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Abstract

The modelling and computation of the coupled thermal and mechanical response of human skin

at finite deformations is considered. The model extends current thermal models to account for

thermally- and mechanically-induced deformations. Details of the solution of the highly nonlin-

ear system of governing equations using the finite element method are presented. A represen-

tative numerical example illustrates the importance of considering the coupled response for the

problem of a rigid, hot indenter in contact with the skin.

1. Introduction

The skin is the largest organ in the human body. In addition to its multiple physiological func-

tions (e.g. thermo-regulation, vitamin D synthesis, neurotransduction), the skin acts as a complex

biophysical interface protecting the internal body structures from the external environment. The

nature of these interfacial phenomena spans the mechanical, thermal, biological, chemical, radio-

logical and electromagnetic domains (Burns et al., 2004; Limbert, 2014). The nonlinear interplay

between these processes presents researchers with numerous challenges when attempting to de-

velop a mechanistic understanding of skin physiology in health, disease and trauma.

As depicted in Fig. 1, the skin can be divided roughly into four main layers: the stratum

corneum, viable epidermis, dermis and hypodermis. Each of these layers has a complex micro-

architecture and distinct material properties. The skin thickness varies according to body location

from approximately 0.5 mm to 4 mm.
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Figure 1: A schematic of the various layers that comprise the skin and a histological section (section courtesy of Maria
Fabiola Leyva-Mendivil, University of Southampton).

The need to develop robust and predictive thermomechanical models of human skin is largely

motivated by recent applications in medical therapies. These include temperature-based disease

diagnostics, cryotherapy, cryosurgery, infrared light therapy, heat plasters, cancer hyperthermia,

and laser surgery, among others (see Xu and Lu, 2011; Xu et al., 2008, for extensive reviews of

skin biothermomechanics). These models need to account for the complex anatomical structure

of skin, blood perfusion and the nonlinear coupled thermal and mechanical response of the sys-

tem. Further areas where thermomechanical models of the skin have potential application are

briefly described in the subsequent paragraphs.

The skin is constantly subjected to a wide range of thermomechanical interactions with the

environment over the duration of a human life. The coupling between thermal effects and me-

chanical loads and, ultimately, biochemical processes is of particular relevance to the formation

of pressure ulcers and skin blisters (Knapik et al., 1995; Sulzberger et al., 1966). For such ap-

plications an understanding of skin microclimate is key (Gefen, 2011). It is therefore essential

to gain a mechanistic understanding of how thermal exchanges in combination with relative hu-

midity and mechanical stress can accelerate the occurrence of skin breakdown. Over the last few

decades there has been a tremendous surge in the practice of tattooing as a cosmetic, decorative

and social body art form (Khunger et al., 2015). As a corollary of this surge, the number of

people seeking to have tattoos removed has grown significantly (Kuperman-Beade et al., 2001).

Currently, the most efficient removal techniques rely on the use of Q-switched lasers which work

on the principle of selective photothermolysis (Choudhary et al., 2010; Kuperman-Beade et al.,

2001). The tattoo pigments are destroyed by targeting their absorption wave length with a laser

pulse duration shorter that the thermal relaxation time (i.e. the time required for a structure to
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cool down to half of its heating temperature). Despite these technical precautions, the thermal

and subsequent photochemical effects of laser exposure on the epidermis and dermis are not

without side effect (e.g. dyspigmentation and textural changes due to melanin which has absorp-

tion wave lengths overlapping those of the targeted tattoo pigments, rupture of blood vessels

and aerosolisation of tissue, potential carcinogenicity). A better understanding of how heat phe-

nomena operate within the highly-deformable multiphasic and multiscale structure of the skin is

thus required. Other side effects of tattoos include skin burns during MRI acquisition procedures

(Kreidstein et al., 1997; Ross and Matava, 2011). These burns result from an electromagnetic

reaction to the ferromagnetic metallic compounds found in tattoo pigments. This effectively

induces an electric current that heats skin tissue.

It is clear that developing a mechanistic understanding of the physiology of heat generation

and heat transfer across the skin is of considerable interest. Predictive computational models

are likely to play an increasing role in the future by allowing hypothesis-driven, physics-based

research. Sound and thermodynamically-consistent theoretical and associated numerical models

of thermomechanical phenomena in skin are therefore urgently needed. They should also account

for the complex anatomical structure of skin, blood perfusion and the nonlinear coupled thermal

and mechanical response of the system.

Mechanical models of human skin at various length scales are well developed (see Querleux,

2014, for an extensive overview). For a review on constitutive models for skin biomechanics,

see Limbert (2014). At the macroscopic scale (the scale at which one approximates the skin

as a continuum) sophisticated constitutive relations that capture the near-incompressible nature

of tissue and the directional properties of the collagen fibres for finite deformations in three

dimensions are well established (see e.g. Bischoff et al., 2002, 2000; Limbert, 2011; Tepole

et al., 2012, and the references therein). These models are highly nonlinear and require numerical

methods to obtain approximate solutions.

Thermal models for heat transfer accounting for biological heat sources in the skin are also

relatively well developed. In particular, Pennes (1948) model of heat conduction is widely used

to describe biological heat transfer in human tissue (see e.g. Lang et al., 1999; Ratovoson et al.,

2011; Shen et al., 2005) with applications in therapeutic hyperthermia and burn damage, among

others (see Xu and Lu, 2011, for an extensive review). The Pennes (1948) model in its original

form has the structure of the linear heat equation with physiologically motivated heat supply

terms accounting for perfusion (the physiological process of blood delivery to biological tissue),

metabolism and external heat sources. Various nonlinear extensions of Pennes model have been

proposed to account for the temperature dependence of the perfusion rate (see e.g. Lakhssassi

et al., 2010; Lang et al., 1999). Hassanpour and Saboonchi (2014) presented a comparison of

Pennes model with more recent proposals in the literature.
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Coupled thermomechanical models of human skin, where the coupled mechanical and ther-

mal response is considered, are by comparison relatively basic. In such models the skin is gen-

erally assumed to be a rigid conductor and the stress due to thermal loading obtained in a post-

processing step. The assumption of a linear elastic response is normally made to compute the

stress from the thermally induced strains. These models are generally restricted to one or two

space dimensions. The numerical solution of such models has been achieved using a variety of

different techniques. Ghazanfarian et al. (2015) solved the nonlinear one-dimensional Pennes

model using a meshless particle method. Meshless methods present no obvious advantage over

more established, mesh-based methods for such applications however. Bedin and Bazán (2014)

constructed a series solution for the two-dimensional problem with convective boundary condi-

tions. The spectral element method was used by Dehghan and Sabouri (2012) to determine the

heat distribution in two dimensions for healthy tissue and tissue containing a tumour. Zhao et al.

(2005) used a two level finite difference scheme for the one-dimensional Pennes model. Shen

et al. (2005) coupled the Pennes model to linear elasticity via a thermal stress contribution. The

influence of the deformation on temperature evolution was ignored. Lang et al. (1999) used an

adaptive three-dimensional finite element model to approximate a nonlinear extension of Pennes

model (temperature-dependent blood perfusion) to develop an optimisation treatment for regional

hyperthermia of deep-seated tumors. In addition to performing an impressive experimental in-

vestigation of heat transfer in the skin, Ratovoson et al. (2011) developed a finite element model

to examine the response in the vicinity of a vein where the outer surface of the skin is exposed to

a heat source. The blood flow in the artery was approximated using the Navier–Stokes equations

and the Pennes model applied to the surrounding tissue. Xu et al. (2008) investigated thermal

damage due to surface heating and microwave radiation for a two-dimensional, three-layer model

of human skin incorporating the Pennes model. While a range of methods have been used to solve

the problem of heat conduction in skin, the finite element method would appear to be the natural

choice as it is well developed and can handle arbitrary geometries and nonlinearities.

The focus of the current presentation is on developing a robust predictive numerical model

for the coupled thermomechanical response of the skin at finite deformations. That is, a model

that accounts for geometric and material nonlinearities associated with the assumption of finite

deformations and nonlinear constitutive laws (both mechanical and thermal). The numerical

model also extends Pennes (1948) model to the finite deformation regime. The need to account

for finite deformations is provided by the relatively significant deformations that the skin can

undergo due the application of a thermal treatment device or due to tumour growth, for example.

Furthermore, much of the loading that skin experiences is not in the infinitesimal regime.

The highly nonlinear system of governing equations are solved using the finite element

method in conjunction with an iterative Newton–Raphson scheme. Automatic differentiation
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tools (Korelc, 2002) are employed to facilitate the computations of the tangent matrices required

in the Newton scheme. These tools have great potential for developing robust numerical mod-

els in biomechanics as they largely remove sources of error that arise when linearising complex

nonlinear systems.

The structure of the presentation is as follows. The notation and basic relations are first

introduced. The kinematic descriptors of the deformation are briefly summarised in Sec. 2. This

is followed by the statement of the governing system of geometrically nonlinear equations. The

constitutive relations are summarised in Sec. 4. The extension of the Pennes (1948) model to the

finite deformation regime is given. The weak form of the governing relations and details of the

finite element strategy used to solve them are then presented. A numerical example is presented

in Sec. 6 to elucidate aspects of the formulation.

Notation and basic relations

Direct notation is adopted throughout. Occasional use is made of index notation, the sum-

mation convention for repeated indices being implied. The scalar product of two vectors a and b
is denoted a · b = [a]i[b]i. The scalar product of two second-order tensors A and B is denoted

A : B = [A]i j[B]i j. The composition of two second-order tensors A and B, denoted AB, is a

second-order tensor with components [AB]i j = [A]im[B]m j. The tensor product of two vectors

a and b is a second-order tensor D = a ⊗ b with [D]i j = [a]i[b] j. The action of a second-order

tensor A on a vector b is a vector with components [a]i = [A]im[b]m.

2. Kinematics

The fundamental kinematic measures used to quantify the motion and deformation of the

skin as a continuum body are now presented. For additional information the reader is referred to

the reference works by Gurtin (2003); Holzapfel (2000), among others.

Consider a continuum body taken to represent the skin whose placement in the reference

configuration is denoted V0 at time t = 0, as shown in Fig. 2. The boundary of the domain in

the reference configuration is denoted by ∂V0, with outward unit normal N. A typical material

point within the reference configuration is identified by the position vector X. The observed

configuration of the body at a later time t is denoted V with a typical material point identified

by the position vector x. The absolute temperature is defined by ϑ = ϑ̃(X, t) and the initial

temperature at time t = 0 is denoted by ϑ0. The motion ϕ relates the observed and reference

configurations as x = ϕ(X, t). The deformation gradient is defined as the derivative of the motion

ϕ with respect to the reference configuration; that is,

F(X, t) := Gradϕ(X, t) ,
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where Grad(•) := ∂(•)/∂X. The Jacobian determinant of the deformation gradient is denoted by

J := det F > 0. The right Cauchy–Green stretch tensor is defined by C := FTF.

reference configuration observed configuration

X

x

F = Grad'

'

VV0

C = F TF

J = det F

@V0

N

Figure 2: The motion of the continuum body and the various kinematic descriptors used to describe the deformation.

3. Governing relations

The balance of various fundamental measures is employed to determine the governing rela-

tions used to approximate the response of the skin to applied loading. For an excellent overview

of the derivation of these fundamental relations, the reader is referred to Beradi et al. (1996).

The balance of linear momentum in the absence of inertial forces (i.e. the equilibrium equa-

tion) and the Neumann boundary condition for the first Piola–Kirchhoff traction vector T are

given by

DivP + b0 = 0 inV0 , (1)

T ≡ Tp = PN on ∂Vϕ
0,N , (2)

where P is the first Piola–Kirchhoff stress tensor, b0 is the reference body force, and Tp is the

prescribed first Piola–Kirchhoff traction vector acting on the Neumann part of the boundary

∂V
ϕ
0,N ⊂ ∂V0. Dirichlet boundary conditions on the motion ϕ are prescribed on ∂Vϕ

0,D, where

∂V0 = ∂V
ϕ
0,N ∪ ∂V

ϕ
0,D and ∂Vϕ

0,N ∩ ∂V
ϕ
0,D = ∅.

The temperature evolution equation arising from the first law of thermodynamics and the
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Neumann boundary condition are given by

cFϑ̇ = −DivQ + Q − He inV0 , (3)

Qp = Q · N = h
[
N · C−1N

]1/2
[ϑ − ϑ∞] on ∂Vϑ

0,N , (4)

where

He := −ϑ
∂P
∂ϑ

: Ḟ (5)

accounts for thermoelastic coupling effects, and cF is the specific heat capacity at constant de-

formation. The first Piola–Kirchhoff heat flux vector is denoted by Q, and Q denotes the rate of

heat source per unit reference volume. The final term in the Neumann boundary condition (4) ac-

counts for Newton cooling with the external environment. The spatial heat transition coefficient

is denoted by h. The area ratio [N · C−1N]1/2 accounts for the change in area from the observed

to the reference configuration, and ϑ∞ is the external temperature. The presence of the area ratio

in the Neumann boundary condition arises from the assumption of finite deformations.

4. Constitutive relations

The structure of the constitutive relations are derived from, or suggested by, the second law

of thermodynamics. We choose to omit their derivations for the sake of brevity.

4.1. Structure of the free energy and the stress

As is clear from Fig. 1, the skin has multiple layers and a complex microstructure. Microstructurally-

motivated, hyperelastic, worm-like chain models for the collagen fibres in the dermis and a near-

incompressible isotropic model for the ground substance (see e.g. Bischoff et al., 2002; Garikipati

et al., 2004; Tepole et al., 2012) are widely used to approximate the mechanical response. An

extension of these models to account for thermal effects appears lacking and warrants further

investigation. Given this, the constitutive response of the skin to loading will be approximated

using a macroscopic hyper-thermoelastic model.

The free energy density Ψ = Ψ̃(F, ϑ) serves as a potential for the stress P = P̃(F, ϑ) and the

entropy η = η̃(F, ϑ), which are given by the thermal equations of state as follows

P =
∂Ψ

∂F
and η = −

∂Ψ

∂ϑ
. (6)
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The neo-Hookean type free energy employed here is given by

Ψ(F, ϑ) =
1
2
λ ln2 J +

1
2
µ [F : F − 3 − 2 ln J] − 3ακ [ϑ − ϑ0]

ln J
J

+ cF

[
ϑ − ϑ0 − ϑ ln

(
ϑ

ϑ0

)]
− Ξ0 [ϑ − ϑ0] , (7)

where λ and µ are the Lamé parameters, α is the thermal expansion coefficient, κ := λ + (2/3)µ

is the bulk modulus, and Ξ0 is the material specific absolute entropy. Hence, from Eq. (6), P is

given by

P =
[
λ ln J − µ

]
F−T + µF − 3ακ

1
J

[ϑ − ϑ0] [1 − ln J] F−T . (8)

4.2. Duhamel’s law of heat conduction

The structure of the first Piola–Kirchhoff heat flux vector Q follows from satisfying the heat

conduction inequality via Duhamel’s law of heat conduction and, assuming isotropic conductiv-

ity, takes the form

Q = −k0C−1Gradϑ , (9)

where k0 is the material thermal conductivity and is related to the spatial thermal conductivity k

as k0 = Jk.

4.3. Heat supply according to Pennes model

The macroscopic biological heat conduction model of Pennes accounts for physiological

factors such as metabolism and perfusion through heat supply (source) terms. The heat supply

per unit current volume is denoted by q and is related to its material counterpart Q as Q = Jq.

The heat supply q is assumed to take the form:

q := qper + qmet + qext ,

where qper, qmet and qext are the contributions to heat supply from perfusion, metabolism and

external sources, respectively.

Pennes (1948) argued that blood enters the tissue at arterial temperature ϑart and reaches

tissue temperature ϑ before leaving the arterial system. Contributions to heating due to perfusion

qper are thus assumed to be given by

qper = wbcb[ϑart − ϑ] ,
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where wb is the constant blood perfusion flow rate (i.e. the mass flow rate of blood per unit

volume of tissue), cb is the specific heat of blood. Pennes model of perfusion has been extended

by various authors (see e.g. Lang et al., 1999) but the original form is adopted here.

The heat generated from metabolic processes in the tissue qmet has either been ignored (Lang

et al., 1999), assumed constant (Shen et al., 2005), or a functional form suggested (Ratovoson

et al., 2011).

External sources of heat supply qext can include electromagnetic radiation (see e.g. Lang

et al., 1999), but are ignored here.

5. Weak form of governing equations and numerical implementation

The weak form of the governing equations (1) and (3) and their respective boundary condi-

tions (2) and (4) forms the basis for their approximate solution using the finite element method.

The weak form of the equilibrium equation is obtained by contracting (1) with an arbitrary ad-

missible motion δϕ, integrating the result over the reference configuration V0 and applying an

integration by parts, which yields

Rϕ :=
∫
V0

Grad δϕ : P dV −
∫
V0

δϕ : b0 dV −
∫

∂V
ϕ
0,N

δϕ · Tp dA = 0 , (10)

where Rϕ is the residual for the equilibrium equation. Following a near identical procedure, the

weak form of the heat equation (3) yields the residual equation as

Rϑ :=
∫
V0

δϑcFϑ̇ dV −
∫
V0

Gradδϑ · Q dV −
∫
V0

δϑQ dV +

∫
V0

δϑH dV +

∫
∂Vϑ

0,N

δϑQp dA = 0 , (11)

where δϑ is an arbitrary admissible temperature variation.

The highly nonlinear coupled system of equations (10) – (11) governing the response of

the skin are solved approximately using the finite element method in space in conjunction with

a global Newton–Raphson procedure. The finite element method naturally accommodates com-

plex geometries and spatially varying constitutive parameters. The finite element library AceGen

(Korelc, 2002) is used to implement the solution scheme. Automatic differentiation is used to

compute the system of residual equations (the weak form of the governing relations) and the

corresponding tangent (required for the Newton–Raphson scheme). A time-step duration con-

trol procedure is used to optimise the time-step size and to ensure quadratic convergence of the

Newton–Raphson scheme. The domain is discretized using Lagrangian Q1 elements. A fully-

implicit backward-Euler scheme is used to approximate the time derivative present in Eq. (3).
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The use of automatic differentiation for applications in solid biomechanics is extremely at-

tractive as the complexity of the problem generally lies in the highly-nonlinear nature of the

constitutive relations. Automatic differentiation removes many possible sources of error during

the implementation of the tangents required for the Newton–Raphson procedure.

6. Numerical example

The theory developed in the preceding sections is elucidated using a three-dimensional nu-

merical example. Consider the four-layer skin model illustrated in Fig. 3. The model is an

approximation of the geometry depicted in Fig. 1. We have assumed here, for the sake of sim-

plicity, that the surface of the skin is flat and that the interfaces between the various layers are flat

and distinct. Such assumptions are made to focus attention on the thermomechanical response

and are not restrictions of the method. The material properties, taken from Xu and Lu (2011),

are given in Table 1. A two-dimensional rigid variant of the problem was examined by Xu and

Lu (2011).

Table 1: Constitutive parameters used for the numerical examples unless stated otherwise. The Young’s modulus and the
Poisson’s ratio can be expressed in terms of the Lamé parameters as λ = Eν/(1 + ν)(1 − 2ν) and µ = E/2(1 + ν). The
specific heat capacity cF is related to the heat capacity c by cF = ρc. The interface conductivity is given by h = 0.008
[N/mm s K].

Skin:
Stratum Epidermis Dermis Subcutaneous
corneum fat

Young’s modulus E [N/mm2] 1998 102 10.2 0.0102
Poisson’s ratio ν [-] 0.48 0.48 0.48 0.48
Density ρ [kg/mm3] 1500 × 10−9 1190 × 10−9 1116 × 10−9 971 × 10−9

Conductivity k0 [N/s K] 0.235 0.235 0.445 0.185
Heat capacity c [N mm/kg K] 3600 × 103 3600 × 103 3300 × 103 2700 × 103

Blood perfusion wb [kg/s m3] 0 0 0.001 25 0.001 25
Metabolic supply qmet [N/mm2 s] 368.1 × 10−6 368.1 × 10−6 368.1 × 10−6 368.1 × 10−6

Blood:

Density ρ [kg/mm3] 1060 × 10−9

Heat capacity c [N mm/kg K] 3770 × 103

Various features of the theory developed in the preceding sections are now investigated by

considering restrictions to what is termed here the full model. In the full model, a 24×24×6 mm3

sample of skin is compressed by a 2 × 2 mm2 flat, rigid indenter. The temperature of the skin

is initially prescribed to be the same as the core temperature ϑcore = 37 ◦C, while the initial
10



temperature of the indenter is 90 ◦C. Contact is modelled by prescribing the vertical displacement

of the nodes on the upper surface of the finite element mesh below the contact area. The contact

is assumed frictionless. The indenter compresses the surface of the skin specimen a distance of

3 mm in the negative e3 (vertical) direction. The indentation is applied uniformly over a period

of 25 s (termed stage I). The indenter is then retracted to its original location over a period of

25 s (termed stage II). The temperature of the indenter during the indentation process is fixed

at 90 ◦C. The temperature of the indenter is instantaneously reduced to ϑcore at the onset of the

retraction of the indenter (after 25 s).

Due to the geometric symmetry, only a quarter of the problem is modelled. The lateral

boundaries of the domain are free to move in the vertical direction but are otherwise mechanically

constrained. A homogeneous Neumann flux, i.e. Qp ≡ 0, is assumed on the lateral boundaries.

The part of the upper surface that is not in contact with the indenter undergoes (Newton) cooling

with the external surroundings, with the external temperature set at ϑext = 25 ◦C. Note that,

for the sake of ease of implementation, we have not considered the geometric nonlinearity in the

Neumann boundary condition (4).

The domain is discretised into 24 × 24 × 36 elements. The upper surface of the stratum

corneum is further refined into 72 × 72 elements. The maximum permissible time-step size

is 0.5 s. The time-step size is automatically decreased should the Newton scheme experience

convergence problems.

12 mm12 mm

6 mm

stratum 
corneum

epidermis

dermis

subcutaneous 
fat 

0.02 mm

0.08 mm

1.5 mm

4.4 mm

indenter 

1 mm1 mm

#core = 37 �C

#1 = 25 �C

#ind = 90 �CA 

B 

subcutaneous fat 

dermis

(not to scale)

Figure 3: A quarter of the domain showing the four layers that comprise the skin model. The thickness of the layers is
also indicated.
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6.1. Thermally- and mechanically-driven problem (the full model)

The variation in the temperature, the norm of the Cauchy stress tensor σ := J−1 PFT and

the norm of the Green–Lagrange strain tensor E := [1/2][C − I] at the end of stage I are shown

in Fig. 4 (a)–(c). The variation in the temperature difference ϑ − ϑcore (that is, the difference

between the current and initial temperature) at the centre of the various layers of the skin along

the vertical line A–B (see Fig. 3) is shown in Fig. 4 (d).

Changes in temperature are fairly localised to the region in the vicinity of the indenter as is

clear from Fig. 4 (a). The norm of the Cauchy stress is orders of magnitude higher in the stratum

corneum compared to the rest of the specimen. This is due to the considerable variation in the

Youngs modulus between the layers (see Table 1). As shown in Fig. 4 (c), the subcutaneous

fat layer undergoes considerable strain due to the relatively low value of the Youngs modulus.

The stratum corneum is acting as a relatively-rigid membrane placed over a highly-deformable

domain primarily composed of the dermis and the subcutaneous fat.

As shown in Fig. 4 (d), the temperature in the stratum corneum is nearly instantaneously

identical to that of the indenter. This is due to the very small thickness of the layer. All layers

experience heating during stage I of loading. The delay in the heating response of the layers is

due to the varying thickness of the layers and competition with the prescribed boundary condition

at the lower boundary of the subcutaneous fat layer. The temperature at the centre of stratum

corneum and the epidermis have reached an equilibrium state by the end of load stage I. The

temperature at the centre of the dermis is still increasing at the end of stage I but the rate of

increase is decreasing.

Relative cooling occurs during stage II of the loading. The temperature at the centre of the

stratum corneum and the epidermal layers rapidly approaches the indenter temperature of ϑcore.

The temperature in the dermal layer decreases immediately at the beginning of stage II. This is

not the case for the subcutaneous fat layer which continues increasing in temperature for a couple

of seconds.

The overall thermomechanical response of the skin is further complicated due to the presence

of Newton cooling with the environment on the upper surface and metabolic heat generation in

the dermis and subcutaneous fat layers.

It is clear from the numerical results that the stratum corneum can play a significant role in

the mechanical response of the skin model and should not be omitted.

6.2. Thermally-driven problem

The objective of the thermally-driven example is to examine the role that the imposed ther-

mal loading has on the overall response by removing the mechanical loading from the problem.

12



#

[K]

|�|

[N/mm2]

|E|

[�]

time [s]

#
�
#

c
o
re

[K
]

(a) (b)

(c) (d)

Figure 4: The variation in the temperature ϑ, the norm of the Cauchy stress tensor σ and the norm of the Green–Lagrange
strain tensor E at the end of loading stage I are shown in (a)-(c) for the full problem. The variation in the temperature
difference ϑ − ϑcore at the centre of the various layers of the skin along the vertical line A–B is shown in (d).

The indenter is therefore prevented from displacing during the simulation. The applied thermal

loading remains the same.

The variation in the temperature, the norm of the Cauchy stress tensor and the norm of the

Green–Lagrange strain tensor are once again shown in Fig. 5 (a)–(c). The variation in the tem-

perature difference ϑ − ϑcore at the centre of the various layers of the skin along the vertical line

A–B is shown in Fig. 5 (d).

The temperature variation in the domain during the heating phase (stage I) is generally sim-

ilar to that of the full problem, thereby suggesting that the heating due to thermomechanical

coupling is small. That this should be the case is not surprising given the very low value of the

thermomechanical expansion coefficient α (see Eq. (7)) and the low applied loading rates. The

temperature variation in the subcutaneous fat layer however differ significantly from that of the

full problem. This is due to the influence of the mechanical deformation on the conduction (see

Eq. (9)). Thus while it appears reasonable to exclude the thermomechanical coupling term He in

the balance of energy (3), the mechanical contribution to the effective thermal conductivity (via

the inverse of the right Cauchy–Green tensor in Eq. (9)) is not negligible.

The stress state at the onset of the cooling stage is similar to that in the thermally- and

mechanically-driven problem. This indicates the significant contribution of the temperature (via

thermal expansion) on the stress state (see Eq. (8)). The thermally induced strains are relatively
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small but non-negligible.
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Figure 5: The variation in the temperature ϑ, the norm of the Cauchy stress tensor σ and the norm of the Green–Lagrange
strain tensor E at the end of loading stage I are shown in (a)-(c) for the thermally-driven problem. The variation in the
temperature difference ϑ−ϑcore at the centre of the various layers of the skin along the vertical line A–B is shown in (d).

6.3. Mechanically-driven problem

The objective of the mechanically driven problem is to identify how the mechanical loading

influences the response of the skin specimen. The temperature of the indenter is now fixed at ϑ ≡

ϑcore during both stage I and II of the loading process. The distribution of the temperature shown

in Fig. 6 (a) indicates very little variation from the reference temperature. The thermoelastic

coupling effects (see Eq. (5)) are negligible due to the relatively slow loading rate and the material

properties of skin. As was concluded for the thermally-driven problem, It would therefore be

appropriate to neglect thermoelastic coupling effects. The distribution of the stress and strain

resembles that for the full problem.

7. Discussion and conclusion

A model and aspects of its numerical solution for the fully-coupled nonlinear thermomechan-

ical response of the human skin at finite deformations has been presented. Particular attention

was paid to the derivation of the mechanical and thermal constitutive equations as well as their
14
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Figure 6: The variation in the temperature ϑ, the norm of the Cauchy stress tensor σ and the norm of the Green–Lagrange
strain tensor E at the end of loading stage I are shown in (a)-(c) for the mechanically-driven problem.

coupling. Although conceptually straightforward, the model extends the formulation of Pennes

(1948) to the finite deformation regime using a theoretical approach consistently-grounded in

the nonlinear theory of mechanics. Details of the numerical solution scheme using the finite

element method in conjunction with automatic differentiation tools were given. A representative

numerical example elucidated aspects of the theory and features of the model.

In the full model (i.e. with thermo-mechanical coupling), the stratum corneum and the vi-

able epidermis displayed similar thermal relaxation times. Although unsurprising given their

identical thermal conduction, it is worth noting that the thickness of the viable epidermis is four

times that of the stratum corneum. In stage I of the simulation, the temperature of the dermis

steadily increased until the start of stage II when the trend was immediately reversed while, for

the hypodermal layer, the decrease in temperature experienced a delay of about two seconds.

This would suggest that, for high thermal load applied to the skin surface, it might be possible

to obtain damaging temperatures within the hypodermis even after removal of these loads. It is

likely that, if the sub-cutaneous layer experiences a critically high temperature, the epidermal

and dermal layers have already exceeded their damage threshold. A direct sensitivity analysis of

these aspects should be considered in future studies (see e.g. Korelc, 2009).

Despite its small thickness, the mechanical contribution of the stratum corneum during in-

dentation was shown to be significant due to the high value for the Youngs modulus used in our

study (about 2 GPa). Similar findings were recently reported by Leyva-Mendivil et al. (2015,
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2016) in the context of finite element studies although they used a maximum value of 370 MPa

for the elastic modulus of the stratum corneum. The value of 2 GPa corresponds to the higher

end of what has been reported in the literature.

It is well established that the stiffness of the stratum corneum decreases with relative humid-

ity due to the plasticisation effect of water (Wu et al., 2006). In reality, this softening of the

stratum corneum would be accompanied by swelling which would significantly alter its contact

properties with external surfaces in terms of adhesion, deformation-induced friction and, impor-

tantly for thermal exchanges, contact area and surface topography. These particular aspects were

not captured in the present model.

An obvious extension of the model would be to account for the complex microstructure by

incorporating the critical role of collagen fibres via an anisotropic constitutive model. The im-

plementation of the mechanical model poses no significant additional complexity. However, the

dependence of the free energy on the temperature needs to be carefully considered, particularly

the anisotropic properties of the heat conductivity and capacity. Additional complexity could

easily be incorporated into the model to capture, for example, the possible poro-viscoelastic re-

sponse of the human skin. The next significant extension would be to account for permanent

damage due to heating. Prior to this however, careful validation against experimental data is

critical. The major challenges lie in the experimental characterisation of the mechanical and

thermal properties of the skin across spatial and temporal scales whilst accounting for inter- and

intra-individual variability.

In summary, this study proposed a thermodynamically-consistent theoretical and numerical

constitutive framework to model the thermomechanical behaviour of human skin for arbitrary

kinematics. Thermal blood perfusion and metabolic supply were accounted for and the capabili-

ties/characteristics of the model were demonstrated through a series of examples. This research

is a first attempt at providing a numerical assay in the form of a robust modelling framework to

assist researchers in developing a more integrated understanding of the complex thermomechan-

ical phenomena that can occur in a variety of physiological, abnormal and traumatic situations.
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