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PHOTOACCLIMATION, PRODUCTION AND CRITICAL DEPTH: A 

COMPARISON OF PHYTOPLANKTON DYNAMICS IN LAGRANGIAN AND 

EULERIAN MODELS 

by Melissa Sophie Tomkins 

Marine phytoplankton growth is controlled by non-linear processes, such as the photosynthetic 

and photoacclimative response to irradiance. Traditional Eulerian models calculate rates of 

primary production using the assumption that phytoplankton have identical properties, whereas 

Lagrangian models simulate phytoplankton as individual particles, tracking their trajectories 

through the light field. It might therefore be expected that photoacclimation in Lagrangian 

models would have an impact on seasonal cycles. In this thesis, I construct a Lagrangian 

ecosystem model, applying it to two questions: whether the individual responses of 

phytoplankton to their local irradiance affects the overall rates of primary production, and 

whether Lagrangian models are necessary for the study of the mechanisms surrounding the 

spring bloom, due to their representation of phytoplankton growth in response to mixing. 

The study begins by addressing some of the fundamental assumptions underpinning Lagrangian 

models, and provides novel solutions for some of the difficulties. The model was set up for 

Ocean Weather Station India (OWSI) in the North Atlantic, and the predicted seasonal cycles of 

primary production were shown to not differ from those predicted by an Eulerian equivalent, 

due to the phytoplankton being mixed too fast to have time to acclimate to local irradiances. 

Additionally, the results suggested a closer relationship between the timescales of growth and 

mixing, demonstrating that vertical profiles of phytoplankton could form within a well-mixed 

layer, resulting in changes to the overall rates of primary production. The model was next used 

to investigate the controls of the spring bloom at OWSI, by investigating the critical depth, 

critical turbulence and disturbance-recovery hypotheses. Although the use of Lagrangian model 

did highlight a possible source of inaccuracy when calculating critical depth with an Eulerian 

model, overall an Eulerian model could have performed the experiments with the same results, 

given information about the vertical profile of phytoplankton in the mixed layer. However, the 

study successfully reconciled the three hypotheses, showing how each describes a mechanism 

that can affect the critical depth. 
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Introduction 

“If there is a starting point for thinking about populations, it must be the 

individual. Individual organisms are born, grow, develop, mature, move, 

reproduce, and eventually die. The rates at which these processes occur 

determine whether the population increases or decreases, persists or 

becomes extinct, expands or contracts, fluctuates or remains stable. The 

environment affects the population through its effects on these individual 

processes.” (Tuljapurkar & Caswell, 1997) 

Phytoplankton are mostly single celled plants that live suspended in either 

marine or freshwater environments. In the ocean, they constitute a major 

component of marine primary production, forming the base of the food web 

that sustains our fisheries, which provide the most important source of protein 

in many developing countries. In addition, marine photosynthesis provides 

over 50% of our atmospheric oxygen, while simultaneously providing an 

important sink for global carbon. There is therefore a great onus on scientists 

to understand the most important controls on phytoplankton, how they 

respond to changes in their ecosystem, and how the ecosystem responds in 

return. 

Performing experiments in the ocean is expensive, full of difficulties, and only 

provides a snapshot of the system at the time the observations are made. 

Therefore, marine ecosystem models - simplified abstractions of full ocean 

ecosystems - are useful tools for scientists to use when investigating the 

complex relationships between the physical forcing, and the biogeochemistry 

in the ocean. These models have a wide application in the field of 

oceanography, for the purposes of quantification of the global carbon cycle 

and its relationship to the climate, using past trends to predict how the current 

anthropogenic input could influence the ocean in the future, connecting sparse 

ocean observations in a coherent manner, and understanding and describing 

the fundamental ecological controls on marine ecosystems. 

Developing a model of a marine ecosystem first starts with identifying and 

understanding the important underlying mechanisms. Many simplifications 

have to be made, in order to reduce the complex interplay of physics, 
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chemistry and biology to solvable mathematical expressions. A commonly 

used simplification in marine ecosystem models is to represent the 

phytoplankton as a concentration of biomass, evenly distributed through the 

model space. These Eulerian models, named for Eulerian measurements, which 

are taken from fixed locations and measure the properties of the water that 

moves through them, calculate rates of primary production by dividing the 

water column into vertical bins, averaging the light intensity over each bin, and 

then calculating the growth rate for each bin by integrating the growth 

functions over time. They therefore assume that all of the phytoplankton are 

completely identical. In reality, however, phytoplankton move through 

fluctuating fields of light, nutrients and predators, which results in variability 

between the individual cells. For example, phytoplankton are known to 

regulate their light-harvesting capacity in response to changes in irradiance, by 

downgrading production of pigments in high irradiance, and increasing it when 

exposed to lower irradiances, in a process known as photoacclimation. Any 

one depth in the ocean could therefore be populated by phytoplankton with a 

range of photosynthetic abilities, depending on the previous light history of 

each individual cell. Lagrangian models, named for Lagrangian measurements, 

which follow and measure the properties of individual fluid parcels, track 

individual phytoplankton particles as they move through space and time. 

These first integrate over time, using the light history of each phytoplankton 

cell, and take the rate of production as the ensemble average of the entire 

community. As averaging non-linear equations before integration does not give 

the same results as averaging them after integration (Woods & Onken, 1982), 

these two approaches would be expected to give differing results. This has 

moved some researchers (Nagai et al., 2003; Ross et al., 2011a; Woods & 

Onken, 1982) to propose that a Lagrangian approach is more appropriate for 

accurate representation of primary production. 

Whilst the theory behind the use of Lagrangian phytoplankton models is 

compelling, there currently exists little conclusive evidence regarding their 

advantage over their Eulerian counterparts. Nevertheless, Lagrangian models 

are becoming a popular choice, due to their ability to depict individual 

processes that Eulerian models are unable to capture. Unfortunately, 

Lagrangian models can be computationally expensive, often requiring more 

resources for their development and maintenance than for their actual 
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application (Fulton et al., 2003). The lack of standards for Lagrangian models 

means that most are created from scratch, and each decision needs to be 

carefully thought out and justified. Therefore, before implementing a 

Lagrangian approach, it is important to ensure that it is necessary for the 

problem at hand. 

In this thesis, I construct a new Lagrangian ecosystem model, and use it to 

investigate three topics: 

1. The fundamental assumptions underpinning Lagrangian models, and 

their potential effects on the resulting ecosystem dynamics (Chapter 2). 

This chapter details the construction of the Lagrangian model, and in 

the process, describes new methods for handling the interactions 

between Lagrangian phytoplankton and an Eulerian ecosystem. 

2. The relationships between photoacclimation, photosynthesis and the 

turbulent mixing of the ocean surface layer (Chapter 3). A first of its 

kind Eulerian-Lagrangian intercomparison study involving a model with 

a full ecosystem parameterised for a site in the ocean (Ocean Weather 

Station India) demonstrates that these two model formulations do not 

give differing predictions. The reason for this is investigated by an in-

depth analysis using simplified fixed-slab models, which shows that the 

rates of photoacclimation are too slow to allow phytoplankton time to 

acclimate to local irradiances. In addition, a closer relationship is found 

between the rates of photosynthesis and mixing, and this is shown to 

have a greater control on rates of primary production when mixing is 

low. 

3. The controls of the spring bloom in the North Atlantic. Lagrangian 

models include information regarding the rates at which phytoplankton 

are mixed through the water column, making them ideal for the 

exploration of the hypotheses surrounding the controls of the spring 

bloom. In this chapter, the three main hypotheses (critical depth, critical 

turbulence, and disturbance-recovery) are thoroughly investigated, to 

explore the conditions that result in each one describing the main 

controls on net production, and then they are reconciled as all being 

extensions of the critical depth hypothesis. 
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In addition, Chapter 1 provides the general background for each of the above 

topics, and the implications of this work, along with potential avenues for 

future research are discussed in Chapter 5.



  

 

  

Chapter 1: General background 

“A model is a simple representation of a complex phenomenon. It is an 

abstraction, and therefore does not contain all the features of the real 

system. However, a model does comprise all the characteristic ones, those 

essential to the problem to be solved or described.”  

(Soetaert & Herman, 2008) 

Model design generally starts with two questions: what is the purpose of the 

model, and what are the essential characteristics of the system to be 

modelled? This thesis approaches this process the other way around – the 

model is built based on the assumption that a Lagrangian approach will allow 

for greater accuracy in the resulting predictions, and is then used to test this 

assumption in a number of different ways, including an Eulerian-Lagrangian 

model intercomparison study, extensive exploration of individual 

phytoplankton behaviour within controlled fixed-slab models, and through its 

application for testing current ecological theory. 

In this chapter, the relevant background for the study is presented. The 

underlying theme of the thesis concerns the influence of molecular level 

processes on large scale patterns of primary production, and the structure of 

this introduction reflects this progression. The cellular level process of interest 

is the acclimation of phytoplankton to changes in their local irradiance, and 

this chapter introduces the underlying mechanisms controlling this. Whilst this 

process is very well understood in the laboratory, it is less clear how it impacts 

on overall rates of primary production in the ocean, in particular with respect 

to whether phytoplankton physiology and photosynthetic efficiency is 

continually adjusting to the fluctuations in irradiance experienced by 

phytoplankton as they travel through the mixed layer. The relationship 

between primary production and mixing has been previously investigated both 

through empirical experimentation, and through the use of modelling 

methods, both of which are discussed in respect to the current study. The 

study site - the Ocean Weather Station India in the North Atlantic - and the 

reasons for its choice are then described and discussed. Finally, the 



Mixing, growth and photoacclimation 

 6 

applicability of a Lagrangian approach for the investigation of the spring 

bloom in the North Atlantic, involving the three current main hypotheses 

surrounded the processes that govern this phenomenon – the critical depth, 

the critical turbulence and the disturbance-recovery hypothesis, is discussed. 

1.1 Mixing, growth and photoacclimation 

Marine phytoplankton use sunlight to synthesise foods from carbon dioxide 

and water, in a process known as photosynthesis. Chlorophyll, and other 

accessory pigments, absorb sunlight and convert it to usable energy through 

carbon fixation. The relationship between the rate of carbon fixation and the 

intensity of the irradiance is commonly described by the use of a curve, known 

as a photosynthesis-irradiance (P-I) curve. Figure 1shows a typical P-I curve, as 

well as some of its common features. 

 

Figure 1: Typical shape of a P-I curve representing the response in phytoplankton 

production to light. The marked irradiances are I
C
 = compensation irradiance, I

S
 = saturation 

onset, and I
B
 = inhibition threshold 

At low irradiances, the rate of photosynthesis is usually proportional to light 

intensity (with slope α
P
), because photosynthesis is limited by the rate at which 

the light photons can be absorbed. Once the saturation threshold is reached 

(I
S
), the algae become ‘light-saturated’, and the rate of photosynthesis is 

limited by the rate of the reactions following the capture of photons. This is 
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), the rate of 

Pmax

In
iti
al 

slo
pe

 (α
P)

Photoinhibition

Ph
ot

os
yn

th
et

ic
 r

at
e 

(P
)

Light intensity (I)

IC IS IB
Respiration}



Chapter 1: General background 

 7   

photosynthesis starts to decrease with light intensity, due to the deactivation 

of key proteins in the photosynthetic units, known as photoinhibition (Béchet 

et al., 2013). Also shown in Figure 1, is the compensation irradiance (I
C
), which 

is the irradiance at which the rate of photosynthesis exactly matches the rate 

of respiration (and other losses) in a phytoplankton cell. The depth at which 

this occurs in the ocean is known as the compensation depth, and is often 

taken to mark the base of the euphotic zone. 

1.1.1 What is photoacclimation? 

Photoacclimation describes a series of related physiological and biochemical 

changes that allow algal cells to optimise their harvesting and utilisation of 

available light. This enables phytoplankton to survive under dim light when 

transported to the depth of the water column, whilst avoiding photodamage 

when exposed to the intense surface radiation (Pinchasov-Grinblat et al., 

2011). This thesis uses the terminology recommended by Falkowski & Raven 

(2013) who differentiate between short-term acclimation processes, and 

physiological adaptations which occur on longer time-scales, through genetic 

modifications. Photoacclimation is important for phytoplankton because of the 

extreme temporal and spatial variations in their light field. Even though 

terrestrial vegetation is also exposed to daily and annual cycles of irradiance, 

these are amplified in aquatic environments due to the attenuation of light by 

water and the substances and particles dissolved and suspended in it 

(Dubinsky & Stambler, 2009). This means that as phytoplankton are vertically 

mixed through the water column, they experience a wide range of light 

intensities. In order to maximise growth under sub-optimal conditions, and 

also to limit the damage that may be incurred through exposure to high 

irradiances, phytoplankton alter their chlorophyll production dependent on the 

light regime. To prevent excess energy from being absorbed that could 

potentially damage the photosynthetic system, phytoplankton downgrade the 

production of chlorophyll in high light. At the same time, phytoplankton in low 

light conditions increase their production of chlorophyll (Geider et al., 1998) . 
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Photoacclimation can be assessed by measuring differences in the physiology 

and photosynthetic efficiency of 

phytoplankton grown at different 

light intensities (Moore et al., 

2006). P-I curves provide a useful 

mechanism for depicting changes 

to phytoplankton growth rates due 

to photoacclimation, because they 

differentiate between light-limited 

and light-saturated growth. 

However, whether growth is 

normalised to chlorophyll, carbon 

or is cell-specific can provide 

different impressions of the effects 

of photoacclimation (MacIntyre et 

al., 2002). This can be seen in 

Figure 2, which shows the 

response curves for cultures of the 

marine diatom Skeletonema 

costatum, grown at either a high 

(1200 μmol photons m-2 s-1), or a 

low (50 μmol photons m-2 s-1) 

irradiance. Plotting chl a specific 

photosynthetic rates against 

irradiance (A) shows similar initial 

slopes for the high and low light 

acclimated cells, although the 

point at which the light saturates 

differs greatly. High light 

acclimated cells have a higher chl 

a specific light saturated 

photosynthetic rate, although this 

is because chl a is a much lower 

proportion of total mass in high 

light cells, and rather than the 

Figure 2: P-I response curves for high light (1200 

μmol photons m-2 s-1) and low light (50 μmol 

photons m-2 s-1) acclimated nutrient replete 

cultures of the diatom Skeletonema costatum. A) 

Chl a-specific photosynthesis B) Cell-specific 

photosynthesis C) Carbon specific photosynthesis. 

Figure taken from MacIntyre (2002) of data from 

Anning (2000) 
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high light acclimated cells outperforming the low light acclimated ones. Rates 

of photosynthesis can also be expressed on a per cell basis (B). However, 

changes to the environmental conditions can result in changes to the average 

mass of the cells, confusing the relationship between growth rate and cell-

specific photosynthetic rate. A third approach is to represent rates of 

photosynthesis normalised to carbon content (Figure 2C). This allows for the 

rates of photosynthesis to be directly compared to growth rates (MacIntyre et 

al., 2002). Figure 2C shows how when the photosynthetic response curves are 

represented on a carbon-specific basis, the two cell cultures show a difference 

in both the initial slope and the maximum rate of photosynthesis.  

1.1.2 Modelling photoacclimation 

Phytoplankton growth models can be used to replicate laboratory data of the 

response of phytoplankton cells to changes in their irradiance. Marra (1978) 

compared rates of primary production from experimental bottles suspended at 

a series of fixed depths, with rates of primary production from bottles 

circulated through the water column. He found that the vertically cycled bottles 

gave estimates of integral photosynthesis that were significantly higher than 

those of the stationary bottles. He then conducted laboratory experiments, 

where he measured the rates of photosynthesis for a marine diatom grown 

under three different light regimes: constant, simulated diurnal variation, and 

fluctuating. He discovered that the rates of photosynthesis were higher in the 

simulations with fluctuating light. He proposed that the parameters that 

control the rates of photosynthesis are time dependent. Above some threshold 

irradiance, rates of photosynthesis will decrease over time, with the sharpest 

decrease occurring at the highest light intensities. He suggested that this 

allowed phytoplankton to optimise the fluctuations imposed by a turbulent 

environment by taking advantage of the brief exposures to the surface light 

intensity, but that if a phytoplankter remained at a shallow depth, then the rate 

of photosynthesis would decay over time. 

Marra’s results led to the development of phytoplankton growth models that 

included a time dependence of the rates of photosynthesis. The parameters 

that control the rate of photosynthesis (i.e. that define the shape of the P-I 

curve), α
P
, P

max
 and β, where α

P 
represents the initial slope of the P-I curve, P

max
 

the maximum rate of photosynthesis, and β controls the current state of 
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photoinhibition, are modified over time. A function (usually logistic) describes 

the way the steady state values of each function vary with irradiance. These 

parameters then move towards their steady state values, depending on a 

prescribed rate of acclimation (e.g. Barkmann & Woods (1996a) Cullen & Lewis 

(1988), Falkowski & Wirick (1981), Lande & Lewis (1989), Wolf & Woods (1988) 

and Woods & Barkmann (1993)). Two examples of these, the model described 

by Lande & Lewis (1989), and the model used in Wolf & Woods (1988) are given 

in detail in the next section. Although these models can produce good fits to 

empirical data, they are parameterised according to specific scenarios, which 

makes them difficult to use for different locations.  

Mechanistic phytoplankton growth models, on the other hand, include explicit 

representation of underlying phytoplankton processes, such as the allocation 

of energy between growth, storage and pigment production under variable 

irradiance and nutrient conditions. They predict not only rates of 

photosynthesis, but also the current cell composition in regards to the ratios 

of pigment and biomass (Flynn, 2001; Geider et al., 1997; Geider et al., 1996; 

Geider et al., 1998; Zonneveld, 1998). These have the advantage of being 

easily adaptable to different ocean locations, plus they produce additional data 

(i.e. chl-to-carbon ratios) that can be verified against empirical observations. 

The dataset obtained by Anning et al. (2000) (some of which is shown in Figure 

2) has proved highly useful for the testing of these models, as it includes 

information not only about the rates of photosynthesis under varying light 

conditions, but also about changes to cell composition (e.g. ratios of chl-to-

carbon, and nitrogen-to-carbon). The phytoplankton growth model used in this 

thesis is based on the mechanistic model described in Geider et al. (1997), and 

is fully described in the next chapter. 

1.1.3 Photoacclimation in the ocean. 

Phytoplankton photoacclimation has been the focus of many laboratory studies 

(a good review of these can be found in MacIntyre et al. (2002)) and the 

response of phytoplankton under laboratory conditions is well understood, but 

uncertainty still exists as to how the response of individual phytoplankton 

affects overall rates of primary production in the ocean. This is an important 

question for researchers, because phytoplankton growth rates are often 

calculated using incubation bottle experiments, which involve taking a sample 
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of phytoplankton from the ocean, and then incubating it in bottles at fixed 

depths (or irradiances). If the physiological changes made by phytoplankton as 

they move vertically through the water column affects their rates of 

photosynthesis at each depth, then fixed incubation bottles will give inaccurate 

estimates of primary production. Conducting experiments in the open ocean is 
obviously both costly and time-consuming, and so previous studies have used 
models in order to investigate the relationship between mixing and rates of 
primary production. However, the results from these studies seem far from 
clear cut. Differences in the way that photoacclimation is represented, plus the 

fact that some models also include a separate function for damage incurred 

through photoinhibition, has resulted in a great deal of confusion surrounding 

modelling studies that have investigated the effects of mixing on rates of 

primary production. For example, Barkmann & Woods (1996b) and Ross et al., 

(2011a,b) both conducted modelling studies using Lagrangian phytoplankton 

models, and concluded that fixed incubation methods overestimate primary 

production, although they differed in their calculations of the magnitude of 

this overestimation, with Barkmann and Woods (1996) suggesting it was by up 

to 40%, and Ross et al., (2011a,b) predicting an overestimation of up to 25%, 

although less than 15% in the majority of cases. In contrast, modelling studies 

by Franks & Marra (1994) and Kamykowski et al. (1994) both proposed that 

rates of photosynthesis in the mixed layer actually increase with increasing 

wind stress, and therefore higher rates of mixing. Finally, Falkowski & Wirick 

(1981) used a random walk simulation model to investigate whether the total 

daily primary productivity in a mixed layer is influenced by the variations in 

light regimes experienced by individual phytoplankton cells. Their model 

predicted that primary productivity is not significantly affected by variations in 

light regimes due to turbulence. 

1.1.4 Eulerian-Lagrangian model intercomparison studies 

The previous section has described how the different modelling methods for 

representing photoacclimation have resulted in some confusion in the 

literature regarding the effects on rates of primary production of mixing. 

Another method to determine whether accounting for the individual 

photoresponse of phytoplankton results in changes to the population growth 

rates, would be to directly compare equivalent models that account for 
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individual variability (Lagrangian models), and those that base primary 

production on average photoacclimative properties (Eulerian models). There 

are three main studies that have directly compared Eulerian and Lagrangian 

implementations of phytoplankton models: Lande & Lewis (1989), McGillicuddy 

(1995) and Hellweger & Kianirad (2007).  

The first study was performed by Lande & Lewis (1989), who created analytical 

models of photoacclimation and photosynthesis, based on data on the 

photosynthetic physiology of an ocean diatom, Thalaisiosira pseudonana. 

Their model was set in a mixed layer depth that was assumed to be 

significantly deeper than the euphotic zone. The rate of photosynthesis, P, was 

calculated as a function of the ambient light intensity, I, using the equation: 

 

  

P(I;α , Ps ,β ) = Ps 1− e
−α I

Ps

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e
−β I

Ps

⎛

⎝⎜
⎞

⎠⎟

.

  (1.1) 

Photoacclimation was then represented by α, Ps and β being assumed to have 

fully adapted values, Γ i
*
., which were linear functions of the logarithm of the 

light intensity. The instantaneous values shown by the individual 
phytoplankton cells were then calculated according to first order reaction 
kinetics: 

 
∂Γ i

∂t
= γ i Γ i

* − Γ i( )
.
  (1.2) 

where γ
i
 = constant rate of acclimation. The cells were assumed to move via a 

Brownian motion diffusion process reflected at the sea surface, with mean 

equal to zero and variance equal to 2K
turb

, where K
turb

 = the diffusivity constant, 

which was set to 0.01 m2 s-1. Surface irradiance was a constant 2000 μE m-2 s-1, 
and light was attenuated with depth by a constant parameter, kpar, which was 
0.04 m-1 (i.e. attenuation due to water only, no self-shading). The time of day 
was early afternoon, so that the vertical profiles of the photosynthetic 
parameters had equilibrated to the noon irradiance. There was assumed to be 
a constant, evenly distributed number of cells in the water column. 

They used their model to calculate the mean, variances and covariances of the 

photoacclimation properties (α, Ps and β) for the single cell model, and then 
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used these values to calculate the approximate average rates of photosynthesis 
at each depth. These results were then compared to an equivalent Eulerian 
model. They found no predicted difference in the photoacclimative properties 
in the two models, and less than 1% difference between the predicted rates of 
photosynthesis. They concluded that the similarity of the rates of 
photosynthesis predicted by the two models was a consequence of the rapid 
photoacclimation of the photosynthetic traits in T. pseudonana, which occurs 
on time scales of a few hours. Therefore, on a clear day, vertical mixing by 
turbulent diffusion does not prevent cells from being nearly fully acclimated to 
the ambient irradiance, at least on average. They suggested that vertical 
mixing would have a larger impact on the rate of depth-integrated primary 
production for species with slower rates of acclimation.  

The second study comparing Eulerian and Lagrangian implementations of 
phytoplankton models was undertaken by McGillicuddy (1995), hereafter M95, 
who implemented numerical Eulerian and Lagrangian versions of the Lande and 
Lewis (1989) model (hereafter, LL89). M95 also implemented Eulerian and 
Lagrangian versions of a model taken from Wolf & Woods (1988), (hereafter, 
WW88), and compared the predictions of each model under different mixing 
regimes.  

WW88 used a simple photoacclimation model, whereby the energy (irradiance) 

absorbed by each Lagrangian Ensemble individual (or super-individual) is 

calculated using an ‘efficiency factor’,
 
ε = exp −I

Im

⎛
⎝⎜

⎞
⎠⎟ .

, based on the average 

irradiance experienced by the super-individual over a defined period of 

acclimation I
m
 , which they took to be 5 hours.  

M95 set the models in an idealized 1D simulation, using a constant mixed 

layer depth (100m), and a diel cycle of irradiance consistent with conditions 

during the vernal equinox at 40°N. The Lagrangian simulations were initialized 

with a concentration of 1.0 x 106 cells l-1, which was initially distributed 

between 50 particles. The particles were assumed to be randomly distributed 

on a time scale characteristic of the mixing layer: 

 
 
ε ∼ u

3

l .
  (1.3) 
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where ε = the rate of dissipation, u = the velocity scale, and l = length scale of 

large eddies (set by depth of mixed layer). The turbulent velocity was then 

calculated, using an estimate of the rate of dissipation, with the turnover time 

of the mixing layer, τ
m
, then being given by: 

 τ m = l
u .

  (1.4) 

The Lagrangian trajectories of the cells are calculated assuming that the 

particles in the mixing layer are uniformly distributed on this timescale, i.e. a 

new turbulent velocity between –(u/2) and (u/2) is randomly chosen for each 

particle in the mixed layer after every turnover time. Thus, the velocity of the 

individual particles changes once every (τ
m
/Δt) time steps. In order to ensure a 

sufficient number of phytoplankton super-individuals in the simulation at any 

one time, if the number of individuals in any one 1-metre layer fell below 20, 

then all of the individuals in that layer were divided into two equal individuals. 

He investigated two mixing regimes - one weak (K
turb

=0.01m2 s-1) and one 

strong (K
turb

=4.64m2 s-1). He found little difference in the predicted growth rate 

(<5%) for the different model formulations with relatively weak mixing, but that 

there was a significant reduction in the mean growth rate of the WW88 

Lagrangian model version (~20%) in vigorously mixed conditions, whereas the 

LL89 model showed only slight differences (~3%) under an increased mixing 

regime. M95 concluded that the difference shown by WW88 was due to their 

use of exponential photoacclimative reaction kinetics. Although this would 

result in the phytoplankton reaching a fully acclimated state faster than the 

phytoplankton in LL89, the initial slope of the curve showing the 

photosynthetic response to changes in irradiance is much steeper, meaning 

that the phytoplankton show greater immediate losses to photosynthetic 

efficiency in response to changes in light intensity. Due to the fact that the 

timescale of mixing was much faster than that of acclimation under the 

vigorously mixed conditions, this meant that the phytoplankton were always in 

this early part of the photoresponse curve, and the WW88 phytoplankton were 

continually in a state of light shock. Were both models to use the same 

kinetics, then this discrepancy would be alleviated, and M95 suggested that 

the first-order kinetics used by LL89 seemed to be more supported by previous 

literature.  
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The third study that directly compares Lagrangian and Eulerian 

implementations of phytoplankton models was performed by Hellweger & 

Kianirad (2007), hereafter HK07. HK07 explored the effect of Lagrangian 

formulations on cell quota models, and, in particular, those scenarios where 

intra-population variability in natural systems leads to differences between 

Lagrangian and Eulerian models. They used a simple growth model, where the 

growth rate (μ) was a function of the cell quota (mmol P mmol C-1): 

 

  
µ = µmax ⋅min 1−

q0

q
⎛
⎝⎜

⎞
⎠⎟

, LH
⎡

⎣
⎢

⎤

⎦
⎥   (1.5) 

where q
0
 = subsistence quota (μ=0) and LH = limitation threshold (accounts for 

limitation by a nutrient not explicitly represented).  

HK07 proposed that applying Eulerian and Lagrangian models to heterogenous 

phytoplankton populations would produce differing results, because of a 

mathematical phenomenon known as ‘Jensen’s inequality’. They argued this 

through the description of an idealised case, where the phytoplankton 

population was split into two equally sized sub-populations, A and B, with cell 

quotas of q
0
 and 3q

0
, respectively. An Eulerian model would average out the 

cell quotas before calculating the growth rate, resulting in: 

  
µ = µmax 1−

q0

av q0 ,3q0⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟ = 0.5µmax . A Lagrangian model would first calculate the 

growth rate of each sub-population, and then average the resulting rates: 

  
µ A( ) = µmax 1−

q0

q0

⎛
⎝⎜

⎞
⎠⎟
= 0.0  and 

  
µ B( ) = µmax 1−

q0

3q0

⎛
⎝⎜

⎞
⎠⎟
= 0.67µmax

  

 The average growth rate in the Lagrangian model is therefore 

  av 0.0,0.67⎡⎣ ⎤⎦µmax = 0.33µmax , which is significantly lower than the growth rate 

calculated using the Eulerian model.  

They constructed equivalent Eulerian and Lagrangian models, and applied 

them to a realistic field scenario. The results of their model appeared to 

confirm their hypothesis, as the Lagrangian representation showed a 

decreased averaged growth rate. However, as they pointed out, this 

discrepancy was a result of the limitation threshold, which states that when a 
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cell quota is above the threshold, the photosynthetic rate is at the attainable 

maximum. For the whole population, the average cell quota is above the 

threshold, and the Eulerian approach would predict a population 

photosynthesis rate at the attainable maximum. For many of the individuals, 

the cell quota is also above the threshold and their photosynthesis rate is at 

the attainable maximum. However, a significant number of individuals have 

cell quotas below the threshold, and their photosynthesis rate is below the 

attainable maximum. As a result, the population average photosynthetic rate is 

also below the attainable maximum. 

1.2 The current study 

The main objective of the study is to investigate the changes to the 

photoacclimative state of phytoplankton as they travel vertically through the 

surface mixed layer of the ocean. Therefore, the two most important model 

components were the turbulence model, and the photoacclimative model. It 

was crucial to find methods that would produce realistic timescales of mixing 

and acclimation, whilst keeping the model as simple as possible, in order to 

both allow comparison with an equivalent Eulerian implementation, and to be 

able to strip the model back to basics in order to clearly understand the 

behaviour of the phytoplankton. 

1.2.1 Photoacclimation model 

The phytoplankton photoacclimation model needed to be sensitive to short-

term changes in irradiance, whilst still being simple enough to allow for 

thorough examination of the response of the phytoplankton. In addition, 

setting the model up for OWS India would require the ability to adjust the 

photoacclimative parameters in a meaningful fashion. As has been previously 

discussed, using a mechanistic model would both allow for individual changes 

in phytoplankton physiology to be represented, and produce further output for 

validation with empirical data, such as the cellular ratios of chl-to-carbon.  

Flynn et al. (2001) compared the performance of different versions of two N-

based mechanistic models of photoacclimation, concluding that the 

implementation that best describes the response of phytoplankton to changes 

in their irradiance was a set-up based on the model version described in Geider 
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et al. (1998). This model is first described in Geider et al. (1996), and 

describes how phytoplankton growth rate and chl-to-carbon ratio change in 

response to variations in irradiance. The production of chlorophyll in the 

model depends upon the ratio of the energy supply from light absorption and 

photosynthetic energy conversion, to the energy demand for growth. At high 

irradiances, the rate of light absorption exceeds the rate at which it is 

assimilated, and chlorophyll production is downgraded. The model was then 

extended in Geider et al. (1997) to include temperature and nutrient 

concentration dependence, with the result that reductions in the growth rate 

due to temperature or low nutrient concentrations could also lead to a 

reduction in the chl-to-carbon ratio. The model was later extended again, to 

allow for unbalanced growth, in Geider et al. (1998), through the inclusion of a 

variable ratio of nitrogen-to-carbon. A further, cell-based implementation was 

then introduced in Ross & Geider (2009). Although this latter version is 

designed for implementation in Lagrangian models, it was deemed not to be 

suitable for the current study, as it would be difficult to perform a direct 

comparison with an equivalent Eulerian model, and also it would be difficult to 

strip the model back in order to fully understand how each change affected the 

behaviour of the phytoplankton. However, one important difference between 

the cell-based model version and the previous Geider models was in the ability 

of the phytoplankton to synthesise chlorophyll in the absence of irradiance 

from energy stored during the day. Previously, chlorophyll production could 

only take place at the same time as photosynthesis, so that chl-to-carbon ratios 

remained constant overnight. A model that allowed for photoacclimation in the 

absence of light could produce different results from those presented in this 

thesis, and this is discussed in more detail in Chapter 3. 

Although Flynn et al. (2001) recommended the model described in Geider et al. 

(1998), the inclusion of variable ratio of nitrogen-to-carbon was not needed for 

the current study, plus, one advantage of the Geider et al. (1997) version is the 

ability to create an analytical equation describing the steady-state chl-to-carbon 

ratio of phytoplankton to any irradiance. In addition, the two models showed 

little variation in their behaviour in terms of predictions of chl-to-carbon 

(Figure 3), so the simpler model was chosen for the current study. 
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Figure 3: The response of G97 and G98 to changes in irradiance. The models are run for 5 

days at low irradiance, 5 days at high irradiance, and then 5 days low irradiance, with a 12h 

light, 12h dark diurnal cycle. For G98, when irradiance is 0, photosynthesis was also set to 

0 (to avoid divide by zero errors in the equations). The two plots show a) the parameter 

settings used to reproduce the phytoplankton cycles at OWS India (θ
Chl

max=0.02, θ
N

max=0.1), as 

well as the default parameters settings (θ
Chl

max=0.05, θ
N

max=0.389), where θ
Chl

maxand θ
N

max 

represent the maximum ratios of chl-to-carbon, and chl-to-nitrogen, respectively. 

 

Figure 4: Phytoplankton response to changes in irradiance between high and low light 

regimes in the laboratory. Taken from Anning et al. (2000) 
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1.2.2 Turbulence model 

The upper surface boundary layer of the ocean comprises the interface 

between the ocean and atmosphere. Mixing occurs at this interface at a wide 

range of scales, from the formation of small bubbles formation, to heat-driven 

convective mixing (Figure 5). Turbulence models can therefore range from 

those that attempt to simulate all mixing at all levels (direct numerical 

simulation), to those that perform some kind of averaging of the mixing 

processes (statistical and empirical turbulence models). 

 

Figure 5: The large and small scale processes affecting the level of turbulence in the ocean 

surface boundary later of the ocean. Image taken from 

https://www.whoi.edu/ooi_cgsn/page.do?pid=53278&tid=1621&cid=70189&article=43126 

Choosing the correct turbulence model for a simulation depends upon the 

types of processes under investigation, and on finding a suitable balance 

between accuracy and computational cost. For example, as the current study is 

only concerned with mixing in the vertical, there is no need to simulate lateral 

motion. Therefore, a highly computationally intensive method, such as direct 

numerical simulation, which solves the Navier-Stoke equations for all scales of 

motion in a turbulent flow, would be unnecessary.  

A more commonly used technique for simulations that require a high 

resolution is Large Eddy Simulation (LES). This method is based on the 

underlying concept that large eddies migrate across the flow, carrying smaller 

scale disturbances with them. The larger eddies, which carry out most of the 
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mixing are computed, and then the smaller eddies, which dissipate the energy 

cascading from the large eddies, are represented through the use of sub-grid 

scale models. This reduces the computational cost by avoiding representing all 

of the smaller scale processes. However, as one of the aims of the current 

study is to strip the model back to basics, in order to fully understand the 

behaviour of the phytoplankton, use of an LES would not have been suitable. 

Instead, it was decided to move the phytoplankton using a random walk, 

parameterised by the rate of turbulent diffusivity in the surface mixed layer; a 

commonly used method in Lagrangian phytoplankton modelling (Falkowski & 

Wirick, 1981; Ross et al., 2011a; Ross et al., 2011b; Visser, 1997). The mixing 

rates can then be obtained through the use of statistical or empirical models of 

turbulence. Statistical models of turbulence calculate averages of the Navier-

Stokes equations, through the use of turbulence closure techniques. These can 

be divided into three main classes: bulk models that assume homogeneity of 

the mixed layer; one equation closures, which resolve TKE in the vertical based 

on eddy length scale; and two equation closures, which use an additional 

equation for length scale or related quantity. Empirical models are similar to 

statistical turbulence models, but use entirely empirical knowledge of fluxes, 

rather than approximating turbulence fluxes through the use of closure 

techniques. Therefore, the accuracy of the empirical turbulence models 

depends upon the accuracy of the empirical measurements (Paskyaci & Fer, 

2010). 

For this study, an empirical model of turbulence, the non-local K-profile 

Parameterization (KPP), was chosen. This was an ideal choice for the study, as 

the model could be tailored for OWS India, using empirical data on surface 

wind speed and the annual cycle of mixed layer depth. It is relatively 

insensitive to vertical resolution, making it a suitable method for low-

resolution configurations. In their review of oceanic turbulence models, which 

included description and testing of the KPP model, Large et al. (1994) showed 

that the KPP model can perform as well, or in some cases, even better than 

other models in its class, and, most importantly, if given the correct surfacing 

forcing, will distribute properties properly in the vertical. 
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1.2.3 The study site 

As previously mentioned, one of the aims of the study was to gain 
understanding of how cellular level processes impact upon rates of primary 
production in the ocean. Although good data describing the response of 
phytoplankton cells to variations in irradiance in the laboratory exist, it is not 
clear whether phytoplankton in the open ocean will respond in the same way as 
those in a laboratory setting. Therefore, the model parameters controlling the 
photoacclimative response of the phytoplankton were obtained by tuning the 
model predictions to available empirical data for an ocean site, which 
described both the chlorophyll concentrations, and the pigment:biomass 
ratios. Only one station was explored, as this was sufficient to achieve the aim 
of examining photoacclimation in an environmental rather than a laboratory 
setting. 

The chosen study site is Ocean Weather Station India in the North Atlantic 

(59N, 19W), which is part of the network of ocean weather stations that were 

established after World War II, in order to collect long-term observations of 

ocean water and atmospheric properties (Send el al., 2001). It is situated 

between the Hatton Bank and the Iceland Basin, in a water depth of 2000m. 

The site is characterized by a deep winter mixed layer, followed by 

stratification in spring accompanied by a phytoplankton bloom. It is an ideal 

site for this study, due to its clear seasonal cycle of phytoplankton, which 

includes a very large spring bloom 
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Figure 6: Ocean Weather Station India. Source: “OWSI” 59° 0’ 0”N, 19° 0’ 0”W. Google maps. 

2014 

The spring bloom results in visible changes to the phytoplankton 

concentration at the surface of ocean, which can be measured using satellite 

imagery (Figure 7). 
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Figure 7: Satellite measurements of surface chlorophyll taken between 58.5 and 59.5N and 

18.5 and 19.5W in 2015 (2016) 

Models generally look at predictions of integrated biomass, which can be give 

a misleading impression of a bloom, as this surface growth is not constant, but 

varies on a daily basis depending on the weather (overcast days, wind) and the 

ocean (fronts, eddies) conditions. Figure 8 shows how the evolution and peak 

of the spring bloom (days 90 to 114 of 2015) looked in the area surrounding 

OWS India in 2015.  

 

Day 90 

 

Day 92 

 

Day 94 
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Day 96 

 

Day 98 

 

Day 100 

 

Day 102 

 

Day 104 

 

Day 108 

 

Day 110 

 

Day 112 

 

Day 114 

Figure 8: Surface chlorophyll measurements taken from satellite observations in 2015 

(2016) 

1.2.4 The timing of the onset of the spring bloom in the North Atlantic 

Understanding the mechanisms of the spring bloom holds great importance 

both in terms of ecosystem dynamics, with implications for carbon export 
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efficiency and food availability for higher trophic levels, and for detecting 

changes in the ecosystem from natural or anthropogenic forcing (Cole et al., 

2015)., The second part of the study was therefore concerned with 

determining the controls of the spring bloom in the North Atlantic. 

Although the North Atlantic is a good testing ground for models of the spring 

bloom, due to its clear cycle of phytoplankton, it is not typical of the subpolar 

global basins. It has very deep winter mixed layers, and differs from the North 

Pacific and Southern Ocean, which have permanent haloclines and are iron 

limited (Cole et al., 2015). However, as the current study focuses on 

determining the conditions that best describe the three main hypotheses of 

the causes of the initiation of the spring bloom, rather than determining one 

absolutely cause for spring bloom initiation, OWS India is a suitable study site. 

The three theories under investigation are based around two different 

concepts: that the spring bloom results from a temporary decoupling of the 

growth-loss cycles of the phytoplankton (disturbance-recovery hypothesis), or 

that changes in physical factors such as mixing rates, mixed layer depth, and 

surface irradiance, trigger rapid increases to net production (critical depth, 

critical turbulence hypotheses).  

1.2.5 Sverdrup’s critical depth hypothesis 

The critical depth hypothesis was first proposed by Sverdrup (1953), as a 

formalisation of ideas already advanced by Gran and Braarud (1935) and by 

Riley (1946, 1942). The idea behind it is simple: if the turbulence within the 

surface mixed layer of the ocean is high enough to evenly distribute the 

phytoplankton, then the rate at which the phytoplankton are moving will result 

in them experiencing the average irradiance in the mixed layer, I
D
, which is a 

function of the surface irradiance and its attenuation with depth. Assuming 

that all losses are constant with depth, there exists a vertically averaged 

irradiance at which the rate of phytoplankton growth is exactly balanced by the 

sum of the losses. Above this irradiance, the vertically averaged growth rate is 

positive, below this irradiance, it is negative. Or, to put it another way, there 

exists a mixed layer depth, above which the average irradiance is high enough 

to support positive net growth, and below which there is insufficient irradiance 

for growth to exceed loss. These concepts are fully depicted in Figure 9. 



The current study 

 26 

 

Figure 9: The relationship between the compensation irradiance and the critical depth. At 

the compensation depth (D
C
), the irradiance is such that the photosynthesis of a single 

phytoplankton cell (P
c
) is equal to the sum of its losses (M

C
). Above this depth there is a net 

gain from photosynthesis (P
C
 > M

C
), below it there is a net loss (P

C
 < M

C
). As phytoplankton 

are mixed above and below the compensation depth, they experience an average irradiance 

(ID) in the water column. The depth at which ID equals IC is the critical depth (Z
Cr
) where 

photosynthesis through the water column (P
W
) equals phytoplankton respiration 

throughout the water column (M
W
). The chequered area represents phytoplankton loss 

(respiration, mortality, grazing, mixing), and the striped area represents photosynthesis; 

these two areas are equal at the critical depth. Figure redrawn from Lalli and Parsons 

(1997). 

Sverdrup stated that it would be possible to predict the critical depth, using 

several assumptions, including: 

1. The mixed layer experiences turbulence strong enough to evenly distribute 

the phytoplankton 

2. The phytoplankton are not nutrient-limited 
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3. Phytoplankton loss rates are constant with depth 

4. The coefficient for light attenuation, k
par

, is constant 

5. The value for the compensation irradiance, I
C
, is known 

The compensation irradiance, I
C
, is the irradiance at which the growth rate of a 

phytoplankton cell exactly balances all its losses (Figure 9). As phytoplankton 

within a well-mixed layer experience the average irradiance within that layer, 

the average irradiance from the surface down to the critical depth, I
D
, is equal 

to the compensation irradiance, I
C
. This represents the lowest irradiance at 

which the phytoplankton can grow, and varies from species to species. 

Currently, values for I
C
 are often obtained from culture experiments that 

measure the minimum irradiance required for a population to survive. These 

have been criticised for taking no account of many of the loss processes found 

in the ocean, and tend to range over an entire order of magnitude from 0.35 to 

3.5 mol photons m-2 d-1 (~0.9 to 9 W m-2) (Siegel et al., 2002). Sverdrup defined 

the compensation irradiance as being the balance between growth and loss. If 

the rate of production is proportional to the irradiance, with slope α
P
, then the 

rate of change of production with time, t, is: 

 
 
dp
dt

=α P ⋅ Iz   (1.6) 

If the loss rate, m, is assumed to be a constant, then the loss over the same 

time period is: 

 
dr
dt

= mp   (1.7) 

Therefore, by definition, I
z
 = I

c
 at the depth where dp = dr. Therefore: 

 
 
IC =

mP

α P

  (1.8)   

However, as the mortality rate depends upon both the concentration of the 

phytoplankton and the grazing populations, it seems unlikely that I
C
 is a 

constant.  
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Once the above assumptions have been accounted for, the critical depth, Z
cr
 

(m), can be calculated using the equation: 

 

  

Zcr

1− e−kZcr
= 1

kpar

I0

Ic

  (1.9) 

where I
C
 represents the compensation irradiance, and I0 represents the 

irradiance at the surface. 

The critical depth hypothesis has gained a number of critics, although some of 

these are due to misinterpretations of its assumptions. For example, 

Sverdrup’s use of the term ‘respiration’ to account for all phytoplankton losses 

(e.g. mortality, grazing, mixing) has led to some confusion. In addition, studies 

testing the critical depth hypothesis often neglect the assumption of a fully 

mixed layer. For instance, Townsend et al., (1992) reported that in the offshore 

waters of the Gulf of Maine, the spring bloom could precede the onset of 

seasonal stratification. They proposed that the combination of the deepening 

of light penetration in the clear waters during spring with the lack of, or weak 

vertical mixing, could maintain cell growth rates that could exceed the mixing 

rates, thus leading to a bloom. They further suggested that the scattering and 

absorption of irradiance by the phytoplankton could enhance the warming of 

the surface waters, and the development of the thermocline could be a 

consequence of the spring bloom, rather than a trigger. However, this scenario 

is not a valid test of the hypothesis, as weak vertical mixing would not result in 

the phytoplankton being evenly distributed with depth. This has led some 

researchers (e.g. Chiswell, 2011; Franks, 2014) to differentiate between a 

mixed layer, which is generally measured through changes in density, using 

proxies such as salinity or temperature, and a mixing layer, which is a source 

of active turbulence. For example, at the end of winter, a measurable deep 

mixed layer resulting from convection and winter storms may still exist, but 

with the end of surface cooling and a reduction in wind stress, the vertical 

mixing within the layer could be considerably reduced compared to the 

wintertime values (Chiswell, 2011). This distinction is not new to the literature, 

Yamazaki and Kamykowski (1991) also separated the idea of a 

characteristically similar mixed layer, and an active turbulent mixing layer. In 

fact, some authors suggest that few studies have properly tested Sverdrup’s 

hypothesis, as this would require knowledge of both the phytoplankton growth 
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rates and the measurements of turbulence, as it is the turbulence that move 

the phytoplankton through the vertical light gradient (Franks, 2014). 

Smetacek and Passow (1990) criticised Sverdrup’s use of a constant loss rate 

over both depth and the diurnal cycle, pointing out that dark respiration is 

known to be highly variable, with regard to both species and growth 

conditions. Cells within a deep mixed layer can experience prolonged periods 

of darkness, resulting in changes to rates of dark respiration. In addition, most 

species can produce resting stages, some of which remain photosynthetically 

active (Lindemann & St John, 2014). Smetacek and Passow were further 

concerned that focussing on phytoplankton respiration in this manner diverts 

attention to the lower reaches of the euphotic zone, whereas spring bloom 

induction is far more likely to be governed by processes occurring close to the 

surface. They concluded that the ‘critical depth’ of importance to bloom 

development is found in the upper, rather than the lower, third of the euphotic 

zone. 

Lindemann et al. (2015) used a Lagrangian phytoplankton model to investigate 

the effects of a variable rate of respiration and sinking on predictions of 

primary production. Respiration was proportional to photosynthesis in the 

light, but decreased in the dark, with the rate of decrease reducing 

exponentially over time. They found that using variable rates for respiration 

(and sinking) allowed the model to capture both the observed phytoplankton 

concentration during deep convective mixing, and the timing and magnitude 

of the onset of the spring bloom. In order to achieve the same result from a 

model with fixed rates of respiration and sinking required the use of 

unrealistic parameters. 

1.2.5.1 The critical turbulence hypothesis 

Huisman et al. (1999) proposed that critical depth theory is insufficient in itself 

to predict net phytoplankton production in cases where there is weak to 

moderate turbulence. Their model relaxed the assumption of phytoplankton 

homogeneity, allowing the dynamics of phytoplankton growth and turbulent 

mixing to determine the distribution of phytoplankton with depth. They argued 

that critical depth is only relevant for water columns with high enough levels of 

turbulence to result in well-mixed phytoplankton populations. Once the 

turbulence falls below some critical value, phytoplankton growth rates can 
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exceed vertical mixing rates, resulting in net production, regardless of the 

depth of the mixed layer. 

This critical turbulence hypothesis was then extended by Taylor and Ferrari, 

(2011) who suggested that it could be used to predict net phytoplankton 

growth from meteorological conditions. They proposed that there is a window 

in time between the winter deep mixing and the spring stratification, where 

mixing can occur close to the surface, while the deeper mixed layer still retains 

its homogenous properties. Under these conditions, the density defined mixed 

depth does not give an accurate representation of the actual mixing depth, and 

surface blooms can occur. They therefore believed that the crucial control on 

phytoplankton growth rates is related to the switch of seasonal thermal forcing 

from net cooling to net warming, and that shutting off of atmospheric cooling 

could trigger a phytoplankton bloom, regardless of the details of biological or 

physical response (Ferrari et al, 2014). 

1.2.5.2 The disturbance-recovery hypothesis 

The previous theories describe the triggers of the spring bloom as a 

consequence of abiotic factors, such as sunlight, nutrients and temperature, 

increasing the phytoplankton growth rate. However, Behrenfeld and Boss 

(2014) proposed that there is no evidence in the literature for any correlation 

between the rate of phytoplankton biomass accumulation and phytoplankton 

growth (which they defined as cell division) rates, and that the bloom is a 

result of disturbances in the balance between phytoplankton growth and loss 

rates, in particular, grazing. They termed this the disturbance-recovery 

hypothesis. 

The idea that spring blooms result from disturbances to the phytoplankton 

seasonal cycle of growth and loss was first proposed by Evans and Parslow 

(1985). They used a simple, NPZ model to demonstrate that, unlike the 

classical view of phytoplankton blooms being due to rapid changes in 

phytoplankton growth rates due to sudden stratification, blooms were actually 

a result of rapid changes in the specific growth rates. This meant that, 

although a sudden, rapid change in phytoplankton growth could result in a 

high enough specific rate of change to result in a bloom, a very low growth 

rate during the winter (i.e. resulting from deep mixed layers), will also result in 

a high specific rate of change through spring, causing a bloom to develop. 
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This idea was expanded on in the dilution-recoupling hypothesis, proposed by 

Behrenfeld (2010), which describes the spring bloom as being a result of the 

decoupling of phytoplankton biomass from zooplankton grazing pressure over 

winter. The deepening mixed layer dilutes the concentration of phytoplankton 

and zooplankton, leading to a reduction in grazing pressure, due to the 

density dependence of grazing. As the water column begins to stratify in early 

spring, the ability of the zooplankton to remain within the mixed layer 

increases grazing pressure once more, recoupling the predator-prey 

relationship, but only after the phytoplankton have had time to accumulate 

significant biomass. However, due to the deepening of the mixed layer, the 

increase in phytoplankton biomass before the onset of stratification is not 

apparent. This is also an important source of carbon export, as the 

phytoplankton cells below the depth of spring stratification do not contribute 

to the spring bloom, as they are detrained and lost to the deep ocean 

(Lindemann & St John, 2014). The disturbance-recovery hypothesis then 

extends this idea to include other sources of disruption to the phytoplankton 

growth – loss balance, such as deep winter mixing, freshwater input, 

upwelling, or polar night (Behrenfeld et al., 2013). They define the start of a 

bloom as the point when the net integrated growth first becomes positive, 

stating that the peak of the spring bloom is just the final stage. Unlike the 

critical depth hypothesis, which focuses on bottom-up control, the disturbance-

recovery hypothesis looks at top-down controls of the phytoplankton 

concentrations.  

1.2.5.2.1 Modelling the hypotheses describing the controls of the spring 

bloom 

Non-linear processes, such as photoacclimation, and the relationship between 

photosynthesis and irradiance, control phytoplankton growth. As a result, the 

way that phytoplankton move through the fluctuating fields of nutrients and 

irradiance will impact upon their photoacclimative state, and their growth rate. 

Therefore, Franks (2014) proposed that in order for a model to properly test 

the critical depth hypothesis (and therefore also the critical turbulence, and 

disturbance-recovery hypotheses) it needs to include information about the 

rates of turbulent mixing, as well as the rates of phytoplankton growth. 
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Lévy (2015) used an Eulerian NPZ model, to investigate the necessary 

conditions to model the critical depth, critical turbulence, and disturbance-

recovery hypotheses. She started with a simple simulation, based on 

Sverdrup’s original model, and then gradually increased the complexity 

through the addition of light saturated growth, nutrient limitation, vertical 

mixing, grazing, self-shading, and a seasonal cycle of mixed layer depth. 

However, her study was unable to obtain an exact match between the 

predicted (critical depth equation) and modelled (point where the net growth 

first became positive) bloom onset, even when using the simple set of 

assumptions proposed by Sverdrup, which she concluded was due to the way 

that the Sverdrup solved the critical depth equation (i.e. for steady-state). 

She found that including the vertical mixing, allowed the model to reproduce 

the conditions described in the critical turbulence hypothesis – i.e. reduced 

mixing resulted in a vertical profile of phytoplankton, with more biomass 

maintained near the surface. Increasing the biomass near the surface of the 

mixed layer increased the overall rates of photosynthesis, allowing for net 

production, even when the mixed layer was deeper than the critical depth. The 

addition of grazing, and a seasonal cycle of mixed layer depth, where the 

depth of the mixed layer deepened between the end of summer and winter, 

created the conditions necessary for the disturbance-recovery hypothesis. 

Based on this, she identified four key areas that studies wishing to investigate 

these three hypotheses should include: 

1. A distinction between the mixed and the mixing layer 

2. A full season cycle, to account for the evolution of the physical 

parameters from the previous summer 

3. Seasonal evolution of surface irradiance 

4. Variable loss, through grazing 

However, Lévy concluded that the conclusions drawn within the study were 

limited through not exploring all of the physical and biological parameter 

spaces, plus that the model had not incorporated photoacclimation. 

The model used in the current study, which will be introduced in the next 

chapter, fulfils the four requirements recommended by Lévy (2015), and, 

additionally, includes representation of the photoreponse of individual 

phytoplankton particles to changes in their environment.  
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1.2.6 How the current study differs from previous studies 

The previous studies have not provided a definitive answer as to whether 

Lagrangian and Eulerian implementations of phytoplankton based ecosystem 

models provide differing predictions of rates of photosynthesis and biomass. 

Furthermore, even though LL89, and M95 both agree that there is little 

difference between the predicted growth rates of the Lagrangian and Eulerian 

models, LL89 suggest that it is because the phytoplankton are close to fully 

acclimated at all times, whereas M95 states that the mixing rates are much 

faster than the acclimation rates. In Chapter 3, I use a Lagrangian 

phytoplankton ecosystem model, described in Chapter 2, along with an 

equivalent Eulerian model, in order to address some of these questions. Both 

the model I am using and the analysis I perform are unique in a number of 

ways: 

1. LL89 and M95 only investigated phytoplankton growth, with no 

ecosystem, and HK07 only implicitly represented zooplankton. The 

model designed for this study includes explicit representation of 

phytoplankton, detritus, nutrient concentration, and also zooplankton, 

allowing for not only the effects of the model formulation on 

phytoplankton growth to be examined, but also the consequences for 

the ecosystem as a whole.  

2. Whilst LL89 used a constant surface PAR, M95 used a diel cycle based 

on one time of year, and HK07 neglected irradiance completely, my 

study uses a full, annual cycle of irradiance, based on a specific ocean 

location (Ocean Weather Station India).  

3. Photoacclimation is represented by simple growth models in LL89, and 

M95, whereas is it omitted completely in HK07, who looked at a quota 

model of phosphate to carbon. My model uses a phytoplankton growth 

model which represents photoacclimation based on . This is a well 

known and well tested method that has been used in a large number of 

ecosystem studies (for example: Fennel et al. (2006); Lima and Doney 

(2004); Patara et al. (2011); Spitz et al. (2001); Vichi et al. (2007); Yool 

et al. (2013, 2011)). This not only allows the model to be directly 

compared with previous modelling studies, but the nature of the growth 

equations allows for predictions of the steady-state values of the 

photoacclimative properties, which can then be compared to the 
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individual states of phytoplankton photoacclimation. In addition, extra 

verification of the model can be achieved by comparing the resulting 

ratios of chl-to-carbon to empirical observations. 

4. The movement rules in LL89 and M95 are based on Brownian motion, 

using a constant rate of dissipation, whereas, although the movement 

rules in HK07 are based on explicit particle tracking routines (ECOMSED 

v. 1.3), there is little detail as to how these routines are parameterised. 

The model in this study uses a random walk based on Visser (1997), 

with the diffusivity calculated from the surface wind speed and mixed 

layer depth as per the ocean boundary layer model described in Large et 

al. (1994). The model is parameterised using mixed layer depths taken 

from World Ocean Atlas (Antonov et al., 2010) and 5 year averaged wind 

speed data from the ERA 40 data set for OWSI. This means that it is able 

to represent changes in mixed layer depths, and also deeper mixed 

layer depths (i.e. the 500m+ depths observed at OWSI) unlike LL89, 

which doesn’t use a specific mixed layer depth, M95 which looks at a 

fixed 100m depth, and HK07, which is more interested in horizontal 

distribution, and use a fixed depth of 10m.  

 

1.3 Project Objectives 

The above summary has demonstrated several questions that have not yet 

been satisfactory resolved in the literature: the effect of mixing on primary 

production, the relationships between the rates of photoacclimation and 

mixing, and the controls of the timing of the spring bloom. The current study 

will address these questions through examination of the central question to 

this study: will predictions of primary production from a Lagrangian model, 

that takes into account the previous histories of the individual phytoplankton 

particles, differ from that of an equivalent Euerian model? 

Some of the other issues that will be addressed in the course of this thesis are: 

• what is the best practice for setting up Lagrangian phytoplankton 

models? 
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• how do decisions regarding the underlying assumption of Lagrangian 

models impact on the resulting predictions for phytoplankton growth 

and the consequences for the ecosystem as a whole? 

• will Eulerian and Lagrangian implementations of a marine ecosystem 

model differ in their predictions? 

• how do the timescales of growth and acclimation compare to the 

timescales of mixing, and what consequences does this have for 

predictions of primary production? 

• what can a Lagrangian approach tell us about the timing of the spring 

bloom in the North Atlantic 

 





  

 

 

Chapter 2: Fundamental Assumptions 

2.1 Introduction 

This chapter has two main objectives: firstly, to introduce the Eulerian-

Lagrangian hybrid ecosystem model that forms the basis of the rest of this 

thesis, showing how it can simulate the cycles of plankton and nutrients at a 

particular ocean site, and secondly to understand and test some of the basic 

assumptions of Lagrangian modelling. 

Using an Eulerian-Lagrangian hybrid, rather than a full Lagrangian model, 

allows for important processes to be represented in a Lagrangian manner (e.g. 

how individual phytoplankton physiological states influence overall primary 

production), whilst still enabling an Eulerian-Lagrangian comparison. The 

hybrid model comprises Lagrangian phytoplankton particles embedded within 

an Eulerian ecosystem. It uses simple, 2-layer slab physics, with the ecosystem 

being simulated within a seasonally varying mixed layer, above a deep, 

nutrient containing layer. Slab models are a good choice for this type of study, 

as they are sufficiently well formulated to permit realistic and insightful 

simulation of marine ecosystems, while being simple enough to run multiple 

times without incurring high computational time or cost. In addition, the lack 

of complexity makes the resulting model predictions relatively easy to analyse 

(Anderson et al., 2015). The model parameters are then tuned to produce the 

cycles of plankton and nutrients observed at Ocean Weather Station India (59°N 

19°W) in the North Atlantic. Finally, the model is used to investigate some basic 

Lagrangian assumptions, such as the model design and structure, and the 

particle movement rules. 

2.2 Model design 

2.2.1 The physical model 

The slab physics are based on Evans & Parslow (1985), and use a 2-layer slab 

structure (Anderson et al., 2015). The upper layer, the depth of which varies 
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seasonally, contains the ecosystem, with the lower layer containing only 

nutrient (Figure 10).  

 

 

Figure 10: Structure of the ecosystem (redrawn from Ross & Sharples (2007)) 

 

 

There was assumed to be a gradient of nutrient with depth, which was 

represented using a simple linear equation: 

 DIN0 = aN ⋅H + bN   (2.1) 

where DIN
0
 represents the nutrient below the mixed layer (mmol N m-3) , H 

represents the depth of the mixed layer (m), and the regression coefficients (a
N 

= 0.0074, b
N 
= 10.85) were taken from Anderson et al. (2015) and were fitted 

from World Ocean Atlas data for OWSI (Antonov et al., 2010) for NO
3
 at the 

base of the thermocline. The mixed layer depths were also taken from the 

World Ocean Atlas data, and were updated daily (Figure 11). 
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Figure 11: Seasonal cycle of mixed layer depth 

The noon irradiance was calculated as a function of the latitude and the time 

of year, using standard equations (Brock, 1981). Figure 12 shows the predicted 

seasonal cycle of noon photosynthetically active radiation (PAR). 
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Figure 12: Seasonal cycle of noon PAR for OWSI used in the model 

Irradiance varied throughout the day according to a sinusoidal function, and 

the reduction of insolation due to cloud cover was calculated using the model 

of Reed (1977) This calculates a number less than 1 by which the solar 

irradiance is multiplied, using the equation 1− 0.62C + 0.0019α , where C 

represents the cloud cover in tenths (C = 6 oktas), and α the noon solar 
altitude (degrees). Reed suggested that this model is appropriate for cloud 
covers of 0.3 and greater, although he pointed out that mean cloud amounts 
0.2 and less could be neglected for practical purposes. Thus, the model has a 

day-night cycle in which phytoplankton have zero growth during night hours. 

2.2.2 Parameterizing turbulence 

The rate at which the phytoplankton are mixed through the surface mixed 

layer depends upon the turbulence. This is parameterized through the use of a 

diffusivity coefficient, K
turb

, which is set as being constant throughout the water 

column. This simplification, which allows for greater ease in understanding the 

phytoplankton’s trajectories, would not be expected to be seen in the ocean, 

where local rates of mixing change depending on conditions. The value for K
turb

 

is updated daily, based on the surface wind speed and the depth of the mixed 

layer. The calculations are taken from the KPP model by Large et al. (1994), 
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which calculates a profile of diffusivity as the product of a depth dependent 

turbulent velocity scale, wx, and a nondimensional vertical shape function G(σ), 

where σ = a dimensionless vertical coordinate that varies from 0 to 1 in the 

boundary layer . 
 

As the model assumes a homogeneous vertical turbulence profile, i.e. a single 

value of Kturb throughout the water column, there is no vertical profile, G(σ), 

and instead a constant, G, is used. The value of this constant represents the 

average of the turbulence profile, and is set to 0.1. 

 Kturb = wx ⋅H (t) ⋅G   (2.2) 

The turbulent vertical velocity scale is calculated from: 

 wx =κ ⋅u*   (2.3) 

where κ = von Kármán's constant (0.4), u* is the wind friction velocity (~ 1E-3 . 

U), with U wind speed. The wind speed, U, is updated daily, based on a 

sinusoidal function fitted using non-linear least squares to an annual cycle 

obtained by averaging ERA 40 data over the years 1997 to 2001, inclusive 

(Figure 13).  

 

Figure 13: Sinusoidal function for wind speed on each day of the year, compared to wind 

data calculated from the ERA40 u and v components measured at 10m above sea level. 
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Table 1: Parameters used in the KPP model for calculating the diffusivity coefficient (K
turb

) 

   

   Kturb 

    

    turbulent diffusivity coefficient (m2 s-1) 

 

Eq. (2.2) 

wx turbulent velocity scale (m s-1) Eq. (2.3) 

G vertical shape function (dimensionless) 0.1  

κ von Kármán's constant (dimensionless) 0.4  

u* wind friction velocity (m s-1) 1e-3U 

U Wind speed (m s-1) function of day of 

year (see text) 

 

The calculation for u* is based on the equation: 

 u* = τ
ρ

  (2.4) 

where τ represents the wind stress (N m-1), and ρ the density of the seawater 
(kg m-3). This was found by Large et al. (1994) to be well represented by the 
use of 1*10-3U. 

2.2.3 Particle movement rules 

The phytoplankton particles are assumed to be moved by turbulence only, 

without taking into account potential changes in buoyancy, or phytoplankton 

motility. The simplest method to represent this movement is to randomly 

redistribute the particles within the water column every time step, an approach 

used in Nogueira et al. (2006), Sinerchia et al. (2012), Woods et al. (2005) and 

Woods & Barkmann (1993a). This random position movement algorithm is 

simple to implement and understand, but may not always be an appropriate 

solution – especially for models with deep mixed layers. The is because the 

choice of model time step implies the maximum speed of the particles, as the 

time step is the length of time that it could theoretically take a particle to 

move from the surface to the base of the water column. In reality, the distance 

travelled should relate to the level of turbulence in the water column, not the 

model time step. 



Chapter 2: Fundamental Assumptions 

 43   

An often used alternative is the random walk (e.g. Broekhuizen (1999), Cianelli 

et al. (2004), Falkowski & Wirick (1981), Franks & Marra (1994), Kamykowski et 

al. (1994), Lande & Lewis (1989), Lizon et al. (1998), Ross et al. (2011a,b) Ross 

& Sharples (2004), and Visser (1997)), which involves particles being moved a 

certain distance in a random direction each time step. The formulation of these 

walks can vary in complexity. For example, they can move in any number of 

planes, or their current move can depend upon previous moves. However, even 

the simplest random walks, where each move is entirely independent of the 

previous moves, and the particles can only move in one plane, can be 

complicated to implement and require careful testing to ensure that design 

considerations are not having unexpected effects on the model predictions. 

This study used a simple random walk that represents the turbulence in the 

ocean through a turbulent diffusivity coefficient, K
turb

, a method seen in studies 

such as Falkowski & Wirick (1981), Ross & Sharples (2004), and Visser (1997). 

This parameter provides a reasonable representation of some of the statistical 

properties of turbulence, such as mean length and time scales (Ross and 

Sharples, 2004). However, it also compares two different formulations of the 

same random walk - one as described in Falkowski & Wirick (1981) and the 

other in Visser (1997) - with the random position method of phytoplankton 

redistribution. These methods all appear in the literature, but there are 

currently no studies that directly compare how they affect model predictions. 

2.2.4 Description of the random walk 

Two random walk formulations were investigated, and then compared to an 

algorithm that simply randomised the position of the phytoplankton each time 

step. The random walk assumes that phytoplankton movement is solely based 

on turbulence, neglecting individual motility and buoyancy control. The only 

change experienced by the phytoplankton is in their light field, as all other 

environmental variables (grazing, DIN) are represented as Eulerian 

concentrations, so only vertical movement was represented. The equations are 

based on the collective motion of Brownian particles, and express the mean 

squared displacement in terms of the time elapsed and the diffusivity: 

 
d
dt

= z2( ) ≡ 2Kturb   (2.5) 
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This follows Einstein’s arguments that the displacement of a Brownian particle 

is not proportional to the elapsed time, but rather to its square root (Einstein, 

1905). Two different methods for representing this were investigated, the first 

of which is described in Falkowski & Wirick (1981). In these equations, the 

distance travelled by each particle is the same for each time step, but there is 

an equal probability that the particle will move up or down: 

 zn+1 = zn ± 2Kturb ⋅ ∂t( )
1
2   (2.6) 

where z = depth (m), K
turb

= eddy diffusivity (m2 s-1). I will refer to this as a 

discrete random walk, as the distance moved by each particle is the same, and 

only the direction is randomly varied. 

The second is described by Visser (1997), and is based on the same equations, 

but a random process, ranging from -1 to 1, modifies the resulting 

displacement. The distance moved by each particle is therefore not the same 

every time step.  

 zn+1 = zn +
R
r
2Kturb ⋅ ∂t( )

1
2   (2.7) 

Here, R represents a random process, with 0 mean, and variance r (e.g. here, R 

is a uniform distribution between +1 and -1, so r = 1/3, due to the properties 

of a uniform distribution, i.e. the second moment of the distribution is the 

variance.). The equations in Visser (1997) also included a function for 

redistributing the particles from areas of low turbulence, but this has not been 

included here, because the diffusivity is assumed to be constant throughout 

the water column. This can be thought of as a continuous random walk, 

because there are, theoretically, an infinite number of possibilities as to the 

distance moved each time step. However, both the discrete and continuous 

random walks are essentially the same – the mean squared displacement is 

always equal to 2K
turb
δt

 
. 
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Figure 14: Normalised frequency histogram showing the distance from the starting 

position (0) after 10 steps for each model, for K
turb

 = 1 m2 s-1 , N = 10,000 (N = number of 

super-individuals) 

Figure 14 shows the distribution of the particles after 10 steps for both the 

discrete and continuous random walk model. In the discrete model, due to the 

fixed step size, the particles can only be in one of a number of different 

positions. Conversely, in the continuous model, the particles can move to any 

place in the water column, and this is reflected in the smooth curve of the bins 

in the histogram. The more bins used, the smoother this curve will become 

(assuming a high enough number of particles to prevent statistical errors). 

The distance moved each time step is therefore a function of the surface wind 

speed and the depth of the mixed layer, which changes over the course of the 

year. Figure 15 shows the average step length taken by the super-individuals 

over the annual cycle, using a range of different time steps. 
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Figure 15: Average step length taken by the super-individuals in response to the annual 

cycles of surface wind and mixed layer depth timesteps of 30 mins, 15 mins, 5 mins and 1 

min. 

Both boundaries (the surface and the based of the mixed layer) were assumed 

to be reflecting. 

2.2.5 The biological model 

2.2.5.1 The Eulerian-Lagrangian hybrid model 

A true Lagrangian plankton ecosystem model that represented every organism 

individually, and simulated interactions, such as grazing, at a cellular level, 

would be computationally impossible, due to the extremely high numbers of 

organisms. A simpler solution was therefore used, whereby only the 

phytoplankton biomass was represented using a Lagrangian framework, and 

all other aspects of the ecosystem were simulated using an Eulerian 

formulation. This is essentially a hybrid approach that embeds Lagrangian 

phytoplankton into an existing nutrient-phytoplankton-zooplankton-detritus 

(NPZD) model, previously used in Broekhuizen (1999); Cianelli et al. (2004); 

Cianelli et al. (2009); Ross & Sharples (2007). However, the model used by 

Broekhuizen (1999) ignored photoacclimative responses, and none of the 

previous models explicitly represented zooplankton. The novel aspect of this 
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work is the use of an NPZD model that both includes explicit representation of 

all of the model components, and also includes photoacclimation. Classical 

NPZD models are relatively simple in structure, making them easy to analyse, 

but have a proven track record in simulating ecosystems (Fasham et al., 1990). 

The NPZD model chosen for this study explicitly represents both chlorophyll 

and nitrogen, and has parameterisations based on the MEDUSA model (Yool et 

al., 2011; Yool et al., 2013). This is a good choice due to its robust equations, 

plus its explicit representations of internal chlorophyll quotas allows for 

simulation of phytoplankton light acclimation (see model description in section 

2.2).  

2.2.6 Super-individuals 

The simplest and most natural way to divide the phytoplankton population into 

a number of particles, would be for each single particle to represent one 

phytoplankton cell. However, as phytoplankton density can reach thousands of 

cells per ml (Hirose et al., 2008; Jacquet et al., 2002), it is impossible to 

consider modelling every individual cell in a column of water in the open 

ocean, due to computational limits. An alternative approach was presented by 

Woods & Onken (1982), who proposed that each Lagrangian particle should 

represent a population of phytoplankton cells, rather than a single cell. In this 

way, the computational cost of each model could be tailored through simply 

increasing or decreasing the number of cells represented by each particle. 

They called this the Langrangian-ensemble method of modelling primary 

production, as the total primary production is estimated from the ensemble of 

individual particles. The cells are assumed not to change in size (or biomass 

content per cell), but the particle biomass changes as the number of cells 

changes. Cell division and mortality can then be represented through simply 

increasing or decreasing the number of cells the particle represents.  

Lagrangian-ensemble models allow researchers to represent individual changes 

in phytoplankton physiology, without incurring excessive computational costs. 

However, incorporating these individual-based models into a full ecosystem 

model raises several issues. The most difficult of these is how the model 

handles grazing, which is generally assumed to be a non-linear function of 

phytoplankton concentration: increases in phytoplankton concentrations will 

increase predator-prey encounter rates, until the zooplankton reach a 
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maximum, saturating rate. The most ‘realistic’ solution would be to use 

Lagrangian zooplankton, however this not only substantially increases the 

complexity of the model, but also requires some method of representing the 

dynamics of zooplankton grazing on a cellular level. In addition, grazing at a 

cellular level tends to happen on a time scale of seconds, whereas model time 

steps tend to be minutes or hours. One solution is to not explicitly represent 

zooplankton, but to include losses through grazing in the phytoplankton 

mortality terms (e.g. Hellweger & Kianirad (2007)). Other models have included 

explicit zooplankton, and based grazing rates on cell number (e.g. Sinerchia et 

al. (2012); Woods et al. (2005)), however there is a lack of data surrounding 

grazing rates in the open ocean against which to verify such models. Grazing 

rates in ecosystem models tend to be biomass-based, due to the nature of the 

observations from which they are derived. In order to translate traditional N-

based grazing kinetics for an individual-based phytoplankton model, the 

grazing in the current study is calculated based on the average phytoplankton 

biomass, and then applied proportionally to each phytoplankton particle (full 

details and consequences in section 2.2.7). This means that the equations for 

the ecosystem model used in conjunction with the Lagrangian phytoplankton 

were formulated in terms of phytoplankton concentration, rather than 

individual cells. Therefore, each phytoplankton particle (or super-individual (SI) 

after Scheffer et al. (1995) represented a quantity of biomass, with no 

information regarding number of cells, or cell size. 

 

Figure 16: The structure of the hybrid model, showing how the Lagrangian and Eulerian 

parts interact. The full ecosystem equations are given in section 1.3.2. 
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The hybrid model represents phytoplankton nitrogen (and chlorophyll) in three 

different ways: P
SI
, P

total
 and P

conc
. P

sI
 represents the nitrogen content of each 

super-individual, and is expressed in mmol N. P
total

 then represents the total 

phytoplankton nitrogen in the water column (P
total

 = ∑P
sI
) and P

conc
 represents the 

average phytoplankton concentration, and is calculated from Pconc =
Ptotal
H

, 

where H represents the depth of the mixed layer. Variables, such as 

production, are handled in the same way, with phytoplankton production being 

calculated for each super-individual, μ
P,SI

, summed up for the total, 

µPtotal
= µP,SI ⋅PSI∑ , and divided by the mixed layer depth to get the depth 

averaged new production, µPconc
=
µPtotal

H
  

Integrating the grazing in the Lagrangian model is a little more complicated. In 

reality, grazing is a binary process where individual cells are grazed or not. In 

the model in the current study, grazing is handled in an Eulerian fashion, 

where it impacts on each and every super-individual, removing a fraction of its 

biomass. The average grazing, G
Pconc

 (mmol N m-3 d-1) is calculated from P
conc

, 

and is applied to each super-individual proportionally, i.e.GSI = GPconc
PSI
Pconc

 .This 

method was also used for the other density-dependent process, non-linear 

mortality, to keep the model consistent. As a result, super-individuals do not 

die off and their number is maintained in the water column (with the exception 

of those detrained when the mixed layer shallows above them). Representing 

non-linear processes in this way simplifies the model analysis, allowing for 

direct comparison between the hybrid model and a fully Eulerian model, which 

was one of the main aims of this thesis. 

The main model currency is nitrogen (N, mmol m-3). However, photosynthesis 

is driven by chlorophyll which is also explicitly represented, using a variable 

Chl:C ratio (and a fixed C:N ratio). The super-individuals are moved, 

individually, around the water column using particle movement rules (see 

section 2.2.3). While the nutrient environment is uniform in the mixed layer 

(Eulerian), each super-individual will experience its own unique light 



Model design 

 50 

environment, depending on depth and self-shading from other super-

individuals above it in the water column. 

Super-individuals never die off due to grazing or mortality because these 

processes only remove a fraction of the biomass (see above). Physics aside, the 

number of super-individuals is therefore maintained. However, super-

individuals are lost, binary fashion, by detrainment out of the mixed layer, 

decreasing their number. This is implemented by simply removing any 

particles at a depth lower than the mixed layer depth, once its new position 

has been calculated each time step. In order to maintain a representative 

number of super-individuals in the water column, when super-individuals reach 

a threshold size, they split into two, equally sized super-individuals. Although 

this is primarily to replace those super-individuals lost through detrainment, it 

also prevents errors that can arise from the use of a constant number of super-

individuals due to over dominance by a single or small number of super-

individuals (see section 2.3.2). This splitting is purely a physical method of 

controlling the number of super-individuals within the simulation, and is in no 

way meant to represent biological cell division. Figure 17 shows how the 

numbers of phytoplankton SIs gained through division, lost through 

detrainment, and the total number throughout the year, are affected by 

changes to the maximum particle size, P
div

. 
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Figure 17: Super-individuals lost through detrainment, and gained through splitting, per 

day, in response to changes to the P
div

 (mmol N). Also plotted is the total number of SIs in 

the simulation at any one time. Visser random walk (see section 2.2.4). 

2.2.7 Model equations and parameters 

The NPZD model chosen for this study includes phytoplankton biomass and 

pigment growth processes based on Geider et al. (1997), and 

parameterisations based on the MEDUSA model. MEDUSA incorporates two 

functional types for both zooplankton and phytoplankton – small and large – 

but this level of complexity was not necessary for the current study, so the 

model was scaled down to only one functional type for phytoplankton and one 

functional type for grazers. Combining two size classes into one functional 

type in the hybrid model means that some of the parameter values required 

tuning in order to achieve a good fit to the data (see section 2.2.8 for full 

description). 

2.2.7.1 Phytoplankton growth model 

Phytoplankton have two state variables – nitrogen and chlorophyll - both of 

which represent the total content in each super-individual, P
SI
 and Chl

SI
. Two 

Pdiv = 0.0125

Pdiv = 0.1Pdiv = 0.05

Pdiv = 0.025
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other properties can then be derived from these: the amount in the entire 

mixed layer, P
total 

and Chl
total

; and the average concentration in the mixed layer, 

P
conc

 and Chl
conc

.  

2.2.7.1.1 Nitrogen 

The rate of change in the nitrogen biomass for each super-individual is 

calculated using the equation: 

 
dPSI
dt

= µP,SIPSI −GSI −mPPSI −M 2SI − kmix
PSI
H (t)

  (2.8) 

where the terms represent production, grazing, respiration, non-linear 

mortality, and mixing losses, respectively, and H denotes the depth of the 

mixed layer. The linear loss term is attributed to respiration, but can be 

thought of as covering both metabolic losses and natural mortality. The non-

linear term represents density-dependent loss, for example mortality from 

infection by viruses, whose abundance is dependent on the density of potential 

host cells (Anderson et al., 2015). The non-linear loss terms (both grazing and 

mortality) are calculated and applied in an Eulerian fashion, based on the 

depth-averaged concentration of phytoplankton nitrogen biomass. This is fully 

described in section 2.2.6, and the implications are discussed in section 2.3.2. 

The parameter descriptions and values can be found in Table 3. 

Phytoplankton production depends on the supply of dissolved inorganic 

nutrients, DIN, according to Michaelis-Menten kinetics, and on the availability 

of photosynthetically active light.  

The rate of production, μ
P,SI

 (h-1), is given by: 

 µP,SI = θChl ,SI ⋅VSI
PT ⋅ DIN

kN + DIN
  (2.9) 

where k
N
 is the half-saturation coefficient for nutrient uptake, DIN is the 

average concentration in the mixed layer (represented on a Eulerian 

framework, so assumed to be homogeneous), and the rate of photosynthesis, 

VSI
PT , is a function of the irradiance at the depth of each super-individual, and 

is calculated using a Smith function (Smith, 1936): 



Chapter 2: Fundamental Assumptions 

 53   

 VSI
PT =

V PT ⋅αP,SI ⋅ ISI ,z

V PT 2 +αP,SI
2 ⋅ ISI ,z

2( )
1
2

  (2.10) 

where VPT

 
is the temperature specific maximum photosynthetic rate, and  

is the initial slope of the P-I curve (gC (g chl)-1 h-1 (W m-2)-1. αP,SI  is chlorophyll 

rather than carbon specific, necessitating the explicit treatment of chlorophyll 

in the model. 

I
SI,Z

 takes into account both seasonal and diurnal patterns of irradiance arriving 

at the ocean surface, and attenuation of irradiance with depth. The light profile 

is calculated using the Beer-Lambert equation: 

 Iz = I0 exp(−kparz)   (2.11) 

where Iz is the light at depth z, I0 is the surface irradiance and k
par

 is the 

vertical attenuation coefficient. The value for k
par

 is calculated as in (Anderson, 

1993; Anderson et al., 2015). Each 1-metre layer has its own spectrally 

averaged k
par

, which is denoted k
L
 for layer L. In addition, the water column is 

divided into 3 regions, i
1
, i

2
 and i

3
, which are 0 to 5m, 6 to 23m, and > 23m, 

respectively. The irradiance for each interval is calculated based on the 

coefficient for that region, i, and the chlorophyll within that layer, L, and the 

layers above. The chlorophyll is calculated for each 1 metre layer through the 

summation of all of the chlorophyll contained in super-individuals within that 

layer, i.e.    

   (2.12) 

where   

using the coefficients shown in Table 2. This gave the attenuation coefficient 

for each 1 metre layer, and then this was used, along with equation (2.11) to 

calculate the attenuation at the exact depth of each super-individual. This 

meant that the loss of irradiance due to attenuation by the water for 

phytoplankton between the surface and 1m depth was represented. 

chlL = chlSI  for interval L∑

kL = b0,i + b1,icL + b2,icL
2 + b3,icL

3 + b4,icL
4 + b5,icL

5

cL = chlL
1
2
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Figure 18: Comparing the model of light attenuation described in Anderson (1993) with a 

simpler attenuation model, as used in Evans and Parslow (1985) 

How this method differs from models that calculate attenuation assuming a 

constant coefficient for attenuation with depth (as in Evans and Parslow (1985)) 

can be seen in Figure 18, which demonstrates the difference in predicted light 

attenuation for the two attenuation models, using two slab models, with 

constant mixed layer depth (100 m) and constant surface PAR (200 W m-2). The 

main difference can be seen in the surface layers, where the Anderson method 

results in a higher rate of attenuation. This method was chosen because it 

provides a significantly more accurate representation of light attenuation in 

the water column, a key aspect of the work here given the focus on 

photoacclimation in response to light (Anderson, 1993; Anderson et al., 2015). 

However, throughout the thesis, results will also be shown using the method 

of attenuation based on a constant coefficient for attenuation, calculated from 

the concentration of phytoplankton in the mixed layer (referred to as the Evans 

and Parslow (1985) light model). 
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Table 2: Polynomial coefficients relating k
L
 to square root of pigment in region i.  

i b0,i b1,i b2,i b3,i b4,i b5,i 

1 0.13096 0.030969 0.042644 -0.013738 0.0024617 -0.00018059 

2 0.041025 0.036211 0.062297 -0.030098 0.0062597 -0.00051944 

3 0.021517 0.050150 0.058900 -0.040539 0.0087586 -0.00049476 

 

The maximum phytoplankton photosynthetic rate is related to the 

temperature, T, as described by (Eppley, 1972): 

 V PT =V P ⋅1.066T   (2.13) 

Grazing is calculated using an Eulerian approach, as described in section 2.2.6. 

It is first calculated as an averaged quantity throughout the mixed layer, 

Eulerian-style, and then applied proportionately across all the super-

individuals. Therefore, the grazing loss for each super-individual is calculated 

by:  

 GSI = GPconc ⋅
PSI
Pconc

  (2.14) 

where  is the average zooplankton grazing rate (mmol m-3), and is 

calculated throughout the mixed layer, on an Eulerian basis. It is defined as: 

   (2.15) 

where I
max

 is the maximum grazing rate, and k
g
 is the half-saturation constant 

for grazing. 

Mortality is also treated in the same way as grazing, using this semi-Eulerian 

approach: 

 M 2SI = mP2
Pconc

kP + Pconc( )
⎛

⎝⎜
⎞

⎠⎟
PSI
Pconc

  (2.16) 

GPconc

GPconc =
Imax ⋅Pconc

2 ⋅Z
kg
2 + Pconc

2
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2.2.7.1.2 Chlorophyll 

Chlorophyll biomass is subject to the same growth and losses as the nitrogen 

biomass, namely grazing, respiration, mortality and mixing. These occur at the 

same specific rate as for the nitrogen biomass. 

 
dChlSI
dt

= µP,SI RChl ,SIChlSI − θChl ,SI ⋅ξ
−1 GSI +mPPSI +M 2SI + kmix

PSI
H (t)

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

  (2.17) 

where ξ (mol N (g C)-1) represents the conversion factor between nitrogen and 

carbon, assuming a Redfield ratio of 6.625. The rate of chlorophyll production 

is a function of nitrogen production, but is also affected by the current ratio of 

chl-to-carbon, θChl ,SI  , and the current irradiance. The change of the Chl:C in 

response to irradiance is known as photoacclimation, a process which both 

maximises growth in low light, and prevents photodamage in high light (fully 

detailed in Chapter 1). This is represented through the use of a growth scaling 

factor, RChl ,SI , as described in Geider et al. (1997) 

 RChl ,SI = θmax
Chl µP,SI

αP,SI ⋅ ISI ,z ⋅θChl ,SI
  (2.18) 

where θChl ,SI   is the chlorophyll to carbon ratio of the super-individual, and is 

calculated from:  

 θChl ,SI =
ChlSI
PSI ⋅ζ

  (2.19) 

and θmax
Chl  is the maximum ratio of Chl : C (g Chl a g N-1) observed in cells 

acclimated to extremely low light. RChl ,SI  is therefore regulated by the ratio of 

achieved to maximum potential photosynthesis, as defined by the term 

µP,SI

αP,SI ⋅ ISI ,z ⋅θChl ,SI
. Here, the numerator is ultimately constrained by the 

maximum rate of photosynthesis, V
PT
, whereas the denominator is effectively 

unconstrained, because of the inclusion of I
SI,Z
. Therefore,  declines when 

the instantaneous light harvesting capacity (i.e. ) exceeds the 

instantaneous rate of photosynthesis. This results in lower values of  in 

Rchl ,SI

αP,SI ⋅ ISI ,z ⋅θchl ,SI

θchl ,SI
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high irradiance, and higher values of  as irradiance decreases. This model 

is explained in more detail in section 1.2.1 in the previous chapter.  

2.2.7.2 Zooplankton 

The zooplankton are assumed to graze only the phytoplankton, and the 

equation can be written as: 

   (2.20) 

Here, the terms refer to growth (grazing minus losses from messy feeding, ), 

respiration (linear), mortality (non-linear), and physical losses resulting from 

mixing at the base of the mixed layer, and dilution. Dilution occurs when the 

rate of change of the depth of the mixed layer is positive H ' t( ) = max ∂H
∂t
,0⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

  

i.e. the mixed layer is deepening. The zooplankton population is assumed to 

be zero below the mixed layer, so when the mixed layer deepens, more water 

will be introduced into the mixed layer, and the overall concentration of 

zooplankton will decrease. This is not explicitly represented in the 

phytoplankton equations, because the phytoplankton are simulated as a finite 

number of super-individuals. Therefore, deepening the mixed layer will 

automatically decrease the concentration, as the same quantity of 

phytoplankton biomass will be contained in a larger volume. If the mixed layer 

shallows, then phytoplankton caught below the new mixed layer depth are lost 

from the simulation, and so the overall concentration is unchanged. 

2.2.7.3 Dissolved inorganic nitrate 

The changes in nitrate concentration (mmol N m-3) are calculated from: 

  

 (2.21) 

DIN is taken up by phytoplankton, and returned through both phytoplankton 

and zooplankton respiration. The other biological inputs are the fraction of 

grazing lost through messy feeding, and the remineralised detritus. The final 

term represents mixing between the deep and surface layers, and also changes 

θchl ,SI

dZ
dt

= 1−φ( )GPconc −mzZ − mz2
Z

kZ + Z
Z

⎛
⎝⎜

⎞
⎠⎟
−
kmix + H '(t)( )Z

H (t)

φ

dDIN
dt

= −
µP,SIPSI∑
H (t)

+mPPconc +φGPconc +mzZ +mDTD +
kmix + H '(t)( ) DIN0 − DIN( )

H (t)
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due to changes in the depth of the mixed layer, which result in nutrient either 

being gained or lost from the mixed layer, due to entrainment. 

2.2.7.4 Detritus 

The equation for detritus is: 

   (2.22) 

Detritus is produced by both phytoplankton and zooplankton mortality. It is 

lost through remineralisation, which occurs at a temperature dependent rate: 

   (2.23) 

 It is also affected by mixing, changes due to the seasonal cycle of mixed layer 

depth, and sinking (v
D
).  

2.2.8 Obtaining the default parameter set for Station India 

The initial parameter set was taken, where possible, from the description of 

the MEDUSA model in Yool et al. (2013), and the parameters used for the 

EMPOWER model, described in Anderson et al. (2015). Parameters were initially 

chosen to give the closest match to chlorophyll and nitrate data for Station 

India, taken for a characteristic year (2006) from SeaWiFS 8-day averages (see 

Anderson et al. (2015)). The nitrate data are from World Ocean Atlas (Antonov 

et al., 2010). The full list of parameters is given in Table 3, and the variables 

along with their initial values in Table 4. 

Each simulation was started with 1000 super-individuals, evenly distributed 

throughout the mixed layer. This number was chosen based on the model 

output’s sensitivity to the number of super-individuals (discussed in section 

2.3.4), and the threshold for particle division, P
div

, was chosen so as to ensure 

that the number of super-individuals in each simulation was greater than 

2,000, but did not exceed 10,000. As the number of super-individuals in any 

simulation is variable, all the following plots include information about the 

number of super-individuals in the simulation on the final day. The 

phytoplankton nitrogen biomass was initialised as 0.15 mmol N m-3, and this 

was distributed evenly between each super-individual (i.e.

dD
dt

= mP2Pconc
2 +mz2

Z
kz + Z

Z −mDTD −
kmix + H '(t)+ vD( )D

H (t)

mDT = mD ⋅1.066
T



Chapter 2: Fundamental Assumptions 

 59   

PSI = Pconc ⋅
H t( )

number of super-individuals
 ). DIN was initialised as 14 mmol m-3, and 

both detritus and zooplankton as 0.1 mmol m-3. The model is relatively 

insensitive to the initial conditions. 

Table 3: Parameters (initial guesses, in parentheses, and final fitted values) 

Parameter Description Value Source 

V
P
 maximum phytoplankton growth rate 

at 0°C gC (gChl)-1 h-1 

2.0 Anderson et al. 

(2015) 

α
P
 chl specific initial slope of P-I curve 

(gC (g chl)
-1 h

-1
 (W m-2)

-1
 

0.12 Anderson et al. 

(2015) 

k
N
 N nutrient uptake half-saturation 

constant mmol N m
-3
 

0.75  Yool et al. (2013) 

mP
 phytoplankton respiration rate d

-1 0.02 Yool et al. (2013) 

mp2
 phytoplankton mortality rate d

-1
 0.1  Yool et al. (2013) 

kp phytoplankton loss half saturation 

constant (mmol N m-3) 

0.5 Yool et al. (2013) 

Imax maximum zooplankton grazing rate d
-

1
 

1.0 

 

Anderson et al. 

(2015) 

kg zooplankton grazing half-saturation 

constant mmol N m
-3
 

0.5 

 

Anderson et al. 

(2015) 

ϕ zooplankton grazing inefficiency 0.20 Yool et al. (2013) 

mz
 zooplankton respiration rate d

-1
 0.04 

(0.02)  

Yool et al. (2013) 
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mz2
 zooplankton mortality rate d

-1
 0.4 

(0.1) 

adjusted 

k
Z
 zooplankton loss half-saturation 

constant mmol N m
-3
 

0.5 Yool et al. (2013) 

ζ N:C conversion factor (Redfield ratio 

of 6.625) mol N (g C)
-1
 

79.5 Yool et al. (2013) 

θchlmax
 maximum Chl:C ratio g chl (g C)

-1
 0.02 

(0.05) 

adjusted 

v
D detrital sinking rate m d

-1
  10.0 Fasham et al. 

(1990) 

mD detrital N remineralisation rate d-1 at 

0°C 

0.016 Yool et al. (2013) 

k
mix

 cross-thermocline mixing rate (m d-1) 0.1 Fasham et al. 

(1990) 

P
div 

Threshold for particle division (mmol 

N) 

0.025  

dt Time step (minutes) 1,30  

Table 4: List of variables and initial values 

Variable Description Initial values 

P
SI
, P

conc 
Phytoplankton N state variable:  

SI (mmol N), population (mmol N m-3) 

0.089, 0.15  

Chl
SI
, Chl

conc 
Phytoplankton Chl state variable:  

SI (mg Chl) population (mg Chl m-3) 

0.07, 0.12  



Chapter 2: Fundamental Assumptions 

 61   

C
SI
, C

conc 
Phytoplankton C state variable:  

SI (mg C), population (mg C m-3)  

7.06, 12.0  

θ
Chl,SI

 SI Chl:C (mg Chl (mg C-1)) 0.01  

DIN Dissolved inorganic nitrate (mmol N m-3) 14.0  

Z Zooplankton state variable (mmol N m-3) 0.1  

D Detritus state variable (mmol N m-3) 0.1  

μ
P,SI

, μ
PConc 

Growth rate (d-1) - 

GSI, GPconc Grazing: SI (mmol N), concentration (mmol N m-

3) 

- 

VSI
PT

 SI photosynthesis (gC (gChl)-1 d-1) - 

VPT Rate of photosynthesis at temperature - 

 

The model is coded in Fortran 90, a general-purpose programming language 

that is especially suited to numeric computation and scientific computing. The 

equations are solved each time step using a simple, first-order integration 

(Euler method). The model was run for three years, using a time step of 30 

minutes, by which time a repeating annual cycle of plankton dynamics was 

generated. The last year of simulation is compared to data for chlorophyll and 

nitrate in Figure 19.  
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Figure 19: Simulation for OWSI using first-guess parameters compared to data (year 2006) 

for (a) chlorophyll and (b) DIN. Visser random walk. Final number of super-individuals: 4352 

The cycle of nitrate shows a reasonably good match to the data, but the 

chlorophyll cycle is less well matched (Figure 19). The predicted spring bloom 

was much lower than expected, and the predicted chlorophyll biomass in the 

second half of the year was too high, by a factor of 2. In addition, the 

predicted seasonal cycle of chl : carbon was also high for Station India (Figure 

20 and Figure 21). 
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Figure 20: Predicted seasonal cycle of chlorophyll to carbon ratio using the initial 

parameters for the model at OWS India 

 

Figure 21: The basic temporal patterns in regional phytoplankton chlorophyll (Chl; solid 

circles) and carbon (C; open circles) biomass and Chl:C ratios (red diamonds; mg mg-1) in 

the North Atlantic basin. Taken from Behrenfeld et al. (2005). 

The strategy was now to undertake model tuning to fit the data, using 

strategically chosen parameters. The first parameter altered was the maximum 

ratio of chlorophyll to carbon (  ). This value is taken to be the highest 

measured ratio of chlorophyll to carbon in phytoplankton acclimated to low 

θmax
chl
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irradiances. However, the values tend to be taken from laboratory 

experiments, which yield different values to those observed in the ocean 

(Behrenfeld et al., 2005). Behrenfeld et al. showed that satellite derived data 

suggested that chl:C values in the ocean were much lower than those in the 

laboratory. I therefore took  from the satellite data in Figure 21, which 

shows a maximum value of ~0.02 mg Chl (mg C-1). In addition, observations 

from the North Atlantic Bloom Experiment (NABE) suggest that small 

nanoplankton dominate the pre-bloom conditions at Station India, accounting 

for >50% of the daily productivity (Joint et al., 1993). These smaller species 

tend to show lower maximum ratios of chlorophyll to carbon (~0.013 mg Chl 

(mg C-1)) (Sathyendranath et al., 2009). 

Changing the maximum Chl:C gave a much better ratio of Chl:C, but lowered 

the overall rate of production. In order to improve the fit to the data, I 

increased the parameters controlling the zooplankton mortality. 

 

 

Figure 22: Simulation for OWSI after parameter tuning (see text): (a) chlorophyll, (b) DIN. 

Visser random walk. Final number of super-individuals: 4585 

 

θmax
chl
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Figure 23: Predicted state variables and chl : carbon ratio for the station India simulation: 

(a) chlorophyll : carbon and (b) P, Z and D. 

One important consideration is then how changing the maximum chl-to-carbon 

ratio impacts on the results. Reducing the maximum value decreases the range 

of possible ratios shown by the phytoplankton particles, which could 

theoretically mask any differences between the Lagrangian and Eulerian model 

implementations. This will be investigated in the Eulerian – Lagrangian model 

comparison in the next chapter, by comparing the model predictions both for a 

model using the original value of = 0.05 mg Chl (mg C)-1, and for the fitted 

value of = 0.02 mg Chl (mg C)-1. 

Table 5: Ecosystem model equations 

Phytoplankton 

dPSI
dt

= µP,SIPSI −GSI −mPPSI −M 2SI − kmix
PSI
H (t)  

dChlSI
dt

= µP,SI RChl ,SIChlSI − θChl ,SI ⋅ξ
−1 GSI +mPPSI +M 2SI + kmix

PSI
H (t)

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟  

θmax
chl

θmax
chl
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µP,SI = θChl ,SI ⋅VSI
PT ⋅ DIN

kN + DIN  

VSI
PT =

V PT ⋅αP,SI ⋅ ISI ,z

V PT 2 +αP,SI
2 ⋅ ISI ,z

2( )
1
2

 

Iz = I0 exp(−kparz)  

V PT =V P ⋅1.066T  

M 2SI = mP2
Pconc

kP + Pconc( )
⎛

⎝⎜
⎞

⎠⎟
PSI
Pconc  

RChl ,SI = θmax
Chl µP,SI

αP,SI ⋅ ISI ,z ⋅θChl ,SI  

θChl ,SI =
ChlSI
PSI ⋅ζ  

GSI = GPconc ⋅
PSI
Pconc  

Zooplankton 

 

 

Detritus 

 

 

DIN 

 

 

2.3 Testing Lagrangian assumptions 

This section investigates how some of the basic assumptions underlying the 

construction of Lagrangian models impact upon the resulting predictions. This 

kind of analysis does not appear in the current and previous literature, and 

dZ
dt

= 1−φ( )GPconc −mzZ − mz2
Z

kZ + Z
Z

⎛
⎝⎜

⎞
⎠⎟
−
kmix + H '(t)( )Z

H (t)

GPconc =
Imax ⋅Pconc

2 ⋅Z
kg
2 + Pconc

2

dD
dt

= mP2Pconc
2 +mz2

Z
kz + Z

Z −mDTD −
kmix + H '(t)+ vD( )D

H (t)

mDT = mD ⋅1.066
T

dDIN
dt

= −
µP,SIPSI∑
H (t)

+mPPconc +φGPconc +mzZ +mDTD +
kmix + H '(t)( ) DIN0 − DIN( )

H (t)
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could greatly help with the development of Lagrangian modelling standards. 

More information about individual model components could allow researchers 

to make informed decisions about model design, selecting from pre-existing 

components and modifying where necessary, rather than building each 

Lagrangian model from scratch. This would be similar to the way that Eulerian 

models are constructed. 

These experiments involve a simplified physical version of the model, which 

has the seasonal cycles of irradiance and mixed layer depth removed. Using a 

simple, fixed slab model like this allows for the model behaviour to be more 

clearly seen, without the complications of the external forcing. The fixed slab 

model uses the same ecosystem formulation as for Station India, with the 

parameter settings obtained from the above parameter fixing exercise (section 

2.2.8). 

2.3.1 Testing the models of turbulence and phytoplankton movement 

The predicted annual cycle of turbulence diffusivity can be seen in Figure 24. 

 

Figure 24: Annual cycle of vertical eddy diffusivity estimated by the model for OWSI 

These values can then be compared to values predicted by previous models 

that have represented OWS India. Figure 25 shows the predicted vertical 



Testing Lagrangian assumptions 

 68 

diffusivity profile for the location of OWS India taken from the MEDUSA model 

(Yool et al., 2011; Yool et al., 2013). In this model, the depth of the mixed 

layer is calculated from physical forcing, rather than being prescribed by 

observations, and can be see in Figure 25 by the sharp delineation between 

the well mixed region (orange, red and yellow) and the region of low mixing 

(purple). The turbulent diffusivity reaches as high as 10 m2 s-1 in winter, early 

spring, and late autumn. In addition, Oschlies & Garcon (1999) presented 

results for a transect of the ocean 10°W of OWS India, that showed mixed layer 

depths of 300m in May, with diffusivities of up to 1 m2 s-1. 

 

Figure 25: Predictions of vertical eddy diffusivity for OWSI taken from the MEDUSA model 

(Yool et al., submitted) 

The values for turbulent diffusivity predicted by the current model are 

somewhat lower than these previous modelling studies, with maximum winter 

rates of < 0.3 m2 s-1. This could result from the fact that the mixing is based on 

the depth of the mixed layer and the surface wind speed only, and takes no 

account of convective overturning. However, there is some evidence in the 

literature that these lower rates of turbulence could be closer to the conditions 

in the ocean. The values predicted by the model are just low enough for a 
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vertical profile of phytoplankton to begin to form, due to the proximity of the 

timescales of growth and mixing. While few data exist on the vertical profiles 

of phytoplankton around OWS India, measurements for another location in the 

same oceanic province (as defined by Longhurst (1998) who partitioned the 

ocean into geographically identifiable regions based on ecological principles 

relating phytoplankton growth cycles to ocean physics) show a vertical profile 

of chlorophyll for a mixed layer depth of 80 m, over the spring. 

 

a) NADR observations 

 

b) OWS I model 

Figure 26: Depth profiles of chlorophyll for a) three stations in NADR and b) the OWS India 

model over the same period. In a) the averages at 10 m depth intervals are shown by the 

solid square symbols, the smooth curve depicts the profile established by Longhurst (1998) 

and the horizontal dashed line show the mixed layer depth based on density. Figure a) 

taken from Li & Harrison (2001) 

This suggests that the rates of mixing in North Atlantic, whilst sufficient to 

produce a well-mixed layer of temperature and density, are not sufficient to 

overcome the phytoplankton growth rates, lending support to the values 

obtained for this study. It also indicates that the assumption that 

ScienceDirect - Full Size Image http://www.sciencedirect.com/science?_ob=MiamiCaptionUR...

1 of 1 9/20/15, 12:51 PM
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phytoplankton are distributed uniformly through a mixed surface layer may 

not always be valid. Based on the results of this study, therefore, 

parameterisations of turbulence should take account of empirical forcing data 

from the location under investigation, and then verification of the model 

should include comparison of the resulting vertical phytoplankton profiles to 

observations, rather than using an assumption that phytoplankton are always 

uniformly distributed within a surface mixed layer. 

2.3.2 Particle splitting and the consequences of the grazing 

parameterisation 

Particle splitting is included in the model for two reasons: firstly to replace 

those particles lost through detrainment and ensure a sufficient number of 

particles in the simulation, and secondly to prevent individual particles from 

growing too large and biasing the results. As pointed out in Ross & Sharples 

(2007) some phytoplankton particles in Lagrangian models can be ‘luckier’ 

than others, spending more time in the productive waters near the surface of 

the water column and allowing growth to continue unchecked (i.e. no particle 

splitting) could result a disproportionately large fraction of the total biomass 

being contained in one phytoplankton. In order to prevent this from occurring, 

particle splitting was also included in the current model; however, it is 

important to highlight an extra feedback mechanism on the growth of the 

phytoplankton, resulting from the grazing parameterisation. 

In section 2.2.6, the difficulties in implementing explicit, Eulerian zooplankton 

grazing on Lagrangian phytoplankton were described. In order to simplify this 

process, the average grazing rate (mmol N m-1 d-1), based on the average 

phytoplankton biomass (mmol N m-1) in the mixed layer was applied, 

proportionally, to each super-individual. However, there are consequences to 

using this method, which require careful handling. For example, running the 

model with an unchanging numbers of particles (i.e. no detrainment and no 

splitting), would result in an uneven distribution of biomass between the 

super-individuals. Those super-individuals experiencing slightly better 

conditions (i.e. spending slightly longer near the surface) on average, would 

grow larger than their counterparts. This effect is then exacerbated by the 

grazing, because as the biomass contained in one individual increases, the 

average phytoplankton biomass in the water column increases, which, in turn, 



Chapter 2: Fundamental Assumptions 

 71   

increases the overall loss rate. At the same time, the smaller individuals are 

effectively reducing the loss rate in relation to the large individuals, meaning 

that there is less grazing pressure on large super-individuals. This creates a 

positive feedback effect, ensuring that the largest individuals keep increasing 

in size, whilst the smallest keep decreasing, until all of the phytoplankton 

biomass is effectively contained in one super-individual. 

This can be demonstrated by running a fixed slab version of the model, with a 

constant mixed layer depth, 100 super-individuals, and no particle splitting.  

 

Figure 27: Model predictions for a) super-individual biomass and b) average values for P, Z, 

D, for a fixed slab model with a mixed layer depth of 100m, surface PAR of 50 W m-2, 100 

super-individuals, and no particle splitting 

A great deal of the potential advantage to super-individuals higher in the water 

column can be removed through removing the light attenuation due to 

chlorophyll. This would completely remove the advantage / disadvantage due 

to shading, as the differences in light would be only due to the rate at which it 

is attenuated by water. In order to simulate this, I fixed the light attenuation 

coefficient to 0.04 m-1 (i.e. the value for the attenuation of light by water). 
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Figure 28: Fixed slab model with a constant mixed layer depth of 100m, a constant 

irradiance of 50 W m-2, no particle splitting (100 super-individuals) and a fixed attenuation 

coefficient (k
par

 = 0.04 m-2). Visser random walk. 
Figure 28 shows that the shading of super-individuals by those higher up in 

the water column is not the only advantage that the phytoplankton can exploit. 

Although removing the light attenuation due to phytoplankton does 

significantly improve the spread of the biomass, it is still clear a small number 

of super-individuals still dominate each simulation. 

 

Figure 29: Fixed slab model with a constant mixed layer depth of 100m, a constant 

irradiance of 200 W m-2, particle splitting (Pmax = 0.25 mmol N, final number of SIs = 5818). 

Visser random walk. For sake of clarity in the plots, only every 10th particle is plotted in a) 

One of the most dramatic differences between Figure 27 and Figure 29, is in 

the predicted biomass. There is a significant increase in the steady state value 
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for phytoplankton biomass when the entire population is contained in one 

individual. This is a result of the way that shading is represented in the model. 

Essentially, phytoplankton are only shaded by those phytoplankton that are 

above them in the water column. If the entire population is contained within 

one individual, it is essentially no longer subject to shading. Although this is 

obviously an extreme scenario, it does demonstrate how a skewed distribution 

of biomass in the water column can result in decreased pressure on larger 

super-individuals, and increased pressure on smaller individuals. It also shows 

that the aim of including particle splitting is not necessarily just to keep an 

adequate supply of super-individuals within the simulation, but also to restrict 

the size to which each individual can grow. 

To further demonstrate the effect the grazing and non-linear loss terms have 

on the phytoplankton, I ran a fixed slab model with a mixed layer depth of 

100m, a constant surface PAR of 200 W m-2, and 100 super-individuals – one 

per 1-metre layer. I kept the super-individuals stationary throughout the 

simulation, and did not include particle splitting. Running the model to a 

steady-state took a very long time (2000 days), due to the transient effect 

shown in Figure 30. The phytoplankton super-individual with the most 

advantage would dominate the simulation, but the depth at which that 

individual was situated changed, due to the changes in irradiance resulting 

from the changes in chlorophyll. Eventually all of the phytoplankton biomass is 

contained in the super-individual at the depth with the greatest advantage. 
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Figure 30: The transient increase shown by the nitrogen biomass at each depth in a fixed 

slab model, with no mixing. Each 1-metre layer contains a single SI. PAR = 200 W m-2, mld = 

100m 

That this is a result of the application of non-linear loss terms using linear 

proportionality can be demonstrated by running the same simulation shown in 

Figure 30, but this time without grazing by zooplankton, and with the non-

linear mortality equation applied to each individual, based on their individual 

biomass i.e.: 

 M 2SI = mp2
PSI

kP + PSI( )   (2.24) 
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Figure 31: Nitrogen biomass contained in each super-individual, for a fixed slab model with 

no mixing, a surface PAR of 200 W m-2, and a mixed layer depth of 100 m. Each 1-metre 

layer contains a single SI, and the loss rate is calculated on an individual basis.  

The simulation shown in Figure 31 does not include cell division or 

phytoplankton movement, yet a steady-state solution is achieved relatively 

quickly, and no single phytoplankton dominates the simulation. However, this 

solution has three disadvantages: firstly, implementing individual 

phytoplankton mortality and grazing makes a comparison with the Eulerian 

model more complicated, secondly, the Lagrangian model predictions 

(including the chl-to-carbon ratios) are then highly sensitive to the threshold 

for particle splitting, and finally, there are difficulties in implementing grazing 

on a particle level. Therefore, although in Chapter 3 individual based 

phytoplankton mortality is used to ascertain the rates of acclimation in 

individual phytoplankton super-individuals for scenarios with little or no 

mixing, it is not used for predicting rates of primary production. 
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2.3.3 Considerations for the movement rules 

2.3.3.1 Choice of time step 

The choice of time step depends upon the rate of the fastest processes. If the 

time step is too long, then some of the finer detail could be missed. In order to 

determine the appropriate time step, the model was run using a range of time 

steps, to find the point at which reducing the time step further made no 

difference to the results. The profiles of chlorophyll, nitrogen and pigment to 

biomass ratios in a steady-state simulation, as well as the depth-averaged 

values for a dynamic simulation were examined. 

 

Figure 32: Steady-state chlorophyll profile for a model run with a constant mixed layer 

depth (100m) and constant surface irradiance (200 W m-2) under a range of different time 

steps (0.1 mins, 1 min, 5 mins, 15 mins and 30 mins) 



Chapter 2: Fundamental Assumptions 

 77   

 

Figure 33: Predicted steady-state profiles for a) nitrogen biomass, b) chlorophyll biomass 

and c) chl:carbon for a model with a constant mixed layer depth (100m) and a constant 

surface irradiance (200 W m-2) under different time steps (0.1 mins, 1 min, 5 mins, 15mins 

and 30 mins) 

 

Figure 34: Predictions of a) integrated chlorophyll and b) chl-to-carbon ratios for the OWS I 

model, under four different time steps (1 min, 5 mins, 15 mins and 30 mins) 

Figure 32 shows the steady state chlorophyll profile for a model with a 

constant mixed layer depth (100m) and a constant surface irradiance (200 W 

m-2). Only the profile over the top 30m is shown, in order to best display the 

differences between the predictions of each model set-up. The models with the 

longer time steps (> 1 min) do show a slight increase in the steady-state 

chlorophyll near the surface, although this does not appear to affect the result 

a) Chlorophyll biomass b) Chl:Carbon 



Testing Lagrangian assumptions 

 78 

predicted when using a model with a full seasonal cycle for OWS India (Figure 

34). Therefore, although a time step of 30 mins appears sufficient in order to 

achieve a good accuracy for most of the simulation runs, those which looked at 

the rates of photoacclimation in individual phytoplankton particles were run 

with a time step of 1 min, in order to allow for the greatest possible accuracy. 

2.3.3.2 Random position movement algorithm 

The first mechanism for redistributing the phytoplankton particles I 

investigated involved randomizing their vertical positions every time step. 

Although this represents a simple and easily reproducible representation of 

phytoplankton movement within the mixed layer, it does assume that the 

length of the time step is the length of time in which one particle could 

theoretically travel the entire depth of the mixed layer. Therefore, changing 

the time step effectively changes the speed of the super-individual.  

I first investigated the effect of the time step on the model predictions of 

chlorophyll biomass using the fixed slab model. Figure 35 shows the model 

predictions for three different length time steps: 1 min, 30 min, and 300 min. 

These correspond to maximum speeds of ~1.7, ~0.06 and ~0.006 m s-1, 

respectively (maximum speed calculated as the time step / depth of the mixed 

layer), and diffusivities of 20, 0.69, and 0.069 m2 s-1 respectively. The plot 

shows the last year of data from a three year run. 
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Figure 35: Predicted a) averaged chlorophyll and b) phytoplankton, c) zooplankton and d) 

detritus biomass from a fixed slab model (mld = 100m, surface PAR = 50W m-2), using 

random position super-individual movement, for differing time step lengths (final super-

individual numbers: 2769, 3629 and 6283, respectively). Random walk uses a time step of 

30 minutes, and K
turb

 = 0.04m2 s-1 

Figure 35 suggests that changing the time step from 1 minute to 300 minutes 

does not have a significant impact on the results. This is a surprising result, as 

reducing the mixing rate should allow the phytoplankton more time to 

acclimate to each depth in the mixed layer, which would be expected to result 

in changes to the growth rate and therefore the predictions biomass. 

Increasing the time step to 300 minutes does increase the level of noise in the 

results, but not to any great level. The random oscillations in Figure 35 only 

vary the average value by ~±0.5%.  
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The effect of the mixing rate on the phytoplankton can be further illustrated by 

plotting the vertical profiles of nitrogen, chlorophyll and the chl-to-carbon 

ratio. These profiles were obtained by averaging the variables over the last 

year of the three year simulation (Figure 36). 

 

 

Figure 36: Vertical profiles of a) phytoplankton nitrogen biomass, b) chlorophyll and c) chl-

to-carbon ratio for random position model runs with time steps of 1, 30 and 300 mins. 

Fixed mixed layer depth of 100m, fixed irradiance of 200 W m-2, θ
Chl

Max = 0.02 mg Chl mg-1 C 
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Figure 37: Vertical profiles of a) phytoplankton nitrogen biomass, b) chlorophyll and c) chl-

to-carbon ratio for random position model runs with time steps of 1, 30 and 300 mins. 

Fixed mixed layer depth of 100m, fixed irradiance of 200 W m-2, θ
Chl

Max = 0.05 mg Chl mg-1 C 

Figure 36 shows that there is no variation in the chl-to-carbon ratio with depth 

for the simulations with the randomly positioned phytoplankton super-

individuals. Figure 37 shows that this result does not change for a higher value 

for the maximum ratio of chl-to-carbon (θ
Chl

max = 0.05 mg Chl mg-1 C). This 

suggests that 300 minutes is not sufficient time for the phytoplankton to 

acclimate to the irradiance. Chapter 3 includes a more detailed analysis of the 

relationship between the rates of mixing and acclimation. However, one 

interesting feature of Figure 36 is the difference in profile of chl-to-carbon 

ratio, when averaged by the particles at each depth, or by the biomass at each 

depth. This can be explained by particles at the surface being able to grow 

rapidly and produce more nitrogen biomass. There is no corresponding 

increase in chlorophyll, as chlorophyll production is downgraded at higher 

irradiances. The overall chl-to-carbon ratio of the individual particle is also 

unaffected, as each phytoplankton super-individual will only experience the 
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irradiance for one time step, before being mixed back into the water column. 

Also of interest is the fact that the vertical profile of nitrogen biomass does not 

result in a different steady-state average nitrogen biomass (Figure 35). Finally, 

the differences in the values of chl-to-carbon between the phytoplankton that 

are randomly repositioned every 30 minutes, and those repositioned every 300 

minutes do not result in a difference in the predicted steady-state values for 

averaged chlorophyll or nitrogen (Figure 35). This suggests that the difference 

in model predictions between the models that randomly position the super-

individuals, and the random walk model is not due to phytoplankton 

photoacclimation. This topic is explored in more depth in Chapter 3. 

The same experiment was performed with the full OWS India model (Figure 

38). 

 

Figure 38: Model predictions for a randomisation model with different time steps. Final 

super-individual numbers: 2109, 2342, 1701 

Again, there is little difference for the predicted seasonal cycle of chlorophyll, 

with the exception of the magnitude of the chlorophyll peak in the model 

using the time step of 300 minutes.  

This is an interesting result, because, as the rate of mixing is essentially a 

function of the time step, the fact that altering the time step has no significant 

effect on the photoacclimative processes would suggest that these are not 

affected by the mixing rate. However, in order to directly compare the random 

walk and random position models, some way of quantifying the diffusivity in 
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the random position model is required. An estimation of the diffusivity can be 

obtained by rearranging equation (2.6), taking the average step length to be 

half of the depth of the mixed layer (H/2): 

 Kturb = 0.5 ⋅

H
2

⎛
⎝⎜

⎞
⎠⎟
2

∂t
  (2.25) 

 

Figure 39: Estimated cycle of diffusivity for the random position model with different time 

steps, compared to the seasonal cycle of diffusivity for the random walk model 

Figure 39 shows the estimated cycles of diffusivity for the random position 

model with different time steps, based on equation (2.25). It suggests that, 

even when the time step is increased to 300 minutes, the estimated diffusivity 

is still higher than for the random walk model. In addition, reducing the time 

step in the random walk model increases the possibility of each particle 

staying near its previous location, due to the reduction in step length. This is 

something that is not seen in the random position, because with each move, 

the phytoplankton can be relocated to any depth in the mixed layer. This can 

be demonstrated by initialising a model with 1000 super-individuals, all at the 

same point in the water column, running the model for 5 time steps, and then 

plotting the frequency of their final positions (Figure 40). 
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Figure 40: The distance from the start position after 5 time steps for the random position 

model, and a random walk model with K
turb

 = 1 m2 s-1, using a time step of 1 min. 

Figure 40 shows how the phytoplankton in the random walk model follow a 

normal distribution around the start point, whereas the random position model 

super-individuals are evenly distributed throughout the mixed layer. Therefore, 

even though the estimated diffusivity of the random position is close to the 

diffusivity of the random walk, the lack of connectivity between each step in 

the random position model mean that these two methods of movement are not 

comparable. 

2.3.3.3 Random walk 

The advantage of using a random walk is that the step length can be 

determined by the depth of the mixed layer, which makes it a better option for 

a model with a seasonal cycle. However, measuring the diffusivity coefficient, 

K
turb

, is time consuming and rarely, if ever, collected over seasons. The model 

used in this study takes its basic turbulence equations from the KPP model 

(Large et al., 1994), and only considers the surface wind speed (Eq. (2.2)). 

2.3.3.3.1 Sensitivity to wind speed 
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Empirical measurements of ocean mixing can vary by up to four or five orders 

of magnitude, depending on the wind speeds. For example, a 10-15m deep 

mixed layer can have measurements of K
turb

 = 1.9 x 10-5 m2 s-1 in low winds (5 m 

s-1), but up to 1.9 x 10-3 m2 s-1 in higher winds (15 m s-1) (Denman & Gargett, 

1983). Figure 41 and Figure 42 show how changing the wind speed affects the 

model predictions of chlorophyll for a fixed slab model and the OWS I model, 

respectively, and Figure 43 shows how each of these wind speeds compares to 

wind speed data taken from the ERA40 dataset for 2001. The wind speeds are 

calculated from the u and v component of the wind velocity measured at 10m 

above the ocean, . 

 

Figure 41: Chlorophyll predictions for fixed slab model with varying wind speeds, Visser 

random walk. Final super-individual numbers: 19582, 11467, 6692, 4972. 

windspeed = u2 + v2
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Figure 42: Chlorophyll predictions for Station India model with varying wind speeds, Visser 

random walk. Final super-individual numbers: 3312, 2807, 2654, 2460. The standard model 

run uses a seasonal cycle of wind speed. 

 

Figure 43: The wind speeds used in Figure 42 compared to the sinuisodal curve used to 

represent the seasonal cycle of wind speed 
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There is little difference in the chlorophyll predictions when increasing the  

wind speed from 10m s-1 to 15 m s-1, which suggests that a wind speed of 10 m 

s-1 results in a mixing rate which is fast enough to overcome any phytoplankton 

processes, such as photoacclimation, which could be affected by the mixing 

rates. 

2.3.4 Number of super-individuals used in a simulation 

The compromise between model precision and run time in Lagrangian models 

is most clearly seen in the number of super-individuals chosen to represent the 

phytoplankton population. Even though this decision has the greatest and 

most direct influence on model run time, it has never been fully explored in 

the literature. 

Early Lagrangian phytoplankton models were limited by the lack of available 

processing power and data storage, and the number of phytoplankton particles 

was therefore dictated by the available technology. Numbers tended to be 

relatively low, ranging from 1-200 (e.g. Falkowski & Wirick (1981) and Lizon et 

al., (1998)) to 1-2000 (e.g. Barkmann & Woods (1996a); Broekhuizen (1999); 

Cianelli et al. (2004); Franks & Marra (1994)). Dippner (1991) conducted a 

sensitivity test on a simple Lagrangian model, which concluded that 10 

particles was sufficient for a mixed layer 10 m deep. The majority of studies 

include little or no justification for the numbers used, and only fleeting 

reference to particle number: for example, Barkmann & Woods (1996a) 

suggested that 20 particles per metre was a minimum model requirement, and 

that increasing the number of particles beyond this did not change the results 

significantly. Cianelli et al. (2004) proposed that “a significant number of cells” 

needed to be simulated in order to “represent the realistic dynamics of a 

phytoplankton population with an IBM”, but without clarifying what a 

significant number actually was.  

Although more recent models are less restricted by computing power, there 

still appears little mention in the literature as to how changes in particle 

number affect model results. Woods (2005) has stated that 200 particles per 

layer (1m) is necessary, and Ross et al. (2011b) used 80,000 particles when 

simulating mixed layers deeper than 60m, stating that this high number was 
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necessary in order to obtain reliable statistics each metre, but there currently 

exists no data surrounding how low numbers of particles affect model 

predictions. 

In this section, I show how the average number of super-individuals used to 

represent the phytoplankton population in a simulation can influence the 

model predictions, and how the optimal number was chosen. The definition of 

an ‘optimal’ number of individuals was a number that would give accurate and 

consistent results, whilst allowing for the model to run quickly, as the 

experiments for which it was designed would require a number of runs. The 

average number of super-individuals in each simulation is controlled by the 

threshold for particle splitting (P
div

). Increasing P
div

 means that the super-

individuals are allowed to grow to a larger size before they are divided in two, 

which means that there will be a smaller number of individuals in the 

simulation, and decreasing P
div

 will have the opposite effect, resulting in a 

higher number of super-individuals.  

The fixed slab model was used, with a constant mixed layer depth of 100m, 

constant surface PAR of 100 W m-2. Using a fixed slab model means that there 

is no loss through detrainment, so the starting number of super-individuals 

was reduced from 1000 to 100, because some of the runs would require 

average super-individual numbers below 1000. The models were run for 3 

years, and the final year of data was used.  
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Figure 44: Model predictions of steady state chlorophyll for fixed slab model with different 

numbers of super-individuals. Super-individual numbers: 91, 1033, 9723, 97487 

 

Figure 45: Comparing model predictions of integrated chlorophyll for a model with varying 

numbers of super-individuals: Final numbers: 55, 499, 5293, 53400. Visser random walk. 
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Both models appear to be less sensitive to the particle number than expected. 

The steady state model shows only a small changes in predictions when the SI 

number falls to 1000 (Figure 44) and the full seasonal cycle shows no 

significant change to the model predictions, until the particle numbers fall 

below 500 (Figure 45). The increase in the predicted chlorophyll biomass with 

the decrease in average super-individual numbers backs up the results in 

section 2.3.2, because increasing the threshold for splitting increases the 

potential size to which the super-individuals can grow. Super-individuals do not 

shade themselves, therefore, an individual that comprises a large proportion of 

the total phytoplankton population is always unaffected by the attenuation of 

light by a large proportion of the total phytoplankton chlorophyll. This results 

highlights that, not only is it necessary to include particle splitting, it is also 

important to ensure that splitting occurs at a low enough threshold to prevent 

a skewed distribution of biomass. 

However, overall, the results indicate that the model predictions are not overly 

sensitive to the numbers of super-individuals, and that little accuracy is gained 

by increasing the numbers past ~1000 individuals. For the OWS India runs, the 

threshold for splitting was therefore set at a level that would result in between 

2,000 and 10,000 super-individuals being simulated at any one time (i.e. P
div

 = 

0.025 mmol N). 

2.4 Conclusion 

This chapter was designed to address two main objectives: firstly to create a 

Lagrangian phytoplankton-based ecosystem model and use it to replicate the 

seasonal dynamics at Station India, and secondly to use the model to 

investigate some of the basic assumptions of Lagrangian modelling. In line 

with previous studies, an Eulerian-Lagrangian hybrid is used for the study, as a 

good compromise between complexity and accuracy. The solution to the 

difficulties surrounding how to represent the high numbers of individual 

phytoplankton cells found in the ocean is addressed, as by previous 

researchers, by the use of a Lagrangian Ensemble modelling method (or super-

individuals), which allows for the representation of individual physiological 

changes, whilst keeping individual numbers manageable. However, one new 

finding here is that it is not necessary to explicitly represent and keep track of 
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individual cell numbers, each super-individual can represent a quantity of 

biomass, rather than a number of individual phytoplankton cells. 

The section investigating some of the basic assumptions of Lagrangian 

models, describes several findings, some of which are new to this field. Firstly, 

models that do not include some form of particle splitting are shown to run 

the risk of highly skewed biomass distributions between super-individuals, 

which can lead to inaccuracies in the model predictions, as observed by Ross & 

Sharples (2007). In addition, although the number of super-individuals does 

not significantly impact on the model predictions, it is important to ensure that 

there is an appropriate limit on the maximum size of each individual, to ensure 

that a significant proportion of the phytoplankton population is not contained 

within a small number of individuals. A second important and previously 

unseen finding is that the use of random position models of movement is not 

appropriate for models that rely on photoacclimation. In random position 

models, the implied mixing rate is a function of the time step, and the results 

here show that changes to this implied mixing rate, through changes in the 

length of the time step, have no significant effect on the individual 

photoacclimative properties of the phytoplankton.  

Determining whether effects such as those explained above are the result of 

biological processes, or are merely statistical artefacts is of crucial importance, 

but is not something that is currently seen in the literature. The more studies 

like this that are carried out, the more researchers can work towards 

developing well-tested Lagrangian modelling standards, which could eventually 

result in Lagrangian models that are more easily communicated, replicable, 

and directly comparable. 

In the next chapter, I compare the model described here with an equivalent 

Eulerian formulation, in order to examine whether Eulerian and Lagrangian 

models differ in their predictions, and whether these differences are due to the 

inclusion of photoacclimation. 





  

 

  

Chapter 3: Modelling growth and 

acclimation in Lagrangian phytoplankton 

3.1 Introduction 

Lagrangian models are more complicated to design and implement, and incur 

greater computational running and maintenance costs than Eulerian models. 

Therefore, before deciding to represent phytoplankton using a Lagrangian 

framework, it is important to ascertain whether a Lagrangian approach is 

necessary, or whether a simpler Eulerian approach would be adequate for the 

job at hand. The arguments advocating the use of a Lagrangian approach are 

based on the fact that integrating non-linear equations before averaging them 

gives a different result than first averaging and then averaging them (Woods 

and Onken, 1982). However, the few studies that have investigated 

comparisons between Eulerian and Lagrangian models demonstrating 

conflicting results. In this chapter, I perform a direct comparison between 

equivalent Eulerian and Lagrangian implementations of a phytoplankton-based 

ecosystem model, in order to determine whether their predictions differ due to 

the differences in the way that the overall rates of primary production are 

calculated: i.e. integrated through the mixed layer, or as the summation of 

photosynthesis from individual phytoplankton. 

A Lagrangian approach is believed to offer more accurate representation of the 

photophysiological response, due to its ability to track the individual light 

histories of the phytoplankton super-individuals (Ross et al., 2011a). 

Phytoplankton cells change their physiology in response to irradiance, 

downgrading rates of chlorophyll production in high irradiance, and increasing 

it under lower irradiances (MacIntyre et al., 2002). In theory, therefore, a 

phytoplankton cell that has been mixed to the surface from deeper in the 

water column will photosynthesise at a different rate to one that has been 

close to the surface for a length of time. Eulerian models are unable to capture 

these individual differences in physiology resulting from the individual 

trajectories and light exposure experienced by phytoplankton cells as they 

move through the mixed layer.  
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For acclimation to have a significant impact on individual rates of 

photosynthesis, phytoplankton need to have time to acclimate to their local 

irradiance, before being mixed up or down in the mixed layer. Therefore, the 

relationship between the rates of acclimation and the rates of mixing are 

extremely important, and this relationship is investigated by plotting the 

trajectories of super-individuals through the irradiance field, along with their 

resulting chl-to-carbon ratios. This is then compared to predicted, steady state 

values, to give a clear illustration of how quickly the phytoplankton are 

acclimating in relation to the rates of mixing. 

For comparison, another mechanism by which Lagrangian and Eulerian models 

can differ is also investigated: the vertical profile of phytoplankton in the 

mixed layer. The Eulerian model uses the assumption that the mixed layer is 

fully mixed at all times, and so there is a homogeneous vertical profile of 

phytoplankton. There are no such assumptions in the Lagrangian model, and 

so a heterogeneous profile develops in response to changes in the mixing 

rates. I investigate the sensitivity of the overall rates of primary production to 

the vertical distribution of phytoplankton, demonstrating that this has a 

greater impact on the differences between Lagrangian and Eulerian models 

than the individual rates of acclimation.  

3.1.1 Objectives 

This chapter addresses the following questions: 

1. Is there any difference between the predictions of average 

phytoplankton population growth from an ecosystem model 

implemented in two different formulations: Lagrangian (hybrid model) 

and Eulerian? 

2. If the model predictions do differ, is it due to photoacclimation (and if 

not, what is the explanation)? 

3. What is the relationship between the timescales of mixing and 

acclimation? 

4. What are the consequences for the ecosystem model as a whole? 
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3.2 Model description 

The Lagrangian hybrid model, fully described in Chapter 2, essentially 

comprises Lagrangian phytoplankton super-individuals, set within an otherwise 

fully Eulerian ecosystem. Each super-individual has a vertical position in the 

water column, which is updated every time step via a random walk. Growth is 

both a function of the external irradiance and nutrient concentrations, and the 

internal pigment-to-biomass ratios, the latter of which changes in response to 

the ambient irradiance.  In this way, the ratio of pigment to biomass, and 

therefore the potential maximum photosynthetic rate, is a result of the 

previous light history experienced by each super-individual.  

The Eulerian model uses the same equations as the Lagrangian hybrid model, 

which are fully described in Chapter 2. The growth rate, μ
P
, and the chlorophyll 

growth-scaling factor, R
Chl

, are calculated at depth intervals of 1 m. The new 

chlorophyll and phytoplankton nitrogen production are then calculated at each 

interval, and the total average new production of chlorophyll and nitrogen is 

the average of these values. For each depth, z (m), in the mixed layer, the 

growth rate, μ
P
 (h-1), is:   

 µP,Z = θChl ⋅
V PT ⋅αP ⋅ IZ

V PT 2 +αP
2 ⋅ IZ

2( )0.5
⋅ DIN
kN + DIN

  (3.1) 

and the chlorophyll growth scaling factor: 

 RChl ,Z = θmax
chl ⋅

µP,Z

αP ⋅ IZ ⋅θChl
  (3.2) 

Therefore, for each 1 metre interval (i.e. z, where 0<=z<=H, and H is the depth 

of the mixed layer (m)): 

 
dPZ
dt

= µP,ZP −G −mPP −mP2
P

P + kP
− kmix

P
H (t)

  (3.3) 

 
dChlZ
dt

= µP,ZRChlChl − θChl ⋅ξ
−1 G +mPP +mP2

P
P + kP

+ kmix
P
H (t)

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
  (3.4) 

The averaged, new production of chlorophyll and nitrogen for the entire water 

column is then the average of the new production at each depth interval. 
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Growth rate is therefore a function of the average pigment-to-biomass ratio, 

and the question is whether the summation of the individual growth rates 

based on individual physiologies in the Lagrangian phytoplankton will differ 

from the integrated growth rate based on the average pigment-to-biomass in 

the Eulerian model. In order to aid comparison, the models were kept as 

simple as possible, and all of the code was written in the same language 

(Fortran 90). The model parameters and the full model description can be 

found in Chapter 2.  

3.3 Comparing Lagrangian and Eulerian formulations of 

OWSI 

The first experiment compares the Lagrangian model run shown in Chapter 2 

to an equivalent Eulerian simulation. Ocean Weather Station India is an ideal 

location in which to examine potential differences between Eulerian and 

Lagrangian model implementations, due to the clear seasonal cycle of 

nutrients and phytoplankton, lack of a sub-surface chlorophyll maximum, and 

deep mixed layer, which is observed to reach depths of over 500m. The first 

experiment compared the seasonal cycles of integrated chlorophyll biomass, 

and the average chl-to-carbon ratios (averaged per metre in both simulations). 

The phytoplankton moved via a random walk algorithm, with the step length 

based on the turbulent diffusivity, which was parameterised based on the 

mixed layer depth (prescribed from observations) and the surface wind speed 

(based on ERA40 data). A 30 minute time step was used, and the model was 

run for 2 spin-up years before data were recorded and plotted. The full 

description of the physical and biological model can be found in Chapter 2.  
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Figure 46: Seasonal cycles of a) chlorophyll and b) chl:carbon predicted by the Eulerian and 

Lagrangian-Eulerian hybrid formulations of the model.  

Figure 46 shows that there is little difference between the seasonal cycles of 

integrated chlorophyll or averaged chl-to-carbon ratios predicted by each 

model formulation. In addition, Figure 46 (b) shows that while each model 

does predict seasonal variation in Chl:C, there is little variation between the 

Eulerian and Lagrangian models. This was also true for the phytoplankton, 

zooplankton and detrital nitrogen biomass in the ecosystem (Figure 47). 

 

Figure 47: Seasonal cycle of biomass for phytoplankton, zooplankton and detrital nitrogen 

biomass in a) the Lagrangian model and b) the equivalent Eulerian model 
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Figure 46 (b) shows that there is little variation between the average Chl:C 

values, but gives no information about the spread of Chl:C values in the 

Lagrangian model. Plotting the individual Chl:C values for 100 randomly 

selected individuals, along with the average value, shows the range of chl-to-

carbon ratios over the annual cycle..  

 

Figure 48: The seasonal cycle of mean values of Chl:C (blue line) with ± two standard 

deviations (red dashed lines), along with the individual Chl:C values taken from 100, 

random individuals (orange crosses). Also shown is the instantaneous relationship 

between the individual chl-to-carbon ratios of the phytoplankton particles and the local 

irradiance at their depth (b).  

Figure 48a shows the range of chl-to-carbon ratios displayed by the super-

individuals. Figure 48b gives a ‘snapshot’ of the relationship between the chl-

to-carbon ratio of the individuals, and the irradiance at their current depth. It is 

interesting to note the wide spread of values displayed by phytoplankton 

experiencing no irradiance, which could suggest that the phytoplankton are 

not acclimating to their irradiance. There are more data points for 

phytoplankton experiencing lower irradiances, as phytoplankton are more 

likely to experience lower irradiances than higher irradiances, especially over 

winter when the mixed layer is deep. However, there is also a relationship 

indicated between the irradiance and the chl-to-carbon ratio in Figure 48b, 

although, whether this is due to the phytoplankton being fully acclimated at all 

times (as suggested by Lande & Lewis (1989)), or whether these differences are 

not significant, and the super-individuals have relatively similar properties, due 

to the mixing rate being faster than the rate of acclimation (as suggested by 
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McGillicuddy (1995)) is unclear. Fortunately, the use of a Lagrangian model 

allows for all the properties of the super-individuals to be tracked, and the 

trajectory of three, random SIs through the water column, along with their chl-

to-carbon ratios, is shown in Figure 49. 

 

Figure 49: Seasonal cycle of chl-to-carbon for three randomly selected SIs in the OWS India 

model 

There is little change in the chl-to-carbon ratio for the SIs in the early and latter 

parts of the year, because the lower irradiance and deeper mixed layers mean 

that the phytoplankton are continuously close to the maximum chl-to-carbon 

ratio. Once the mixed layer shallows and the irradiance increases, the 

phytoplankton spend the majority of the time in the euphotic zone, and the 

chl-to-carbon ratio shows more variability. I therefore examined one 10-day 

section, when the noon irradiance is at its highest, and the mixed layer depth 

at its shallowest (Figure 50). 
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Figure 50: The section of the seasonal cycle used in the plots below (between dotted lines) 

 

Figure 51: Following the trajectory of irradiance and depth experienced by a single SI, and 

its resulting chl-to-carbon ratio, for a randomly chosen SI in a simulation set at OWSI over 

days 140 to 150 
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Figure 51 shows that the phytoplankton SI is acclimating to changes in 

irradiance. The chl-to-carbon ratio increases during days where the SI 

experiences low irradiance, decreases after days where it has been closer to 

surface, experiencing high irradiance, and shows no change during the night, 

when there is no irradiance. The rate of change of chl:carbon is a function of 

the growth rate, so at night, when there is no irradiance, there is no 

photosynthesis, so therefore, no change to the chl-to-carbon ratio. This can be 

seen in Figure 51 as the horizontal sections of the red line representing the 

chl-to-carbon ratio.  

It appears, then, that the phytoplankton are acclimating to their ambient 

irradiance, and, consequently, display a wide range of photoacclimative 

properties, but that the average of these properties does not differ greatly 

from the predicted average chl-to-carbon ratio in the Eulerian model. 

Performing a full sensitivity analysis can help to understand the rate at which 

phytoplankton acclimate, what affects this rate, and how changes to the rate of 

photoacclimation affect the ecosystem as a whole. However, analysing the full 

model has several complications: firstly, the loss of super-individuals through 

detrainment when the mixed layer shallows can make tracking an individual SI 

difficult, secondly, understanding the sensitivity of the model to factors such 

as irradiance and mixed layer depth is complicated when using a seasonal 

cycle of forcing, and finally, the constant fluctuations of mixed layer depth and 

irradiance mean that it is not possible to achieve steady-state values which can 

then be compared to predicted steady-state values. For this reason, the 

analysis was first performed on a fixed-slab version of the model, using a 

constant mixed layer depth and surface PAR, in order to get a clear picture of 

how each component reacts, before performing the same analysis on the full 

model.  

3.4 Sensitivity analysis of the fixed-slab model 

This section demonstrates how external forcing, such as the mixed layer 

depth, the surface irradiance and its attenuation through the mixed layer, and 

the mixing rates affect the model predictions of phytoplankton pigment and 

biomass. This is achieved by running the fixed slab model to steady state, 

under a range of different scenarios. The use of a Lagrangian model allows 
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investigation of, not only the integrated pigment and biomass, but also their 

vertical profiles, and super-individual chl-to-carbon ratios.  

3.4.1 Steady-state averaged biomass, production, and chl-to-carbon 

ratios 

The first scenario investigated the response of the model predictions of 

average chlorophyll biomass and chl-to-carbon ratios to changes in the mixing 

rate. This involved running a fixed slab model to steady state using a range of 

values for the turbulent diffusivity. The rate of mixing only affects the 

movement of the phytoplankton through the mixed layer – everything else (i.e. 

nutrients, zooplankton and detritus) is assumed to be fully mixed at all times. 

The phytoplankton move via a random walk that is parameterised based on the 

vertical diffusivity coefficient, K
turb

, which is proportional to both the depth of 

the mixed layer, and the strength of the surface wind speed. The mixed layer 

was assumed to be constant for these simulations (100 m), so changes to the 

mixing rate represent differing surface wind speeds. A range of different 

speeds, from 0.01 m s-1 up to 100 m s-1 (to put these wind speeds in context – 

the surface wind speed averages for OWSI range from ~ 7 m s-1 to ~ 11 m s-1), 

was investigated. Super-individual division was included in all of the model 

runs, and the temperature (in order to determine the maximum rate of 

photosynthesis, V
PT
, was set to 10°C (V

PT
 = 3.79 g C (g Chl-1) h-1). The surface 

irradiance was assumed to be constant throughout the simulation – i.e. no diel 

or seasonal cycle – and was set to 200 W m-2. An Eulerian fixed-slab model was 

also run using the same conditions, for comparison. 
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Figure 52: Steady-state predictions of a) chlorophyll and b) Chl:Carbon for the Eulerian and 

Lagrangian versions of a fixed-slab model, under different mixing regimes. The mixing 

rates were based on wind speeds of 100 m s-1, 10 m s-1, 1 m s-1, 0.1 m s-1, and 0.01 m s-1, 

which resulted in turbulent diffusivity coefficients of 4�10-1, 4�10-2, 4�10-3, 4�10-4, and 4�10-5 

m2 s-1 respectively. Light attenuation is based on Anderson (1993). 

Each simulation was run for a year, after reaching equilibrium, and Figure 52 

shows this final year of data. The first observation is that decreasing the 

mixing rate increases the predicted integrated chlorophyll biomass. This does 

not appear to be a result of the chl-to-carbon ratios, because, as shown in 

Figure 52b, the slowest rate of mixing has the highest predicted chlorophyll 

biomass, but the predicted average chl-to-carbon ratio does not differ from 

that predicted by the Eulerian model. The increase in chlorophyll biomass is a 

result of the vertical profile of phytoplankton that develops in the mixed layer, 

when the rate of mixing is decreased. Slower moving super-individuals have 

more time to grow in areas of high irradiance, and, conversely, more time to 

decline in areas of low irradiance, resulting in the profiles of biomass and 

pigment-to-biomass ratios shown in Figure 53.  
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Figure 53: Vertical profiles of a) Chl biomass, b) Nitrogen biomass and c) Chl:C for the 

mixing regimes show in Figure 52 

 

Figure 54: Vertical profiles of a) Chl-specific N production and b) N-specific N production for 

the mixing regimes shown in Figure 52 

The vertical profile of chl-to-carbon shown in Figure 53c shows several 

important features: 

1. The phytoplankton in the simulations with higher mixing rates show no 

variation of chl:carbon with depth. This is because these well-mixed 

phytoplankton never have time to acclimate to the irradiance at any one 

depth, and therefore every individual acclimates to the average 

irradiance in the water column (technically the average irradiance in the 

euphotic zone – see section 3.4.2). 
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2. Decreasing the mixing rate decreases the chl-to-carbon ratio near the 

surface. A decrease in the mixing rate increases the length of time the 

phytoplankton near the surface have to acclimate to the higher 

irradiance. At the same time, the phytoplankton lower down in the water 

column have more time to acclimate to the lower irradiance, resulting in 

the increase in chl-to-carbon ratio observed (apart from when the mixing 

rate is decreased to a wind speed of 0.01m s-1 – see below) 

3. Below ~40m, all simulations show little variation in chl-to-carbon ratios 

with depth. Changes to the chl-to-carbon ratio are a function of the 

growth rate, so once most of the irradiance has been attenuated, the 

chl-to-carbon ratio remains constant, because respiration affects both 

chlorophyll and carbon stores at the same rate, so has no effect on their 

ratio 

4. Simulations with decreased mixing rates initially show an increased chl-

to-carbon ratio in the lower portion of the mixed layer, until the mixing 

rate is decreased to the lowest value investigated (based on a wind 

speed of 0.01 m s-1), at which point chl:carbon in the lower portion of 

the mixed layer falls to a value closer to that predicted by the models 

with the high mixing rates.  

This final point initially seems counterintuitive: decreasing the mixing rates 

increases the surface phytoplankton biomass, which should result in less 

irradiance reaching those deeper in the water column, where the chl-to-carbon 

ratios would be expected to increase. However, chlorophyll production is 

scaled relative to nitrogen production using the equation: 

Rchl ,SI = θmax
chl ⋅

µP,SI

αP,SI ⋅ ISI ,z ⋅θchl ,SI
     (3.5) 

This represents the balance between the rate of production, µP,SI , and the 

instantaneous light harvesting capacity of the phytoplankton, αP,SI ⋅ ISI ,z ⋅θchl ,SI . If 

the achieved rate of photosynthesis is less than the current potential 

maximum, then Rchl ,SI  decreases, reducing the rate of chlorophyll production in 

relation to nitrogen production, and therefore there is a decrease in the chl-to-

carbon ratio. Therefore, increasing a variable in the denominator of the 

fraction (i.e. irradiance), will decrease the calculated R
chl,SI

, and decrease the 
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ratio of chl-to-carbon. However, the phytoplankton production, µP,SI , is also a 

function of the average concentration of nutrient (DIN) in the mixed layer. An 

increase in the steady-state prediction of phytoplankton biomass results in a 

decrease in the steady-state concentration of DIN, which reduces the achieved 

rate of production. The steady state values for DIN for the simulations in 

Figure 52:Figure 54 are shown in Figure 55. The maximum potential rate of 

photosynthesis shown in eq. (3.5) is based on no nutrient limitation, so a 

simulation with a lower concentration of DIN will have a lower achieved-to-

maximum rate of photosynthesis, which will result in a lower value for R
chl,SI

 and 

a decreased rate of chlorophyll production in relation to nitrogen production, 

which will lower the overall chl-to-carbon ratio.  

 

Figure 55: Steady-state DIN concentrations for the simulations shown in Figure 52:Figure 54 

Although the above plots give some idea as to the steady-state predictions of 

both the integrated and vertical profile of chl-to-carbon ratios, there is still not 

enough information about the rates of acclimation, and whether they reach the 

predicted, optimal steady-state chl-to-carbon values. As previously mentioned, 

one advantage of using an existing Eulerian model for this study, is that it 

allows for mathematical analysis of the model. It is possible to solve the 

growth equations for the condition of balanced growth in order to produce a 
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predicted relationship between irradiance and chl:carbon (steady-state solution 

provided by Prof. T. Anderson):  

 θchl =
VP ⋅θmax

chl

Vp
2 +αP

2 ⋅ I 2( )0.5
  (3.6) 

This gives a predicted steady state value for θchl, for any value of I, which can 
be compared to the predictions of θchl for super-individuals, under different 
mixing regimes. If the phytoplankton were responding as expected, then 
running a simulation with no mixing (stationary phytoplankton) should result 
in the phytoplankton acclimating to the values predicted by eq. (3.6), which 
would provide a good test that the model was behaving as it should. However, 
in order to do this, I had to modify the model in several ways: 

1. Removal of nitrogen dependence. The steady-state chl-to-carbon 

equation (3.6) uses the maximum rate of photosynthesis, V
PT
, so in 

order to be able to compare the model predicted values with the optimal 

values, there has to be no nutrient limitation 

2. Change to the attenuation model. The Anderson (1993) attenuation 

model splits the water column into three regions (0m to 5m, 6m to 

23m, and <23m), and calculates the attenuation coefficient for each 

region, based on the chlorophyll concentration. However, these 

coefficients are calculated using polynomial expressions, which, in 

Anderson (1993) are tested using chlorophyll concentrations up to 16 

mg m-3. Running a fixed-slab model with stationary phytoplankton (i.e. 

no mixing) results in unrealistically high levels of chlorophyll 

concentrations (>50 mg m-3), which are outside the useable limits of 

these polynomials. Therefore, the coefficients were assumed to be 

constant above a concentration of 16 mg m-3 (i.e. if the chlorophyll 

concentration at a particular depth exceeded 16 mg m-3, the coefficient 

was calculated using a value of 16 mg chl m-3).  

 

In addition, some of the experiments involve changing the turbidity of 

the water in a quantifiable manner, and for that a simpler light 

attenuation model (as in Evans et al. (1985)) was implemented: 

 kpar = kw + kc ⋅Pconc   (3.7) 
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where k
par

 represents the light extinction coefficient, k
w
 the background 

turbidity, and k
c
 the attenuation due to phytoplankton (self-shading). 

This calculates attenuation based on the average concentration, rather 

than the concentration at each depth in the mixed layer, and the effect 

of this light attenuation model on the entire ecosystem is fully explored 

in section 3.6.1. 

3. Changes to the mortality. As described in the Chapter 2, phytoplankton 

losses through grazing and the non-linear mortality rate are calculated 

using the average biomass (mmol N m-3) in the mixed layer, rather than 

the biomass contained within each super-individual. As the biomass 

contained in one individual increases, the average phytoplankton 

biomass in the water column increases, which, in turn, increases the 

loss rate. At the same time, the smaller individuals are effectively 

reducing the loss rate in relation to the larger individuals, meaning that 

there is less grazing pressure on larger super-individuals. This creates a 

positive feedback effect, ensuring that the largest individuals keep 

increasing in size, whilst the smallest keep decreasing, until all of the 

phytoplankton biomass is effectively contained in one super-individual. 

Allowing the super-individuals to divide into 2 super-individuals, each 

contained half the biomass of the original, alleviates this problem in the 

full model, however, this does not work with a model with no mixing. If 

there is no phytoplankton movement, then each 1-metre layer is 

analogous to one super-individual, as the biomass contained within the 

layer is the same, regardless of how many super-individuals it is divided 

between. Therefore, the mortality was applied to each individual, using 

a simple quadratic equation: 

 MSI = mPPSI
2   (3.8) 

where m
P
 = 0.3 d-1, which was a value chosen in order to allow the 

simulations to reach steady-state, without resulting in excessive levels of 

chlorophyll and nitrogen biomass. 
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3.4.2 Relationship between the mixing rate and individual chl-to-carbon 

ratios: random walk movement rules 

In order to attain a picture of how well acclimated the super-individuals were to 

their local irradiance at any one point during the simulation, I plotted the chl-

to-carbon ratios of super-individuals against the irradiance at their current 

depth, and compared these points to the steady-state predictions obtained 

using eq. (3.6). As explained previously, the model used was a simplified 

version of the fixed-slab model, with no dependence of photosynthetic rate on 

DIN concentration, and with the non-linear mortality calculated for each super-

individual, based on its biomass. A simple quadratic equation (eq. (3.8)) was 

used for mortality (M
SI
), and both linear mortality and grazing were neglected.  

The first set of simulations focussed on the relationship between the rates of 

mixing and photoacclimation. A range of mixing rates was investigated, based 

on wind speeds of 100m s-1, 10m s-1, 1m s-1, 0.1m s-1, 0.01m s-1, and 0 m s-1 (i.e. 

no mixing), which correspond to diffusivities of K
turb

 = 4�10-1, 4�10-2, 4�10-3, 

4�10-4, 4�10-5 and 0 m2 s-1, respectively. For comparison, the study by 

McGillicuddy (1995) used mixing rates based on turbulent diffusivities of 0.01 

m2 s-1 and 4.64m2 s-1, and Lande et al. (1989) investigated a single value of 0.01 

m2 s-1 . Increasing the diffusivity coefficient beyond 4�10-1 m2 s-1 did not result 

in any further changes to the steady-state predictions, as the rate of mixing 

was high enough to ensure that the phytoplankton were evenly distributed at 

all times.  
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Figure 56: The relationship between irradiance and Chl:C for 100 super-individuals using a 

range of mixing rates. The red line shows the predicted steady state value, using equation 

(3.6), the red dot shows the predicted Chl:C based on the average irradiance in the water 

column, and the yellow dot shows the predicted Chl:C based on the average irradiance in 

the euphotic zone (surface to 1% of surface irradiance).  

Figure 56 shows how far the chl-to-carbon ratio of each super-individual is 

from the predicted steady-state value for its current irradiance. Each blue circle 

represents the chl-to-carbon ratio and current irradiance of a single SI. The red 

line represents the predicted, steady-state relationship between chl:carbon and 

irradiance, using equation (3.6). If an individual SI is currently fully acclimated 

to its irradiance, then it will fall on the red line. If the model is responding in a 

predictable fashion, then removing the mixing should result in all 

phytoplankton achieving the predicted steady-state values of chl:carbon, which 

can indeed be seen in Figure 56a).  
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Several important observations and questions highlighted by Figure 56 are: 

1. There appears to be little acclimation to the local irradiance until the 

wind speed falls to 0.1 m s-1 (K
turb

 = 4�10-4 m2 s-1) 

2. For diffusivities of 4�10-3 m2 s-1 and above, the range of chl-to-carbon 

ratios decreases with increasing mixing rates 

3. The phytoplankton in scenarios with wind speeds of 1 m s-1 (K
turb

 = 4e-3 

m2 s-1) and above, show no correlation between chl-to-carbon ratio and 

irradiance, although they exhibit a wide range of values for Chl:C.  

• There are two values of Chl:C also shown in the plots: the red circle, 

which corresponds to the predicted steady-state chl-to-carbon ratio for 

the average irradiance in the mixed layer, and the yellow dot, which 

shows the predicted steady-state chl-to-carbon ratio for the average 

irradiance in the euphotic zone (taken as stretching from the surface to 

the depth at which the irradiance falls to 1% of the surface value). The 

average acclimation appears to be closer to the value suggested by the 

irradiance in the euphotic zone. This is because changes to the ratio of 

chl-to-carbon depend upon phytoplankton growth – chlorophyll 

production is increased or decreased relative to nitrogen production. If 

there is no irradiance, then there will be no production, and the ratios 

will be unaffected. Therefore, when the phytoplankton are in complete 

darkness, then their chl-to-carbon ratios will remain fixed at the same 

value, until they move back into the light. 

Although these plots show the relationship between the instantaneous rates of 

acclimation, they don’t provide information about how the previous history of 

irradiance has impacted on the current chl-to-carbon ratios. This can be 

illustrated by plotting the trajectory of irradiance exposure against the chl-to-

carbon ratio of a random super-individual, and then comparing this to the 

optimal chl-to-carbon ratio for each plotted irradiance point, as predicted by 

equation (3.6). 
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Figure 57: The trajectories of irradiance and depth followed by a single super-individual 

over the course of 10 days, along with the resulting chl-to-carbon ratios. Also shown are 

the predicted, steady-state chl-to-carbon values for each irradiance experienced by the 

super-individual.  

Figure 57 illustrates more clearly what is happening in Figure 56. As the rate of 

mixing decreases, the changes in irradiance decrease, and the phytoplankton 

have time to acclimate to their local light field. The timescales of acclimation 

seem to be on the order of days, rather than hours, for example, in Figure 57d, 
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the predicted steady state chl-to-carbon ratio is never reached, even when the 

irradiance has changed very little over a number of days. However, the 

phytoplankton do appear to be acclimating towards the steady-state chl-to-

carbon ratios, which would explain the range of chl-to-carbon values shown in 

Figure 56. The time necessary for the phytoplankton to fully acclimate to their 

irradiance can be seen in Figure 58, which shows the specific change in chl-to-

carbon (θChl ,sp ) ratio each time step (30 minutes), for a single super-individual 

at different constant irradiances, assuming no nutrient dependence. This is 

calculated for each individual, by dividing the absolute change in chl-to-carbon 

ratio, by the chl-to-carbon ratio at the beginning of the time step. This is then 

averaged out over the entire population.  

Full acclimation takes on the order of 8-10 days, although most of the 

acclimation is complete in 5 days.  

 

Figure 58: Specific rate of change of chl-to-carbon, θ
Chl,sp

 , under different irradiances, 

assuming no nutrient limitation for a super-individual with an initial θ
Chl

 = 0.01 mgChl (mg 

C)-1 
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3.4.3 Relationship between the mixing rate and individual chl-to-carbon 

ratios: random position movement algorithm 

Next, the rates of acclimation in a simulation using the random position 

movement algorithm were investigated. As stated in Chapter 2, the mixing rate 

in the random position model of movement is a function of the time step, as 

that is the implied time taken for a super-individual to move from the surface 

to the base of the mixed layer. There were four different time steps 

investigated: 1 min, 30 minutes, 300 minutes, and 1000 minutes. Using the 

method to estimate the diffusivity described in Chapter 2 gives values of K
turb

 = 

20.8m2 s-1, 0.7m2 s-1, 0.07m2 s-1, and 0.02m2 s-1, respectively. Decreasing the 

mixing rate should result in the chl-to-carbon ratios falling closer to the 

theoretical values calculated by equation (3.6). 
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Figure 59: The relationship between irradiance and Chl:C for 100 super-individuals using 

the randomisation movement, with differing time steps. The red line shows the predicted 

steady state value, using equation (3.6). Time steps correspond to estimated diffusivities of 

a) 20.8m2 s-1, b) 0.7m2 s-1, c) 0.07m2 s-1, and d) 0.02m2 s-1. 

The results shown in Figure 59 are inconclusive. Increasing the time step (and 

therefore decreasing the rate of mixing) does not result in any visible 

individual acclimation (i.e. the blue circles do not fall on the red line). However, 

the minimum estimated mixing rate – for the time step of 1000 minutes – was 

0.02m2 s-1, which would not be low enough to cause significant acclimation in 

the random walk model, where visible acclimation was not seen until the 

mixing rates fell to < 4�10-3 m2 s-1. Unfortunately, increasing the model time 

step beyond 1000 minutes moved the model outside of its workable 

boundaries. Therefore, in order to investigate estimated rates of mixing that 



Sensitivity analysis of the fixed-slab model 

 116 

are comparable to those used with the random walk movement algorithm in 

Figure 56, the simulation was run again, but for a shallower mixed layer of 

10m. Using a shallower mixed layer depth meant that the phytoplankton were 

assumed to be moving a shorter distance each time step, so that the calculated 

diffusivities for each time step length were lower. In order to make sure that 

the phytoplankton were exposed to a wide range of irradiances within such a 

shallow depth, the Evans and Parslow model of light attenuation was used, 

with the background attenuation coefficient, k
w
, increased from the standard 

value of 0.04m-1, to 0.4m-1. 

 

Figure 60: The relationship between irradiance at Chl:C for 100 individuals in a simulation 

using the random position movement algorithm, for a mixed layer depth of 100m, a surface 

PAR of 200 W m-2, and a background attenuation coefficient, k
w
 = 0.4 m-1. Four different time 
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steps are investigated: 1 min, 30 mins, 300 mins and 1000 mins, which correspond to 

estimated diffusivities of 2�10-1m2 s-1, 7�10-3m2 s-1, 7�10-4m2 s-1, and 2�10-4m2 s-1, respectively. 

Decreasing the mixing rate results in a small increase in the range of chl-to-

carbon ratios, but not to the same extent as in the simulation using the 

random walk model. This is because there is no correlation between each step 

taken by the phytoplankton. For this reason, the mixing rate estimated for the 

random position model, from the depth of the mixed layer and the time step, 

is not comparable to the mixing rates of the random walk model.  

3.4.4 Relationship between the mixed layer depth and the individual 

chl-to-carbon ratios 

The next set of simulations was designed to see whether there is a relationship 

between the depth of the mixed layer and the chl-to-carbon ratios of the super-

individuals. Again, the super-individuals were simulated in the simple fixed 

slab model, although this time, using a range of different mixed layer depths, 

and a constant mixing rate, based on a wind speed of 10 m s-1. Changing the 

depth of the mixed layer also results in a change to the turbulent diffusivity, as 

described in Chapter 2. 
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Figure 61: The relationship between irradiance and Chl:C for 100 super-individuals using 

the random walk movement, with differing mixed layer depths. The red line shows the 

predicted steady state value, using equation (3.6), the red dot shows the predicted Chl:C 

based on the average irradiance in the water column, and the yellow dot shows the 

predicted Chl:C based on the average irradiance in the euphotic zone (surface to 1% of 

surface irradiance).  

The diffusivities used in Figure 61 are based on the standard settings: a 

surface wind speed of 10 m s-1 and the depth of the mixed layer. Mixed layer 

depths of 10m, 50m, 100m, 250m, 500m, and 1000m correspond to 

diffusivities of 4�10-3 m2 s-1, 2�10-2 m2 s-1, 4�10-2 m2 s-1, 2�10-1 m2 s-1, 2�10-1 m2 s-1, 

and 4�10-1 m2 s-1, respectively. The range of values of Chl:C observed in the 

phytoplankton super-individuals is low when the mixed layer is 10m deep, but 

then increases until the mixed layer is 100m deep. Once the mixed layer 

deepens beyond 250m, this range decreases again. This is to do with the 

irradiance conditions experienced by the phytoplankton in each mixed layer. 
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When the mixed layer is only 10m deep, the range of irradiances experienced 

by the phytoplankton is low, because the light is only attenuated over 10 m. 

The maximum range of irradiances experienced by the phytoplankton will be 

achieved once the mixed layer depth has deepened to include the entire 

euphotic zone. However, deepening the mixed layer significantly beyond this 

depth means that the phytoplankton will spend the majority of their time in the 

dark. This means that, on average, they will spend less time in the euphotic 

zone, and will have less time to acclimate to the irradiance.  

Figure 61 also clearly demonstrates the difference between the average 

irradiance in the euphotic zone, and the average irradiance in the entire mixed 

layer. Even though the average irradiance in the mixed layer is very low, and 

the predicted steady state chl-to-carbon ratio is very high (red circle), below the 

euphotic zone, the phytoplankton are not photosynthesizing, and are therefore 

also not producing chlorophyll, so there is no change to their chl-to-carbon 

ratios. The average values of chl-to-carbon ratios displayed by the 

phytoplankton is therefore dependent on the average irradiance in the 

euphotic zone (predicted steady-state chl-to-carbon shown by the yellow 

circle). 

3.4.5 Relationship between the light attenuation and the individual chl-

to-carbon ratios 

The final simulations looked at how the rate at which irradiance is attenuated 

through the water column affects the chl-to-carbon ratios of the super-

individuals. In order to increase the turbidity of the water in a quantifiable 

manner, the Evans and Parslow light attenuation model was used, with 

increasing levels of background turbidity. Three different values were 

investigated: k
w
 = 0.08m-1, 0.16m-1, and 0.32m-1. The simulations were run in a 

100m deep mixed layer, with a constant surface PAR of 200 W m-2, and 

assuming nutrient replete conditions (i.e. no nutrient limitation term). 
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Figure 62: The relationship between irradiance and Chl:C for 100 super-individuals using 

the random position movement, for different levels of background attenuation, 

representing increasingly turbid conditions.   

The range of chl-to-carbon ratios was not sensitive to the background 

attenuation. This is because changing the attenuation does not affect the 

range of irradiances experienced by the phytoplankton – 100 m is deeper than 

the euphotic zone for all cases, so each scenario involves a range of values 

from 200 W m-2 at the surface, to 0 at the base of the mixed layer. 

3.4.6 Determining the timescale between photoacclimation and mixing. 

The timescales for acclimation are shown to be on the order of 7-10 days 

Figure 58. However, this is the time taken for a phytoplankton to fully 

acclimate to a constant irradiance, a situation that is unlikely to occur in the 
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ocean, where the surface irradiance is constantly fluctuating. Therefore, the 

effect of the degree of correlation between steps on the time taken for 

acclimation was investigated, by simulating two extreme scenarios: 

1. A simple trajectory with a strong correlation between each step. A single 

super-individual was exposed to an irradiance level that oscillated 

between 0 and 200 W m-2. The irradiance increased by 1 W m-2, until a 

value of 200 W m-2 was reached, at which point it started to decrease. 

The irradiance increased or decreased by 1 W m-2 every n time steps, 

using time steps of 1 minute. The value of n was then increased, until 

the chl-to-carbon ratios shown by the super-individual matched those 

predicted by the steady-state equation. 

2. The second simulation was designed to represent a simulation using the 

random position movement algorithm, where each irradiance has no 

relationship with previous levels of irradiance. The irradiance 

experienced by the super-individual was updated using a randomly 

selected value between 0 and 200 W m-2 every n time steps.  

The aim was to estimate the length of time necessary for an individual to 

acclimate to any changes in its irradiance field, for both a highly correlated 

trajectory and one with no correlation between steps (random position 

movement). Both movement rules were investigated, to show the rates of 

acclimation in models where the individuals move in small increments (i.e. 

random walk), so that the current chl-to-carbon ratio would be influenced by 

the history of irradiance, and also in models where the changes in irradiance 

were sudden and random (i.e. random position).  
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Figure 63: A single phytoplankton super-individual exposed to a series of irradiances, 

whilst oscillating between the surface and the base of the mixed layer. The irradiance 

starts at 200 W m-2, and is then decreased by 1 W m-2 every n time steps until 0 W m-2 is 

reached, at which point it is increased by 1 W m-2 every n time steps (n = 50, 100, 200, 400, 

600, 800). The chl-to-carbon ratio predicted by the model (blue line) is then compared to the 

calculated steady-state chl-to-carbon ratio for each irradiance (orange line). MLD = 100m 
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Figure 64: A single phytoplankton super-individual exposed to a series of irradiances, 

designed to represent a random position movement. The irradiance is updated every n time 

steps (n = 7500, 10000, 12500, 15000) to a random value between 0 and 200 W m-2. The 

chl-to-carbon ratio predicted by the model (blue line) is then compared to the calculated 

steady-state chl-to-carbon ratios for each irradiance (orange line). MLD = 100m, time step  = 

1 minute 

Figure 63 and Figure 64 suggest that phytoplankton in a model using realistic 

rates of mixing, are unlikely to ever be fully acclimated to their irradiance. 

Even though the phytoplankton in Figure 63 are showing significant 

acclimation after only 50 minutes under each irradiance, their ambient 

irradiance is only changing a small amount (1 W m-2) every 50 minutes, so little 

change is needed to acclimate to the new irradiance. At the other end of the 

scale, the phytoplankton using the random position model (Figure 64) require 

250 hours (~10 days) to acclimate to every change in their ambient irradiance.  

Phytoplankton in the ocean are being constantly mixed through fluctuating 

irradiance levels, that depend not only on their depth in the ocean, but also on 

the annual and diel cycles of irradiance. It seems unlikely that there will be 

significant differences in phytoplankton photoacclimative properties resulting 

from differences in their irradiance histories. Photoacclimation is still 

important seasonally, but can be adequately captured through the use of an 
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Eulerian model. However, Figure 52 shows that steady state predictions from 

fixed slab Eulerian and Lagrangian models do diverge with wind speeds of less 

than 1 m s-1, suggesting that there is a mechanism causing model divergence 

under lower mixing regimes. In the next section, I propose and provide 

evidence for an alternative hypothesis for the cause of differences between 

Eulerian and Lagrangian phytoplankton models, based on the vertical profile of 

phytoplankton biomass. 

3.5 The relationship between growth and mixing rates: 

vertical phytoplankton profiles 

The previous section has demonstrated that the rates of acclimation are slow – 

on the order of days, rather than hours – and, as a consequence, low rates of 

mixing are necessary to result in the phytoplankton developing a range of chl-

to-carbon ratios. However, it is not clear whether differences in the range of 

chl-to-carbon ratios displayed by the super-individuals results in differences to 

the overall rates of primary production. The model predicts that decreasing the 

mixing rate increases the overall steady state values of chlorophyll, but it also 

shows a strong vertical profile of phytoplankton, which would result in an 

increase in production. 

Determining how much of the increase in production can be accounted for by 

the vertical profile of phytoplankton can be achieved by calculating the 

distribution of phytoplankton in the Lagrangian model, and then simulating 

the same distribution in an Eulerian model. A fixed slab model with a mixed 

layer depth of 100m, and a surface irradiance of 200 W m-2, using a range of 

different mixing rates (as in section 3.4.1) results in different relationships 

between the chl-to-carbon ratios and the irradiance (Figure 65). 
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Figure 65: The relationship between the individual chl-to-carbon ratios for 100 super-

individuals and their local irradiance, for a fixed slab simulation where H = 100m, surface 

PAR = 200 W m-2 

 

Figure 66:  Steady state predictions of chlorophyll for the simulations shown in Figure 65 
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Figure 65 shows that changing the mixing rate changes the relationship 

between the local irradiance of a super-individual, and its current chl-to-carbon 

ratio. The steady-state chlorophyll predictions for each of the mixing rates 

depicted in Figure 65 are shown in Figure 66, and it is clear that decreasing 

the mixing rate increases the steady state values. 

Reducing the mixing rate allows phytoplankton to remain at, or close to, one 

depth for longer. This means that phytoplankton near the surface can grow for 

longer, and those deeper in the water column stay in conditions unsuitable for 

growth longer, and so decline more. The resulting vertical profiles for the 3 

reduced mixing rates, K
turb

 = 4�10-5 m2 s-1, 4�10-4 m2 s-1 and 4�10-3 m2 s-1, are 

shown in Figure 67. 

 

Figure 67: Steady state vertical chlorophyll profiles for a 100 m deep mixed layer, a 

constant surface irradiance of 200 W m-2, and 3 different mixing rates 

These profiles can be estimated using a four-parameter shifted Gaussian 

model, as described in Platt et al. (1988). This model uses four parameters to 

describe the shape of the chlorophyll profile: the background chlorophyll 
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concentration (B
0
, mg m-3), the total chlorophyll concentration beneath the 

curve (h, mg m-2), the width of the peak (σ, mg m-3), and the depth of the 

chlorophyll maximum (z
m
, m). 

 B z( ) = B0 +
h

σ 2π
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Figure 68: A shifted Gaussian curve showing the four parameters (B
0
, h, σ and Z

m
) used to 

describe vertical chlorophyll profiles. Redrawn from Platt et al. (1988) 
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Figure 69: Relative chlorophyll distribution predicted by the steady state model, compared 

to the fitted function (see text). Parameter values: B
0
 = 0.0 mg m-3, h = 103, 110, 155 mg m-2, 

σ = 5.6, 13.0, 34.0 mg m-3 and Z
m
 = 15, 16, 10 m for Kturb = 4�10-5, 4�10-4, 4�10-3 m2 s-1, 

respectively. 

Figure 69 shows the shifted Gaussian curves fitted to the relative chlorophyll 

distribution predicted by the fixed-slab model, run to steady state, under the 3 

different mixing rates. The function of this curve can be used as a shape 

function, S
Chl

, to modify the calculation of the new production, P
c
, throughout 

the mixed layer:  

 Pc =∑ SChl z( ) ⋅θChl ⋅
αP ⋅ I(z) ⋅VPT

VPT
2 +αP

2 ⋅ I(z)2( )0.5z=mld

z=0

∫   (3.10) 

The full explanation of the terms in these equations can be found in Chapter 2. 
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Figure 70: The steady state predictions of chlorophyll biomass for the Eulerian and 

Lagrangian formulations, and also the prediction from the Eulerian model with the vertical 

distribution applied (fixed Eulerian model). 

Figure 70 shows the ‘fixed’ Eulerian model predictions of steady state 

chlorophyll for each of the three mixing rates. It demonstrates that the 

difference between the Eulerian model and equivalent Lagrangian simulations 

using moderate to low mixing rates can be accounted for by the vertical profile 

of phytoplankton, thus indicating that individual differences due to 

photoacclimation have little or no impact on the overall rates of primary 

production. 

3.6 Sensitivity analysis of the full ecosystem 

The previous sections (3.4 and 3.5) have demonstrated the relationship 

between the mixing rates and both the individual chl-to-carbon ratios of the 

phytoplankton, and their vertical distribution through the mixed layer. In this 

final section, the response of the seasonal cycle of chlorophyll and chl-to-

carbon to changes in the mixing rates, the choice of the light attenuation 

model, the mixed layer depth, and the surface irradiance are investigated, 

using the full OWS I model.   
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3.6.1 Mixing rates and choice of attenuation model 

The random walk algorithm is parameterised using the vertical turbulence 

diffusivity, K
turb

, as described in Chapter 2. This is a function of both the depth 

of the mixed layer, and the surface wind speed, which follows a sinusoidal 

function based on 5 year averaged ERA 40 data. To investigate the response of 

the ecosystem to changes in the mixing rate, the surface wind speeds were 

decreased by increasing orders of magnitude. The values on the plots show 

the average annual wind speeds for each model run – each simulation still 

employed the seasonal cycle of wind speed shown in Chapter 2, but the daily 

values were decreased by a scaling factor (i.e. 10, 100 and 1000, which 

resulted in average annual wind speeds of 1 m s-1, 0.1 m s-1 and 0.01 m s-1, 

respectively). The simulation was run for both light attenuation models: the 

Anderson (1993) model, which calculates attenuation for each metre, 

depending on the chlorophyll above each depth, and the Evans and Parslow 

(1985) model, which calculates attenuation based on the average 

concentration of phytoplankton in the entire mixed layer.  

 

Figure 71: Seasonal cycle of averaged chlorophyll biomass for Lagrangian models with a 

range of wind speeds. Light attenuation using Anderson (1993). Wind speeds shown are the 

average values for the seasonal cycle over the year. 
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Figure 72: Seasonal cycle of averaged chlorophyll biomass for Lagrangian models with a 

range of different wind speeds. Light attenuation using Evans and Parslow (1985). 

Figure 71 and Figure 72 show that a decrease in the rate of mixing results in 

an increase in the predicted chlorophyll over winter, and a decrease in the 

magnitude of the peak of the spring bloom for both types of light attenuation 

model. The reduction in the rate of mixing results in a strong vertical profile of 

phytoplankton (profiles are shown in Figure 73 and Figure 74), with a greater 

concentration of phytoplankton being located in the region of the mixed layer 

that is the most conducive to growth (i.e. not enough irradiance for 

photoinhibition to occur, but sufficient for both a high level of chlorophyll 

production and light fixation). This results in a higher overall rate of 

production, which explains the high level of chlorophyll over winter, compared 

to the standard model, where the chlorophyll falls close to zero over winter. In 

addition, changing the mixing rates appears to have little effect on the average 

chl-to-carbon ratios for all cases, except the simulation using the Anderson 

(1993) light attenuation model under a mixing rate based on a surface wind 

speed of 0.01 m s-1, which shows a significant decrease in the average chl-to-

carbon ratio over summer. The reason for this decrease is explained in section 

3.4.1: chlorophyll production is downgraded when the achieved rate of 

photosynthesis is less than the light-harvesting capacity. Reducing the mixing 

rate results in a higher rate of production earlier in the year, which lowers the 

concentration of DIN, and therefore reduces the rate of photosynthesis. A 

reduction in the reduced rate of photosynthesis reduces the amount of 

chlorophyll production, even at low irradiances, because it reduces the ratio 
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between the achieved rate of production and the light-harvesting capacity of 

the phytoplankton individual. 

 

Figure 73: Average vertical profiles of phytoplankton nitrogen, chlorophyll and chl-to-

carbon ratios for day 150:250 for the simulations using the Anderson (1993) model of light 

attenuation 

 

Figure 74: Average vertical profiles of phytoplankton nitrogen, chlorophyll and chl-to-

carbon ratios for day 150:250 for the simulations using the Evans and Parslow (1985) 

model of light attenuation 

The choice of light attenuation model clearly has a large effect on the vertical 

structure of the phytoplankton for scenarios with low to moderate mixing. In 

order to accurately represent phytoplankton growth in low to moderate mixing 

rates, the light attenuation model should therefore take account of the 
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phytoplankton biomass at each depth, rather than using an average 

concentration.  

To further test the conclusion in section 3.5 that the change in primary 

production under lower mixing rates results from the vertical profile of 

phytoplankton, rather than a change in chl-to-carbon ratios, a simulation was 

run using a fixed ratio of chl-to-carbon. 

 

Figure 75: The OWS India simulation using the different cycles of wind speed as in Figure 

71:Figure 74 but with a constant ratio of chl-to-carbon (0.01 mg mg-1). Light attenuation as 

in Anderson (1993) 

Figure 75 shows that changing the rate of mixing for a model with 

phytoplankton with a fixed chl-to-carbon ratio has a very similar effect on the 

predictions of average chlorophyll as for the same model with a variable chl-to-

carbon ratio (Figure 71). This shows that differences in model predictions from 

changes to the mixing rate are due to vertical profiles of phytoplankton rather 

than photoacclimation in the full model, as well as for a fixed slab version. 

3.6.2 Water turbidity 

The fixed slab model in section 3.4.5 suggested that there is little relationship 

between the range of individual chl-to-carbon ratios and the turbidity of the 
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water for the model using the Evans and Parslow light attenuation. The same 

simulation was run with the full OWS I model, with the background attenuation 

being increased from the standard value of 0.04 m-1 to 0.08, 0.16 and 0.32 m-1. 

In all cases, the Eulerian and Lagrangian models showed very similar 

predictions of both chlorophyll and chl-to-carbon ratios, suggesting that, as for 

the fixed slab model, increasing the turbidity of the water does not result in a 

increase in the individual variability of the chl-to-carbon ratios. 

 

Figure 76: Seasonal cycle of chlorophyll in Lagrangian and Eulerian models with different 

levels of attenuation (Evans and Parslow attenuation model) 
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3.6.3 Surface irradiance 

 

Figure 77: Seasonal cycle of a) chlorophyll and b) Chl:C for a simulation with the full 

seasonal cycles of mixed layer depth and mixing, but with the surface irradiance held at a 

constant value. Anderson attenuation. 

 

Figure 78: Seasonal cycle of a) chlorophyll and b) Chl:C for a simulation with the full 

seasonal cycles of mixed layer depth and mixing, but with the surface irradiance held at a 

constant value. Evans and Parslow attenuation. 

One point of interest in both Figure 77 and Figure 78, is that the seasonal 

cycle of chlorophyll for a constant irradiance of 10 W m-2 looks very similar to 

the seasonal cycle predicted with a seasonally and diel varying irradiance. This 

demonstrates the importance of the conditions at the beginning of the year to 

the timing and magnitude of the peak of the spring bloom, which is discussed 
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in more detail in the next chapter. However, the average irradiance over the 

first 50 days of the full OWS India model is ~ 10 W m-2, which accounts for the 

beginning of the cycle looking the same. After that, the phytoplankton 

concentration is controlled by the loss rates, and growth is limited by the DIN 

concentrations, so the phytoplankton are not overly affected by increases to 

the irradiance at this point.  

3.6.4 Mixed layer depth 

In the final simulation, I ran the full OWSI model, but with a fixed mixed layer 

depth. The resulting seasonal cycles of chlorophyll biomass showed a slight 

difference between the Eulerian and Lagrangian model version, which 

appeared to increase with the depth of the mixed layer (Figure 79). 

 

Figure 79: Predicted seasonal cycle of chlorophyll biomass for OWSI model, using a fixed 

mixed layer depth. Solid line shows Lagrangian model, dashed line the Eulerian equivalent. 

The mixing rate is constant throughout the simulation (10 m s-1) 

The increase in divergence between the Eulerian and Lagrangian models with 

an increase in the depth of the mixed layer results from the degree to which 

the phytoplankton growth is light limited. Section 3.6.3 demonstrated that the 

phytoplankton are not light limited over the summer, and that their growth is 

controlled by other factors i.e. nutrient concentration and grazing. Therefore, 

increasing the mixed layer depth decreases the average irradiance in the 

mixed layer, which increases the extent to which phytoplankton growth is 

limited by irradiance. The more light limited the phytoplankton are, the greater 
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effect a non-uniform distribution of phytoplankton will have, which explains, 

the greater divergence between the Eulerian and Lagrangian models when the 

mixed layer depth is increased to 500m in Figure 79. 

The results in this section show that the results for the fixed slab model 

(section 3.4) also hold true for the full OWS India model. The Eulerian and 

Lagrangian model implementations will only diverge as a result of a non-

uniform distribution of phytoplankton throughout the mixed layer in the 

Lagrangian model, resulting from low mixing rates. In addition, the effect of a 

vertical profile of phytoplankton is dependent on the degree to which 

phytoplankton growth is limited by the surface irradiance: it will have more 

impact at low irradiances, or when the mixed layer is very deep. Variability in 

physiology as a result of individual phytoplankton super-individuals 

acclimating to their local irradiance, on the other hand, appears to have little 

affect on the model output. Even when the individual phytoplankton showed a 

wide range of chl-to-carbon ratios, the divergence between the Eulerian and 

Lagrangian models could be accounted for by the vertical distribution of 

phytoplankton. 

In addition, this section has demonstrated the importance of identifying the 

correct timescales for models of primary production. For example, for this 

model, it appears that growth happens on a timescale much faster than that of 

acclimation, and so exerts a stronger control over the response of overall rates 

of primary production to changes in turbulence. The timescales of mixing, T
M
, 

growth, T
G
, and acclimation, T

A
, can be estimated from: 

 TM = H 2

kturb
,TG = 1

µsp

,TA =
1

θChl ,sp
  (3.11) 

where µsp and θChl ,sp represent the average daily specific production (gross) rate, 

and specific rate of change in θChl  for the super-individuals, respectively.  
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Figure 80: The timescales associated with mixing, growth and acclimation for the OWS India 

model 

Figure 80 shows how close the timescales of growth and mixing are, especially 

in the time leading up to the spring bloom. Small changes in the rate of mixing 

during this time will have large effects on the vertical structure of the 

phytoplankton, which, because growth is light limited, will strongly affect the 

rates of primary production. On the other hand, the timescales of acclimation 

are much slower than the mixing, and a significant reduction in the mixing 

would be required to bring them closer. However, as this would also strongly 

affect the growth, it shows that the accurate representation of growth, and the 

resulting vertical phytoplankton profiles, is more important than representing 

photoacclimation. 

It’s important to note that these results do not suggest that photoacclimation 

does not have an impact on the rates of primary production. Both the Eulerian 

and Lagrangian models demonstrate a clear annual cycle of average chl-to-

carbon ratios in response to the seasonal cycle of irradiance. However, the 

results do suggest that photoacclimation impacts overall rates of primary 

production on a seasonal, rather than a daily or hourly, timescale.  

 



Chapter 3: Modelling growth and acclimation in Lagrangian phytoplankton 

 139   

3.7 Conclusion 

There were three main aims to this chapter: firstly to discover whether there 

are any differences between Eulerian and Lagrangian implementations of 

phytoplankton models, secondly to understand whether these differences are 

due to acclimation, and finally to understand the relationship between 

acclimation and mixing rates. The simulations have shown that: 

1. Although the phytoplankton in the Lagrangian model do show a large 

range of photoacclimative properties, the average chl-to-carbon ratio 

predicted does not differ significantly from that predicted by the 

Eulerian model.  

2. Photoacclimation happens slowly. Phytoplankton do not have time to 

acclimate to the ambient irradiance at any particular time, instead they 

acclimate to the average irradiance experienced over a longer period of 

time (days). In the short term, this results in the range of 

photoacclimative properties observed in the Lagrangian model, but also 

explains why the average of these does not differ from the those 

predicted by the Eulerian model.  

3. Divergence between Eulerian and Lagrangian models results from 

changes in the vertical distribution of phytoplankton in the water 

column, and not from photoacclimation. For this model, this is achieved 

by slowing the mixing rate, allowing those phytoplankton near the 

surface more time to grow, and those near the base more time to 

decline. However, it is possible to approximate this using an Eulerian 

model and a function describing how the vertical profile of 

phytoplankton changes with depth. 

It is important, however, to view these results in context. The rate at which the 

phytoplankton adjust to changes in their light environment is controlled by the 

chosen model of photoacclimation. The model chosen for this study, described 

in Geider et al. (1997), calculates chlorophyll synthesis based on the rate of 

photosynthesis, therefore assuming that phytoplankton do not synthesise 

chlorophyll in the dark. This assumption explains why the phytoplankton 

particles appear to be acclimating to the average irradiance in the euphotic 

zone, rather than over the mixed layer as a whole (Figure 56). However, Ross & 

Geider (2009) point out that this assumption does not produce 
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photoacclimation dynamics that allow for a sufficiently rapid response to shifts 

from high to low light. They developed a cell-based model in which carbon 

accumulated by phytoplankton during the day, can then be utilised after 

sunset, allowing them to continue to synthesise chlorophyll for some time into 

the night. They showed that this approach increased the performance of the 

model, in particular with regards to the response time of phytoplankton to 

changes from high to low irradiance.  

Although the question of whether the model accurately represents the 

phytoplankton light shift dynamics will obviously impact on the vertical 

distribution of phytoplankton light-harvesting properties, the results here have 

suggested that the vertical distribution of phytoplankton has a greater impact 

on overall rates of primary production. Increasing understanding of mixing 

rates in the ocean and how these impact on the vertical distribution of 

phytoplankton – even within a fully mixed layer – will help to further the 

accuracy of future ecosystem models. Also of interest for this field are the 

development of new techniques to predict vertical profiles from satellite 

measurements, for example, Richardson et al. (2003) have developed an 

approach to predict phytoplankton profiles, using the four-parameter Gaussian 

curve described in section 3.5, based on environmental variables such as the 

depth of the water column, the season, and the geographical location.  

It is also important to note that, even though the chapter has shown no 

advantage to the use of Lagrangian models in terms of their accuracy in 

predicting primary production, it has also shown their great utility for the 

creation and testing of hypotheses. It suggests that the place for Lagrangian 

models in marine ecology is for the testing of ecosystem theory, on which 

Eulerian models for prediction can then be based. This idea will be further 

tested in the next chapter, where the Lagrangian model is used to explore the 

mechanisms that control the spring bloom in the North Atlantic, to see if the 

use of this method can resolve some of the controversy that current exists in 

the literature regarding this important phenomenon.



  

 

  

Chapter 4: Using a Lagrangian 

phytoplankton model to test the controls 

of the spring bloom 

4.1 Introduction 

The North Atlantic is a key region for carbon sequestration, accounting for an 

estimated 25% of the global oceanic CO
2
 uptake (Bagniewski et al., 2011). The 

phytoplankton spring bloom in the North Atlantic contributes significantly to 

carbon export, playing an important role in the annual dynamics of the 

phytoplankton community (Lindemann & St John, 2014). There has therefore 

been a great deal of research focussed on understanding the drivers of the 

spring bloom, in order to aid prediction of the system’s response to changes in 

environment pressure, whether that be ephemeral phenomena, such as eddies 

and fronts, or long-term changes in climate.  

The canonical study for the explanation of the mechanisms driving the spring 

bloom was performed by Sverdrup (1953). Sverdrup’s critical depth hypothesis 

(CDH) proposes that in order for the spring bloom to occur, vertically averaged 

phytoplankton growth rates have to exceed phytoplankton loss rates. This can 

only occur if the vertically averaged irradiance through which the 

phytoplankton are mixed is above some critical value. There therefore exists a 

critical depth, above which the average irradiance exceeds the level required 

for positive net growth. If the phytoplankton are mixed below this depth, net 

growth cannot occur, and the population will decline. At the end of the winter, 

the water column stratifies due to the reduction in mixing rates combined with 

an increase in net surface heat flux, from the seasonal increase in irradiance. 

Once the depth of the fully mixed portion of the surface layer shoals above the 

critical depth, positive net growth can occur, and conditions are favourable for 

a spring bloom.  

Despite being published over 60 years ago, Sverdrup’s paper is still cited over 

50 times a year (Sathyendranath et al., 2015), due, in part, to its elegant way 

of summarising a complex oceanographic process with a simple mathematical 
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model. Although the simplicity of the model has attracted its fair share of 

criticism (e.g. Evans & Parslow (1985); Smetacek & Passow (1990)) no suitable 

alternative was suggested until Huisman et al. (1999) proposed that a 

reduction in mixing rates could also result in a spring bloom (the critical 

turbulence hypothesis, CTH). Although Sverdrup had indicated that a reduction 

in turbulence could enable a population to survive even if they were being 

mixed beyond the critical depth, Huisman et al. (1999), and later Taylor & 

Ferrari (2011), were able to quantify the turbulence below which positive 

production could occur, regardless of the depth to which the phytoplankton 

are mixed. However, the CTH was not intended to replace the CDH, Huisman et 

al. suggested that each hypothesis described an independent mechanism by 

which the spring bloom could be initiated. 

Behrenfeld (2010) and later Behrenfeld & Boss (2014), offered a different 

explanation, which they termed the disturbance-recovery hypothesis (DRH). 

They proposed that the seasonal increases in phytoplankton biomass were a 

result of disturbances to the balance between phytoplankton growth and loss 

through grazing. During the winter, the phytoplankton and zooplankton are 

mixed down to greater depths, essentially diluting their respective 

concentrations. This results in fewer encounter rates, lower specific grazing 

losses, and effectively decouples the phytoplankton-zooplankton balance. The 

reduction in specific grazing loss results in an increase of specific 

phytoplankton growth, irrespective of the available resources, with positive net 

growth being apparent during the winter. This growth continues, until the 

zooplankton populations are able to recover, and once again keep pace with 

the phytoplankton production (i.e. the phytoplankton-zooplankton balance 

recouples).  

In this chapter, I use the Lagrangian model to test each of these hypotheses. 

My main aim is to reconcile these theories, showing that, rather than being 

alternatives to the critical depth hypothesis, the critical turbulence and 

disturbance-recovery hypotheses describe mechanisms by which the critical 

depth can be altered. In essence, I extend the critical depth hypothesis to 

include scenarios with reduced mixing, and scenarios with a disturbance to the 

phytoplankton-zooplankton balance. 
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Although in the previous chapter, I have demonstrated little predictive 

advantage in the use of a Lagrangian model over the use of an Eulerian model, 

I have also demonstrated the utility of the Lagrangian model for analysis of the 

individual life-histories of the phytoplankton super-individuals. This justifies 

the use of a Lagrangian model for this study. In addition, the Lagrangian 

model offers more precision in regards to the irradiance experienced by the 

super-individuals in the water column, because it calculates the irradiance at 

each, exact depth, rather than integrating through the water column using a 

discrete number of depth intervals. I demonstrate that the critical depth 

predicted by an Eulerian model using 1 metre intervals is significantly deeper 

than that predicted by a Lagrangian model, for this reason. 

4.1.1.1 The spring bloom 

One of the difficulties in reconciling the various hypotheses that describe the 

controls on the initiation of the spring bloom is the lack of consistency of 

terms in the literature. For example, the onset of the spring bloom can refer to 

the point where the net phytoplankton growth first becomes positive 

(Behrenfeld, 2010), or when the surface chlorophyll concentrations first exceed 

a threshold value (Cole et al., 2015). Llort et al. (2015) circumvented this 

problem by splitting the spring bloom into three, distinct stages: the onset, the 

point where net growth first becomes positive; the climax, where growth rate 

is at its maximum; and the apex, where total biomass reaches its peak. I follow 

this convention for this study, focussing only on the onset of the spring bloom, 

and the mechanisms that determine its timing. 

4.1.2 Testing the hypotheses surrounding the initiation of the spring 

bloom 

Franks (2014) proposed that in order to properly test the critical depth model, 

it is necessary to investigate both phytoplankton growth rates and the water 

column mixing rates. This was previously attempted through the use of an 

Eulerian NPZ model, which was forced with vertical mixing, by Lévy (2015). She 

ran a suite of simulations, starting from a simple representation of Sverdrup’s 

assumptions, and gradually increasing complexity, in order to investigate how 

the adding complexity affected the timing of the onset of the theoretical 
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bloom (as calculated from the point where the mixed layer shoaled above the 

predicted critical depth) compared to the modelled bloom. She found that even 

the model that used the simplified assumptions proposed by Sverdrup showed 

a time lag of 1 week between the theoretical and modelled spring bloom. She 

also observed that, although the loss rate remained constant between winter 

and spring, suggesting that grazing plays little part in the timing of the spring 

bloom, if she included a seasonal cycle of mixed layer depth where the mixed 

layer deepened during the autumn, the model predicted positive growth rates 

due to the phytoplankton and zooplankton being significantly diluted by water 

entrained from below. She concluded that in order to fully understand bloom 

dynamics, it is necessary to simulate the full seasonal cycle, in order to 

account for the evolution of the physical parameters from the previous 

summer. 

This model differs from the work carried out by Lévy, in that I am using a full 

ecosystem, including representation of photoacclimation, with Lagrangian 

phytoplankton. I carry out an in-depth study of each of the three main 

hypotheses that describe mechanisms controlling the timing of the onset of 

the spring bloom. Rather than simplify the model to fit with Sverdrup’s 

assumptions, I derive an analytical equation to predict the critical depth, based 

on my model parameterisations (i.e. non-linear phytoplankton loss rate, non-

linear P-I curve). I then demonstrate that the analytical predictions, and those 

obtained numerically with the model are the same. The inclusion of non-linear 

terms means that the critical depth is not a constant value in a dynamic 

simulation (i.e. one where the phytoplankton are not in steady-state), and I 

show that taking this into account allows for the theoretical and actual 

predictions of the onset of the spring bloom in the OWSI model to match, 

exactly. At the end of the first section, I show the sensitivity of the predicted 

critical depth to the parameterisation of the phytoplankton loss rate. 

In the second section, I investigate the disturbance-recovery hypothesis. This 

essentially proposes that the spring bloom results from a decoupling between 

phytoplankton and zooplankton due to lowered concentrations over winter, so 

I run two scenarios, one with decoupling, one without, to see how this affects 

the initiation of the spring bloom. I demonstrate that, as predicted by 

Behrenfeld & Boss (2014), dilution of the phytoplankton and zooplankton 

populations results in a reduction of the specific loss rate, and therefore an 
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increase in the specific rate of net growth. However, if the change in the rate of 

loss is taken into account when calculating the critical depth, the timing of the 

onset of the spring bloom is still completely predictable.  

For the first two sections, I used the assumption that the phytoplankton are 

fully mixed within the water column at any one time, so used the random 

position movement algorithm (the depth of each super-individual is set to a 

random point between the surface and the base of the mixed layer every 30 

minute time step). For the final section, I investigate the critical turbulence 

hypothesis, which states that if the turbulence falls below a certain level, a 

spring bloom can develop, regardless of the depth of the mixed layer. In order 

to allow for changes to the mixing rate, I use the random walk model of 

movement (both types of movement rules are fully described in Chapter 2). 

This allows me to investigate how reductions in the mixing rate affect the 

timing of the spring bloom. I demonstrate that, contrary to Huisman et al. 

(1999), reducing the turbulence does not result in a bloom, irrespective of the 

mixed layer depth, instead it increases the value of the critical depth. There is 

a clear, hyperbolic relationship between the rate of turbulence and the critical 

depth – as the turbulence moves towards 0, the critical depth moves towards 

infinity. I further show that, if the vertical profile of phytoplankton resulting 

from a reduced rate of turbulence is known, it is possible to predict the critical 

depth, and therefore the onset of the spring bloom. 

4.1.3 Objectives 

1. Demonstrate the existence of the critical depth, as defined by Sverdrup, 

using a fixed slab model 

2. Demonstrate how a Lagrangian model can be used to calculate the daily 

critical depth, and how this is affected by changes to the phytoplankton 

loss rates 

3. Use the model to investigate the relationship between the critical depth 

and the point at which net growth becomes positive (i.e. the point at 

which a bloom could potentially develop) 

4. Show how the critical depth hypothesis can be extended to include the 

critical turbulence and disturbance-recovery hypotheses 
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4.2 The critical depth hypothesis 

In this section, I use the Lagrangian model to perform an in-depth analysis of 

the critical depth hypothesis. Firstly, I derive an analytical equation to 

determine the critical depth for a simulation, and then use the model to 

provide a numerical test of the equation. I then compare the predicted critical 

depth in a fixed slab, steady state model, to the critical depth predicted in a 

dynamic model. Next, I use the full OWS India model (described in Chapter 2) 

to determine which variables have the greatest impact on the critical depth, 

before moving on to evaluate whether the mixed layer depth shoaling above 

the critical depth triggers the spring bloom. Finally, I investigate the sensitivity 

of the critical depth to the parameters controlling the rate of phytoplankton 

loss. 

4.2.1 Deriving an analytical equation to predict the critical depth 

The critical depth hypothesis proposes that when the mixed layer depth shoals 

above some critical depth, the spring bloom is initiated. This critical depth is 

defined as the depth at which the integrated rates of phytoplankton growth are 

equal to the integrated rates of phytoplankton loss. Sverdrup described an 

equation that could be used to predict the critical depth for any surface 

irradiance: 

 
Zcr

1− ekparZcr
= 1
kpar

I0
Ic

  (4.1) 

where Z
cr
 represents the critical depth (m), k

par
 the light attenuation coefficient 

(m-1), I
0
 the surface irradiance, and I

c
 the compensation irradiance. The 

compensation irradiance is the irradiance at which the rate of photosynthesis 

exactly balances the rate of the sum of the losses in a phytoplankton cell.  

However, one of the assumptions for Sverdrup’s equation is that the 

relationship between photosynthesis and irradiance should be linear, whereas 

my model uses a non-linear Smith function to represent photosynthesis: 
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PcMLD = θchl ⋅
αP ⋅ I(z) ⋅VPT

VPT
2 +αP

2 ⋅ I(z)2( )0.5z=0

z=H

∫   (4.2) 

where: 

 I(z) = I0 ⋅exp(−kpar ⋅ z)   (4.3) 

Eq. (4.2) calculates the integrated rate of photosynthesis for a mixed layer, 

PcMLD , from the chl-to-carbon ratio, θChl , the initial slope of the P-I curve, α chl , 

the maximum growth rate at the current temperature, V
PT
, and the irradiance 

through the water column, I(z).  

In order to find an equation to predict the critical depth, I first needed to 

derive an analytical solution for the integral in equation (4.2) together with 

equation (4.3). This has already been done in Anderson et al. (2015), who used 

a trigonometric transformation and then integration by parts to give: 
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where x =αP ⋅ I z( )  , and x
0
 is x(z=0) and x

MLD 
is x(z=H). 

The final step was to use equation (4.4), with the intention of finding the 

mixed layer depth at which the predicted integrated rate of photosynthesis 

would equal the loss rate i.e. when Pc MLD( ) = m , where m represents the 

average daily phytoplankton loss (assumed to be constant with depth). This 

depth represents the critical depth, Z
cr
: 

 Zcr =

θchl ,int ⋅VPT ⋅ ln
x0 + VPT

2 + x0
2( )0.5

xcr + VPT
2 + xcr

2( )0.5
⎛

⎝
⎜
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⎞

⎠
⎟
⎟

kpar ⋅m
  (4.5) 

Equation (4.5) assumes that the irradiance at the base of the mixed layer is 

known. For deeper mixed layers (i.e. greater than 50 m), the irradiance at the 

base of the mixed layer will be close to zero, so I set x
cr
 to a small value, just 

above zero (1e-3 W m-2), to prevent division by zero errors. This assumption 
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would not be suitable for mixed layer depths shallower than ~50m, however, 

the irradiance at the base of the mixed layer can be estimated for models with 

shallower mixed layers, by numerically integrating equation (4.2) with equation 

(4.3). 

Equation (4.5) shows that the critical depth is affected by four variables: the 

surface irradiance, I
0
, the chl-to-carbon ratio, θ

chl
, the attenuation coefficient, 

k
par

, and the phytoplankton loss rate, m. Increases to the surface irradiance and 

the chl-to-carbon ratio will increase the critical depth, whereas increases to the 

attenuation coefficient and phytoplankton loss rate will decrease it.  

I used the model to provide a numerical test of equation (4.5) by firstly using 

the equation to predict the critical depth for a particular scenario, then running 

a model version of that scenario at increasing mixed layer depths, until I found 

the depth at which the phytoplankton population could no longer survive. For 

these model runs, I used a fixed slab model, with a constant surface 

irradiance. In order to ensure that the phytoplankton were fully mixed through 

the water column, I used the random position movement method (described in 

Chapter 2), which randomises the position of the phytoplankton super-

individuals each time step (30 mins). In the first instance, I wanted to simplify 

the model as much as possible, and so I removed the non-linear mortality 

terms (mortality, grazing), and just used a linear mortality term, as per 

Sverdrup. As the critical depth depends on the irradiance, the chl-to-carbon 

ratio, the light attenuation coefficient, and the phytoplankton loss rate, I set 

these variables to constant values. That way, I could use these values along 

with equation (4.5) to predict the critical depth for the scenario. I investigated 

two scenarios, using the parameter values: θchl = 0.02 mg chl (mg C)-1, kpar = 
0.04 m-1, m = 0.1 d-1, for I0 = 10 W m-2 and I0 = 20 W m-2. In addition, I 
removed the nutrient limitation term from the growth equation, so that 
phytoplankton growth was unaffected by the external concentration of 
nutrient, simulating growth in nutrient replete conditions. 

Using these parameters with Equation (4.5) gave predicted critical depths of 

141.7 m and 271.6 m for surface irradiances of 10 W m-2 and 20 W m-2, 

respectively. I tested these predictions by setting up the same scenarios in the 
model, and running it at a range of different mixed layer depths: between 140 
and 142m for the surface irradiance of 10 W m-2 and between 270 and 272 m 
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for the surface irradiance of 20 W m-2. If the equation were working as 
expected, then the phytoplankton would be expected to decline in simulations 
with a mixed layer depth greater than the predicted critical depth, and would 
be expected to increase in simulations with a mixed layer depth shallower than 
the predicted critical depth. 

 

Figure 81: The predicted integrated chlorophyll biomass for fixed slab simulations with a 

constant irradiance, mixed layer depth, light attenuation coefficient and chl-to-carbon ratio, 

under a range of different mixed layer depths. 

Figure 81 shows that, for both scenarios, the critical depth predicted by 

equation (4.5), is equal to the critical depth predicted by the model. This 

demonstrates that I can use the analytical equation to predict the critical depth 

for a fixed slab model, using a constant irradiance, linear mortality, and fixed 

values for chl-to-carbon and light attenuation.  

4.2.2 Non-linear loss terms and critical depth 

Having demonstrated that the analytical equation calculates the same critical 

depth as that determined numerically by a model with only linear mortality, I 

next investigated how non-linear phytoplankton loss terms affect the predicted 

critical depth. I first looked at steady-state solutions provided by a fixed-slab 

model, before investigating a dynamic model with a seasonal cycle of forcing, 

where the phytoplankton are in a state of continuous flux. 

Predicting the critical depth using equation (4.5) requires knowledge of the 

total rate of phytoplankton loss, m (d-1). If m is a linear term, as in the previous 
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section, then this is simple, however, calculating m in simulations with non-

linear mortality and grazing is more complicated. The total phytoplankton loss 

rate then becomes a function of both the phytoplankton and zooplankton 

concentration, because increases in phytoplankton concentration will increase 

the specific rate of loss, and decreases in phytoplankton concentration will 

decrease the specific phytoplankton loss rate. 

I used the model to estimate the values for m in simulations with a mixed layer 

depth close to the critical depth. I started with the same scenario as above, θchl 
= 0.02 mg chl (mg C)-1, kpar = 0.04 m-1, no nutrient limitation, and I0 = 10 W 
m-2, but this time, I used the phytoplankton mortality rates, as for OWS India, 
and also reintroduced the zooplankton (the full equations can be found in 
Chapter 2). I started by using equation (4.5) to calculate the predicted critical 
depth based on the respiration alone (linear loss, p1 = 0.02 d-1), and then took 
this depth as a starting point. I then ran simulations at decreasing mixed layer 
depths, until I found the depth at which the phytoplankton reached a steady 
state, and did not die out. In order to achieve this with a model with a deep 
mixed layer, I had to run the model for a very long time (65,000 days, or 178 
years). This is because changes in the depth of the mixed layer makes very 
small changes to the average irradiance level. This can be demonstrated by 
calculating the difference in average irradiance between a mixed layer of 100m 
and 101m, and between a mixed layer depth of 700m and 701m, by 
integrating the irradiance function in equation (4.3). Increasing the mixed layer 

depth from 100 to 101m decreases the average irradiance from 2.454 W m-2 to 

2.432 W m-2, a decrease of 0.024 W m-2, whereas increasing the mixed layer 

depth from 700 to 701 m decreases the average irradiance from 0.3571 W m-2 

to 0.3566 W m-2, a decrease of 0.0005 W m-2. This demonstrates that as the 

depth of the mixed layer becomes deeper, the proportional difference in an 

increase or decrease by 1 metre becomes smaller (i.e. 1 metre becomes a 

smaller fraction of the mixed layer depth). Therefore, the resulting increase or 

decrease in the average irradiance also becomes smaller, and it becomes more 

difficult to observe changes in the phytoplankton at a population level.  
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Figure 82: The predicted a) phytoplankton biomass and b) phytoplankton non-linear 

mortality for a fixed slab model with a constant irradiance (10 Wm-2), a fixed chl-to-carbon 

ratio (0.02), and the full loss rates used in the OWSI model 

Figure 82 shows how both the phytoplankton concentration and the daily non-

linear mortality rate respond to different mixed layer depths. It suggests that 

the critical depth, as predicted by the model, lies between 706 and 707 m. It 

also shows how the non-linear mortality rate increases along with the increase 

in phytoplankton biomass. Unlike the scenario with the linear mortality (Figure 

81), decreasing the mixed layer depth does not result in a continual increase in 

phytoplankton biomass, as the increase in the non-linear mortality rate 

prevents this from happening. Instead, the concentration of phytoplankton 

biomass reaches a new, higher, steady-state value. The steady-state values for 

the non-linear mortality are very low – less than 0.0002 d-1, compared to 0.02 

d-1 for the respiration, which supports findings by Platt et al. (1991), who found 

that when they calculated a generalised loss term to determine critical depth, it 

was dominated by the respiratory costs of phytoplankton growth and 

metabolism.  

Figure 82 only shows the model predicted critical depth; it gives no 
information about the behaviour of the model around that depth. The time 
scales are extremely long, due to the size of the changes when the mixed layer 
is at the critical depth, and are therefore not biologically relevant, where 
changes to the mixed layer depth are important on time scales of days. An 
indication of how changes around the critical depth can impact the biology can 
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be give by running the model to steady state at close to the critical depth, and 
then deepening the mixed layer depth, and observing the changes to the 
predictions of phytoplankton biomass. The biomass was normalised to the 
value predicted at steady state, in order to remove changes due to dilution by 
the deepening of the mixed layer, and Figure 83 shows how an increase of 200 
m only results in a 4% decline in phytoplankton biomass. 

 

Figure 83: The decline of the steady state phytoplankton population, when the mixed layer 

depth is deepened, using the same conditions as in Figure 75. 

However, steady-state simulations such as these may not be representative of 
conditions in the open ocean. The ocean is a highly dynamic environment, and 
marine systems are in a state of continuous flux. Changes in the 
concentrations of phytoplankton and zooplankton, resulting from changes to 
the depth of the mixed layer, can have a sudden impact on the specific grazing 
rates, and therefore the predicted critical depth. This is explained in more 
detail in the next section. 



Chapter 4: Using a Lagrangian phytoplankton model to test the controls of the 

spring bloom 

 153   

4.2.3 Calculating the compensation irradiance 

I can demonstrate how dynamic scenarios can impact upon the predicted 
critical depth by using the model to predict the compensation irradiance, Ic. 
The compensation irradiance is the irradiance at which phytoplankton 
photosynthesis exactly balances phytoplankton loss. It is an important 
parameter in the definition of the critical depth, because the critical depth is 
the mixed layer depth at which the average irradiance from the surface to the 
base of the mixed layer is equal to the compensation irradiance. It is generally 
believed to be a constant, based on phytoplankton physiology, and is 
estimated either from laboratory experiments, or estimated from satellite 
pictures of chlorophyll (e.g. Siegel et al. (2002)). However, in dynamic 

scenarios, the rates of grazing and non-linear phytoplankton mortality change 

according to the concentrations of phytoplankton and zooplankton, which 

would change the value of the compensation irradiance. 

4.2.3.1 Calculating I
C
 analytically 

Sverdrup’s original model was based on the assumption that the 

phytoplankton growth is linearly dependent, with slope α, on the irradiance. As 
mentioned earlier, the relationship between the compensation irradiance, the 
constant mortality rate, and αP is: 

 IC = m
αP

  (4.6) 

However, my model uses a non-linear P-I curve, so the equation to determine 

the compensation irradiance is derived through rearranging equation (4.4) 

(solution kindly provided by Prof. Tom Anderson and Dr. Adrian Martin): 

 IC = VPT
αP

θChl
2 ⋅VPT

2

m2 −1⎡

⎣
⎢

⎤

⎦
⎥

1
2
  (4.7) 

I calculated the analytical solution for a simulation with a constant chl-to-

carbon ratio, θchl = 0.02 (mg Chl (mg C−1)) , a constant loss rate, m = 8.3 e-4 h-1 

(0.02 d-1) , and the model value for αP  = 0.12 (gC (gChl)−1  h−1  (W m−2 )−1 , using 

both equations (4.6) and (4.7). (Note that, because production is a function of 
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θChl  in my model, the actual form of the equation (4.6) used is IC = m
αP ⋅θChl

). 

Both equations (4.6) and (4.7) predict a compensation irradiance of 0.3472 for 

the scenario outlined above. 

The reason that both equations predict the same solution is that 

phytoplankton experiencing very low irradiance will only experience the very 

beginning of the P-I  curve, which is linear. More precisely, when  αP ⋅ I ≪VPT , 

so when 
 
I ≪ VPT

αP

. Therefore, for a model run at a low irradiance i.e. without 

saturated growth, the initial slope of the P-I curve, αP , can be used in 

Sverdrup’s original formulation. 

4.2.3.2 Calculating I
C
 numerically 

There are three possible ways that I can predict the compensation irradiance 

from the model:  

1. Replicating a laboratory experiment, by running a single, stationary 

phytoplankton super-individual at decreasing levels of irradiance, until I 

find the lowest level of irradiance at which it can survive 

2. The critical depth can also be described as the point above which the 

average irradiance (i.e. calculated from the surface down to the critical 

depth) is equal to the compensation irradiance. Therefore, if I use the 

model to calculate the critical depth for a particular scenario, as 

described in section 4.2.1, I can then determine the compensation 

irradiance by calculating the average irradiance over the entire mixed 

layer. 

3. Running a fixed slab model, and calculating the net growth 

(photosynthesis – total loss) at each depth in the water column. The 

compensation irradiance is the irradiance at the depth where net growth 

is zero. 

If I
c
 is a constant determined only by phytoplankton physiology, then all three 

of these methods should, theoretically, produce the same result.  

Determining the compensation irradiance in a laboratory involves growing 

phytoplankton cells under low irradiances, in order to find the lowest 
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irradiance at which they can survive. In order to simulate this with the model 

(Method 1), I used a fixed slab model with a single, stationary phytoplankton 

cell. As I was only interested in the effects of a single irradiance level (i.e. the 

surface irradiance, no attenuation) I used a very shallow mixed layer (1 metre) 

to represent the phytoplankton remaining at the surface. I also assumed no 

nitrogen limitation, as this does not feature in eq. (4.4). I ran each simulation 

until the phytoplankton either declined to (or very close to) 0, or reached a 

steady, positive, state. If the phytoplankton did not die out, I repeated the 

simulation, with a slightly lower irradiance.  

 

Figure 84: Predicted steady-state chlorophyll under a range of different irradiances for 

phytoplankton in a 1 metre mixed layer (no nutrient dependence, no mixing) 

Figure 84 shows that the first irradiance level that allows the phytoplankton to 

reach a steady state (i.e. photosynthesis at a rate high enough to balance their 

loss rate) is 0.347 W m-2. This is the same value as predicted by both forms of 

the analytical equation (linear and non-linear) in the previous section. 

The next method of calculating the compensation irradiance is to calculate the 

integrated irradiance between the surface and the mixed layer depth, if the 

mixed layer depth is equal to the critical depth (Method 2). In section 4.2.1, I 
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calculated the critical depth for a particular scenario (θChl = 0.02 mg chl (mg 
C)-1, kpar = 0.04 m-1, and I0= 10 W m-2) using a fixed-slab model, and the 
random position movement algorithm. The model predicted a critical depth of 
706 m (the deepest depth at which the phytoplankton reached a steady-state). 
The average irradiance over this depth, calculated by finding the average of the 
function describing the attenuation of irradiance with depth (described in 
section 4.2.2) is 0.354 W m-2.   

The final way to measure the compensation irradiance is by finding the 
irradiance at the depth in the water column where phytoplankton growth and 
loss is in exact balance (Method 3). To do this, I ran a simulation with a fixed 

mixed layer depth and irradiance, and then calculated the net phytoplankton 

growth rate at each 1 metre interval, finding the point at which this became 

negative, and then taking the compensation irradiance to be the irradiance 1 

metre above this point. This provides a slight underestimation of the true 

compensation irradiance, which would be somewhere in between these two 

depths. Doing this shows that I
C
 is not a constant value. For example, a 

simulation with a mixed layer depth of 100m and a surface irradiance of 10 W 

m-2 will predict a compensation irradiance of 2.1 W m-2, whereas a simulation 

with a mixed layer depth of 500m and a surface irradiance of 10 W m-2 will 

predict a compensation irradiance of 0.52 W m-2. This is because deeper mixed 

layers, with the same surface irradiance, have lower average irradiances over 

the entire depth. This reduces the average rate of photosynthesis, which 

results in lower concentrations of phytoplankton. As the phytoplankton 

concentration decreases, the specific rate of non-linear mortality and grazing 

will also decrease, meaning that the phytoplankton require a lower rate of 

photosynthesis in order to balance out the rate of loss. The irradiance at which 

the rates of growth and loss are in balance (i.e. the compensation irradiance) is 

therefore also reduced. This demonstrates that the compensation irradiance, 

and therefore the critical depth, is not a constant, because it is a function of 

the phytoplankton (and zooplankton) concentration, which changes over time. 

4.2.3.3 Comparing the Lagrangian results with Eulerian results 

I ran the simulations for sections 4.2.2 and 4.2.3.2 with the Eulerian model, in 

order to compare and understand any differences. 
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Figure 85: Predicted chl biomass for the completely Eulerian version of the model, for a 

constant irradiance (10 W m-2), a fixed mixed layer depth, constant θ
Chl

 (0.02 mg mg-2), and a 

linear loss rate (0.1 d-1) 

Figure 85 shows the results predicted by the Eulerian model for the scenario 

described in section 4.2.1 (I
0
 = 10 W m-2, θ

Chl
 = 0.02 mg Chl (mg C)-1, m = 0.1 d-1 

and k
par

 = 0.04 m-1). The analytical equation predicted a critical depth of 

141.67m, and this was demonstrated numerically with the Lagrangian model. 

However, the Eulerian model predicts a deeper critical depth (~144 m). This 

results from the way that the Eulerian model is implemented, as it integrates 

from the surface to the base of the mixed layer depth in 1-metre steps; there is 

no attenuation in the first metre. The Lagrangian model, on the other hand, 

calculates the exact attenuation at any point in the water column, leading to a 

greater precision in the predictions. Rounding the depth of each super-

individual up to the nearest metre in order to calculate its ambient irradiance 

causes the model predictions to converge (i.e. increases the critical depth 

predicted by the Lagrangian model). In the same way, increasing the precision 

of the Eulerian model, by integrating over steps of 0.1 m decreases the critical 

depth predicted by the Eulerian model to ~141 m. 
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Figure 86: Compensation irradiance, as predicted by the Eulerian model 

Using the Eulerian model to predict the compensation irradiance based on 

method 1 (section 4.2.3.2) produces an identical result to the Lagrangian 

model. This is because both models assume that the phytoplankton super-

individual is at the surface, and so there is no light attenuation. 

4.2.4 Calculating the critical depth over the build up to the spring 

bloom for Station India 

In the section 4.2.1, I introduced the analytical equation to calculate critical 

depth, and in section 4.2.2, I showed that, for a fixed-slab, steady state model, 

the only phytoplankton loss term that affects the critical depth significantly is 

the linear respiration rate. In this section, I show the controls on critical depth 

in a dynamic model, and demonstrate the relationship between the mixed layer 

depth, the critical depth, and the net phytoplankton growth rate. 

Calculating the critical depth requires knowledge of the attenuation coefficient, 

k
par

. In order for this to be a constant value throughout the water column, I 

calculated attenuation as in Evans and Parsons (1985), who used a single value 

for k
par

, based on the average phytoplankton biomass (nitrogen) in the water 

column: 
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 kpar = kw + kc ⋅Pconc   (4.8) 

where k
w
 represents the light attenuation coefficient for water, k

c
 represents 

the light attenuation due to chlorophyll, and P
conc

 is the phytoplankton nitrogen 

biomass (mmol N m-3). 

This gave a slightly different annual cycle of phytoplankton and dissolved 

inorganic nutrients than using the Anderson (1993) model: 

 

Figure 87: The seasonal cycle of a) chlorophyll and b) dissolved inorganic nitrate for the 

full Station India Model, using the Anderson 1993 model compared to the model using the 

Evans and Parslow 1985 model. Both simulations use the randomisation movement 

method. 

The predicted seasonal cycle of phytoplankton using the Evans & Parslow 

(1985) model of attenuation shows increased production compared to the 

model that uses the model of attenuation from Anderson (1993). These results 

are very similar to plots produced by the EMPOWER model, ((Anderson et al., 

2015), which includes settings for both the Evans and Parslow (1985), and 

Anderson (1993) methods of light attenuation. The Anderson (1993) model 

shows a decrease in predicted production, due to the increase in attenuation in 

the surface layers. The increase in production in the spring, shown by the 

increased magnitude of the spring bloom, in the Evans and Parslow model, 

results in a lower concentration of DIN over the summers, leading to the 
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reduced chlorophyll concentration shown here, compared to the Anderson 

model.  

As shown in section 4.2.1, there are four variables that effect the value of the 

critical depth: the light attenuation, k
par

; the chl-to-carbon ratio, θ
Chl

; the surface 

irradiance, I
0
; and the total phytoplankton mortality rate, m. For the first set of 

simulations, I investigated the relationship of each of these variables to the 

predicted critical depth, over the period of the run-up to the spring bloom (i.e. 

the first 100 days of the year). I used equation (4.5) to calculate the predicted 

critical depth for each day, using updated values for each of the four variables, 

taken from the model at run-time. I used the annual cycle of irradiance, 

however, in order to simplify the analysis, I removed the diel cycle of 

irradiance, setting the daily irradiance to the average over the 24 hours.  

 

Figure 88: Relationship between the variables that influence the critical depth (I, chl:carbon, 

k, m) over the first 100 days of the Station India model, with no diel cycle of irradiance 

Figure 88 suggests a correlation between the critical depth and each of the 

four variables investigated. In order to further test how each variable affected 

the predicted critical depth, I ran the model three more times, each time 

setting a different variable to a constant value. The light attenuation I set to 

0.04 d-1 (attenuation due to water only), in order to see how removing self-

shading affected the predicted critical depth. The chl-to-carbon ratio I set to 

the average value over the 100 days in the full model (0.018 mg mg-1). In order 

to use a constant for mortality, I applied a linear term for mortality, which I 

parameterised to the average rate of phytoplankton loss over the first 100 
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days of the year in the full model (0.024 d-1). However, applying this rate of 

loss over the full annual cycle resulted in levels of chlorophyll over the summer 

that were outside the workable boundaries of the model (i.e. too high), so I 

only applied this linear mortality rate over the first 100 days of year 3 (the 

section of data being analysed). I wanted to see if setting any of these 

variables to a constant value affected the way that the predicted critical depth 

changed over the first 100 days. If the increase in critical depth shown in 

Figure 88 resulted from a change in one of these variables, then setting it to a 

constant value would change the slope of the plot of critical depth against 

time. 

 

Figure 89: Predicted critical depth for a simulation with a) all variables using dynamic 

variables, b) fixed k, c) fixed Chl:C, and d) linear mortality 

The results in Figure 89 are somewhat unexpected. The predicted critical 

depth does not appear to be significantly affected by setting any of the 

variables to a constant value. There is also little difference in the first day 

where the mixed layer depth is shallower than the critical depth – day 36, day 

35, day 37, and day 37 for the simulations with all dynamic variables, constant 

k
par

, constant chl-to-carbon and linear mortality, respectively. There are, 

however, some small variations:  
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1. Using a fixed value for chl-to-carbon results in a deeper predicted 

critical depth after day 80. This is because, as the irradiance increases, 

the chl-to-carbon ratio decreases in the dynamic model, which reduces 

the rate of photosynthesis. A reduced rate of production results in a 

shallower critical depth.  

2. Removing the non-linear mortality (i.e. setting the mortality to a 

constant, linear rate, shown by the purple line), prevents the predicted 

critical depth from becoming shallower around day 90, as it does in the 

model that includes non-linear mortality. This is because, as the 

phytoplankton concentration increases, a non-linear rate of mortality 

results in a higher specific rate of loss, and therefore a shallower 

predicted critical depth.  

Figure 89 suggests that the main control on the predicted critical depth in the 

model is the surface irradiance. I tested this by running the simulation again, 

but this time with constant values for θ
Chl

, k
par

, and with a constant, linear 

mortality rate. 

 

Figure 90: The relationship between critical depth and irradiance for a model with fixed θ
Chl

, 

k
par

, linear mortality 
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Figure 89 and Figure 90 show that the increase in predicted critical depth over 

the first 80 days of the year is almost entirely due to the increase in irradiance. 

After this, the predicted critical depth starts to decrease, due to the increase in 

phytoplankton concentration resulting in a higher specific phytoplankton loss 

rate, although this is tempered by the reduction in the rate of photosynthesis 

that results from the lower ratio of chlorophyll to carbon due to the seasonal 

increase in surface irradiance. The critical depth deepens beyond the mixed 

layer depth on day 37. 

4.2.5 Determining whether the spring bloom is triggered by the mixed 

layer depth shoaling above the critical depth 

In order for the spring bloom to take place, the rate of production in the mixed 

layer needs to exceed the rate of loss (Siegel et al., 2002; Sverdrup, 1953). 

Therefore, as defined by Llort et al. (2015), the initiation of the spring bloom is 

the point where the net phytoplankton production first becomes positive. The 

critical depth hypothesis proposes that this occurs when the mixed layer depth 

shoals above the critical depth, and in this section, I test this hypothesis by 

using the analytical model to calculate the daily predicted critical depth for the 

OWS India model, and comparing this to the model predictions of net specific 

phytoplankton growth rates. 
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Figure 91: The predicted critical depth (calculated through the use of the analytical 

equation described in (4.5)) for the OWS India model. 

Figure 91 shows the predicted annual cycle of critical depth for OWS India, 

based on the phytoplankton loss rates predicted by the model. The critical 

depth is calculated for each time step, and then averaged over 24 hours, in 

order to find the daily average critical depth. This is a more accurate method 

than using the daily averaged irradiance in order to calculate the critical depth, 

the reasoning for which is explained in section 4.2.5.1. At the beginning of the 

year, the critical depth is less than 200 m, which is shallow compared to the 

mixed layer depth, which is deeper than 600 m. At this point, the critical depth 

is controlled by the irradiance, because both phytoplankton and zooplankton 

production are very low. As the year progresses, increases in irradiance start to 

increase the critical depth, until it deepens past the mixed layer depth. Around 

day 100, it then starts to shallow once more, due to a combination of the 

decreases in mixed layer depth resulting in an increase of averaged irradiance 

across the water column, and an increase in phytoplankton production 

resulting in an increase in the turbidity of the water column, plus an increase 

in the mortality rate both from natural mortality and grazing. The peak of the 

phytoplankton spring bloom, around day 140, results in the critical depth 

shallowing above the mixed layer depth once more, suggesting that light 
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limitation could play a part in controlling the magnitude of the peak of the 

spring bloom. Over the summer, the critical depth is very shallow, due to the 

shallow mixed layer depth and the high concentration of phytoplankton both 

reducing the available light, and increasing the total phytoplankton loss rate. 

The critical depth then remains relatively shallow as the mixed layer depth 

deepens, until the increase in seasonal irradiance, the following year.   

4.2.5.1 Calculating critical depth based on daily averaged irradiance 

versus daily averaged critical depth 

I ran the full OWS India model, using the random position movement 

algorithm, without the diel cycle of irradiance, for 3 years, and took the data 

from the first 100 days of the last year. I calculate the predicted critical depth, 

using the full model, and plotted this against the mixed layer depth, to find 

the point where the mixed layer depth shoaled above the critical depth. I also 

plotted the net nitrogen-specific grown rate (growth – loss), noting in particular 

where this became positive. If the critical depth hypothesis is correct, then the 

net growth rate should become positive at the point where the mixed layer 

depth and critical depth cross. 
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Figure 92: The predicted critical depth (analytical equation) and the net specific growth rate 

for the first 100 days of a simulation parameterised for OWS India, but with no diel cycle 

and the irradiance set to the daily averages for OWS India 

Figure 92 shows that the net specific growth rate becomes positive (green line 

crosses dashed line) at the same time that the critical depth becomes deeper 

than the mixed layer depth (red line crosses blue line). It is interesting to note 

that it is the critical depth deepening below the mixed layer depth due to the 

increase in irradiance that results in the net phytoplankton growth rate 

becoming positive, rather than the mixed layer depth physically shoaling above 

the critical depth. At the point where the net growth becomes positive, the 

mixed layer depth is still deep (> 500m). This suggests that the spring bloom 

is driven by the seasonal increase in irradiance rather than by the shoaling of 

the mixed layer.  

For the next simulation, I reintroduced the diel cycle of irradiance. Since I 

wanted to calculate a daily value for the critical depth, I could either calculate it 

based on the daily averaged irradiance, or I could calculate the critical depth 

based on the model output for each time step, and then calculate the average 

critical depth over each day.  
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Figure 93: The model predicted critical depth and net daily n-specific growth rates for the 

first 100 days of the simulation with a diel cycle 

Figure 93 shows the predicted critical depth for the same simulation, 

calculated in two different ways. The red line shows the daily critical depth 

calculated using the daily averaged irradiance for a simulation with a full diel 

cycle of irradiance, and the purple line shows the daily averaged critical depth, 

calculated from the critical depth predicted for each time step, from a model 

with a full diel cycle of irradiance. The predictions of daily critical depth using 

the daily averaged irradiance are deeper than those that are predicted using 

the average of the critical depths calculated each time step, because of the 

non-linear relationship between the rate of photosynthesis and the irradiance. 

Sverdrup proposed the use of the daily averaged irradiance to calculate critical 

depth, as he was using a model with a linear dependence of photosynthesis on 

irradiance. 

4.2.6 The sensitivity of the critical depth  

The critical depth is dependent on parameters that are notoriously difficult to 

measure, such as the rate of respiration. Here, I investigate how sensitive the 

critical depth, and therefore the point at which net production becomes 
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positive, is to changes in the rates of respiration and mortality. Firstly, I 

determine the important loss terms over the period of interest (i.e. the first 

100 days of the year) by plotting the specific rates of respiration, non-linear 

mortality, mixing, and grazing. 

 

Figure 94: The nitrogen specific phytoplankton loss rate of the first 100 days of the year in 

the Station India model, separated into losses from grazing, respiration, mortality and 

mixing 

Figure 94 shows that the main source of phytoplankton loss over the first 100 

days of the year for the Station India model comes from the linear respiration. 

Due to the low concentrations of phytoplankton resulting from the deep mixed 

layer, and lower irradiance, the non-linear mortality rate is very low, and the 

grazing rates are negligible. Therefore, I focussed on the phytoplankton loss 

parameters p
1
 (respiration) and p

2
 (non linear mortality).  

For the first set of simulations, I ran the model, with the full ecosystem and 

seasonal cycle, but using values for p
1
 ranging from 0.0025 to 0.04 d-1 

(standard value = 0.02 d-1) . Figure 95 shows the predicted critical depth 

compared to the phytoplankton net growth rate when the respiration is halved 

and doubled (i.e. p
1
 = 0.01, 0.02 and 0.04 d-1). The simulation was run for 

three years, and the data in Figure 95 are taken from the final year. 
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Figure 95: The predicted critical depth and daily specific growth rates for simulations with 

respiration rates of p
1
 = 0.01, 0.02 and 0.04 d-1 

Figure 95 shows the daily-predicted critical depth for each simulation, over the 

first 100 days (solid red, orange and green lines), along with the daily net 

specific growth rates (dashed red, orange and green lines). This demonstrates 

the sensitivity of the predicted critical depth to the linear rate of respiration 

(p
1
). An increased rate of respiration leads to a shallower critical depth, 

because a higher rate of phytoplankton loss requires a higher rate of 

phytoplankton photosynthesis, in order to ensure the survival of the 

phytoplankton population. This can only be achieved with a higher rate of 

integrated irradiance, which comes from a shallower mixed layer depth. 

Doubling or halving the respiration rate impacts upon the point at which the 

mixed layer depth (solid blue line) shallows above the critical depth, and 

therefore the point at which net production becomes positive. The other 

important features of Figure 95 are the points where the mixed layer depth 

shallows above the critical depth (solid blue line crosses solid red, orange, 

green lines), and the points where the net growth rate becomes positive 

(dashed red, orange and green lines cross dashed black lines). In all cases, net 
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production does not become positive, until the mixed layer is shallower than 

the critical depth. 

 

Figure 96: Relationship between rate of respiration and the first day where the net growth 

becomes positive after the winter 

Figure 96 shows how the day on which the net phytoplankton growth rate 

becomes positive changes is proportional to the rate of respiration.  
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Figure 97: The annual cycle of predicted chlorophyll biomass for simulations with varying 

rates of respiration (p
1
 = 0.01, 0.02 and 0.04 d-1) 

Figure 97 shows how halving and doubling the rate of respiration affects the 

predicted annual cycle of integrated chlorophyll. Decreasing the rate of 

respiration results in a spring bloom peak that is both earlier, and smaller in 

magnitude. The predicted critical depth is deeper, because the daily loss rate 

is lower, and therefore a lower rate of production will balance respiration (i.e. a 

decreased compensation irradiance). This means that the mixed layer will 

shallow above the critical depth earlier in the year, resulting in an earlier 

spring bloom 

I next repeated the experiment, but this time I doubled and halved the non-

linear mortality rate (p
2
). Although the non-linear mortality does appear to be a 

significant source of phytoplankton loss in Figure 94, increases and decreases 

to the parameter value do not appear to have a significant effect on either the 

predicted critical depth, or the point at which the net production becomes 

positive (Figure 98). 
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Figure 98: The predicted critical depth and daily specific growth rates for simulations with 

non-linear mortality rates of p
2
 = 0.05, 0.1 and 0.2 d-1 

 

Figure 99: The annual cycle of predicted integrated chlorophyll biomass for simulations 

with varying rates of non-linear mortality (p
2
 = 0.05, 0.1 and 0.2 d-1) 
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Figure 99 shows the predicted annual cycle for each of the simulations with 

the different values for p
2
, and suggests that changes in non-linear mortality 

affect the magnitude of the spring bloom, but not the timing. Plotting the 

chlorophyll concentration over the first 100 days, shows this more clearly. 

 

Figure 100: The first 100 days of predicted integrated chlorophyll biomass for simulations 

with varying rates of non-linear mortality (p
2
 = 0.05, 0.1 and 0.2 d-1) 

Figure 100 clearly shows that changes to the value used for p
2
 affects the 

magnitude of the spring bloom, but not the timing.   

I repeated these simulations, although this time doubling and halving the half 

saturation constant for phytoplankton non-linear mortality, k
P
, but neither the 

timing or the magnitude of the spring bloom appeared to be sensitive to this 

parameter (Figure 101 and Figure 102). 
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Figure 101: The predicted critical depth and daily specific growth rates for simulations with 

half-saturation constants of k
p
 = 0.25, 0.5 and 1.0 d-1 

 

Figure 102: Predicted seasonal cycle of integrated chlorophyll for the simulations with k
p
 = 

0.25, 0.5 and 1.0 
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Figure 94 suggested that there were two significant sources of phytoplankton 

loss over the time leading up to the initiation of the spring bloom: respiration, 

p
1
 (linear), and non-linear mortality, p

2
. However, performing a sensitivity 

analysis on these two parameters has demonstrated that, whilst the magnitude 

of the spring bloom can be affected by p
2
, the timing of the bloom is almost 

entirely controlled by the value chosen for p
1
.  

This section has demonstrated that there is a predictable critical depth, as 

proposed by Sverdrup, for the mixed layer, above which net phytoplankton 

production can become positive, an essential condition for the start of the 

spring bloom. I have further demonstrated that the critical depth is not a 

constant value, but depends upon the phytoplankton and zooplankton 

concentrations.  

4.3 The disturbance-recovery hypothesis 

In this section, I use the model to investigate the disturbance-recovery 

hypothesis, as proposed by (Behrenfeld & Boss, 2014). The disturbance-

recovery hypothesis states that the spring bloom is a result of decoupling 

between phytoplankton growth and loss, during times of extremely low 

phytoplankton concentrations, due to deep mixed layers, polar nights, eddies, 

or other physical processes. I investigated this hypothesis by running two 

versions of the OWS India model: the first with a constant mixed layer depth of 

200m, and the second with a constant mixed layer depth of 200m, but that 

deepened to 500m for the last day of the year. This should have the effect of 

reducing the concentration of phytoplankton, and, in theory, decoupling the 

phytoplankton growth and loss. If, as according to the critical depth 

hypothesis, the spring bloom is purely a product of mechanical factors, i.e. the 

shoaling of the mixed layer above the critical depth, then these two 

simulations should produce similar predictions of the timing of the spring 

bloom. 

Both simulations included the seasonal cycle of forcing (e.g. temperature and 

wind speed) and full ecosystem parameterised for OWS India. The simulations 

were run for three years, and the data in Figure 103 were taken from year 3. 
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Figure 103: Predicted seasonal cycle of integrated phytoplankton chlorophyll for a 

simulation with a fixed mixed layer depth of 200m for two scenarios: the first with a 

constant mld for the entire simulation, and the second with the mld deepening to 500m for 

the final day of the year. 

In Figure 103, the model with the single day of deep mixing shows a delay in 

the peak of the spring bloom. The phytoplankton and zooplankton 

concentrations are diluted by the mixed layer deepening, and then a large 

amount of biomass is detrained and lost from the simulation when the mixed 

layer depth shallows back to 200 m. This dilution means that the specific non-

linear loss rate on the phytoplankton is reduced, and the decreases in the 

zooplankton population mean that it takes longer for grazing to catch up with 

phytoplankton growth.  
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Figure 104: Specific rates of grazing and non-linear mortality for the OWS India model, set 

with a fixed mixed layer depth (200 m), and the simulation with the mixed layer depth set 

to 200m, but deepening to 500 m for the last day of the year. 

Figure 104 shows how the specific rates of grazing and non-linear mortality 

change over the course of the year. The dilution of the phytoplankton and 

zooplankton on the last day of the previous year has reduced the specific 

grazing rates and non-linear mortality of the phytoplankton in the simulation 

with the deep mixing (red lines). After the peak of the spring bloom, the 

grazing and non-linear mortality have caught up with the phytoplankton, and 

the two model predictions converge. 

This dependence on the non-linear loss rates appears to be contrary to the 

findings in section 4.2, where I demonstrated that the linear loss rate has the 

greatest impact on the critical depth and therefore the timing of the initiation 

of the spring bloom. However, I also demonstrated that there is a difference 

between predicted critical depths from steady-state simulations i.e. the 

deepest mixed layer depth to which the model predicts a positive steady-state 

value for the phytoplankton concentration (where concentrations decrease to 

such a level that non-linear loss rates fall close to zero), and the predicted 

critical depth for a particular moment during a simulation, where the 
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phytoplankton may not be in steady-state. Non-linear mortality and grazing 

losses have a far greater importance in dynamic scenarios.  

As in the previous section, I can calculate and plot the predicted critical depth 

against the mixed layer depth, and compare this to the point when the net 

specific phytoplankton growth becomes positive. This reveals that although 

the peak of the spring bloom is delayed by the deep mixing, the spring bloom 

is initiated (point where net growth becomes positive) earlier (Figure 105). This 

demonstrates the difference between basing the timing of the bloom on 

specific growth rate or on biomass accumulation. For the simulation with the 

day of deep mixing, the bloom is initiated earlier, but allowed to proceed for 

longer, so that the peak appears after the peak of the bloom for the simulation 

with no deep mixing. 

 

Figure 105: The predicted critical depth and net growth rate for the first 100 days of a fixed 

slab model, with a constant mld (200m), and a full seasonal cycle of forcing, for two 

scenarios: the first with a constant mld for the entire simulation, and the second with the 

mld deepening to 500m for the final day of the year. 

This has demonstrated some important points. Firstly, as suggested by 

Behrenfeld (2010) and Behrenfeld & Boss (2014), measurements of the 
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maximum chlorophyll concentrations may not give a good indication as to the 

timing of the initiation of the spring bloom i.e. the model with the single day 

of deep mixing shows an earlier positive net growth rate of phytoplankton, but 

a later peak in chlorophyll concentration. Secondly, the critical depth and 

disturbance-recovery hypotheses are not mutually exclusive. Instead, the 

disturbance-recovery hypothesis describes a mechanism that can affect the 

predicted critical depth: reductions in phytoplankton and zooplankton 

concentrations lead to reductions in the non-linear loss rates, which change 

the critical depth. For both scenarios in Figure 105, the net production does 

not become positive until after the mixed layer depth has shoaled above the 

predicted critical depth. 

4.4 Critical turbulence 

Huisman et al. (1999) proposed that there are two independent mechanisms 

that drive the development of phytoplankton blooms: the classical critical 

depth theory, which is relevant for well-mixed environments, and the critical 

turbulence theory, which applies in cases with low to moderate mixing, and 

low turbidity. The critical turbulence hypothesis states that if the mixing rate 

falls below some critical value, then the resulting vertical profile of 

phytoplankton will allow sufficient phytoplankton growth near the surface to 

ensure that a bloom can develop, regardless of the depth of the mixed layer. 

Therefore if the mixing rate is below the critical value, the growth dynamics 

are independent of processes further down in the water column and the 

production by the phytoplankton should not be affected by changes to the 

mixed layer depth. 

Up until now, I have been using the random position movement algorithm, in 

order to ensure that the phytoplankton super-individuals are fully mixed 

through the water column. However, in order to investigate the critical 

turbulence hypothesis, the mixing rate needed to be changed in some 

quantifiable and meaningful manner, so the simulations in this section use the 

random walk movement algorithm (described in Chapter 2). Figure 106 shows 

the predicted cycle of chlorophyll for the random walk model, compared to the 

model using the random position movement algorithm. 
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Figure 106: The annual cycle of chlorophyll predicted by the model using the random 

position movement algorithm (30 minute time step) and the random walk algorithm 

The random walk model predicts a spring bloom peak that occurs earlier and 

is of a higher magnitude than the random position model. The differences 

between the predictions from the random walk and random position 

movement algorithms result from the non-homogeneous vertical profile of 

phytoplankton in the random walk model. This occurs because the mixing rate 

is not high enough to overcome the phytoplankton growth rates, and the 

phytoplankton near the surface have more time to grow. Figure 107 shows the 

average vertical chlorophyll profile from the surface to 500m for both 

movement algorithms, over the first 100 days of the year (data taken from year 

3 of a 3 year simulation). 
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Figure 107: Comparison of the average vertical profile of chlorophyll over the first 100 

days of the year of the OWS I model, using the random position and random walk 

movement algorithms 

The differences in the vertical profiles of chlorophyll in Figure 109 are not a 

result of differences in the mixing rates. Plotting the diffusivity coefficient for 

the random walk model, and the assumed diffusivity for the random position 

model (how this is obtained is described in Chapter 2), shows that the random 

walk model has a higher rate of mixing over the first 100 days of the year 

(Figure 110). However, as explained in Chapter 2, even when the random 

position and random walk movement algorithms use the same diffusivity, they 

are not directly comparable, because there is a degree of relatedness between 

each step in the random walk model. Reducing the mixing rate in the random 

walk model increases the proximity of one step to the last, whereas reducing 

the mixing rate in the random position model (by increasing the time step) 

increases the length of time spent at each depth, but has no effect on the 

relationship between one step and the next. 
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Figure 108: Seasonal cycle of diffusivity coefficients for the random walk model and the 

random position model with a time step of 30 mins 

The change in the timing of the peak of the spring bloom in the random walk 

model shown in Figure 107 suggests that there could have been a change to 

the timing of the initiation of the bloom. I therefore examined the net growth 

rate and predicted critical depth over the first 100 days of the year, in order to 

deduce whether the point where the net phytoplankton growth first becomes 

positive happens when the mixed layer depth is equal to the critical depth. 
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Figure 109: The predicted critical depth and net growth rate for the first 100 days of the 

year for the OWS I simulation, using the random walk model 

Figure 109 shows that there is a lag between the net growth becoming positive 

(i.e. green line crosses the dashed line, day 47) and the critical depth 

deepening below the mixed layer depth (blue line crosses the red line, day 53). 

This would suggest that there is positive net phytoplankton growth, even 

though the mixed layer depth is deeper than the critical depth. This is 

happening because, as shown in Figure 107, the phytoplankton are not evenly 

distributed throughout the mixed layer, thus violating one of the assumptions 

of the critical depth hypothesis i.e. that mixing is high enough to result in an 

even distribution of phytoplankton. According to the critical turbulence 

hypothesis, this means that the mixing rate on day 47 is below the critical 

value, allowing a bloom to occur. 

4.4.1 Calculating the critical turbulence for a fixed slab model 

In order to investigate the critical turbulence, I set up a fixed slab model with a 

mixed layer depth deeper than the critical depth, and reduced the mixing rate 
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until the phytoplankton were able to reach a positive steady-state (i.e. not die 

out). In section 4.2.2, I demonstrated that the critical depth for a model using 

the random position movement algorithm (time step of 30 minutes) with a 

surface irradiance of 10 W m-2, an attenuation coefficient, k
par

, of 0.04 m-1, no 

nutrient dependence, and with a constant ratio of phytoplankton chl-to-carbon 

(0.02 mg mg-1) is 706 m. I ran the above scenario with the random walk model, 

but increased the mixed layer depth to 800 m, to ensure that all the 

phytoplankton died out. The turbulence diffusivity was based on a surface 

wind speed of 10 m s-1, and was equal to 0.32 m s-1. I then imposed decreasing 

values for K
turb

 on the model – usually K
turb

 is calculated as a function of the 

mixed layer depth, but I overrode this – until I found the rate of mixing below 

which the phytoplankton could reach a positive steady state.  This was the 

critical turbulence, K
turb,cr 

and, for this model scenario, K
turb,Cr

 = 0.18 m2 s-1. This 

is a factor of ten higher than the value found by Huisman et al. in their model, 

however, they were investigating a model with a far higher level of background 

turbidity (0.2 m-1). Increasing k
par

 to 0.2 m-1 for the above scenario, decreased 

the critical turbulence to 0.003 m2 s-1.  

I could then use the model to test the assertion by Huisman et al., that once 

the mixing rate falls below the critical value, the phytoplankton production 

should be unaffected by changes to the mixed layer depth, I ran the simulation 

with increasing mixed layer depths, but with the same, imposed value for K
turb

 

(0.18m2 s-1).  
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Figure 110: Predicted chlorophyll biomass for a simulation with a fixed diffusivity (0.18 m s-

2), fixed irradiance (10 W m-2), fixed chl-to-carbon (0.02 mg Chl (mg C)-1), and a fixed 

attenuation coefficient (0.04) 

Figure 110 shows that even though the rate of turbulence is below the critical 

value necessary to allow a bloom when the mixed layer depth is at 800 m, 

deepening the mixed layer depth below 1000 m results in all of the 

phytoplankton dying out. There is still, it seems, a critical depth below which 

phytoplankton cannot survive, reducing the mixing rate has just deepened it. 

Instead of the critical depth and the critical turbulence being two independent 

mechanisms, the value of the critical depth is a function of the mixing rate (or 

rather, of the vertical profile of phytoplankton, which is a function of the 

mixing rate).  

I investigated the relationship between the mixing rate and the critical depth 

by running a series of simulations for different mixing rates, under two 

different surface irradiances: 5 W m-2 and 10 W m-2. The critical time in the OWS 

India model that determines the timing of the spring bloom and the magnitude 

of its peak is over the first 100 days. During this time, the daily average 

surface irradiance varies from ~5 W m-2 to ~12 W m-2, and the mixing rate 

(diffusivity coefficient) is shown in Figure 108. In order to further relate these 
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results back to the full OWS India model, I reintroduced the variable chl-to-

carbon ratio, and the nutrient limitation term in the photosynthesis equation. 

For each simulation, I used the model to predict the critical depth, by finding 

the deepest mixed layer depth at which the phytoplankton could still reach a 

positive steady-state.  

 

Figure 111: Critical depth predicted by a fixed slab model by finding the depth at which the 

phytoplankton could just survive (i.e. reach a positive steady) for a range of mixing rates, 

under constant surface PARs of 5 and 10 W m-2 
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Figure 112: The critical depths predicted in Figure 111 normalised to the critical depth 

predicted by a model using the randomisation movement 

Figure 111 shows the critical depths predicted by the fixed slab model, for a 

range of different mixing rates, under the two different surface PARs. It shows 

two important features: firstly, the relationship between the predicted critical 

depth and the mixing rate is hyperbolic, as the mixing moves towards 0, the 

critical depth will move towards infinity. At 0 mixing, the phytoplankton 

maintain their position in the water column, so the depth of the mixed layer 

will have no effect on the growth rate. Therefore, there will be no depth at 

which net production will become negative. Conversely, as the mixing moves 

towards infinity, the critical depth will reach a minimum, which equates to the 

value calculated using Sverdrup’s original assumptions. Secondly, increases in 

the surface irradiance have a large effect on the shape of the curve describing 

the relationship between mixing and critical depth. This can be more clearly 

seen in Figure 112, where I have plotted each predicted critical depth 

normalised to the minimum possible critical depth for that scenario (i.e. the 

critical depth for a simulation with the random position movement algorithm, 

and a time step of 30 mins). A much lower mixing rate is needed to change the 

critical depth when the surface irradiance is 5 W m-2, than when the surface 
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irradiance is 10 W m-2. This means that it is not only the extent to which the 

turbulence is decreased that is of importance, but also the time of year. Low 

mixing rates earlier in the year could have less impact on the timing of the 

bloom, because, although the critical depth could potentially be deepened, it 

could still not be by enough to provoke a bloom.  

These results vary from those predicted by Huisman et al. (1999), in that they 

show an hyperbolic relationship between the rate of turbulence and the depth 

at which no blooms are possible, whereas Huisman et al. suggested that the 

critical turbulence for a particular surface irradiance is a constant, below which 

blooms can develop, regardless of the depth of the water column and, above 

which, bloom development is dependent on the depth of the water column, as 

per Sverdrup. However, the first points plotted for both the scenarios with I
0
 = 

5 W m-2 and I
0
 10 W m-2 in Figure 111 (K

turb
 = 0.02 and 0.08 m2 s-1, respectively), 

represent the lowest diffusivities at which the model could reasonably predict a 

critical depth. Below these values, the predicted critical depth moved beyond 

15,000 metres, which is deeper than the deepest part of the ocean. This could 

explain the difference in the results obtained by Huisman et al., because they 

only investigated whether blooms were possible in mixed layer depths down to 

1000m.   

4.4.2 Calculating the critical depth for non-homogeneous 

phytoplankton profiles 

For the final part of this section, I demonstrate that it is possible to predict the 

critical depth for a scenario with a non-homogeneous distribution of 

phytoplankton, if the vertical phytoplankton profile is known. I use the random 

walk model, with the value for K
turb

 calculated from a relatively low wind speed 

of 2.5 m s-1 (25% of the average value observed at OWS India). I used a low 

wind speed because I wanted the rate of mixing to be low enough to cause 

sufficient divergence from the predictions from the random position model. 

The predicted critical depth for a scenario with a surface irradiance of 5 W m-2, 

an attenuation coefficient, k
par

, of 0.04 m-1, no nutrient dependence, and with a 

constant ratio of phytoplankton chl-to-carbon of 0.02 mg Chl mg C-1 is 358 m. 

Running the random walk model with the mixing based on a surface wind 

speed of 2.5 m s-1 (K
turb

 = 0.0358 m2 s-1) results in positive steady state 
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phytoplankton population, with an average specific rate of production (gross) 

of 0.025 d-1. This is above the linear respiration rate (0.02 d-1), so this 

population will survive. To predict the critical depth, I took the normalised 

vertical chlorophyll profile of the steady state phytoplankton (the absolute 

value at each depth divided by the mean value over the mixed layer), and then 

fit a polynomial to the resulting profile (Figure 113). 

 

Figure 113: The normalised vertical chlorophyll profile from a simulation with a mixed 

layer depth of 358 m, surface irradiance of 5 W m-2, surface wind speed 2.5 m s-1 (k
turb

 = 

0.0358 m2 s-1), chl-to-carbon ratio of 0.02 mg Chl (mg C)-1, no nutrient dependence, and k
par

 = 

0.04 m-1 

The function of the curve shown in Figure 113 can then be used as a shape 

function to modify the calculation of the new production throughout the mixed 

layer. The shape function for the curve in Figure 113 is:  

 Schl = 3.2e−6 ⋅ z2( )− 2.3e−3 ⋅ z( ) +1.3   (4.9) 

I could then estimate the average daily gross specific production in the mixed 

layer for scenarios with the same relative distribution, by numerically 

integrating equation (4.10), modifying the production at each depth by the 

shape function: 
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 Pc =∑ SChl z( ) ⋅θChl ⋅
αChl ⋅ I(z) ⋅VPT

VPT
2 +αChl

2 ⋅ I(z)2( )0.5z=mld

z=0

∫   (4.10) 

The depth for which equation (4.10) is equal to the linear rate of respiration 

(0.02 d-1) is then the predicted critical depth. For the above scenario, this was 

440 m. 

I tested this prediction by running the scenario again, but this time with a 

mixed layer depth of 440 m. As the diffusivity coefficient is a function of the 

mixed layer depth, increasing the mixed layer to 440 m increased K
turb

 to 0.044 

m2 s-1. The phytoplankton were able to maintain a steady state at a depth of 

440 m, with an average production rate of 0.020 d-1, which is equal to the 

linear respiration rate, and a good indication that the method has been 

successful in predicting the critical depth. Increasing the mixed layer depth 

beyond 440 m resulted in the phytoplankton population declining.

 

 

4.5 Conclusions 

In this chapter, I have tested three main hypotheses surrounding the controls 

of the initiation of the spring bloom, using a Lagrangian phytoplankton model 

with a full seasonal cycle. I have shown that these hypotheses can be 

reconciled if some of Sverdrup’s original assumptions are relaxed. Although 

the study has successfully achieved its aims, it has also demonstrated that an 

Eulerian model using an appropriate step for integrations (i.e. 0.1 m) and that 

captured the same vertical profile of phytoplankton would have produced the 

same result.  

The critical depth hypothesis was first formulated over 60 years ago, and has 

been hotly debated ever since. Testing the hypothesis is complicated due to 

the difficulties surrounding the necessary empirical measurements, such as the 

compensation irradiance, and the point where the net growth first becomes 

positive after winter. Siegel et al. (2002) proposed that laboratory 

measurements of compensation irradiance taken from the lowest irradiance at 

which a phytoplankton cell can survive are not necessarily applicable to 

oceanic environments, and my results have backed this up, showing how the 

compensation irradiance is not constant in dynamic scenarios, due to the 

changing rates of grazing and non-linear mortality. In addition, there has been 
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some controversy in the literature surrounding the definition of the start of the 

spring bloom. Behrenfeld (2010), Behrenfeld et al. (2013), and Behrenfeld & 

Boss (2014) suggested that peak chlorophyll concentration may not be a good 

indicator of the timing of the initiation of spring bloom, and my model has 

demonstrated this. Decreasing the concentration of phytoplankton by 

deepening the mixed layer at the start of the year will result in a delayed peak 

chlorophyll measurement, even though the net growth rate will become 

positive sooner. Finally, Sverdrup’s assumption of phytoplankton that are 

evenly distributed throughout the mixed layer does not hold true for mixed 

layers with moderate turbulence rates, so accurately predicting the critical 

depth also requires knowledge about the rates of turbulence and mixing 

(Franks, 2014). 

Traditionally, the critical depth hypothesis views the spring bloom as resulting 

from the mixed layer depth shoaling above the critical depth, but my model 

has shown that this is not necessarily the case. Increases to surface irradiance 

can increase the critical depth, so that net growth can occur even when the 

mixed layer is still deep (> 500m). This would account for studies that observe 

positive net phytoplankton growth without any mixed layer stratification, such 

as Behrenfeld (2010) who looked at a nine-year satellite record of 

phytoplankton biomass in the subarctic Atlantic, and found that in no case was 

positive net growth delayed until the mixed layer had shoaled significantly. 

Also, the model has given some indication as to how changes in external 

forcing and phytoplankton physiology can influence the critical depth. The 

critical depth is highly sensitive to the respiration rate, making this a crucial 

parameter in its definition. Also, increases in winter mixing that deepen the 

mixed layer and dilute the concentrations of both phytoplankton and 

zooplankton will reduce the specific non-linear phytoplankton loss rates, 

resulting in a decreased critical depth. Finally, if the turbulent mixing is 

reduced sufficiently to allow a nonhomogeneous vertical phytoplankton profile 

to develop, then both the timing of the initiation of the spring bloom and its 

peak will occur earlier.  

There is plenty of opportunity for further research surrounding this topic, in 

particular regarding the parameterisation of the rates of respiration. These are 

usually parameterised as a constant, linear function of the biomass, which has 
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previously been criticised in the literature. Smetacek & Passow (1990) stated 

that maintenance respiration varies with growth rate, and that studies have 

shown that some species of diatoms show very low rates of respiration when 

grown at low irradiances. Lindemann et al. (2015) used a Lagrangian 

phytoplankton model to demonstrate that including variable rates of 

respiration (and sinking) in response to changes in irradiance allowed the 

model to capture the observed phytoplankton concentrations during deep 

mixing, and the timing and onset of the spring bloom at OWS Mike, in the 

North Atlantic. Fixed rates of respiration could only achieve the same result 

when using unrealistic model parameters. Also, this chapter focussed on the 

controls of the initiation of the spring bloom only, not on the timing and 

magnitude of its peak. Although I have shown that the point at which net 

growth becomes positive is predictable, given information regarding the 

turbulence, and the balance between the rates of growth and loss, the onset of 

the spring bloom does not necessarily impact upon the magnitude of its peak. 

In fact, the significant lag between the onset and the peak of the bloom shown 

in section 4.2.4 (> 50 days), raises the question of whether the net growth 

becoming positive is the sole mechanism controlling the climax and the peak 

of the spring bloom, or whether other factors have to come into play to result 

in the rapid increase in accumulated biomass that typifies the spring bloom. 

Sverdrup’s hypothesis was a mathematical simplification of a complex ocean 

phenomenon, which stated that phytoplankton blooms cannot take place, 

unless the conditions are favourable for positive net growth. This chapter has 

demonstrated that this theory is still valid, providing that additional factors, 

such as the turbulence and the balance between growth and loss, are taken 

into account. In addition, like Chapter 3, it has shown the utility of vertical 

phytoplankton profiles for the use of accurately predicting rates of 

photosynthesis for mixed layers with moderate mixing rates, providing further 

evidence that improving the accuracy of phytoplankton models could be 

improved by an increase in empirical observations regarding the vertical 

structure of phytoplankton in the mixed layer. 



  

 

 

Chapter 5: Discussion 

Ocean primary production constitutes an important link in the cycling of 

carbon between living and organic stocks, regulating the global climate 

through the removal of carbon dioxide from the atmosphere. At the same 

time, photosynthesis by oceanic phytoplankton is controlled by the availability 

of light and nutrients, which are, in turn, regulated by physical processes such 

as ocean circulation, mixed-layer dynamics, and the solar cycle. Understanding 

the relationships between the ocean biology and the climate depends upon the 

accuracy to which changes in the ocean ecosystems can be detected 

(Behrenfeld et al., 2006). Numerical and computational models can provide 

insight into these relationships, and recent technological advances in computer 

hardware, software, and data storage have allowed researchers to greatly 

expand their range of modelling tools. However, as Einstein is believed to have 

once said, “…everything should be as simple as it can be, but not simpler” 

(Prausnitz, 2002). In other words, before embarking on the construction of a 

complicated model of a system, it is important to be satisfied that a simpler 

model would not be just as suitable for the job at hand. In addition, if a more 

complex simulation will provide differing predictions to an equivalent simpler 

formulation, it is important to understand what is driving the differences 

between the two formulations.  

The present study has focussed on gaining understanding into the potential 

differences between two marine ecosystem formulations: one that models all 

phytoplankton biomass as a homogeneous concentration (Eulerian), and the 

other which allows for the tracking of individual variability in phytoplankton 

individuals as they are mixed through the changing light field (Lagrangian). In 

addition, two ecological questions are investigated via Lagrangian modelling 

studies: whether the individual response of phytoplankton to their local 

irradiance affects the overall rates of primary production, and whether 

understanding the mechanisms that control the timing of the onset of the 

spring bloom requires knowledge about mixing rates, and individual 

phytoplankton growth rates. 
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Lagrangian models represent primary production as a number of particles, 

each of which experiences a different light history as they are vertically mixed 

through the surface layer of the ocean. It is a complex approach, requiring a 

number of decisions regarding its implementation, and a number of these 

were approached in Chapter 2. The resulting model included Lagrangian 

phytoplankton, a full ecosystem, with explicit state variables for zooplankton, 

detritus, and dissolved inorganic nitrate, with new techniques employed for 

dealing with the interactions between the Eulerian and Lagrangian components 

of the model. In order to obtain the model parameters, in particular, the 

parameters controlling photoacclimation, the model was set up for Ocean 

Weather Station in the North Atlantic. Empirical data were used to parameterise 

the turbulent mixing, and therefore also the random walk model that 

determined how the phytoplankton were redistributed each time step. In 

Chapter 3, the model was used for an intercomparison study, which was the 

first study of its kind to directly compare equivalent Eulerian and Lagrangian 

formulations of a full ecosystem model that included a seasonal, and diel, 

cycle of forcing. The results were unexpected – the two models demonstrated 

very similar predictions, and further investigation, through the use of 

controlled, fixed-slab models showed that the phytoplankton were moved 

through the mixed layer too fast to have time to acclimate to their local 

irradiance. Finally, in Chapter 4 three hypotheses surrounding the mechanisms 

controlling the timing of the onset of the spring bloom in the North Atlantic 

were investigated. Again, this study was the first of its kind to investigate the 

spring bloom using such a detailed Lagrangian ecosystem model, and was able 

to reconcile the three hypotheses under the one concept of critical depth. 

Although the model achieved the aims successfully, the same results could 

have been obtained through the use of an Eulerian model, given information 

about the vertical structure of phytoplankton, and also if using appropriate 

intervals for integration. 

The following paragraphs will provide a summary of the key findings and give 

suggestions for further work.  

5.1 Fundamental assumptions of Lagrangian modelling 

This section investigated some of the fundamental assumptions underpinning 

Lagrangian models, such as how the ecosystem is structured, the manner in 
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which the particles are redistributed, how the numbers of particles are 

managed i.e. particle splitting, and the interactions between the phytoplankton 

and the rest of the model.  

5.1.1 Structure of the ecosystem 

Choosing the appropriate framework for the ecosystem is a balance between 

complexity and computational cost, and the necessary detail for the question 

at hand. Simulating the entire ecosystem on a Lagrangian basis, a method 

which is employed for the WB model (Barkmann & Woods, 1996a; Woods & 

Barkmann, 1993a; Woods & Barkmann, 1993b; Woods & Barkmann, 1994), and 

subsequent models based on it (i.e. Sinerchia et al. (2012)) is a highly 

complex, non-trivial undertaking, involving a great deal of computational 

expense. In addition, one of the aims of the current study, was to strip the 

model back to its fundamental components, in order to both investigate how 

different variables, (e.g. turbulence, grazing), influenced phytoplankton 

growth, and also to enable comparison with an equivalent Eulerian model. 

Therefore, the Lagrangian phytoplankton were implemented in an otherwise 

Eulerian ecosystem, a method previously seen in Broekhuizen (1999); Cianelli 

et al. (2009); Cianelli, D’Alcala, Saggiomo, & Zambianchi (2004). However, 

these previous studies chose not to represent interactions between the 

phytoplankton and zooplankton, instead implicitly including grazing through 

an increase in the mortality term. This was insufficient for the aims of the 

current study, which required explicit representation of the interplay between 

the phytoplankton and zooplankton in order to understand how the balance 

between zooplankton and phytoplankton populations affected the seasonal 

cycles of primary production, as well as the consequences of individual 

phytoplankton response for the ecosystem as a whole. The Eulerian ecosystem 

in which the Lagrangian phytoplankton were simulated therefore included 

explicit zooplankton, nutrients and detritus, in a manner which has not 

previously been seen in the literature. Essentially, Lagrangian phytoplankton 

were implemented in an otherwise Eulerian model that assumed complete 

homogeneity of dissolved nutrients, zooplankton, and detritus. This method is 

not without its issues, in particular, handling the interactions between the 

Lagrangian phytoplankton and Eulerian zooplankton was not a trivial matter, 

and the method for this is fully explained in section 0. Overall, though, the 
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model was highly successful, achieving both aims of creating an environment 

for Lagrangian phytoplankton that allowed for investigation of the interplay 

between the phytoplankton and the other components of the ecosystem, whilst 

also producing results that were directly comparable to an Eulerian equivalent.   

5.1.2 Particle movement rules  

The choice of particle movement rules is crucial to the model, because it 

determines the timescales at which the phytoplankton are mixed. The 

relationships between the timescales of mixing and the timescales of growth 

and acclimation determine whether it is necessary to represent primary 

production using a Lagrangian framework, which is fully explored in section 

5.2. The particle movement rules need to redistribute the phytoplankton in a 

way that meaningfully represents the mixing timescales in the mixed layer, 

whilst avoiding any inconsistencies of distribution that could artificially 

influence the model predictions.  

5.1.2.1 Random position movement algorithm 

The simplest method of redistributing the phytoplankton particles is to update 

their depth to a new random position between the surface and the base of the 

mixed layer each time step. Woods (2005) proposes that this is a valid method 

for scenarios with time steps that are much greater than the turbulence time 

scale, and it is used in several models that are based on his WB model (e.g. 

Sinerchia et al., 2012; Woods & Barkmann, 1993a,b, 1994). Whether this would 

be a valid method for OWS India, where the mixed layer depth can reach to 

greater than 600m, can be determined by calculating the time scale of 

turbulence, T
M
 (s), which can be estimated using the diffusivity coefficient, K

turb
 

(m2 s-1), and the depth of the mixed layer, H (m): 

 TM = H 2

Kturb

  (5.1) 

For the mixing time scale to be on the order of a time step of 30 minutes for a 

mixed layer depth of 600m would require a turbulent diffusivity of 200 m2 s-1. 

For comparison, the turbulent diffusivity calculated for the random walk 

algorithm (discussed in more detail in section 5.1.2.3) for a mixed layer depth 

of 600 m and a surface wind speed of 10 m s-1 would be 0.24 m2 s-1, almost 3 
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orders of magnitude smaller, and representing an estimated mixing time of ~ 

17 days. Although time scales of mixing in the ocean, especially in large, 

turbulent eddies, have been observed at rates as fast as 0.5 h, these are on the 

order of 10m, rather than 600m (Denman & Gargett, 1983). 

In addition, further detailed analyses that included comparisons with the 

Eulerian model, along with investigations into the individual rates of 

acclimation, demonstrated that the concept behind the random position 

movement algorithm is flawed. There is no difference in predictions between 

the Eulerian model and the random position model, because, on average, the 

phytoplankton particles experience the same conditions. Essentially, the 

phytoplankton particles in the random position model can be seen as random 

samples drawn from an Eulerian model each time step. There is no difference 

in the predictions of primary production, or average chl-to-carbon ratios. 

Therefore, there is no modelling scenario for which a Lagrangian model that 

utilises the random position movement algorithm would be a useful choice. 

However, a random position movement could be used to obtain the rates of 

growth and loss from a Lagrangian model, for use in an Eulerian model. One of 

the difficulties in creating equivalent Eulerian and Lagrangian models is how to 

apply average loss rates to individual phytoplankton particles. Knowing that 

Eulerian models and Lagrangian random position models are equivalent allows 

for average rates of loss to be determined from Lagrangian models where the 

rates of loss and grazing are applied on an individual, rather than an average, 

basis. 

5.1.2.2 Random walk algorithm 

The alternative to the random position movement algorithm is to implement a 

random walk, where the phytoplankton particles move a predetermined 

distance each time step in a random direction. As this was a 0D model that 

considered only vertical movement, the phytoplankton could move up or down. 

Although there has been a great deal of research in the literature with regards 

to the physicality of the random walk, in terms of how to determine the step 

length, and how to prevent accumulation of particles in regions with lower 

rates of mixing, few studies have investigated how the implementation of a 

random walk can affect the model predictions of primary production.  

Most random walks involve some form of the Brownian motion equation: 
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 Zt+1 = Zt ± 2Kturb ⋅ ∂t   (5.2) 

where K
turb

 represents the turbulent diffusivity, Z
t
 represents the current depth, 

and Z
t+1

 the depth at the end of the time step. This model formulation was 

revised by (Visser, 1997), due to the fact that for mixed layers with non-

uniform diffusivity, particles would accumulate in the areas with the lowest 

diffusivity, and his revised model formulation (and the extended version 

described by (Ross & Sharples, 2004)) forms the base of many Lagrangian 

phytoplankton models (e.g. Broekhuizen (1999); Cianelli et al. (2009); Nagai et 

al. (2003); Ross et al. (2011a); Ross et al. (2011b)). The current study assumed 

a uniform diffusivity throughout the mixed layer, so used a simpler version of 

the Visser (1997) model that neglected the expression for redistributing 

particles from areas of low turbulence, although this could easily be added to 

allow the model to simulate profiles of diffusivity. The model described in 

Visser (1997) also included an additional random element through multiplying 

the step length calculated in equation (5.2) by a random process between 0 

and 1. The study compared the random walk described in Visser (1997), to a 

simple, Brownian motion equation, as shown in equation (5.2), and used in 

(Falkowski & Wirick (1981). The Visser (1997) implemented was deemed to be 

the better choice, due to the introduction of the random element to the step 

length, ensuring an even sampling of the entire model space, unlike the 

Falkowski and Wirick (1981) random walk, which moved in steps of the same 

length each time step. The random walk model was fully tested in order to 

ensure that the phytoplankton were randomly distributed, and the appropriate 

boundary conditions (i.e. reflecting at both boundaries) were chosen. Both the 

random walk and the choice of boundary conditions were successful at evenly 

redistributing the phytoplankton throughout the mixed layer. 

5.1.2.3 Rates of turbulence 

Surface water mixing in the ocean is driven by energy from wind, waves, 

Langmuir circulations, or convection - gravitational instability caused by a 

cooling of the ocean’s surface (Franks, 2014). Representing all of these 

difference processes with a single parameter is a daunting task. Nevertheless, 

a parameter that reasonably estimates the rate of mixing in the surface layer is 

essential in order to determine meaningful mixing timescales. This section 

therefore examines the formulation for turbulence used in the current model, 
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evaluating its success at reproducing mixing in the North Atlantic in terms of 

previous studies, and of empirical evidence. 

Parameterisations of turbulent diffusivity in previous studies have ranged from 

complex methods, such as 2nd-order turbulence closure models (e.g. Nagai et 

al. (2003)), and non-hydrostatic convection models (Lindemann et al., 2015) to 

the use of constant values (Cianelli et al., 2004; Dippner, 1993; Dippner, 1998; 

Dusenberry, 2000; Ross et al., 2011a; Ross et al., 2011b). This study required 

a method that was simple enough to allow the model to be stripped back to its 

fundamental assumptions, but that would still produce a value for diffusivity 

that was reasonable for the location, and representative of the seasonal cycle. 

Therefore, as in Lizon et al. (1998), who parameterised a simple turbulence 

model with empirical tidal measurements, and in Yamazaki & Kamykowski 

(1991), who used a simple Ekman model, based on surface wind speed only, to 

define both the eddy diffusivity and the depth of the mixed layer, this study 

used a simple turbulence model, parameterised by data. However, unlike 

Yamazaki & Kamykowski (1991), the turbulence model in this study used 

empirical measurements of mixed layer depth, along with the surface wind 

speeds, to calculate turbulence, as described in the KPP model for boundary 

layer scenarios described in Large et al. (1994). In addition, while Yamazaki & 

Kamykowski (1991) only investigated several constant values for wind speed, 

this study investigated the effects on mixing of a full seasonal cycle of 

empirical measurements of surface wind forcing. Changes to the mixing as a 

consequence of changes to the surface wind forcing could be investigated, as 

well as how changes to the mixed layer depth influenced rates of mixing.  

The model of turbulence used in this study used several simplifying 

assumptions, the consequences of which will be addressed here. Firstly, the 

model assumed that the rate of mixing was vertically constant, which is 

something that is not seen in the ocean, where the rate of mixing tends to 

increase towards the middle of the mixed layer, and decrease towards the 

boundaries. In addition, mixing in the ocean is not constant over a diel cycle – 

surface warming during the day will suppress mixing, whereas cooler 

conditions at night will increase it. Phytoplankton in the ocean are also 

subjected to lateral mixing, and ephemeral phenomena such as fronts and 

eddies. The aims of the current study were to understand the relationship 

between acclimation and mixing, rather than the creation of an accurate model 
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of the phytoplankton primary production in the North Atlantic. The use of a 

more complex model, as a Large Eddy Simulation model, could potentially 

provide differing predictions of primary production. Nevertheless, the current 

study provides a good first step towards understanding the complex 

relationship between individual phytoplankton response and overall rates of 

primary production. 

5.1.3 Grazing and non-linear mortality 

How to best represent grazing by zooplankton in Lagrangian phytoplankton 

models is a question that has not yet been satisfactorily answered. As a result, 

most models choose to not explicitly represent zooplankton, instead implicitly 

representing grazing through use of a higher rate of mortality (e.g. 

Broekhuizen, 1999; Daniela Cianelli et al., 2009; D. Cianelli et al., 2004; 

Hellweger & Kianirad, 2007; Lindemann, Backhaus, & St John, 2015). However, 

as mentioned in section 5.1.1, one of the aims of this study was to investigate 

the interplay between the phytoplankton and the zooplankton, so explicit 

zooplankton needed to be included. 

As mentioned in section 5.1.1, previous models have either only included 

grazing implicitly, or included fully Lagrangian phytoplankton. Neither of these 

options was deemed as suitable: the former as it would not have allowed for 

the dynamic interplay between phytoplankton and zooplankton, including the 

seasonal variation in specific grazing rates, and the latter due to its complexity 

which would complicate comparison with an Eulerian model, so a middle 

ground solution was devised. This involved including explicit Eulerian 

zooplankton that would graze on the Lagrangian phytoplankton. However, 

implementing the interaction between these Eulerian zooplankton and the 

Lagrangian phytoplankton was fraught with difficulties. The grazing equations 

are in terms of concentrations of phytoplankton, and these need to be applied 

to the phytoplankton super-individuals in a meaningful manner. As each super-

individual represents a quantity of biomass, it first seemed logical to apply 

these equations on an individual basis i.e. the grazing on each individual 

would be determined by the use of a non-linear function, and then the overall 

rates of grazing could be calculated through summing all of the individual 

rates. However, there were two problems to this: firstly, the overall loss rates 

then became sensitive to the threshold for particle splitting (particle splitting is 
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discussed in section 5.1.4), and secondly, it caused difficulties when it came to 

creating an equivalent Eulerian model, because the loss rates were not 

equivalent. A novel solution that successfully links the Eulerian zooplankton 

with the Lagrangian phytoplankton was therefore devised. The grazing rates 

are based on the concentration of phytoplankton biomass over the entire 

mixed layer, as in the Eulerian model. This translates into an absolute value of 

biomass to be lost every time step. This is then proportionally applied to each 

phytoplankton super-individual, according to its biomass. The grazing rates in 

the Eulerian and Lagrangian models are therefore comparable. However, as 

explained in Chapter 2, there are potential sources of error with this method. 

The grazing pressure ought to be relatively higher on large phytoplankton and 

lower for smaller phytoplankton, but this is not the case. This increases 

pressure on the smallest phytoplankton individuals, and reduces pressure on 

the largest, creating a positive feedback that results in the larger individuals 

increasing in size, whilst the smallest die out. In an extreme scenario, the 

largest individual could eventually dominate the simulation. Implementing 

particle splitting (section 5.1.4) alleviates this effect, but could be seen as not 

addressing the underlying cause of the issues. However, overall, this was a 

successful method of linking the two different model components. 

5.1.4 Particle splitting 

Lagrangian phytoplankton models can either use a fixed number of particles, 

or need to include some method of controlling the number of particles in the 

simulation. Too many particles can be difficult to model, whereas too few 

could lead to inaccuracies due to some parts of the mixed layer being devoid 

of phytoplankton. Previous studies have controlled the numbers of particles in 

one of three ways: using a constant number (Nagai et al., 2003; Ross et al., 

2011a; Ross et al., 2011b), including particle splitting designed to represent 

cell division (Hellweger & Kianirad, 2007), or using particle division as a 

mechanism purely to control the number of particles in the simulation by 

employing a minimum number (Barkmann & Woods, 1996a; Woods & 

Barkmann, 1993b; Woods & Barkmann, 1994), or both a minimum and 

maximum number (Broekhuizen, 1999). 

The current study uses a dynamic mixed layer cycle, which results in 

phytoplankton particles being lost through detrainment when the mixed layer 
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shallows. A constant number of particles would therefore not be appropriate, 

as the particles lost through detrainment need to be replaced. In addition, the 

use of non-linear growth rates that are applied proportionally to particles  

(explained in section 0) would result in an uneven distribution of biomass, 

without some method to control the size of the particles. Unlike the previous 

methods that employed particle splitting, there was no maximum number of 

particles prescribed, instead, a maximum particle size was established, and the 

number of particles in the simulation allowed to reach its natural value. The 

maximum size to which the particles could grow was determined through the 

sensitivity analysis in Chapter 2. Particle splitting is purely a method for 

controlling the number of super-individuals in the simulation, and is not meant 

to represent the biological process of cell division.  

The model was not particularly sensitive to the threshold for particle splitting, 

which determined the numbers of super-individuals in the simulation. Even for 

mixed layer depths of > 600m, total particle numbers of ~2000 produced a 

sufficient level of precision, with an acceptable level of noise. This is similar to 

the number used by (Barkmann & Woods, 1996b; WOODS & BARKMANN, 1993; 

Woods & Barkmann, 1994), who initialised their model with 4000 particles, 

noting a minimum value of ~800. It is significantly more, however, than the 

number recommended in (Dippner, 1991), who performed a sensitivity analysis 

using a Lagrangian model, concluding that increasing the number of particles 

above 10 resulted in little change to the model predictions. (Nagai et al., 2003; 

Ross et al., 2011a; Ross et al., 2011b) used up to 80,000 particles for 

simulations with a mixed layer depth greater than 60m, but this was in order 

to have a statistically significantly number at each depth, for the purposes of 

analysis. 

The particles in the model split into two, equally sized new particles, and 

introducing a random component to this (i.e. the particles being of unequal 

size) did not influence the results in any way. 

5.2 Modelling growth and acclimation in Lagrangian 

phytoplankton 

One reason behind the use of Lagrangian models is the belief that 

phytoplankton acclimate to their light environment, which will cause 
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divergence between Lagrangian and Eulerian models. This section used novel 

approaches in order to investigate this. First, a model intercomparison study 

was performed, which, like the studies performed by McGillicuddy (1995) and 

Lande & Lewis (1989) demonstrated no difference in the predictions of primary 

production between each model formulation. However, two studies differed in 

their explanations of the results, and this was resolved through the use of an 

in-depth study that used a fixed slab model to thoroughly investigate the rates 

of acclimation in the individual phytoplankton. Acclimation happens at a much 

slower rate than mixing, so phytoplankton do not have time to acclimate to 

their local irradiance as they are being mixed through the mixed layer. In 

addition, it was demonstrated that the timescales of importance are actually 

those of the mixing and the rate of phytoplankton growth. Changes to the 

turbulent diffusivity can result in the mixing rate becoming insufficient to 

overcome the phytoplankton growth rates, resulting in an non-uniform vertical 

structure of phytoplankton, which increases the overall rate of primary 

production. As growth occurs on a faster timescale than acclimation, this has a 

far stronger response to changes in the mixing rate. 

5.2.1 Model intercomparison study 

There were two objectives behind setting up the model for OWS India: firstly, 

to obtain the parameters for the photoacclimation equations, and secondly to 

investigate the consequences of photoacclimation on the ecosystem as a 

whole. This was the first study to perform a model intercomparison between 

Eulerian and Lagrangian representations of a full marine ecosystem that 

included both explicit zooplankton, and mixing based on empirical data. The 

results of the study showed that there was little difference between the 

predictions of both primary production and chl-to-carbon ratios between the 

Eulerian and Lagrangian models.  

5.2.1.1 Photoacclimation parameters 

One of the reasons why different studies have produced different results is the 

way in which photoacclimation is represented. Previous studies (notably the 

models by Lande & Lewis (1989); Wolf & Woods (1988), which were 

investigated in McGillicuddy (1995) have used different formulations for the 

rate of change in the photoacclimative properties of the phytoplankton. In 
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order to address this issue, this study used the growth model described in 

Geider (1997), in which the photoacclimative properties (the ratio between 

chlorophyll and carbon) are not modelled directly, but instead result from the 

differing rates of production of pigment and biomass, dependent on the 

external conditions (i.e. irradiance, nutrients). However, the behaviour of the 

model is highly dependent on its parameterisation, and the rate at which the 

phytoplankton acclimate is controlled by the maximum chl-to-carbon ratio, 

which varies between species: smaller phytoplankton functional groups, such 

as cyanobacteria and dinoflagellates, show low values for thetacmax, and 

larger groups, such as diatoms, show higher values Geider et al. (1997). In 

addition, estimates are often obtained in the laboratory, and these can vary 

from those measured in the ocean. The initial values used for the model, as 

used in Taylor et al. (1997); Yool et al. (2011); Yool et al. (2013) of 0.05 mg 

Chl mg C-1 resulted in overall ratios of chl-to-carbon that were too high, by a 

factor of two, for OWS India. Satellite measurements taken by Behrenfeld et al. 

(2005) suggest a maximum ratio of ~0.017 for that region of the ocean, and 

changing the maximum chl-to-carbon ratio to 0.02 mg Chl mg C-1 gave a much 

better representation of the seasonal observations of chl-to-carbon.  

5.2.1.2 Fixed slab models 

The investigations with the fixed slab models demonstrated the real strength 

of Lagrangian implementations. Not only could the effects on overall growth by 

changes to external forcing be investigated, but also the changes in individual 

phytoplankton as they moved through the mixed layer could be tracked. The 

model successfully demonstrated why there is little difference between the 

Lagrangian and Eulerian implementations – even at low to moderate mixing 

rates, the phytoplankton do not have time to significantly acclimate to their 

local irradiance. 

5.2.1.3 Vertical phytoplankton profiles 

One observation from the experiments was that the mixing that was 

parameterised for OWS India resulted in vertical profiles of phytoplankton, 

even though the mixed layer was fully mixed (section 5.1.2.3). Investigations 

into these vertical profiles showed that when the mixing rate was slowed to 

significantly affect the overall rates of primary production, these changes to 
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the rates of production were almost entirely due to the vertical profile of 

phytoplankton, rather than from the chl-to-carbon ratios of the phytoplankton.  

5.2.1.4 Sensitivity of the ecosystem 

Testing the entire marine ecosystem using the same scenarios as for the fixed 

slab experiments produced some interesting results. First of all, the growth of 

the phytoplankton over the summer is not controlled by the irradiance, but by 

the nutrient concentration and the loss rates. Secondly, the formation of a 

vertical profile of phytoplankton has the most effect when the phytoplankton 

growth is light limited, so when the mixed layer is deep, and/or the surface 

irradiance is low. This would be observed in early spring. 

5.3 The main controls on the timing of the initiation of 

the spring bloom 

Franks (2014) proposed that the critical depth hypothesis could not be 

properly tested by a model that did not included information about the rates at 

which the phytoplankton were mixed through the water column. Therefore the 

model was used to investigate the critical depth, critical turbulence, and 

disturbance-recovery hypotheses, for OWS India. The aims were twofold: to 

investigate which hypothesis best describes the controls of the spring bloom at 

OWS India, and to evaluate the suitability of a Lagrangian model to achieve this 

aim. 

Critical depth, defined as the depth above which the integrated net growth was 

equal to 0, was calculated from the full ecosystem model, based on the 

predicted rates of growth and loss. This is something that has previously not 

been seen in the literature, where predictions of critical depth are based on 

constant parameters, such as the compensation irradiance. However, the non-

linearity of phytoplankton loss rates mean that the critical depth will change as 

a function of the concentrations of both phytoplankton, and the zooplankton 

that graze on them. In addition, the daily critical depth was calculated in a 

number of different ways: without a diel cycle of irradiance, with a diel cycle, 

but using the daily averaged irradiance, and with a diel cycle of irradiance, but 

calculating the average critical depth over the day. This latter method was 

shown to provide the most accurate estimate, demonstrating that Sverdrup’s 
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recommendation for using the average irradiance over the course of each day 

to calculate the critical depth introduces errors if the relationship between 

irradiance and photosynthesis is non-linear. In addition, an analytical equation 

for the critical depth was devised, and the critical depths predicted by the 

model matched those provided by the equation. 

The predicted critical depth and the modelled day of the onset of the bloom 

were shown to match exactly, which has not previously been achieved in the 

literature. The study carried out by Lévy (2015), which used a 1D NPZ model to 

investigate critical depth, found a lag between the predicted (i.e. using 

Sverdrup’s theory) and the modelled day of the onset of the bloom, even when 

the model adhered to all of the assumptions in Sverdrup’s theory (i.e. constant 

rate of loss with depth, no grazing, linear dependence of photosynthesis on 

irradiance). This was attributed to the fact that Sverdrup’s equations were 

solved for steady-state conditions, but the results from the current study 

suggest the use of a constant for the compensation irradiance, and the loss of 

accuracy through integrating an Eulerian model over 5 m intervals, could also 

affect the accuracy of the predicted critical depth. For example, the current 

demonstrated that an Eulerian model that integrated over 1 m intervals would 

predict a critical depth that differed from the Lagrangian predictions by ~2%, 

due to the loss in accuracy through integration. If the model integrated over 

smaller intervals (i.e. 0.1 m), the two predictions would converge. 

The study yielded several interesting findings about the timing on the onset of 

the spring bloom in the North Atlantic: 

1. The spring bloom is triggered by the increase in irradiance deepening 

the depth at which the mixed layer can sustain net production, rather 

than by the mixed layer shoaling. There is little change in the depth of 

the mixed layer at the point where production first becomes positive – it 

is still > 500m deep. This is an important result, because it provides an 

explanation as to how net growth can become positive in the absence of 

significant mixed layer stratification, as observed by Boss & Behrenfeld 

(2010); Townsend et al. (1994). 

2. The timing of the onset of the spring bloom is controlled by the 

phytoplankton respiration (linear loss rate), whereas the magnitude of 

its peak is more strongly controlled by grazing (non-linear loss rate). 
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This is because the non-linear losses are very low at the beginning of 

the year, due to the deep winter mixing, which dilutes the 

concentrations of both phytoplankton and zooplankton. However, non-

linear rates would have more impact on the timing of the onset of the 

spring bloom for scenarios without deep winter mixing, where the 

concentrations of zooplankton and phytoplankton were maintained over 

winter (as proposed in the disturbance-recovery hypothesis).  

3. The critical depth and critical turbulence hypotheses do not describe 

independent mechanisms that control the onset of the spring bloom. If 

the timescale of growth is faster than the timescale of mixing, then the 

mixing is not sufficient to overcome to phytoplankton growth rate, and 

a vertical profile will start to form. This increases the overall growth rate 

of the phytoplankton population, which decreases the critical depth. 

This critical depth is still predictable, given information regarding the 

vertical structure of the phytoplankton, although it quickly becomes 

very deep – i.e. deeper than the depth of the deepest point of the ocean 

– meaning that, for all intents and purposes, there is no critical depth. 

4. The predicted values for the critical depth are very deep, making the 

concept only relevant for regions with of high turbidity (increases to 

turbidity decrease the critical depth, by reducing the average irradiance, 

and therefore the rate of primary production), or with very deep mixed 

layers. This backs up results by Platt et al., (1991) who predicted the 

critical depth for various locations in the ocean, concluding that, except 

at the highest latitudes, it was very deep. They suggested that it is 

therefore possible that almost any surface mixed layer would satisfy the 

Sverdrup criterion. 

The model has demonstrated that the timing of the spring bloom can be 

predicted, given certain information about the conditions. For regions with 

deep winter mixing, and therefore very low phytoplankton concentrations in 

early spring, the timing of the onset of the bloom is determined by the rate of 

respiration. For regions without deep winter mixing, and where a 

phytoplankton population is maintained throughout the winter, grazing rates 

play a much stronger role in controlling the onset of the spring bloom. 

However, it is important to note that the timing of the onset of the bloom does 
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not yield information regarding how rapidly phytoplankton biomass might 

accumulate (Platt et al., 1991), and therefore might have limited use for 

predicting the magnitude of the peak of the phytoplankton bloom, which is 

generally of greater use in terms of carbon export.  

5.4 Future research 

This study has highlighted several areas in which Lagrangian models could be 

useful for advancing knowledge in this field: 

1. Include variability in the rates of photoacclimation. One important 

question that this study has highlighted is regarding the rates of 

photoacclimation. The study has suggested that phytoplankton 

acclimate very slowly to changes in their local irradiance, responding on 

seasonal, rather than diel cycles. However, only one functional group 

was represented, with a low maximum chl-to-carbon ratio, which would 

be typical of a small phytoplankton species, such as a dinoflagellate or 

cyanobacteria. Implementing the model with Lagrangian phytoplankton 

with a range of different photoacclimative traits could demonstrate the 

potential advantages to differing rates of acclimation, by determining 

the traits that become dominant in response to changes in external 

forcing. For example, Lewandowska et al. (2015) proposed that the 

timing of the spring bloom is not only determined by factors such as 

light, nutrients and grazing, but also by the photoacclimative properties 

of the phytoplankton. In addition, they stated that without the necessary 

combination of traits for a particular location and time, the spring 

bloom could not take place. They concluded that variability in 

photoacclimative and growth traits is essential in order to accurately 

model the spring bloom.  

2. Investigate whether the results would change, if the phytoplankton were 

allowed to synthesise chlorophyll at night. In the cell-based 

phytoplankton growth model described in Ross & Geider (2009), 

phytoplankton cells can accumulate reserves of carbon during the day, 

which allows them to synthesise chlorophyll, in the absence of sunlight, 

over night. This effectively allows the phytoplankton cells to 

photoacclimate over the full 24-hour period, rather than just during the 
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day, when they are in the euphotic zone. This would be likely to result in 

different dynamics, in particular in terms of the average state of 

photoacclimation of the cells, as they would adjust to the average 

irradiance in the entire mixed layer, rather than just in the euphotic 

zone (as described in section 3.4.2). Implementing a completely cell-

based model would also constitute a good next step from the model in 

the current study, which would then form a useful basis for comparison, 

starting, as it does, from a fully Eulerian model, and then moving to a 

Lagrangian equivalent. 

3. Improving the representation of respiration. This study has 

demonstrated that for regions with deep winter mixing, such as the 

North Atlantic, the main control on the timing of the onset of the spring 

bloom is the phytoplankton rate of respiration. This tends to be 

assumed to be proportional to phytoplankton biomass in phytoplankton 

models, a technique that has been criticised (e.g. Smetacek & Passow 

(1990)). A modelling study performed by Lindemann et al. (2015) 

investigated the effect of including variable rates of phytoplankton 

respiration, and buoyancy, into ecosystem models. They demonstrated 

that the use of variable rates for respiration and sinking enabled their 

model to fit all of the observations (concentration during winter mixing, 

and timing and magnitude of the onset of the spring bloom), whereas 

using fixed rates only allowed the model to fit the observations when 

using unrealistic parameter values. It would be useful to see how 

incorporating variable rates of phytoplankton respiration into the 

current model would influence both the seasonal cycle of 

phytoplankton, and the predictions relating to the timing of the spring 

bloom.  

4. This study has only focussed on one ocean site – the North Atlantic, in a 

region that is characterised by deep winter mixing. However, the model 

predictions suggest that in regions without deep winter mixing, the 

timing of the spring bloom would be determined more by the grazing 

rates than by the rates of acclimation. In addition, Cole et al., (2015) 

suggested that the mechanisms in the North Atlantic are not 

representative of the ocean basins as a whole, making it a poor choice 

for developing general theories surrounding the controls of spring 
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blooms. Testing other sites in the ocean, such as the North Pacific or 

the Southern Ocean, could enhance our understanding of the 

mechanisms that control phytoplankton blooms on a global basis. 

However, in order to properly investigate other sites, the model should 

be extended to include vertical profiles of nutrients and zooplankton, in 

order to allow for sub-surface chlorophyll maximum and zooplankton 

vertical migration. 

5.5 Conclusion 

This study has investigated two linked applications for marine ecosystem 

models: predicting the seasonal patterns of primary production, and gaining 

understanding about individual cellular processes such as photoacclimation. It 

might be expected that photoacclimation in Lagrangian models would have an 

impact on seasonal cycles, however, the timescales of mixing did not permit 

photoacclimation, resulting in no difference in seasonal predictions between 

the Lagrangian and Eulerian models. Therefore, the use of a Lagrangian 

approach did not demonstrate any advantage in terms of the accuracy of 

predictions, when set up for Ocean Weather Station India. However, this was 

the only ocean site investigated, and these findings need to be tested for 

locations that display different characteristics, such as a deep chlorophyll 

maximum, or a stratified water column. Overall, though, this study has 

demonstrated that Eulerian ecosystem models, as for example applied in 

biogeochemical modelling studies, do not suffer deficiencies due to their not 

representing the interaction of phytoplankton with their physico-chemical 

environment at the individual cell level. 

Additionally, this study has demonstrated the utility of Lagrangian models for 

the purpose of testing current ecological theory. It is only by running a 

Lagrangian model that it was possible to investigate the time scales of 

acclimation and mixing in a dynamic environment. In particular, it has shown 

that, as the timescale for growth is faster than that of acclimation; reducing 

the mixing rate will affect the vertical profile of phytoplankton in the water 

column, before having a significant effect on individual chl-to-carbon ratios. 

This suggests that the accuracy of future models could benefit from improved 

parameterisation of the rates of mixing, and how these affect the vertical 

structure of phytoplankton through the mixed layer. For example, Behrenfeld 
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et al. (2006) found a clear link between net primary production and climate 

resulting from changes in water column stratification. Climatic changes that 

resulted in surface warming increased the density contrast between the surface 

layer and the underlying nutrient rich waters, thereby suppressing nutrient 

exchange through vertical mixing, and decreasing net primary production. A 

recent study by Wijffels et al. (2016) showed that the constant planetary 

radiation imbalance over the years 2006 to 2015 have resulted in a steady rise 

in ocean heat content, and therefore it is critical for future research to focus on 

how, if this trend continues, this could affect both the vertical structure of the 

ocean, and the overall rates of primary production. 

The study also demonstrated that, as proposed by Franks (2014), knowledge 

about the rates of turbulent mixing are crucial for proper testing of the critical 

depth hypothesis (and therefore also the critical turbulence and disturbance-

recovery hypotheses). As described above, reductions to the rate of mixing 

result in changes to the vertical profile of phytoplankton, which deepen the 

critical depth. In addition, it has demonstrated that, as proposed by Platt et al. 

(1991), the critical depths are deep, which means that, in order for net 

phytoplankton growth to occur, stratification of the mixed layer does not need 

to occur. Seasonal increases in the surface irradiance are sufficient to result in 

the critical depths deepening beyond that of the mixed layer. Most 

importantly, it has indicated that the different hypotheses for the control of the 

spring bloom are just describing the different processes that determine it. 

Sverdrup’s hypothesis is correct, in that it is possible to accurately describe the 

point at which net production becomes positive, based on the rates of growth 

and loss. However, as this point tells us little about the magnitude, or even 

timing of the peak of phytoplankton production, it is unlikely to have a great 

deal of predictive power.  

 

.
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