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ABSTRACT: Dynamic strain measurement in distributed fibre optic sensing (DFOS) is essential for structural health monitoring (SHM) of
the strain changes induced by construction failure and other activities in infrastructure’s life cycle. Among different DFOS systems, the
Short Time Fourier Transform-Brillouin Optical Time Domain Reflectometry (STFT-BOTDR) takes the advantages of STFT obtaining full
frequency spectrum to improve the performance of conventional BOTDR, providing an opportunity for dynamic sensing. The key
parameters of distributed fibre optic sensors, spatial and frequency resolution, are strongly linked with the pulse’s time-frequency
localisation. In this paper, a set of Kaiser-Bessel functions is used to simulate different pulse shapes and compare their parameters in terms
of Time-Frequency Localisation (TFL) and their Brillouin scattering spectrum. A method using iterative filtering algorithm to achieve the
optimised pulse in terms of TFL is introduced to converge the Effective-pulse Width (TEW) in time-domain and Effective-pulse Linewidth
(FEL) in the frequency domain, respectively, to the fundamental limitation. The optimised pulse can be fitted with 7th order Gaussian
(super-Gaussian) shape and offer the best experimental performance compared to Rectangular pulse.

1 INTRODUCTION

Distributed fibre optic sensing, especially Brillouin
Optical Time Domain Reflectometry (BOTDR),
allows measurement of strain and temperature at any
location along a single mode optical fibre up to a
hundred kilometres (Bao and Chen 2011).
Comparing with conventional sensing systems, this
provides new opportunity for distributed and
dynamic Structure Health Monitoring (SHM).
However, the Time-Frequency Localisation (TFL) in
the signal pulse affects the signal-to-noise ratio (SNR)
and limits the resolutions, sensing distance and
measurement speed, which increasing the difficulty
for dynamic sensing (Luo et al. 2016).
Shape of the pulse is considered as having significant
contribution on reforming the Brillouin scattering
spectrum, hence the shape needs to be optimised to

provide a good SNR of the spectrum to enhance the
frequency resolution and remain good spatial
resolution simultaneously. Different pulse shapes
resulted in different spectrum bandwidth and
different frequency error (Naruse and Tateda 2000).
Lorentzian shape was considered to be better than
Triangular shape in terms of Brillouin spectrum’s
peak power (Hao et al. 2013). However, previous
research analysed the frequency domain information
independently but omitted its iteration with time
domain information which would contribute to the
spatial resolution. Because of the TFL limitation of
time-frequency analysis, improving in frequency
resolution will sacrifice the spatial resolution.
Therefore, a balanced and optimised pulse need to be
introduced to improve the spatial resolution and
frequency resolution, simultaneously.



In this paper, Kaiser-Bessel functions with different
parameters of attenuation slope are used to simulate
Gaussian, Hamming, Rectangular pulses as the input
of the BOTDR system. The pulses are compared in a
mathematical model to reveal their relation with the
frequency resolution. An iterative filtering algorithm
is introduced to optimise the pulse shape to enhance
the system TFL. The simulation result shows that the
Brillouin spectrum bandwidth can be improved by
more iterations. The experimental result
demonstrates that the ratio of peak frequency power
and total power can be enhanced by using the
optimised pulse generated by the iterative filtering
algorithm comparing with a rectangular pulse in the
STFT-BOTDR system.

2 PULSE EFFECT ON BRILLOUIN SPECTRUM

To evaluate the effect of the pulses on the BOTDR,
the pulses are simulated by Kaiser-Bessel functions
(Rabiner and Gold 1975) (Lewitt 1990). The
different pulses are represented as below:

Where N is the length of sequence. is the zeroth
order modified Bessel function of the first kind,
which is the solution of at zeroth order Bessel’s
differential equations. is a non-negative parameter
that decides the shape of the window, which
represents the trade-off between the main-lobe width
and the side lobe level.
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Figure 1- The representation of the Kaiser-Bessel
shape pulses with different parameterisation beta
(a)The time domain pulse shape and (b) frequency

domain spectrum

Tuning can generate different pulse shapes such
as Gaussian, Hamming, Rectangular, etc. These pulse
shapes have attenuating spectrum distribution, shown
in Figure 1, where the is chosen to be 0.5, 5, 15 and
100 with the same pulse width, and represent for
shapes from Triangular to Rectangular, respectively.
Assuming the noise effect can be omitted in the
Brillouin scattering process, the pulses’ effect on
Brillouin scattering can be represented by a
simplified mathematical model in Equation (3)
(Naruse and Tateda 1999). After convoluting the
pulses’ spectrum and Brillouin scattering gain, the



spectrum of Brillouin backscattered signals generated
by different pulses are compared in Figure 2.

Figure 2 - The Brillouin spectrum of different pulses
with different parameterisation β of Kaiser-Bessel
shape.

where is the power spectrum of the launched
pulse. H(v) is the Lorentzian shape spectrum of the
Brillouin backscattering light with peak frequency of
and the full width at half maximum (FWHM) of .
The term expresses the frequency variation due to
local acoustic waves, where the variation comes from
the changes in the properties of the fibre, or the
changes in strain or temperature.
Figure 2 shows that the ratio of the peak frequency

power and the whole spectrum power increases while
decreases, indicating that the Brillouin spectrum
expands when the pulse has larger linewidth. The
Figure 3 shows the standard deviation of the peak
frequency for different pulse shapes on a uniform
optical fibre without strain and temperature variance
but with varied averaging numbers. When is equal to
5, the standard deviation is the smallest, which shows
the best frequency resolution and the least
measurement time among the four shapes using
different values. As a comparison, it needs 32 times
of averaging for equal to 5 to achieve a similar
frequency resolution comparing with 256 times of
averaging when is equal to 15.

Figure 3 - The standard deviation of the centre
frequency on the uniform strain section when

different pulses with different average numbers are
applied to the BOTDR system

3 ITERATIVE FILTERING ALGORITHM

Due to the TFL, the improvement in frequency
resolution sacrifices spatial resolution (Luo et al.
2016). Hence, an optimised pulse is needed to offer
an optimised resolution in both time and frequency
domain. As stated in earlier section, the sideband in
frequency domain can increase the standard deviation
of the peak frequency in BOTDR, i.e. reduce the
frequency resolution. Similarly, in time domain, the
increasingly length of the signal tail of the pulse
shape will reduce the spatial resolution. Therefore,
optimisation should focus on the reduction of the
signal tails in time domain and the signal sidebands
in frequency domain.

In this paper, an iterative filtering method to
optimise the pulse shape and enhance the TFL is
introduced by applying iterations to cut off the tails
in time domain and sideband in frequency domain in
consequence cycles to converge to the optimised
pulse shape. The principle is:

1. Start with a rectangular pulse shape with a
predefined frequency spectrum and time length.

2. Transfer the pulse into frequency domain and
find its first positive frequency point that crosses zero
at frequency. Then cut off the power of the rest
harmonics in the sideband by making them to zero.



3. Transfer the modified frequency domain signal
back to time domain. Find its first positive point
which crosses zero along the signal at point and cut
off the power of the rest power after the first zero
point by making them to zero.
4. Repeat step 2 and 3 until the pulse is converged,

which offers the optimised localisation in both time
and frequency domain

In general terms, assume is the signal after N
iterations, the signal after N+1 times iteration will be

Assume the is the fourier transform of signal , then
in frequency domain,

whereis the inverse Fourier transform of and is
the Fourier transform for . is the ideal low pass filter
with cut-off frequency at expressed as

while is the ideal rectangular window with close
time at expressed as

The iteration method can also enhance the SNR of
Brillouin scattering spectrum as shown in Table 1.
The SNR enhancement is different for different pulse
shapes with same iteration number.

Table 1 - The original SNR for pulses given different and
the SNR after the Modification

Pulse Original SNR Modified SNR
23.308 25.495
26.797 28.244
20.257 29.086

The SNR increases when the iteration number is
augmenting (Figure 4). For one iteration, the
frequency sideband reduction is an imperfect cut-off
using a low pass filter and only the main lobe
remains. The tail of the pulse still exists in time
domain. For more iterations, the tail in time domain
approaches to its limit and the sideband power in
frequency domain is gradually compressed to a tiny

level which can be omitted comparing with the
mainlobe power. In Figure 5, the SNR enhancement
will converge after many iterations, which offers the
optimised time-frequency localised pulse using this
iterative filtering algorithm.

(a)

(b)

Figure 4 – (a) The simulation result of pulse shape in time
domain when pulse is original shape with =5 and pulses
are the modified shapes with different iteration numbers.
(b) The simulated Brillouin scattering spectrum when these
pulses are sent into BOTDR system.



Figure 5 The SNR trend when iteration number increases

4 SUPERGAUSSIAN FITTING AND
EXPERIMENTAL RESULTS

The initial pulse is a rectangular pulse with the
pulse width of 50 ns and the period of 1 us. The
iterative filtering method is then applied on the initial
pulse to reduce its tail and sideband in time-
frequency domain in iteration cycles. The optimised
pulse shape is found out to a super-Gaussian curve,
which can be fitted by 7th order Gaussian equations,
whose coefficients are shown in Table 2.

Table 2 – The fitted 7th order super-Gaussian equation and
the coefficients
Equation f(x) = a1*exp(-((x-b1)/c1)^2)

+ a2*exp(-((x-b2)/c2)^2) +
a3*exp(-((x-b3)/c3)^2) +
a4*exp(-((x-b4)/c4)^2) +
a5*exp(-((x-b5)/c5)^2) +
a6*exp(-((x-b6)/c6)^2) +
a7*exp(-((x-b7)/c7)^2)

Coefficients:
a1 0.33280 b1 0.04529 c1 0.05135
a2 0.00019 b2 -0.00397 c2 0.00696
a3 0.00000 b3 0.01891 c3 0.00000
a4 0.88100 b4 -0.01279 c4 0.06381
a5 -0.02095 b5 -0.02148 c5 0.03517
a6 0.12900 b6 -0.08062 c6 0.05222
a7 0.10550 b7 0.09070 c7 0.04861

Figure 6 – Modified pulse and its 7th order Super-Gaussian
fitted curve

The Super-Gaussian pulse, shown in Figure 6, is
experimentally tested in a STFT-BOTDR setup
shown in Figure 7. An ultra-narrow-line-width laser
with 1554.12nm wavelength was used as the light
source. In branch A, after passing a coupler, a part of
the continuous-wave (CW) light was modulated by
an electro-optic modulator (EOM) with the 50 ns
pulse generated by an Arbitrary Wave Generator
(AWG, Agilent 33600). The pulsed light was then
amplified by an Erbium-doped fibre amplifier
(EDFA) and circulated into the sensing fibre to
generate the Brillouin backscattered signal. This
signal was heterodyned with the reference CW light
in branch B and then down-converted to the radio
frequency (RF) range using a wideband photo-
detector. The signal was further down-converted to
the intermediate frequency (IF) range, which was
digitised in time domain and processed using the
STFT signal processing algorithm to obtain the
frequency peaks along the fibre under test.

Figure 7 – The experiment set up of the STFT-BOTDR

As a comparison, the super-Gaussian pulses
(optimised from the 50ns rectangular pulse) is used



as the input and sent into the STFT-BOTDR. The
Brillouin scattering spectrums from the two pulses
are compared, which are both averaged by 1000
times and shown in Figure 8. The super-Gaussian
pulse offers narrower bandwidth of the Brillouin
scattering spectrum comparing with the original
rectangular pulse. The super-Gaussian pulse offers a
larger SNR in the Brillouin scattering signal while
the width of the pulse has changed a little bit, that
remains a similar spatial resolution.

Figure 8-The normalised plot of experiment result of
Brillouin spectrum generated by optimised pulse and
rectangular pulse with same pulse width

5 CONCLUSION

In this paper, the Kaiser-Bessel functions with
different attenuation slopes were used to simulate the
Gaussian, Hamming, Rectangular, and other shapes.
The pulse shapes were compared in terms of the
Brillouin scattering spectrum, showing that the
existence of the sideband in frequency domain would
reduce the SNR of the Brillouin spectrum and limit
the frequency resolution. To compress the sideband
effects without sacrificing spatial resolution, an
iterative filtering algorithm was developed using
iterated cut-offs to reduce the tail and sideband in the
time and frequency domain. The pulse shape was
iteratively optimised in the time and frequency
domain and therefore increases the ratio of the
mainlobe power over the sideband power. The SNR
was improved by optimised iterations. A rectangular

pulse was modified as an illustration and the
optimised pulse was fitted with a 7th order Super-
Gaussian curve. In the experiment of STFT-BOTDR,
the result demonstrated that the optimised pulse
offered a narrower bandwidth of the Brillouin
scattering spectrum comparing to the original
rectangular pulse.
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