548,948.96 76 36,569,947.03

25 35,923,821.21 51 36,551,400.52 77 36,569,983.43

Table B.4: |I|=50, |J|=5, |K|=40, δ=0.9, δ′=0.9

130

F
ig

u
re

B
.3

:
G

lo
b
al

B
ou

n
d

R
es

p
ec

t
to

10
0

It
er

at
io

n
s

3

131

Iteration Global bound Iteration Global bound Iteration Global bound Iteration Global bound

0 2,243,415.13 26 208,864,913.02 52 211,317,268.44 78 211,395,702.18

1 2,243,415.13 27 209,099,917.08 53 211,317,268.44 79 211,396,555.78

2 2,243,415.13 28 209,402,870.02 54 211,336,498.91 80 211,396,845.12

3 2,243,415.13 29 209,667,153.03 55 211,342,416.29 81 211,397,195.28

4 11,550,013.30 30 209,962,063.82 56 211,347,228.71 82 211,397,432.90

5 95,153,918.97 31 210,128,880.17 57 211,352,357.21 83 211,397,794.26

6 116,002,217.04 32 210,280,584.55 58 211,356,848.45 84 211,398,009.75

7 121,976,415.63 33 210,393,569.21 59 211,361,765.66 85 211,398,272.64

8 136,764,114.08 34 210,502,541.52 60 211,368,985.86 86 211,398,442.78

9 157,542,665.24 35 210,688,752.92 61 211,368,985.86 87 211,398,602.76

10 178,664,866.47 36 210,735,679.78 62 211,374,401.09 88 211,398,778.22

11 181,570,079.75 37 210,840,468.85 63 211,374,401.09 89 211,398,930.20

12 185,966,175.35 38 210,872,052.89 64 211,380,469.39 90 211,399,048.56

13 188,704,376.56 39 210,947,320.31 65 211,381,808.76 91 211,399,133.27

14 196,081,021.50 40 211,039,490.38 66 211,383,762.79 92 211,399,228.39

15 197,502,921.37 41 211,054,246.09 67 211,384,808.69 93 211,399,301.10

16 200,735,885.59 42 211,106,072.36 68 211,387,124.23 94 211,399,396.11

17 201,354,948.48 43 211,128,922.47 69 211,387,546.92 95 211,399,451.42

18 202,586,421.07 44 211,163,198.81 70 211,389,691.93 96 211,399,498.69

19 203,536,255.95 45 211,211,028.39 71 211,390,704.23 97 211,399,541.21

20 205,103,044.52 46 211,214,064.90 72 211,391,571.43 98 211,399,583.29

21 206,052,460.44 47 211,246,949.28 73 211,392,518.00 99 211,399,583.29

22 206,726,261.93 48 211,246,949.28 74 211,393,339.06

23 207,274,353.09 49 211,280,984.89 75 211,394,292.66

24 207,877,632.16 50 211,297,167.70 76 211,394,635.18

25 208,478,159.58 51 211,300,756.06 77 211,395,442.31

Table B.5: |I|=100, |J|=5, |K|=40, δ=0.8, δ′=0.8

132

F
ig

u
re

B
.4

:
G

lo
b
al

B
ou

n
d

R
es

p
ec

t
to

10
0

It
er

at
io

n
s

4

133

B.3 Mixed Integer Programming (MIP) and Linear

Programming Relaxation (LPR)

δ=0.8 δ′=0.6

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 2,903,769.19 2,903,233.88 7199.99 2,903,797.50 2,903,235.57 7199.99

2 10 10 40 2,879,222.96 2,878,154.64 7204.66 2,879,136.02 2,878,167.77 7200.04

3 10 15 40 2,953,841.97 2,950,734.96 7208.82 2,953,759.94 2,950,738.56 7214.26

4 50 5 40 88,390,143.98 88,237,648.79 7209.15 88,362,286.87 88,237,996.95 6896.18

5 50 10 40 104,558,189.96 104,279,448.74 7204.98 104,521,873.84 104,279,427.29 7209.65

6 50 15 40 124,437,116.56 123,771,089.38 7314.53 124,283,403.64 123,771,576.99 7202.19

7 100 5 40 356,926,405.49 355,955,820.86 7360.63 356,686,789.48 355,956,347.43 7186.50

8 100 10 40 443,125,039.76 441,246,767.27 7182.43 443,209,467.02 441,247,492.38 7429.35

9 100 15 40 557,571,180.92 553,228,938.29 7247.07 557,616,082.40 553,197,822.97 7415.71

Table B.6: Mixed Integer Programming and Linear Programming Relaxation(1)

134

δ=0.9 δ′=0.6

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 2,447,686.01 2,447,358.32 7199.98 2,447,721.35 2,447,361.92 7200.06

2 10 10 40 2,529,236.68 2,528,327.39 7199.99 2,529,146.54 2,528,328.07 7200.18

3 10 15 40 2,616,267.15 2,614,470.79 7207.48 2,616,619.89 2,614,475.72 7208.64

4 50 5 40 72,971,666.14 72,946,713.02 7214.33 72,977,496.78 72,947,049.29 7200.34

5 50 10 40 90,515,177.71 90,296,777.83 7381.89 90,456,148.81 90,297,294.59 7210.30

6 50 15 40 108,631,439.55 108,272,566.82 7227.79 108,609,609.56 108,272,736.00 7741.80

7 100 5 40 294,107,821.33 293,669,592.32 7201.80 293,973,947.66 293,669,499.75 7210.82

8 100 10 40 382,482,025.69 381,483,522.77 7227.56 382,481,834.17 381,485,088.68 7203.22

9 100 15 40 486,735,021.13 483,449,460.00 7233.91 486,648,928.86 483,451,014.29 7226.95

Table B.7: Mixed Integer Programming and Linear Programming Relaxation (2)

δ=0.8 δ′=0.7

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 2,329,493.51 2,329,158.43 7199.98 2,329,490.49 2,329,168.92 7199.96

2 10 10 40 2,432,739.58 2,431,876.09 7205.58 2,432,695.75 2,431,866.54 7200.01

3 10 15 40 2,522,568.54 2,520,408.34 7210.16 2,522,049.42 2,520,415.95 7207.85

4 50 5 40 69,058,699.25 68,985,162.32 7214.72 69,075,382.05 68,985,281.48 7204.05

5 50 10 40 86,603,864.19 86,447,169.89 7192.97 86,625,722.06 86,447,310.81 7198.39

6 50 15 40 104,344,753.55 103,944,079.25 7233.36 104,396,166.12 103,944,492.39 7225.48

7 100 5 40 277,919,016.46 277,528,281.17 7189.70 278,047,867.52 277,527,971.25 7187.84

8 100 10 40 366,427,789.81 365,028,703.75 7413.99 366,424,817.99 365,029,144.93 7273.41

9 100 15 40 467,208,397.88 463,970,877.01 7214.98 467,105,602.94 463,972,293.71 7312.97

Table B.8: Mixed Integer Programming and Linear Programming Relaxation (3)

135

δ=0.9 δ′=0.7

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 2,001,760.45 2,001,457.31 7199.99 2,001,763.22 2,001,467.06 7200.04

2 10 10 40 2,151,690.87 2,151,040.77 7202.05 2,151,654.07 2,151,039.95 7200.12

3 10 15 40 2,244,863.58 2,243,228.30 7207.45 2,244,736.08 2,243,232.68 7210.54

4 50 5 40 58,060,318.91 58,013,287.41 7204.45 58,034,817.37 58,013,261.48 7212.49

5 50 10 40 75,356,619.21 75,259,039.69 7455.68 75,346,871.14 75,259,050.89 7212.76

6 50 15 40 91,506,197.73 91,214,412.63 7573.32 91,494,996.08 91,214,661.45 7628.14

7 100 5 40 233,063,738.29 232,836,226.90 7423.01 233,202,887.67 232,836,474.56 7468.31

8 100 10 40 318,049,230.79 317,211,632.29 7254.92 318,041,336.40 317,211,749.82 7248.57

9 100 15 40 409,125,247.01 406,686,628.77 7252.41 409,081,586.02 406,687,682.45 7353.95

Table B.9: Mixed Integer Programming and Linear Programming Relaxation (4)

δ=0.8 δ′=0.8

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 1,963,523.46 1,963,197.05 7200.06 1,963,500.18 1,963,190.13 7200.01

2 10 10 40 2,117,368.89 2,116,803.63 7204.78 2,117,426.24 2,116,801.80 7200.24

3 10 15 40 2,210,728.43 2,209,081.07 7214.97 2,210,518.35 2,209,083.02 7201.16

4 50 5 40 56,795,576.52 56,733,170.98 7630.46 56,772,459.36 56,733,195.94 7192.77

5 50 10 40 74,042,517.83 73,897,865.98 7187.06 74,056,044.09 73,897,956.80 7237.54

6 50 15 40 89,919,249.11 89,649,628.34 7203.52 89,938,791.56 89,649,946.00 7356.18

7 100 5 40 227,913,289.51 227,618,577.83 7181.47 227,945,718.58 227,619,090.47 7193.33

8 100 10 40 312,448,372.10 311,393,041.70 7305.20 312,480,487.95 311,394,015.64 7216.17

9 100 15 40 402,018,835.21 399,645,101.79 7278.38 399,646,005.10 399,646,005.10 7226.31

Table B.10: Mixed Integer Programming and Linear Programming Relaxation(5)

136

δ=0.9 δ′=0.8

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 1,709,431.61 1,709,110.28 7200.08 1,709,433.11 1,709,106.28 7200.01

2 10 10 40 1,882,551.90 1,882,100.15 7202.82 1,882,563.14 1,882,108.54 7202.11

3 10 15 40 1,974,122.68 1,972,974.21 7211.10 1,974,235.41 1,972,983.86 7214.09

4 50 5 40 48,269,492.48 48,248,579.64 7215.26 48,259,948.97 48,248,566.79 7203.08

5 50 10 40 64,667,481.63 64,586,078.98 7222.05 64,665,364.89 64,586,134.81 7255.29

6 50 15 40 79,056,611.93 78,854,991.69 7272.38 79,038,592.26 78,855,266.66 7449.05

7 100 5 40 193,245,750.12 193,060,366.81 7200.13 193,279,373.80 193,060,787.66 7338.75

8 100 10 40 272,266,359.84 271,598,280.27 7164.80 272,232,572.43 271,598,007.34 7444.80

9 100 15 40 352,765,917.28 351,072,232.33 7403.90 352,685,982.60 351,072,368.73 7899.98

Table B.11: Mixed Integer Programming and Linear Programming Relaxation (6)

δ=0.8 δ′=0.9

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 1,709,514.08 1,709,163.85 7200.07 1,709,515.49 1,709,160.56 7200.04

2 10 10 40 1,882,600.08 1,882,100.15 7200.29 1,882,564.81 1,882,108.54 7200.38

3 10 15 40 1,974,396.21 1,972,974.21 7211.08 1,974,329.37 1,972,983.86 7212.97

4 50 5 40 48,282,058.42 48,250,671.65 7264.53 48,316,086.04 48,250,656.76 7234.19

5 50 10 40 64,687,398.23 64,586,406.51 7197.25 64,705,118.09 64,586,461.72 7197.26

6 50 15 40 79,052,544.41 78,855,030.76 7219.51 79,103,985.79 78,855,305.75 7389.49

7 100 5 40 193,278,380.15 193,065,795.84 7216.98 193,319,306.60 193,066,214.51 7222.52

8 100 10 40 272,374,506.39 271,599,069.84 7241.80 272,405,230.76 271,598,797.92 7231.05

9 100 15 40 356,711,247.14 351,072,450.79 7234.14 352,790,813.41 351,072,587.18 7559.48

Table B.12: Mixed Integer Programming and Linear Programming Relaxation (7)

137

δ=0.9 δ′=0.9

Ins. |I| |J| |K| MIP1 LPR1 TMIP1 MIP2 LPR2 TMIP2

1 10 5 40 1,502,543.14 1,502,201.15 7200.01 1,502,539.46 1,502,199.84 7200.04

2 10 10 40 1,680,750.70 1,680,286.16 72001.24 1,680,748.67 1,680,293.33 7200.38

3 10 15 40 1,768,009.12 1,767,017.50 7200.76 1,768,139.72 1,767,025.51 7198.87

4 50 5 40 41,381,344.48 41,364,775.31 7207.67 41,382,407.96 41,364,767.90 7200.71

5 50 10 40 56,691,710.12 56,618,027.95 7327.34 56,694,492.32 56,618,213.84 7248.84

6 50 15 40 69,648,060.25 69,487,950.96 7707.82 69,662,823.16 69,487,786.19 7233.77

7 100 5 40 165,138,499.60 165,021,092.37 7196.08 165,150,140.22 165,021,019.60 7186.37

8 100 10 40 238,160,768.30 237,548,011.38 7268.40 238,108,562.52 237,548,073.09 7344.85

9 100 15 40 310,271,193.94 308,924,039.79 7274.95 310,207,458.30 308,924,462.04 7442.48

Table B.13: Mixed Integer Programming and Linear Programming Relaxation (8)

138

Ins. |I| |J| |K| δ δ′ gap1 TMIP1 gap2 TMIP2

1 10 5 40 0.9 0.8 0.02% 7200.07 0.02% 7200.04

2 10 10 40 0.9 0.8 0.03% 7200.29 0.02% 7200.38

3 10 15 40 0.9 0.8 0.07% 7211.08 0.07% 7212.97

4 50 5 40 0.9 0.8 0.07% 7264.53 0.14% 7234.19

5 50 10 40 0.9 0.8 0.16% 7197.25 0.18% 7197.26

6 50 15 40 0.9 0.8 0.25% 7219.51 0.31% 7389.49

7 100 5 40 0.9 0.8 0.11% 7216.98 0.13% 7222.52

8 100 10 40 0.9 0.8 0.28% 7241.80 0.30% 7231.05

9 100 15 40 0.9 0.8 1.58% 7234.14 0.49% 7559.48

10 10 5 40 0.9 0.9 0.02% 7200.01 0.02% 7200.04

11 10 10 40 0.9 0.9 0.03% 72001.24 0.03% 7200.38

12 10 15 40 0.9 0.9 0.06% 7200.76 0.06% 7198.87

13 50 5 40 0.9 0.9 0.04% 7207.67 0.04% 7200.71

14 50 10 40 0.9 0.9 0.13% 7327.34 0.13% 7248.84

15 50 15 40 0.9 0.9 0.23% 7707.82 0.25% 7233.77

16 100 5 40 0.9 0.9 0.07% 7196.08 0.08% 7186.37

17 100 10 40 0.9 0.9 0.26% 7268.40 0.24% 7344.85

18 100 15 40 0.9 0.9 0.43% 7274.95 0.41% 7442.48

Average 0.21% 0.16%

Table B.14: Final Gaps Between Mixed Integer Programming and Linear Programming
Relaxation

139

B.4 Lagrangian Relaxation and Linear Programming

Relaxation

140

Ins. |I| |J| |K| δ=0.8 δ′=0.6 LR δ=0.8 δ′=0.6 LPR gap

1 10 5 40 2,776,396.20 2,903,233.88 4.37%

2 10 5 200 13,087,774.98 18,127,243.24 27.80%

3 10 5 400 41,312,013.26 42,824,000.00 3.53%

4 10 10 40 2,639,277.72 2,878,154.64 8.30%

5 10 10 200 15,320,976.95 15,640,349.74 2.04%

6 10 10 400 32,469,458.97 —– —–

7 10 15 40 1,883,242.80 2,950,734.96 36.18%

8 10 15 200 9,682,782.03 14,537,400.00 33.39%

9 10 15 400 20,847,716.31 — —–

10 50 5 40 79,434,163.20 88,237,648.79 9.98%

11 50 5 200 365,473,946.83 — —–

12 50 5 400 1,325,025,142.33 — —–

13 50 10 40 88,321,056.54 104,279,448.74 15.30%

14 50 10 200 471,156,745.34 —– —–

15 50 10 400 1,153,073,595.99 — —–

16 50 15 40 60,090,980.97 123,771,089.38 51.45%

17 50 15 200 314,544,047.83 —– —–

18 50 15 400 74,065,008.26 —– —–

19 100 5 40 339,051,850.55 355,955,820.86 4.75%

20 100 5 200 1,509,304,162.96 1,283,593,391.80 -17.58%

21 100 5 400 5,450,113,895.27 5,943,877,314.00 8.31%

22 100 10 40 375,240,696.54 441,246,767.27 14.96%

23 100 10 200 2,114,801,496.82 —– —–

24 100 10 400 4,851,144,734.32 5,124,851,741.20 5.34%

25 100 15 40 260,800,493.12 553,228,938.29 52.86%

26 100 15 200 1,379,556,565.81 —– —–

27 100 15 400 3,069,414,984.16 —– —–

Average 16.31%

Table B.15: Lagrangian Relaxation and Linear Programming Relaxation I (1)

141

Ins. |I| |J| |K| δ=0.8 δ′=0.7 LR δ=0.8 δ′=0.7 LPR gap

1 10 5 40 2,241,299.98 2329158.431 3.77%

2 10 5 200 14,964,732.98 11,152,724.09 -34.18%

3 10 5 400 33,037,437.14 27,062,428.53 -22.08%

4 10 10 40 2,237,181.98 2,431,876.09 8.01%

5 10 10 200 12,877,915.93 14,131,382.80 8.87%

6 10 10 400 27,711,262.91 — —

7 10 15 40 1,661,307.49 2520408.34 34.09%

8 10 15 200 8,532,722.37 — —

9 10 15 400 18,492,319.13 — —

10 50 5 40 66,125,091.61 68985162.32 4.15%

11 50 5 200 293,590,242.00 — —

12 50 5 400 1,035,377,033.13 — —

13 50 10 40 74,317,622.36 86447169.89 14.03%

14 50 10 200 408,629,142.63 — —

15 50 10 400 737,484,300.01 — —

16 50 15 40 50,402,625.59 103944079.3 51.51%

17 50 15 200 268,705,396.37 — —

18 50 15 400 610,276,667.28 — —

19 100 5 40 265,069,236.82 277528281.2 4.49%

20 100 5 200 1,207,511,287.33 — —

21 100 5 400 4,515,369,064.95 — —

22 100 10 40 310,430,599.75 365028703.8 14.96%

23 100 10 200 1,732,014,211.83 — —

24 100 10 400 4,058,070,901.17 — —

25 100 15 40 216,530,843.20 463970877 53.33%

26 100 15 200 1,163,787,011.00 — —

27 100 15 400 2,591,004,189.62 — —

Average 11.74%

Table B.16: Lagrangian Relaxation and Linear Programming Relaxation I (2)

142

Ins. |I| |J| |K| δ=0.8 δ′=0.8 LR δ=0.8 δ′=0.8 LPR gap

1 10 5 40 1,895,114.59 1963197.047 3.47%

2 10 5 200 12,565,967.13 — —

3 10 5 400 27,740,275.99 — —

4 10 10 40 1,956,598.56 2,116,803.63 7.57%

5 10 10 200 11,175,126.63 — —

6 10 10 400 24,264,641.08 — —

7 10 15 40 1,479,421.88 2209081.074 33.03%

8 10 15 200 7,602,213.37 — —

9 10 15 400 16,664,793.76 — —

10 50 5 40 53,041,421.43 56733170.98 6.51%

11 50 5 200 246,200,491.59 — —

12 50 5 400 850,472,591.19 — —

13 50 10 40 62,352,813.61 73897865.98 15.62%

14 50 10 200 349,745,739.15 — —

15 50 10 400 819,472,471.50 — —

16 50 15 40 43,698,013.65 89649628.34 51.26%

17 50 15 200 233,764,241.05 — —

18 50 15 400 532,465,561.23 — —

19 100 5 40 211,399,583.29 227618577.8 7.13%

20 100 5 200 1,010,023,661.45 — —

21 100 5 400 3,483,840,003.50 — —

22 100 10 40 261,154,104.89 311393041.7 16.13%

23 100 10 200 1,475,495,317.38 — —

24 100 10 400 3,433,560,340.47 — —

25 100 15 40 185,922,722.82 399645101.8 53.48%

26 100 15 200 1,007,337,039.98 — —

27 100 15 400 2,243,495,135.00 — —

Average 21.58%

Table B.17: Lagrangian Relaxation and Linear Programming Relaxation I (3)

143

Ins. |I| |J| |K| δ=0.8 δ′=0.9 LR δ=0.8 δ′=0.9 LPR gap

1 10 5 40 1,653,667.42 1,709,163.85 3.25%

2 10 5 200 10,909,364.04 — —

3 10 5 400 24,069,215.94 — —

4 10 10 40 1,419,500.29 1,882,100.15 24.58%

5 10 10 200 9,913,248.62 — —

6 10 10 400 21,685,264.30 — —

7 10 15 40 1,359,631.86 1,972,974.21 31.09%

8 10 15 200 6,926,169.97 10,160,597.84 31.83%

9 10 15 400 15,451,006.47 12,273,267.65 -25.89%

10 50 5 40 44,888,209.02 48,250,671.65 6.97%

11 50 5 200 212,476,288.30 — —

12 50 5 400 721,839,974.21 — —

13 50 10 40 54,438,344.68 64,586,406.51 15.71%

14 50 10 200 306,265,517.54 — —

15 50 10 400 712,431,296.89 — —

16 50 15 40 38,431,865.76 78,855,030.76 51.26%

17 50 15 200 207,687,551.32 — —

18 50 15 400 474,425,692.45 — —

19 100 5 40 177,441,851.37 193,065,795.84 8.09%

20 100 5 200 916,162,057.39 — —

21 100 5 400 2,951,717,087.83 — —

22 100 10 40 225,937,476.82 271,599,069.84 16.81%

23 100 10 200 1,286,858,630.98 — —

24 100 10 400 2,986,362,562.50 — —

25 100 15 40 162,633,630.85 351,072,450.79 53.68%

26 100 15 200 888,981,996.25 — —

27 100 15 400 1,979,482,180.41 — —

Average 19.76%

Table B.18: Lagrangian Relaxation and Linear Programming Relaxation I (4)

144

Ins. |I| |J| |K| δ=0.9 δ′=0.6 LR δ=0.9 δ′=0.6 LPR gap

1 10 5 40 2,323,210.65 2,447,358.32 5.07%

2 10 5 200 15,749,534.16 — —

3 10 5 400 34,926,487.98 — —

4 10 10 40 2,309,862.90 2,528,327.39 8.64%

5 10 10 200 13,405,208.08 — —

6 10 10 400 28,542,107.34 — —

7 10 15 40 1,704,499.49 2,614,470.79 34.81%

8 10 15 200 8,755,092.85 — —

9 10 15 400 19,234,461.08 — —

10 50 5 40 67,105,119.11 72,946,713.02 8.01%

11 50 5 200 408,013,927.59 — —

12 50 5 400 1,041,281,377.88 — —

13 50 10 40 77,725,986.47 90,296,777.83 13.92%

14 50 10 200 428,483,645.00 — —

15 50 10 400 1,001,939,273.07 — —

16 50 15 40 53,752,392.63 108,272,566.82 50.35%

17 50 15 200 285,718,499.15 — —

18 50 15 400 642,241,402.51 — —

19 100 5 40 266,837,378.43 293,669,592.32 9.14%

20 100 5 200 1,688,994,657.01 — —

21 100 5 400 4,279,052,131.57 — —

22 100 10 40 321,763,337.87 381,483,522.77 15.65%

23 100 10 200 1,820,297,803.19 — —

24 100 10 400 4,228,687,835.26 — —

25 100 15 40 233,314,035.11 483,449,460.00 51.74%

26 100 15 200 1,230,405,232.28 — —

27 100 15 400 2,747,609,838.06 — —

Average 21.93%

Table B.19: Lagrangian Relaxation and Linear Programming Relaxation I (5)

145

Ins. |I| |J| |K| δ=0.9 δ′=0.7 LR δ=0.9 δ′=0.7 LPR gap

1 10 5 40 1,879,607.22 2,001,457.31 6.09%

2 10 5 200 12,816,958.26 — —

3 10 5 400 28,433,801.08 — —

4 10 10 40 1,969,729.20 2,151,040.77 8.43%

5 10 10 200 11,291,996.84 — —

6 10 10 400 24,540,691.02 —– —

7 10 15 40 1,496,671.34 2,243,228.30 33.28%

8 10 15 200 7,775,096.17 8,446,407.52 7.95%

9 10 15 400 17,141,300.34 — —

10 50 5 40 52,163,591.31 58,013,287.41 10.08%

11 50 5 200 324,236,960.45 — —

12 50 5 400 826,928,616.15 — —

13 50 10 40 64,513,151.08 75,259,039.69 14.28%

14 50 10 200 358,807,278.00 — —

15 50 10 400 833,090,730.96 —– —–

16 50 15 40 45,189,666.97 91,214,412.63 50.46%

17 50 15 200 242,277,261.55 251,341,792.00 3.61%

18 50 15 400 552,512,055.70 —– —–

19 100 5 40 206,649,753.49 232,836,226.90 11.25%

20 100 5 200 1,337,262,069.27 — —

21 100 5 400 3,389,070,285.45 — —

22 100 10 40 266,978,620.99 317,211,632.29 15.84%

23 100 10 200 1,511,582,421.83 —– —–

24 100 10 400 3,507,709,996.04 —– —–

25 100 15 40 195,907,176.89 406,686,628.77 51.83%

26 100 15 200 1,046,330,098.57 —– —–

27 100 15 400 2,330,389,273.81 —– —–

Average 19.37%

Table B.20: Lagrangian Relaxation and Linear Programming Relaxation I (6)

146

Ins. |I| |J| |K| δ=0.9 δ′=0.8 LR δ=0.9 δ′=0.8 LPR gap

1 10 5 40 1,598,200.62 1,709,110.28 6.49%

2 10 5 200 10,909,105.06 — —

3 10 5 400 24,192,749.98 — —

4 10 10 40 1,743,757.77 1,882,100.15 7.35%

5 10 10 200 9,846,166.30 — —

6 10 10 400 21,549,473.01 — —

7 10 15 40 1,349,189.09 1,972,974.21 31.62%

8 10 15 200 6,995,423.42 10,160,597.84 31.15%

9 10 15 400 15,567,178.80 —– —–

10 50 5 40 42,910,376.23 48,248,579.64 11.06%

11 50 5 200 270,004,462.95 — —

12 50 5 400 689,386,984.04 — —

13 50 10 40 55,163,436.97 64,586,078.98 14.59%

14 50 10 200 307,111,542.01 — —

15 50 10 400 715,253,281.15 — —

16 50 15 40 38,912,655.24 78,854,991.69 50.65%

17 50 15 200 211,568,195.84 — —

18 50 15 400 481,648,162.76 — —

19 100 5 40 169,401,587.30 193,060,366.81 12.25%

20 100 5 200 1,111,164,384.04 — —

21 100 5 400 2,814,327,505.75 — —

22 100 10 40 227,084,060.59 271,598,280.27 16.39%

23 100 10 200 1,287,708,484.35 — —

24 100 10 400 3,004,714,685.69 — —

25 100 15 40 168,471,801.86 351,072,232.33 52.01%

26 100 15 200 907,407,024.61 — —

27 100 15 400 2,023,016,444.49 — —

Average 23.36%

Table B.21: Lagrangian Relaxation and Linear Programming Relaxation I (7)

147

Ins. |I| |J| |K| δ=0.9 δ′=0.9 LR δ=0.9 δ′=0.9 LPR gap

1 10 5 40 1,410,971.08 1,502,201.15 6.07%

2 10 5 200 9,565,312.05 — —

3 10 5 400 20,989,581.39 — —

4 10 10 40 1,561,187.48 1,680,286.16 7.09%

5 10 10 200 8,791,303.96 — —

6 10 10 400 19,323,807.46 — —

7 10 15 40 1,227,527.96 1,767,017.50 30.53%

8 10 15 200 6,431,931.85 9,456,647.47 31.99%

9 10 15 400 7,727,388.32 20,923,752.24 63.07%

10 50 5 40 36,570,671.32 41,364,775.31 11.59%

11 50 5 200 231,259,704.04 — —

12 50 5 400 589,888,224.30 — —

13 50 10 40 48,135,891.93 56,618,027.95 14.98%

14 50 10 200 269,842,114.96 — —

15 50 10 400 630,404,578.48 — —

16 50 15 40 34,326,185.32 69,487,950.96 50.60%

17 50 15 200 187,836,237.90 — —

18 50 15 400 428,862,527.00 — —

19 100 5 40 143,906,325.95 165,021,092.37 12.80%

20 100 5 200 948,303,595.64 — —

21 100 5 400 2,406,956,222.32 — —

22 100 10 40 197,429,765.25 237,548,011.38 16.89%

23 100 10 200 1,030,126,236.98 — —

24 100 10 400 2,632,393,839.02 — —

25 100 15 40 147,501,204.32 308,924,039.79 52.25%

26 100 15 200 805,478,263.48 — —

27 100 15 400 1,796,698,231.23 — —

Average 27.08%

Table B.22: Lagrangian Relaxation and Linear Programming Relaxation I (8)

148

Ins. |I| |J| |K| δ=0.8 δ′=0.6 LR δ=0.8 δ′=0.6 LPR gap

1 10 5 40 2,776,396.20 2,903,235.57 4.37%

2 10 5 200 13,087,774.98 16,971,500.00 22.88%

3 10 5 400 41,312,013.26 45,982,115.34 10.16%

4 10 10 40 2,639,277.72 2,878,167.77 8.30%

5 10 10 200 15,320,976.95 16,094,534.97 4.81%

6 10 10 400 32,469,458.97 — —

7 10 15 40 1,883,242.80 2,950,738.56 36.18%

8 10 15 200 9,682,782.03 14,541,900.00 33.41%

9 10 15 400 20,847,716.31 — —

10 50 5 40 79,434,163.20 88,237,996.95 9.98%

11 50 5 200 365,473,946.83 — —

12 50 5 400 1,325,025,142.33 — —

13 50 10 40 88,321,056.54 104,279,427.29 15.30%

14 50 10 200 471,156,745.34 — —

15 50 10 400 1,153,073,595.99 — —

16 50 15 40 60,090,980.97 123,771,576.99 51.45%

17 50 15 200 314,544,047.83 — —

18 50 15 400 74,065,008.26 — —

19 100 5 40 339,051,850.55 355,956,347.43 4.75%

20 100 5 200 1,509,304,162.96 — —

21 100 5 400 5,450,113,895.27 — —

22 100 10 40 375,240,696.54 441,247,492.38 14.96%

23 100 10 200 2,114,801,496.82 2,623,414,420.40 19.39%

24 100 10 400 4,851,144,734.32 — —

25 100 15 40 260,800,493.12 553,197,822.97 52.86%

26 100 15 200 1,379,556,565.81 — —

27 100 15 400 3,069,414,984.16 — —

Average 20.63%

Table B.23: Lagrangian Relaxation and Linear Programming Relaxation II (1)

149

Ins. |I| |J| |K| δ=0.8 δ′=0.7 LR δ=0.8 δ′=0.7 LPR gap

1 10 5 40 2,241,299.98 2,329,168.92 3.77%

2 10 5 200 14,964,732.98 11,156,605.54 -34.13%

3 10 5 400 33,037,437.14 36,532,558.88 9.57%

4 10 10 40 2,237,181.98 2,431,866.54 8.01%

5 10 10 200 12,877,915.93 15,793,114.44 18.46%

6 10 10 400 27,711,262.91 — —

7 10 15 40 1,661,307.49 2,520,415.95 34.09%

8 10 15 200 8,532,722.37 — —

9 10 15 400 18,492,319.13 — —

10 50 5 40 66,125,091.61 68,985,281.48 4.15%

11 50 5 200 293,590,242.00 — —

12 50 5 400 1,035,377,033.13 — —

13 50 10 40 74,317,622.36 86,447,310.81 14.03%

14 50 10 200 408,629,142.63 — —

15 50 10 400 737,484,300.01 — —

16 50 15 40 50,402,625.59 103,944,492.39 51.51%

17 50 15 200 268,705,396.37 — —

18 50 15 400 610,276,667.28 — —

19 100 5 40 265,069,236.82 277,527,971.25 4.49%

20 100 5 200 1,207,511,287.33 — —

21 100 5 400 4,515,369,064.95 — —

22 100 10 40 310,430,599.75 365,029,144.93 14.96%

23 100 10 200 1,732,014,211.83 — —

24 100 10 400 4,058,070,901.17 — —

25 100 15 40 216,530,843.20 463,972,293.71 53.33%

26 100 15 200 1,163,787,011.00 — —

27 100 15 400 2,591,004,189.62 — —

Average 15.19%

Table B.24: Lagrangian Relaxation and Linear Programming Relaxation II (2)

150

Ins. |I| |J| |K| δ=0.8 δ′=0.8 LR δ=0.8 δ′=0.8 LPR gap

1 10 5 40 1,895,114.59 1,963,190.13 3.47%

2 10 5 200 12,565,967.13 — —

3 10 5 400 27,740,275.99 — —

4 10 10 40 1,956,598.56 2,116,801.80 7.57%

5 10 10 200 11,175,126.63 — —

6 10 10 400 24,264,641.08 — —

7 10 15 40 1,479,421.88 2,209,083.02 33.03%

8 10 15 200 7,602,213.37 5,764,809.19 -31.87%

9 10 15 400 16,664,793.76 — —

10 50 5 40 53,041,421.43 56,733,195.94 6.51%

11 50 5 200 246,200,491.59 — —

12 50 5 400 850,472,591.19 — —

13 50 10 40 62,352,813.61 73,897,956.80 15.62%

14 50 10 200 349,745,739.15 — —

15 50 10 400 819,472,471.50 — —

16 50 15 40 43,698,013.65 89,649,946.00 51.26%

17 50 15 200 233,764,241.05 — —

18 50 15 400 532,465,561.23 — —

19 100 5 40 211,399,583.29 227,619,090.47 7.13%

20 100 5 200 1,010,023,661.45 — —

21 100 5 400 3,483,840,003.50 — —

22 100 10 40 261,154,104.89 311,394,015.64 16.13%

23 100 10 200 1,475,495,317.38 — —

24 100 10 400 3,433,560,340.47 — —

25 100 15 40 185,922,722.82 399,646,005.10 53.48%

26 100 15 200 1,007,337,039.98 — —

27 100 15 400 2,243,495,135.00 — —

Average 16.23%

Table B.25: Lagrangian Relaxation and Linear Programming Relaxation II (3)

151

Ins. |I| |J| |K| δ=0.8 δ′=0.9 LR δ=0.8 δ′=0.9 LPR gap

1 10 5 40 1,653,667.42 1,709,160.56 3.25%

2 10 5 200 10,909,364.04 — —

3 10 5 400 24,069,215.94 — —

4 10 10 40 1,419,500.29 1,882,108.54 24.58%

5 10 10 200 9,913,248.62 — —

6 10 10 400 21,685,264.30 — —

7 10 15 40 1,359,631.86 1,972,983.86 31.09%

8 10 15 200 6,926,169.97 10,156,276.64 31.80%

9 10 15 400 15,451,006.47 12,273,267.65 -25.89%

10 50 5 40 44,888,209.02 48,250,656.76 6.97%

11 50 5 200 212,476,288.30 — —

12 50 5 400 721,839,974.21 — —

13 50 10 40 54,438,344.68 64,586,461.72 15.71%

14 50 10 200 306,265,517.54 — —

15 50 10 400 712,431,296.89 — —

16 50 15 40 38,431,865.76 78,855,305.75 51.26%

17 50 15 200 207,687,551.32 — —

18 50 15 400 474,425,692.45 — —

19 100 5 40 177,441,851.37 193,066,214.51 8.09%

20 100 5 200 916,162,057.39 — —

21 100 5 400 2,951,717,087.83 — —

22 100 10 40 225,937,476.82 271,598,797.92 16.81%

23 100 10 200 1,286,858,630.98 — —

24 100 10 400 2,986,362,562.50 — —

25 100 15 40 162,633,630.85 351,072,587.18 53.68%

26 100 15 200 888,981,996.25 — —

27 100 15 400 1,979,482,180.41 — —

Average 19.76%

Table B.26: Lagrangian Relaxation and Linear Programming Relaxation II (4)

152

Ins. |I| |J| |K| δ=0.9 δ′=0.6 LR δ=0.9 δ′=0.6 LPR gap

1 10 5 40 2,323,210.65 2,447,361.92 5.07%

2 10 5 200 15,749,534.16 — —

3 10 5 400 34,926,487.98 — —

4 10 10 40 2,309,862.90 2,528,328.07 8.64%

5 10 10 200 13,405,208.08 — —

6 10 10 400 28,542,107.34 — —

7 10 15 40 1,704,499.49 2,614,475.72 34.81%

8 10 15 200 8,755,092.85 — —

9 10 15 400 19,234,461.08 — —

10 50 5 40 67,105,119.11 72,947,049.29 8.01%

11 50 5 200 408,013,927.59 — —

12 50 5 400 1,041,281,377.88 — —

13 50 10 40 77,725,986.47 90,297,294.59 13.92%

14 50 10 200 428,483,645.00 — —

15 50 10 400 1,001,939,273.07 — —

16 50 15 40 53,752,392.63 108,272,736.00 50.35%

17 50 15 200 285,718,499.15 — —

18 50 15 400 642,241,402.51 — —

19 100 5 40 266,837,378.43 293,669,499.75 9.14%

20 100 5 200 1,688,994,657.01 — —

21 100 5 400 4,279,052,131.57 — —

22 100 10 40 321,763,337.87 381,485,088.68 15.66%

23 100 10 200 1,820,297,803.19 — —

24 100 10 400 4,228,687,835.26 — —

25 100 15 40 233,314,035.11 483,451,014.29 51.74%

26 100 15 200 1,230,405,232.28 — —

27 100 15 400 2,747,609,838.06 — —

Average 21.93%

Table B.27: Lagrangian Relaxation and Linear Programming Relaxation II (5)

153

Ins. |I| |J| |K| δ=0.9 δ′=0.7 LR δ=0.9 δ′=0.7 LPR gap

1 10 5 40 1,879,607.22 2,001,467.06 6.09%

2 10 5 200 12,816,958.26 — —

3 10 5 400 28,433,801.08 — —

4 10 10 40 1,969,729.20 2,151,039.95 8.43%

5 10 10 200 11,291,996.84 — —

6 10 10 400 24,540,691.02 — —

7 10 15 40 1,496,671.34 2,243,232.68 33.28%

8 10 15 200 7,775,096.17 8,595,420.63 9.54%

9 10 15 400 17,141,300.34 — —

10 50 5 40 52,163,591.31 58,013,261.48 10.08%

11 50 5 200 324,236,960.45 — —

12 50 5 400 826,928,616.15 — —

13 50 10 40 64,513,151.08 75,259,050.89 14.28%

14 50 10 200 358,807,278.00 — —

15 50 10 400 833,090,730.96 — —

16 50 15 40 45,189,666.97 91,214,661.45 50.46%

17 50 15 200 242,277,261.55 253,679,724.00 4.49%

18 50 15 400 552,512,055.70 — —

19 100 5 40 206,649,753.49 232,836,474.56 11.25%

20 100 5 200 1,337,262,069.27 — —

21 100 5 400 3,389,070,285.45 — —

22 100 10 40 266,978,620.99 317,211,749.82 15.84%

23 100 10 200 1,511,582,421.83 — —

24 100 10 400 3,507,709,996.04 — —

25 100 15 40 195,907,176.89 406,687,682.45 51.83%

26 100 15 200 1,046,330,098.57 — —

27 100 15 400 2,330,389,273.81 — —

Average 19.60%

Table B.28: Lagrangian Relaxation and Linear Programming Relaxation II (6)

154

Ins. |I| |J| |K| δ=0.9 δ′=0.8 LR δ=0.9 δ′=0.8 LPR gap

1 10 5 40 1,598,200.62 1,709,106.28 6.49%

2 10 5 200 10,909,105.06 — —

3 10 5 400 24,192,749.98 — —

4 10 10 40 1,743,757.77 1,882,108.54 7.35%

5 10 10 200 9,846,166.30 — —

6 10 10 400 21,549,473.01 — —

7 10 15 40 1,349,189.09 1,972,983.86 31.62%

8 10 15 200 6,995,423.42 10,156,276.64 31.12%

9 10 15 400 15,567,178.80 —– —–

10 50 5 40 42,910,376.23 48,248,566.79 11.06%

11 50 5 200 270,004,462.95 — —

12 50 5 400 689,386,984.04 — —

13 50 10 40 55,163,436.97 64,586,134.81 14.59%

14 50 10 200 307,111,542.01 — —

15 50 10 400 715,253,281.15 — —

16 50 15 40 38,912,655.24 78,855,266.66 50.65%

17 50 15 200 211,568,195.84 — —

18 50 15 400 481,648,162.76 — —

19 100 5 40 169,401,587.30 193,060,787.66 12.25%

20 100 5 200 1,111,164,384.04 — —

21 100 5 400 2,814,327,505.75 — —

22 100 10 40 227,084,060.59 271,598,007.34 16.39%

23 100 10 200 1,287,708,484.35 — —

24 100 10 400 3,004,714,685.69 — —

25 100 15 40 168,471,801.86 351,072,368.73 52.01%

26 100 15 200 907,407,024.61 — —

27 100 15 400 2,023,016,444.49 — —

Average 23.35%

Table B.29: Lagrangian Relaxation and Linear Programming Relaxation II (7)

155

Ins. |I| |J| |K| δ=0.9 δ′=0.9 LR δ=0.9 δ′=0.9 LPR gap

1 10 5 40 1,410,971.08 1,502,199.84 6.07%

2 10 5 200 9,565,312.05 —– —–

3 10 5 400 20,989,581.39 —– —–

4 10 10 40 1,561,187.48 1,680,293.33 7.09%

5 10 10 200 8,791,303.96 —– —–

6 10 10 400 19,323,807.46 —– —–

7 10 15 40 1,227,527.96 1,767,025.51 30.53%

8 10 15 200 6,431,931.85 9,457,201.00 31.99%

9 10 15 400 7,727,388.32 20,920,142.27 63.06%

10 50 5 40 36,570,671.32 41,364,767.90 11.59%

11 50 5 200 231,259,704.04 —– —–

12 50 5 400 589,888,224.30 —– —–

13 50 10 40 48,135,891.93 56,618,213.84 14.98%

14 50 10 200 269,842,114.96 —– —–

15 50 10 400 630,404,578.48 —– —–

16 50 15 40 34,326,185.32 69,487,786.19 50.60%

17 50 15 200 187,836,237.90 —– —–

18 50 15 400 428,862,527.00 —– —–

19 100 5 40 143,906,325.95 165,021,019.60 12.80%

20 100 5 200 948,303,595.64 —– —–

21 100 5 400 2,406,956,222.32 —– —–

22 100 10 40 197,429,765.25 237,548,073.09 16.89%

23 100 10 200 1,030,126,236.98 —– —–

24 100 10 400 2,632,393,839.02 —– —–

25 100 15 40 147,501,204.32 308,924,462.04 52.25%

26 100 15 200 805,478,263.48 —– —–

27 100 15 400 1,796,698,231.23 —– —–

Average 27.08%

Table B.30: Lagrangian Relaxation and Linear Programming Relaxation II (8)

156

B.5 Finding the Best Number for the Size of Shaking

157

|I|=10 |J|=5 |K|=40 |I|=10 |J|=5 |K|=200 |I|=10 |J|=5 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9

IVND n IVND n IVND n
1,715,626.41 2 9,643,565.01 2 23,377,489.25 2
1,624,507.07 3 9,681,268.77 3 23,274,956.71 3
1,712,106.94 4 9,676,163.97 4 23,252,740.25 4
1,632,484.20 5 9,657,690.70 5 23,213,634.00 5
1,678,820.57 6 9,609,977.88 6 23,263,056.85 6
1,625,073.94 7 9,576,542.44 7 23,210,568.48 7
1,643,547.84 8 9,655,092.79 8 23,343,023.54 8
1,593,297.92 9 9,657,570.74 9 23,290,664.26 9
1,611,787.03 10 9,627,117.03 10 23,272,813.78 10

|I|=10 |J|=10 |K|=40 |I|=10 |J|=10 |K|=200 |I|=10 |J|=10 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9

IVND n IVND n IVND n
1,877,903.20 2 10,965,340.53 2 22,145,463.10 2
1,899,250.48 3 10,948,904.95 3 22,132,080.98 3
1,852,425.35 4 10,860,330.59 4 22,282,047.34 4
1,867,456.61 5 10,918,624.13 5 22,116,861.02 5
1,811,484.32 6 10,882,842.91 6 22,250,553.58 6
1,826,525.81 7 10,953,596.58 7 22,098,498.10 7
1,889,870.80 8 10,906,173.15 8 22,183,425.30 8
1,847,497.43 9 10,919,681.54 9 22,184,575.51 9
1,914,612.62 10 10,884,918.37 10 22,100,109.35 10

|I|=10 |J|=15 |K|=40 |I|=10 |J|=15 |K|=200 |I|=10 |J|=15 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9

IVND n IVND n IVND n
1,928,031.69 2 9818611.34 2 22,170,024.60 2
1,900,867.61 3 9781642.68 3 22,127,880.58 3
1,988,451.10 4 9731904.34 4 22,155,443.67 4
1,946,361.38 5 9796287.40 5 22,153,113.80 5
1,938,463.07 6 9812807.29 6 22,202,427.75 6
1,968,593.76 7 9835455.60 7 22,117,443.22 7
1,948,149.72 8 9758187.14 8 22,206,226.06 8
1,918,248.42 9 9796971.57 9 22,133,134.64 9
1,999,940.65 10 9765407.42 10 22,141,695.78 10

Table B.31: Calculating the size of shaking (1)

158

F
ig

u
re

B
.5

:
C

al
cu

la
ti

n
g

th
e

si
ze

of
sh

ak
in

g
(1

)

159

|I|=50 |J|=5 |K|=40 |I|=50 |J|=5 |K|=200 |I|=50 |J|=5 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9
IVND n IVND n IVND n

44,688,181.56 2 395,259,855.66 2 691,799,417.59 2
47,789,142.44 3 395,291,927.60 3 694,012,200.34 3
45,520,909.52 4 396,748,257.59 4 693,028,332.01 4
45,609,838.90 5 394,929,454.50 5 691,444,154.48 5
45,182,509.73 6 396,817,837.10 6 691,287,513.22 6
46,630,519.92 7 394,614,732.54 7 693,629,934.73 7
45,111,287.82 8 394,582,160.80 8 693,653,061.46 8
47,720,970.19 9 395,566,398.07 9 691,539,972.62 9
44,258,812.39 10 394,456,296.14 10 693,584,313.61 10

|I|=50 |J|=10 |K|=40 |I|=50 |J|=10 |K|=200 |I|=50 |J|=10 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9
IVND n IVND n IVND n

61,047,620.29 2 335,161,271.28 2 786,957,146.43 2
61,689,128.56 3 335,499,575.81 3 787,547,749.03 3
60,404,163.23 4 336,790,862.19 4 789,759,973.93 4
61,904,949.92 5 337,006,059.92 5 789,327,338.87 5
60,908,057.24 6 336,674,056.84 6 790,184,077.44 6
61,021,354.58 7 338,542,824.49 7 789,462,154.58 7
62,090,309.51 8 337,714,434.01 8 789,044,973.37 8
60,335,118.22 9 334,657,290.39 9 789,774,686.01 9
59,814,210.87 10 335,044,021.20 10 787,449,107.25 10

|I|=50 |J|=15 |K|=40 |I|=50 |J|=15 |K|=200 |I|=50 |J|=15 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9
IVND n IVND n IVND n

73,780,239.80 2 394,780,698.24 2 904,404,086.41 2
75,231,526.50 3 395,377,247.61 3 904,950,580.90 3
74,168,958.52 4 397,178,461.12 4 907,420,945.52 4
75,786,594.16 5 393,270,905.49 5 904,563,209.03 5
75,390,308.62 6 395,373,381.16 6 902,906,560.01 6
75,387,194.47 7 393,956,813.74 7 906,648,817.49 7
75,790,374.81 8 397,637,134.35 8 906,818,809.43 8
74,175,566.47 9 395,346,385.17 9 902,387,612.85 9
78,348,956.31 10 396,531,230.22 10 902,666,399.71 10

Table B.32: Calculating the size of shaking (2)

160

F
ig

u
re

B
.6

:
C

al
cu

la
ti

n
g

th
e

si
ze

of
sh

ak
in

g
(2

)

161

|I|=100 |J|=5 |K|=40 |I|=100 |J|=5 |K|=200 |I|=100 |J|=5 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9
IVND n IVND n IVND n

184,314,510.48 2 1,123,018,534.64 2 2,835,110,418.80 2
178,476,350.90 3 1,122,749,359.37 3 2,822,783,893.13 3
185,140,938.01 4 1,127,946,571.88 4 2,822,116,451.11 4
184,315,955.92 5 1,117,404,665.56 5 2,834,650,837.41 5
180,806,538.22 6 1,116,110,574.62 6 2,817,784,147.46 6
186,614,429.88 7 1,125,996,088.30 7 2,821,058,288.88 7
179,998,894.71 8 1,118,540,053.55 8 2,835,094,731.35 8
186,264,210.61 9 1,113,688,001.29 9 2,830,527,299.51 9
180,285,328.52 10 1,119,575,727.14 10 2,818,695,848.52 10

|I|=100 |J|=10 |K|=40 |I|=100 |J|=10 |K|=200 |I|=100 |J|=10 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9
IVND n IVND n IVND n

258,946,900.36 2 1,448,532,711.59 2 184,367,038.98 2
259,436,278.50 3 1,449,312,831.61 3 181,960,252.68 3
277,958,094.88 4 1,443,353,489.47 4 182,340,661.43 4
277,565,600.74 5 1,436,389,150.56 5 178,246,050.14 5
259,558,796.21 6 1,446,744,513.86 6 180,970,311.16 6
255,697,618.81 7 1,436,239,490.60 7 176,208,252.94 7
259,900,737.11 8 1,441,362,829.87 8 188,335,940.85 8
261,702,670.67 9 1,445,200,642.36 9 173,949,642.98 9
257,886,203.02 10 1,438,227,190.69 10 183,807,543.83 10

|I|=100 |J|=15 |K|=40 |I|=100 |J|=15 |K|=200 |I|=100 |J|=15 |K|=400
δ=0.9 δ′=0.9 δ=0.9 δ′=0.9 δ=0.9 δ′=0.9
IVND n IVND n IVND n

340,539,576.04 2 1,792,072,957.98 2 3,994,845,502.18 2
327,417,788.86 3 1,795,809,950.35 3 3,983,372,961.86 3
324,803,737.07 4 1,789,290,981.49 4 3,981,712,938.35 4
336,368,084.37 5 1,789,461,097.34 5 3,979,295,010.54 5
327,748,963.79 6 1,777,289,838.96 6 3,998,607,989.07 6
335,035,149.70 7 1,783,203,093.86 7 3,997,216,843.13 7
343,698,610.18 8 1,788,694,696.41 8 3,981,214,643.14 8
324,436,736.61 9 1,781,298,465.67 9 3,998,259,615.08 9
327,025,470.81 10 1,795,228,033.06 10 3,997,960,055.55 10

Table B.33: Calculating the size of shaking (3)

162

F
ig

u
re

B
.7

:
C

al
cu

la
ti

n
g

th
e

si
ze

of
sh

ak
in

g
(3

)

163

B.6 Finding the Best Computational Time for In-

stances

|I| |J| |K| 5 min 10 min 15 min 20 min

100 5 200 1,134,021,984.46 1,134,021,984.46 1,133,926,967.90 1,133,926,967.90

50 15 400 902,635,654.56 902,635,654.56 902,635,654.56 902,635,654.56

50 5 200 271,321,341.26 271,321,341.26 271,224,355.54 271,224,355.54

10 10 40 1,802,876.47 1,802,876.47 1,802,876.47 1,802,876.47

Table B.34: Finding the Best Computational Time for Instances

164

B.7 Finding the Best Size for Tabu List

165

δ=0.8 δ′=0.6

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 1706833949 1706273464 1706131427 1708740207 1707258440

50 15 400 1253051906 1255626616 1252909254 1254308241 1255569550

50 5 200 413611502.6 412101329.1 411915587.1 412286959.8 413207988.9

10 10 40 2477414.38 2457741.42 2454756.83 2485208.36 2464128.77

δ=0.8 δ′=0.7

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 1363024788 1361526254 1361421246 1363372174 1365551748

50 15 400 1058867756 1057064252 1056945993 1057361660 1059981441

50 5 200 331175876.7 330041599.9 329903547.1 330177140.4 330508189

10 10 40 2103425.79 2205764.15 2084385.17 2086899.55 2091774.62

δ=0.8 δ′=0.8

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 1135159155 1134104937 1134021984 1135575489 1134674558

50 15 400 914841076.4 919475645.4 914740048 915606157.9 918249265.1

50 5 200 276760040 275886367.9 275744112.6 276237659.5 276087235.4

10 10 40 1844236.4 1843843.01 1827342.27 1841240.62 1829464.8

δ=0.8 δ′=0.9

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 972708954 972774865.3 972640532.5 982674514 973580014.6

50 15 400 806921122.3 808515982.5 806832905 807321674.9 807977924.4

50 5 200 238126539.4 237372075.3 237281361.5 237565138.9 238237189.6

10 10 40 1738580.08 1655861.27 1638128.03 1641916.75 1640002.11

Table B.35: Finding the Best Tabu List Size δ=0.8

166

δ=0.9 δ′=0.6

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 1706549665 1708464839 1706121405 1706131427 1710643299

50 15 400 1253125383 1254195901 1252909254 1255052915 1255374261

50 5 200 411955519.5 411915587.1 411915587.1 411983788.7 411940628.5

10 10 40 2457731.48 2457731.48 2454756.83 2457731.48 2457731.48

δ=0.9 δ′=0.7

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 1366717355 1361624927 1361399349 1363260654 1364083993

50 15 400 1057612933 1059503671 1056945993 1057439607 1364083993

50 5 200 331002619 331077555.9 329903547.1 330117953.3 330301586.1

10 10 40 2090504.28 2090504.28 2084385.17 2092219.46 2103889.32

δ=0.9 δ′=0.8

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 1138178163 1134760329 1133999446 1135394078 1135696566

50 15 400 915309573.1 916842373.9 914740048 918820626.9 917902896.3

50 5 200 276609571.3 275996596.5 275744112.6 276025214.1 276511224.4

10 10 40 1875378.18 1837260.51 1827342.27 1863206.27 1844831.4

δ=0.9 δ′=0.9

|I| |J| |K| size 10 size 15 size 20 size 25 size 30

100 5 200 982000691.8 976931176.5 972619503.5 975178880.3 979592931.6

50 15 400 807330100.6 810560188.5 806832905 807272460.2 807585103.8

50 5 200 237993497.1 237281361.5 237281361.5 237383865.8 237422214.1

10 10 40 1694012.22 1693324.98 1638128.03 1726710.52 1657061.05

Table B.36: Finding the Best Tabu List Size δ=0.9

167

B.8 Computational Results for Iterated Variable Neigh-

bourhood Descent and Tabu Search

168

Ins. |I| |J| |K| δ=0.8 δ′=0.6 IVND δ=0.8 δ′=0.6 TS gap

1 10 5 40 3,488,700.29 3,487,950.79 0.02%

2 10 5 200 18,812,281.82 18,803,555.02 0.05%

3 10 5 400 46,363,728.72 46,363,728.72 0.00%

4 10 10 40 3,200,035.57 3,200,035.57 0.00%

5 10 10 200 21,562,280.13 21,562,280.13 0.00%

6 10 10 400 38,284,345.04 37,992,533.93 0.76%

7 10 15 40 3,311,951.19 3,311,951.19 0.00%

8 10 15 200 16,341,603.87 16,174,974.71 1.02%

9 10 15 400 36,373,750.25 36,573,750.25 -0.55%

10 50 5 40 108,241,184.21 91,892,727.35 15.10%

11 50 5 200 591,621,401.61 411,915,587.11 30.38%

12 50 5 400 1,513,558,350.01 1,496,874,768.20 1.10%

13 50 10 40 122,907,731.27 115,880,267.28 5.72%

14 50 10 200 630,787,238.53 591,774,458.29 6.18%

15 50 10 400 1,460,589,116.77 1,460,589,116.77 0.00%

16 50 15 40 135,886,688.62 135,886,688.62 0.00%

17 50 15 200 706,232,388.69 706,232,388.69 0.00%

18 50 15 400 1,628,501,886.23 125,290,925.05 92.31%

19 100 5 40 449,043,662.47 426,609,675.07 5.00%

20 100 5 200 2,501,822,226.12 1,706,131,426.65 31.80%

21 100 5 400 6,194,760,935.03 6,172,465,833.53 0.36%

22 100 10 40 546,304,428.59 495,008,709.66 9.39%

23 100 10 200 2,718,049,303.38 2,692,716,281.33 0.93%

24 100 10 400 6,239,802,196.65 6,235,335,323.66 0.07%

25 100 15 40 661,526,208.58 605,309,158.41 8.50%

26 100 15 200 3,222,494,513.45 3,204,484,739.48 0.56%

27 100 15 400 7,164,172,713.18 7,153,766,416.78 0.15%

Average 7.74%

Table B.37: Iterated Variable Neighbourhood Descent and Tabu Search (1)

169

Ins. |I| |J| |K| δ=0.8 δ′=0.7 IVND δ=0.8 δ′=0.7 TS gap

1 10 5 40 2,848,004.99 2,642,938.13 7.20%

2 10 5 200 14,976,705.91 14,965,332.07 0.08%

3 10 5 400 38,768,246.42 36,808,753.24 5.05%

4 10 10 40 2,653,641.80 2,653,641.80 0.00%

5 10 10 200 17,137,631.65 17,137,631.65 0.00%

6 10 10 400 32,013,192.56 32,013,192.56 0.00%

7 10 15 40 2,775,732.10 2,775,732.10 0.00%

8 10 15 200 13,814,155.09 13,814,155.09 0.00%

9 10 15 400 31,282,793.29 31,282,793.29 0.00%

10 50 5 40 81,552,094.63 78,717,439.44 3.48%

11 50 5 200 467,609,810.54 329,903,547.12 29.45%

12 50 5 400 1,169,139,075.50 1,162,617,226.61 0.56%

13 50 10 40 95,181,967.60 93,942,504.68 1.30%

14 50 10 200 514,550,913.12 514,550,913.12 0.00%

15 50 10 400 930,458,166.41 928,389,313.49 0.22%

16 50 15 40 112,166,187.45 112,166,187.45 0.00%

17 50 15 200 591,457,057.80 591,457,075.80 0.00%

18 50 15 400 1,361,301,659.98 1,056,945,992.84 22.36%

19 100 5 40 358,846,720.78 312,091,673.37 13.03%

20 100 5 200 1,900,295,161.18 1,361,421,245.77 28.36%

21 100 5 400 4,783,194,674.55 4,985,458,084.61 -4.23%

22 100 10 40 433,569,791.64 398,634,567.26 8.06%

23 100 10 200 2,218,508,059.33 2,218,459,716.09 0.00%

24 100 10 400 5,147,032,805.52 5,146,698,941.43 0.01%

25 100 15 40 500,767,740.62 498,599,160.19 0.43%

26 100 15 200 2,717,282,151.41 2,679,903,711.04 1.38%

27 100 15 400 6,017,927,423.33 5,990,370,288.23 0.46%

Average 4.34%

Table B.38: Iterated Variable Neighbourhood Descent and Tabu Search (2)

170

Ins. |I| |J| |K| δ=0.8 δ′=0.8 IVND δ=0.8 δ′=0.8 TS gap

1 10 5 40 2,171,183.88 2,170,681.31 0.02%

2 10 5 200 12,566,452.96 12,566,452.96 0.00%

3 10 5 400 30,788,051.85 30,774,811.94 0.04%

4 10 10 40 2,355,003.31 2,288,505.99 2.82%

5 10 10 200 14,483,509.45 14,354,260.98 0.89%

6 10 10 400 28,010,316.76 27,823,743.27 0.67%

7 10 15 40 2,668,109.41 2,405,788.55 9.83%

8 10 15 200 12,122,330.63 12,122,330.63 0.00%

9 10 15 400 27,645,897.75 27,480,370.12 0.60%

10 50 5 40 63,667,128.14 62,003,433.47 2.61%

11 50 5 200 374,545,176.61 275,744,112.60 26.38%

12 50 5 400 961,018,514.45 952,065,665.03 0.93%

13 50 10 40 85,361,131.25 79,209,642.42 7.21%

14 50 10 200 438,713,649.94 438,713,649.94 0.00%

15 50 10 400 1,038,924,032.23 1,030,150,676.72 0.84%

16 50 15 40 95,630,062.11 95,630,062.11 0.00%

17 50 15 200 510,970,312.23 509,180,111.29 0.35%

18 50 15 400 1,176,362,598.43 914,740,048.02 22.24%

19 100 5 40 255,085,220.42 247,227,343.27 3.08%

20 100 5 200 1,579,281,422.05 1,134,021,984.46 28.19%

21 100 5 400 3,908,570,277.61 3,908,570,277.61 0.00%

22 100 10 40 344,696,269.01 334,529,186.77 2.95%

23 100 10 200 1,891,520,328.22 1,887,417,597.66 0.22%

24 100 10 400 4,383,998,476.75 4,383,727,904.39 0.01%

25 100 15 40 465,790,862.79 424,351,624.71 8.90%

26 100 15 200 2,339,456,987.00 2,303,854,003.24 1.52%

27 100 15 400 5,161,337,562.70 5,154,155,172.58 0.14%

Average 4.46%

Table B.39: Iterated Variable Neighbourhood Descent and Tabu Search (3)

171

Ins. |I| |J| |K| δ=0.8 δ′=0.9 IVND δ=0.8 δ′=0.9 TS gap

1 10 5 40 1,865,122.73 1,864,681.62 0.02%

2 10 5 200 10,909,736.54 10,909,736.54 0.00%

3 10 5 400 26,615,806.73 26,615,806.73 0.00%

4 10 10 40 2,161,566.00 2,025,836.16 6.28%

5 10 10 200 12,536,711.89 12,440,101.11 0.77%

6 10 10 400 24,902,737.96 24,724,464.60 0.72%

7 10 15 40 2,134,600.49 2,134,600.49 0.00%

8 10 15 200 10,986,793.54 10,850,153.72 1.24%

9 10 15 400 24,615,461.40 24,615,461.40 0.00%

10 50 5 40 52,749,373.54 52,163,338.32 1.11%

11 50 5 200 317,977,666.87 237,281,361.53 25.38%

12 50 5 400 814,361,990.20 807,143,301.90 0.89%

13 50 10 40 71,292,283.13 68,596,635.03 3.78%

14 50 10 200 387,247,321.51 382,707,853.20 1.17%

15 50 10 400 898,876,940.50 898,876,940.50 0.00%

16 50 15 40 86,993,149.54 83,427,178.19 4.10%

17 50 15 200 453,349,616.04 447,298,620.62 1.33%

18 50 15 400 1,033,355,516.07 806,832,905.01 21.92%

19 100 5 40 209,298,068.14 205,514,341.97 1.81%

20 100 5 200 1,311,908,320.82 972,640,532.48 25.86%

21 100 5 400 3,306,745,183.01 3,306,745,183.01 0.00%

22 100 10 40 314,283,951.71 288,564,398.57 8.18%

23 100 10 200 1,654,098,280.39 1,643,135,394.90 0.66%

24 100 10 400 3,841,066,926.28 3,819,193,540.98 0.57%

25 100 15 40 373,061,921.79 369,606,614.62 0.93%

26 100 15 200 2,031,832,986.28 2,021,023,068.94 0.53%

27 100 15 400 4,530,273,946.38 4,524,056,016.77 0.14%

Average 3.98%

Table B.40: Iterated Variable Neighbourhood Descent and Tabu Search (4)

172

Ins. |I| |J| |K| δ=0.9 δ′=0.6 IVND δ=0.9 δ′=0.6 TS gap

1 10 5 40 2,805,735.38 2,803,391.18 0.08%

2 10 5 200 15,761,292.47 15,750,456.68 0.07%

3 10 5 400 38,778,802.31 38,768,246.42 0.03%

4 10 10 40 3,006,313.90 2,768,607.10 7.91%

5 10 10 200 18,043,239.79 18,043,239.79 0.00%

6 10 10 400 33,301,532.59 33,301,532.59 0.00%

7 10 15 40 3,190,525.27 2,890,385.33 9.41%

8 10 15 200 14,328,114.19 14,328,114.19 0.00%

9 10 15 400 32,436,176.37 32,436,176.37 0.00%

10 50 5 40 88,147,345.74 84,571,608.69 4.06%

11 50 5 200 492,226,984.81 411,915,587.11 16.32%

12 50 5 400 1,239,740,910.21 1,231,076,102.52 0.70%

13 50 10 40 102,201,656.07 98,572,309.54 3.55%

14 50 10 200 537,903,998.54 537,903,998.54 0.00%

15 50 10 400 1,272,837,004.85 1,262,077,359.69 0.85%

16 50 15 40 117,263,637.12 117,263,637.12 0.00%

17 50 15 200 616,447,813.49 616,447,813.49 0.00%

18 50 15 400 1,410,607,923.05 1,252,909,254.05 11.18%

19 100 5 40 355,568,998.37 334,554,085.53 5.91%

20 100 5 200 2,028,417,552.31 1,706,121,405.25 15.89%

21 100 5 400 5,080,757,003.24 5,067,645,767.65 0.26%

22 100 10 40 438,825,950.61 416,518,158.16 5.08%

23 100 10 200 2,348,583,464.96 2,314,882,490.01 1.43%

24 100 10 400 5,381,648,137.39 5,380,972,886.84 0.01%

25 100 15 40 561,827,133.59 521,990,191.75 7.09%

26 100 15 200 2,845,821,980.47 2,796,235,536.43 1.74%

27 100 15 400 6,244,174,979.88 6,246,364,753.44 -0.04%

Average 3.39%

Table B.41: Iterated Variable Neighbourhood Descent and Tabu Search (5)

173

Ins. |I| |J| |K| δ=0.9 δ′=0.7 IVND δ=0.9 δ′=0.7 TS gap

1 10 5 40 2,218,809.56 2,216,719.25 0.09%

2 10 5 200 12,997,721.74 12,817,697.99 1.39%

3 10 5 400 31,404,750.20 31,404,750.20 0.00%

4 10 10 40 2,327,468.91 2,327,468.91 0.00%

5 10 10 200 14,790,885.44 14,644,484.18 0.99%

6 10 10 400 28,323,244.26 28,277,569.73 0.16%

7 10 15 40 2,445,665.60 2,445,665.60 0.00%

8 10 15 200 12,307,132.49 12,307,132.49 0.00%

9 10 15 400 28,098,824.98 27,896,140.75 0.72%

10 50 5 40 69,020,156.53 64,298,848.55 6.84%

11 50 5 200 386,184,437.94 329,903,547.12 14.57%

12 50 5 400 979,892,719.07 974,030,012.09 0.60%

13 50 10 40 80,783,218.20 80,783,218.20 0.00%

14 50 10 200 449,063,911.29 446,921,382.09 0.48%

15 50 10 400 1,049,370,020.21 1,049,370,020.21 0.00%

16 50 15 40 104,117,814.42 97,418,810.58 6.43%

17 50 15 200 521,857,120.34 518,168,389.35 0.71%

18 50 15 400 1,186,758,158.90 1,056,945,992.84 10.94%

19 100 5 40 281,664,914.85 253,737,256.78 9.92%

20 100 5 200 1,585,702,719.57 1,361,399,348.85 14.15%

21 100 5 400 3,999,794,411.56 3,999,794,411.56 0.00%

22 100 10 40 354,715,723.75 339,600,987.79 4.26%

23 100 10 200 1,947,380,372.04 1,918,719,960.21 1.47%

24 100 10 400 4,466,626,071.42 4,466,131,499.31 0.01%

25 100 15 40 440,527,676.83 432,843,435.19 1.74%

26 100 15 200 2,347,572,799.36 2,346,657,273.65 0.04%

27 100 15 400 5,245,727,896.80 5,245,282,964.66 0.01%

Average 2.80%

Table B.42: Iterated Variable Neighbourhood Descent and Tabu Search (6)

174

Ins. |I| |J| |K| δ=0.9 δ′=0.8 IVND δ=0.9 δ′=0.8 TS gap

1 10 5 40 1,865,122.73 1,863,248.65 0.10%

2 10 5 200 11,080,427.19 10,909,736.54 1.54%

3 10 5 400 26,615,806.73 26,615,806.73 0.00%

4 10 10 40 2,153,078.95 2,025,836.16 5.91%

5 10 10 200 12,579,687.93 12,440,101.11 1.11%

6 10 10 400 24,934,739.91 24,724,464.60 0.84%

7 10 15 40 2,134,600.49 2,134,600.49 0.00%

8 10 15 200 10,850,153.72 10,850,153.72 0.00%

9 10 15 400 24,677,161.73 24,615,461.40 0.25%

10 50 5 40 52,749,373.54 52,154,363.54 1.13%

11 50 5 200 317,792,630.06 275,744,112.60 13.23%

12 50 5 400 812,039,329.58 807,143,301.90 0.60%

13 50 10 40 69,077,315.05 68,596,635.03 0.70%

14 50 10 200 385,820,058.24 382,707,853.20 0.81%

15 50 10 400 902,448,553.04 898,876,940.50 0.40%

16 50 15 40 87,358,187.40 83,427,178.19 4.50%

17 50 15 200 448,078,598.90 447,298,620.62 0.17%

18 50 15 400 1,029,992,563.19 914,740,048.02 11.19%

19 100 5 40 224,244,948.66 205,514,341.97 8.35%

20 100 5 200 1,314,482,508.29 1,133,999,446.40 13.73%

21 100 5 400 3,306,745,183.01 3,306,745,183.01 0.00%

22 100 10 40 313,631,666.91 287,158,702.46 8.44%

23 100 10 200 1,643,166,701.97 1,639,351,726.43 0.23%

24 100 10 400 3,819,420,526.22 3,818,983,851.62 0.01%

25 100 15 40 393,976,485.47 370,038,929.95 6.08%

26 100 15 200 2,034,342,312.29 2,022,476,796.00 0.58%

27 100 15 400 4,563,625,562.52 4,523,784,327.37 0.87%

Average 2.99%

Table B.43: Iterated Variable Neighbourhood Descent and Tabu Search (7)

175

Ins. |I| |J| |K| δ=0.9 δ′=0.9 IVND δ=0.9 δ′=0.9 TS gap

1 10 5 40 1,625,073.94 1,625,159.62 -0.01%

2 10 5 200 9,576,542.44 9,566,320.01 0.11%

3 10 5 400 23,210,568.48 23,249,714.58 -0.17%

4 10 10 40 1,826,525.81 1,805,876.47 1.13%

5 10 10 200 10,953,596.58 10,893,720.48 0.55%

6 10 10 400 22,112,392.38 22,078,367.96 0.15%

7 10 15 40 1,968,593.76 1,904,484.69 3.26%

8 10 15 200 9,835,455.60 9,749,816.59 0.87%

9 10 15 400 22,117,443.22 22,133,761.02 -0.07%

10 50 5 40 46,630,519.92 44,064,095.37 5.50%

11 50 5 200 274,052,427.01 237,281,361.53 13.42%

12 50 5 400 693,629,934.73 689,995,487.73 0.52%

13 50 10 40 61,021,354.58 59,707,015.52 2.15%

14 50 10 200 338,542,824.49 334,953,744.58 1.06%

15 50 10 400 789,462,154.58 786,771,044.12 0.34%

16 50 15 40 75,387,194.47 73,022,207.95 3.14%

17 50 15 200 393,956,813.74 393,767,601.68 0.05%

18 50 15 400 906,648,817.49 806,832,905.01 11.01%

19 100 5 40 186,614,429.88 173,164,494.87 7.21%

20 100 5 200 1,125,996,088.30 972,619,503.46 13.62%

21 100 5 400 2,821,058,288.88 2,820,350,975.80 0.03%

22 100 10 40 255,697,618.81 247,253,099.96 3.30%

23 100 10 200 1,295,700,510.12 1,279,302,398.36 1.27%

24 100 10 400 3,762,082,522.94 3,336,964,592.96 11.30%

25 100 15 40 335,035,149.70 323,340,281.23 3.49%

26 100 15 200 1,783,203,093.96 1,777,617,262.08 0.31%

27 100 15 400 3,997,216,843.13 3,977,961,663.89 0.48%

Average 3.11%

Table B.44: Iterated Variable Neighbourhood Descent and Tabu Search (8)

176

B.9 Computational Results for Best Upper Bound

and Best Lower Bound

177

Ins. |I| |J| |K| δ=0.8 δ′=0.6 TS Best Lower Bound gap

1 10 5 40 3,487,950.79 2,903,235.57 16.76%

2 10 5 200 18,803,555.02 18,127,243.24 3.60%

3 10 5 400 46,363,728.72 45,982,115.34 0.82%

4 10 10 40 3,200,035.57 2,878,167.77 10.06%

5 10 10 200 21,562,280.13 16,094,534.97 25.36%

6 10 10 400 37,992,533.93 32,469,458.97 14.54%

7 10 15 40 3,311,951.19 2,950,738.56 10.91%

8 10 15 200 16,174,974.71 14,541,900.00 10.10%

9 10 15 400 36,573,750.25 20,847,716.31 43.00%

10 50 5 40 91,892,727.35 88,237,996.95 3.98%

11 50 5 200 411,915,587.11 365,473,946.83 11.27%

12 50 5 400 1,496,874,768.20 1,325,025,142.33 11.48%

13 50 10 40 115,880,267.28 104,279,448.74 10.01%

14 50 10 200 591,774,458.29 471,156,745.34 20.38%

15 50 10 400 1,460,589,116.77 1,153,073,595.99 21.05%

16 50 15 40 135,886,688.62 123,771,576.99 8.92%

17 50 15 200 706,232,388.69 314,544,047.83 55.46%

18 50 15 400 125,290,925.05 74,065,008.26 40.89%

19 100 5 40 426,609,675.07 355,956,347.43 16.56%

20 100 5 200 1,706,131,426.65 1,509,304,162.96 11.54%

21 100 5 400 6,172,465,833.53 5,943,877,314.00 3.70%

22 100 10 40 495,008,709.66 441,247,492.38 10.86%

23 100 10 200 2,692,716,281.33 2,623,414,420.40 2.57%

24 100 10 400 6,235,335,323.66 5,124,851,741.20 17.81%

25 100 15 40 605,309,158.41 553,228,938.29 8.60%

26 100 15 200 3,204,484,739.48 1,379,556,565.81 56.95%

27 100 15 400 7,153,766,416.78 3,069,414,984.16 57.09%

Average 18.68%

Table B.45: Best Upper Bound and Best Lower Bound (1)

178

Ins. |I| |J| |K| δ=0.8 δ′=0.7 TS Best Lower Bound gap

1 10 5 40 2,642,938.13 2,329,168.92 11.87%

2 10 5 200 14,965,332.07 14,964,732.98 0.00%

3 10 5 400 36,808,753.24 36,532,558.88 0.75%

4 10 10 40 2,653,641.80 2,431,876.09 8.36%

5 10 10 200 17,137,631.65 15,793,114.44 7.85%

6 10 10 400 32,013,192.56 27,711,262.91 13.44%

7 10 15 40 2,775,732.10 2,520,415.95 9.20%

8 10 15 200 13,814,155.09 8,532,722.37 38.23%

9 10 15 400 31,282,793.29 18,492,319.13 40.89%

10 50 5 40 78,717,439.44 68,985,281.48 12.36%

11 50 5 200 329,903,547.12 293,590,242.00 11.01%

12 50 5 400 1,162,617,226.61 1,035,377,033.13 10.94%

13 50 10 40 93,942,504.68 86,447,310.81 7.98%

14 50 10 200 514,550,913.12 408,629,142.63 20.59%

15 50 10 400 928,389,313.49 737,484,300.01 20.56%

16 50 15 40 112,166,187.45 103,944,492.39 7.33%

17 50 15 200 591,457,075.80 268,705,396.37 54.57%

18 50 15 400 1,056,945,992.84 610,276,667.28 42.26%

19 100 5 40 312,091,673.37 277528281.2 11.07%

20 100 5 200 1,361,421,245.77 1,207,511,287.33 11.31%

21 100 5 400 4,985,458,084.61 4,515,369,064.95 9.43%

22 100 10 40 398,634,567.26 365,029,144.93 8.43%

23 100 10 200 2,218,459,716.09 1,732,014,211.83 21.93%

24 100 10 400 5,146,698,941.43 4,058,070,901.17 21.15%

25 100 15 40 498,599,160.19 463,972,293.71 6.94%

26 100 15 200 2,679,903,711.04 1,163,787,011.00 56.57%

27 100 15 400 5,990,370,288.23 2,591,004,189.62 56.75%

Average 19.32%

Table B.46: Best Upper Bound and Best Lower Bound (2)

179

Ins. |I| |J| |K| δ=0.8 δ′=0.8 TS Best Lower Bound gap

1 10 5 40 2,170,681.31 1,963,197.05 9.56%

2 10 5 200 12,566,452.96 12,565,967.13 0.00%

3 10 5 400 30,774,811.94 27,740,275.99 9.86%

4 10 10 40 2,288,505.99 2,116,803.63 7.50%

5 10 10 200 14,354,260.98 11,175,126.63 22.15%

6 10 10 400 27,823,743.27 24,264,641.08 12.79%

7 10 15 40 2,405,788.55 2,209,083.02 8.18%

8 10 15 200 12,122,330.63 7,602,213.37 37.29%

9 10 15 400 27,480,370.12 16,664,793.76 39.36%

10 50 5 40 62,003,433.47 56,733,195.94 8.50%

11 50 5 200 275,744,112.60 246,200,491.59 10.71%

12 50 5 400 952,065,665.03 850,472,591.19 10.67%

13 50 10 40 79,209,642.42 73,897,956.80 6.71%

14 50 10 200 438,713,649.94 349,745,739.15 20.28%

15 50 10 400 1,030,150,676.72 819,472,471.50 20.45%

16 50 15 40 95,630,062.11 89,649,946.00 6.25%

17 50 15 200 509,180,111.29 233,764,241.05 54.09%

18 50 15 400 914,740,048.02 532,465,561.23 41.79%

19 100 5 40 247,227,343.27 227,619,090.47 7.93%

20 100 5 200 1,134,021,984.46 1,010,023,661.45 10.93%

21 100 5 400 3,908,570,277.61 3,483,840,003.50 10.87%

22 100 10 40 334,529,186.77 311,394,015.64 6.92%

23 100 10 200 1,887,417,597.66 1,475,495,317.38 21.82%

24 100 10 400 4,383,727,904.39 3,433,560,340.47 21.67%

25 100 15 40 424,351,624.71 399,646,005.10 5.82%

26 100 15 200 2,303,854,003.24 1,007,337,039.98 56.28%

27 100 15 400 5,154,155,172.58 2,243,495,135.00 56.47%

Average 19.44%

Table B.47: Best Upper Bound and Best Lower Bound (3)

180

Ins. |I| |J| |K| δ=0.8 δ′=0.9 TS Best Lower Bound gap

1 10 5 40 1,864,681.62 1,709,163.85 8.34%

2 10 5 200 10,909,736.54 10,909,364.04 0.00%

3 10 5 400 26,615,806.73 24,069,215.94 9.57%

4 10 10 40 2,025,836.16 1,882,108.54 7.09%

5 10 10 200 12,440,101.11 9,913,248.62 20.31%

6 10 10 400 24,724,464.60 21,685,264.30 12.29%

7 10 15 40 2,134,600.49 1,972,983.86 7.57%

8 10 15 200 10,850,153.72 10,160,597.84 6.36%

9 10 15 400 24,615,461.40 15,451,006.47 37.23%

10 50 5 40 52,163,338.32 48,250,671.65 7.50%

11 50 5 200 237,281,361.53 212,476,288.30 10.45%

12 50 5 400 807,143,301.90 721,839,974.21 10.57%

13 50 10 40 68,596,635.03 64,586,461.72 5.85%

14 50 10 200 382,707,853.20 306,265,517.54 19.97%

15 50 10 400 898,876,940.50 712,431,296.89 20.74%

16 50 15 40 83,427,178.19 78,855,305.75 5.48%

17 50 15 200 447,298,620.62 207,687,551.32 53.57%

18 50 15 400 806,832,905.01 474,425,692.45 41.20%

19 100 5 40 205,514,341.97 193,066,214.51 6.06%

20 100 5 200 972,640,532.48 916,162,057.39 5.81%

21 100 5 400 3,306,745,183.01 2,951,717,087.83 10.74%

22 100 10 40 288,564,398.57 271,599,069.84 5.88%

23 100 10 200 1,643,135,394.90 1,286,858,630.98 21.68%

24 100 10 400 3,819,193,540.98 2,986,362,562.50 21.81%

25 100 15 40 369,606,614.62 351,072,587.18 5.01%

26 100 15 200 2,021,023,068.94 888,981,996.25 56.01%

27 100 15 400 4,524,056,016.77 1,979,482,180.41 56.25%

Average 17.53%

Table B.48: Best Upper Bound and Best Lower Bound (4)

181

Ins. |I| |J| |K| δ=0.9 δ′=0.6 TS Best Lower Bound gap

1 10 5 40 2,803,391.18 2,447,361.92 12.70%

2 10 5 200 15,750,456.68 15,749,534.16 0.01%

3 10 5 400 38,768,246.42 34,926,487.98 9.91%

4 10 10 40 2,768,607.10 2,528,328.07 8.68%

5 10 10 200 18,043,239.79 13,405,208.08 25.71%

6 10 10 400 33,301,532.59 28,542,107.34 14.29%

7 10 15 40 2,890,385.33 1,704,499.49 41.03%

8 10 15 200 14,328,114.19 8,755,092.85 38.90%

9 10 15 400 32,436,176.37 19,234,461.08 40.70%

10 50 5 40 84,571,608.69 72,947,049.29 13.75%

11 50 5 200 411,915,587.11 408,013,927.59 0.95%

12 50 5 400 1,231,076,102.52 1,041,281,377.88 15.42%

13 50 10 40 98,572,309.54 90,297,294.59 8.39%

14 50 10 200 537,903,998.54 428,483,645.00 20.34%

15 50 10 400 1,262,077,359.69 1,001,939,273.07 20.61%

16 50 15 40 117,263,637.12 108,272,736.00 7.67%

17 50 15 200 616,447,813.49 285,718,499.15 53.65%

18 50 15 400 1,252,909,254.05 642,241,402.51 48.74%

19 100 5 40 334,554,085.53 293,669,592.32 12.22%

20 100 5 200 1,706,121,405.25 1,688,994,657.01 1.00%

21 100 5 400 5,067,645,767.65 4,279,052,131.57 15.56%

22 100 10 40 416,518,158.16 381,483,522.77 8.41%

23 100 10 200 2,314,882,490.01 1,820,297,803.19 21.37%

24 100 10 400 5,380,972,886.84 4,228,687,835.26 21.41%

25 100 15 40 521,990,191.75 483,451,014.29 7.38%

26 100 15 200 2,796,235,536.43 1,230,405,232.28 56.00%

27 100 15 400 6,246,364,753.44 2,747,609,838.06 56.01%

Average 21.51%

Table B.49: Best Upper Bound and Best Lower Bound (5)

182

Ins. |I| |J| |K| δ=0.9 δ′=0.7 TS Best Lower Bound gap

1 10 5 40 2,216,719.25 2,001,467.06 9.71%

2 10 5 200 12,817,697.99 12,816,958.26 0.01%

3 10 5 400 31,404,750.20 28,433,801.08 9.46%

4 10 10 40 2,327,468.91 2,151,040.77 7.58%

5 10 10 200 14,644,484.18 11,291,996.84 22.89%

6 10 10 400 28,277,569.73 24,540,691.02 13.21%

7 10 15 40 2,445,665.60 2,243,232.68 8.28%

8 10 15 200 12,307,132.49 8,595,420.63 30.16%

9 10 15 400 27,896,140.75 17,141,300.34 38.55%

10 50 5 40 64,298,848.55 58,013,287.41 9.78%

11 50 5 200 329,903,547.12 324,236,960.45 1.72%

12 50 5 400 974,030,012.09 826,928,616.15 15.10%

13 50 10 40 80,783,218.20 75,259,050.89 6.84%

14 50 10 200 446,921,382.09 358,807,278.00 19.72%

15 50 10 400 1,049,370,020.21 833,090,730.96 20.61%

16 50 15 40 97,418,810.58 91,214,661.45 6.37%

17 50 15 200 518,168,389.35 253,679,724.00 51.04%

18 50 15 400 1,056,945,992.84 552,512,055.70 47.73%

19 100 5 40 253,737,256.78 232,836,474.56 8.24%

20 100 5 200 1,361,399,348.85 1,337,262,069.27 1.77%

21 100 5 400 3,999,794,411.56 3,389,070,285.45 15.27%

22 100 10 40 339,600,987.79 317,211,749.82 6.59%

23 100 10 200 1,918,719,960.21 1,511,582,421.83 21.22%

24 100 10 400 4,466,131,499.31 3,507,709,996.04 21.46%

25 100 15 40 432,843,435.19 406,687,682.45 6.04%

26 100 15 200 2,346,657,273.65 1,046,330,098.57 55.41%

27 100 15 400 5,245,282,964.66 2,330,389,273.81 55.57%

Average 18.90%

Table B.50: Best Upper Bound and Best Lower Bound (6)

183

Ins. |I| |J| |K| δ=0.9 δ′=0.8 TS Best Lower Bound gap

1 10 5 40 1,863,248.65 1,709,110.28 8.27%

2 10 5 200 10,909,736.54 10,909,105.06 0.01%

3 10 5 400 26,615,806.73 24,192,749.98 9.10%

4 10 10 40 2,025,836.16 1,882,108.54 7.09%

5 10 10 200 12,440,101.11 9,846,166.30 20.85%

6 10 10 400 24,724,464.60 21,549,473.01 12.84%

7 10 15 40 2,134,600.49 1,972,983.86 7.57%

8 10 15 200 10,850,153.72 10,160,597.84 6.36%

9 10 15 400 24,615,461.40 15,567,178.80 36.76%

10 50 5 40 52,154,363.54 48,248,579.64 7.49%

11 50 5 200 275,744,112.60 270,004,462.95 2.08%

12 50 5 400 807,143,301.90 689,386,984.04 14.59%

13 50 10 40 68,596,635.03 64,586,134.81 5.85%

14 50 10 200 382,707,853.20 307,111,542.01 19.75%

15 50 10 400 898,876,940.50 715,253,281.15 20.43%

16 50 15 40 83,427,178.19 78,855,266.66 5.48%

17 50 15 200 447,298,620.62 211,568,195.84 52.70%

18 50 15 400 914,740,048.02 481,648,162.76 47.35%

19 100 5 40 205,514,341.97 193,060,787.66 6.06%

20 100 5 200 1,133,999,446.40 1,111,164,384.04 2.01%

21 100 5 400 3,306,745,183.01 2,814,327,505.75 14.89%

22 100 10 40 287,158,702.46 271,598,280.27 5.42%

23 100 10 200 1,639,351,726.43 1,287,708,484.35 21.45%

24 100 10 400 3,818,983,851.62 3,004,714,685.69 21.32%

25 100 15 40 370,038,929.95 351,072,368.73 5.13%

26 100 15 200 2,022,476,796.00 907,407,024.61 55.13%

27 100 15 400 4,523,784,327.37 2,023,016,444.49 55.28%

Average 17.45%

Table B.51: Best Upper Bound and Best Lower Bound (7)

184

Ins. |I| |J| |K| δ=0.9 δ′=0.9 TS Best Lower Bound gap

1 10 5 40 1,625,159.62 1,502,201.15 7.57%

2 10 5 200 9,566,320.01 9,565,312.05 0.01%

3 10 5 400 23,249,714.58 20,989,581.39 9.72%

4 10 10 40 1,805,876.47 1,680,293.33 6.95%

5 10 10 200 10,893,720.48 8,791,303.96 19.30%

6 10 10 400 22,078,367.96 19,323,807.46 12.48%

7 10 15 40 1,904,484.69 1,767,025.51 7.22%

8 10 15 200 9,749,816.59 9,457,201.00 3.00%

9 10 15 400 22,133,761.02 20,923,752.24 5.47%

10 50 5 40 44,064,095.37 41,364,775.31 6.13%

11 50 5 200 237,281,361.53 231,259,704.04 2.54%

12 50 5 400 689,995,487.73 589,888,224.30 14.51%

13 50 10 40 59,707,015.52 56,618,213.84 5.17%

14 50 10 200 334,953,744.58 269,842,114.96 19.44%

15 50 10 400 786,771,044.12 630,404,578.48 19.87%

16 50 15 40 73,022,207.95 69,487,950.96 4.84%

17 50 15 200 393,767,601.68 187,836,237.90 52.30%

18 50 15 400 806,832,905.01 428,862,527.00 46.85%

19 100 5 40 173,164,494.87 165,021,092.37 4.70%

20 100 5 200 972,619,503.46 948,303,595.64 2.50%

21 100 5 400 2,820,350,975.80 2,406,956,222.32 14.66%

22 100 10 40 247,253,099.96 237,548,073.09 3.93%

23 100 10 200 1,279,302,398.36 1,030,126,236.98 19.48%

24 100 10 400 3,336,964,592.96 2,632,393,839.02 21.11%

25 100 15 40 323,340,281.23 308,924,462.04 4.46%

26 100 15 200 1,777,617,262.08 805,478,263.48 54.69%

27 100 15 400 3,977,961,663.89 1,796,698,231.23 54.83%

Average 15.69%

Table B.52: Best Upper Bound and Best Lower Bound (8)

185

B.10 Computational Results for Lagrangian Relax-

ation and Tabu Search

All the acronyms for computational results for lagrangian relaxation and tabu search from

Table B.62, are as below:

Instance Ins.

Number of clients |I|

Number of potential proxies |J|

Number of objects |K|

Gap between Lagrangian Relaxation and Tabu search when δ = 0.8 and δ′ = 0.6 gap1−1

Gap between Lagrangian Relaxation and Tabu search when δ = 0.8 and δ′ = 0.7 gap1−2

Gap between Lagrangian Relaxation and Tabu search when δ = 0.8 and δ′ = 0.8 gap1−3

Gap between Lagrangian Relaxation and Tabu search when δ = 0.8 and δ′ = 0.9 gap1−4

Gap between Lagrangian Relaxation and Tabu search when δ = 0.9 and δ′ = 0.6 gap2−1

Gap between Lagrangian Relaxation and Tabu search when δ = 0.9 and δ′ = 0.7 gap2−2

Gap between Lagrangian Relaxation and Tabu search when δ = 0.9 and δ′ = 0.8 gap2−3

Gap between Lagrangian Relaxation and Tabu search when δ = 0.9 and δ′ = 0.9 gap2−4

Table B.53: List of Acronyms for Table B.62

186

Ins. |I| |J| |K| δ=0.8 and δ′=0.6 LR δ=0.8 and δ′=0.6 TS gap

1 10 5 40 2,776,396.20 3,487,950.79 20%

2 10 5 200 13,087,774.98 18,803,555.02 30%

3 10 5 400 41,312,013.26 46,363,728.72 11%

4 10 10 40 2,639,227.72 3,200,035.57 18%

5 10 10 200 15,320,976.95 21,562,280.13 29%

6 10 10 400 32,469,458.97 37,992,533.93 15%

7 10 15 40 1,883,242.80 3,311,951.19 43%

8 10 15 200 9,682,782.03 16,174,974.71 40%

9 10 15 400 20,847,716.31 36,573,750.25 43%

10 50 5 40 79,434,163.20 91,892,727.35 14%

11 50 5 200 520,430,718.38 591,621,401.61 12%

12 50 5 400 1,325,025,142.33 1,496,874,768.20 11%

13 50 10 40 88,321,056.54 115,880,267.28 24%

14 50 10 200 471,156,745.34 591,774,458.29 20%

15 50 10 400 1,153,073,595.99 1,460,589,116.77 21%

16 50 15 40 60,090,980.97 135,886,688.62 56%

17 50 15 200 314,544,047.83 706,232,388.69 55%

18 50 15 400 722,166,553.52 1,614,608,566.65 55%

19 100 5 40 339,051,850.55 426,609,675.07 21%

20 100 5 200 2,159,884,314.42 2,462,633,256.46 12%

21 100 5 400 5,450,113,895.27 6,172,465,833.53 12%

22 100 10 40 375,240,696.54 495,008,709.66 24%

23 100 10 200 2,114,801,496.82 2,692,716,281.33 21%

24 100 10 400 4,851,144,734.32 6,235,335,323.66 22%

25 100 15 40 260,800,493.12 605,309,158.41 57%

26 100 15 200 1,379,556,565.81 3,204,484,739.48 57%

27 100 15 400 3,069,414,984.16 7,153,766,416.78 57%

Average 30%

Table B.54: Lagrangian Relaxation and Tabu Search (1)

187

Ins. |I| |J| |K| δ=0.8 and δ′=0.7 LR δ=0.8 and δ′=0.7 TS gap

1 10 5 40 2,241,299.98 2,642,938.13 15%

2 10 5 200 14,964,732.98 14,965,332.07 0%

3 10 5 400 33,037,437.14 36,808,753.24 10%

4 10 10 40 2,237,181.98 2,653,641.80 16%

5 10 10 200 12,877,915.93 17,137,631.65 25%

6 10 10 400 27,711,262.91 32,013,192.56 13%

7 10 15 40 1,661,307.49 2,775,732.10 40%

8 10 15 200 8,532,722.37 13,814,155.09 38%

9 10 15 400 18,492,319.13 31,282,793.29 41%

10 50 5 40 66,125,091.61 78,717,439.44 16%

11 50 5 200 405,360,381.22 457,984,277.70 11%

12 50 5 400 1,035,377,033.13 1,162,617,226.61 11%

13 50 10 40 74,317,622.36 93,942,504.68 21%

14 50 10 200 408,629,142.63 514,550,913.12 21%

15 50 10 400 737,484,300.01 928,389,313.49 21%

16 50 15 40 50,402,625.59 112,166,187.45 55%

17 50 15 200 268,705,396.37 591,457,075.80 55%

18 50 15 400 610,276,667.28 1,353,740,000.11 55%

19 100 5 40 265,069,236.82 312,091,673.37 15%

20 100 5 200 1,678,008,058.78 1,899,742,058.39 12%

21 100 5 400 4,515,369,064.95 4,985,458,084.61 9%

22 100 10 40 310,430,599.75 398,634,567.26 22%

23 100 10 200 1,732,014,211.83 2,218,459,716.09 22%

24 100 10 400 4,058,070,901.17 5,146,698,941.43 21%

25 100 15 40 216,530,843.20 498,599,160.19 57%

26 100 15 200 1,163,787,011.00 2,679,903,711.04 57%

27 100 15 400 2,591,004,189.62 5,990,370,288.23 57%

Average 27%

Table B.55: Lagrangian Relaxation and Tabu Search (2)

188

Ins. |I| |J| |K| δ=0.8 and δ′=0.8 LR δ=0.8 and δ′=0.8 TS gap

1 10 5 40 1,895,114.59 2,170,681.31 13%

2 10 5 200 12,565,967.13 12,566,452.96 0%

3 10 5 400 27,740,275.99 30,774,811.94 10%

4 10 10 40 1,956,598.56 2,288,505.99 15%

5 10 10 200 11,175,126.63 14,354,260.98 22%

6 10 10 400 24,264,641.08 27,823,743.27 13%

7 10 15 40 1,479,421.88 2,405,788.55 39%

8 10 15 200 7,602,213.37 12,122,330.63 37%

9 10 15 400 16,664,793.76 27,480,370.12 39%

10 50 5 40 53,041,421.43 62,003,433.47 14%

11 50 5 200 332,713,190.23 374,545,176.61 11%

12 50 5 400 850,472,591.19 952,065,665.03 11%

13 50 10 40 62,352,813.61 79,209,642.42 21%

14 50 10 200 349,745,739.15 438,713,649.94 20%

15 50 10 400 819,472,471.50 1,030,150,676.72 20%

16 50 15 40 43,698,013.65 95,630,062.11 54%

17 50 15 200 233,764,241.05 509,180,111.29 54%

18 50 15 400 532,465,561.23 1,166,258,081.36 54%

19 100 5 40 211,399,583.29 247,227,343.27 14%

20 100 5 200 1,371,082,902.54 1,548,872,287.12 11%

21 100 5 400 3,483,840,003.50 3,908,570,277.61 11%

22 100 10 40 261,154,104.89 334,529,186.77 22%

23 100 10 200 1,475,495,317.38 1,887,417,597.66 22%

24 100 10 400 3,433,560,340.47 4,383,727,904.39 22%

25 100 15 40 185,922,722.82 424,351,624.71 56%

26 100 15 200 1,007,337,039.98 2,303,854,003.24 56%

27 100 15 400 2,243,495,135.00 5,154,155,172.58 56%

Average 27%

Table B.56: Lagrangian Relaxation and Tabu Search (3)

189

Ins. |I| |J| |K| δ=0.8 and δ′=0.9 LR δ=0.8 and δ′=0.9 TS gap

1 10 5 40 1,653,667.42 1,864,681.62 11%

2 10 5 200 10,909,364.04 10,909,736.54 0%

3 10 5 400 24,069,215.94 26,615,806.73 10%

4 10 10 40 1,741,309.67 2,025,836.16 14%

5 10 10 200 9,913,248.62 12,440,101.11 20%

6 10 10 400 21,685,264.30 24,724,464.60 12%

7 10 15 40 1,359,631.86 2,134,600.49 36%

8 10 15 200 6,926,169.97 10,850,153.72 36%

9 10 15 400 15,451,006.47 24,615,461.40 37%

10 50 5 40 44,888,209.02 52,163,338.32 14%

11 50 5 200 282,621,557.75 317,390,174.59 11%

12 50 5 400 721,839,974.21 807,143,301.90 11%

13 50 10 40 54,438,344.68 68,596,635.03 21%

14 50 10 200 306,265,517.54 382,707,853.20 20%

15 50 10 400 712,431,296.89 898,876,940.50 21%

16 50 15 40 38,431,865.76 83,427,178.19 54%

17 50 15 200 207,687,551.32 447,298,620.62 54%

18 50 15 400 474,425,692.45 1,024,999,734.33 54%

19 100 5 40 177,441,851.37 205,514,341.97 14%

20 100 5 200 1,161,780,218.07 1,308,784,118.83 11%

21 100 5 400 2,951,717,087.83 3,306,745,183.01 11%

22 100 10 40 225,937,476.82 288,564,398.57 22%

23 100 10 200 1,286,858,630.98 1,643,135,394.90 22%

24 100 10 400 2,986,362,562.50 3,819,193,540.98 22%

25 100 15 40 162,633,630.85 369,606,614.62 56%

26 100 15 200 888,981,996.25 2,021,023,068.94 32%

27 100 15 400 1,979,482,180.41 4,524,056,016.77 56%

Average 25%

Table B.57: Lagrangian Relaxation and Tabu Search (4)

190

Ins. |I| |J| |K| δ=0.9 and δ′=0.6 LR δ=0.9 and δ′=0.6 TS gap

1 10 5 40 2,323,210.65 2,803,391.18 17%

2 10 5 200 15,749,534.16 15,750,456.68 0%

3 10 5 400 34,926,487.98 38,768,246.42 10%

4 10 10 40 2,309,862.90 2,768,607.10 17%

5 10 10 200 13,405,208.08 18,043,239.79 26%

6 10 10 400 28,542,107.34 33,301,532.59 14%

7 10 15 40 1,704,499.49 2,890,385.33 41%

8 10 15 200 8,755,092.85 14,328,114.19 39%

9 10 15 400 19,234,461.08 32,436,176.37 41%

10 50 5 40 67,105,119.11 84,571,608.69 21%

11 50 5 200 408,013,927.59 411,915,587.11 1%

12 50 5 400 1,041,281,377.88 1,231,076,102.52 15%

13 50 10 40 77,725,986.47 98,572,309.54 21%

14 50 10 200 428,483,645.00 537,903,998.54 20%

15 50 10 400 1,001,939,273.07 1,262,077,359.69 21%

16 50 15 40 53,752,392.63 117,263,637.12 54%

17 50 15 200 285,718,499.15 616,447,813.49 54%

18 50 15 400 642,241,402.51 1,252,909,254.05 49%

19 100 5 40 266,837,378.43 334,554,085.53 20%

20 100 5 200 1,688,994,657.01 1,706,121,405.25 1%

21 100 5 400 4,279,052,131.57 5,067,645,767.65 16%

22 100 10 40 321,763,337.87 416,518,158.16 23%

23 100 10 200 1,820,297,803.19 2,314,882,490.01 21%

24 100 10 400 4,228,687,835.26 5,380,972,886.84 21%

25 100 15 40 233,314,035.11 521,990,191.75 55%

26 100 15 200 1,230,405,232.28 2,796,235,536.43 56%

27 100 15 400 2,747,609,838.06 6,246,364,753.44 56%

Average 27%

Table B.58: Lagrangian Relaxation and Tabu Search (5)

191

Ins. |I| |J| |K| δ=0.9 and δ′=0.7 LR δ=0.9 and δ′=0.7 TS gap

1 10 5 40 1,879,607.22 2,216,719.25 15%

2 10 5 200 12,816,958.26 12,817,697.99 0%

3 10 5 400 28,433,801.08 31,404,750.20 9%

4 10 10 40 1,969,729.20 2,327,468.91 15%

5 10 10 200 11,291,996.84 14,644,484.18 23%

6 10 10 400 24,540,691.02 28,277,569.73 13%

7 10 15 40 1,496,671.34 2,445,665.60 39%

8 10 15 200 7,775,096.17 12,307,132.49 37%

9 10 15 400 17,141,300.34 27,896,140.75 39%

10 50 5 40 52,163,591.31 64,298,848.55 19%

11 50 5 200 324,236,960.45 329,903,547.12 2%

12 50 5 400 826,928,616.15 974,030,012.09 15%

13 50 10 40 64,513,151.08 80,783,218.20 20%

14 50 10 200 358,807,278.00 446,921,382.09 20%

15 50 10 400 833,090,730.96 1,049,370,020.21 21%

16 50 15 40 45,189,666.97 97,418,810.58 54%

17 50 15 200 242,277,261.55 518,168,389.35 53%

18 50 15 400 552,512,055.70 1,056,945,992.84 48%

19 100 5 40 206,649,753.49 253,737,256.78 19%

20 100 5 200 1,337,262,069.27 1,361,399,348.85 2%

21 100 5 400 3,389,070,285.45 3,999,794,411.56 15%

22 100 10 40 266,978,620.99 339,600,987.79 21%

23 100 10 200 1,511,582,421.83 1,918,719,960.21 21%

24 100 10 400 3,507,709,996.04 4,466,131,499.31 21%

25 100 15 40 195,907,176.89 432,843,435.19 55%

26 100 15 200 1,046,330,098.57 2,346,657,273.65 48%

27 100 15 400 2,330,389,273.81 5,245,282,964.66 48%

Average 26%

Table B.59: Lagrangian Relaxation and Tabu Search (6)

192

Ins. |I| |J| |K| δ=0.9 and δ′=0.8 LR δ=0.9 and δ′=0.8 TS gap

1 10 5 40 1,598,200.62 1,863,248.65 14%

2 10 5 200 10,909,105.06 10,909,736.54 0%

3 10 5 400 24,192,749.98 26,615,806.73 9%

4 10 10 40 1,743,757.77 2,025,836.16 14%

5 10 10 200 9,846,166.30 12,440,101.11 21%

6 10 10 400 21,549,473.01 24,724,464.60 13%

7 10 15 40 1,349,189.09 2,134,600.49 37%

8 10 15 200 6,995,423.42 10,850,153.72 36%

9 10 15 400 15,567,178.80 24,615,461.40 37%

10 50 5 40 42,910,376.23 52,154,363.54 18%

11 50 5 200 270,004,462.95 275,744,112.60 2%

12 50 5 400 689,386,984.04 807,143,301.90 15%

13 50 10 40 55,163,436.97 68,596,635.03 20%

14 50 10 200 307,111,542.01 382,707,853.20 20%

15 50 10 400 715,253,281.15 898,876,940.50 20%

16 50 15 40 38,912,655.24 83,427,178.19 53%

17 50 15 200 211,568,195.84 447,298,620.62 53%

18 50 15 400 481,648,162.76 914,740,048.02 47%

19 100 5 40 169,401,587.30 205,514,341.97 18%

20 100 5 200 1,111,164,384.04 1,133,999,446.40 2%

21 100 5 400 2,814,327,505.75 3,306,745,183.01 15%

22 100 10 40 227,084,060.59 287,158,702.46 21%

23 100 10 200 1,287,708,484.35 1,639,351,726.43 21%

24 100 10 400 3,004,714,685.69 3,818,983,851.62 21%

25 100 15 40 168,471,801.86 370,038,929.95 54%

26 100 15 200 907,407,024.61 2,022,476,796.00 48%

27 100 15 400 2,023,016,444.49 4,523,784,327.37 55%

Average 25%

Table B.60: Lagrangian Relaxation and Tabu Search (7)

193

Ins. |I| |J| |K| δ=0.9 and δ′=0.9 LR δ=0.9 and δ′=0.9 TS gap

1 10 5 40 1,410,971.08 1,625,159.62 13%

2 10 5 200 9,565,312.05 9,566,320.01 0%

3 10 5 400 20,989,581.39 23,249,714.58 10%

4 10 10 40 1,561,187.48 1,805,876.47 14%

5 10 10 200 8,791,303.96 10,893,720.48 19%

6 10 10 400 19,323,807.46 22,078,367.96 12%

7 10 15 40 1,227,527.96 1,904,484.69 36%

8 10 15 200 6,431,931.85 9,749,816.59 34%

9 10 15 400 7,727,388.32 22,133,761.02 65%

10 50 5 40 36,570,671.32 44,064,095.37 17%

11 50 5 200 231,259,704.04 237,281,361.53 3%

12 50 5 400 589,888,224.30 689,995,487.73 15%

13 50 10 40 48,135,891.93 59,707,015.52 19%

14 50 10 200 269,842,114.96 334,953,744.58 19%

15 50 10 400 630,404,578.48 786,771,044.12 20%

16 50 15 40 34,326,185.32 73,022,207.95 53%

17 50 15 200 187,836,237.90 393,767,601.68 52%

18 50 15 400 428,862,527.00 806,832,905.01 47%

19 100 5 40 143,906,325.95 173,164,494.87 17%

20 100 5 200 948,303,595.64 972,619,503.46 3%

21 100 5 400 2,406,956,222.32 2,820,350,975.80 15%

22 100 10 40 197,429,765.25 247,253,099.96 20%

23 100 10 200 1,030,126,236.98 1,279,302,398.36 19%

24 100 10 400 2,632,393,839.02 3,336,964,592.96 21%

25 100 15 40 147,501,204.32 323,340,281.23 54%

26 100 15 200 805,478,263.48 1,777,617,262.08 55%

27 100 15 400 1,796,698,231.23 3,977,961,663.89 55%

Average 26%

Table B.61: Lagrangian Relaxation and Tabu Search (8)

194

No. |I| |J| |K| gap1−1 gap1−2 gap1−3 gap1−4 gap2−1 gap2−2 gap2−3 gap2−4

1 10 5 40 20% 15% 13% 11% 17% 15% 14% 13%

2 10 5 200 30% 0% 0% 0% 0% 0% 0% 0%

3 10 5 400 11% 10% 10% 10% 10% 9% 9% 10%

4 10 10 40 18% 16% 15% 14% 17% 15% 14% 14%

5 10 10 200 29% 25% 22% 20% 26% 23% 21% 19%

6 10 10 400 15% 13% 13% 12% 14% 13% 13% 12%

7 10 15 40 43% 40% 39% 36% 41% 39% 37% 36%

8 10 15 200 40% 38% 37% 36% 39% 37% 36% 34%

9 10 15 400 43% 41% 39% 37% 41% 39% 37% 65%

10 50 5 40 14% 16% 14% 14% 21% 19% 18% 17%

11 50 5 200 12% 11% 11% 11% 16% 15% 15% 15%

12 50 5 400 11% 11% 11% 11% 15% 15% 15% 15%

13 50 10 40 24% 21% 21% 21% 21% 20% 20% 19%

14 50 10 200 20% 21% 20% 20% 20% 20% 20% 19%

15 50 10 400 21% 21% 20% 21% 21% 21% 20% 20%

16 50 15 40 56% 55% 54% 54% 54% 54% 53% 53%

17 50 15 200 55% 55% 54% 54% 54% 53% 53% 52%

18 50 15 400 55% 55% 54% 54% 54% 53% 53% 52%

19 100 5 40 21% 15% 14% 14% 20% 19% 18% 17%

20 100 5 200 12% 12% 11% 11% 16% 16% 15% 15%

21 100 5 400 12% 9% 11% 11% 16% 15% 15% 15%

22 100 10 40 24% 22% 22% 22% 23% 21% 21% 20%

23 100 10 200 21% 22% 22% 22% 21% 21% 21% 21%

24 100 10 400 22% 21% 22% 22% 21% 21% 21% 21%

25 100 15 40 57% 57% 56% 56% 55% 55% 54% 54%

26 100 15 200 57% 57% 56% 56% 56% 55% 55% 55%

27 100 15 400 57% 57% 56% 56% 56% 56% 55% 55%

Average 29% 27% 27% 26% 28% 27% 27% 27%

Table B.62: Gaps Between Lagrangian Relaxation and Tabu Search

195

B.11 Computational Results for Lagrangian Relax-

ation and Iterated Variable Neighbourhood De-

scent

All the acronyms for computational results for lagrangian relaxation and iterated variable

neighbourhood descent from Table B.64, are as below:

Instance Ins.

Number of clients |I|

Number of potential proxies |J|

Number of objects |K|

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.8 and δ′ = 0.6 gap3−1

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.8 and δ′ = 0.7 gap3−2

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.8 and δ′ = 0.8 gap3−3

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.8 and δ′ = 0.9 gap3−4

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.9 and δ′ = 0.6 gap4−1

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.9 and δ′ = 0.7 gap4−2

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.9 and δ′ = 0.8 gap4−3

Gap between Lagrangian Relaxation and Iterated Variable Neighbourhood Descent when δ = 0.9 and δ′ = 0.9 gap4−4

Table B.63: List of Acronyms for Table B.64

196

Ins. |I| |J| |K| δ=0.8 and δ′=0.6 LR δ=0.8 and δ′=0.6 IVND gap3−1

1 10 5 40 2,776,396.20 3,488,700.29 20%

2 10 5 200 13,087,774.98 18,812,281.82 30%

3 10 5 400 41,312,013.26 46,363,728.72 11%

4 10 10 40 2,639,227.72 3,200,035.57 18%

5 10 10 200 15,320,976.95 21,562,280.13 29%

6 10 10 400 32,469,458.97 38,284,345.04 15%

7 10 15 40 1,883,242.80 3,311,951.19 43%

8 10 15 200 9,682,782.03 16,341,603.87 41%

9 10 15 400 20,847,716.31 36,373,750.25 43%

10 50 5 40 79,434,163.20 108,241,184.21 27%

11 50 5 200 520,430,718.38 591,621,401.61 12%

12 50 5 400 1,325,025,142.33 1,513,558,350.01 12%

13 50 10 40 88,321,056.54 122,907,731.27 28%

14 50 10 200 471,156,745.34 630,787,238.53 25%

15 50 10 400 1,153,073,595.99 1,460,589,116.77 21%

16 50 15 40 60,090,980.97 135,886,688.62 56%

17 50 15 200 314,544,047.83 706,232,388.69 55%

18 50 15 400 722,166,553.52 1,628,501,886.23 56%

19 100 5 40 339,051,850.55 449,043,662.47 24%

20 100 5 200 2,159,884,314.42 2,501,822,226.12 14%

21 100 5 400 5,450,113,895.27 6,194,760,935.03 12%

22 100 10 40 375,240,696.54 546,304,428.59 31%

23 100 10 200 2,114,801,496.82 2,718,049,303.38 22%

24 100 10 400 4,851,144,734.32 6,239,802,196.65 22%

25 100 15 40 260,800,493.12 661,526,208.58 61%

26 100 15 200 1,379,556,565.81 3,222,494,513.45 57%

27 100 15 400 3,069,414,984.16 7,164,172,713.18 57%

Average 31%

Table B.64: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (1)

197

Ins. |I| |J| |K| δ=0.8 and δ′=0.7 LR δ=0.8 and δ′=0.7 IVND gap3−2

1 10 5 40 2,241,299.98 2,848,004.99 21%

2 10 5 200 14,964,732.98 14,976,705.91 0%

3 10 5 400 33,037,437.14 38,768,246.42 15%

4 10 10 40 2,237,181.98 2,653,641.80 16%

5 10 10 200 12,877,915.93 17,137,631.65 25%

6 10 10 400 27,711,262.91 32,013,192.56 13%

7 10 15 40 1,661,307.49 2,775,732.10 40%

8 10 15 200 8,532,722.37 13,814,155.09 38%

9 10 15 400 18,492,319.13 31,282,793.29 41%

10 50 5 40 66,125,091.61 81,552,094.63 19%

11 50 5 200 405,360,381.22 467,609,810.54 13%

12 50 5 400 1,035,377,033.13 1,169,139,075.50 11%

13 50 10 40 74,317,622.36 95,181,967.60 22%

14 50 10 200 408,629,142.63 514,550,913.12 21%

15 50 10 400 737,484,300.01 930,458,166.41 21%

16 50 15 40 50,402,625.59 112,166,187.45 55%

17 50 15 200 268,705,396.37 591,457,057.80 55%

18 50 15 400 610,276,667.28 1,361,301,659.98 55%

19 100 5 40 265,069,236.82 358,846,720.78 26%

20 100 5 200 1,678,008,058.78 1,900,295,161.18 12%

21 100 5 400 4,515,369,064.95 4,783,194,674.55 6%

22 100 10 40 310,430,599.75 433,569,791.64 28%

23 100 10 200 1,732,014,211.83 2,218,508,059.33 22%

24 100 10 400 4,058,070,901.17 5,147,032,805.52 21%

25 100 15 40 216,530,843.20 500,767,740.62 57%

26 100 15 200 1,163,787,011.00 2,717,282,151.41 57%

27 100 15 400 2,591,004,189.62 6,017,927,423.33 57%

Average 28%

Table B.65: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (2)

198

Ins. |I| |J| |K| δ=0.8 and δ′=0.8 LR δ=0.8 and δ′=0.8 IVND gap3−3

1 10 5 40 1,895,114.59 2,171,183.88 13%

2 10 5 200 12,565,967.13 12,566,452.96 0%

3 10 5 400 27,740,275.99 30,788,051.85 10%

4 10 10 40 1,956,598.56 2,355,003.31 17%

5 10 10 200 11,175,126.63 14,483,509.45 23%

6 10 10 400 24,264,641.08 28,010,316.76 13%

7 10 15 40 1,479,421.88 2,668,109.41 45%

8 10 15 200 7,602,213.37 12,122,330.63 37%

9 10 15 400 16,664,793.76 27,645,897.75 40%

10 50 5 40 53,041,421.43 63,667,128.14 17%

11 50 5 200 332,713,190.23 374,545,176.61 11%

12 50 5 400 850,472,591.19 961,018,514.45 12%

13 50 10 40 62,352,813.61 85,361,131.25 27%

14 50 10 200 349,745,739.15 438,713,649.94 20%

15 50 10 400 819,472,471.50 1,038,924,032.23 21%

16 50 15 40 43,698,013.65 95,630,062.11 54%

17 50 15 200 233,764,241.05 510,970,312.23 54%

18 50 15 400 532,465,561.23 1,176,362,598.43 55%

19 100 5 40 211,399,583.29 255,085,220.42 17%

20 100 5 200 1,371,082,902.54 1,579,281,422.05 13%

21 100 5 400 3,483,840,003.50 3,908,570,277.61 11%

22 100 10 40 261,154,104.89 344,696,269.01 24%

23 100 10 200 1,475,495,317.38 1,891,520,328.22 22%

24 100 10 400 3,433,560,340.47 4,383,998,476.75 22%

25 100 15 40 185,922,722.82 465,790,862.79 60%

26 100 15 200 1,007,337,039.98 2,339,456,987.00 57%

27 100 15 400 2,243,495,135.00 5,161,337,562.70 57%

Average 28%

Table B.66: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (3)

199

Ins. |I| |J| |K| δ=0.8 and δ′=0.9 LR δ=0.8 and δ′=0.9 IVND gap3−4

1 10 5 40 1,653,667.42 1,865,122.73 11%

2 10 5 200 10,909,364.04 10,909,736.54 0%

3 10 5 400 24,069,215.94 26,615,806.73 10%

4 10 10 40 1,741,309.67 2,161,566.00 19%

5 10 10 200 9,913,248.62 12,536,711.89 21%

6 10 10 400 21,685,264.30 24,902,737.96 13%

7 10 15 40 1,359,631.86 2,134,600.49 36%

8 10 15 200 6,926,169.97 10,986,793.54 37%

9 10 15 400 15,451,006.47 24,615,461.40 37%

10 50 5 40 44,888,209.02 52,749,373.54 15%

11 50 5 200 282,621,557.75 317,977,666.87 11%

12 50 5 400 721,839,974.21 814,361,990.20 11%

13 50 10 40 54,438,344.68 71,292,283.13 24%

14 50 10 200 306,265,517.54 387,247,321.51 21%

15 50 10 400 712,431,296.89 898,876,940.50 21%

16 50 15 40 38,431,865.76 86,993,149.54 56%

17 50 15 200 207,687,551.32 453,349,616.04 54%

18 50 15 400 474,425,692.45 1,033,355,516.07 54%

19 100 5 40 177,441,851.37 209,298,068.14 15%

20 100 5 200 1,161,780,218.07 1,311,908,320.82 11%

21 100 5 400 2,951,717,087.83 3,306,745,183.01 11%

22 100 10 40 225,937,476.82 314,283,951.71 28%

23 100 10 200 1,286,858,630.98 1,654,098,280.39 22%

24 100 10 400 2,986,362,562.50 3,841,066,926.28 22%

25 100 15 40 162,633,630.85 373,061,921.79 56%

26 100 15 200 888,981,996.25 2,031,832,986.28 56%

27 100 15 400 1,979,482,180.41 4,530,273,946.38 56%

Average 27%

Table B.67: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (4)

200

Ins. |I| |J| |K| δ=0.9 and δ′=0.6 LR δ=0.9 and δ′=0.6 IVND gap4−1

1 10 5 40 2,323,210.65 2,805,735.38 17%

2 10 5 200 15,749,534.16 15,761,292.47 0%

3 10 5 400 34,926,487.98 38,778,802.31 10%

4 10 10 40 2,309,862.90 3,006,313.90 23%

5 10 10 200 13,405,208.08 18,043,239.79 26%

6 10 10 400 28,542,107.34 33,301,532.59 14%

7 10 15 40 1,704,499.49 3,190,525.27 47%

8 10 15 200 8,755,092.85 14,328,114.19 39%

9 10 15 400 19,234,461.08 32,436,176.37 41%

10 50 5 40 67,105,119.11 88,147,345.74 24%

11 50 5 200 408,013,927.59 492,226,984.81 17%

12 50 5 400 1,041,281,377.88 1,239,740,910.21 16%

13 50 10 40 77,725,986.47 102,201,656.07 24%

14 50 10 200 428,483,645.00 537,903,998.54 20%

15 50 10 400 1,001,939,273.07 1,272,837,004.85 21%

16 50 15 40 53,752,392.63 117,263,637.12 54%

17 50 15 200 285,718,499.15 616,447,813.49 54%

18 50 15 400 642,241,402.51 1,410,607,923.05 54%

19 100 5 40 266,837,378.43 355,568,998.37 25%

20 100 5 200 1,688,994,657.01 2,028,417,552.31 17%

21 100 5 400 4,279,052,131.57 5,080,757,003.24 16%

22 100 10 40 321,763,337.87 438,825,950.61 27%

23 100 10 200 1,820,297,803.19 2,348,583,464.96 22%

24 100 10 400 4,228,687,835.26 5,381,648,137.39 21%

25 100 15 40 233,314,035.11 561,827,133.59 58%

26 100 15 200 1,230,405,232.28 2,845,821,980.47 57%

27 100 15 400 2,747,609,838.06 6,244,174,979.88 56%

Average 30%

Table B.68: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (5)

201

Ins. |I| |J| |K| δ=0.9 and δ′=0.7 LR δ=0.9 and δ′=0.7 IVND gap4−2

1 10 5 40 1,879,607.22 2,218,809.56 15%

2 10 5 200 12,816,958.26 12,997,721.74 1%

3 10 5 400 28,433,801.08 31,404,750.20 9%

4 10 10 40 1,969,729.20 2,327,468.91 15%

5 10 10 200 11,291,996.84 14,790,885.44 24%

6 10 10 400 24,540,691.02 28,323,244.26 13%

7 10 15 40 1,496,671.34 2,445,665.60 39%

8 10 15 200 7,775,096.17 12,307,132.49 37%

9 10 15 400 17,141,300.34 28,098,824.98 39%

10 50 5 40 52,163,591.31 69,020,156.53 24%

11 50 5 200 324,236,960.45 386,184,437.94 16%

12 50 5 400 826,928,616.15 979,892,719.07 16%

13 50 10 40 64,513,151.08 80,783,218.20 20%

14 50 10 200 358,807,278.00 449,063,911.29 20%

15 50 10 400 833,090,730.96 1,049,370,020.21 21%

16 50 15 40 45,189,666.97 104,117,814.42 57%

17 50 15 200 242,277,261.55 521,857,120.34 54%

18 50 15 400 552,512,055.70 1,186,758,158.90 53%

19 100 5 40 206,649,753.49 281,664,914.85 27%

20 100 5 200 1,337,262,069.27 1,585,702,719.57 16%

21 100 5 400 3,389,070,285.45 3,999,794,411.56 15%

22 100 10 40 266,978,620.99 354,715,723.75 25%

23 100 10 200 1,511,582,421.83 1,947,380,372.04 22%

24 100 10 400 3,507,709,996.04 4,466,626,071.42 21%

25 100 15 40 195,907,176.89 440,527,676.83 56%

26 100 15 200 1,046,330,098.57 2,347,572,799.36 55%

27 100 15 400 2,330,389,273.81 5,245,727,896.80 56%

Average 28%

Table B.69: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (6)

202

Ins. |I| |J| |K| δ=0.9 and δ′=0.8 LR δ=0.9 and δ′=0.8 IVND gap4−3

1 10 5 40 1,598,200.62 1,865,122.73 14%

2 10 5 200 10,909,105.06 11,080,427.19 2%

3 10 5 400 24,192,749.98 26,615,806.73 9%

4 10 10 40 1,743,757.77 2,153,078.95 19%

5 10 10 200 9,846,166.30 12,579,687.93 22%

6 10 10 400 21,549,473.01 24,934,739.91 14%

7 10 15 40 1,349,189.09 2,134,600.49 37%

8 10 15 200 6,995,423.42 10,850,153.72 36%

9 10 15 400 15,567,178.80 24,677,161.73 37%

10 50 5 40 42,910,376.23 52,749,373.54 19%

11 50 5 200 270,004,462.95 317,792,630.06 15%

12 50 5 400 689,386,984.04 812,039,329.58 15%

13 50 10 40 55,163,436.97 69,077,315.05 20%

14 50 10 200 307,111,542.01 385,820,058.24 20%

15 50 10 400 715,253,281.15 902,448,553.04 21%

16 50 15 40 38,912,655.24 87,358,187.40 55%

17 50 15 200 211,568,195.84 448,078,598.90 53%

18 50 15 400 481,648,162.76 1,029,992,563.19 53%

19 100 5 40 169,401,587.30 224,244,948.66 24%

20 100 5 200 1,111,164,384.04 1,314,482,508.29 15%

21 100 5 400 2,814,327,505.75 3,306,745,183.01 15%

22 100 10 40 227,084,060.59 313,631,666.91 28%

23 100 10 200 1,287,708,484.35 1,643,166,701.97 22%

24 100 10 400 3,004,714,685.69 3,819,420,526.22 21%

25 100 15 40 168,471,801.86 393,976,485.47 57%

26 100 15 200 907,407,024.61 2,034,342,312.29 55%

27 100 15 400 2,023,016,444.49 4,563,625,562.52 56%

Average 28%

Table B.70: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (7)

203

Ins. |I| |J| |K| δ=0.9 and δ′=0.9 LR δ=0.9 and δ′=0.9 IVND gap4−4

1 10 5 40 1,410,971.08 1,625,073.94 13%

2 10 5 200 9,565,312.05 9,576,542.44 0%

3 10 5 400 20,989,581.39 23,210,568.48 10%

4 10 10 40 1,561,187.48 1,826,525.81 15%

5 10 10 200 8,791,303.96 10,953,596.58 20%

6 10 10 400 19,323,807.46 22,112,392.38 13%

7 10 15 40 1,227,527.96 1,968,593.76 38%

8 10 15 200 6,431,931.85 9,835,455.60 35%

9 10 15 400 7,727,388.32 22,117,443.22 65%

10 50 5 40 36,570,671.32 46,630,519.92 22%

11 50 5 200 231,259,704.04 274,052,427.01 16%

12 50 5 400 589,888,224.30 693,629,934.73 15%

13 50 10 40 48,135,891.93 61,021,354.58 21%

14 50 10 200 269,842,114.96 338,542,824.49 20%

15 50 10 400 630,404,578.48 789,462,154.58 20%

16 50 15 40 34,326,185.32 75,387,194.47 54%

17 50 15 200 187,836,237.90 393,956,813.74 52%

18 50 15 400 428,862,527.00 906,648,817.49 53%

19 100 5 40 143,906,325.95 186,614,429.88 23%

20 100 5 200 948,303,595.64 1,125,996,088.30 16%

21 100 5 400 2,406,956,222.32 2,821,058,288.88 15%

22 100 10 40 197,429,765.25 255,697,618.81 23%

23 100 10 200 1,030,126,236.98 1,295,700,510.12 20%

24 100 10 400 2,632,393,839.02 3,762,082,522.94 30%

25 100 15 40 147,501,204.32 335,035,149.70 56%

26 100 15 200 805,478,263.48 1,783,203,093.96 55%

27 100 15 400 1,796,698,231.23 3,997,216,843.13 55%

Average 29%

Table B.71: Lagrangian Relaxation and Iterated Variable Neighbourhood Descent (8)

204

No. |I| |J| |K| gap3−1 gap3−2 gap3−3 gap3−4 gap4−1 gap4−2 gap4−3 gap4−4

1 10 5 40 20% 21% 13% 11% 17% 15% 14% 13%

2 10 5 200 30% 0% 0% 0% 0% 1% 2% 0%

3 10 5 400 11% 15% 10% 10% 10% 9% 9% 10%

4 10 10 40 18% 16% 17% 19% 23% 15% 19% 15%

5 10 10 200 29% 25% 23% 21% 26% 24% 22% 20%

6 10 10 400 15% 13% 13% 13% 14% 13% 14% 13%

7 10 15 40 43% 40% 45% 36% 47% 39% 37% 38%

8 10 15 200 41% 38% 37% 37% 39% 37% 36% 35%

9 10 15 400 43% 41% 40% 37% 41% 39% 37% 65%

10 50 5 40 27% 19% 17% 15% 24% 24% 19% 22%

11 50 5 200 12% 13% 11% 11% 17% 16% 15% 16%

12 50 5 400 12% 11% 12% 11% 16% 16% 15% 15%

13 50 10 40 28% 22% 27% 24% 24% 20% 20% 21%

14 50 10 200 25% 21% 20% 21% 20% 20% 20% 20%

15 50 10 400 21% 21% 21% 21% 21% 21% 21% 20%

16 50 15 40 56% 55% 54% 56% 54% 57% 55% 54%

17 50 15 200 55% 55% 54% 54% 54% 54% 53% 52%

18 50 15 400 56% 55% 55% 54% 54% 53% 53% 53%

19 100 5 40 24% 26% 17% 15% 25% 27% 24% 23%

20 100 5 200 14% 12% 13% 11% 17% 16% 15% 16%

21 100 5 400 12% 6% 11% 11% 16% 15% 15% 15%

22 100 10 40 31% 28% 24% 28% 27% 25% 28% 23%

23 100 10 200 22% 22% 22% 22% 22% 22% 22% 20%

24 100 10 400 22% 21% 22% 22% 21% 21% 21% 30%

25 100 15 40 61% 57% 60% 56% 58% 56% 57% 56%

26 100 15 200 57% 57% 57% 56% 57% 55% 55% 55%

27 100 15 400 57% 57% 57% 56% 56% 56% 56% 55%

Average 31% 28% 28% 27% 30% 28% 28% 29%

Table B.72: Gaps between Lagrangian Relaxation and Iterated Variable Neighbourhood
Descent

205

B.12 Computational Results for Tabu Search and Lin-

ear Programming Relaxation

206

Ins. |I| |J| |K| δ′ TS LPR1 gap

1 10 5 40 0.6 3,487,950.79 2,903,233.88 17%

2 10 5 200 0.6 18,803,555.02 18,127,243.24 4%

3 10 5 400 0.6 46,363,728.72 42,824,000.00 8%

4 10 10 40 0.6 3,200,035.57 2,878,154.64 10%

5 10 10 200 0.6 21,562,280.13 15,640,349.74 27%

6 10 15 40 0.6 3,311,951.19 2,950,734.96 11%

7 10 15 200 0.6 16,174,974.71 14,537,400.00 10%

8 50 5 40 0.6 91,892,727.35 88,237,648.79 4%

9 50 10 40 0.6 115,880,267.28 104,279,448.74 10%

10 50 15 40 0.6 135,886,688.62 123,771,089.38 9%

11 100 5 40 0.6 426,609,675.07 355,955,820.86 17%

12 100 5 200 0.6 1,706,131,426.65 1,283,593,391.80 25%

13 100 5 400 0.6 6,172,465,833.53 594,387,731.40 90%

14 100 10 40 0.6 495,008,709.66 441,246,767.27 11%

15 100 10 400 0.6 6,235,335,323.66 5,124,851,741.20 18%

16 100 15 40 0.6 605,309,158.41 553,228,938.29 9%

17 10 5 40 0.7 2,642,938.13 2,329,158.43 12%

18 10 5 200 0.7 14,965,332.07 11,152,724.09 25%

19 10 5 400 0.7 36,808,753.24 27,062,428.53 26%

20 10 10 40 0.7 2,653,641.80 2,431,876.09 8%

21 10 10 200 0.7 17,137,631.65 14,131,382.80 18%

22 10 15 40 0.7 2,775,732.10 2,520,408.34 9%

23 50 5 40 0.7 78,717,439.44 68,985,162.32 12%

24 50 10 40 0.7 93,942,504.68 86,447,169.89 8%

Average 17%

Table B.73: Gaps between Tabu Search and LPR1 (δ=0.8) (1)

207

Ins. |I| |J| |K| δ′ TS LPR1 gap

25 50 15 40 0.7 112,166,187.45 103,944,079.25 7%

26 100 5 40 0.7 312,091,673.37 277,528,281.17 11%

27 100 10 40 0.7 398,634,567.26 365,028,703.75 8%

28 100 15 40 0.7 498,599,160.19 463,970,877.01 7%

29 10 5 40 0.8 2,170,681.31 1,963,197.05 10%

30 10 10 40 0.8 2,288,505.99 2,116,803.63 8%

31 10 15 40 0.8 2,405,788.55 2,209,081.07 8%

32 50 5 40 0.8 62,003,433.47 56,733,170.98 8%

33 50 10 40 0.8 79,209,642.42 73,897,865.98 7%

34 50 15 40 0.8 95,630,062.11 89,649,628.34 6%

35 100 5 40 0.8 247,227,343.27 227,618,577.83 8%

36 100 10 40 0.8 334,529,186.77 311,393,041.70 7%

37 100 15 40 0.8 424,351,624.71 399,645,101.79 6%

38 10 5 40 0.9 1,864,681.62 1,709,163.85 8%

39 10 10 40 0.9 2,025,836.16 1,882,100.15 7%

40 10 15 40 0.9 2,134,600.49 1,972,974.21 8%

41 10 15 200 0.9 10,850,153.72 10,160,597.84 6%

42 10 15 400 0.9 24,615,461.40 12,273,267.65 50%

43 50 5 40 0.9 52,163,338.32 48,250,671.65 8%

44 50 10 40 0.9 68,596,635.03 64,586,406.51 6%

45 50 15 40 0.9 83,427,178.19 78,855,030.76 5%

46 100 5 40 0.9 205,514,341.97 193,065,795.84 6%

47 100 10 40 0.9 288,564,398.57 271,599,069.84 6%

48 100 15 40 0.9 369,606,614.62 351,072,450.79 5%

Average 9%

Table B.74: Gaps between Tabu Search and LPR1 (δ=0.8) (2)

208

Ins. |I| |J| |K| δ′ TS LPR2 gap

1 10 5 40 0.6 3,487,950.79 2,903,235.57 17%

2 10 5 200 0.6 18,803,555.02 16,971,500.00 10%

3 10 5 400 0.6 46,363,728.72 45,982,115.34 1%

4 10 10 40 0.6 3,200,035.57 2,878,167.77 10%

5 10 10 200 0.6 21,562,280.13 16,094,534.97 25%

6 10 15 40 0.6 3,311,951.19 2,950,738.56 11%

7 10 15 200 0.6 16,174,974.71 14,541,900.00 10%

8 50 5 40 0.6 91,892,727.35 88,237,996.95 4%

9 50 10 40 0.6 115,880,267.28 104,279,427.29 10%

10 50 15 40 0.6 135,886,688.62 123,771,576.99 9%

11 100 5 40 0.6 426,609,675.07 355,956,347.43 17%

12 100 10 40 0.6 495,008,709.66 441,247,492.38 11%

13 100 10 200 0.6 2,692,716,281.33 2,623,414,420.40 3%

14 100 15 40 0.6 605,309,158.41 553,197,822.97 9%

15 10 5 40 0.7 2,642,938.13 2,329,168.92 12%

16 10 5 200 0.7 14,965,332.07 11,156,605.54 25%

17 10 5 400 0.7 36,808,753.24 36,532,558.88 1%

18 10 10 40 0.7 2,653,641.80 2,431,866.54 8%

19 10 10 200 0.7 17,137,631.65 15,793,114.44 8%

20 10 15 40 0.7 2,775,732.10 2,520,415.95 9%

21 50 5 40 0.7 78,717,439.44 68,985,281.48 12%

22 50 10 40 0.7 93,942,504.68 86,447,310.81 8%

23 50 15 40 0.7 112,166,187.45 103,944,492.39 7%

Average 10%

Table B.75: Gaps between Tabu Search and LPR2 (δ=0.8) (1)
209

Ins. |I| |J| |K| δ′ TS LPR2 gap

24 100 5 40 0.7 312,091,673.37 277,527,971.25 11%

25 100 10 40 0.7 398,634,567.26 365,029,144.93 8%

26 100 15 40 0.7 498,599,160.19 463,972,293.71 7%

27 10 5 40 0.8 2,170,681.31 1,963,190.13 10%

28 10 10 40 0.8 2,288,505.99 2,116,801.80 8%

29 10 15 40 0.8 2,405,788.55 2,209,083.02 8%

30 10 15 200 0.8 12,122,330.63 5,764,809.19 52%

31 50 5 40 0.8 62,003,433.47 56,733,195.94 8%

32 50 10 40 0.8 79,209,642.42 73,897,956.80 7%

33 50 15 40 0.8 95,630,062.11 89,649,946.00 6%

34 100 5 40 0.8 247,227,343.27 227,619,090.47 8%

35 100 10 40 0.8 334,529,186.77 311,394,015.64 7%

36 100 15 40 0.8 424,351,624.71 399,646,005.10 6%

37 10 5 40 0.9 1,864,681.62 1,709,160.56 8%

38 10 10 40 0.9 2,025,836.16 1,882,108.54 7%

39 10 15 40 0.9 2,134,600.49 1,972,983.86 8%

40 10 15 200 0.9 10,850,153.72 10,156,276.64 6%

41 10 15 400 0.9 24,615,461.40 12,273,267.65 50%

42 50 5 40 0.9 52,163,338.32 48,250,656.76 8%

43 50 10 40 0.9 68,596,635.03 64,586,461.72 6%

44 50 15 40 0.9 83,427,178.19 78,855,305.75 5%

45 100 5 40 0.9 205,514,341.97 193,066,214.51 6%

46 100 10 40 0.9 288,564,398.57 271,598,797.92 6%

47 100 15 40 0.9 369,606,614.62 351,072,587.18 5%

Average 11%

Table B.76: Gaps between Tabu Search and LPR2 (δ=0.8) (2)

210

Ins. |I| |J| |K| δ′ TS LPR1 gap

1 10 5 40 0.6 2,803,391.18 2,447,358.32 13%

2 10 10 40 0.6 2,768,607.10 2,528,327.39 9%

3 10 15 40 0.6 2,890,385.33 2,614,470.79 10%

4 50 5 40 0.6 84,571,608.69 72,946,713.02 14%

5 50 10 40 0.6 98,572,309.54 90,296,777.83 8%

6 50 15 40 0.6 117,263,637.12 108,272,566.82 8%

7 100 5 40 0.6 334,554,085.53 293,669,592.32 12%

8 100 10 40 0.6 416,518,158.16 381,483,522.77 8%

9 100 15 40 0.6 521,990,191.75 483,449,460.00 7%

10 10 5 40 0.7 2,216,719.25 2,001,457.31 10%

11 10 10 40 0.7 2,327,468.91 2,151,040.77 8%

12 10 15 40 0.7 2,445,665.60 2,243,228.30 8%

13 10 15 200 0.7 12,307,132.49 8,446,407.52 31%

14 50 5 40 0.7 64,298,848.55 58,013,287.41 10%

15 50 10 40 0.7 80,783,218.20 75,259,039.69 7%

16 50 15 40 0.7 97,418,810.58 91,214,412.63 6%

17 50 15 200 0.7 518,168,389.35 251,341,792.00 51%

18 100 5 40 0.7 253,737,256.78 232,836,226.90 8%

19 100 10 40 0.7 339,600,987.79 317,211,632.29 7%

20 100 15 40 0.7 432,843,435.19 406,686,628.77 6%

Average 12%

Table B.77: Gaps between Tabu Search and LPR1 (δ=0.9) (1)

211

Ins. |I| |J| |K| δ′ TS LPR1 gap

21 10 5 40 0.8 1,863,248.65 1,709,110.28 8%

22 10 10 40 0.8 2,025,836.16 1,882,100.15 7%

23 10 15 40 0.8 2,134,600.49 1,972,974.21 8%

24 10 15 200 0.8 10,850,153.72 10,160,597.84 6%

25 50 5 40 0.8 52,154,363.54 48,248,579.64 7%

26 50 10 40 0.8 68,596,635.03 64,586,078.98 6%

27 50 15 40 0.8 83,427,178.19 78,854,991.69 5%

28 100 5 40 0.8 205,514,341.97 193,060,366.81 6%

29 100 10 40 0.8 287,158,702.46 271,598,280.27 5%

30 100 15 40 0.8 370,038,929.95 351,072,232.33 5%

31 10 5 40 0.9 1,625,159.62 1,502,201.15 8%

32 10 10 40 0.9 1,805,876.47 1,680,286.16 7%

33 10 15 40 0.9 1,904,484.69 1,767,017.50 7%

34 10 15 200 0.9 9,749,816.59 9,456,647.47 3%

35 10 15 400 0.9 22,133,761.02 20,923,752.24 5%

36 50 5 40 0.9 44,064,095.37 41,364,775.31 6%

37 50 10 40 0.9 59,707,015.52 56,618,027.95 5%

38 50 15 40 0.9 73,022,207.95 69,487,950.96 5%

39 100 5 40 0.9 173,164,494.87 165,021,092.37 5%

40 100 10 40 0.9 247,253,099.96 237,548,011.38 4%

41 100 15 40 0.9 323,340,281.23 308,924,039.79 4%

Average 6%

Table B.78: Gaps between Tabu Search and LPR1 (δ=0.9) (2)

212

Ins. |I| |J| |K| δ′ TS LPR2 gap

1 10 5 40 0.6 2,803,391.18 2,447,361.92 13%

2 10 10 40 0.6 2,768,607.10 2,528,328.07 9%

3 10 15 40 0.6 2,890,385.33 2,614,475.72 10%

4 50 5 40 0.6 84,571,608.69 72,947,049.29 14%

5 50 10 40 0.6 98,572,309.54 90,297,294.59 8%

6 50 15 40 0.6 117,263,637.12 108,272,736.00 8%

7 100 5 40 0.6 334,554,085.53 293,669,499.75 12%

8 100 10 40 0.6 416,518,158.16 381,485,088.68 8%

9 100 15 40 0.6 521,990,191.75 483,451,014.29 7%

10 10 5 40 0.7 2,216,719.25 2,001,467.06 10%

11 10 10 40 0.7 2,327,468.91 2,151,039.95 8%

12 10 15 40 0.7 2,445,665.60 2,243,232.68 8%

13 10 15 200 0.7 12,307,132.49 8,595,420.63 30%

14 50 5 40 0.7 64,298,848.55 58,013,261.48 10%

15 50 10 40 0.7 80,783,218.20 75,259,050.89 7%

16 50 15 40 0.7 97,418,810.58 91,214,661.45 6%

17 50 15 200 0.7 518,168,389.35 253,679,724.00 51%

18 100 5 40 0.7 253,737,256.78 232,836,474.56 8%

19 100 10 40 0.7 339,600,987.79 317,211,749.82 7%

20 100 15 40 0.7 432,843,435.19 406,687,682.45 6%

Average 12%

Table B.79: Gaps between Tabu Search and LPR2 (δ=0.9) (1)

213

Ins. |I| |J| |K| δ′ TS LPR2 gap

21 10 5 40 0.8 1,863,248.65 1,709,106.28 8%

22 10 10 40 0.8 2,025,836.16 1,882,108.54 7%

23 10 15 40 0.8 2,134,600.49 1,972,983.86 8%

24 10 15 200 0.8 10,850,153.72 10,156,276.64 6%

25 50 5 40 0.8 52,154,363.54 48,248,566.79 7%

26 50 10 40 0.8 68,596,635.03 64,586,134.81 6%

27 50 15 40 0.8 83,427,178.19 78,855,266.66 5%

28 100 5 40 0.8 205,514,341.97 193,060,787.66 6%

29 100 10 40 0.8 287,158,702.46 271,598,007.34 5%

30 100 15 40 0.8 370,038,929.95 351,072,368.73 5%

31 10 5 40 0.9 1,625,159.62 1,502,199.84 8%

32 10 10 40 0.9 1,805,876.47 1,680,293.33 7%

33 10 15 40 0.9 1,904,484.69 1,767,025.51 7%

34 10 15 200 0.9 9,749,816.59 9,457,201.00 3%

35 10 15 400 0.9 22,133,761.02 20,920,142.27 5%

36 50 5 40 0.9 44,064,095.37 41,364,767.90 6%

37 50 10 40 0.9 59,707,015.52 56,618,213.84 5%

38 50 15 40 0.9 73,022,207.95 69,487,786.19 5%

39 100 5 40 0.9 173,164,494.87 165,021,019.60 5%

40 100 10 40 0.9 247,253,099.96 237,548,073.09 4%

41 100 15 40 0.9 323,340,281.23 308,924,462.04 4%

Average 6%

Table B.80: Gaps between Tabu Search and LPR2 (δ=0.9) (2)

214

Appendix C

Computational Results for Cache

Allocation Problem

215

C.1 Finding the Best Percentage for Capacity of Proxy

216

Linearization I

Capacity of each proxy 5%

|I| |J| |K| Integer Programming Linear Programming percentage

10 10 50 38,771.74 38,095.90 70.00%

10 10 450 2,907,556.31 2,890,297.17 72.89%

10 10 300 1,242,402.28 1,236,317.98 74.33%

10 10 150 344,012.99 340,252.50 76.00%

Capacity of each proxy 7.5%

|I| |J| |K| Integer Programming Linear Programming percentage

10 10 50 18,043.32 17,499.75 86.00%

10 10 450 1,321,291.16 1,311,675.82 86.66%

10 10 300 584,002.12 569,745.18 83.66%

10 10 150 157,153.72 154,508.83 86.00%

Capacity of each proxy 10%

|I| |J| |K| Integer Programming Linear Programming percentage

10 10 50 2,474.93 2,474.78 98.00%

10 10 450 21,911.43 21,910.30 99.77%

10 10 300 14,171.76 14,171.42 99.66%

10 10 150 7,382.20 7,381.87 99.33%

Table C.1: Test Instance Linearization I

217

Linearization II

Capacity of each proxy 5%

|I| |J| |K| Integer Programming Linear Programming percentage

10 10 50 38,771.74 38,095.90 70.00%

10 10 450 2,907,381.71 2,890,297.17 72.89%

10 10 300 1,242,457.64 1,236,317.98 74.33%

10 10 150 344,021.38 340,252.50 76.00%

Capacity of each proxy 7.5%

|I| |J| |K| Integer Programming Linear Programming percentage

10 10 50 18,043.32 17,997.54 86.00%

10 10 450 1,321,200.93 1,311,675.86 86.66%

10 10 300 584,092.28 569,745.18 83.66%

10 10 150 157,152.00 154,508.83 86.00%

Capacity of each proxy 10%

|I| |J| |K| Integer Programming Linear Programming percentage

10 10 50 2,476.99 2,474.78 98.00%

10 10 450 21,911.55 21,910.30 99.77%

10 10 300 14,172.77 14,171.42 99.66%

10 10 150 7,387.25 7,381.87 99.33%

Table C.2: Test Instance Linearization II

218

C.2 Upper Bound Computational Results

Ins. |K| Linear Programming Relaxation TS Constructive gapTS−LPc

1 50 38,096 43,644 12.71%

2 100 158,055 178,846 11.63%

3 150 340,733 459,526 25.85%

4 200 556,423 650,238 14.43%

5 250 905,593 992,878 8.79%

6 300 1,238,290 1,465,196 15.49%

7 350 1,683,293 2,038,791 17.44%

8 400 2,273,341 2,644,714 14.04%

9 450 2,891,418 4,344,814 33.45%

10 500 3,457,982 4,684,139 26.18%

11 600 5,177,858 7,712,104 32.86%

12 700 6,773,535 8,951,189 24.33%

13 800 9,031,618 12,082,230 25.25%

14 900 11,982,900 16,097,491 25.56%

15 1000 14,489,600 17,702,919 18.15%

16 2000 56,941,200 65,254,359 12.74%

17 3000 130,208,000 148,095,004 12.08%

18 4000 225,417,000 244,511,788 7.81%

19 5000 359,707,000 377,771,938 4.78%

20 6000 522,806,000 551,694,100 5.24%

21 7000 718,359,000 785,627,325 8.56%

22 8000 931,705,000 988,624,134 5.76%

23 9000 1,178,310,000 1,259,245,368 6.43%

24 10000 1,439,720,000 1,581,840,062 8.98%

Average 15.77%

Table C.3: TS with Constructive Heuristic Algorithm with 5% Capacity

219

Ins. |K| Linear Programming Relaxation TS-greedy gapTS−LPg

1 50 38,096 40,724 6.45%

2 100 158,055 163,694 3.45%

3 150 340,733 368,605 7.56%

4 200 556,423 564,541 1.44%

5 250 905,593 951,822 4.86%

6 300 1,238,290 1,265,130 2.12%

7 350 1,683,293 1,797,410 6.35%

8 400 2,273,341 2,391,741 4.95%

9 450 2,891,418 2,892,615 0.04%

10 500 3,457,982 3,781,446 8.55%

11 600 5,177,858 5,225,953 0.92%

12 700 6,773,535 6,909,715 1.97%

13 800 9,031,618 9,055,020 0.26%

14 900 11,982,900 12,087,946 0.87%

15 1000 14,489,600 14,926,525 2.93%

16 2000 56,941,200 61,226,843 7.00%

17 3000 130,208,000 140,199,245 7.13%

18 4000 225,417,000 237,510,927 5.09%

19 5000 359,707,000 361,073,306 0.38%

20 6000 522,806,000 543,783,929 3.86%

21 7000 718,359,000 756,778,071 5.08%

22 8000 931,705,000 945,343,023 1.44%

23 9000 1,178,310,000 1,215,779,646 3.08%

24 10000 1,439,720,000 1,441,070,928 0.09%

Average 3.58%

Table C.4: TS with Greedy Heuristic Algorithm with 5% Capacity

220

Ins. |K| Linear Programming Relaxation IVND Constructive gapIV ND−LPc

1 50 38,096 49,419 22.91%

2 100 158,055 240,649 34.32%

3 150 340,733 520,955 34.59%

4 200 556,423 811,716 31.45%

5 250 905,593 1,380,175 34.39%

6 300 1,238,290 1,893,057 34.59%

7 350 1,683,293 2,752,798 38.85%

8 400 2,273,341 3,617,063 37.15%

9 450 2,891,418 4,446,798 34.98%

10 500 3,457,982 4,717,867 26.70%

11 600 5,177,858 8,060,392 35.76%

12 700 6,773,535 9,413,297 28.04%

13 800 9,031,618 12,171,196 25.80%

14 900 11,982,900 16,177,814 25.93%

15 1000 14,489,600 18,165,041 20.23%

16 2000 56,941,200 67,525,114 15.67%

17 3000 130,208,000 151,382,975 13.99%

18 4000 225,417,000 250,579,440 10.04%

19 5000 359,707,000 383,192,970 6.13%

20 6000 522,806,000 559,004,873 6.48%

21 7000 718,359,000 791,895,991 9.29%

22 8000 931,705,000 1,001,647,860 6.98%

23 9000 1,178,310,000 1,269,730,041 7.20%

24 10000 1,439,720,000 1,593,187,654 9.63%

Average 22.96%

Table C.5: IVND with Constructive Heuristic Algorithm with 5% Capacity

221

Ins. |K| Linear Programming Relaxation IVND-greedy gapIV ND−LPg

1 50 38,096 40,825 6.69%

2 100 158,055 166,750 5.21%

3 150 340,733 369,078 7.68%

4 200 556,423 567,834 2.01%

5 250 905,593 953,484 5.02%

6 300 1,238,290 1,267,972 2.34%

7 350 1,683,293 1,798,682 6.42%

8 400 2,273,341 2,394,013 5.04%

9 450 2,891,418 2,894,838 0.12%

10 500 3,457,982 3,801,256 9.03%

11 600 5,177,858 5,227,211 0.94%

12 700 6,773,535 6,928,272 2.23%

13 800 9,031,618 9,708,216 6.97%

14 900 11,982,900 12,088,859 0.88%

15 1000 14,489,600 15,776,935 8.16%

16 2000 56,941,200 63,350,259 10.12%

17 3000 130,208,000 143,860,052 9.49%

18 4000 225,417,000 239,916,953 6.04%

19 5000 359,707,000 362,596,004 0.80%

20 6000 522,806,000 553,803,954 5.60%

21 7000 718,359,000 764,748,683 6.07%

22 8000 931,705,000 1,024,988,416 9.10%

23 9000 1,178,310,000 1,219,457,484 3.37%

24 10000 1,439,720,000 1,442,065,979 0.16%

Average 4.98%

Table C.6: IVND with Greedy Algorithm with 5% Capacity

222

Ins. |K| TS Constructive IVND Constructive gapc

1 50 43,644 49,419 11.69%

2 100 178,846 240,649 25.68%

3 150 459,526 520,955 11.79%

4 200 650,238 811,716 19.89%

5 250 992,878 1,380,175 28.06%

6 300 1,465,196 1,893,057 22.60%

7 350 2,038,791 2,752,798 25.94%

8 400 2,644,714 3,617,063 26.88%

9 450 4,344,814 4,446,798 2.29%

10 500 4,684,139 4,717,867 0.71%

11 600 7,712,104 8,060,392 4.32%

12 700 8,951,189 9,413,297 4.91%

13 800 12,082,230 12,171,196 0.73%

14 900 16,097,491 16,177,814 0.50%

15 1000 17,702,919 18,165,041 2.54%

16 2000 65,254,359 67,525,114 3.36%

17 3000 148,095,004 151,382,975 2.17%

18 4000 244,511,788 250,579,440 2.42%

19 5000 377,771,938 383,192,970 1.41%

20 6000 551,694,100 559,004,873 1.31%

21 7000 785,627,325 791,895,991 0.79%

22 8000 988,624,134 1,001,647,860 1.30%

23 9000 1,259,245,368 1,269,730,041 0.83%

24 10000 1,581,840,062 1,593,187,654 0.71%

Average 8.45%

Table C.7: Compare TS and IVND with Constructive Heuristic Algorithm with 5% Ca-
pacity

223

Ins. |K| TS-greedy IVND-greedy gapg

1 50 40,724 40,825 0.25%

2 100 163,694 166,750 1.83%

3 150 368,605 369,078 0.13%

4 200 564,541 567,834 0.58%

5 250 951,822 953,484 0.17%

6 300 1,265,130 1,267,972 0.22%

7 350 1,797,410 1,798,682 0.07%

8 400 2,391,741 2,394,013 0.09%

9 450 2,892,615 2,894,838 0.08%

10 500 3,781,446 3,801,256 0.52%

11 600 5,225,953 5,227,211 0.02%

12 700 6,909,715 6,928,272 0.27%

13 800 9,055,020 9,708,216 6.73%

14 900 12,087,946 12,088,859 0.01%

15 1000 14,926,525 15,776,935 5.39%

16 2000 61,226,843 63,350,259 3.35%

17 3000 140,199,245 143,860,052 2.54%

18 4000 237,510,927 239,916,953 1.00%

19 5000 361,073,306 362,596,004 0.42%

20 6000 543,783,929 553,803,954 1.81%

21 7000 756,778,071 764,748,683 1.04%

22 8000 945,343,023 1,024,988,416 7.77%

23 9000 1,215,779,646 1,219,457,484 0.30%

24 10000 1,441,070,928 1,442,065,979 0.07%

Average 1.44%

Table C.8: Compare TS and IVND with Greedy Algorithm with 5% Capacity

224

Ins. |K| Linear Programming Relaxation TS Constructive gapTS−LPc

1 50 18,000 17,956 -0.25%

2 100 71,788 76,497 6.16%

3 150 154,663 158,515 2.43%

4 200 254,029 274,467 7.45%

5 250 407,821 427,473 4.60%

6 300 571,331 594,223 3.85%

7 350 757,950 817,902 7.33%

8 400 1,042,998 1,054,989 1.14%

9 450 1,311,728 1,358,097 3.41%

10 500 1,557,948 1,748,727 10.91%

11 600 2,381,839 2,743,350 13.18%

12 700 3,084,146 3,979,796 22.50%

13 800 4,121,541 5,398,990 23.66%

14 900 5,495,972 6,901,776 20.37%

15 1000 6,632,839 8,025,195 17.35%

16 2000 25,776,200 29,236,425 11.84%

17 3000 58,963,000 65,023,633 9.32%

18 4000 103,135,000 118,034,118 12.62%

19 5000 164,904,000 186,867,741 11.75%

20 6000 238,316,000 260,911,861 8.66%

21 7000 328,094,000 346,376,990 5.28%

22 8000 425,089,000 448,797,071 5.28%

23 9000 537,960,000 556,158,640 3.27%

24 10000 661,782,000 675,495,203 2.03%

Average 8.92%

Table C.9: TS with Constructive Heuristic Algorithm with 7.5% Capacity

225

Ins. |K| Linear Programming Relaxation TS-greedy gapTS−LPg

1 50 18,000 18,669 3.58%

2 100 71,788 75,817 5.31%

3 150 154,663 157,596 1.86%

4 200 254,029 261,559 2.88%

5 250 407,821 421,433 3.23%

6 300 571,331 583,024 2.01%

7 350 757,950 793,924 4.53%

8 400 1,042,998 1,046,623 0.35%

9 450 1,311,728 1,327,826 1.21%

10 500 1,557,948 1,649,974 5.58%

11 600 2,381,839 2,453,517 2.92%

12 700 3,084,146 3,281,114 6.00%

13 800 4,121,541 4,489,571 8.20%

14 900 5,495,972 5,756,414 4.52%

15 1000 6,632,839 7,089,520 6.44%

16 2000 25,776,200 28,259,000 8.79%

17 3000 58,963,000 63,744,932 7.50%

18 4000 103,135,000 109,890,154 6.15%

19 5000 164,904,000 175,354,922 5.96%

20 6000 238,316,000 249,786,000 4.59%

21 7000 328,094,000 341,028,260 3.79%

22 8000 425,089,000 437,136,449 2.76%

23 9000 537,960,000 548,664,145 1.95%

24 10000 661,782,000 671,973,632 1.52%

Average 4.23%

Table C.10: TS with Greedy Algorithm with 7.5% Capacity

226

Ins. |K| Linear Programming Relaxation IVND constructive gapTS−LPc

1 50 17,500 19,333 9.48%

2 100 71,609 91,928 22.10%

3 150 154,509 190,783 19.01%

4 200 253,639 386,563 34.39%

5 250 407,046 582,077 30.07%

6 300 569,745 941,421 39.48%

7 350 757,222 1,119,051 32.33%

8 400 1,041,283 1,309,056 20.46%

9 450 1,311,676 1,659,574 20.96%

10 500 1,557,813 2,321,308 32.89%

11 600 2,379,367 3,795,248 37.31%

12 700 3,082,626 4,430,040 30.42%

13 800 4,120,777 5,746,803 28.29%

14 900 5,492,808 7,302,031 24.78%

15 1000 6,630,400 8,125,195 18.40%

16 2000 25,767,054 31,011,325 16.91%

17 3000 58,958,130 72,746,425 18.95%

18 4000 103,117,562 118,730,780 13.15%

19 5000 164,884,378 190,677,280 13.53%

20 6000 238,314,949 273,053,763 12.72%

21 7000 328,064,783 358,627,547 8.52%

22 8000 425,086,808 454,645,462 6.50%

23 9000 537,934,360 558,616,579 3.70%

24 10000 661,726,319 686,542,164 3.61%

Average 20.75%

Table C.11: IVND with Constructive Heuristic Algorithm with 7.5% Capacity

227

Ins. |K| Linear Programming Relaxation IVND-greedy gapTS−LPg

1 50 17,500 18,448 5.14%

2 100 71,609 87,117 17.80%

3 150 154,509 184,031 16.04%

4 200 253,639 333,914 24.04%

5 250 407,046 494,197 17.63%

6 300 569,745 804,327 29.17%

7 350 757,222 942,349 19.65%

8 400 1,041,283 1,189,945 12.49%

9 450 1,311,676 1,476,589 11.17%

10 500 1,557,813 2,021,924 22.95%

11 600 2,379,367 3,087,908 22.95%

12 700 3,082,626 4,606,013 33.07%

13 800 4,120,777 4,836,920 14.81%

14 900 5,492,808 6,149,825 10.68%

15 1000 6,630,400 7,489,792 11.47%

16 2000 25,767,054 29,762,331 13.42%

17 3000 58,958,130 66,811,633 11.75%

18 4000 103,117,562 109,191,225 5.56%

19 5000 164,884,378 179,414,817 8.10%

20 6000 238,314,949 261,166,489 8.75%

21 7000 328,064,783 350,404,626 6.38%

22 8000 425,086,808 446,575,523 4.81%

23 9000 537,934,360 555,471,631 3.16%

24 10000 661,726,319 678,892,533 2.53%

Average 13.90%

Table C.12: IVND with Greedy Algorithm with 7.5% Capacity

228

Ins. |K| TS Constructive IVND constructive gapc

1 50 17,956 19,333 7.12%

2 100 76,497 91,928 16.79%

3 150 158,515 190,783 16.91%

4 200 274,467 386,563 29.00%

5 250 427,473 582,077 26.56%

6 300 594,223 941,421 36.88%

7 350 817,902 1,119,051 26.91%

8 400 1,054,989 1,309,056 19.41%

9 450 1,358,097 1,659,574 18.17%

10 500 1,748,727 2,321,308 24.67%

11 600 2,743,350 3,795,248 27.72%

12 700 3,979,796 4,430,040 10.16%

13 800 5,398,990 5,746,803 6.05%

14 900 6,901,776 7,302,031 5.48%

15 1000 8,025,195 8,125,195 1.23%

16 2000 29,236,425 31,011,325 5.72%

17 3000 65,023,633 72,746,425 10.62%

18 4000 118,034,118 118,730,780 0.59%

19 5000 186,867,741 190,677,280 2.00%

20 6000 260,911,861 273,053,763 4.45%

21 7000 346,376,990 358,627,547 3.42%

22 8000 448,797,071 454,645,462 1.29%

23 9000 556,158,640 558,616,579 0.44%

24 10000 675,495,203 686,542,164 1.61%

Average 12.63%

Table C.13: Compare TS and IVND with Constructive Heuristic Algorithm with 7.5%
Capacity

229

Ins. |K| TS-greedy IVND-greedy gapg

1 50 18,669 18,448 -1.20%

2 100 75,817 87,117 12.97%

3 150 157,596 184,031 14.36%

4 200 261,559 333,914 21.67%

5 250 421,433 494,197 14.72%

6 300 583,024 804,327 27.51%

7 350 793,924 942,349 15.75%

8 400 1,046,623 1,189,945 12.04%

9 450 1,327,826 1,476,589 10.07%

10 500 1,649,974 2,021,924 18.40%

11 600 2,453,517 3,087,908 20.54%

12 700 3,281,114 4,606,013 28.76%

13 800 4,489,571 4,836,920 7.18%

14 900 5,756,414 6,149,825 6.40%

15 1000 7,089,520 7,489,792 5.34%

16 2000 28,259,000 29,762,331 5.05%

17 3000 63,744,932 66,811,633 4.59%

18 4000 109,890,154 109,191,225 -0.64%

19 5000 175,354,922 179,414,817 2.26%

20 6000 249,786,000 261,166,489 4.36%

21 7000 341,028,260 350,404,626 2.68%

22 8000 437,136,449 446,575,523 2.11%

23 9000 548,664,145 555,471,631 1.23%

24 10000 671,973,632 678,892,533 1.02%

Average 9.88%

Table C.14: Compare TS and IVND with Greedy Algorithm with 7.5% Capacity

230

Bibliography

W. Adams and H. Sherali. Linearization strategies for a class of zero-one mixed integer

programming problems. Operations Research, 38(2):217–226, 1990.

J.M. Almeida, D.L. Eager, M.K. Vernon, and S.J. Wright. Minimizing delivery cost in

scalable streaming content distribution systems. IEEE Transactions on Multimedia, 6

(2):356–365, 2004.

I.D. Baev and R. Rajaraman. Approximation algorithms for data placement in arbitrary

networks. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete al-

gorithms, pages 661–670. Society for Industrial and Applied Mathematics Philadelphia,

PA, USA, 2001.

B. Bailey and E. Schaffer. Acceptable computer response times. UI Design Update

Newsletter, 2001.

S. Bakiras and T. Loukopoulos. Combining replica placement and caching techniques in

content distribution networks. Computer Communications, 28(9):1062–1073, 2005.

A. Barbir, B. Cain, R. Nair, and O. Spatscheck. Known content network (cn) request-

routing mechanisms. Internet Engineering Task Force RFC, 3568, 2003.

T. Bektaş, O. Oguz, and I. Ouveysi. Designing cost-effective content distribution networks.

Computers and Operations Research, 34(8):2436–2449, 2007.

T. Bektaş, J.F. Cordeau, E. Erkut, and G. Laporte. Exact algorithms for the joint object

placement and request routing problem in content distribution networks. Computers

and Operations Research, 35(12):3860–3884, 2008.

231

T. Bektaş, M. Chouman, and T.G. Crainic. Lagrangean-based decomposition algorithms

for multicommodity network design problems with penalized constraints. Networks, 55

(3):171–180, 2009.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and con-

ceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003.

E.K. Burke and G. Kendall. Search methodologies: introductory tutorials in optimization

and decision support techniques. Springer, 2005.

R. Buyya, M. Pathan, and A. Vakali. Content delivery networks, volume 9. Springer,

2008.

CH. Chang. An efficient linearization approach for mixed-integer problems. European

Journal of Operational Research, 123(3):652–659, 2000.

CH. Chang and CH. Chang. A linearization method for mixed 0–1 polynomial programs.

Computers & Operations Research, 27(10):1005–1016, 2000.

J. Chen, X. Sun, and H. Guo. An efficient algorithm for multi-dimensional nonlinear

knapsack problems. Journal of Shanghai University (English Edition), 10(5):393–398,

2006.

I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Computer

Networks, 40(2):205–218, 2002.

Edward G. Coffman J., M.R. Garey, and D.S. Johnson. Approximation algorithms for

bin-packingan updated survey. In Algorithm design for computer system design, pages

49–106. Springer, 1984.

S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third

annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

R.C. Coutinho, L. Drummond, and Y. Frota. A distributed transportation simplex applied

to a content distribution network problem. arXiv preprint arXiv:1210.6384, 2012.

232

J.K. Deane, T.R. Rakes, and A. Agarwal. Designing content distribution networks for

optimal cost and performance. Information Technology and Management, 13(1):1–15,

2012.

M. Drwal and J. Jozefczyk. Decomposition algorithms for data placement problem based

on lagrangian relaxation and randomized rounding. Annals of Operations Research,

pages 1–17, 2013.

O. Ercetin. Market-based resource allocation for content delivery in the internet. IEEE

Journal on Selected Areas in Communications, 2002.

G. Erdoğan. The orienteering problem with variable profits. Networks, volume 61(1):

104–116, 2012.

G. Erdoğan, J.F. Cordeau, and G. Laporte. The attractive traveling salesman problem.

European Journal of Operational Research, 203(1):59–69, 2010.

M.L. Fisher. The Lagrangian relaxation method for solving integer programming prob-

lems. Management science, pages 1861–1871, 2004.

M.R. Garey and D.S. Johnson. Computers and intractability, volume 29. wh freeman,

2002a.

M.R. Garey and D.S. Johnson. Computers and intractability, volume 29. wh freeman,

2002b.

B. Gavish. Topological design of telecommunication networks-local access design methods.

Annals of Operations Research, 33(1):17–71, 1991.

M. Gendreau and J.Y. Potvin. Handbook of metaheuristics, volume 2. Springer, 2010.

A. Geoffrion. Lagrangean relaxation for integer programming. Springer, 1974.

V.R. Ghezavati and M. Saidi-Mehrabad. An efficient linearization technique for mixed

0ā1 polynomial problem. Journal of Computational and Applied Mathematics, 235(6):

1730–1738, 2011.

233

F. Glover. Future paths for integer programming and links to artificial intelligence. Com-

puters & Operations Research, 13(5):533–549, 1986.

F. Glover and G.A. Kochenberger. Handbook of metaheuristics. Springer, 2003.

F. Glover and M. Laguna. Tabu search. Springer, 1999.

F. Glover and E. Woolsey. Further reduction of zero-one polynomial programming prob-

lems to zero-one linear programming problems. Operations Research, 21(1):156–161,

1973.

F. Glover and E. Woolsey. Technical noteconverting the 0-1 polynomial programming

problem to a 0-1 linear program. Operations Research, 22(1):180–182, 1974.

M. Held, Ph. Wolfe, and H.P. Crowder. Validation of subgradient optimization. Mathe-

matical programming, 6(1):62–88, 1974.

A. Hertz and M. Mittaz. A variable neighborhood descent algorithm for the undirected

capacitated arc routing problem. Transportation science, 35(4):425–434, 2001.

K. Hosanagar, R. Krishnan, J. Chuang, and V. Choudhary. Pricing and resource allocation

in caching services with multiple levels of quality of service. Management Science, 51

(12):1844–1859, 2005.

B. Hu and G. Raidl. Variable neighborhood descent with self-adaptive neighborhood-

ordering. In Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-

Level Metaheuristics. Citeseer, 2006.

C. Huang and T. Abdelzaher. Bounded-latency content distribution feasibility and eval-

uation. Computers, IEEE Transactions on, 54(11):1422–1437, 2005.

Al. Imtiaz, Md . Hossain, et al. Distributed cache management architecture: To reduce the

internet traffic by integrating browser and proxy caches. In Electrical Engineering and

Information & Communication Technology (ICEEICT), 2014 International Conference

on, pages 1–4. IEEE, 2014.

234

H. Jabraili, S. Yousefi, B. Boukani, and M.B. Rad. Replication based on objects iteration

frequency and load using a genetic algorithm under a content distribution network.

In Electrical Engineering (ICEE), 2013 21st Iranian Conference on, pages 1–6. IEEE,

2013.

X. Jia, D. Li, X. Hu, and D.Z. Du. Optimal placement of web proxies for replicated web

servers in the internet. The Computer Journal, 44(5):329–339, 2001.

J. Kangasharju, J. Roberts, and K.W. Ross. Object replication strategies in content

distribution networks. Computer Communications, 25(4):376–383, 2002.

R.M. Karp. Reducibility among combinatorial problems. Springer, 1972.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004a.

H. Kellerer, U. Pferschy, and D. Pisinger. Basic algorithmic concepts. In Knapsack

Problems, pages 15–42. Springer, 2004b.

O. Kettani and M. Oral. Equivalent formulations of nonlinear integer problems for efficient

optimization. Management Science, 36(1):115–119, 1990.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.

science, 220(4598):671, 1983.

R.E. Korf. A new algorithm for optimal bin packing. In AAAI/IAAI, pages 731–736,

2002.

P. Krishnan, D. Raz, and Y. Shavitt. The cache location problem. IEEE/ACM Transac-

tions on Networking (TON), 8(5):568–582, 2000.

A.H. Land and A.G. Doig. An automatic method of solving discrete programming prob-

lems. Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. Joint object placement and node

dimensioning for internet content distribution. Information Processing Letters, 89(6):

273–279, 2004.

235

N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. On the optimization of storage ca-

pacity allocation for content distribution. Computer Networks, 47(3):409–428, 2005.

E.L. Lawler and D.E. Wood. Branch-and-bound methods: A survey. Operations research,

14(4):699–719, 1966.

B. Li, M.J. Golin, G.F. Italiano, X. Deng, and K. Sohraby. On the optimal placement

of web proxies in the internet. In IEEE INFOCOM’99. Eighteenth Annual Joint Con-

ference of the IEEE Computer and Communications Societies. Proceedings, volume 3,

1999.

D. Li, X.L. Sun, J. Wang, and Ken I.M. McKinnon. Convergent lagrangian and do-

main cut method for nonlinear knapsack problems. Computational Optimization and

Applications, 42(1):67–104, 2009.

H.L. Li. Global optimization for mixed 0-1 programs with convex or separable continuous

functions. Journal of the Operational Research Society, pages 1068–1076, 1994.

H.L. Li and Ch. Chang. An approximate approach of global optimization for polynomial

programming problems. European Journal of Operational Research, 107(3):625–632,

1998.

H.R. Lourenço, O.C. Martin, and T. Stützle. Iterated local search. Springer, 2003.

H. Luss. Optimal content distribution in video-on-demand tree networks. Systems, Man

and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 40(1):68–75,

2010.

Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer imple-

mentations. John Wiley & Sons, Inc., 1990.

N. Mladenovic and P. Hansen. Variable neighborhood search. Computers & Operations

Research, 24(11):1097–1100, 1997.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations

Research, 24(11):1097–1100, 1997.

236

V. Mookerjee and Y. Tan. Analysis of a least recently used cache management policy for

web browsers. Operations Research, 50(2):345–357, 2002.

F.F.H. Nah. A study on tolerable waiting time: how long are web users willing to wait?

Behaviour & Information Technology, 23(3):153–163, 2004.

A. Nedić. Lagrangian optimization methods for nonlinear programming. Wiley Encyclo-

pedia of Operations Research and Management Science, 2011.

T. Neves, L.S. Ochi, and Cé. Albuquerque. A new hybrid heuristic for replica placement

and request distribution in content distribution networks. Optimization Letters, pages

1–16, 2014.

T.A. Neves, L. Drummond, L.S. Ochi, C. Albuquerque, and E. Uchoa. Solving replica

placement and request distribution in content distribution networks. Electronic Notes

in Discrete Mathematics, 36:89–96, 2010.

I.H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations

Research, 63(5):511–623, 1996.

Susan Hesse Owen and Mark S Daskin. Strategic facility location: A review. European

Journal of Operational Research, 111(3):423–447, 1998.

M. Pathan, R. Buyya, and A. Vakali. Content delivery networks: State of the art, insights,

and imperatives. Content Delivery Networks, pages 3–32, 2008.

G. Peng. Cdn: Content distribution network. arXiv preprint cs/0411069, 2004.

G. Polya. How to solve it: A new aspect of mathematical method. Princeton University

Press, 2008.

L. Qiu, V.N. Padmanabhan, and G.M. Voelker. On the placement of web server replicas.

In IEEE INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings, volume 3, 2001.

237

R. Ruiz and B. Naderi. Variable neighborhood descent methods for the distributed permu-

tation flowshop problem. In Multidisciplinary International Conference on Scheduling:

Theory and Applications, 2009.

S. Salhi. Defining tabu list size and aspiration criterion within tabu search methods.

Computers & Operations Research, 29(1):67–86, 2002.

E. Sandgren. Nonlinear integer and discrete programming in mechanical design optimiza-

tion. Journal of Mechanical Design, 112:223, 1990.

P. Selvidge. How long is too long to wait for a website to load. Usability news, 1(2), 1999.

G. Sen, M. Krishnamoorthy, N. Rangaraj, and V. Narayanan. Exact approaches for static

data segment allocation problem in an information network. Computers & Operations

Research, 2014.

H.D. Sherali and C.H. Tuncbilek. A global optimization algorithm for polynomial pro-

gramming problems using a reformulation-linearization technique. Journal of Global

Optimization, 2(1):101–112, 1992.

K. Sörensen. Metaheuristicsthe metaphor exposed. International Transactions in Opera-

tional Research, 2013.

J. Sun, S. Gao, W. Yang, and Z. Jiang. Heuristic replica placement algorithms in content

distribution networks. Journal of networks, 6(3):416–423, 2011.

H.A. Taha. A balasian-based algorithm for zero-one polynomial programming. Manage-

ment Science, 18(6):B–328, 1972.

M. Tawarmalani, K. Kannan, and P. De. Allocating Objects in a Network of Caches:

Centralized and Decentralized Analyses. Management Science, 55(1):132–147, 2009.

H. Thomas and D. VanderMeer. World Wide Wait: a study of Internet scalability and

cache-based approaches to alleviate it. Management Science, pages 1425–1444, 2003.

C.A. Tovey. Tutorial on computational complexity. Interfaces, pages 30–61, 2002.

238

L.J. Watters. Reduction of integer polynomial programming problems to zero-one linear

programming problems. Operations Research, 15(6):1171–1174, 1967.

G.J. Woeginger. Monge strikes again: optimal placement of web proxies in the internet.

Operations Research Letters, 27(3):93–96, 2000.

S. Wong. Web: how web cache proxies do and don’t save on internet costs. Sys Admin,

11(2):34–38, 2002.

J. Xu, B. Li, and D.L. Lee. Placement problems for transparent data replication proxy

services. IEEE Journal on Selected Areas in Communications, 20(7):1383–1398, 2002.

Z. Xuanping, W. Weidong, T. Xiaopeng, and Z. Yonghu. Data Replication at Web Proxies

in Content Distribution Network, volume 2642 of Lecture Notes in Computer Science,

2003.

M. Yang and Z. Fei. A model for replica placement in content distribution networks

for multimedia applications. In Proceedings of the IEEE International Conference on

Communications, 2003.

Zona. Zona market bulletin, April 2001. URL http://www.keynote.com/downloads/

Zona_Need_For_Speed.pdf.

239

http://www.keynote.com/downloads/Zona_Need_For_Speed.pdf
http://www.keynote.com/downloads/Zona_Need_For_Speed.pdf

