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Abstract Multiple frame surveys are commonly used for a variety of reasons, in-
cluding correcting for frame undercoverage, increasing the precision of estimators
of population parameters for groups of interest, targeting rare populations and re-
ducing survey costs. Several approximately design unbiased estimators have been
proposed for inference from multiple frame surveys. [15] generalized most of the ex-
isting estimators as a class of Generalized Multiplicity-Adjusted Horvitz-Thompson
Estimators. We develop an Empirical Likelihood approach to the Multiplicity-
adjusted estimator. The proposed estimator allows for several multiplicity adjust-
ments. It can handle auxiliary information and can be applied to a variety of pa-
rameters of interest expressed as unique solutions to estimating equations. Under
certain sampling designs, Wilks-type confidence intervals [16] can be calculated
without variance estimates.

Key words: dual frame surveys, estimating equations, design based inference, mul-
tiplicity adjusted estimator

1 Introduction

Using more than one sampling frame may improve the coverage of the target popu-
lation, increase the precision of estimators or reduce sampling cost, especially when
a single frame containing all population units is not available or expensive to sam-
ple from. For instance, mobile phone frames are increasingly used together with
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landlines in CATI research (e.g. [2]) in order to increase the coverage in surveys.
Multiple frames are also used to oversample rare populations [6]. Inference from
multiple frame surveys have attracted a lot of attention and several multiple frame
estimators are available (see [10, 9, 15, 1] for a review).

[15] showed how most of the existing multiple frame estimators can be expressed
in the form of the Generalized Multiplicity Adjusted Horwitz-Thompson (GMHT)
estimator [11]. The idea of multiplicity estimation consists of pooling all the units
selected from all the frames into one sample and finding adjustment factors which
multiply the design weights in order to account for increased sampling probability
of units which appear in more than one sampling frame. This approach can handle
inference from multiple frame surveys. It can also be applied to other sampling de-
signs. For example, the Generalized Weight Share estimator used to make inference
from indirect sampling surveys [7] can be expressed as a GMHT estimator [15].

While there exist various parametric methods of estimation under multiple frame
designs, design based non-parametric alternatives are not so common. Among those
there is the Pseudo Empirical Likelihood approach [14]. We propose an Empirical
Likelihood method which adopts the flexible multiplicity approach and can easily
handle additional constrains such as benchmarking. Empirical Likelihood is partic-
ularly well suited for estimation of parameters which have a skewed distribution, as
no assumptions about normality of the parameter of interest are made. It gives data-
driven, range-preserving asymmetric confidence intervals which can be calculated
without variance estimates. We follow the design based approach where sampling
is the only source of randomness and the parameters are fixed quantities [12].

2 Empirical likelihood approach

Consider T sampling frames Qt , t >= 2 which together cover the entire population
U . T samples (s1,s2, ...sT ) of sizes (n1,n2, ...nT ) respectively, are selected indepen-
dently, where st denotes the sample selected from frame Qt . We assume that the
units are selected with-replacement with unequal probabilities ρt;i, e.g. [5]. Let

πt;i = ntρt;i· (1)

Note that the sampling frames usually overlap. The extent of the overlap may be
unknown.

Let s of size n = ∑
T
t=1 nt be the collection of labels of all the units selected in all

the T samples. If a unit is selected k times, its label appears k times in s.
Suppose that the values of two variables y and x are collected for every unit

in the samples s1,s2, ...,sT . The variable y is the variable of interest. The vector x
contains auxiliary variables for which the population level parameter ϑϑϑU is known.
The parameter ϑϑϑU is defined as the vector of the unique solutions of the population
estimating equation:
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∑
i∈U

fi(xi,ϑϑϑU ) = 0· (2)

Let κt;i be the frame inclusion indicator, which is equal to 1 if the frame Qt
contains the i-th unit and to 0 otherwise. We assume that for every sampled unit i,
the value of the multiplicity-adjusted inclusion probability pi,

pi = πt;iα
−1
t;i (3)

is known, where αt;i are the multiplicity adjustment factors and are such that, for all
i ∈ s,[15]

T

∑
t=1

κt;iαt;i = 1· (4)

The target parameter θθθU is the unique solution of the population estimating equa-
tion

∑
i∈U

gi(vi,θθθU ) = 0, (5)

where gi(vi,θθθU ) is a defined function of θθθU and vi, which is a subset of {x,y}.
Consider the following joint empirical log-likelihood function:

`(m) =
T

∑
t=1

∑
i∈st

log(mi)· (6)

Let θθθ be a vector in the parameter space of θθθU . Consider the following set of
constraints:

1. Unknown parameter constraint:

T

∑
t=1

∑
i∈st

migi(vi,θθθ) = 0. (7)

2. Sample size constraint:

∑
i∈st

mi pi = nt , t = 1,2, ...,T. (8)

The sample size constraint can be extended to allow for stratification using the
method proposed by [3]. A separate constraint on each of the stratum sample
sizes is then used. The sampling frames can be stratified differently.

3. Known parameter constraint: [13, 4, 8]

T

∑
t=1

∑
i∈st

mifi(xi,ϑϑϑU ) = 0· (9)
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The above constraint may include domain-specific auxiliary variables. For ex-
ample, constraints may be created around parameters known for sampling
frames, rather than for the population, or parameters known for socio - demo-
graphic groups. Note that the constraint (9) may also include domain counts, in
particular, frame sizes and the size of the overlapping domain. Alignment-type
constraints on the overlapping domains can be seen as special cases of domain-
level constraints.

3 Maximum empirical likelihood point estimator

Let m̂∗ = {m̂∗i(θθθ) : i ∈ s} be the set of values which maximises the expression (6),
for a given vector θθθ , under mi > 0 and constraints (7) - (9). The maximum empirical
likelihood point estimator of θθθU is defined as the vector θ̂θθ which maximises the
following function:

`(m̂∗,θθθ) = ∑
i∈s

log(m̂∗i(θθθ))· (10)

If θθθU is uniquely defined by the estimating equation (5), the estimator θ̂θθ is the
unique solution of the sample estimating equation:

Ĝ(θθθ) =
T

∑
t=1

∑
i∈st

m̂igi(vi,θθθ) = 0, (11)

where the set {m̂i : i ∈ s} maximises the expression (6) under the constraints (8) -
(9).

4 Empirical Likelihood confidence intervals

Let m̂ = {m̂i : i ∈ s} be the values which maximise (6) under the constraints (8) -
(9).

Consider the following empirical likelihood ratio statistic: [3]

r(θθθ ,m̂,m̂∗) = 2{`(m̂)− `(m̂∗,θθθ)}· (12)

Under some mild regularity conditions,

r(θθθ ,m̂,m̂∗) = Ĝ(θθθ)>RG V̂p[Ĝ(θθθ)RG]
−1 Ĝ(θθθ)RG +op(1), (13)

where V̂p[Ĝ(θθθ)RG] is a consistent estimator of the variance-covariance matrix of
Ĝ(θθθ)RG under high entropy sampling designs. Therefore, (12) follows a χ2

d distri-
bution asymptotically, with d being the dimension of θθθ . The empirical likelihood
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ratio statistic can be used to construct confidence regions or confidence intervals for
the parameter θθθ . A 1−α confidence region for θθθ is defined by the values θθθ such
that r(θθθ ,m̂,m̂∗) < χ2

d;α , where χ2
d;α is the upper α-quantile of the χ2 distribution

with d degrees of freedom.

5 Conclusion

We propose an Empirical Likelihood approach for finite population parameters in
the multiple frame context. The estimator is based on the multiplicity adjustment
principle [15, 14], and can accommodate various multiplicity adjustment factors.
Additional benchmark constraints constructed around known population level pa-
rameters may be incorporated easily. In particular, constraints on the frame size and
size of the overlapping domain can be included. Alignment type constraints can also
be defined, i.s., the requirement that both frames produce the same point estimates
for parameters of the overlapping domain can be made.

A wide class of parameters, expressed as solutions to population estimating equa-
tions, can be estimated through the proposed estimator. A single weight, which can
be used for estimation of various parameters, is obtained for every unit. The weights
are positive by definition.

Empirical likelihood confidence intervals for finite population parameters can be
constructed based on the empirical likelihood ratio statistic (12).
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