Lazy Sequentialization for TSO and PSO
via Shared Memory Abstractions

Ermenegildo Tomasco*, Truc L. Nguyen*, Omar Inversof, Bernd Fischer?, Salvatore La Torre® and Gennaro Parlato*

*{etlm11,tn12g10,gennaro } @ecs.soton.ac.uk, Electronics and Computer Science, University of Southampton, UK
omar.inverso@gssi.infn.it, Gran Sasso Science Institute, L’ Aquila, Italy
Ibfischer@cs.sun.ac.za, Division of Computer Science, Stellenbosch University, South Africa
§slatorre@unisa.it, Dipartimento di Informatica, Universita degli Studi di Salerno, Italy

Abstract—Lazy sequentialization is one of the most effective
approaches for the bounded verification of concurrent programs.
Existing tools assume sequential consistency (SC), thus the
feasibility of lazy sequentializations for weak memory models
(WMMs) remains untested. Here, we describe the first lazy
sequentialization approach for the total store order (TSO) and
partial store order (PSO) memory models. We replace all
shared memory accesses with operations on a shared memory
abstraction (SMA), an abstract data type that encapsulates the
semantics of the underlying WMM and implements it under the
simpler SC model. We give efficient SMA implementations for
TSO and PSO that are based on temporal circular doubly-linked
lists, a new data structure that allows an efficient simulation of the
store buffers. We show experimentally, both on the SV-COMP
concurrency benchmarks and a real world instance, that this
approach works well in combination with lazy sequentialization
on top of bounded model checking.

I. INTRODUCTION

Testing remains the most widely used approach to find
program errors. It is useful when a high percentage of the
selected executions lead to a violation of the program speci-
fication [26]. However, testing-only approaches such as stress
testing remain highly ineffective for concurrency errors that
manifest themselves rarely and are difficult to reproduce and
repair [26]. Such “Heisenbugs” have become more prevalent
on modern hardware architectures that use weak memory
models (WMMs), because WMMSs introduce additional non-
determinism that remains outside the control of the testing
environment. Consequently, testing needs to be complemented
by automated verification techniques that can handle concur-
rency (and the non-determinism it introduces) symbolically.

One of these techniques is SAT/SMT-based bounded model
checking (BMC), which has been used successfully to discover
subtle errors in sequential software, even at large scale [16],
[23]. Sequential BMC tools can be extended symbolically to
the concurrent case by conjoining the formula representing
the effect of each individual thread in isolation with a second
formula representing the possible interferences caused by
concurrent accesses to the shared memory [25], [4]. Since this
second formula effectively includes an axiomatization of the
underlying memory model, this approach can in principle work
for both sequential consistency (SC) and different WMMs.

Partially supported by EPSRC grant no. EP/M008991/1.

However, embodying a memory model at the formula level
requires extensive (and non-reusable) modifications of the
underlying sequential BMC tool, and can affect scalability
since the resulting expressions are large and complex.

An alternative approach is sequentialization, which trans-
lates concurrent programs into sequential programs with
data non-determinism that (under certain assumptions) behave
equivalently, so that the different interleavings do not need
to be treated explicitly during the analysis. This allows the
reuse of existing sequential BMC tools. Eager sequential-
izations [18], [27] guess the different values of the shared
memory before the verification and then simulate (under this
guess) each thread in turn. They can thus explore infeasible
computations that need to be pruned away afterwards. Lazy
sequentializations [17] instead guess the context switch points
and compute the memory. They thus only explore feasible
computations and can be used as basis of very effective
verification tools, such as Lazy-CSeq [14]. This is shown
by Lazy-CSeq’s top rankings in recent software verification
competitions but also borne out in practice: using Lazy-CSeq
we discovered in 30 minutes a bug in the safestack benchmark
[28], while all other approaches, including testing, failed [26].
However, to the best of our knowledge, lazy sequentializations
have been developed only for SC, and not for any of the
WMNMs that are prevalent in modern computer architectures.

In this paper, as a first contribution, we therefore develop
the first lazy sequentialization for multi-threaded programs for
the total store order (TSO) [24] and partial store order (PSO)
memory models. More specifically, we replace all accesses to
shared memory items (i.e., reads from and writes to shared
memory locations, and synchronization primitives like lock
and unlock) by explicit calls to API operations over a shared
memory abstraction (SMA, see Section II). For example, if x
and y are two shared scalar variables then the statement x =
y+x+ 3 is translated into write(x, read(y) + read(x) + 3).
The SMA can be seen as an abstract data type that encapsulates
the semantics of the underlying WMM and implements it
under the simpler SC model. This isolates the WMM from the
remaining concurrency aspects, and allows us to reuse existing
(lazy) sequentialization techniques and tools for SC. Our
approach bears some similarity to the axiomatic representation
of memory models [25], [4] but the fundamental difference is

that we work at the code level—in effect, we apply the very
idea of sequentialization to WMMs themselves.

The TSO and PSO implementations of the SMA we describe
here are the second contribution of the paper. They are
carefully designed to optimize some parameters that lead,
in combination with a lazy sequentialization targeting BMC
tools, to efficient SAT/SMT encodings. Sections III and IV
describe an efficient implementation of memory ADT for TSO,
while Section V extends this to PSO. Section VI describes a
first experimental evaluation of our approach. In particular,
we compare our prototype implementation to CBMC (which
implements TSO at the formula level) [4] and Niddhug [1]
(which combines stateless model checking and dynamic partial
order reduction). The experiments show that our approach
delivers a comparable performance on simple benchmarks, but
outperforms both CBMC and Nidhugg on the more complex
safestack problem. It also shows that the number of timestamps
(i.e., writes to the store buffers) required to expose TSO and
PSO bugs is generally small. This implementation constitutes
the third contribution of our paper.

II. SHARED MEMORY ABSTRACTIONS

We consider multi-threaded programs with C-like syntax
including pointer arithmetics, dynamic memory allocation,
and POSIX threads with dynamic thread creation, thread
join, and mutex locking and unlocking operations for thread
synchronization. We assume that all shared memory and syn-
chronization operations are performed through an abstract data
type that we call shared memory abstraction (SMA). This form
can be achieved through a source-to-source transformation,
if necessary. Introducing the SMA provides a separation of
concerns between the shared memory and the control-flow
related aspects of concurrent programs, such that the verifier
design can focus on each of these aspects in isolation.

SMA API: Let us assume that shared scalar variables and
threads are identified by unsigned integers. The full set of
SMA API routines is:

e init () initializes the internal data structures of the
SMA and the shared variables.

e read(v,t) and read_addr (a, t) return the value
of the read issued by thread t of the shared variable v
and the address a, respectively.

e write(v,val,t) and write_addr(a,val,t)
capture the write by thread t of the value val into the
shared variable v and the address a, respectively.

e addr (v) returns the address of the shared variable v.

e malloc (expr) dynamically allocates a number of
shared memory locations given by the value of the
expression expr and returns the base address.

e lock (m,t) andunlock (m, t) are the standard thread
synchronization operations to acquire and release, respec-
tively, a mutex m for thread t; if m is already acquired,
the Lock operation is blocking for t, i.e., t is suspended
until m is released and then acquired.

e fence (t) flushes the store buffer of thread t and
updates the shared memory accordingly.

SMA implementations: The semantics of concurrent pro-
grams, and in particular the concurrency aspects, can vary
with the underlying memory model. For a program P, we
can capture such a semantics by plugging a corresponding
SMA implementation into P and thus interpreting the resulting
program according to the standard interleaving semantics that
assumes atomicity and sequential consistency of the memory
operations. An SMA implementation consists of variables and
data structures to capture the shared memory and functions that
manipulate them, as listed in the API. Thus, we can model it
as a transition system in the usual way.

III. DESIGNING A TSO SHARED MEMORY ABSTRACTION

Here, we recall the TSO memory model and introduce two
SMA implementations that capture it. We start with a reference
implementation called TSO-SMA that represents the standard
TSO semantics [24] directly but leads to complex formulas
when used in a BMC-based sequentialization tool chain. We
therefore introduce a new representation where the per thread
store buffers are replaced by per variable write lists. We show
how this, together with an indexing scheme, allows us to
perform the shared memory updates implicitly, and in fact even
to entirely remove any explicit representation of the shared
memory. This reduces the size of the formulas for two reasons.
First, BMC tools perform function inlining (i.e., replace each
function call with the actual function code), so removing the
updates, which can happen at any time and thus need to be
inlined at every visible operation [17], reduces the size of the
program and thus the formula. Second, because we remove the
memory we do not need (propositional) variables to represent
each memory write; we can instead reuse those used to
represent the variable write lists. We describe an efficient
shared memory abstraction eTSO-SMA that is based on this
representation and is equivalent to TSO-SMA. In this section
we give both SMA implementations at an abstract level; in
the next section, we give the details of eTSO-SMA including
concrete data structures and code for the API operations, and
argue the equivalence of eTSO-SMA and TSO-SMA.

Total Store Ordering: TSO is a relaxed-consistency
shared memory model where, different from SC, the ordering
of write and read operations performed by different threads
on the same variable can be altered. The behaviour of the
TSO memory model can be described with respect to the
architecture shown in Figure 1 [19].

Each thread ¢ is equipped with a store buffer where the write
operations performed by ¢ are temporarily cached according
to a FIFO policy. The effects of a cached write are visible
only to the thread that has performed it. A read by a thread
t of a variable y (resp. location at the address p) retrieves
the value from the shared memory unless there is a cached
write to y (resp. to the location at p) that is pending in its
store buffer; in that case, the value of the most recent write
in t’s store buffer is returned. When a write is moved out
of the store buffer the shared memory is updated accordingly.
Memory updates can occur nondeterministically at any time in
the computation provided that there are writes cached in some

Thread;

e

— Write
- — = Read

Ty3ddng
OIS

vV
‘ SHARED MEMORY

LOCK

Fig. 1. TSO architecture.

store buffer. Memory fences simply flush the store buffer of
the thread executing them. A lock can be acquired only if the
store buffer of the acquiring thread is empty, i.e., does not
contain pending writes.

TSO-SMA: The reference implementation TSO-SMA di-
rectly simulates the behavior of the TSO memory model
according to the architecture shown in Figure 1. We use an
array-based queue of bounded size for each thread store buffer,
and a copy of the shared variables of the initial program to
store one configuration of the shared memory.

Here, the simulation of each write operation results in a
small formula: we just need to encode a single element write
into the queue. However, read operations lead to larger and
more complex formulas. The main source of complexity is in
the number of steps required to determine the most recently
performed write operation still cached in the queue. All these
steps need to be encoded in the formula. Similarly, a flush
operation involves every element of a store buffer which again
need to be encoded in the formula. The formula for simulating
shared memory updates is even bigger. In fact, even though
each single update requires only a constant number of steps (to
dequeue the write and then modify the content of a memory
location), memory updates can occur nondeterministically at
each step and in the limit the writes from all store buffers
can be passed into the shared memory. Therefore, memory
updates require a formula of size proportional to the sum of
the maximum number of elements that can be stored in each
(bounded) queue. Since these updates need to be simulated at
each shared memory access, this leads to a considerable blow-
up of the formula size for the whole sequentialized program,
rendering this direct implementation hopelessly inefficient.

Timestamping writes: The handling of memory updates
can be improved by performing the dequeueing operations
implicitly. For this, we keep track of the (discrete) time
in the executions with a global variable clock and add a
timestamp to each write that is enqueued in a store buffer.
These timestamps represent the future time at which a cached
write will be used to update the shared memory. Since
timestamps refer to future events and writes from different
buffers can occur in any order (because the memory updates
are nondeterministic), timestamps must be guessed. To ensure
consistency with the TSO semantics, we must enforce that
the timestamps of successive writes in the same store buffer

clock=11

MaxTimestamp = 100,

' \
3 €\E$3/ !
> |
| de |
%Hﬁ- === ____tmesamp ")
1 7 23 33 100
(a) (d)

(b) () (e)

Fig. 2. T-CDLL example.

follow a non-decreasing order. Further, a timestamp must be
assigned a value that is at least the current clock value.

By adopting this time-stamping schema we can keep the
content of a store buffer up-to-date without actually dequeuing
the writes when a memory update occurs. In fact, we can
just increase the value of clock, and all writes that have an
expired timestamp (i.e., a timestamp that is less or equal to
the value of clock) can be treated as removed from their
respective store buffers.

eTSO-SMA: We now describe an efficient implementation
where each SMA operation can be encoded with a formula of
constant size and where there is no need to explicitly encode
memory updates. For ease of presentation, let us assume that
the original program uses only shared scalar variables and that
memory locations are never accessed using their addresses.
The two main ingredients of this implementation are: (1) the
combined use of timestamps and the variable c1lock as above
and (2) a re-arrangement of the writes of the store buffers
into lists per shared variables. We refer to each such list as a
variable write list (vw-list, for short). For each shared variable
x, we denote with @), its associated vw-list. vw-lists contain
writes as pairs (val, ts) where val is the written value and ts
is the associated timestamp. A write is expired if its timestamp
is less than or equal to the current value of clock.

In addition to the writes of x that are currently cached in
store buffers,), also contains the last write of x that has
been used in a shared memory update. This gives the current
value of z in the shared memory, and is the only expired write
in .. Thus, as sketched above, we do not need additional
variables to track the shared memory. Further, we keep Q.
ordered by non-decreasing timestamps and in case of writes
with the same timestamp, in the order of insertion in the list.
Hence, the current valuation in the shared memory of each
variable is easy to retrieve from the front of the list.

Temporal Circular Doubly Linked List: To implement
the vw-lists efficiently, we introduce temporal circular doubly
linked lists (T-CDLL, for short), which are circular doubly
linked lists where:

1) nodes are of the form shown in Figure 2; fields prev and
next contain respectively the link to the predecessor and
the successor in the list as usual, and the fields value
and timestamp contain the write;

2) there is a unique sentinel node; it does not correspond
to an actual write and its timestamp is maximal;

3) the sequence of nodes from the successor of the sentinel
node through the sentinel node, via the next link, is
ordered by non-decreasing timestamps;

4) the head of the list is defined as the only node that
(i) contains an expired write and (ii) whose successor

contains a non-expired write; it is uniquely determined
by clock.

An example of T-CDLL is given in Figure 2. There the
sentinel node is (e), the head node is (b) for clock value 11
and would change to (c) as soon as clock reaches 23.

Note that the portion of T-CDLL from the head through the
sentinel node ensures the properties stated for the vw-lists,
and thus we can easily use this portion to store each such list.
Moreover, a T-CDLL also manages the list of available nodes
in the remaining part: when the value of clock is increased
so that the current head node expires, this becomes available
and its successor becomes the new head. However, the node
remains linked in the list; hence, all nodes between the sentinel
and the head constitute a “free list” for further writes. Caching
a write only requires checking that the successor of the sentinel
is expired (but not the head of the list), and if so, overwriting
the values and re-linking the node.

For example, in the T-CDLL of Figure 2, only node (a) is
available. By updating clock to 30, the head becomes (c)
and (b) becomes available but remains linked to the list of
available nodes that starts from (a). If we then try to cache a
write with timestamp 40 in the vw-list, we can take (a), unlink
it from the T-CDLL and then link it back between (d) and (e)
with value and timestamp updated according to the write.

The T-CDLL for a vw-list is initialized with a fixed number
of nodes that stay unchanged along the computation (i.e., the
size of lists we can encode is bounded). The initial value
for the timestamps is 0 except for the sentinel node, whose
timestamp is set to the maximum allowed timestamp. In the
next section we show how to implement T-CDLLs efficiently
by using four parallel arrays, one for each node field.

IV. IMPLEMENTATION OF ETSO-SMA

The code of eTSO-SMA comprises a module whose ab-
stract view is essentially the API given in Section II and whose
implementation view (i.e., the complete data type declaration
along with the actual code implementing the API operations)
will be discussed in this section.

Memory bounds: We assume that during the program
execution all threads can access the memory, which consists
of a finite sequence of locations of the same size. Each
location has its own memory address which corresponds to
its position in the memory. Shared variables are allocated
to distinct memory locations. However, eTSO-SMA does not
capture the entire memory explicitly but only tracks a bounded
number of memory locations.

We use several parameters to bound our analysis and in
particular the memory representation. T denotes the maximum
thread identifier used in the program, N the number of nodes in
each T-CDLL, vV the maximum number of memory locations
tracked along any execution (including the locations of the
shared variables), and K the maximum timestamp.

We assume that each shared variable has an integer identifier
in the range [0,V — 1]. Further, we can have an additional
number of memory locations to track that can be accessed
only through their memory addresses.

Auxiliary Data Structures: We use the following global
auxiliary variables of type integer:

e clock keeps track of the number of writes performed
by all threads; it is initialized to 0 and bounded by K.

e address[v] contains the physical memory address of
v, for any ve [0,V — 1]; the init function initializes it
with distinct nondeterministic values; the values do not
change during the program simulation;

e value[v] [node] and tstamp [v] [node] store the
value and timestamp of each write associated with each
location.

e max_tstamp[t] stores for each thread the largest
timestamp of any executed write;

e prev([v] [node] and next [v] [node] store the link
to the previous and next node in the T-CDLL for each
location.

e last_value([v][t] and last_tstamp[v][t]
store the last value written and the timestamp of the last
write performed by each thread for each location.

The nodes of the T-CDLL corresponding to variable v
are keptinprev[v] [1],value[v] [1], tstamp[v] [1]
and next [v] [i] for i€ [0,N — 1].

Malloc and init: During its execution a thread can require
a block of n consecutive locations by invoking malloc(n),
which returns the address of the first location of a newly
allocated heap block. Memory addresses can be used to access
this shared memory. Let p be a shared pointer variable and x
be a local variable. A location with address ¢ is pointed to
by p if the value of p is ¢. Then, xp = x copies the value
of x into the location pointed to by p, and statement x =
*xp copies the value of the location pointed to by p into x.
Note that we do not represent the heap memory explicitly as
we only track some of its locations. Concerning to malloc
we maintain a bounded sequence, say of fixed size m, where
each element represents a memory block. In particular, for
each block we store its base address, its size, and whether
it has been allocated. This sequence is implemented using
arrays. The init function initializes each of these blocks
with a nondeterministic base address and a nondeterministic
size, making sure that block do not overlap. These values do
not change during program executions.

Clock update: clock_update is a service routine that
updates the variable clock with a nondeterministic value
picked in the range from its current value to its allowed
maximum value K (see Figure 3, lines 11-15). As a con-
sequence of such an update, some of the writes in the T-
CDLLs may expire, thus modifying some of the head nodes
and therefore, the valuation of variables in the shared memory
and the configuration of the T-CDLLs.

We stress that this is a very convenient way to implement the
shared memory updates since we achieve this without altering
the underlying data structures. Moreover, it is correct w.r.t. the
TSO semantics since the writes flow into the shared memory
by increasing values of the timestamps, and by the ordering we
ensure on the timestamps, this enforces a correct simulation
of the TSO semantics on the memory updates.

W oUW N

static uint clock;
static uint address|[V];
static int value[V] [N];
static uint tstamp[V] [N+1];
static uint prev[V] [N+1];
static uint next[V] [N+1];
static uint last_value[V][T];
static uint last_tstamp[V][T];
static uint max_last_tstamp[T];

: void clock_update (){

int tmp;
assume (tmp <= K && tmp >= clock);
clock = tmp;

}

: void write(uint v,int val,uint t){

clock_update () ;

/I remove expired node from list
uint node = next([v][N];
assume (tstamp[v][next [v][node]]<= clock);
next [v] [N] = next[v][node];
prev[v] [next [v] [N]] = N;

/I select position in the list for insertion
uint succ = nondet ();
assume (succ<=N && tstamp[v][succ]>clock);
uint pred = prev[v][succ];

/] guess suitable timestamp
uint ts=nondet ();
assume (ts >= clock

&& ts >= max_last_tstamp[t]
&& ts >= tstamp[v] [pred]
&& ts < tstamp[v] [succ]);

// insert node at selected position
value[v] [node] = val;
tstamp[v] [t] = ts;
next [v] [node] = succ;
prev[v] [node] = pred;
next [v] [pred] = node;
prev[v] [succ] = node;

// update auxiliary data
max_last_tstamp[t] = ts;
last_tstamp([v] [t] = ts;
last_value[v] [t] = val;

}

: void write_to_address (uint a,int val,uint t){

/I select identifier of the memory address
int v = nondet();
assume(v < V);
assume (address|[V]
write(v, val, t);

}

int read(uint v, uint t) {
clock_update () ;
/[retrieve the value from thread store-buffer
if (last_tstamp([v][t] > clock)
return last_value[v][t];
// retrieve the value from shared memory
int node = nondet ();
assume (node < N &&
tstamp[v] [node] <= clock &&
tstamp[v][next [v][node]]>clock);
return value([v] [node];

}

int read_from_address(uint a, uint t) {
// selecting the id for the memory address
int v = nondet();
assume (v < V);
assume (address[v] == a);
return(read(v,t));

}

== a);j

: void fence(uint t){

clock_update () ;
// make all thread’s write expired
if (clock < max_tstamp[t])
clock = max_tstamp[t];

Fig. 3. Code stubs for eTSO-SMA.

Write operation: We recall that function write takes
as input a variable identifier v, a value val, and a thread
identifier t. write first updates the clock value by invoking
clock_update and then simulates the write operation by
changing the state of the memory representation by adding a
new write in the T-CDLL associated with v. The code for this
function is given in Figure 3 at lines 17-45.

Take an available node from the T-CDLL of the variable
identifier (lines 20-23). Variable node is set to a position
of the array encoding the T-CDLL for v that corresponds
to the successor of its sentinel node. From the property of
part 3 of the definition of T-CDLLs (that we maintain as an
invariant in our implementation), this is the node with the
smallest timestamp in the list. We are going to use this node
to cache the write. The assume statement at line 21 ensures
that the successor of node is also expired. Otherwise, node
would be the head node and thus there are no available nodes,
therefore the computation must be blocked. We then remove
the node from the list by appropriately setting the fields next
and prev of the successor and the predecessor of node,
respectively (lines 22-23).

Select position for insertion (lines 25-27). We nondeter-
ministically guess a node succ that is the candidate to be
the successor of node in the list (after insertion). We make
sure that succ encodes a non-expired write by checking that
its timestamp is greater than the current value of clock.
Note that, a node with this feature always exists in since the
timestamp of the sentinel node is K. We then set the local
variable pred to the predecessor of succ. Node pred will
be the predecessor of node after its reinsertion in the list.

Guess a suitable timestamp for the new write (lines 29-33).
First, we guess a value (line 29), then we check that it is not
smaller than the current clock value (line 30), and the last
timestamp used for the same thread (line 31). This last check
guarantees that the writes from the same thread update the
shared memory in the FIFO order. The last two constraints at
lines 32-33 guarantee the T-CDLL invariant that nodes must be
in a non-decreasing order (part 3 of T-CDLL definition). Note
that we allow the timestamp of the new write to be the same
as that of the previous write in the list (which corresponds
to a situation where they are passed to the shared memory in
the same update). However, the inequality is strict w.r.t. the
next write in the list (line 33). In this way we guarantee that a
write cannot overtake another write from the same thread that
is already cached in the store buffer with the same timestamp
(which would violate the TSO semantics).

Node insertion at selected position (lines 35-40). We can
now insert the new write into the T-DCLL. We first set its
value, then its selected timestamp, and finally we insert node
between prec and succ (lines 37-40). Clearly, the resulting
list is still a T-DCLL.

Update auxiliary data (lines 42-44). We update the auxiliary
variables to ensure that their invariants are maintained.

Write-to-address operation: The first step of function
write_to_address is to select the identifier correspond-
ing to address, if any, and then call write.

Read operations: The function read takes as input a
variable identifier v and a thread identifier t, and returns the
value of v retrieved from the current state of the memory
system. The implementation of read is shown in Figure 3.
It first updates the clock. Then, it checks whether the last
performed write by t on v has not expired yet. This condition
ensures that if there is still a pending write in t’s store
buffer, then the value of the latest such write is returned,
as per the TSO semantics. Otherwise, it returns the value of
the latest expired write in the T-CDLL of v (lines 61-65),
which is always guaranteed to exist by the invariant property
of T-CDLLs, and as previously argued, it corresponds to the
valuation of v in the shared memory. When a read is performed
using a memory address (lines 68-74), we first retrieve the
location identifier, say v, corresponding to the memory address
a and then return the value returned by calling read on v.

Fence operation: To flush the store-buffer of a thread it
is sufficient to mark all its writes as expired. Thus, function
fence shown in Figure 3 at lines 76-81 first updates the clock
to the current time and then sets again the clock to the value
of the maximum ticket issued by thread t in case it results
greater than the current clock.

Correctness: We have already observed the main prop-
erties concerning the correctness of our implementation. A
formal proof of this can be given by showing that the transi-
tion system 7' that captures eTSO-SMA is equivalent to the
transition system Ttsg that captures TSO-SMA (and thus the
semantics of the TSO memory model) in the sense that they
can simulate each other behaviors going through equivalent
configurations. The most complicated case of the proof is
for the write function; we sketch this one here. From the
observations in the write-operations section above, we have
that after the execution of write the corresponding T-CDLL
is correctly updated. Also the current write is added with a
timestamp that is not smaller than the timestamp of the last
previously cached write from the same thread (line 31), and
in case the two timestamps are equal and the two writes are
on the same variable, line 33 guarantees that we keep the
same order as in the store buffer. This implies that if we
start from equivalent configurations of 7" and 7rsg, then the
configurations of 7" and Ttgg resulting after the invocation of
write are also equivalent. Therefore, we get:

Theorem 1. ¢TSO-SMA and TSO-SMA are equivalent.

V. EXTENSION TO THE PSO MEMORY MODEL

We recall that the semantics of PSO is the same as for TSO
except that each thread is endowed with a store buffer for
each shared memory location. To handle PSO we just need to
modify the implementation of eTSO-SMA with the following
changes in the write function from Fig. 3. In the write of a
location v by a thread t we do the following:

o the guessed timestamp ts must be not lower than the
timestamp of the last write of t on v (according to
the PSO semantics, a write by a thread ¢ of a variable
following a previous write by ¢ can overtake it, but cannot

overtake a previous write of the same variable);
line 31 of Fig. 3 must be replaced with
&& ts >= last_tstamp[v] [t]
e ts must be the last timestamp of t if it is greater than
the current one; line 42 of Fig. 3 must be replaced with
max_last_tstamp[t] =
(ts<=max_last_tstamp[t])?
max_last_tstamp[t]:ts;
Denoting with ePSO-SMA our prototype tool obtained from
eTSO-SMA by the above changes and with PSO-SMA the
reference implementation for PSO (obtained similarly to TSO-
SMA for TSO), we get:

Theorem 2. ePSO-SMA and PSO-SMA are equivalent.

VI. EXPERIMENTAL EVALUATION

Prototype implementation: We implemented our ap-
proach for C programs with POSIX threads in a prototype
tool called LazySMA.! It is based on the open-source CSeq
framework [13], [11] which allows the development of sequen-
tializations following a modular approach: tools are built as
pipelines of source-to-source transformations where the result
of the last transformation is fed into a sequential analysis back-
end. For our prototype we implemented a new transformation
that replaces each memory access by the corresponding opera-
tion from the API. In order to combine this new transformation
with Lazy-CSeq [14], [15] we needed to “inject” the new
memory management layer into a few locations where memory
and concurrency handling overlap. For example, we changed
the original lock and unlock simulation procedures of
Lazy-CSeq to use the barriers for memory synchronization
required by the weaker memory model.

Experimental set-up: We have compared our prototype
implementation (with CBMC v5.3 as sequential verification
backend) against two tools with built-in support for analysis
under WMMs: CBMC [12], a mature bounded model checker
tool for C/C++ programs, and Nidhugg [1], a bug-finding tool
that combines stateless model checking with dynamic partial
order reduction on relaxed memory executions.

We ran the experiments on a dedicated machine with a Xeon
W3520 2.6GHz processor and 12GB of physical memory
running 64-bit linux 3.0.6. We set a 10GB memory limit
and a 600s timeout for the simple benchmarks and timeout
of 14,400s for the safestack example. For each tool and
benchmark, we set the parameters to the minimum value
needed to expose the error.

Standard benchmarks: We first evaluated our approach
over a set of benchmarks collected from the CBMC, Poet,
and Nidhugg tools, and the SV-COMP benchmark suite. The
results are summarized in Table I. The unwind parameter was
used by all the three tools considered in the comparison.
The sum of naddr and nmalloc gives the parameter V from
Section IV. The parameter bitwidth gives the size of integers
(in bits) used in the sequential analysis and the parameter
rounds is the number of rounds used by Lazy-CSeq.

'http://users.ecs.soton.ac.uk/gp4/cseq/fmcadl6.zip

TABLE I
ANALYSIS RUNTIMES UNDER TSO AND PSO

TABLE 11
ANALYSIS RUNTIMES FOR SAFESTACK UNDER TSO AND PSO

The first block contains results for the classical mu-
tual exclusions algorithms (dekker, lamport, peterson,
szymanski). These implementations are correct under SC
but not under TSO or PSO. All tools find the errors, but
because of their small size, Nidhugg outperforms both CBMC
and our prototype (which incurs a constant overhead for the
sequentialization process) on these programs.

The second block of the table contains variations of the
fibonacci-benchmark, in which two worker threads concur-
rently increase two shared counters, and a main thread checks
whether any the two counters can reach a defined value. A full
exploration of the thread interleavings is required to identify
the error (or show its absence) in this program. Techniques
such as partial-order reduction do not apply, and several tools
struggle to analyze it. We have included both the safe and
unsafe versions. Here, Nidhugg is generally slower than both
CBMC and our prototype tool, and fails to terminate on the
safe version. Our prototype beats CBMC on the safe cases,
but is slower on the unsafe ones.

The next two benchmarks originate from industrial code:
parker models a semaphore-like synchronization class that
breaks under TSO [1] (and thus also under PSO), and stack
which was taken from SV-COMP [7].

The last two lines show the average values for 5803 litmus
tests for WMMs; note that we ran these under TSO and under
PSO. For TSO, both our prototype and CBMC successfully
identified the 277 test cases containing a reachable error,
while Nidhugg failed to find one of them. For PSO, Nidhugg
and IMU-CSeq both find 968 unsafe instances, while CBMC
claims that there are 971 unsafe instances but this includes
three spurious counterexamples. The performance gap between
CBMC and our tool could be reduced with a more efficient
implementation, as our prototype transforms each file nearly
20 times, each time requiring parsing and unparsing.

Safestack: We have conducted further experiments on
a real world benchmark, Safestack [10], which is a lock-
free stack implementation designed for weak-memory models.
It contains a rare bug that is hard to find with automatic
bug-finding techniques already under SC (including random
testing, Nidhugg, CIVL [31], CBMC and other approaches
based on BMC) [26]. The only tool we are aware of that can

parameters TSO runtime (s)|| PSO runtime (s) parameters TSO analysis CEX check PSO analysis | CEX check
o (3 bits) (32 bits) (3 bits) (32 bits)

—~ %/ < 8 < 8 K[NJrounds|[Time[Mem.[Reach?|CEX?[Time Time[Reach?[| CEX?] Time

€. 2852512 v 232 2 2 T[2[4 [[10mI8s[0.8GB| Yes | Yes | 23s || 1Imd2s| Yes|| Yes |4.82s

:83E 253 8§ 2 5| v 2 ¢S 12| 3 || 12m2s{0.6GB| No | - | - || 1Iml6s| No|| - -

E|55s88E8 &8 4 © Zl 2 © Z 13| 4 ||13m45s[1.2GB| Yes | Yes | 30s || 2Im6s| Yes|| Yes |6.40s

dekker o1 200 42 2077 029 0.04/|0.75 0.25 0.05 113 3 12m50s|0.9GB| No - - 12m20s No - -

lamport e/1 200 42 2/0.88031 0.05//0.88029 0.05 3[2] 4 [[26m55s|1.4GB| Yes | Yes | 24s || 20m47s| Yes|| Yes [4.33s

peterson e|1 300 42 2{/0.66 0.26 0.04(/0.65 0.25 0.04 312| 3 [|24m34s|1.0GB| No - - 27m15s Nol|| - R

szymanski e/l 300 42 3081034 0.07//0.80 0.32 0.04 3|3 4 74m22s|3.4GB| Yes Yes | 31s || 31ml6s Yes|| Yes [5.47s

fib_longer_unsafe (e [6 2 0 0 10 6 2[{6.47 8.19 94.84((6.51 1.69 135.45 313 3 62m22s|1.0GB| Yes Yes | 30s 20m7s Yes|| Yes [2.84s

fib_longer_safe 6 20010 6 2(9.78 22.5 t.0.||8.82 31.8 t.0. 3|3 2 12m14s|0.6GB| No - - 11ml4s No - -

parker o1 200 42 3|[1.68 031 0.05/{2.19 0.28 0.05 7121 4 47m17s|2.4GB| Yes | Yes | 27s |[104m35s Yes|| Yes |6.05s

stack_unsafe (2 212 572 2150041 0.05/[1.49 0.35 0.05 712 3 35m7s|[1.3GB| No - - 36mlds No - -
litmus_safe (avg) 5 20010 220{{1.26 0.17 2.35([1.22 0.15 6.65
litmus_unsafe (avg)| e 5 2 0 0 10 2 20(|1.27 0.16 3.86{|1.26 0.12 1.58

automatically find a genuine counter-example is Lazy-CSeq.
It requires a minimum of 4 threads, 3 loop unwindings, and
4 rounds of computation to expose a bug caused by two of
these threads simultaneously modifying the element at the first
position of the array implementing the queue. This shows that
the error is actually quite deep, which explains why other
approaches based on explicit handling of interleaving fail.

Safestack is written in C++. We manually translated it into
C, providing simulation functions for the C11 atomic functions
used in the test. We experimented with this C version, with
different bounds for the queue size of each memory address,
and the maximal timestamp along any bounded computation.
Table II summarises these experiments. Note that we only used
three bits to represent integers during the analysis. We then
checked whether counterexamples found also hold for full 32-
bits integers, by running Lazy-CSeq over the exact schedule
extracted from the counterexample. A “Yes” entry in the CEX?
column means that the counterxample holds, thus there are no
spurious counterexamples (due to overflow).

Because SC and TSO coincide if maxclock is set to 1, the
first four lines indirectly show the overhead paid for our TSO
encoding. Since the SC analysis using Lazy-CSeq (not shown
here) requires approximately 3 minutes, the TSO encoding
itself thus introduces an approximately 3x-4x overhead. The
last two lines show that we can still find the error under
“proper” TSO. It also shows that the weaker memory model
reduces to 3 (from 4) the number of rounds required to expose
this error; however, the analysis time grows noticeably, by
almost an order of magnitude. Finally, increasing maxclock
(for fixed values of gsize and rounds) shows that the analysis
explores more reorderings of reads over writes (witnessed by
the increased memory consumption).

VII. RELATED WORK

The transformation of concurrent programs under TSO into
equivalent programs under SC is intrinsic in the architecture
from Figure 1. However, the explicit modeling of the store
buffers in the resulting program introduces a substantial over-
head for standard SC verification tools.

In [5], the authors replace the store buffers with O(k) local
variables per thread, where k is the number of context-switches
for each thread that is allowed in the analysis. The main
intuition there is: when a write operation occurs, a future

context number is guessed with the meaning that the write will
be visible to the other threads at that context. This is similar to
our guess of a future timestamp in the sense that it implicitly
gives a total ordering of the shared memory updates, but in
our setting this is completely unrelated to the thread context
at which the memory update will occur.

In [29], the authors replace the store buffers by embedding
each of them symbolically in the thread locations. Their
translation goes through the construction of the corresponding
transitions systems that seems appropriate for a backend as
SPIN but in our experiments works poorly with BMC since it
introduces a lot of redundancy in the constructed formulas.

Another main difference of our approach with both [5] and
[29] is that we rearrange the contents of store buffers per
variable instead of per thread and entirely maintain them in T-
CDLLs of bounded size. This, along with the strong invariant
properties of T-CDLLs, results in smaller formula encodings
computed by the BMC backend tools (see Section III).

Other recent work concerning the verification of concurrent
programs under WMMs is [1], [2], [3], [4], [6], [8], [9], [30].
The most related to ours is [3] where the authors give a general
reduction technique to SC by augmenting the programs with
arrays to simulate the caching and buffering due to the WMMs
and use it in combination with CBMC. In [4], CBMC is
enhanced with a reduction based on partial orders.

We have designed our translation to target BMC backends
and used the tool Lazy-CSeq [14], [13] for our experiments.
Lazy-CSeq implements an efficient lazy sequentialization that
works exceptionally well with BMC backends and has won the
SV-COMP twice [7]. It performs a bounded context-switching
analysis [21] and has been recently extended to unbounded
programs [20]. The idea of sequentialization was originally
proposed in [22] but became popular with the first scheme for
an arbitrary but bounded number of context switches [18].

VIII. CONCLUSIONS

In this paper we have described a new approach to the
verification of concurrent programs under WMMs. We have
introduced an abstract data type that factors out the semantics
of the memory model, allowing us to reuse tools designed
for the analysis of concurrent programs under SC. We have
given an efficient implementation of the ADT that works well
in combination with Lazy-CSeq. We have demonstrated the
effectiveness of this approach for finding bugs under TSO
and PSO: our prototype tool is competitive with existing tools
on standard benchmarks used in the literature; it also works
for more complex benchmarks that are, to the best of our
knowledge, out of reach for existing bug-finding approaches.
We have developed our approach for TSO, and extended it to
PSO simply by organizing the cached writes per variable and
thread, and not just per variable. We believe that our approach
can be extended to further WMMs.

REFERENCES

[1] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and
K. F. Sagonas. Stateless model checking for TSO and PSO. In TACAS,
pp. 353-367, 2015.

[2]
[3]

[4

[l

[5]
[6]

[7

—

[8

[9

—

[10]

(11]

[12]

[13

[t

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

(23]

[24]

[25]
[26]
[27]
(28]
[29]
(30]

[31]

T. Abe and T. Maeda. A general model checking framework for various
memory consistency models. In PDP, pp. 332-341, 2014.

J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software
verification for weak memory via program transformation. In ESOP,
pp. 512-532, 2013.

J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In CAV, pp. 141-157,
2013.

M. FE. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers in
TSO analysis. In CAV, pp. 99-115, 2011.

M. E Atig, A. Bouajjani, and G. Parlato. Context-bounded analysis of
TSO systems. In FPS, pp. 21-38, 2014.

D. Beyer. Software verification and verifiable witnesses - (report on
SV-COMP 2015). In TACAS, pp. 401-416, 2015.

A. Bouajjani, G. Calin, E. Derevenetc, and R. Meyer.
reachability. In FASE, pp. 267-282, 2015.

S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
PDLI, pp. 12-21, 2007.

G. Chen, H. Jin, D. Zou, B. B. Zhou, Z. Liang, W. Zheng, and
X. Shi. Safestack: Automatically patching stack-based buffer overflow
vulnerabilities. IEEE Trans. Dep. Sec. Comput., (6):368-379, 2013.

B. Fischer, O. Inverso, and G. Parlato. CSeq: A Concurrency Pre-
processor for Sequential C Verification Tools. In ASE, pp. 710-713,
2013.

A. Horn and D. Kroening. On partial order semantics for sat/smt-based
symbolic encodings of weak memory concurrency. In FORTE, pp. 19—
34, 2015.

O. Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato.
Lazy-cseq: A context-bounded model checking tool for multi-threaded
c-programs. In ASE, pp. 807-812, 2015.

O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded
model checking of multi-threaded C programs via lazy sequentialization.
In CAV, pp. 585-602, 2014.

O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Lazy-
cseq: A lazy sequentialization tool for C - (competition contribution).
In TACAS, pp. 398-401, 2014.

D. Kroening and M. Tautschnig. Automating software analysis at large
scale. In MEMICS, pp. 30-39, 2014.

S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded
concurrent reachability to sequential reachability. In CAV, pp. 477492,
20009.

A. Lal and T. W. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Form. Meth. in Sys. Des., (1):73-97, 2009.
A. Morrison and Y. Afek. Temporally bounding TSO for fence-free
asymmetric synchronization. In ASPLOS, pp. 45-58, 2015.

T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy sequential-
ization for the safety verification of unbounded concurrent programs. In
ATVA, 2016. To appear. http://eprints.soton.ac.uk/397033/.

S. Qadeer and J. Rehof. Context-bounded model checking of concurrent
software. In TACAS, pp. 93-107, 2005.

S. Qadeer and D. Wu. KISS: keep it simple and sequential. In PLDI,
pp. 14-24, 2004.

P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmiiller. Successful use of incremental BMC in the automotive
industry. In FMICS, pp. 62-77, 2015.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-
tso: a rigorous and usable programmer’s model for x86 multiprocessors.
Commun. ACM, (7):89-97, 2010.

N. Sinha and C. Wang. On interference abstractions. In POPL, pp.
423-434, 2011.

P. Thomson, A. F. Donaldson, and A. Betts. Concurrency testing using
schedule bounding: an empirical study. In PPoPP, pp. 15-28, 2014.
E. Tomasco, O. Inverso, B. Fischer, S. La Torre, and G. Parlato.
Verifying concurrent programs by memory unwinding. In TACAS, pp.
551-565, 2015.

D. Vyukov. Bug with a context switch bound 5, 2010.

H. Wehrheim and O. Travkin. TSO to SC via symbolic execution. In
HVC, pp. 104-119, 2015.

N. Zhang, M. Kusano, and C. Wang. Dynamic partial order reduction
for relaxed memory models. In PLDI, pp. 250-259, 2015.

M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and S. F. Siegel. CIVL:
formal verification of parallel programs. In ASE, pp. 830-835, 2015.

Lazy TSO

