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Abstract

The identification of the plastic behaviour of sheet metals at severe defor-

mation is extremely important for many industrial application such as metal

forming, crashworthiness, automotive, aerospace, piping, etc. In this paper,

the virtual fields method (VFM) was employed to identify the constitutive

parameters of anisotropic plasticity models. The method was applied us-

ing the finite deformation theory in order to account for large strains. First

the theoretical principles to implement the method are described in details,

especially how to derive the stress field from the strain field. Afterwards

a numerical validation was performed using the Hill48 model. Several as-

pects were studied with the numerical model: the effect of the used virtual

fields, the minimum number of specimens required to identify the parame-

ters, the stress distribution obtained from the specimen and its influence in

the identification performance. A brief analysis on the influence of noise is

also conducted. Finally a series of experiments was conducted on notched
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specimens of stainless steel, cut along different anisotropic directions. The

displacement and strain fields were obtained by digital image correlation. Af-

terwards, the VFM was used to identify the parameters of the Hill48 model

and the Yld2000-2D model. In this case, the Hill48 model was not able to

correctly describe the material behaviour, while a rather good agreement was

found with the Yld2000-2D model. The potential and the limitation of the

proposed method are finally discussed.
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measurements, virtual fields method

1. Introduction

Nowadays, most metal forming operations are designed with the aid of fi-

nite element (FE) models. However, in order to have reliable predictions, the

computations have to be fed with suitable constitutive models that describe

the mechanical behaviour of the material at the meso-scale level.

In particular, sheet metals often exhibit anisotropic behaviour when they

undergo plastic deformation, this is mainly due to the rolling process adopted

to manufacture the blank sheets, which introduces anisotropy in the metal

texture. This effect has significant influence on sheet metal forming processes

and has to be accurately taken into consideration in order to have reliable

outcomes from FE simulations.

The first step in this direction is the choice of the constitutive model.

Many models for anisotropic plasticity have been developed and described

in the literature, although only few of them are actually used by industry,
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which tends to prefer simple models implemented in commercial FE codes.

Among them, the Hill48 model (Hill, 1948) is still one of the most used

and is implemented in almost every commercial FE code. The main limita-

tion of the Hill48 model is that there is a fixed relation between the yield

stress and Lankford parameter R in different directions. A popular model,

which overtakes the main limitations of Hill48, is Yld2000-2D proposed by

Barlat et al. (2003) and Yoon et al. (2004). Furthermore, Vegter and Van

Den Boogaard (2006) use Bézier curves to describe the yield locus. Cazacu

et al. (2006) extended the work of Barlat et al. (1991) to hexagonal close

packed metals. Examples of models that take into account the Lode’s angle

dependency have been presented by Bai and Wierzbicki (2008) and Cortese

et al. (2014). Other interesting contributions have been given by Darrieulat

and Piot (1996), Feigenbaum and Dafalias (2007) and many other examples

could be provided.

Once the constitutive model is selected, the next step is to identify the

corresponding material parameters from experiments. This calibration is

essential to have reliable results. Usually the experiments consist in simple

uniaxial tests where the state of stress within the specimen is well known

and can be simply deduced from the measured force.

Recently, however, strategies based on full-field measurements and inverse

methods have seen significant growth (Grédiac et al., 2012). In this case,

a specimen with a non-regular geometry is tested, the displacement field

is measured with a full-field technique (e.g digital image correlation, grid

method) and used to identify the material parameters. The advantage is that,

from a single test, many different stress-strain conditions can be investigated
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at the same time.

The inverse identification can be carried out by finite element model up-

dating (FEMU), i.e. the experimental measurements are compared with that

obtained from an FE model of the same test and the material parameters

are iteratively updated in order to obtain the best fit between numerical

and experimental results. Many applications of FEMU to plasticity have

been reported in the literature. To give a brief overlook, Kajberg and Lind-

kvist (2004) applied FEMU to large strain plasticity, Lecompte et al. (2007),

Cooreman et al. (2008) and Teaca et al. (2010) used biaxial tests and DIC

to identify the anisotropic behaviour of sheet metals, Güner et al. (2012)

used a FEMU approach to calibrate the Yld2000-2D parameters, showing

the convenience of including full-field measurement in the cost function.

On the other hand, several inverse techniques do not require the use

of FE to perform the inverse identification. For instance Coppieters et al.

(2011) and Coppieters and Kuwabara (2014) used a cost function based on

the comparison of the internal and external work. Rossi et al. (2008) used the

equilibrium of transverse sections of the specimen. Among those approaches,

the virtual fields method (VFM) is one of the most used and widespread

(Pierron and Grédiac, 2012).

The application of the VFM to plasticity was firstly addressed by Grédiac

and Pierron (2006), Pannier et al. (2006) and Avril et al. (2008). Then many

other applications have been presented, for instance Le Louëdec et al. (2013)

applied the VFM to the elasto-plastic behaviour of welded materials, Pierron

et al. (2010) investigated cyclic loads and kinematic hardening, Kim et al.

(2013) look at the post-necking strain hardening behaviour.
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The first application of VFM to anisotropic plasticity was published by

Rossi and Pierron (2012a), where a complete three-dimensional framework

for large strain plasticity is presented, an application to planar anisotropy

was then developed by Kim et al. (2014) using Σ-shaped specimens.

In this paper, an application of the VFM to anisotropic plasticity at

large strain is presented, with the intent of investigating several aspects that

characterize this specific inverse problem and that were not yet evaluated

in the previous studies. In particular, the main novelties introduced in this

paper are

• the VFM is adapted to large strains and a direct stress reconstruction

algorithm is used that allows to reduce the computational time;

• the influence of the stress state on the identification is studied in detail

using a normalized stress plane, which permits to verify which zones of

the yielding surface are covered by the experiments;

• the influence of noise, different virtual fields, and specimen orientation

is evaluated;

• the Yld2000-2D model is implemented and used to identify the plastic

behaviour on experimental data,

The paper is organized as follows: Section 2 describes the theoretical

model and the implementation of the Hill48 and Yld2000-2D criteria, Sec-

tion 3 presents a numerical validation using Hill48 as reference, Section 4

describes the experiments performed on a stainless steel sheet metal and

Section 5 illustrates and discusses the results of the VFM identification on

the experiments using both Hill48 and Yld2000-2D.
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2. Theoretical model

The VFM is employed here to identify the parameters of an anisotropic

plasticity model at large strain. The same procedure as described by Rossi

and Pierron (2012a) for a general three-dimensional case is adapted to the

plane stress case, using the Hill48 yield criterion.

2.1. The non-linear VFM at large strains

The VFM relies on the principle of virtual work which is an integral

form of mechanical equilibrium. In finite deformation, there is a distinction

between the reference placement B0 of the body and its current placement

Bt at time t. Let us consider an arbitrary continuous and differentiable

vectorial field δv. In absence of body forces and acceleration, the principle

of virtual work, in the current placement, can be written as:

∫
Bt

T : δD dv =

∫
∂Bt

t · δv da (1)

where T is the Cauchy stress tensor, t is the stress vector at the boundary of

the solid, in the current placement, dv and da are the infinitesimal elements

of volume and area in the current placement Bt and δD is defined as1:

δD = 1
2

(
grad δv + gradT δv

)
(2)

The integrals of Eq. 1 are computed in the current placement Bt, using an

Eulerian or spatial description. However, the same equation can be rewrit-

1at large strains, the principle of virtual work is sometimes named principle of virtual

power because δv can be viewed as a virtual velocity field and δD as a virtual stretch rate

tensor.
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ten in terms of the reference placement B0 using a Lagrangian or material

description. It follows:

∫
B0

T1PK : δF• dv0 =

∫
∂B0

(
T1PKn0

)
· δv da0 (3)

where T1PK is the 1st Piola-Kirchhoff stress tensor, defined as:

T1PK = det (F) T F−T (4)

and δF• is the gradient of δv in the Lagrangian description:

δF• = Grad δv (x0, t) (5)

Eq. 1 and Eq. 3 are mathematically equivalent and have to be satisfied at

each time t of the test. In this application, the Lagrangian description is more

convenient, because it allows writing the virtual field δv in the undeformed

configuration and it will be adopted accordingly.

Let us now consider a general plasticity model governed by Ncp constitu-

tive parameters and call ξ =
{
X1, X2, . . . , XNcp

}
the vector of such parame-

ters. The constitutive model links the stress field to the strain field, which,

in turn, is derived from the displacement field u. Therefore, the stress field

at time t is a function of ξ and u:

T = T (ξ, u|0→t) (6)

Since plasticity is a path dependent process, the whole displacement his-

tory of u, from time 0 to t, has to be considered, as specified in Eq. 6. In

inverse problems, the displacement history is known from the experiments
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while the constitutive parameters have to be identified. To this purpose the

following function can be defined:

ψ (ξ, δv, t) =

∣∣∣∣∫
B0

T1PK · δF• dv0−
∫
∂B0

(
T1PKn0

)
· δv da0

∣∣∣∣ (7)

According to the principle of virtual work stated in Eq. 3, the function

ψ has to be zero for any admissible virtual fields δv, at any time t of the

test. Considering Nv admissible virtual fields and Nt time steps of the test, a

general cost function can be written in terms of the constitutive parameters ξ:

Ψ (ξ) =
1

NvNt

Nv∑
i=1

Nt∑
j=1

ψ (ξ, δvi, tj) (8)

The non-linear VFM consists in the minimization of Eq. 8. This allows

finding out the parameters that best satisfy the equilibrium law, written in

the form of the principle of virtual work. Key elements for the success of

the non-linear VFM are the procedure to evaluate the stress field from the

measured displacement field and the choice of virtual fields. These aspects

will be covered in the next sections.

2.2. Computation of stress from the displacement field

The stress field is computed starting from the displacement field, which is

measured by experiments. Different algorithms can be used to this purpose.

For instance, Kim et al. (2013) used the measured displacement field to

determine the nodal displacement of a triangular mesh generated over the

area of measurements, then the problem is handled using the same relations

as in FE with prescribed nodal displacements.
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In this paper, the procedure described by Rossi and Pierron (2012a) has

been used, adapted to the plane stress condition and the Hill48 yield crite-

rion. The idea is that the stress field at time t can be derived directly from

the direction of the plastic flow and the cumulated equivalent plastic strain.

This approach is easy to implement and can be readily adapted to other

constitutive models.

A generic yield criterion is defined as a function of the Cauchy stress T:

Φp (T) = σT (T)− σY = 0 (9)

where σT is the equivalent stress, a scalar function of the current stress state

T, and σY is the yield stress, identified as the yield limit in a uniaxial tensile

test in a certain material direction. According to the Hill48 model, the

equivalent stress function writes:

σT (T) =
[
f (σ22 − σ33)2 + g (σ33 − σ11)2 +

h (σ11 − σ22)2 + 2l σ2
23 + 2m σ2

31 + 2n σ2
12

]1
2 (10)

where σij are the components of T written in a coordinate system oriented

to the anisotropic axes (see Figure 1), and f, g, h, l,m, n are constants which

describe the anisotropic behaviour. In plane stress condition (σ33 = σ13 =

σ31 = 0), Eq. 10 reduces to:

σT (T) =
[
(g + h)σ2

11 + (f + h)σ2
22 − 2h σ11σ22 + 2n σ2

12

]1
2 (11)

The four anisotropic constants of Eq. 11 can be obtained as a function of

the Lankford parameter R (Lankford et al., 1950), measured in three different
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orientations. R is the ratio of the transverse to the through thickness strain

in a uniaxial tensile test. Accordingly, the anisotropic parameters can be

obtained as follow (Banabic et al., 2000):

f =
R0

(1 +R0)R90

; g =
1

1 +R0

; h =
R0

1 +R0

; n =

(
1

2
+R45

)(
1 +

R0

R90

)
;

(12)

with R evaluated at 0◦, 45◦ and 90◦ with respect to the first anisotropic

direction, which is usually the rolling one in sheet metals. From the yield

criterion, using an associative flow rule, the direction of the plastic flow is

deduced as:

N̂p =
d Φp (T)

d T

/∣∣∣∣d Φp (T)

d T

∣∣∣∣ (13)

where N̂p =
{
n̂pij
}

is the versor which indicates the direction of the plastic

flow. Let us now rewrite the stress tensor T in terms of the versor N̂T =
{
n̂Tij
}

that defines the “direction”of the stress tensor:

T = |T| N̂T (14)

From Eq. 11, Eq. 13 and Eq. 14, the direction of the plastic flow for Hill48

becomes:

d Φp (T)

d T
= σ

− 1
2

T


(h+ g) −h 0

−h (f + h) 0

0 0 2n



n̂T11

n̂T22

n̂T12

 (15)

this relation can be inverted to obtain the direction of the stress tensor:
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N̂T =
A N̂p∣∣∣A N̂p

∣∣∣ (16)

with

A N̂p =


f + h h 0

h h+ g 0

0 0 gf+gh+hf
2n



n̂P11

n̂P22

n̂P12

 (17)

The versor of the stress tensor N̂T is directly derived from the direction

of the plastic flow N̂p. The modulus of the stress tensor |T| from the versor

N̂T can also be computed. Indeed, from Eq. 9 and Eq. 11:

σT (T) = σT

(
|T| N̂T

)
= |T|σT

(
N̂T

)
= σY (18)

and:

|T| = σY

[
(g + h) n̂T11

2
+ (f + h) n̂T22

2 − 2h n̂T11n̂
T
22 + 2n n̂T12

2
]−1

2
(19)

Then stress tensor T is obtained from Eq. 14.

The yield stress σY depends on the hardening law, which is usually a

function of the equivalent plastic strain. The procedure above, applied to

the Hill48 yield function, is general and can be adapted to any plasticity

model with a convex yield locus. For more in-depth insight on this, the

reader is referred to Rossi and Pierron (2012a).

The hardening law used here is Swift’s law expressed by:

σY = KH (p+ ε0)
NH (20)
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where σY is the yield stress, KH , ε0 and NH are the model parameters, and

p is the equivalent cumulated plastic strain. The equivalent plastic strain is

defined so that the plastic work can be expressed in terms of the equivalent

stress, that is:

∫ p(t)

p(0)

σY dp =

∫ Ep(t)

Ep(0)

T : dEp (21)

where Ep is the plastic strain tensor. Combining Eq. 9, Eq. 11 and Eq. 14,

the increment of plastic strain dp at time t can be obtained in terms of N̂T

and N̂p as:

dp =
N̂T : N̂p

σT

(
N̂T

) |dEp| (22)

The plastic flow direction can be defined as the direction of the plastic

strain rate tensor, i.e.:

N̂p = Ep
k
• / |Ep

k
•| (23)

Considering a sufficiently small strain increment, the plastic strain rate

at time t can be evaluated as:

Ep • =
∂Ep

∂t
≈ Ep(t) − Ep(t−1)

∆t
=

∆Ep(t)

∆t
(24)

where Ep is the plastic strain tensor. Since the plastic deformation is isochoric

in pressure-independent plasticity and, at large strains, the elastic part is

small compared to the plastic one, the plastic strain tensor Ep(t) can be

approximately reduced to the deviatoric part of the total strain tensor E(t):
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Ep ≈ E− 1
3
tr (E) I (25)

The total strain tensor is computed as the spatial logarithmic strain or

Henky strain tensor:

E = lnV (26)

where V is obtained by polar decomposition of the deformation gradient F:

F = VR (27)

and F is computed from the displacement field u:

F = Grad u (x0, t) + I (28)

The displacement u is measured by a full-field optical method during

the experiment. The displacements are computed at coordinates x0 in the

reference placement. This is what most commercial Digital Image Correlation

(DIC, Sutton et al., 2009) software do, which is the reason why the reference

placement has been considered here.

The strain tensor Ep however cannot be directly used to compute the

stress. The deformation is defined in the global coordinate system while the

plastic flow law and the yield function are written according to the material

coordinate system aligned with the anisotropy axes, see Eq. 11.

Let us denote R|mat the rotation tensor to rotate the global coordinate

system into the material one in the reference placement. In the deformed
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Figure 1: Finite deformation of the specimen, reference and current placement, rotation

of the material axes and corresponding stress and strain tensors

configuration, the deformation tensor in the material coordinate system will

be obtained by:

Ep|mat = R|Tmat
(
RT Ep R ) R

∣∣
mat

(29)

where R is the rotation tensor obtained in the polar decomposition of the

deformation gradient tensor F. The rotated strain tensor is used in Eqs. 23

and 24 to obtain the plastic flow versor N̂p. Then, Eqs. 14, 16 and 19 are

applied to derive the Cauchy stress tensor T|mat, which is still in the material

coordinate system. Finally, the Cauchy stress tensor is rotated back to global

coordinate system:

T = R|mat
(
R T|mat RT

)
R|Tmat (30)

The stress tensor, written in the global coordinate system, is used to
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obtain the 1st Piola-Kirchhoff tensor (Eq. 4), which will be used in the VFM

formulation of Eqs. 7 and 8. Figure 1 shows a schematic of the specimen in

the reference and deformed placements, and summarize the stress and strain

tensors that have to be considered in the various cases.

2.3. Implementation of the Yld2000-2D model

In this section, the steps to implement the Yld2000-2D model in the stress

computation routine are illustrated. This model will be used in Section 5 to

identify the properties of a stainless steel sheet metal. This will allow to make

a comparison with Hill48 in an actual case, showing some of the shortcomings

of Hill48.

The equivalent stress for the Yld2000-2D criterion is:

σT (T) =

[
1

2

(
|X ′1 −X ′2|

a
+ |2X ′′2 +X ′′1 |

a
+ |2X ′′1 +X ′′2 |

a)] 1
a

(31)

where X ′1, X
′
2 and X ′′1 , X

′′
2 are the principal values of the X′ and X′′ tensors

obtained from the Cauchy stress tensor T with the following transformation:

 X′ = L′T

X′′ = L′′T
(32)

with L′ and L′′:

L′ =


2α1

3
−2α1

3
0

−2α2

3
2α2

3
0

0 0 α7

 (33)
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L′ =


8α5−2α3−2α6+2α4

9
−4α6−4α4−4α5+α3

9
0

−4α3−4α5−4α4+α6

9
8α4−2α6−2α3+2α5

9
0

0 0 α8

 (34)

and α1,...,8 are the parameters that have to be identified. In order to compute

the stress field, the same procedure as that described in Section 2.2 can be

employed, using Eq. 31 instead of Eq. 11. With an associated flow rule,

Eq. 13 is still valid:

N̂p =
d Φp (T)

d T

/∣∣∣∣d Φp (T)

d T

∣∣∣∣
However, the computation of N̂p is not straightforward because of the

transformation. All the steps to compute the derivatives are detailed by

Yoon et al. (2004). Afterwards, in order to compute the stress versor N̂T ,

Eq. 13 has to be inverted. In this case, this cannot be done directly as in

Eq. 16. However it can be easily achieved numerically by interpolation.

Apart from these changes, the procedure for Yld2000-2D remains the

same than the one described for Hill48.

2.4. Check of the plasticity occurrence

The procedure described above allows for computing the stress tensor if

the considered strain increment is plastic. Therefore, at each step t, a check

is performed to evaluate if the considered step is in the elastic or plastic

domain

First, a trial stress Ttrial
(t) is obtained assuming that the increment is

purely elastic. Then, the yield criterion (Eq. 10) and the hardening law
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(Eq. 20) are used to check if the element undergoes plastic deformation.

Two cases are possible:

1. the element remains in the elastic domain

σT

(
Ttrial

(t)
)
− σY

(
p(t−1)

)
< 0

then

T(t) = Ttrial(t)

p(t) = p
(t−1)
k

2. the element is in the plastic domain

σT

(
Ttrial(t)

)
− σY

(
p(t−1)

)
> 0

then

T(t) computed from the routine of Sec. 2.2

p
(t)
k = p(t−1) + ∆p(t)

The current increment of plastic strain ∆p(t) is computed using Eq. 22.

The procedure is valid both for loading and unloading. If, within the same

increment, some part is elastic and some plastic, as for instance when the

first yielding occurs, the increment is subdivided in elastic and plastic parts.

2.5. Definition of the virtual fields

The optimal selection of virtual fields (VFs) for elasto-plasticity is still

an open question. In elasticity, the most used system to generate optimised

virtual fields was proposed byAvril et al. (2004): according to this method,

special virtual fields are automatically generated in order to minimize the

sensitivity to noise. Pierron et al. (2010) also applied a similar approach in

plasticity but with a relative success only. Indeed, in plasticity, the level of
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deformation is usually much larger than in elasticity and the noise-to-signal

ratio is small. This means that noise sensitivity is most relevant optimisation

criterion to define virtual fields and other strategies have to be considered.

Here, the virtual fields have been selected empirically based on previous

experience from the authors. The problem of automatic definition of op-

timized virtual fields is still an outstanding problem in the Virtual Fields

Method, however, progress on this is expected soon and will be released in a

future publication. This is of particular importance for anisotropic plasticity

where the relative contribution of the different stress components to the cost

function is of primary interest. Here, the following virtual fields were defined,

as a first attempt to include all stress components in the cost function:

δv(1) =


δvx = 0

δvy =
y

H

δv(2) =


δvx =

x

W

(|y| −H)

H

δvy = 0

δv(3) =

{
δvx = δvy = 1

π
sin
(
π x
W

)
cos
(
π y

2H

)

(35)

H and W are the height and the width of the specimen area where the VFM

is defined. When y = ±H, δvx = 0 and δvy is constant (δv(1)) or zero (δv(2)

and δv(3)). Such condition allows simplifying the second integral of Eq. 7 so

that only the resultant of the forces in the y-direction, i.e. the load measured

during the test by the load cell, is used to compute the external virtual work.
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Figure 2: Schematic of the origin of axes and plot of δv for the three considered VFs

This operation is typical in VFM practise and will not be commented further,

more details are given by Pierron and Grédiac (2012). The origin of axes x

and y is placed at the centre of the specimen, as illustrated in Figure 2. The

same figure also plots the components ot the used VFs.

The gradient δF• of the virtual displacement writes:
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δF• (1) =

0 0

0
1

H



δF• (2) =

(|y| −H)

WH
sgn (y)

x

WH

0 0



δF• (3) =

 1
W

cos
(
π x
W

)
cos
(
π y

2H

)
− 1

2H
sin
(
π x
W

)
sin
(
π y

2H

)
1
W

cos
(
π x
W

)
cos
(
π y

2H

)
− 1

2H
sin
(
π x
W

)
sin
(
π y

2H

)


(36)
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Figure 3: Plot of the components of δF• for the three considered VFs

In order to compute the internal virtual work (first integral of Eq. 7),

each component of Piola-Kirchhoff stress tensor T1PK is multiplied by the

corresponding component of δF•. Using the 1st VF, only T 1PK
yy , that is the

stress component in the loading direction, is considered in the internal virtual
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work. The 2nd VF, instead, involves T 1PK
xx and T 1PK

xy . The 3rd VF, finally,

has all non-zero components, therefore it activates all the four components

of T1PK .

A graphical representation of the three VFs is provided in Figure 3, the

contour maps shows that the average value is similar for the different VFs,

so that, when they are used together in Eq. 8, their relative weight is com-

parable.

3. Numerical validation

The numerical validation was performed using FE simulations that repro-

duce a tensile test on notched specimens, using the Hill48 criterion. Figure 4a

illustrates the geometry of the specimen, which is the same as that used in

the experiments. The notched shape is often used because it is able to pro-

duce an heterogeneous strain field, is easy to machine, and, in plasticity,

allows to have a large zone of the specimen under plastic deformation. This

is particularly valuable looking at large strains, while for instance Σ−shaped

specimens, like the ones proposed by Kim et al. (2014), localize the strain in

a small area and leaves the majority of the specimen at low deformations.

However, the design of an optimized specimen is still an open problem. Re-

cent advances in test specimen design for orthotropic elasticity have been

published (Gu and Pierron, 2016) based on a simulator which reproduces the

whole identification process, also taking into account the systematic errors

caused by the DIC measurements. Extension of this to elasto-plasticity is

on the way, although this will be greatly computationally expensive as many

identification problems need to be solved in the process. In any case, this is
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beyond the scope of the present paper.

In the future optimization methods could be adopted to find out the best

geometry, as done for instance by Wang et al. (2016) for polymeric foams or

by Rossi and Pierron (2012b) for orthotropic composite materials.

The element orientation can be varied with respect to the loading di-

rection, in order to reproduce specimens cut in different directions. As a

convention, angle α measures the rotation between the rolling and the load-

ing direction. The global coordinate system is denoted {x, y}, where y is the

loading direction, while the local coordinate system is denoted {1, 2}, where

1 represents the rolling direction.

The FE model illustrated in Figure 4b was built up with ABAQUS stan-

dard, using CPS4 elements (four nodes, bilinear shape functions, full inte-

gration) and large displacement formulation. A total displacment of 30 mm

(10% of the specimen’s length) was applied to one end of the specimen. Fig-

ure 4b shows the used mesh and a contour plot of the equivalent plastic

strain at the last increment of the test, which is around 0.5. The contour

map indicates that the deformation field, and accordingly the stress field, is

heterogeneous thanks to the round notches at the sides of the specimen.

The nature of the generated stress field can be better depicted in the

graph of Figure 5, which plots a 2D view of the yield surface. In this type of

graphs, used for instance by Barlat et al. (2003), the horizontal and vertical

axes represent the σ11 and σ22 stress components, normalized according to

the equivalent stress. The 3rd axis, perpendicular to the figure plane, repre-

sents the normalized shear stress σ12. The anisotropic yield surface can be

therefore represented as contour lines, where the external line represent the
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Figure 4: Specimen geometry (units: mm) and corresponding FE model. The equivalent

plastic strain map is shown for an end’s displacement of 30 mm (α = 0◦)
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yield surface when the shear stress σ12 = 0 and the origin is the condition of

pure shear.
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Figure 5: Distribution of the stress

In this chart, each point represents a different state of stress. Since the

stress is normalized, all points of all time steps can be introduced in the

same graph. A practical recommendation of the VFM is that the specimen

should produce a sufficiently heterogeneous state of stress, so that different

stress conditions can be evaluated at the same time. With the adopted con-

figuration, using a single specimen, only a small part of the yield surface

can be covered, as illustrated in Figure 5. For instance, using a specimen

with α = 0◦, only the zone close to uniaxial tensile tension in the 1st direc-

tion is covered. Also, even when using notched specimens at three different

orientations, the pure shear and the biaxial conditions cannot be reached.
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As a first numerical check, the VFM was applied to the strain maps

generated with the FEM computations without any noise. In order to check

the stress reconstruction algorithm described in Section 2.2, Figure 6 shows

a comparison between the Cauchy stress tensor computed by FEM and the

one obtained from the displacement field using the proposed method. A good

agreement is found.
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Figure 6: Comparison between the FEM and computed stress components using the re-

construction routine

The results of the identification with the VFM are summarized in Ta-

ble 1. The combination of 3 VFs always improves the identification. Using

a single specimen at 0◦, R90 cannot be identified and conversely for R0 with
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a specimen at 90◦.

The specimen cut at 45◦ however allows to correctly identify all param-

eters, with an error lower than 1%, when the three VFs are used. Similar

results are obtained introducing both 0◦ and 90◦ specimens in the cost func-

tion. These results can be explained looking at the graph of Figure 5, the

45◦ specimen covers a larger part of the yield surface and allows looking at

both anisotropy directions. The same result can be obtained combining the

0◦ and 90◦ specimen.
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Figure 7: Strain increment fields with noise, without and with temporal smoothing

A second validation was conducted to evaluate the effect of noise. Dealing

with large deformation, noise has a minor impact on identification, however,

in order to define the direction of the plastic flow, the strain increment ∆E

is used in Eq. 24. This value can be small enough so that noise plays a role.

Two levels of noise were considered with a standard deviation of 10−3 and

5 · 10−3, respectively. The first represents a rather large strain uncertainty
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Specimen Virtual Fields identified parameters

configurations K ε0 N R0 R45 R90

Reference 1000 0.02 0.5 1.8 1.1 2.5

0◦ V F1 1208.5 0.0171 0.4799 0.58 0.33 0.47

Error -20.85% 14.52% 4.02% 67.56% 70.04% 81.32%

V F1 + V F2 1010.2 0.0169 0.4812 1.93 1.05 1.20

Error -1.02% 15.46% 3.77% -7.44% 4.67% 52.00%

V F1 + V F2 + V F3 1017.1 0.0176 0.4871 1.79 1.17 1.47

Error -1.71% 12.19% 2.58% 0.65% -6.72% 41.17%

90◦ V F1 1048.8 0.0188 0.5049 2.17 1.61 2.38

Error -4.88% 6.03% -0.98% -20.49% -46.55% 4.98%

V F1 + V F2 975.6 0.0201 0.5030 1.74 1.01 2.62

Error 2.44% -0.48% -0.61% 3.49% 8.37% -4.61%

V F1 + V F2 + V F3 702.0 0.0207 0.4714 0.62 1.07 2.58

Error 29.80% -3.38% 5.72% 65.63% 2.94% -3.14%

45◦ V F1 906.0 0.0198 0.4982 2.32 1.21 3.00

Error 9.40% 0.78% 0.36% -29.14% -10.30% -20.00%

V F1 + V F2 1014.7 0.0198 0.5035 1.57 1.12 2.59

Error -1.47% 1.10% -0.70% 12.96% -1.97% -3.58%

V F1 + V F2 + V F3 994.5 0.0197 0.5016 1.80 1.09 2.50

Error 0.55% 1.49% -0.32% 0.21% 1.00% -0.15

0◦ + 90◦ V F1 992.9 0.0189 0.4987 1.79 1.47 2.47

Error 0.71% 5.66% 0.25% 0.79% -33.74% 1.30%

V F1 + V F2 995.7 0.0200 0.5047 1.84 1.03 2.56

Error 0.43% 0.01% -0.94% -2.23% 6.59% -2.51%

V F1 + V F2 + V F3 1005.3 0.0196 0.5029 1.77 1.11 2.45

Error -0.53% 1.79% -0.59% 1.41% -0.84% 2.01%

Table 1: Results of the numerical validation, different combination of VFs and specimen

orientations are considered
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for DIC measurements (Sutton et al., 2009), the second a severe (unrealistic)

noise condition. Noise was directly applied as a random number to the strain

field. For the higher noise condition, temporal smoothing (Le Louëdec et al.,

2013) was introduced to reduce the noise effect, as illustrated in Figure 14.

Temporal smoothing was performed by computing the strain rate at time

t using more time steps and performing a polynomial fitting. This can be

efficiently implemented using a convolution method as the one provided by

Savitzky and Golay (1964).

The strain rate of Eq. 24 can be rewritten as:

Ep • =
∂Ep

∂t
≈

m∑
j=−m

hjE
p(t+m)

∆t
(37)

thus, the strain rate at the time t is computed using 2m+1 steps. A procedure

to compute the convolution weights hj is given by Gorry (1990), the method

allows considering also the end points of the data set. In the present case,

the smoothing was performed using 7 points (m = 3).

Table 2 shows the parameters identified for the different cases. With the

low noise level, all parameters are identified with a good confidence, even

if no smoothing is applied. With the high noise level, the identification is

not correct, with errors over 10% for most of the identified parameters. As

expected, looking at the anisotropy parameter R, using the 45◦ specimen

a poor identification is obtained for R0 and R90; combining the 0◦ and 90◦

specimens, a larger error is obtained for R45. With temporal smoothing,

a correct identification is obtained for all parameters except ε0. However,

this parameter, used in Eq. 20, has a marginal impact in the definition of
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Specimen Noise Identified Parameters

configurations standard

deviation K ε0 N R0 R45 R90

Reference 1000 0.02 0.5 1.8 1.1 2.5

45◦ 1 · 10−3 983.7 0.0188 0.4966 1.88 1.08 2.50

Error 1.63% 5.92% 0.67% -4.69% 1.80% 0.16%

5 · 10−3 807.8 0.0022 0.4065 3.00 1.00 2.96

Error 19.22% 89.13% 18.70% -66.67% 8.72% -18.48%

5 · 10−3 smoothed 974.9 0.0277 0.5018 1.80 1.09 2.62

Error 2.51% -38.50% -0.37% -0.09% 1.21% -4.76%

0◦ + 90◦ 1 · 10−3 999.6 0.0184 0.4951 1.78 1.12 2.45

Error 0.04% 8.04% 0.98% 1.15% -1.64% 1.81%

5 · 10−3 918.0 0.0001 0.3714 1.80 1.31 2.48

Error 8.20% 99.50% 25.72% -0.18% -19.20% 0.68%

5 · 10−3 smoothed 1002.4 0.0295 0.5079 1.78 1.13 2.46

Error -0.24% -47.68% -1.59% 1.09% -2.73% 1.73%

Table 2: Influence of noise on VFM identification

the hardening law (Rossi and Pierron, 2012a). Therefore its variation does

not introduce significant modification in the identified true stress-true strain

curve.

The main outcomes of the numerical validation can be summarized as

follow:

• the effectiveness of the VFM depends on the heterogeneity of the stress

field. The spread of stress distribution can be visualized conveniently

in a normalized stress plane (Figure 5);

• the adopted notched specimens generate a state of stress that spans
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Specimen Virtual Fields Iter. Ψ eval. CPU time Ψ av. time

configuration [s] [s]

0◦ V F1 74 604 1335 2.2

V F1 + V F2 74 606 1333 2.2

V F1 + V F2 + V F3 76 602 1328 2.2

0◦ + 90◦ V F1 55 538 2367 4.4

V F1 + V F2 55 537 2362 4.4

V F1 + V F2 + V F3 56 519 2284 4.4

Table 3: CPU time used to perform the identification

only a small part of the yield surface. However, for the Hill48 crite-

rion, good identification can be obtained using a 45◦ specimen or the

combination of 90◦ and 0◦;

• the combination of three virtual fields allows reducing the identification

error;

• strain noise does not represent a major problem. In case of severe noise,

temporal smoothing applied to the strain field significantly increases

the quality of the identification.

3.1. Computational time

In the eventuality of using an inverse identification method at the indus-

trial level, the computational time becomes an important aspect that should

be taken into consideration. One advantage of the VFM is that the identifica-

tion routine is rather fast compared to, for instance, finite element updating,

where an FE model has to be run for each iteration.
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Table 3 shows the time required to perform the identification. The anal-

ysis was performed with a standard computer (Intel R© CoreTM 2 CPU 6700

@ 2.66GHz 2.66GHz, RAM: 4.00 GB) using non-optimized Matlab routines.

The time required for a single iteration is about 2.2 s when a single test is

considered. This is more or less constant regardless of the number of virtual

fields used in the cost function. The time for a cost function evaluation

is however doubled when a second test is introduced because of the stress

reconstruction. On the other hand, when two tests are used, the number

of iterations required to identify the parameters is reduced from 74 − 76 to

55−56. Therefore the overall CPU time needed to perform the identification

is less than double compared to the identification with a single test.

This computational time could be definitely reduced using faster pro-

gramming languages and higher CPU speed, showing the potentiality of this

method to be used in industrial applications, where time is an important

added value.

4. Experiments

The experiments were conducted on notched specimens with the same

geometry used in the numerical validation, and illustrated in Figure 4a. The

specimens were cut from a blank sheet of stainless steel, 0.75 mm thick. Three

different cutting directions were used: 0◦, 45◦ and 90◦. The yield stress and

the Lankford parameter measured in the three directions by standard uniaxal
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Dir. Thick. Rp0.2 Rm A80 Ag R

3% 5% 10% 15% 20%

mm MPa MPa % %

0◦ 0.75 128 296 45 25 1.8 1.9 1.9 1.9 1.9

45◦ 0.75 138 305 43 24 1.5 1.5 1.5 1.6 1.6

90◦ 0.75 132 294 44 25 2.1 2.1 2.2 2.2 2.3

Table 4: Results of uniaxial test according to EN 10002-1 for three directions . R is

evaluated at different levels of engineering strain

tests, according to the EN 10002-1 standard2, are listed in Table 4.

The full-field displacement field was obtained by stereo Digital Image Cor-

relation (DIC), using the commercial software VIC-3D. We used black and

white sprays to create the speckle pattern onto the specimen surface (white

background and black speckles). The thickness of the paint was kept thin so

that it was able to undergo large deformation without flaking. An example

of the speckle pattern obtained during the test is illustrated in Figure 9. It

is able to follow the deformation of the specimen up to the final fracture.

The experimental set-up is illustrated in Figure 8. An INSTRON-880

tensile machine with hydraulic grips was used to perform the tests. The

cameras are two JAI Pulnix TM-4000CL. Table 5 summarizes the information

about the sensor, the camera noise, the DIC settings and the displacement

and strain resolution.

2Rp0.2 = 0.2 % offset yield strength; Rm = tensile strength at maximum force;

A80 = percentage elongation after fracture; Ag = Percentage elongation at maximum

force.
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Figure 8: Experimental set-up

Figure 9: Example of the speckle pattern used during the test in the undeformed and

deformed configuration.
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Technique used Stereo digital image correlation

Sensor and digitization 2048 × 2048, 10-bit

Camera noise (% of range) 0.6 %

Pixel to mm conversion 1 pixel = 0.055 mm

ROI (mm) 100 mm × 80 mm

Subset, step 27, 5

Interpolation, shape functions, bilinear, affine

Correlation criterion ZNSSD

Pre-smoothing Gaussian 5

Displacement resolution 0.01 pixels, 0.55 µm

Strain derivation 2nd order polynomial fitting

Strain window 5× 5

Strain resolution 2.5 · 10−4

Table 5: Sensor characteristics, DIC settings, displacement and strain resolution.

The correlation algorithm was run using a subset window of 27 pixels and

a step of 5 pixels between two measurement points. The incremental correla-

tion options was used, i.e. each image is correlated with the previous one and

the measured incremental displacement is added to the one measured in the

previous step. Figure 10 shows an example of displacement fields obtained

from the experiments, the red box highlights the zone of the specimen used

subsequently for the VFM. In this zone, with the adopted settings, 101×216

measurement points were obtained for each step.

The VFM was restricted to this smaller zone for two reasons: first, it re-

mains planar up to large strains whereas the external parts of the specimen
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tend to wrinkle as the deformation increases; secondly, the plastic flow local-

izes within this zone while the external parts mainly remains in the elastic

regime. In the future, however, the geometry and the experimental set-up

should be modified to better exploit the spatial resolution of the stereo-DIC

measurement.
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Figure 10: Displacement field measured by stereo DIC, the zone used to perform the

identification is highlighted by the red box

Stereo DIC allows recording out-of-plane movements, which can be caused

by misalignments of the camera with respect to the specimen surface or by

instabilities (buckling, wrinkling, etc.) of the sheet metal during deformation.

In this case, plastic instabilities occurs in all specimens at the final stage of

the test. Figure 11 shows the onset of instability in terms of out of plane

displacement. Nonetheless, 48 time steps were recoreded before the onset of

instability and used to perform the VFM identification. At the final available

step, the maximum engineering strain was around 20%, which is already in

the large plasticity region. In the future, in order to investigate larger strains,
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Figure 11: Out of plane movements measured after the onset of plastic instability

the shape of the specimen should be optimized to avoid, or postpone, the

instability.

The cameras were synchronized with the load cell so that, for each image,

the system records the corresponding tensile force. The measured force versus

displacement curves are plotted in Figure 12. The variation between the tests

is due to the anisotropic behaviour of the material.

5. Results and discussion

In the following section, the parameter identification performed with the

VFM from the experimental data is discussed.

5.1. Application of the Hill48 criterion

First, the VFM was used with the experimental data in order to identify

the parameters of the Hill48 model. The logarithmic strain E (Eq. 26) at each

step was computed from the measured displacement field. Spatial smoothing

was used before differentiation by fitting the best second order polynomial
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to a 5 × 5 data points window. Strain components were obtained from the

polynomial coefficients. A simple noise analysis performed on still images of

the same specimen provided a standard deviation of strain of around 2.5·10−4.

This value is comparable with other published data (Badaloni et al., 2015).

Figure 13 shows a typical strain map obtained during the tests, for the

three strain components. Because of the large deformation and the favourable

noise-to-signal ratio, the total strain fields were only marginally affected by

noise.

As mentioned in Section 3, the effect of noise is visible on the strain

increments ∆E. In this case, temporal smoothing was performed over 5 time

steps to reduce noise (m = 2). Figure 14 show the strain increment fields

before and after temporal smoothing.
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Figure 14: Experimental strain increments, with and without temporal smoothing (Force:

9.7 kN, direction: 90◦)
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Specimen Identified parameters Cost function

configuration K ε0 N R0 R45 R90

0◦ 1183 0.035 0.64 1.76 0.94 0.3 192

90◦ 439 0.012 0.43 0.46 0.77 2.20 207

45◦ 888 0.012 0.43 1.10 1.35 0.78 115

0◦ + 90◦ 665 0.010 0.41 1.95 0.78 1.82 423

0◦ + 45◦ + 90◦ 735 0.010 0.41 1.21 1.32 1.12 576

Reference - - - 1.88 1.56 2.18

Table 6: Experimental results

Table 6 reports the identified parameters and the reference R values ob-

tained from the standard uniaxial tests, see Table 4. In this case, the hard-

ening parameters, K, ε0 and N , cannot be directly compared with reference

experimental values. However, a comparison with the experiments can be

performed in terms of tensile force. The load Li, measured experimentally

at each step i, can be indeed compared with the force computed using the

identified parameters and the measured strain field. Following the definition

of VF1 (Eq. 35):

∫
∂B0

(
T1PKn0

)
· δv(1) da0 = 2Li (38)

and, from Eq. 3:

Li =
1

2

∫
B0

T1PK
i · δF• (1) dv0 (39)

where T1PK
i

(
ξ̄, u|0→t

)
is obtained from the measured displacement field us-

ing the identified constitutive parameters ξ̄. Figure 15 shows the comparison
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between the measured force and the force reconstructed from the strain and

the material model, for all time steps (horizontal axis). As expected, using

a single test at 0◦ or 90◦, the parameters of the corresponding directions are

correctly identified while a large error is encountered for the other directions.

Using the specimen at 45◦, the error diminished but the load in the 0◦ direc-

tion is still not reproduced correctly. Using 0◦ + 90◦, the load at 45◦ is not

reproduced correctly. When all tests in the three directions are used in the

cost function, the force is correctly reproduced in all cases.

The identification of R in the different directions is more critical: looking

at Table 6, using a single direction, the R values are similar to the experi-

mental reference only for the corresponding directions. Using 0◦ + 90◦, R45

is not well identified. When all specimens are used, all values of R are rather

different from the reference.

The reason for this is that, in this case, the Hill48 model is not able to

reproduce the behaviour of the material. When the cost function is con-

strained with all tests, the VFM identifies the best set of parameters for the

Hill48 model, which is however not able to describe the material behaviour.

The cost function (Ψ), obtained at the end of the minimization, can be

considered an indicator of the quality of the identification (Rossi et al., 2014).

In this case, the cost function is larger when all three tests are considered.

This suggests that, when more tests are used at the same time, the mini-

mization algorithm is not able to reduce the error beyond a certain limit.

Figure 16 illustrates the stress states mapped onto the yield surface for the

experiments. The map is very similar to the one obtained for the numerical

case (Figure 5), and shows the zone of the yield function covered by the
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Figure 15: Comparison between the experimental load and the one computed using the

strain field and the identified parameters
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Figure 16: Distribution of the stress states in the experiments
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performed experiments.

5.2. Application of the Yld2000-2D criterion

The Hill48 criterion is not able to reproduce the behaviour of the tested

material. In order to support this statement, the same VFM approach was

employed to identify the parameters of the Yld2000-2D model (Barlat et al.,

2003).

In this case 11 parameters have to be identified from the minimization

algorithm, 3 for the hardening law and 8 for the yield function. This model

is more versatile than Hill48, where only 3 parameters are used to describe

the anisotropy.

The identification was conducted using the three tests (0◦ + 45◦ + 90◦)

and the same three VFs used for Hill48. As first guess, the Yld2000-2D

parameters are set equal to 1 (α1,...,8 = 1), while the hardening parameters

(K , ε0, N) are set equal to the ones identified with the Hill48 criterion.

In spite of the rather large number of parameters, the minimization al-

gorithm was able to converge to a set of parameters as listed in Table 7. In

order to check the stability of the identified parameters, different initial con-

ditions were tested. Two sets of parameters were generated randomly and

used as first guess in the minimization algorithm. The results obtained with

the different sets of initial guess are compared in Table 8. A slight variation

is observed in the hardening parameters, while the anisotropic parameters αi

are not sensitive to the initial guess. Thus, the identification procedure can

be considered sufficiently stable.

Figure 17 shows the distribution of the stress states in the identified yield

function. Figure 18 shows the comparison of the two models in terms of
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Hardening Yld2000-2D parameters

K ε0 N α1 α2 α3 α4 α5 α6 α7 α8

852 0.01 0.41 1.11 1.35 1.21 1.11 1.07 0.96 1.21 1.15

Table 7: Parameters identified from the experimental tests using Yld2000-2D

Initial guess

K ε0 N α1 α2 α3 α4 α5 α6 α7 α8

set 1 735 0.01 0.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

set 2 1240 0.015 0.3 1.55 1.60 1.48 1.83 1.23 1.01 1.94 0.68

set 3 520 0.05 0.7 1.54 1.16 1.12 0.72 1.31 0.79 1.62 1.57

Identified parameters after minimization

K ε0 N α1 α2 α3 α4 α5 α6 α7 α8

set 1 852 0.01 0.41 1.11 1.35 1.21 1.11 1.07 0.96 1.21 1.15

set 2 910 0.01 0.42 1.11 1.34 1.20 1.10 1.07 0.95 1.20 1.15

set 3 805 0.01 0.39 1.10 1.36 1.22 1.10 1.07 0.95 1.21 1.14

Table 8: Influence of initial guess in the minimization process, set 2 and set 3 were obtained

using random numbers.
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Figure 17: Distribution of the stress states and yield surface using Yld2000-2D

computed tensile force, as in Figure 15. Both models are able to reproduce

the experimental force. This shows that such a macroscopic information is

not enough to discriminate between models. Table 9 presents the results in

terms of Lankford parameter R. In this case, the Yld2000-2D model gives

values that are much closer to the experimental ones, obtained from the

uniaxial tests. Looking at the cost function for the Yld2000-2D model, it is

more than 3 times lower than for the Hill48 model.

It is beyond the scope of this paper to give a complete validation for the

Yld2000-2D model, as done for the Hill48 model. This will be the object of

future work. However, this simple verification is useful to demonstrate the

potentiality of the adopted approach. Another important question, which

should be investigated in the future, is if the parameters identified with the
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Figure 18: Force comparison with Hill48 and Yld2000-2D

R0 R45 R90 Cost function

Hill48 1.21 1.32 1.12 576

Yld2000-2D 2.00 1.63 2.07 153

Reference 1.88 1.54 2.18

Table 9: Comparison of R values between Hill48 and Yld2000-2D models.
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notched specimens are able to predict the plastic behaviour in the biaxial

condition. This can be done using a bulge test or a disc compression test,

as showed for instance by Tardif and Kyriakides (2012) for the Yld2004-3D

model.

6. Conclusion

This paper describes an application of VFM to large strain anisotropic

plasticity. A numerical validation was first performed using simulated tests

generated according to the Hill48 yield criterion. The procedure led to the

identification of the constitutive parameters with a good accuracy using a

single test, namely a notched specimen cut at 45◦ respect to the rolling di-

rection. Then experiments were performed on a stainless steel sheet, using

the same specimen geometry. In this case, although the hardening behaviour

is well characterized, the procedure was not able to identify the R-values in

the different directions. Moreover, in order to have reasonable results, all

directions have to be included in the minimization function. Such behaviour

can be explained from the fact that the material does not follow the Hill48

model. The VFM provides the Hill48 parameters that best fit the experimen-

tal data but these do not match the uniaxial ones. A correct identification

of R can be achieved using the Yld2000-2D model.

From this study, the following main outcomes can be listed:

• the experiment should be designed so that, during the test, the stress

states in different points of the specimen cover the largest part of the

yield surface. In the present application, a notched specimen was used,
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which produced a rather heterogeneous stress/strain field during defor-

mation. Although satisfactory results were obtained with this geome-

try, we believe that the specimen design could be improved and further

studies are needed in this sense;

• if the material follows the Hill48 plasticity model, a single test is suffi-

cient to correctly identify the parameters; noise can be easily handled

with temporal smoothing;

• if the material does not follow the assumed plasticity model, as for

the experimental case and the Hill48 model, the method provides the

parameters that best fit the experimental behaviour. However, the

more heterogeneous the test is, the more difficult it is to find a good

compromise. In this case a single test is no more sufficient to identify

the parameters;

• the VFM cost function can be used as a benchmark indicator to com-

pare the performance of different constitutive models.

As a general remark, the VFM is an effective tool to study the plastic

behaviour of materials at large strains. Full-field data can be processed with

low computational times to identify the constitutive parameters of plastic-

ity models. In the future, a more thorough study of the influence of DIC

parameters (step size, subset size, virtual strain gauge, etc.) on the iden-

tification should be performed, as done by Rossi et al. (2015) for elasticity.

More complex constitutive models should be introduced and other specimen

shapes should be tested.
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