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PHOTOACCLIMATION, PRODUCTION AND CRITICAL DEPTH: A
COMPARISON OF PHYTOPLANKTON DYNAMICS IN LAGRANGIAN AND
EULERIAN MODELS
by Melissa Sophie Tomkins

Marine phytoplankton growth is controlled by non-linear processes, such as the photosynthetic
and photoacclimative response to irradiance. Traditional Eulerian models calculate rates of
primary production using the assumption that phytoplankton have identical properties, whereas
Lagrangian models simulate phytoplankton as individual particles, tracking their trajectories
through the light field. It might therefore be expected that photoacclimation in Lagrangian
models would have an impact on seasonal cycles. In this thesis, I construct a Lagrangian
ecosystem model, applying it to two questions: whether the individual responses of
phytoplankton to their local irradiance affects the overall rates of primary production, and
whether Lagrangian models are necessary for the study of the mechanisms surrounding the
spring bloom, due to their representation of phytoplankton growth in response to mixing.

The study begins by addressing some of the fundamental assumptions underpinning Lagrangian
models, and provides novel solutions for some of the difficulties. The model was set up for
Ocean Weather Station India (OWSI) in the North Atlantic, and the predicted seasonal cycles of
primary production were shown to not differ from those predicted by an Eulerian equivalent,
due to the phytoplankton being mixed too fast to have time to acclimate to local irradiances.
Additionally, the results suggested a closer relationship between the timescales of growth and
mixing, demonstrating that vertical profiles of phytoplankton could form within a well-mixed
layer, resulting in changes to the overall rates of primary production. The model was next used
to investigate the controls of the spring bloom at OWSI, by investigating the critical depth,
critical turbulence and disturbance-recovery hypotheses. Although the use of Lagrangian model
did highlight a possible source of inaccuracy when calculating critical depth with an Eulerian
model, overall an Eulerian model could have performed the experiments with the same results,
given information about the vertical profile of phytoplankton in the mixed layer. However, the
study successfully reconciled the three hypotheses, showing how each describes a mechanism

that can affect the critical depth.
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Introduction

“If there is a starting point for thinking about populations, it must be the
individual. Individual organisms are born, grow, develop, mature, move,
reproduce, and eventually die. The rates at which these processes occur

determine whether the population increases or decreases, persists or
becomes extinct, expands or contracts, fluctuates or remains stable. The
environment affects the population through its effects on these individual

processes.” (Tuljapurkar & Caswell, 1997)

Phytoplankton are mostly single celled plants that live suspended in either
marine or freshwater environments. In the ocean, they constitute a major
component of marine primary production, forming the base of the food web
that sustains our fisheries, which provide the most important source of protein
in many developing countries. In addition, marine photosynthesis provides
over 50% of our atmospheric oxygen, while simultaneously providing an
important sink for global carbon. There is therefore a great onus on scientists
to understand the most important controls on phytoplankton, how they
respond to changes in their ecosystem, and how the ecosystem responds in

return.

Performing experiments in the ocean is expensive, full of difficulties, and only
provides a snapshot of the system at the time the observations are made.
Therefore, marine ecosystem models - simplified abstractions of full ocean
ecosystems - are useful tools for scientists to use when investigating the
complex relationships between the physical forcing, and the biogeochemistry
in the ocean. These models have a wide application in the field of
oceanography, for the purposes of quantification of the global carbon cycle
and its relationship to the climate, using past trends to predict how the current
anthropogenic input could influence the ocean in the future, connecting sparse
ocean observations in a coherent manner, and understanding and describing

the fundamental ecological controls on marine ecosystems.

Developing a model of a marine ecosystem first starts with identifying and
understanding the important underlying mechanisms. Many simplifications

have to be made, in order to reduce the complex interplay of physics,



chemistry and biology to solvable mathematical expressions. A commonly
used simplification in marine ecosystem models is to represent the
phytoplankton as a concentration of biomass, evenly distributed through the
model space. These Eulerian models, named for Eulerian measurements, which
are taken from fixed locations and measure the properties of the water that
moves through them, calculate rates of primary production by dividing the
water column into vertical bins, averaging the light intensity over each bin, and
then calculating the growth rate for each bin by integrating the growth
functions over time. They therefore assume that all of the phytoplankton are
completely identical. In reality, however, phytoplankton move through
fluctuating fields of light, nutrients and predators, which results in variability
between the individual cells. For example, phytoplankton are known to
regulate their light-harvesting capacity in response to changes in irradiance, by
downgrading production of pigments in high irradiance, and increasing it when
exposed to lower irradiances, in a process known as photoacclimation. Any
one depth in the ocean could therefore be populated by phytoplankton with a
range of photosynthetic abilities, depending on the previous light history of
each individual cell. Lagrangian models, named for Lagrangian measurements,
which follow and measure the properties of individual fluid parcels, track
individual phytoplankton particles as they move through space and time.
These first integrate over time, using the light history of each phytoplankton
cell, and take the rate of production as the ensemble average of the entire
community. As averaging non-linear equations before integration does not give
the same results as averaging them after integration (Woods & Onken, 1982),
these two approaches would be expected to give differing results. This has
moved some researchers (Nagai et al., 2003; Ross et al., 2011a; Woods &
Onken, 1982) to propose that a Lagrangian approach is more appropriate for

accurate representation of primary production.

Whilst the theory behind the use of Lagrangian phytoplankton models is
compelling, there currently exists little conclusive evidence regarding their
advantage over their Eulerian counterparts. Nevertheless, Lagrangian models
are becoming a popular choice, due to their ability to depict individual
processes that Eulerian models are unable to capture. Unfortunately,
Lagrangian models can be computationally expensive, often requiring more

resources for their development and maintenance than for their actual
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application (Fulton et al., 2003). The lack of standards for Lagrangian models
means that most are created from scratch, and each decision needs to be
carefully thought out and justified. Therefore, before implementing a
Lagrangian approach, it is important to ensure that it is necessary for the

problem at hand.

In this thesis, | construct a new Lagrangian ecosystem model, and use it to

investigate three topics:

1. The fundamental assumptions underpinning Lagrangian models, and
their potential effects on the resulting ecosystem dynamics (Chapter 2).
This chapter details the construction of the Lagrangian model, and in
the process, describes new methods for handling the interactions
between Lagrangian phytoplankton and an Eulerian ecosystem.

2. The relationships between photoacclimation, photosynthesis and the
turbulent mixing of the ocean surface layer (Chapter 3). A first of its
kind Eulerian-Lagrangian intercomparison study involving a model with
a full ecosystem parameterised for a site in the ocean (Ocean Weather
Station India) demonstrates that these two model formulations do not
give differing predictions. The reason for this is investigated by an in-
depth analysis using simplified fixed-slab models, which shows that the
rates of photoacclimation are too slow to allow phytoplankton time to
acclimate to local irradiances. In addition, a closer relationship is found
between the rates of photosynthesis and mixing, and this is shown to
have a greater control on rates of primary production when mixing is
low.

3. The controls of the spring bloom in the North Atlantic. Lagrangian
models include information regarding the rates at which phytoplankton
are mixed through the water column, making them ideal for the
exploration of the hypotheses surrounding the controls of the spring
bloom. In this chapter, the three main hypotheses (critical depth, critical
turbulence, and disturbance-recovery) are thoroughly investigated, to
explore the conditions that result in each one describing the main
controls on net production, and then they are reconciled as all being

extensions of the critical depth hypothesis.



In addition, Chapter 1 provides the general background for each of the above
topics, and the implications of this work, along with potential avenues for

future research are discussed in Chapter 5.



Chapter 1: General background

“A model is a simple representation of a complex phenomenon. It is an
abstraction, and therefore does not contain all the features of the real
system. However, a model does comprise all the characteristic ones, those

essential to the problem to be solved or described.”
(Soetaert & Herman, 2008)

Model design generally starts with two questions: what is the purpose of the
model, and what are the essential characteristics of the system to be
modelled? This thesis approaches this process the other way around - the
model is built based on the assumption that a Lagrangian approach will allow
for greater accuracy in the resulting predictions, and is then used to test this
assumption in a number of different ways, including an Eulerian-Lagrangian
model intercomparison study, extensive exploration of individual
phytoplankton behaviour within controlled fixed-slab models, and through its

application for testing current ecological theory.

In this chapter, the relevant background for the study is presented. The
underlying theme of the thesis concerns the influence of molecular level
processes on large scale patterns of primary production, and the structure of
this introduction reflects this progression. The cellular level process of interest
is the acclimation of phytoplankton to changes in their local irradiance, and
this chapter introduces the underlying mechanisms controlling this. Whilst this
process is very well understood in the laboratory, it is less clear how it impacts
on overall rates of primary production in the ocean, in particular with respect
to whether phytoplankton physiology and photosynthetic efficiency is
continually adjusting to the fluctuations in irradiance experienced by
phytoplankton as they travel through the mixed layer. The relationship
between primary production and mixing has been previously investigated both
through empirical experimentation, and through the use of modelling
methods, both of which are discussed in respect to the current study. The
study site - the Ocean Weather Station India in the North Atlantic - and the

reasons for its choice are then described and discussed. Finally, the



applicability of a Lagrangian approach for the investigation of the spring
bloom in the North Atlantic, involving the three current main hypotheses
surrounded the processes that govern this phenomenon - the critical depth,

the critical turbulence and the disturbance-recovery hypothesis, is discussed.

1.1  Mixing, growth and photoacclimation

Marine phytoplankton use sunlight to synthesise foods from carbon dioxide
and water, in a process known as photosynthesis. Chlorophyll, and other
accessory pigments, absorb sunlight and convert it to usable energy through
carbon fixation. The relationship between the rate of carbon fixation and the
intensity of the irradiance is commonly described by the use of a curve, known
as a photosynthesis-irradiance (P-l) curve. Figure 1shows a typical P-l curve, as

well as some of its common features.

Photoinhibition

Photosynthetic rate (P)

Light intensity (I)

Figure 1: Typical shape of a P-l curve representing the response in phytoplankton
production to light. The marked irradiances are |I_= compensation irradiance, I = saturation

onset, and I = inhibition threshold

At low irradiances, the rate of photosynthesis is usually proportional to light
intensity (with slope ), because photosynthesis is limited by the rate at which
the light photons can be absorbed. Once the saturation threshold is reached
(1), the algae become ‘light-saturated’, and the rate of photosynthesis is
limited by the rate of the reactions following the capture of photons. This is
the maximum rate of photosynthesis, P, and is independent of light
intensity. Once an inhibitory threshold is reached (1), the rate of
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photosynthesis starts to decrease with light intensity, due to the deactivation
of key proteins in the photosynthetic units, known as photoinhibition (Béchet
et al., 2013). Also shown in Figure 1, is the compensation irradiance (1), which
is the irradiance at which the rate of photosynthesis exactly matches the rate
of respiration (and other losses) in a phytoplankton cell. The depth at which
this occurs in the ocean is known as the compensation depth, and is often

taken to mark the base of the euphotic zone.

1.1.1 What is photoacclimation?

Photoacclimation describes a series of related physiological and biochemical
changes that allow algal cells to optimise their harvesting and utilisation of
available light. This enables phytoplankton to survive under dim light when
transported to the depth of the water column, whilst avoiding photodamage
when exposed to the intense surface radiation (Pinchasov-Grinblat et al.,
2011). This thesis uses the terminology recommended by Falkowski & Raven
(2013) who differentiate between short-term acclimation processes, and
physiological adaptations which occur on longer time-scales, through genetic
modifications. Photoacclimation is important for phytoplankton because of the
extreme temporal and spatial variations in their light field. Even though
terrestrial vegetation is also exposed to daily and annual cycles of irradiance,
these are amplified in aquatic environments due to the attenuation of light by
water and the substances and particles dissolved and suspended in it
(Dubinsky & Stambler, 2009). This means that as phytoplankton are vertically
mixed through the water column, they experience a wide range of light
intensities. In order to maximise growth under sub-optimal conditions, and
also to limit the damage that may be incurred through exposure to high
irradiances, phytoplankton alter their chlorophyll production dependent on the
light regime. To prevent excess energy from being absorbed that could
potentially damage the photosynthetic system, phytoplankton downgrade the
production of chlorophyll in high light. At the same time, phytoplankton in low
light conditions increase their production of chlorophyll (Geider et al., 1998) .



Photoacclimation can be assessed by measuring differences in the physiology
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and photosynthetic efficiency of
phytoplankton grown at different
light intensities (Moore et al.,
2006). P-l curves provide a useful
mechanism for depicting changes
to phytoplankton growth rates due
to photoacclimation, because they
differentiate between light-limited
and light-saturated growth.
However, whether growth is
normalised to chlorophyll, carbon
or is cell-specific can provide
different impressions of the effects
of photoacclimation (Maclntyre et
al., 2002). This can be seen in
Figure 2, which shows the
response curves for cultures of the
marine diatom Skeletonema
costatum, grown at either a high
(1200 pmol photons m?s'), or a
low (50 pmol photons m? s™)
irradiance. Plotting chl a specific
photosynthetic rates against
irradiance (A) shows similar initial
slopes for the high and low light
acclimated cells, although the
point at which the light saturates
differs greatly. High light
acclimated cells have a higher chl
a specific light saturated
photosynthetic rate, although this
is because chl g is a much lower
proportion of total mass in high

light cells, and rather than the



high light acclimated cells outperforming the low light acclimated ones. Rates
of photosynthesis can also be expressed on a per cell basis (B). However,
changes to the environmental conditions can result in changes to the average
mass of the cells, confusing the relationship between growth rate and cell-
specific photosynthetic rate. A third approach is to represent rates of
photosynthesis normalised to carbon content (Figure 2C). This allows for the
rates of photosynthesis to be directly compared to growth rates (Maclntyre et
al., 2002). Figure 2C shows how when the photosynthetic response curves are
represented on a carbon-specific basis, the two cell cultures show a difference

in both the initial slope and the maximum rate of photosynthesis.

1.1.2 Modelling photoacclimation

Phytoplankton growth models can be used to replicate laboratory data of the
response of phytoplankton cells to changes in their irradiance. Marra (1978)
compared rates of primary production from experimental bottles suspended at
a series of fixed depths, with rates of primary production from bottles
circulated through the water column. He found that the vertically cycled bottles
gave estimates of integral photosynthesis that were significantly higher than
those of the stationary bottles. He then conducted laboratory experiments,
where he measured the rates of photosynthesis for a marine diatom grown
under three different light regimes: constant, simulated diurnal variation, and
fluctuating. He discovered that the rates of photosynthesis were higher in the
simulations with fluctuating light. He proposed that the parameters that
control the rates of photosynthesis are time dependent. Above some threshold
irradiance, rates of photosynthesis will decrease over time, with the sharpest
decrease occurring at the highest light intensities. He suggested that this
allowed phytoplankton to optimise the fluctuations imposed by a turbulent
environment by taking advantage of the brief exposures to the surface light
intensity, but that if a phytoplankter remained at a shallow depth, then the rate

of photosynthesis would decay over time.

Marra’s results led to the development of phytoplankton growth models that
included a time dependence of the rates of photosynthesis. The parameters
that control the rate of photosynthesis (i.e. that define the shape of the P-I
curve), o, P and B, where o, represents the initial slope of the P-I curve, P__
the maximum rate of photosynthesis, and S controls the current state of
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photoinhibition, are modified over time. A function (usually logistic) describes
the way the steady state values of each function vary with irradiance. These
parameters then move towards their steady state values, depending on a
prescribed rate of acclimation (e.g. Barkmann & Woods (1996a) Cullen & Lewis
(1988), Falkowski & Wirick (1981), Lande & Lewis (1989), Wolf & Woods (1988)
and Woods & Barkmann (1993)). Two examples of these, the model described
by Lande & Lewis (1989), and the model used in Wolf & Woods (1988) are given
in detail in the next section. Although these models can produce good fits to
empirical data, they are parameterised according to specific scenarios, which

makes them difficult to use for different locations.

Mechanistic phytoplankton growth models, on the other hand, include explicit
representation of underlying phytoplankton processes, such as the allocation
of energy between growth, storage and pigment production under variable
irradiance and nutrient conditions. They predict not only rates of
photosynthesis, but also the current cell composition in regards to the ratios
of pigment and biomass (Flynn, 2001; Geider et al., 1997; Geider et al., 1996;
Geider et al., 1998; Zonneveld, 1998). These have the advantage of being
easily adaptable to different ocean locations, plus they produce additional data
(i.e. chl-to-carbon ratios) that can be verified against empirical observations.
The dataset obtained by Anning et al. (2000) (some of which is shown in Figure
2) has proved highly useful for the testing of these models, as it includes
information not only about the rates of photosynthesis under varying light
conditions, but also about changes to cell composition (e.g. ratios of chl-to-
carbon, and nitrogen-to-carbon). The phytoplankton growth model used in this
thesis is based on the mechanistic model described in Geider et al. (1997), and

is fully described in the next chapter.

1.1.3 Photoacclimation in the ocean.

Phytoplankton photoacclimation has been the focus of many laboratory studies
(a good review of these can be found in Maclntyre et al. (2002)) and the
response of phytoplankton under laboratory conditions is well understood, but
uncertainty still exists as to how the response of individual phytoplankton
affects overall rates of primary production in the ocean. This is an important
question for researchers, because phytoplankton growth rates are often

calculated using incubation bottle experiments, which involve taking a sample
10



of phytoplankton from the ocean, and then incubating it in bottles at fixed
depths (or irradiances). If the physiological changes made by phytoplankton as
they move vertically through the water column affects their rates of
photosynthesis at each depth, then fixed incubation bottles will give inaccurate
estimates of primary production. Conducting experiments in the open ocean is
obviously both costly and time-consuming, and so previous studies have used
models in order to investigate the relationship between mixing and rates of
primary production. However, the results from these studies seem far from
clear cut. Differences in the way that photoacclimation is represented, plus the
fact that some models also include a separate function for damage incurred
through photoinhibition, has resulted in a great deal of confusion surrounding
modelling studies that have investigated the effects of mixing on rates of
primary production. For example, Barkmann & Woods (1996b) and Ross et al.,
(2011a,b) both conducted modelling studies using Lagrangian phytoplankton
models, and concluded that fixed incubation methods overestimate primary
production, although they differed in their calculations of the magnitude of
this overestimation, with Barkmann and Woods (1996) suggesting it was by up
to 40%, and Ross et al., (2011a,b) predicting an overestimation of up to 25%,
although less than 15% in the majority of cases. In contrast, modelling studies
by Franks & Marra (1994) and Kamykowski et al. (1994) both proposed that
rates of photosynthesis in the mixed layer actually increase with increasing
wind stress, and therefore higher rates of mixing. Finally, Falkowski & Wirick
(1981) used a random walk simulation model to investigate whether the total
daily primary productivity in a mixed layer is influenced by the variations in
light regimes experienced by individual phytoplankton cells. Their model
predicted that primary productivity is not significantly affected by variations in

light regimes due to turbulence.

1.1.4 Eulerian-Lagrangian model intercomparison studies

The previous section has described how the different modelling methods for
representing photoacclimation have resulted in some confusion in the
literature regarding the effects on rates of primary production of mixing.
Another method to determine whether accounting for the individual
photoresponse of phytoplankton results in changes to the population growth

rates, would be to directly compare equivalent models that account for
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individual variability (Lagrangian models), and those that base primary
production on average photoacclimative properties (Eulerian models). There
are three main studies that have directly compared Eulerian and Lagrangian
implementations of phytoplankton models: Lande & Lewis (1989), McGillicuddy
(1995) and Hellweger & Kianirad (2007).

The first study was performed by Lande & Lewis (1989), who created analytical
models of photoacclimation and photosynthesis, based on data on the
photosynthetic physiology of an ocean diatom, Thalaisiosira pseudonana.
Their model was set in a mixed layer depth that was assumed to be
significantly deeper than the euphotic zone. The rate of photosynthesis, P, was

calculated as a function of the ambient light intensity, /, using the equation:

P

P(I;0,P,B)=P 1—e[_cf1] e[ﬁl) (1.1)

Photoacclimation was then represented by a, Ps and B being assumed to have
fully adapted values, Fj P which were linear functions of the logarithm of the

light intensity. The instantaneous values shown by the individual
phytoplankton cells were then calculated according to first order reaction

kinetics:

ar,
ot

:%(Fj_rz‘) (1.2)

where y = constant rate of acclimation. The cells were assumed to move via a
Brownian motion diffusion process reflected at the sea surface, with mean
equal to zero and variance equal to 2K__, where K . = the diffusivity constant,
which was set to 0.01 m? s”'. Surface irradiance was a constant 2000 pE m-2 s-1,
and light was attenuated with depth by a constant parameter, kpa, which was
0.04 m-1 (i.e. attenuation due to water only, no self-shading). The time of day
was early afternoon, so that the vertical profiles of the photosynthetic
parameters had equilibrated to the noon irradiance. There was assumed to be

a constant, evenly distributed number of cells in the water column.

They used their model to calculate the mean, variances and covariances of the

photoacclimation properties (&, Ps and p) for the single cell model, and then
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used these values to calculate the approximate average rates of photosynthesis
at each depth. These results were then compared to an equivalent Eulerian
model. They found no predicted difference in the photoacclimative properties
in the two models, and less than 1% difference between the predicted rates of
photosynthesis. They concluded that the similarity of the rates of
photosynthesis predicted by the two models was a consequence of the rapid
photoacclimation of the photosynthetic traits in 7. pseudonana, which occurs
on time scales of a few hours. Therefore, on a clear day, vertical mixing by
turbulent diffusion does not prevent cells from being nearly fully acclimated to
the ambient irradiance, at least on average. They suggested that vertical
mixing would have a larger impact on the rate of depth-integrated primary

production for species with slower rates of acclimation.

The second study comparing Eulerian and Lagrangian implementations of
phytoplankton models was undertaken by McGillicuddy (1995), hereafter M95,
who implemented numerical Eulerian and Lagrangian versions of the Lande and
Lewis (1989) model (hereafter, LL89). M95 also implemented Eulerian and
Lagrangian versions of a model taken from Wolf & Woods (1988), (hereafter,
WW88), and compared the predictions of each model under different mixing

regimes.

WW88 used a simple photoacclimation model, whereby the energy (irradiance)

absorbed by each Lagrangian Ensemble individual (or super-individual) is

-1
calculated using an ‘efficiency factor’, gzexp(I—J , based on the average

m

irradiance experienced by the super-individual over a defined period of

acclimation / -, which they took to be 5 hours.

MO95 set the models in an idealized 1D simulation, using a constant mixed
layer depth (100m), and a diel cycle of irradiance consistent with conditions
during the vernal equinox at 40°N. The Lagrangian simulations were initialized
with a concentration of 1.0 x 10° cells I, which was initially distributed
between 50 particles. The particles were assumed to be randomly distributed

on a time scale characteristic of the mixing layer:

E~— (1.3)



where ¢ = the rate of dissipation, u = the velocity scale, and / = length scale of
large eddies (set by depth of mixed layer). The turbulent velocity was then
calculated, using an estimate of the rate of dissipation, with the turnover time

of the mixing layer, 7 , then being given by:

(1.4)

The Lagrangian trajectories of the cells are calculated assuming that the
particles in the mixing layer are uniformly distributed on this timescale, i.e. a
new turbulent velocity between -(u/2) and (u/2) is randomly chosen for each
particle in the mixed layer after every turnover time. Thus, the velocity of the
individual particles changes once every (7 _/At) time steps. In order to ensure a
sufficient number of phytoplankton super-individuals in the simulation at any
one time, if the number of individuals in any one 1-metre layer fell below 20,
then all of the individuals in that layer were divided into two equal individuals.
He investigated two mixing regimes - one weak (K =0.01m?s") and one
strong (K =4.64m?s"). He found little difference in the predicted growth rate
(<5%) for the different model formulations with relatively weak mixing, but that
there was a significant reduction in the mean growth rate of the WW88
Lagrangian model version (~20%) in vigorously mixed conditions, whereas the
LL89 model showed only slight differences (~3%) under an increased mixing
regime. M95 concluded that the difference shown by WW88 was due to their
use of exponential photoacclimative reaction kinetics. Although this would
result in the phytoplankton reaching a fully acclimated state faster than the
phytoplankton in LL89, the initial slope of the curve showing the
photosynthetic response to changes in irradiance is much steeper, meaning
that the phytoplankton show greater immediate losses to photosynthetic
efficiency in response to changes in light intensity. Due to the fact that the
timescale of mixing was much faster than that of acclimation under the
vigorously mixed conditions, this meant that the phytoplankton were always in
this early part of the photoresponse curve, and the WW88 phytoplankton were
continually in a state of light shock. Were both models to use the same
kinetics, then this discrepancy would be alleviated, and M95 suggested that
the first-order kinetics used by LL89 seemed to be more supported by previous

literature.
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The third study that directly compares Lagrangian and Eulerian
implementations of phytoplankton models was performed by Hellweger &
Kianirad (2007), hereafter HKO7. HKO7 explored the effect of Lagrangian
formulations on cell quota models, and, in particular, those scenarios where
intra-population variability in natural systems leads to differences between
Lagrangian and Eulerian models. They used a simple growth model, where the

growth rate (u) was a function of the cell quota (mmol P mmol C"):

u=umax~minK —%}LH} (1.5)

where g = subsistence quota (y=0) and LH = limitation threshold (accounts for

limitation by a nutrient not explicitly represented).

HKO7 proposed that applying Eulerian and Lagrangian models to heterogenous
phytoplankton populations would produce differing results, because of a
mathematical phenomenon known as ‘Jensen’s inequality’. They argued this
through the description of an idealised case, where the phytoplankton
population was split into two equally sized sub-populations, A and B, with cell
quotas of g and 3g,, respectively. An Eulerian model would average out the

cell quotas before calculating the growth rate, resulting in:

9 ]]: 0.5u_ . A Lagrangian model would first calculate the

‘ll:‘u'max 1_—
[ av[qo,3q0

growth rate of each sub-population, and then average the resulting rates:

A)= —@)zo.o d u(B)= (1—ﬁ]:0.67
()=t 12 =00 an ()= 1007,

The average growth rate in the Lagrangian model is therefore

av[0.0,0.67]u =0.33u__, which is significantly lower than the growth rate

'max max ’

calculated using the Eulerian model.

They constructed equivalent Eulerian and Lagrangian models, and applied
them to a realistic field scenario. The results of their model appeared to
confirm their hypothesis, as the Lagrangian representation showed a
decreased averaged growth rate. However, as they pointed out, this

discrepancy was a result of the limitation threshold, which states that when a
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cell quota is above the threshold, the photosynthetic rate is at the attainable
maximum. For the whole population, the average cell quota is above the
threshold, and the Eulerian approach would predict a population
photosynthesis rate at the attainable maximum. For many of the individuals,
the cell quota is also above the threshold and their photosynthesis rate is at
the attainable maximum. However, a significant number of individuals have
cell quotas below the threshold, and their photosynthesis rate is below the
attainable maximum. As a result, the population average photosynthetic rate is

also below the attainable maximum.

1.2 The current study

The main objective of the study is to investigate the changes to the
photoacclimative state of phytoplankton as they travel vertically through the
surface mixed layer of the ocean. Therefore, the two most important model
components were the turbulence model, and the photoacclimative model. It
was crucial to find methods that would produce realistic timescales of mixing
and acclimation, whilst keeping the model as simple as possible, in order to
both allow comparison with an equivalent Eulerian implementation, and to be
able to strip the model back to basics in order to clearly understand the

behaviour of the phytoplankton.

1.2.1 Photoacclimation model

The phytoplankton photoacclimation model needed to be sensitive to short-
term changes in irradiance, whilst still being simple enough to allow for
thorough examination of the response of the phytoplankton. In addition,
setting the model up for OWS India would require the ability to adjust the
photoacclimative parameters in a meaningful fashion. As has been previously
discussed, using a mechanistic model would both allow for individual changes
in phytoplankton physiology to be represented, and produce further output for

validation with empirical data, such as the cellular ratios of chl-to-carbon.

Flynn et al. (2001) compared the performance of different versions of two N-
based mechanistic models of photoacclimation, concluding that the
implementation that best describes the response of phytoplankton to changes

in their irradiance was a set-up based on the model version described in Geider
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et al. (1998). This model is first described in Geider et al. (1996), and
describes how phytoplankton growth rate and chl-to-carbon ratio change in
response to variations in irradiance. The production of chlorophyll in the
model depends upon the ratio of the energy supply from light absorption and
photosynthetic energy conversion, to the energy demand for growth. At high
irradiances, the rate of light absorption exceeds the rate at which it is
assimilated, and chlorophyll production is downgraded. The model was then
extended in Geider et al. (1997) to include temperature and nutrient
concentration dependence, with the result that reductions in the growth rate
due to temperature or low nutrient concentrations could also lead to a
reduction in the chl-to-carbon ratio. The model was later extended again, to
allow for unbalanced growth, in Geider et al. (1998), through the inclusion of a
variable ratio of nitrogen-to-carbon. A further, cell-based implementation was
then introduced in Ross & Geider (2009). Although this latter version is
designed for implementation in Lagrangian models, it was deemed not to be
suitable for the current study, as it would be difficult to perform a direct
comparison with an equivalent Eulerian model, and also it would be difficult to
strip the model back in order to fully understand how each change affected the
behaviour of the phytoplankton. However, one important difference between
the cell-based model version and the previous Geider models was in the ability
of the phytoplankton to synthesise chlorophyll in the absence of irradiance
from energy stored during the day. Previously, chlorophyll production could
only take place at the same time as photosynthesis, so that chl-to-carbon ratios
remained constant overnight. A model that allowed for photoacclimation in the
absence of light could produce different results from those presented in this

thesis, and this is discussed in more detail in Chapter 3.

Although Flynn et al. (2001) recommended the model described in Geider et al.
(1998), the inclusion of variable ratio of nitrogen-to-carbon was not needed for
the current study, plus, one advantage of the Geider et al. (1997) version is the
ability to create an analytical equation describing the steady-state chl-to-carbon
ratio of phytoplankton to any irradiance. In addition, the two models showed
little variation in their behaviour in terms of predictions of chl-to-carbon

(Figure 3), so the simpler model was chosen for the current study.
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Figure 3: The response of G97 and G98 to changes in irradiance. The models are run for 5
days at low irradiance, 5 days at high irradiance, and then 5 days low irradiance, with a 12h
light, 12h dark diurnal cycle. For G98, when irradiance is 0, photosynthesis was also set to
0 (to avoid divide by zero errors in the equations). The two plots show a) the parameter
settings used to reproduce the phytoplankton cycles at OWS India (8_ "*=0.02, 8 "*=0.1), as
well as the default parameters settings ((-)CM"‘“=0.05, GN'““=0.389), where GChI'"“and GN'"“

represent the maximum ratios of chl-to-carbon, and chl-to-nitrogen, respectively.
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Figure 4: Phytoplankton response to changes in irradiance between high and low light

regimes in the laboratory. Taken from Anning et al. (2000)

18



Chapter 1: General background
1.2.2 Turbulence model

The upper surface boundary layer of the ocean comprises the interface
between the ocean and atmosphere. Mixing occurs at this interface at a wide
range of scales, from the formation of small bubbles formation, to heat-driven
convective mixing (Figure 5). Turbulence models can therefore range from
those that attempt to simulate all mixing at all levels (direct numerical
simulation), to those that perform some kind of averaging of the mixing

processes (statistical and empirical turbulence models).
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Figure 5: The large and small scale processes affecting the level of turbulence in the ocean

surface boundary later of the ocean. Image taken from
https://www.whoi.edu/ooi_cgsn/page.do?pid=53278&tid=1621&cid=70189&article=43126

Choosing the correct turbulence model for a simulation depends upon the
types of processes under investigation, and on finding a suitable balance
between accuracy and computational cost. For example, as the current study is
only concerned with mixing in the vertical, there is no need to simulate lateral
motion. Therefore, a highly computationally intensive method, such as direct
numerical simulation, which solves the Navier-Stoke equations for all scales of

motion in a turbulent flow, would be unnecessary.

A more commonly used technique for simulations that require a high

resolution is Large Eddy Simulation (LES). This method is based on the

underlying concept that large eddies migrate across the flow, carrying smaller

scale disturbances with them. The larger eddies, which carry out most of the
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mixing are computed, and then the smaller eddies, which dissipate the energy
cascading from the large eddies, are represented through the use of sub-grid
scale models. This reduces the computational cost by avoiding representing all
of the smaller scale processes. However, as one of the aims of the current
study is to strip the model back to basics, in order to fully understand the
behaviour of the phytoplankton, use of an LES would not have been suitable.
Instead, it was decided to move the phytoplankton using a random walk,
parameterised by the rate of turbulent diffusivity in the surface mixed layer; a
commonly used method in Lagrangian phytoplankton modelling (Falkowski &
Wirick, 1981; Ross et al., 2011a; Ross et al., 2011b; Visser, 1997). The mixing
rates can then be obtained through the use of statistical or empirical models of
turbulence. Statistical models of turbulence calculate averages of the Navier-
Stokes equations, through the use of turbulence closure techniques. These can
be divided into three main classes: bulk models that assume homogeneity of
the mixed layer; one equation closures, which resolve TKE in the vertical based
on eddy length scale; and two equation closures, which use an additional
equation for length scale or related quantity. Empirical models are similar to
statistical turbulence models, but use entirely empirical knowledge of fluxes,
rather than approximating turbulence fluxes through the use of closure
techniques. Therefore, the accuracy of the empirical turbulence models
depends upon the accuracy of the empirical measurements (Paskyaci & Fer,
2010).

For this study, an empirical model of turbulence, the non-local K-profile
Parameterization (KPP), was chosen. This was an ideal choice for the study, as
the model could be tailored for OWS India, using empirical data on surface
wind speed and the annual cycle of mixed layer depth. It is relatively
insensitive to vertical resolution, making it a suitable method for low-
resolution configurations. In their review of oceanic turbulence models, which
included description and testing of the KPP model, Large et al. (1994) showed
that the KPP model can perform as well, or in some cases, even better than
other models in its class, and, most importantly, if given the correct surfacing

forcing, will distribute properties properly in the vertical.
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1.2.3 The study site

As previously mentioned, one of the aims of the study was to gain
understanding of how cellular level processes impact upon rates of primary
production in the ocean. Although good data describing the response of
phytoplankton cells to variations in irradiance in the laboratory exist, it is not
clear whether phytoplankton in the open ocean will respond in the same way as
those in a laboratory setting. Therefore, the model parameters controlling the
photoacclimative response of the phytoplankton were obtained by tuning the
model predictions to available empirical data for an ocean site, which
described both the chlorophyll concentrations, and the pigment:biomass
ratios. Only one station was explored, as this was sufficient to achieve the aim
of examining photoacclimation in an environmental rather than a laboratory

setting.

The chosen study site is Ocean Weather Station India in the North Atlantic
(59N, 19W), which is part of the network of ocean weather stations that were
established after World War Il, in order to collect long-term observations of
ocean water and atmospheric properties (Send el al., 2001). It is situated
between the Hatton Bank and the Iceland Basin, in a water depth of 2000m.
The site is characterized by a deep winter mixed layer, followed by
stratification in spring accompanied by a phytoplankton bloom. It is an ideal
site for this study, due to its clear seasonal cycle of phytoplankton, which

includes a very large spring bloom
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Figure 6: Ocean Weather Station India. Source: “OWSI” 59° 0’ 0”N, 19° 0’ 0”W. Google maps.
2014

The spring bloom results in visible changes to the phytoplankton
concentration at the surface of ocean, which can be measured using satellite

imagery (Figure 7).
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Figure 7: Satellite measurements of surface chlorophyll taken between 58.5 and 59.5N and
18.5 and 19.5W in 2015 (2016)

Models generally look at predictions of integrated biomass, which can be give
a misleading impression of a bloom, as this surface growth is not constant, but
varies on a daily basis depending on the weather (overcast days, wind) and the
ocean (fronts, eddies) conditions. Figure 8 shows how the evolution and peak
of the spring bloom (days 90 to 114 of 2015) looked in the area surrounding
OWS India in 2015.
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Figure 8: Surface chlorophyll measurements taken from satellite observations in 2015
(2016)

1.2.4 The timing of the onset of the spring bloom in the North Atlantic

Understanding the mechanisms of the spring bloom holds great importance

both in terms of ecosystem dynamics, with implications for carbon export
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efficiency and food availability for higher trophic levels, and for detecting
changes in the ecosystem from natural or anthropogenic forcing (Cole et al.,
2015)., The second part of the study was therefore concerned with

determining the controls of the spring bloom in the North Atlantic.

Although the North Atlantic is a good testing ground for models of the spring
bloom, due to its clear cycle of phytoplankton, it is not typical of the subpolar
global basins. It has very deep winter mixed layers, and differs from the North
Pacific and Southern Ocean, which have permanent haloclines and are iron
limited (Cole et al., 2015). However, as the current study focuses on
determining the conditions that best describe the three main hypotheses of
the causes of the initiation of the spring bloom, rather than determining one

absolutely cause for spring bloom initiation, OWS India is a suitable study site.

The three theories under investigation are based around two different
concepts: that the spring bloom results from a temporary decoupling of the
growth-loss cycles of the phytoplankton (disturbance-recovery hypothesis), or
that changes in physical factors such as mixing rates, mixed layer depth, and
surface irradiance, trigger rapid increases to net production (critical depth,

critical turbulence hypotheses).

1.2.5 Sverdrup’s critical depth hypothesis

The critical depth hypothesis was first proposed by Sverdrup (1953), as a
formalisation of ideas already advanced by Gran and Braarud (1935) and by
Riley (1946, 1942). The idea behind it is simple: if the turbulence within the
surface mixed layer of the ocean is high enough to evenly distribute the
phytoplankton, then the rate at which the phytoplankton are moving will result
in them experiencing the average irradiance in the mixed layer, I, which is a
function of the surface irradiance and its attenuation with depth. Assuming
that all losses are constant with depth, there exists a vertically averaged
irradiance at which the rate of phytoplankton growth is exactly balanced by the
sum of the losses. Above this irradiance, the vertically averaged growth rate is
positive, below this irradiance, it is negative. Or, to put it another way, there
exists a mixed layer depth, above which the average irradiance is high enough
to support positive net growth, and below which there is insufficient irradiance

for growth to exceed loss. These concepts are fully depicted in Figure 9.
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Figure 9: The relationship between the compensation irradiance and the critical depth. At
the compensation depth (D)), the irradiance is such that the photosynthesis of a single
phytoplankton cell (P) is equal to the sum of its losses (M ). Above this depth there is a net
gain from photosynthesis (P_> M), below it there is a net loss (P_ < M ). As phytoplankton
are mixed above and below the compensation depth, they experience an average irradiance
(ID) in the water column. The depth at which ID equals IC is the critical depth (Zc) where
photosynthesis through the water column (P ) equals phytoplankton respiration
throughout the water column (M)). The chequered area represents phytoplankton loss
(respiration, mortality, grazing, mixing), and the striped area represents photosynthesis;
these two areas are equal at the critical depth. Figure redrawn from Lalli and Parsons
(1997).

Sverdrup stated that it would be possible to predict the critical depth, using

several assumptions, including:

1. The mixed layer experiences turbulence strong enough to evenly distribute

the phytoplankton
2. The phytoplankton are not nutrient-limited
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3. Phytoplankton loss rates are constant with depth
4. The coefficient for light attenuation, kw, is constant
5. The value for the compensation irradiance, /, is known

The compensation irradiance, /, is the irradiance at which the growth rate of a
phytoplankton cell exactly balances all its losses (Figure 9). As phytoplankton
within a well-mixed layer experience the average irradiance within that layer,
the average irradiance from the surface down to the critical depth, /, is equal
to the compensation irradiance, /.. This represents the lowest irradiance at
which the phytoplankton can grow, and varies from species to species.
Currently, values for /_are often obtained from culture experiments that
measure the minimum irradiance required for a population to survive. These
have been criticised for taking no account of many of the loss processes found
in the ocean, and tend to range over an entire order of magnitude from 0.35 to
3.5 mol photons m? d' (~0.9 to 9 W m?) (Siegel et al., 2002). Sverdrup defined
the compensation irradiance as being the balance between growth and loss. If
the rate of production is proportional to the irradiance, with slope a, then the

rate of change of production with time, t, is:

dp
—=a,-1 1.6
& 1 (1.6)

If the loss rate, m, is assumed to be a constant, then the loss over the same

time period is:

—=m (1.7)

I .=—*r (1.8)

However, as the mortality rate depends upon both the concentration of the
phytoplankton and the grazing populations, it seems unlikely that /_is a

constant.
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Once the above assumptions have been accounted for, the critical depth, Z
(m), can be calculated using the equation:
Z I

1 0
o —_— 20 1.9
1 _ 87 kZ“_ kpa I ( )

r c

where I_represents the compensation irradiance, and /o represents the

irradiance at the surface.

The critical depth hypothesis has gained a number of critics, although some of
these are due to misinterpretations of its assumptions. For example,
Sverdrup’s use of the term ‘respiration’ to account for all phytoplankton losses
(e.g. mortality, grazing, mixing) has led to some confusion. In addition, studies
testing the critical depth hypothesis often neglect the assumption of a fully
mixed layer. For instance, Townsend et al., (1992) reported that in the offshore
waters of the Gulf of Maine, the spring bloom could precede the onset of
seasonal stratification. They proposed that the combination of the deepening
of light penetration in the clear waters during spring with the lack of, or weak
vertical mixing, could maintain cell growth rates that could exceed the mixing
rates, thus leading to a bloom. They further suggested that the scattering and
absorption of irradiance by the phytoplankton could enhance the warming of
the surface waters, and the development of the thermocline could be a
consequence of the spring bloom, rather than a trigger. However, this scenario
is not a valid test of the hypothesis, as weak vertical mixing would not result in
the phytoplankton being evenly distributed with depth. This has led some
researchers (e.g. Chiswell, 2011; Franks, 2014) to differentiate between a
mixed layer, which is generally measured through changes in density, using
proxies such as salinity or temperature, and a mixing layer, which is a source
of active turbulence. For example, at the end of winter, a measurable deep
mixed layer resulting from convection and winter storms may still exist, but
with the end of surface cooling and a reduction in wind stress, the vertical
mixing within the layer could be considerably reduced compared to the
wintertime values (Chiswell, 2011). This distinction is not new to the literature,
Yamazaki and Kamykowski (1991) also separated the idea of a
characteristically similar mixed layer, and an active turbulent mixing layer. In
fact, some authors suggest that few studies have properly tested Sverdrup’s
hypothesis, as this would require knowledge of both the phytoplankton growth
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rates and the measurements of turbulence, as it is the turbulence that move

the phytoplankton through the vertical light gradient (Franks, 2014).

Smetacek and Passow (1990) criticised Sverdrup’s use of a constant loss rate
over both depth and the diurnal cycle, pointing out that dark respiration is
known to be highly variable, with regard to both species and growth
conditions. Cells within a deep mixed layer can experience prolonged periods
of darkness, resulting in changes to rates of dark respiration. In addition, most
species can produce resting stages, some of which remain photosynthetically
active (Lindemann & St John, 2014). Smetacek and Passow were further
concerned that focussing on phytoplankton respiration in this manner diverts
attention to the lower reaches of the euphotic zone, whereas spring bloom
induction is far more likely to be governed by processes occurring close to the
surface. They concluded that the ‘critical depth’ of importance to bloom
development is found in the upper, rather than the lower, third of the euphotic

Zone.

Lindemann et al. (2015) used a Lagrangian phytoplankton model to investigate
the effects of a variable rate of respiration and sinking on predictions of
primary production. Respiration was proportional to photosynthesis in the
light, but decreased in the dark, with the rate of decrease reducing
exponentially over time. They found that using variable rates for respiration
(and sinking) allowed the model to capture both the observed phytoplankton
concentration during deep convective mixing, and the timing and magnitude
of the onset of the spring bloom. In order to achieve the same result from a
model with fixed rates of respiration and sinking required the use of

unrealistic parameters.
1.2.5.1 The critical turbulence hypothesis

Huisman et al. (1999) proposed that critical depth theory is insufficient in itself
to predict net phytoplankton production in cases where there is weak to
moderate turbulence. Their model relaxed the assumption of phytoplankton
homogeneity, allowing the dynamics of phytoplankton growth and turbulent
mixing to determine the distribution of phytoplankton with depth. They argued
that critical depth is only relevant for water columns with high enough levels of
turbulence to result in well-mixed phytoplankton populations. Once the

turbulence falls below some critical value, phytoplankton growth rates can
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exceed vertical mixing rates, resulting in net production, regardless of the

depth of the mixed layer.

This critical turbulence hypothesis was then extended by Taylor and Ferrari,
(2011) who suggested that it could be used to predict net phytoplankton
growth from meteorological conditions. They proposed that there is a window
in time between the winter deep mixing and the spring stratification, where
mixing can occur close to the surface, while the deeper mixed layer still retains
its homogenous properties. Under these conditions, the density defined mixed
depth does not give an accurate representation of the actual mixing depth, and
surface blooms can occur. They therefore believed that the crucial control on
phytoplankton growth rates is related to the switch of seasonal thermal forcing
from net cooling to net warming, and that shutting off of atmospheric cooling
could trigger a phytoplankton bloom, regardless of the details of biological or

physical response (Ferrari et al, 2014).
1.2.5.2 The disturbance-recovery hypothesis

The previous theories describe the triggers of the spring bloom as a
consequence of abiotic factors, such as sunlight, nutrients and temperature,
increasing the phytoplankton growth rate. However, Behrenfeld and Boss
(2014) proposed that there is no evidence in the literature for any correlation
between the rate of phytoplankton biomass accumulation and phytoplankton
growth (which they defined as cell division) rates, and that the bloom is a
result of disturbances in the balance between phytoplankton growth and loss
rates, in particular, grazing. They termed this the disturbance-recovery

hypothesis.

The idea that spring blooms result from disturbances to the phytoplankton
seasonal cycle of growth and loss was first proposed by Evans and Parslow
(1985). They used a simple, NPZ model to demonstrate that, unlike the
classical view of phytoplankton blooms being due to rapid changes in
phytoplankton growth rates due to sudden stratification, blooms were actually
a result of rapid changes in the specific growth rates. This meant that,
although a sudden, rapid change in phytoplankton growth could result in a
high enough specific rate of change to result in a bloom, a very low growth
rate during the winter (i.e. resulting from deep mixed layers), will also result in

a high specific rate of change through spring, causing a bloom to develop.
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This idea was expanded on in the dilution-recoupling hypothesis, proposed by
Behrenfeld (2010), which describes the spring bloom as being a result of the
decoupling of phytoplankton biomass from zooplankton grazing pressure over
winter. The deepening mixed layer dilutes the concentration of phytoplankton
and zooplankton, leading to a reduction in grazing pressure, due to the
density dependence of grazing. As the water column begins to stratify in early
spring, the ability of the zooplankton to remain within the mixed layer
increases grazing pressure once more, recoupling the predator-prey
relationship, but only after the phytoplankton have had time to accumulate
significant biomass. However, due to the deepening of the mixed layer, the
increase in phytoplankton biomass before the onset of stratification is not
apparent. This is also an important source of carbon export, as the
phytoplankton cells below the depth of spring stratification do not contribute
to the spring bloom, as they are detrained and lost to the deep ocean
(Lindemann & St John, 2014). The disturbance-recovery hypothesis then
extends this idea to include other sources of disruption to the phytoplankton
growth - loss balance, such as deep winter mixing, freshwater input,
upwelling, or polar night (Behrenfeld et al., 2013). They define the start of a
bloom as the point when the net integrated growth first becomes positive,
stating that the peak of the spring bloom is just the final stage. Unlike the
critical depth hypothesis, which focuses on bottom-up control, the disturbance-
recovery hypothesis looks at top-down controls of the phytoplankton

concentrations.

1.2.5.2.1 Modelling the hypotheses describing the controls of the spring

bloom

Non-linear processes, such as photoacclimation, and the relationship between
photosynthesis and irradiance, control phytoplankton growth. As a result, the
way that phytoplankton move through the fluctuating fields of nutrients and
irradiance will impact upon their photoacclimative state, and their growth rate.
Therefore, Franks (2014) proposed that in order for a model to properly test
the critical depth hypothesis (and therefore also the critical turbulence, and
disturbance-recovery hypotheses) it needs to include information about the

rates of turbulent mixing, as well as the rates of phytoplankton growth.
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Lévy (2015) used an Eulerian NPZ model, to investigate the necessary
conditions to model the critical depth, critical turbulence, and disturbance-
recovery hypotheses. She started with a simple simulation, based on
Sverdrup’s original model, and then gradually increased the complexity
through the addition of light saturated growth, nutrient limitation, vertical
mixing, grazing, self-shading, and a seasonal cycle of mixed layer depth.
However, her study was unable to obtain an exact match between the
predicted (critical depth equation) and modelled (point where the net growth
first became positive) bloom onset, even when using the simple set of
assumptions proposed by Sverdrup, which she concluded was due to the way

that the Sverdrup solved the critical depth equation (i.e. for steady-state).

She found that including the vertical mixing, allowed the model to reproduce
the conditions described in the critical turbulence hypothesis - i.e. reduced
mixing resulted in a vertical profile of phytoplankton, with more biomass
maintained near the surface. Increasing the biomass near the surface of the
mixed layer increased the overall rates of photosynthesis, allowing for net
production, even when the mixed layer was deeper than the critical depth. The
addition of grazing, and a seasonal cycle of mixed layer depth, where the
depth of the mixed layer deepened between the end of summer and winter,
created the conditions necessary for the disturbance-recovery hypothesis.
Based on this, she identified four key areas that studies wishing to investigate

these three hypotheses should include:

1. A distinction between the mixed and the mixing layer

2. A full season cycle, to account for the evolution of the physical
parameters from the previous summer

3. Seasonal evolution of surface irradiance

4. Variable loss, through grazing

However, Lévy concluded that the conclusions drawn within the study were
limited through not exploring all of the physical and biological parameter

spaces, plus that the model had not incorporated photoacclimation.

The model used in the current study, which will be introduced in the next
chapter, fulfils the four requirements recommended by Lévy (2015), and,
additionally, includes representation of the photoreponse of individual

phytoplankton particles to changes in their environment.
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1.2.6 How the current study differs from previous studies

The previous studies have not provided a definitive answer as to whether
Lagrangian and Eulerian implementations of phytoplankton based ecosystem
models provide differing predictions of rates of photosynthesis and biomass.
Furthermore, even though LL89, and M95 both agree that there is little
difference between the predicted growth rates of the Lagrangian and Eulerian
models, LL89 suggest that it is because the phytoplankton are close to fully
acclimated at all times, whereas M95 states that the mixing rates are much
faster than the acclimation rates. In Chapter 3, | use a Lagrangian
phytoplankton ecosystem model, described in Chapter 2, along with an
equivalent Eulerian model, in order to address some of these questions. Both
the model | am using and the analysis | perform are unique in a number of

ways:

1. LL89 and M95 only investigated phytoplankton growth, with no
ecosystem, and HKO7 only implicitly represented zooplankton. The
model designed for this study includes explicit representation of
phytoplankton, detritus, nutrient concentration, and also zooplankton,
allowing for not only the effects of the model formulation on
phytoplankton growth to be examined, but also the consequences for
the ecosystem as a whole.

2. Whilst LL89 used a constant surface PAR, M95 used a diel cycle based
on one time of year, and HKO7 neglected irradiance completely, my
study uses a full, annual cycle of irradiance, based on a specific ocean
location (Ocean Weather Station India).

3. Photoacclimation is represented by simple growth models in LL89, and
M95, whereas is it omitted completely in HKO7, who looked at a quota
model of phosphate to carbon. My model uses a phytoplankton growth
model which represents photoacclimation based on . This is a well
known and well tested method that has been used in a large number of
ecosystem studies (for example: Fennel et al. (2006); Lima and Doney
(2004); Patara et al. (2011); Spitz et al. (2001); Vichi et al. (2007); Yool
et al. (2013, 2011)). This not only allows the model to be directly
compared with previous modelling studies, but the nature of the growth
equations allows for predictions of the steady-state values of the
photoacclimative properties, which can then be compared to the
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individual states of phytoplankton photoacclimation. In addition, extra
verification of the model can be achieved by comparing the resulting
ratios of chl-to-carbon to empirical observations.

4. The movement rules in LL89 and M95 are based on Brownian motion,
using a constant rate of dissipation, whereas, although the movement
rules in HKO7 are based on explicit particle tracking routines (ECOMSED
v. 1.3), there is little detail as to how these routines are parameterised.
The model in this study uses a random walk based on Visser (1997),
with the diffusivity calculated from the surface wind speed and mixed
layer depth as per the ocean boundary layer model described in Large et
al. (1994). The model is parameterised using mixed layer depths taken
from World Ocean Atlas (Antonov et al., 2010) and 5 year averaged wind
speed data from the ERA 40 data set for OWSI. This means that it is able
to represent changes in mixed layer depths, and also deeper mixed
layer depths (i.e. the 500m+ depths observed at OWSI) unlike LL89,
which doesn’t use a specific mixed layer depth, M95 which looks at a
fixed 100m depth, and HKO7, which is more interested in horizontal

distribution, and use a fixed depth of 10m.

1.3 Project Objectives

The above summary has demonstrated several questions that have not yet
been satisfactory resolved in the literature: the effect of mixing on primary
production, the relationships between the rates of photoacclimation and
mixing, and the controls of the timing of the spring bloom. The current study
will address these questions through examination of the central question to
this study: will predictions of primary production from a Lagrangian model,
that takes into account the previous histories of the individual phytoplankton

particles, differ from that of an equivalent Euerian model?
Some of the other issues that will be addressed in the course of this thesis are:

e what is the best practice for setting up Lagrangian phytoplankton

models?
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how do decisions regarding the underlying assumption of Lagrangian
models impact on the resulting predictions for phytoplankton growth
and the consequences for the ecosystem as a whole?

will Eulerian and Lagrangian implementations of a marine ecosystem
model differ in their predictions?

how do the timescales of growth and acclimation compare to the
timescales of mixing, and what consequences does this have for
predictions of primary production?

what can a Lagrangian approach tell us about the timing of the spring

bloom in the North Atlantic
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Chapter 2: Fundamental Assumptions

2.1 Introduction

This chapter has two main objectives: firstly, to introduce the Eulerian-
Lagrangian hybrid ecosystem model that forms the basis of the rest of this
thesis, showing how it can simulate the cycles of plankton and nutrients at a
particular ocean site, and secondly to understand and test some of the basic

assumptions of Lagrangian modelling.

Using an Eulerian-Lagrangian hybrid, rather than a full Lagrangian model,
allows for important processes to be represented in a Lagrangian manner (e.g.
how individual phytoplankton physiological states influence overall primary
production), whilst still enabling an Eulerian-Lagrangian comparison. The
hybrid model comprises Lagrangian phytoplankton particles embedded within
an Eulerian ecosystem. It uses simple, 2-layer slab physics, with the ecosystem
being simulated within a seasonally varying mixed layer, above a deep,
nutrient containing layer. Slab models are a good choice for this type of study,
as they are sufficiently well formulated to permit realistic and insightful
simulation of marine ecosystems, while being simple enough to run multiple
times without incurring high computational time or cost. In addition, the lack
of complexity makes the resulting model predictions relatively easy to analyse
(Anderson et al., 2015). The model parameters are then tuned to produce the
cycles of plankton and nutrients observed at Ocean Weather Station India (59°N
19°W) in the North Atlantic. Finally, the model is used to investigate some basic
Lagrangian assumptions, such as the model design and structure, and the

particle movement rules.

2.2 Model design

2.2.1 The physical model

The slab physics are based on Evans & Parslow (1985), and use a 2-layer slab

structure (Anderson et al., 2015). The upper layer, the depth of which varies



seasonally, contains the ecosystem, with the lower layer containing only
nutrient (Figure 10).
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Figure 10: Structure of the ecosystem (redrawn from Ross & Sharples (2007))

There was assumed to be a gradient of nutrient with depth, which was

represented using a simple linear equation:
DIN, =a, -H +b, 2.1)

where DIN represents the nutrient below the mixed layer (mmol N m?) , H
represents the depth of the mixed layer (m), and the regression coefficients (a,
= 0.0074, b= 10.85) were taken from Anderson et al. (2015) and were fitted
from World Ocean Atlas data for OWSI (Antonov et al., 2010) for NO, at the
base of the thermocline. The mixed layer depths were also taken from the

World Ocean Atlas data, and were updated daily (Figure 11).
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Figure 11: Seasonal cycle of mixed layer depth

The noon irradiance was calculated as a function of the latitude and the time
of year, using standard equations (Brock, 1981). Figure 12 shows the predicted

seasonal cycle of noon photosynthetically active radiation (PAR).
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Figure 12: Seasonal cycle of noon PAR for OWSI used in the model

Irradiance varied throughout the day according to a sinusoidal function, and
the reduction of insolation due to cloud cover was calculated using the model
of Reed (1977) This calculates a number less than 1 by which the solar
irradiance is multiplied, using the equation 1-0.62C +0.0019¢ , where C
represents the cloud cover in tenths (C = 6 oktas), and « the noon solar
altitude (degrees). Reed suggested that this model is appropriate for cloud
covers of 0.3 and greater, although he pointed out that mean cloud amounts
0.2 and less could be neglected for practical purposes. Thus, the model has a

day-night cycle in which phytoplankton have zero growth during night hours.

2.2.2 Parameterizing turbulence

The rate at which the phytoplankton are mixed through the surface mixed
layer depends upon the turbulence. This is parameterized through the use of a
diffusivity coefficient, K, which is set as being constant throughout the water
column. This simplification, which allows for greater ease in understanding the
phytoplankton’s trajectories, would not be expected to be seen in the ocean,
where local rates of mixing change depending on conditions. The value for K

is updated daily, based on the surface wind speed and the depth of the mixed
layer. The calculations are taken from the KPP model by Large et al. (1994),
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which calculates a profile of diffusivity as the product of a depth dependent
turbulent velocity scale, wy, and a nondimensional vertical shape function G(o),
where o = a dimensionless vertical coordinate that varies from 0 to 1 in the

boundary layer .

As the model assumes a homogeneous vertical turbulence profile, i.e. a single
value of Ktyrp throughout the water column, there is no vertical profile, G(o),
and instead a constant, G, is used. The value of this constant represents the

average of the turbulence profile, and is set to 0.1.

K,,=w. H(@)G 2.2)

The turbulent vertical velocity scale is calculated from:
w . =K-u (2.3)

where k = von Karman's constant (0.4), u* is the wind friction velocity (~ 1E® -
U), with U wind speed. The wind speed, U, is updated daily, based on a
sinusoidal function fitted using non-linear least squares to an annual cycle
obtained by averaging ERA 40 data over the years 1997 to 2001, inclusive
(Figure 13).
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Figure 13: Sinusoidal function for wind speed on each day of the year, compared to wind

data calculated from the ERA40 u and v components measured at 10m above sea level.
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Table 1: Parameters used in the KPP model for calculating the diffusivity coefficient (Kmb)

Kturb turbulent diffusivity coefficient (m? s™) Eqg. (2.2)
Wx turbulent velocity scale (m s™) Eq. (2.3)
G vertical shape function (dimensionless) 0.1
K von Karman's constant (dimensionless) 0.4
u” wind friction velocity (m s™) le3U
u Wind speed (m s) function of day of
year (see text)

The calculation for u”is based on the equation:

(2.4)

where T represents the wind stress (N m-1), and p the density of the seawater
(kg m-3). This was found by Large et al. (1994) to be well represented by the
use of 1*10-3U.

2.2.3 Particle movement rules

The phytoplankton particles are assumed to be moved by turbulence only,
without taking into account potential changes in buoyancy, or phytoplankton
motility. The simplest method to represent this movement is to randomly
redistribute the particles within the water column every time step, an approach
used in Nogueira et al. (2006), Sinerchia et al. (2012), Woods et al. (2005) and
Woods & Barkmann (1993a). This random position movement algorithm is
simple to implement and understand, but may not always be an appropriate
solution - especially for models with deep mixed layers. The is because the
choice of model time step implies the maximum speed of the particles, as the
time step is the length of time that it could theoretically take a particle to
move from the surface to the base of the water column. In reality, the distance
travelled should relate to the level of turbulence in the water column, not the

model time step.
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An often used alternative is the random walk (e.g. Broekhuizen (1999), Cianelli
et al. (2004), Falkowski & Wirick (1981), Franks & Marra (1994), Kamykowski et
al. (1994), Lande & Lewis (1989), Lizon et al. (1998), Ross et al. (2011a,b) Ross
& Sharples (2004), and Visser (1997)), which involves particles being moved a
certain distance in a random direction each time step. The formulation of these
walks can vary in complexity. For example, they can move in any number of
planes, or their current move can depend upon previous moves. However, even
the simplest random walks, where each move is entirely independent of the
previous moves, and the particles can only move in one plane, can be
complicated to implement and require careful testing to ensure that design
considerations are not having unexpected effects on the model predictions.
This study used a simple random walk that represents the turbulence in the
ocean through a turbulent diffusivity coefficient, K, a method seen in studies
such as Falkowski & Wirick (1981), Ross & Sharples (2004), and Visser (1997).
This parameter provides a reasonable representation of some of the statistical
properties of turbulence, such as mean length and time scales (Ross and
Sharples, 2004). However, it also compares two different formulations of the
same random walk - one as described in Falkowski & Wirick (1981) and the
other in Visser (1997) - with the random position method of phytoplankton
redistribution. These methods all appear in the literature, but there are

currently no studies that directly compare how they affect model predictions.

2.2.4 Description of the random walk

Two random walk formulations were investigated, and then compared to an
algorithm that simply randomised the position of the phytoplankton each time
step. The random walk assumes that phytoplankton movement is solely based
on turbulence, neglecting individual motility and buoyancy control. The only
change experienced by the phytoplankton is in their light field, as all other
environmental variables (grazing, DIN) are represented as Eulerian
concentrations, so only vertical movement was represented. The equations are
based on the collective motion of Brownian particles, and express the mean

squared displacement in terms of the time elapsed and the diffusivity:

_:(Z2)52Kturb (2.5)
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This follows Einstein’s arguments that the displacement of a Brownian particle
is not proportional to the elapsed time, but rather to its square root (Einstein,
1905). Two different methods for representing this were investigated, the first
of which is described in Falkowski & Wirick (1981). In these equations, the

distance travelled by each particle is the same for each time step, but there is

an equal probability that the particle will move up or down:

-0t )2 (2.6)

where z = depth (m), Kt = eddy diffusivity (m? s7). | will refer to this as a
discrete random walk, as the distance moved by each particle is the same, and

only the direction is randomly varied.

The second is described by Visser (1997), and is based on the same equations,
but a random process, ranging from -1 to 1, modifies the resulting
displacement. The distance moved by each particle is therefore not the same
every time step.

1

2K,,,0t) (2.7)

21 =2, T i( wurb
Jr
Here, R represents a random process, with 0 mean, and variance r (e.g. here, R
is a uniform distribution between +1 and -1, so r = 1/3, due to the properties
of a uniform distribution, i.e. the second moment of the distribution is the
variance.). The equations in Visser (1997) also included a function for
redistributing the particles from areas of low turbulence, but this has not been
included here, because the diffusivity is assumed to be constant throughout
the water column. This can be thought of as a continuous random walk,
because there are, theoretically, an infinite number of possibilities as to the
distance moved each time step. However, both the discrete and continuous
random walks are essentially the same - the mean squared displacement is

always equal to 2K ot.
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Figure 14: Normalised frequency histogram showing the distance from the starting

position (0) after 10 steps for each model, for K,,=1m?s",N=10,000 (N = number of

super-individuals) b
Figure 14 shows the distribution of the particles after 10 steps for both the
discrete and continuous random walk model. In the discrete model, due to the
fixed step size, the particles can only be in one of a number of different
positions. Conversely, in the continuous model, the particles can move to any
place in the water column, and this is reflected in the smooth curve of the bins
in the histogram. The more bins used, the smoother this curve will become

(assuming a high enough number of particles to prevent statistical errors).

The distance moved each time step is therefore a function of the surface wind
speed and the depth of the mixed layer, which changes over the course of the
year. Figure 15 shows the average step length taken by the super-individuals

over the annual cycle, using a range of different time steps.
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Figure 15: Average step length taken by the super-individuals in response to the annual
cycles of surface wind and mixed layer depth timesteps of 30 mins, 15 mins, 5 mins and 1

min.

Both boundaries (the surface and the based of the mixed layer) were assumed

to be reflecting.

2.2.5 The biological model
2.2.5.1 The Eulerian-Lagrangian hybrid model

A true Lagrangian plankton ecosystem model that represented every organism
individually, and simulated interactions, such as grazing, at a cellular level,
would be computationally impossible, due to the extremely high numbers of
organisms. A simpler solution was therefore used, whereby only the
phytoplankton biomass was represented using a Lagrangian framework, and
all other aspects of the ecosystem were simulated using an Eulerian
formulation. This is essentially a hybrid approach that embeds Lagrangian
phytoplankton into an existing nutrient-phytoplankton-zooplankton-detritus
(NPZD) model, previously used in Broekhuizen (1999); Cianelli et al. (2004);
Cianelli et al. (2009); Ross & Sharples (2007). However, the model used by
Broekhuizen (1999) ignored photoacclimative responses, and none of the

previous models explicitly represented zooplankton. The novel aspect of this
46



work is the use of an NPZD model that both includes explicit representation of
all of the model components, and also includes photoacclimation. Classical
NPZD models are relatively simple in structure, making them easy to analyse,
but have a proven track record in simulating ecosystems (Fasham et al., 1990).
The NPZD model chosen for this study explicitly represents both chlorophyll
and nitrogen, and has parameterisations based on the MEDUSA model (Yool et
al.,, 2011; Yool et al., 2013). This is a good choice due to its robust equations,
plus its explicit representations of internal chlorophyll quotas allows for
simulation of phytoplankton light acclimation (see model description in section
2.2).

2.2.6 Super-individuals

The simplest and most natural way to divide the phytoplankton population into
a number of particles, would be for each single particle to represent one
phytoplankton cell. However, as phytoplankton density can reach thousands of
cells per ml (Hirose et al., 2008; Jacquet et al., 2002), it is impossible to
consider modelling every individual cell in a column of water in the open
ocean, due to computational limits. An alternative approach was presented by
Woods & Onken (1982), who proposed that each Lagrangian particle should
represent a population of phytoplankton cells, rather than a single cell. In this
way, the computational cost of each model could be tailored through simply
increasing or decreasing the number of cells represented by each particle.
They called this the Langrangian-ensemble method of modelling primary
production, as the total primary production is estimated from the ensemble of
individual particles. The cells are assumed not to change in size (or biomass
content per cell), but the particle biomass changes as the number of cells
changes. Cell division and mortality can then be represented through simply

increasing or decreasing the number of cells the particle represents.

Lagrangian-ensemble models allow researchers to represent individual changes
in phytoplankton physiology, without incurring excessive computational costs.
However, incorporating these individual-based models into a full ecosystem
model raises several issues. The most difficult of these is how the model
handles grazing, which is generally assumed to be a non-linear function of
phytoplankton concentration: increases in phytoplankton concentrations will

increase predator-prey encounter rates, until the zooplankton reach a
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maximum, saturating rate. The most ‘realistic’ solution would be to use
Lagrangian zooplankton, however this not only substantially increases the
complexity of the model, but also requires some method of representing the
dynamics of zooplankton grazing on a cellular level. In addition, grazing at a
cellular level tends to happen on a time scale of seconds, whereas model time
steps tend to be minutes or hours. One solution is to not explicitly represent
zooplankton, but to include losses through grazing in the phytoplankton
mortality terms (e.g. Hellweger & Kianirad (2007)). Other models have included
explicit zooplankton, and based grazing rates on cell number (e.g. Sinerchia et
al. (2012); Woods et al. (2005)), however there is a lack of data surrounding
grazing rates in the open ocean against which to verify such models. Grazing
rates in ecosystem models tend to be biomass-based, due to the nature of the
observations from which they are derived. In order to translate traditional N-
based grazing kinetics for an individual-based phytoplankton model, the
grazing in the current study is calculated based on the average phytoplankton
biomass, and then applied proportionally to each phytoplankton particle (full
details and consequences in section 2.2.7). This means that the equations for
the ecosystem model used in conjunction with the Lagrangian phytoplankton
were formulated in terms of phytoplankton concentration, rather than
individual cells. Therefore, each phytoplankton particle (or super-individual (SI)
after Scheffer et al. (1995) represented a quantity of biomass, with no

information regarding number of cells, or cell size.

Lagrangian model Eulerian model

“~.Remineralisation
~—

‘Dsi

Respiration

\‘\
~
~
Mortality E
Si >‘ Detritus

Grazing Messy feeding
1 Respiration
Sl
‘oplankton

Mortality

Figure 16: The structure of the hybrid model, showing how the Lagrangian and Eulerian

parts interact. The full ecosystem equations are given in section 1.3.2.
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The hybrid model represents phytoplankton nitrogen (and chlorophyll) in three

different ways: P, P__and P_ . P_represents the nitrogen content of each

s’ total

super-individual, and is expressed in mmol N. P__ then represents the total

phytoplankton nitrogen in the water column (P = 3P) and P__represents the

ontal

average phytoplankton concentration, and is calculated from P, =

where H represents the depth of the mixed layer. Variables, such as

!

production, are handled in the same way, with phytoplankton production being

calculated for each super-individual, H, s summed up for the total,

Up =ZHP,SI - P, , and divided by the mixed layer depth to get the depth

u,

total

averaged new production, u, = H

Integrating the grazing in the Lagrangian model is a little more complicated. In
reality, grazing is a binary process where individual cells are grazed or not. In
the model in the current study, grazing is handled in an Eulerian fashion,
where it impacts on each and every super-individual, removing a fraction of its

biomass. The average grazing, G

Pconc

(mmol N m?d") is calculated from P_ ,

C

P,
and is applied to each super-individual proportionally, i.e.G,, =G S This

Pconc
conc

method was also used for the other density-dependent process, non-linear
mortality, to keep the model consistent. As a result, super-individuals do not
die off and their number is maintained in the water column (with the exception
of those detrained when the mixed layer shallows above them). Representing
non-linear processes in this way simplifies the model analysis, allowing for
direct comparison between the hybrid model and a fully Eulerian model, which

was one of the main aims of this thesis.

The main model currency is nitrogen (N, mmol m?3). However, photosynthesis
is driven by chlorophyll which is also explicitly represented, using a variable
Chl:C ratio (and a fixed C:N ratio). The super-individuals are moved,
individually, around the water column using particle movement rules (see
section 2.2.3). While the nutrient environment is uniform in the mixed layer

(Eulerian), each super-individual will experience its own unique light
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environment, depending on depth and self-shading from other super-

individuals above it in the water column.

Super-individuals never die off due to grazing or mortality because these
processes only remove a fraction of the biomass (see above). Physics aside, the
number of super-individuals is therefore maintained. However, super-
individuals are lost, binary fashion, by detrainment out of the mixed layer,
decreasing their number. This is implemented by simply removing any
particles at a depth lower than the mixed layer depth, once its new position
has been calculated each time step. In order to maintain a representative
number of super-individuals in the water column, when super-individuals reach
a threshold size, they split into two, equally sized super-individuals. Although
this is primarily to replace those super-individuals lost through detrainment, it
also prevents errors that can arise from the use of a constant number of super-
individuals due to over dominance by a single or small number of super-
individuals (see section 2.3.2). This splitting is purely a physical method of
controlling the number of super-individuals within the simulation, and is in no
way meant to represent biological cell division. Figure 17 shows how the
numbers of phytoplankton Sls gained through division, lost through
detrainment, and the total number throughout the year, are affected by

changes to the maximum particle size, P, .
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Figure 17: Super-individuals lost through detrainment, and gained through splitting, per

day, in response to changes to the P, (mmol N). Also plotted is the total number of Sis in

the simulation at any one time. Visser random walk (see section 2.2.4).

2.2.7

Model equations and parameters

The NPZD model chosen for this study includes phytoplankton biomass and

pigment growth processes based on Geider et al. (1997), and

parameterisations based on the MEDUSA model. MEDUSA incorporates two

functional types for both zooplankton and phytoplankton - small and large -

but this level of complexity was not necessary for the current study, so the

model was scaled down to only one functional type for phytoplankton and one

functional type for grazers. Combining two size classes into one functional

type in the hybrid model means that some of the parameter values required

tuning in order to achieve a good fit to the data (see section 2.2.8 for full

description).

2.2.7.1

Phytoplankton growth model

Phytoplankton have two state variables - nitrogen and chlorophyll - both of

which represent the total content in each super-individual, P_and Chl_. Two
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other properties can then be derived from these: the amount in the entire
mixed layer, P__and Chl_ - and the average concentration in the mixed layer,
P and Chl

con conc

2.2.7.1.1 Nitrogen
The rate of change in the nitrogen biomass for each super-individual is

calculated using the equation:

dP;,
dt

B
nix H(l)

=Up Py —Gg—mpPy —M2g —k

(2.8)

where the terms represent production, grazing, respiration, non-linear
mortality, and mixing losses, respectively, and H denotes the depth of the
mixed layer. The linear loss term is attributed to respiration, but can be
thought of as covering both metabolic losses and natural mortality. The non-
linear term represents density-dependent loss, for example mortality from
infection by viruses, whose abundance is dependent on the density of potential
host cells (Anderson et al., 2015). The non-linear loss terms (both grazing and
mortality) are calculated and applied in an Eulerian fashion, based on the
depth-averaged concentration of phytoplankton nitrogen biomass. This is fully
described in section 2.2.6, and the implications are discussed in section 2.3.2.

The parameter descriptions and values can be found in Table 3.

Phytoplankton production depends on the supply of dissolved inorganic
nutrients, DIN, according to Michaelis-Menten kinetics, and on the availability

of photosynthetically active light.
The rate of production, y, (h"), is given by:

. DIN

e B 2.9
¥ ky+DIN 29

Mo =005

where k_is the half-saturation coefficient for nutrient uptake, DIN is the
average concentration in the mixed layer (represented on a Eulerian

framework, so assumed to be homogeneous), and the rate of photosynthesis,
V.", is a function of the irradiance at the depth of each super-individual, and

is calculated using a Smith function (Smith, 1936):
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VI = a2 Bt P (2.10)

where Vis the temperature specific maximum photosynthetic rate, and
is the initial slope of the P-l curve (gC (g chl)' h" (W m?)". a, , is chlorophyll

rather than carbon specific, necessitating the explicit treatment of chlorophyll

in the model.

I, takes into account both seasonal and diurnal patterns of irradiance arriving

at the ocean surface, and attenuation of irradiance with depth. The light profile

is calculated using the Beer-Lambert equation:

I =1, exp(—kpwz) 2.11)

where I is the light at depth z, Ip is the surface irradiance and kw is the
vertical attenuation coefficient. The value for kW is calculated as in (Anderson,
1993; Anderson et al., 2015). Each 1-metre layer has its own spectrally
averaged kw, which is denoted k for layer L. In addition, the water column is
divided into 3 regions, i, i,and i, which are 0 to 5m, 6 to 23m, and > 23m,
respectively. The irradiance for each interval is calculated based on the
coefficient for that region, i, and the chlorophyll within that layer, L, and the
layers above. The chlorophyll is calculated for each 1 metre layer through the

summation of all of the chlorophyll contained in super-individuals within that

layer, i.e. chli, :Zchls, for interval L

k, = bo’i +b1’l.cL +l92’l.cL2 + bS’icL3 +194J.CL4 + bs’icL5 (2.12)

1
where ¢, =chl,?

using the coefficients shown in Table 2. This gave the attenuation coefficient
for each 1 metre layer, and then this was used, along with equation (2.11) to
calculate the attenuation at the exact depth of each super-individual. This
meant that the loss of irradiance due to attenuation by the water for

phytoplankton between the surface and 1m depth was represented.
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Figure 18: Comparing the model of light attenuation described in Anderson (1993) with a

simpler attenuation model, as used in Evans and Parslow (1985)

How this method differs from models that calculate attenuation assuming a
constant coefficient for attenuation with depth (as in Evans and Parslow (1985))
can be seen in Figure 18, which demonstrates the difference in predicted light
attenuation for the two attenuation models, using two slab models, with
constant mixed layer depth (100 m) and constant surface PAR (200 W m?). The
main difference can be seen in the surface layers, where the Anderson method
results in a higher rate of attenuation. This method was chosen because it
provides a significantly more accurate representation of light attenuation in
the water column, a key aspect of the work here given the focus on
photoacclimation in response to light (Anderson, 1993; Anderson et al., 2015).
However, throughout the thesis, results will also be shown using the method
of attenuation based on a constant coefficient for attenuation, calculated from
the concentration of phytoplankton in the mixed layer (referred to as the Evans
and Parslow (1985) light model).
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Table 2: Polynomial coefficients relating k to square root of pigment in region i.

i bo,i bi,i b2, b3, b4, b5,

1 [0.13096 0.030969 0.042644 -0.013738 | 0.0024617 -0.00018059
2 | 0.041025 0.036211 0.062297 -0.030098 | 0.0062597 -0.00051944
3 ]0.021517 0.050150 0.058900 -0.040539 | 0.0087586 -0.00049476

The maximum phytoplankton photosynthetic rate is related to the

temperature, T, as described by (Eppley, 1972):
V7T =v".1.066" (2.13)

Grazing is calculated using an Eulerian approach, as described in section 2.2.6.
It is first calculated as an averaged quantity throughout the mixed layer,
Eulerian-style, and then applied proportionately across all the super-
individuals. Therefore, the grazing loss for each super-individual is calculated
by:

PSI

G, =G (2.14)

Pconc
conc

where G is the average zooplankton grazing rate (mmol m?), and is

Pconc
calculated throughout the mixed layer, on an Eulerian basis. It is defined as:
I _-P *Z

= max conc (2 . 'I 5)
Pconc kg2 + P 2

conc

where | is the maximum grazing rate, and k_is the half-saturation constant

for grazing.

Mortality is also treated in the same way as grazing, using this semi-Eulerian

approach:

P P,
M2 — conc SI 2 _'I 6
s (mpz (kP+P )]P ( )

conc conc
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2.2.7.1.2 Chlorophyll
Chlorophyll biomass is subject to the same growth and losses as the nitrogen
biomass, namely grazing, respiration, mortality and mixing. These occur at the

same specific rate as for the nitrogen biomass.

dChl _ P,
dr = :uP,SIRChl,SIChlSI - (ecm,SI g l |:Gs1 + mPPSI + M2$1 + kmix HZ):D (2.17)

where € (mol N (g C)") represents the conversion factor between nitrogen and
carbon, assuming a Redfield ratio of 6.625. The rate of chlorophyll production
is a function of nitrogen production, but is also affected by the current ratio of

chl-to-carbon, 6., , and the current irradiance. The change of the Chl:C in

response to irradiance is known as photoacclimation, a process which both
maximises growth in low light, and prevents photodamage in high light (fully

detailed in Chapter 1). This is represented through the use of a growth scaling

factor, R, , as described in Geider et al. (1997)
Royy = 00 —2 (2.18)

P.SI I Sl 'ecm,SI

where 6, is the chlorophyll to carbon ratio of the super-individual, and is

calculated from:

(2.19)

and 6" is the maximum ratio of Chl : C (g Chl a g N'!) observed in cells
acclimated to extremely low light. R, ,, is therefore regulated by the ratio of
achieved to maximum potential photosynthesis, as defined by the term

‘LLP,SI

Opg - I SIz 'QChl,SI

. Here, the numerator is ultimately constrained by the

maximum rate of photosynthesis, V,, whereas the denominator is effectively

unconstrained, because of the inclusion of /_ . Therefore, R, declines when
the instantaneous light harvesting capacity (i.e. o, I .0, ) exceeds the

instantaneous rate of photosynthesis. This results in lower values of 6., in
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high irradiance, and higher values of 0, as irradiance decreases. This model

is explained in more detail in section 1.2.1 in the previous chapter.

2.2.7.2 Zooplankton
The zooplankton are assumed to graze only the phytoplankton, and the

equation can be written as:

dz

8s (2.20)
dt

Z Z]_ (k.. +H'(1))Z

1-¢)G -mZ—| m,
( ¢) Pconc mz [mLZ kZ+Z H(t)

Here, the terms refer to growth (grazing minus losses from messy feeding, ¢),

respiration (linear), mortality (non-linear), and physical losses resulting from

mixing at the base of the mixed layer, and dilution. Dilution occurs when the
. . . , o0H
rate of change of the depth of the mixed layer is positive| H'(¢)=max 3,0

i.e. the mixed layer is deepening. The zooplankton population is assumed to
be zero below the mixed layer, so when the mixed layer deepens, more water
will be introduced into the mixed layer, and the overall concentration of
zooplankton will decrease. This is not explicitly represented in the
phytoplankton equations, because the phytoplankton are simulated as a finite
number of super-individuals. Therefore, deepening the mixed layer will
automatically decrease the concentration, as the same quantity of
phytoplankton biomass will be contained in a larger volume. If the mixed layer
shallows, then phytoplankton caught below the new mixed layer depth are lost

from the simulation, and so the overall concentration is unchanged.

2.2.7.3 Dissolved inorganic nitrate

The changes in nitrate concentration (mmol N m?) are calculated from:

(k,,. + H'(t))(DIN, — DIN)
H(t)

DI, P
dDIN __ z Hp L +m,P, +06G,,,.
dt H(t)

(2.21)

+m.Z+m,. D+

DIN is taken up by phytoplankton, and returned through both phytoplankton
and zooplankton respiration. The other biological inputs are the fraction of
grazing lost through messy feeding, and the remineralised detritus. The final

term represents mixing between the deep and surface layers, and also changes
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due to changes in the depth of the mixed layer, which result in nutrient either

being gained or lost from the mixed layer, due to entrainment.

2.2.7.4 Detritus

The equation for detritus is:

dD Z k_ _+H'({t)+v,)D
— =m,,P 2-f—mzz—Z—mDTD—( = O)+v,)

dt cone k +7Z H(t)

(2.22)

Detritus is produced by both phytoplankton and zooplankton mortality. It is

lost through remineralisation, which occurs at a temperature dependent rate:
m,, =m,-1.066" (2.23)

It is also affected by mixing, changes due to the seasonal cycle of mixed layer

depth, and sinking (v,).

2.2.8 Obtaining the default parameter set for Station India

The initial parameter set was taken, where possible, from the description of
the MEDUSA model in Yool et al. (2013), and the parameters used for the
EMPOWER model, described in Anderson et al. (2015). Parameters were initially
chosen to give the closest match to chlorophyll and nitrate data for Station
India, taken for a characteristic year (2006) from SeaWiFS 8-day averages (see
Anderson et al. (2015)). The nitrate data are from World Ocean Atlas (Antonov
et al., 2010). The full list of parameters is given in Table 3, and the variables

along with their initial values in Table 4.

Each simulation was started with 1000 super-individuals, evenly distributed
throughout the mixed layer. This number was chosen based on the model
output’s sensitivity to the number of super-individuals (discussed in section
2.3.4), and the threshold for particle division, P, , was chosen so as to ensure
that the number of super-individuals in each simulation was greater than
2,000, but did not exceed 10,000. As the number of super-individuals in any
simulation is variable, all the following plots include information about the
number of super-individuals in the simulation on the final day. The
phytoplankton nitrogen biomass was initialised as 0.15 mmol N m?, and this

was distributed evenly between each super-individual (i.e.
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H (1)

P, =P

conc

number of super-individuals

). DIN was initialised as 14 mmol m?3, and

both detritus and zooplankton as 0.1 mmol m?. The model is relatively

insensitive to the initial conditions.

Table 3: Parameters (initial guesses, in parentheses, and final fitted values)

Parameter |Description Value Source

v, maximum phytoplankton growth rate 2.0 Anderson et al.
at 0°C gC (gChl)' h? (2015)

o chl specific initial slope of P-l curve 0.12 Anderson et al.

L . (2015)

(gC (g chl) h (Wm?)

kN N nutrient uptake half-saturation 0.75 Yool et al. (2013)
constant mmol N m’

mp phytoplankton respiration rate d’ 0.02 Yool et al. (2013)

Mp2 phytoplankton mortality rate d 0.1 Yool et al. (2013)

kp phytoplankton loss half saturation 0.5 Yool et al. (2013)
constant (mmol N m?)

Imax maximum zooplankton grazing rate d -0 Anderson et al.
! (2015)

kg zooplankton grazing half-saturation 0.5 Anderson et al.
constant mmol N m’ (2015)

¢ zooplankton grazing inefficiency 0.20 Yool et al. (2013)

mz zooplankton respiration rate d’ 0.04 Yool et al. (2013)

(0.02)
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Mmz2 zooplankton mortality rate d 0.4 adjusted

(0.1)

k zooplankton loss half-saturation 0.5 Yool et al. (2013)

-3
constant mmol N m

C N:C conversion factor (Redfield ratio 79.5 Yool et al. (2013)
of 6.625) mol N (g C)"

O max maximum Chl:C ratio g chl (g C)" 0.02 adjusted
(0.05)
Yo detrital sinking rate m d’ 10.0  Fasham etal.
(1990)
mp detrital N remineralisation rate d"1 at 0-016 Yool etal. (2013)
0°C
k cross-thermocline mixing rate (md') 0.1 Fasham et al.
(1990)
P. Threshold for particle division (mmol 0.025
N)
dt Time step (minutes) 1,30

Table 4: List of variables and initial values

Variable Description Initial values

P, P

SI conc

Phytoplankton N state variable: 0.089, 0.15
SI (mmol N), population (mmol N m?)

Chl_, Chl _ Phytoplankton Chl state variable: 0.07,0.12

N

SI (mg Chl) population (mg Chl m?)
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C,C, Phytoplankton C state variable: 7.06, 12.0
SI (mg C), population (mg C m?)

0. SI Chl:C (mg Chl (mg C")) 0.01

DIN Dissolved inorganic nitrate (mmol N m?) 14.0

V4 Zooplankton state variable (mmol N m?) 0.1

D Detritus state variable (mmol N m?) 0.1

U, M. Growth rate (d") -

Gsi, Gpeone  Grazing: SI (mmol N), concentration (mmol N m -

’)
Ve SI photosynthesis (gC (gChl)' d) -

Ver Rate of photosynthesis at temperature -

The model is coded in Fortran 90, a general-purpose programming language
that is especially suited to numeric computation and scientific computing. The
equations are solved each time step using a simple, first-order integration
(Euler method). The model was run for three years, using a time step of 30
minutes, by which time a repeating annual cycle of plankton dynamics was
generated. The last year of simulation is compared to data for chlorophyll and

nitrate in Figure 19.
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Figure 19: Simulation for OWSI using first-guess parameters compared to data (year 2006)
for (a) chlorophyll and (b) DIN. Visser random walk. Final number of super-individuals: 4352

The cycle of nitrate shows a reasonably good match to the data, but the
chlorophyll cycle is less well matched (Figure 19). The predicted spring bloom
was much lower than expected, and the predicted chlorophyll biomass in the
second half of the year was too high, by a factor of 2. In addition, the
predicted seasonal cycle of chl : carbon was also high for Station India (Figure

20 and Figure 21).
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Figure 20: Predicted seasonal cycle of chlorophyll to carbon ratio using the initial
parameters for the model at OWS India
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Figure 21: The basic temporal patterns in regional phytoplankton chlorophyll (Chl; solid
circles) and carbon (C; open circles) biomass and Chl:C ratios (red diamonds; mg mg’) in
the North Atlantic basin. Taken from Behrenfeld et al. (2005).

The strategy was now to undertake model tuning to fit the data, using

strategically chosen parameters. The first parameter altered was the maximum
ratio of chlorophyll to carbon (6" ). This value is taken to be the highest

max

measured ratio of chlorophyll to carbon in phytoplankton acclimated to low
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irradiances. However, the values tend to be taken from laboratory
experiments, which yield different values to those observed in the ocean
(Behrenfeld et al., 2005). Behrenfeld et al. showed that satellite derived data
suggested that chl:C values in the ocean were much lower than those in the
laboratory. | therefore took 6" from the satellite data in Figure 21, which
shows a maximum value of ~0.02 mg Chl (mg C"). In addition, observations
from the North Atlantic Bloom Experiment (NABE) suggest that small
nanoplankton dominate the pre-bloom conditions at Station India, accounting
for >50% of the daily productivity (Joint et al., 1993). These smaller species

tend to show lower maximum ratios of chlorophyll to carbon (~0.013 mg Chl

(mg C")) (Sathyendranath et al., 2009).

Changing the maximum Chl:C gave a much better ratio of Chl:C, but lowered
the overall rate of production. In order to improve the fit to the data, |

increased the parameters controlling the zooplankton mortality.
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Figure 22: Simulation for OWSI after parameter tuning (see text): (a) chlorophyll, (b) DIN.

Visser random walk. Final number of super-individuals: 4585
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Figure 23: Predicted state variables and chl : carbon ratio for the station India simulation:
(a) chlorophyll : carbon and (b) P, Z and D.

One important consideration is then how changing the maximum chl-to-carbon
ratio impacts on the results. Reducing the maximum value decreases the range
of possible ratios shown by the phytoplankton particles, which could
theoretically mask any differences between the Lagrangian and Eulerian model
implementations. This will be investigated in the Eulerian - Lagrangian model

comparison in the next chapter, by comparing the model predictions both for a

model using the original value of 9;’;’,( = 0.05 mg Chl (mg C)', and for the fitted

value of 8 =0.02 mg Chl (mg ).

Table 5: Ecosystem model equations

Phytoplankton
dP, &
dlS[ = ‘uP,SIPSI - Gs1 —myPy — M23’ - k"’ix Hé(yl)
dChl B :
781 = :uP,SIRChl,SIChlSI - (echl,SI 5 l |:GSI By M2+ K %:D

65



DIN
- ' PT . nIn PL'()HL' P
Hrst =Oous Va ky + DIN M2y = (mpz (kp+P )] PSI

conc conc

PT : Ay u
- , B Chl P.SI
Vo = T R _

Chl,SI — Y'max

P.SI I Sl 'ecm,SI

Chl
I, =1,exp(-k,,z) Ocn s = ——L
0 p Chl ST P51 C

VI =vy?r.1.066" .
Gy, =G =

Pconc
conc

Zooplankton
— Z k. +H'(1))Z
dZ:(l—(z))GPmc—mzZ— m_, 7 _( mix ())
dt ' “k,+Z H(t)

L P Z
G — Zmax Tcone &

conc

Pconc — kgz 4 P )

Detritus

db Z k. +H'(t)+v,)D
—:mP2Pc0nc2+m72—Z_mDTD_( mix () D)
dt “k+Z H(t)

z

mDT = mD ° 1 066T

DIN

(k,..+H'(t))(DIN,— DIN )

P
dDIN = — 2 ‘UP’SI & + mP})conc + ¢G H(t)

dt H (t ) Pconc

+mZ+my. D+

2.3 Testing Lagrangian assumptions
This section investigates how some of the basic assumptions underlying the
construction of Lagrangian models impact upon the resulting predictions. This

kind of analysis does not appear in the current and previous literature, and
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could greatly help with the development of Lagrangian modelling standards.
More information about individual model components could allow researchers
to make informed decisions about model design, selecting from pre-existing
components and modifying where necessary, rather than building each
Lagrangian model from scratch. This would be similar to the way that Eulerian

models are constructed.

These experiments involve a simplified physical version of the model, which
has the seasonal cycles of irradiance and mixed layer depth removed. Using a
simple, fixed slab model like this allows for the model behaviour to be more
clearly seen, without the complications of the external forcing. The fixed slab
model uses the same ecosystem formulation as for Station India, with the
parameter settings obtained from the above parameter fixing exercise (section
2.2.8).

2.3.1 Testing the models of turbulence and phytoplankton movement

The predicted annual cycle of turbulence diffusivity can be seen in Figure 24.
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Figure 24: Annual cycle of vertical eddy diffusivity estimated by the model for OWSI

These values can then be compared to values predicted by previous models

that have represented OWS India. Figure 25 shows the predicted vertical
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Testing Lagrangian assumptions

diffusivity profile for the location of OWS India taken from the MEDUSA model
(Yool et al., 2011; Yool et al., 2013). In this model, the depth of the mixed
layer is calculated from physical forcing, rather than being prescribed by
observations, and can be see in Figure 25 by the sharp delineation between
the well mixed region (orange, red and yellow) and the region of low mixing
(purple). The turbulent diffusivity reaches as high as 10 m? s in winter, early
spring, and late autumn. In addition, Oschlies & Garcon (1999) presented
results for a transect of the ocean 10°'W of OWS India, that showed mixed layer

depths of 300m in May, with diffusivities of up to 1 m? s™.
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Figure 25: Predictions of vertical eddy diffusivity for OWSI taken from the MEDUSA model
(Yool et al., submitted)

The values for turbulent diffusivity predicted by the current model are
somewhat lower than these previous modelling studies, with maximum winter
rates of < 0.3 m? s”'. This could result from the fact that the mixing is based on
the depth of the mixed layer and the surface wind speed only, and takes no
account of convective overturning. However, there is some evidence in the
literature that these lower rates of turbulence could be closer to the conditions

in the ocean. The values predicted by the model are just low enough for a
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vertical profile of phytoplankton to begin to form, due to the proximity of the
timescales of growth and mixing. While few data exist on the vertical profiles
of phytoplankton around OWS India, measurements for another location in the
same oceanic province (as defined by Longhurst (1998) who partitioned the
ocean into geographically identifiable regions based on ecological principles
relating phytoplankton growth cycles to ocean physics) show a vertical profile

of chlorophyll for a mixed layer depth of 80 m, over the spring.
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Figure 26: Depth profiles of chlorophyll for a) three stations in NADR and b) the OWS India
model over the same period. In a) the averages at 10 m depth intervals are shown by the
solid square symbols, the smooth curve depicts the profile established by Longhurst (1998)
and the horizontal dashed line show the mixed layer depth based on density. Figure a)
taken from Li & Harrison (2001)

This suggests that the rates of mixing in North Atlantic, whilst sufficient to
produce a well-mixed layer of temperature and density, are not sufficient to
overcome the phytoplankton growth rates, lending support to the values
obtained for this study. It also indicates that the assumption that
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phytoplankton are distributed uniformly through a mixed surface layer may
not always be valid. Based on the results of this study, therefore,
parameterisations of turbulence should take account of empirical forcing data
from the location under investigation, and then verification of the model
should include comparison of the resulting vertical phytoplankton profiles to
observations, rather than using an assumption that phytoplankton are always

uniformly distributed within a surface mixed layer.

2.3.2 Particle splitting and the consequences of the grazing
parameterisation
Particle splitting is included in the model for two reasons: firstly to replace
those particles lost through detrainment and ensure a sufficient number of
particles in the simulation, and secondly to prevent individual particles from
growing too large and biasing the results. As pointed out in Ross & Sharples
(2007) some phytoplankton particles in Lagrangian models can be ‘luckier’
than others, spending more time in the productive waters near the surface of
the water column and allowing growth to continue unchecked (i.e. no particle
splitting) could result a disproportionately large fraction of the total biomass
being contained in one phytoplankton. In order to prevent this from occurring,
particle splitting was also included in the current model; however, it is
important to highlight an extra feedback mechanism on the growth of the

phytoplankton, resulting from the grazing parameterisation.

In section 2.2.6, the difficulties in implementing explicit, Eulerian zooplankton
grazing on Lagrangian phytoplankton were described. In order to simplify this
process, the average grazing rate (mmol N m' d'), based on the average
phytoplankton biomass (mmol N m") in the mixed layer was applied,
proportionally, to each super-individual. However, there are consequences to
using this method, which require careful handling. For example, running the
model with an unchanging numbers of particles (i.e. no detrainment and no
splitting), would result in an uneven distribution of biomass between the
super-individuals. Those super-individuals experiencing slightly better
conditions (i.e. spending slightly longer near the surface) on average, would
grow larger than their counterparts. This effect is then exacerbated by the
grazing, because as the biomass contained in one individual increases, the

average phytoplankton biomass in the water column increases, which, in turn,
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increases the overall loss rate. At the same time, the smaller individuals are
effectively reducing the loss rate in relation to the large individuals, meaning
that there is less grazing pressure on large super-individuals. This creates a
positive feedback effect, ensuring that the largest individuals keep increasing
in size, whilst the smallest keep decreasing, until all of the phytoplankton

biomass is effectively contained in one super-individual.

This can be demonstrated by running a fixed slab version of the model, with a

constant mixed layer depth, 100 super-individuals, and no particle splitting.
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Figure 27: Model predictions for a) super-individual biomass and b) average values for P, Z,
D, for a fixed slab model with a mixed layer depth of 100m, surface PAR of 50 W m?, 100
super-individuals, and no particle splitting

A great deal of the potential advantage to super-individuals higher in the water
column can be removed through removing the light attenuation due to
chlorophyll. This would completely remove the advantage / disadvantage due
to shading, as the differences in light would be only due to the rate at which it
is attenuated by water. In order to simulate this, | fixed the light attenuation

coefficient to 0.04 m (i.e. the value for the attenuation of light by water).

71



a) Individual Phytoplankton

b) P, Z, D

140~ 3.5

120+ 3.0}

=
o
o

N

&

[e]
o
T

(=]
o
T

P biomass (mmol N SI-1)
Biomass (mmol N m-3)

B
o
T

SN

o A 2 P f : ‘-‘ll-‘d' / 0.0 L L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000

Time (days) Time (days)

Figure 28: Fixed slab model with a constant mixed layer depth of 100m, a constant
irradiance of 50 W m?, no particle splitting (100 super-individuals) and a fixed attenuation
coefficient (kpar = 0.04 m?). Visser random walk.

Figure 28 shows that the shading of super-individuals by those higher up in
the water column is not the only advantage that the phytoplankton can exploit.
Although removing the light attenuation due to phytoplankton does
significantly improve the spread of the biomass, it is still clear a small number

of super-individuals still dominate each simulation.
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Figure 29: Fixed slab model with a constant mixed layer depth of 100m, a constant
irradiance of 200 W m?, particle splitting (Pmax = 0.25 mmol N, final number of SIs = 5818).
Visser random walk. For sake of clarity in the plots, only every 10" particle is plotted in a)

One of the most dramatic differences between Figure 27 and Figure 29, is in

the predicted biomass. There is a significant increase in the steady state value
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for phytoplankton biomass when the entire population is contained in one
individual. This is a result of the way that shading is represented in the model.
Essentially, phytoplankton are only shaded by those phytoplankton that are
above them in the water column. If the entire population is contained within
one individual, it is essentially no longer subject to shading. Although this is
obviously an extreme scenario, it does demonstrate how a skewed distribution
of biomass in the water column can result in decreased pressure on larger
super-individuals, and increased pressure on smaller individuals. It also shows
that the aim of including particle splitting is not necessarily just to keep an
adequate supply of super-individuals within the simulation, but also to restrict

the size to which each individual can grow.

To further demonstrate the effect the grazing and non-linear loss terms have
on the phytoplankton, | ran a fixed slab model with a mixed layer depth of
100m, a constant surface PAR of 200 W m?, and 100 super-individuals - one
per 1-metre layer. | kept the super-individuals stationary throughout the
simulation, and did not include particle splitting. Running the model to a
steady-state took a very long time (2000 days), due to the transient effect
shown in Figure 30. The phytoplankton super-individual with the most
advantage would dominate the simulation, but the depth at which that
individual was situated changed, due to the changes in irradiance resulting
from the changes in chlorophyll. Eventually all of the phytoplankton biomass is

contained in the super-individual at the depth with the greatest advantage.
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Figure 30: The transient increase shown by the nitrogen biomass at each depth in a fixed
slab model, with no mixing. Each 1-metre layer contains a single SI. PAR = 200 W m-2, mld =
100m

That this is a result of the application of non-linear loss terms using linear
proportionality can be demonstrated by running the same simulation shown in
Figure 30, but this time without grazing by zooplankton, and with the non-
linear mortality equation applied to each individual, based on their individual
biomass i.e.:

P

o (2.24)

M2, = —
Pkt Ry
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Figure 31: Nitrogen biomass contained in each super-individual, for a fixed slab model with
no mixing, a surface PAR of 200 W m-2, and a mixed layer depth of 100 m. Each 1-metre

layer contains a single Sl, and the loss rate is calculated on an individual basis.

The simulation shown in Figure 31 does not include cell division or
phytoplankton movement, yet a steady-state solution is achieved relatively
quickly, and no single phytoplankton dominates the simulation. However, this
solution has three disadvantages: firstly, implementing individual
phytoplankton mortality and grazing makes a comparison with the Eulerian
model more complicated, secondly, the Lagrangian model predictions
(including the chl-to-carbon ratios) are then highly sensitive to the threshold
for particle splitting, and finally, there are difficulties in implementing grazing
on a particle level. Therefore, although in Chapter 3 individual based
phytoplankton mortality is used to ascertain the rates of acclimation in
individual phytoplankton super-individuals for scenarios with little or no

mixing, it is not used for predicting rates of primary production.
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2.3.3 Considerations for the movement rules
2.3.3.1 Choice of time step

The choice of time step depends upon the rate of the fastest processes. If the
time step is too long, then some of the finer detail could be missed. In order to
determine the appropriate time step, the model was run using a range of time
steps, to find the point at which reducing the time step further made no
difference to the results. The profiles of chlorophyll, nitrogen and pigment to
biomass ratios in a steady-state simulation, as well as the depth-averaged

values for a dynamic simulation were examined.
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Figure 32: Steady-state chlorophyll profile for a model run with a constant mixed layer
depth (100m) and constant surface irradiance (200 W m-2) under a range of different time

steps (0.1 mins, 1 min, 5 mins, 15 mins and 30 mins)

76



c) Chl:C profile

:>
20 - 20}
40} a0}
E
<£=
a
3
60 60 |
0.1 min
1 min
80 — 5 mins 80y
— 15 mins
=3 — 30 mins

100 L L L 1 n I J 100 s L L L ! 100 L L L Il
0.360.380.400.420.440.460.480.50 0.34 0.36 0.38 0.40 0.42 0.0113 0.0115 0.0117 0.0119 0.0121
mmol N m-3 mg Chl m-3 mg Chl (mg C-1)

Figure 33: Predicted steady-state profiles for a) nitrogen biomass, b) chlorophyll biomass
and c) chl:carbon for a model with a constant mixed layer depth (100m) and a constant
surface irradiance (200 W m-2) under different time steps (0.1 mins, 1 min, 5 mins, 15mins

and 30 mins)
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Figure 34: Predictions of a) integrated chlorophyll and b) chl-to-carbon ratios for the OWS |

model, under four different time steps (1 min, 5 mins, 15 mins and 30 mins)

Figure 32 shows the steady state chlorophyll profile for a model with a
constant mixed layer depth (100m) and a constant surface irradiance (200 W
m?). Only the profile over the top 30m is shown, in order to best display the
differences between the predictions of each model set-up. The models with the
longer time steps (> 1 min) do show a slight increase in the steady-state

chlorophyll near the surface, although this does not appear to affect the result
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predicted when using a model with a full seasonal cycle for OWS India (Figure
34). Therefore, although a time step of 30 mins appears sufficient in order to
achieve a good accuracy for most of the simulation runs, those which looked at
the rates of photoacclimation in individual phytoplankton particles were run

with a time step of 1 min, in order to allow for the greatest possible accuracy.

2.3.3.2 Random position movement algorithm

The first mechanism for redistributing the phytoplankton particles |
investigated involved randomizing their vertical positions every time step.
Although this represents a simple and easily reproducible representation of
phytoplankton movement within the mixed layer, it does assume that the
length of the time step is the length of time in which one particle could
theoretically travel the entire depth of the mixed layer. Therefore, changing

the time step effectively changes the speed of the super-individual.

| first investigated the effect of the time step on the model predictions of
chlorophyll biomass using the fixed slab model. Figure 35 shows the model
predictions for three different length time steps: 1 min, 30 min, and 300 min.
These correspond to maximum speeds of ~1.7, ~0.06 and ~0.006 m s,
respectively (maximum speed calculated as the time step / depth of the mixed
layer), and diffusivities of 20, 0.69, and 0.069 m? s respectively. The plot

shows the last year of data from a three year run.

78



a) Chlorophyll b) Phytoplankton

0.41 0.33
— 1 min
30 min

0.40F — 300 min = 032}
- — Random walk £
™ b
£ 039} 5 031}
2 E M“«/WWJ\,\/\/\AM\M\AW*’”\A
£ WWW“\:\/\\,/\AMFN\MW E
— 0.38} wn 0.30}
c 0w A . -
o . [ N M*W“WMV Lﬁj‘i W"‘{G} W ”WVVANJ‘W\:

m%ﬁwﬁﬁv«m&v%mf% g
0.37 m 0.29}
036 L L 1 L L 1 L 028 L L 1 L L 1 L
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time (days) Time (days)

017 c) Zooplankton 0.34 - d) Detritus
;?, 0.16 | ;?., 0.33F+
€ S
=z =z
35 015} S 0.32 M/W
£ M~ AN Y T~ £
E E
wn 0.14F S e~ 031}
) n
© ©
£ £
(o] (o]
m 0.13} m 0.30}

0.12

I I 1 1 1 1 1 029 1 1 1 I 1 1 1
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time (days) Time (days)

Figure 35: Predicted a) averaged chlorophyll and b) phytoplankton, c) zooplankton and d)
detritus biomass from a fixed slab model (mld = 100m, surface PAR = 50W m?), using
random position super-individual movement, for differing time step lengths (final super-
individual numbers: 2769, 3629 and 6283, respectively). Random walk uses a time step of

30 minutes, and K,, =0.04m’s"

Figure 35 suggests that changing the time step from 1 minute to 300 minutes
does not have a significant impact on the results. This is a surprising result, as
reducing the mixing rate should allow the phytoplankton more time to
acclimate to each depth in the mixed layer, which would be expected to result
in changes to the growth rate and therefore the predictions biomass.
Increasing the time step to 300 minutes does increase the level of noise in the
results, but not to any great level. The random oscillations in Figure 35 only

vary the average value by ~+0.5%.
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The effect of the mixing rate on the phytoplankton can be further illustrated by
plotting the vertical profiles of nitrogen, chlorophyll and the chl-to-carbon
ratio. These profiles were obtained by averaging the variables over the last

year of the three year simulation (Figure 36).
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Figure 36: Vertical profiles of a) phytoplankton nitrogen biomass, b) chlorophyll and c) chl-
to-carbon ratio for random position model runs with time steps of 1, 30 and 300 mins.

Fixed mixed layer depth of 100m, fixed irradiance of 200 W m?, 6_ "™ = 0.02 mg Chl mg" C
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Figure 37: Vertical profiles of a) phytoplankton nitrogen biomass, b) chlorophyll and c) chl-
to-carbon ratio for random position model runs with time steps of 1, 30 and 300 mins.
Fixed mixed layer depth of 100m, fixed irradiance of 200 W m?, 6_ "™ = 0.05 mg Chl mg" C

Figure 36 shows that there is no variation in the chl-to-carbon ratio with depth
for the simulations with the randomly positioned phytoplankton super-
individuals. Figure 37 shows that this result does not change for a higher value
for the maximum ratio of chl-to-carbon (6_ "> = 0.05 mg Chl mg"' C). This
suggests that 300 minutes is not sufficient time for the phytoplankton to
acclimate to the irradiance. Chapter 3 includes a more detailed analysis of the
relationship between the rates of mixing and acclimation. However, one
interesting feature of Figure 36 is the difference in profile of chl-to-carbon
ratio, when averaged by the particles at each depth, or by the biomass at each
depth. This can be explained by particles at the surface being able to grow
rapidly and produce more nitrogen biomass. There is no corresponding
increase in chlorophyll, as chlorophyll production is downgraded at higher
irradiances. The overall chl-to-carbon ratio of the individual particle is also

unaffected, as each phytoplankton super-individual will only experience the
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irradiance for one time step, before being mixed back into the water column.
Also of interest is the fact that the vertical profile of nitrogen biomass does not
result in a different steady-state average nitrogen biomass (Figure 35). Finally,
the differences in the values of chl-to-carbon between the phytoplankton that
are randomly repositioned every 30 minutes, and those repositioned every 300
minutes do not result in a difference in the predicted steady-state values for
averaged chlorophyll or nitrogen (Figure 35). This suggests that the difference
in model predictions between the models that randomly position the super-
individuals, and the random walk model is not due to phytoplankton

photoacclimation. This topic is explored in more depth in Chapter 3.

The same experiment was performed with the full OWS India model (Figure
38).
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Figure 38: Model predictions for a randomisation model with different time steps. Final
super-individual numbers: 2109, 2342, 1701

Again, there is little difference for the predicted seasonal cycle of chlorophyll,
with the exception of the magnitude of the chlorophyll peak in the model

using the time step of 300 minutes.

This is an interesting result, because, as the rate of mixing is essentially a
function of the time step, the fact that altering the time step has no significant
effect on the photoacclimative processes would suggest that these are not
affected by the mixing rate. However, in order to directly compare the random

walk and random position models, some way of quantifying the diffusivity in
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the random position model is required. An estimation of the diffusivity can be
obtained by rearranging equation (2.6), taking the average step length to be
half of the depth of the mixed layer (H/2):
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Figure 39: Estimated cycle of diffusivity for the random position model with different time

steps, compared to the seasonal cycle of diffusivity for the random walk model

Figure 39 shows the estimated cycles of diffusivity for the random position
model with different time steps, based on equation (2.25). It suggests that,
even when the time step is increased to 300 minutes, the estimated diffusivity
is still higher than for the random walk model. In addition, reducing the time
step in the random walk model increases the possibility of each particle
staying near its previous location, due to the reduction in step length. This is
something that is not seen in the random position, because with each move,
the phytoplankton can be relocated to any depth in the mixed layer. This can
be demonstrated by initialising a model with 1000 super-individuals, all at the
same point in the water column, running the model for 5 time steps, and then

plotting the frequency of their final positions (Figure 40).
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Testing Lagrangian assumptions
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Figure 40: The distance from the start position after 5 time steps for the random position

model, and a random walk model with K =1 m®s”, using a time step of 1 min.

Figure 40 shows how the phytoplankton in the random walk model follow a
normal distribution around the start point, whereas the random position model
super-individuals are evenly distributed throughout the mixed layer. Therefore,
even though the estimated diffusivity of the random position is close to the
diffusivity of the random walk, the lack of connectivity between each step in
the random position model mean that these two methods of movement are not

comparable.

2.3.3.3 Random walk

The advantage of using a random walk is that the step length can be
determined by the depth of the mixed layer, which makes it a better option for
a model with a seasonal cycle. However, measuring the diffusivity coefficient,
K

turb’

used in this study takes its basic turbulence equations from the KPP model

is time consuming and rarely, if ever, collected over seasons. The model

(Large et al., 1994), and only considers the surface wind speed (Eq. (2.2)).

2.3.3.3.1 Sensitivity to wind speed
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Empirical measurements of ocean mixing can vary by up to four or five orders
of magnitude, depending on the wind speeds. For example, a 10-15m deep
mixed layer can have measurements of K =1.9 x 10° m? s in low winds (5 m
s'), butupto 1.9 x 10° m? s” in higher winds (15 m s-1) (Denman & Gargett,
1983). Figure 41 and Figure 42 show how changing the wind speed affects the
model predictions of chlorophyll for a fixed slab model and the OWS | model,
respectively, and Figure 43 shows how each of these wind speeds compares to
wind speed data taken from the ERA40 dataset for 2001. The wind speeds are

calculated from the u and v component of the wind velocity measured at 10m

above the ocean, yindspeed = Ju> +v* -
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Figure 41: Chlorophyll predictions for fixed slab model with varying wind speeds, Visser
random walk. Final super-individual numbers: 19582, 11467, 6692, 4972.
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Figure 42: Chlorophyll predictions for Station India model with varying wind speeds, Visser
random walk. Final super-individual numbers: 3312, 2807, 2654, 2460. The standard model

run uses a seasonal cycle of wind speed.
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Figure 43: The wind speeds used in Figure 42 compared to the sinuisodal curve used to

represent the seasonal cycle of wind speed
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There is little difference in the chlorophyll predictions when increasing the
wind speed from 10m s'to 15 m s, which suggests that a wind speed of 10 m
s’ results in a mixing rate which is fast enough to overcome any phytoplankton
processes, such as photoacclimation, which could be affected by the mixing

rates.

2.3.4 Number of super-individuals used in a simulation

The compromise between model precision and run time in Lagrangian models
is most clearly seen in the number of super-individuals chosen to represent the
phytoplankton population. Even though this decision has the greatest and
most direct influence on model run time, it has never been fully explored in

the literature.

Early Lagrangian phytoplankton models were limited by the lack of available
processing power and data storage, and the number of phytoplankton particles
was therefore dictated by the available technology. Numbers tended to be
relatively low, ranging from 1-200 (e.g. Falkowski & Wirick (1981) and Lizon et
al., (1998)) to 1-2000 (e.g. Barkmann & Woods (1996a); Broekhuizen (1999);
Cianelli et al. (2004); Franks & Marra (1994)). Dippner (1991) conducted a
sensitivity test on a simple Lagrangian model, which concluded that 10
particles was sufficient for a mixed layer 10 m deep. The majority of studies
include little or no justification for the numbers used, and only fleeting
reference to particle number: for example, Barkmann & Woods (1996a)
suggested that 20 particles per metre was a minimum model requirement, and
that increasing the number of particles beyond this did not change the results
significantly. Cianelli et al. (2004) proposed that “a significant number of cells”
needed to be simulated in order to “represent the realistic dynamics of a
phytoplankton population with an IBM”, but without clarifying what a

significant number actually was.

Although more recent models are less restricted by computing power, there
still appears little mention in the literature as to how changes in particle
number affect model results. Woods (2005) has stated that 200 particles per
layer (1m) is necessary, and Ross et al. (2011b) used 80,000 particles when

simulating mixed layers deeper than 60m, stating that this high number was
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necessary in order to obtain reliable statistics each metre, but there currently
exists no data surrounding how low numbers of particles affect model

predictions.

In this section, | show how the average number of super-individuals used to
represent the phytoplankton population in a simulation can influence the
model predictions, and how the optimal number was chosen. The definition of
an ‘optimal’ number of individuals was a number that would give accurate and
consistent results, whilst allowing for the model to run quickly, as the
experiments for which it was designed would require a number of runs. The
average number of super-individuals in each simulation is controlled by the
threshold for particle splitting (P, ). Increasing P, means that the super-
individuals are allowed to grow to a larger size before they are divided in two,
which means that there will be a smaller number of individuals in the
simulation, and decreasing P, will have the opposite effect, resulting in a

higher number of super-individuals.

The fixed slab model was used, with a constant mixed layer depth of 100m,
constant surface PAR of 100 W m®. Using a fixed slab model means that there
is no loss through detrainment, so the starting number of super-individuals
was reduced from 1000 to 100, because some of the runs would require
average super-individual numbers below 1000. The models were run for 3

years, and the final year of data was used.
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Figure 44: Model predictions of steady state chlorophyll for fixed slab model with different
numbers of super-individuals. Super-individual numbers: 91, 1033, 9723, 97487
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Figure 45: Comparing model predictions of integrated chlorophyll for a model with varying
numbers of super-individuals: Final numbers: 55, 499, 5293, 53400. Visser random walk.
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Both models appear to be less sensitive to the particle number than expected.
The steady state model shows only a small changes in predictions when the SI
number falls to 1000 (Figure 44) and the full seasonal cycle shows no
significant change to the model predictions, until the particle numbers fall
below 500 (Figure 45). The increase in the predicted chlorophyll biomass with
the decrease in average super-individual numbers backs up the results in
section 2.3.2, because increasing the threshold for splitting increases the
potential size to which the super-individuals can grow. Super-individuals do not
shade themselves, therefore, an individual that comprises a large proportion of
the total phytoplankton population is always unaffected by the attenuation of
light by a large proportion of the total phytoplankton chlorophyll. This results
highlights that, not only is it necessary to include particle splitting, it is also
important to ensure that splitting occurs at a low enough threshold to prevent

a skewed distribution of biomass.

However, overall, the results indicate that the model predictions are not overly
sensitive to the numbers of super-individuals, and that little accuracy is gained
by increasing the numbers past ~1000 individuals. For the OWS India runs, the
threshold for splitting was therefore set at a level that would result in between
2,000 and 10,000 super-individuals being simulated at any one time (i.e. P, =
0.025 mmol N).

2.4 Conclusion

This chapter was designed to address two main objectives: firstly to create a
Lagrangian phytoplankton-based ecosystem model and use it to replicate the
seasonal dynamics at Station India, and secondly to use the model to
investigate some of the basic assumptions of Lagrangian modelling. In line
with previous studies, an Eulerian-Lagrangian hybrid is used for the study, as a
good compromise between complexity and accuracy. The solution to the
difficulties surrounding how to represent the high numbers of individual
phytoplankton cells found in the ocean is addressed, as by previous
researchers, by the use of a Lagrangian Ensemble modelling method (or super-
individuals), which allows for the representation of individual physiological
changes, whilst keeping individual numbers manageable. However, one new

finding here is that it is not necessary to explicitly represent and keep track of
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individual cell numbers, each super-individual can represent a quantity of

biomass, rather than a number of individual phytoplankton cells.

The section investigating some of the basic assumptions of Lagrangian
models, describes several findings, some of which are new to this field. Firstly,
models that do not include some form of particle splitting are shown to run
the risk of highly skewed biomass distributions between super-individuals,
which can lead to inaccuracies in the model predictions, as observed by Ross &
Sharples (2007). In addition, although the number of super-individuals does
not significantly impact on the model predictions, it is important to ensure that
there is an appropriate limit on the maximum size of each individual, to ensure
that a significant proportion of the phytoplankton population is not contained
within a small number of individuals. A second important and previously
unseen finding is that the use of random position models of movement is not
appropriate for models that rely on photoacclimation. In random position
models, the implied mixing rate is a function of the time step, and the results
here show that changes to this implied mixing rate, through changes in the
length of the time step, have no significant effect on the individual

photoacclimative properties of the phytoplankton.

Determining whether effects such as those explained above are the result of
biological processes, or are merely statistical artefacts is of crucial importance,
but is not something that is currently seen in the literature. The more studies
like this that are carried out, the more researchers can work towards
developing well-tested Lagrangian modelling standards, which could eventually
result in Lagrangian models that are more easily communicated, replicable,

and directly comparable.

In the next chapter, | compare the model described here with an equivalent
Eulerian formulation, in order to examine whether Eulerian and Lagrangian
models differ in their predictions, and whether these differences are due to the

inclusion of photoacclimation.
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Chapter 3: Modelling growth and

acclimation in Lagrangian phytoplankton

3.1 Introduction

Lagrangian models are more complicated to design and implement, and incur
greater computational running and maintenance costs than Eulerian models.
Therefore, before deciding to represent phytoplankton using a Lagrangian
framework, it is important to ascertain whether a Lagrangian approach is
necessary, or whether a simpler Eulerian approach would be adequate for the
job at hand. The arguments advocating the use of a Lagrangian approach are
based on the fact that integrating non-linear equations before averaging them
gives a different result than first averaging and then averaging them (Woods
and Onken, 1982). However, the few studies that have investigated
comparisons between Eulerian and Lagrangian models demonstrating
conflicting results. In this chapter, | perform a direct comparison between
equivalent Eulerian and Lagrangian implementations of a phytoplankton-based
ecosystem model, in order to determine whether their predictions differ due to
the differences in the way that the overall rates of primary production are
calculated: i.e. integrated through the mixed layer, or as the summation of

photosynthesis from individual phytoplankton.

A Lagrangian approach is believed to offer more accurate representation of the
photophysiological response, due to its ability to track the individual light
histories of the phytoplankton super-individuals (Ross et al., 2011a).
Phytoplankton cells change their physiology in response to irradiance,
downgrading rates of chlorophyll production in high irradiance, and increasing
it under lower irradiances (Maclntyre et al., 2002). In theory, therefore, a
phytoplankton cell that has been mixed to the surface from deeper in the
water column will photosynthesise at a different rate to one that has been
close to the surface for a length of time. Eulerian models are unable to capture
these individual differences in physiology resulting from the individual
trajectories and light exposure experienced by phytoplankton cells as they

move through the mixed layer.



For acclimation to have a significant impact on individual rates of
photosynthesis, phytoplankton need to have time to acclimate to their local
irradiance, before being mixed up or down in the mixed layer. Therefore, the
relationship between the rates of acclimation and the rates of mixing are
extremely important, and this relationship is investigated by plotting the
trajectories of super-individuals through the irradiance field, along with their
resulting chl-to-carbon ratios. This is then compared to predicted, steady state
values, to give a clear illustration of how quickly the phytoplankton are

acclimating in relation to the rates of mixing.

For comparison, another mechanism by which Lagrangian and Eulerian models
can differ is also investigated: the vertical profile of phytoplankton in the
mixed layer. The Eulerian model uses the assumption that the mixed layer is
fully mixed at all times, and so there is a homogeneous vertical profile of
phytoplankton. There are no such assumptions in the Lagrangian model, and
so a heterogeneous profile develops in response to changes in the mixing
rates. | investigate the sensitivity of the overall rates of primary production to
the vertical distribution of phytoplankton, demonstrating that this has a
greater impact on the differences between Lagrangian and Eulerian models

than the individual rates of acclimation.

3.1.1 Objectives
This chapter addresses the following questions:

1. Is there any difference between the predictions of average
phytoplankton population growth from an ecosystem model
implemented in two different formulations: Lagrangian (hybrid model)
and Eulerian?

2. If the model predictions do differ, is it due to photoacclimation (and if
not, what is the explanation)?

3. What is the relationship between the timescales of mixing and
acclimation?

4. What are the consequences for the ecosystem model as a whole?
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3.2 Model description

The Lagrangian hybrid model, fully described in Chapter 2, essentially
comprises Lagrangian phytoplankton super-individuals, set within an otherwise
fully Eulerian ecosystem. Each super-individual has a vertical position in the
water column, which is updated every time step via a random walk. Growth is
both a function of the external irradiance and nutrient concentrations, and the
internal pigment-to-biomass ratios, the latter of which changes in response to
the ambient irradiance. In this way, the ratio of pigment to biomass, and
therefore the potential maximum photosynthetic rate, is a result of the

previous light history experienced by each super-individual.

The Eulerian model uses the same equations as the Lagrangian hybrid model,
which are fully described in Chapter 2. The growth rate, y, and the chlorophyll
growth-scaling factor, R_ , are calculated at depth intervals of T m. The new
chlorophyll and phytoplankton nitrogen production are then calculated at each
interval, and the total average new production of chlorophyll and nitrogen is
the average of these values. For each depth, z (m), in the mixed layer, the

growth rate, H, (h), is:

ViT.a, 1, DIN
(VPT2 +o 2 'I 2)0'5 kN + DIN
P z

Up, = Och - (3.1)

and the chlorophyll growth scaling factor:

R _ nchl Au’P,Z

=07 —= (3.2)
Chl, max
‘ aP'Iz'ecm

Therefore, for each 1 metre interval (i.e. z, where 0<=z<=H, and H is the depth

of the mixed layer (m)):

dP, P i
—Z — P-G-m,P-m,, ——-k . —— 3.3
dl’ ;LLP,Z P P2 P+kP mix H(t) ( )
dChl _ P P
TZ = Up R, Chl - (OCM £ [G +m,P+mp, Pik, + K H(I)D (3.4)

The averaged, new production of chlorophyll and nitrogen for the entire water

column is then the average of the new production at each depth interval.
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Growth rate is therefore a function of the average pigment-to-biomass ratio,
and the question is whether the summation of the individual growth rates
based on individual physiologies in the Lagrangian phytoplankton will differ
from the integrated growth rate based on the average pigment-to-biomass in
the Eulerian model. In order to aid comparison, the models were kept as
simple as possible, and all of the code was written in the same language
(Fortran 90). The model parameters and the full model description can be

found in Chapter 2.

3.3 Comparing Lagrangian and Eulerian formulations of
Oowsl

The first experiment compares the Lagrangian model run shown in Chapter 2
to an equivalent Eulerian simulation. Ocean Weather Station India is an ideal
location in which to examine potential differences between Eulerian and
Lagrangian model implementations, due to the clear seasonal cycle of
nutrients and phytoplankton, lack of a sub-surface chlorophyll maximum, and
deep mixed layer, which is observed to reach depths of over 500m. The first
experiment compared the seasonal cycles of integrated chlorophyll biomass,
and the average chl-to-carbon ratios (averaged per metre in both simulations).
The phytoplankton moved via a random walk algorithm, with the step length
based on the turbulent diffusivity, which was parameterised based on the
mixed layer depth (prescribed from observations) and the surface wind speed
(based on ERA40 data). A 30 minute time step was used, and the model was
run for 2 spin-up years before data were recorded and plotted. The full

description of the physical and biological model can be found in Chapter 2.
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Figure 46: Seasonal cycles of a) chlorophyll and b) chl:carbon predicted by the Eulerian and

Lagrangian-Eulerian hybrid formulations of the model.

Figure 46 shows that there is little difference between the seasonal cycles of

integrated chlorophyll or averaged chl-to-carbon ratios predicted by each
model formulation. In addition, Figure 46 (b) shows that while each model

does predict seasonal variation in Chl:C, there is little variation between the

Eulerian and Lagrangian models. This was also true for the phytoplankton,

zooplankton and detrital nitrogen biomass in the ecosystem (Figure 47).
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Figure 47: Seasonal cycle of biomass for phytoplankton, zooplankton and detrital nitrogen

biomass in a) the Lagrangian model and b) the equivalent Eulerian model
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Figure 46 (b) shows that there is little variation between the average Chl:C
values, but gives no information about the spread of Chl:C values in the
Lagrangian model. Plotting the individual Chl:C values for 100 randomly
selected individuals, along with the average value, shows the range of chl-to-

carbon ratios over the annual cycle..
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Figure 48: The seasonal cycle of mean values of Chl:C (blue line) with + two standard
deviations (red dashed lines), along with the individual Chl:C values taken from 100,
random individuals (orange crosses). Also shown is the instantaneous relationship
between the individual chl-to-carbon ratios of the phytoplankton particles and the local

irradiance at their depth (b).

Figure 48a shows the range of chl-to-carbon ratios displayed by the super-
individuals. Figure 48b gives a ‘snapshot’ of the relationship between the chl-
to-carbon ratio of the individuals, and the irradiance at their current depth. It is
interesting to note the wide spread of values displayed by phytoplankton
experiencing no irradiance, which could suggest that the phytoplankton are
not acclimating to their irradiance. There are more data points for
phytoplankton experiencing lower irradiances, as phytoplankton are more
likely to experience lower irradiances than higher irradiances, especially over
winter when the mixed layer is deep. However, there is also a relationship
indicated between the irradiance and the chl-to-carbon ratio in Figure 48b,
although, whether this is due to the phytoplankton being fully acclimated at all
times (as suggested by Lande & Lewis (1989)), or whether these differences are
not significant, and the super-individuals have relatively similar properties, due
to the mixing rate being faster than the rate of acclimation (as suggested by
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McGillicuddy (1995)) is unclear. Fortunately, the use of a Lagrangian model
allows for all the properties of the super-individuals to be tracked, and the
trajectory of three, random Sls through the water column, along with their chl-

to-carbon ratios, is shown in Figure 49.
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Figure 49: Seasonal cycle of chl-to-carbon for three randomly selected Sls in the OWS India

model

There is little change in the chl-to-carbon ratio for the Sls in the early and latter
parts of the year, because the lower irradiance and deeper mixed layers mean
that the phytoplankton are continuously close to the maximum chl-to-carbon
ratio. Once the mixed layer shallows and the irradiance increases, the
phytoplankton spend the majority of the time in the euphotic zone, and the
chl-to-carbon ratio shows more variability. | therefore examined one 10-day
section, when the noon irradiance is at its highest, and the mixed layer depth

at its shallowest (Figure 50).
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Comparing Lagrangian and Eulerian formulations of OWSI
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Figure 51 shows that the phytoplankton Sl is acclimating to changes in
irradiance. The chl-to-carbon ratio increases during days where the SI
experiences low irradiance, decreases after days where it has been closer to
surface, experiencing high irradiance, and shows no change during the night,
when there is no irradiance. The rate of change of chl:carbon is a function of
the growth rate, so at night, when there is no irradiance, there is no
photosynthesis, so therefore, no change to the chl-to-carbon ratio. This can be
seen in Figure 51 as the horizontal sections of the red line representing the

chl-to-carbon ratio.

It appears, then, that the phytoplankton are acclimating to their ambient
irradiance, and, consequently, display a wide range of photoacclimative
properties, but that the average of these properties does not differ greatly
from the predicted average chl-to-carbon ratio in the Eulerian model.
Performing a full sensitivity analysis can help to understand the rate at which
phytoplankton acclimate, what affects this rate, and how changes to the rate of
photoacclimation affect the ecosystem as a whole. However, analysing the full
model has several complications: firstly, the loss of super-individuals through
detrainment when the mixed layer shallows can make tracking an individual SI
difficult, secondly, understanding the sensitivity of the model to factors such
as irradiance and mixed layer depth is complicated when using a seasonal
cycle of forcing, and finally, the constant fluctuations of mixed layer depth and
irradiance mean that it is not possible to achieve steady-state values which can
then be compared to predicted steady-state values. For this reason, the
analysis was first performed on a fixed-slab version of the model, using a
constant mixed layer depth and surface PAR, in order to get a clear picture of
how each component reacts, before performing the same analysis on the full

model.

3.4 Sensitivity analysis of the fixed-slab model

This section demonstrates how external forcing, such as the mixed layer
depth, the surface irradiance and its attenuation through the mixed layer, and
the mixing rates affect the model predictions of phytoplankton pigment and
biomass. This is achieved by running the fixed slab model to steady state,

under a range of different scenarios. The use of a Lagrangian model allows
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investigation of, not only the integrated pigment and biomass, but also their

vertical profiles, and super-individual chl-to-carbon ratios.

3.4.1 Steady-state averaged biomass, production, and chl-to-carbon

ratios

The first scenario investigated the response of the model predictions of
average chlorophyll biomass and chl-to-carbon ratios to changes in the mixing
rate. This involved running a fixed slab model to steady state using a range of
values for the turbulent diffusivity. The rate of mixing only affects the
movement of the phytoplankton through the mixed layer - everything else (i.e.
nutrients, zooplankton and detritus) is assumed to be fully mixed at all times.
The phytoplankton move via a random walk that is parameterised based on the
vertical diffusivity coefficient, K _ , which is proportional to both the depth of
the mixed layer, and the strength of the surface wind speed. The mixed layer
was assumed to be constant for these simulations (100 m), so changes to the
mixing rate represent differing surface wind speeds. A range of different
speeds, from 0.01 m s’ up to 100 m s (to put these wind speeds in context -
the surface wind speed averages for OWSI range from~7 ms'to~11 ms”),
was investigated. Super-individual division was included in all of the model
runs, and the temperature (in order to determine the maximum rate of
photosynthesis, V,, was setto 10°C (V, = 3.79 g C (g Chl") h"). The surface
irradiance was assumed to be constant throughout the simulation - i.e. no diel
or seasonal cycle - and was set to 200 W m?. An Eulerian fixed-slab model was

also run using the same conditions, for comparison.
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Figure 52: Steady-state predictions of a) chlorophyll and b) Chl:Carbon for the Eulerian and
Lagrangian versions of a fixed-slab model, under different mixing regimes. The mixing
rates were based on wind speeds of 100 ms’, 10 ms’, 1 ms', 0.1 ms’, and 0.01 m s’,
which resulted in turbulent diffusivity coefficients of 4¢10', 4¢102, 41073, 4¢10% and 4¢10°

m? s’ respectively. Light attenuation is based on Anderson (1993).

Each simulation was run for a year, after reaching equilibrium, and Figure 52
shows this final year of data. The first observation is that decreasing the
mixing rate increases the predicted integrated chlorophyll biomass. This does
not appear to be a result of the chl-to-carbon ratios, because, as shown in
Figure 52b, the slowest rate of mixing has the highest predicted chlorophyll
biomass, but the predicted average chl-to-carbon ratio does not differ from
that predicted by the Eulerian model. The increase in chlorophyll biomass is a
result of the vertical profile of phytoplankton that develops in the mixed layer,
when the rate of mixing is decreased. Slower moving super-individuals have
more time to grow in areas of high irradiance, and, conversely, more time to
decline in areas of low irradiance, resulting in the profiles of biomass and

pigment-to-biomass ratios shown in Figure 53.
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a) Chl biomass profile b) Nitrogen biomass profile c) Chl:C profile
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Figure 53: Vertical profiles of a) Chl biomass, b) Nitrogen biomass and c) Chl:C for the

mixing regimes show in Figure 52
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Figure 54: Vertical profiles of a) Chl-specific N production and b) N-specific N production for

the mixing regimes shown in Figure 52

The vertical profile of chl-to-carbon shown in Figure 53¢ shows several

important features:

1. The phytoplankton in the simulations with higher mixing rates show no
variation of chl:carbon with depth. This is because these well-mixed
phytoplankton never have time to acclimate to the irradiance at any one
depth, and therefore every individual acclimates to the average
irradiance in the water column (technically the average irradiance in the

euphotic zone - see section 3.4.2).
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2. Decreasing the mixing rate decreases the chl-to-carbon ratio near the
surface. A decrease in the mixing rate increases the length of time the
phytoplankton near the surface have to acclimate to the higher
irradiance. At the same time, the phytoplankton lower down in the water
column have more time to acclimate to the lower irradiance, resulting in
the increase in chl-to-carbon ratio observed (apart from when the mixing
rate is decreased to a wind speed of 0.01m s - see below)

3. Below ~40m, all simulations show little variation in chl-to-carbon ratios
with depth. Changes to the chl-to-carbon ratio are a function of the
growth rate, so once most of the irradiance has been attenuated, the
chl-to-carbon ratio remains constant, because respiration affects both
chlorophyll and carbon stores at the same rate, so has no effect on their
ratio

4. Simulations with decreased mixing rates initially show an increased chl-
to-carbon ratio in the lower portion of the mixed layer, until the mixing
rate is decreased to the lowest value investigated (based on a wind
speed of 0.01 m s”), at which point chl:carbon in the lower portion of
the mixed layer falls to a value closer to that predicted by the models

with the high mixing rates.

This final point initially seems counterintuitive: decreasing the mixing rates
increases the surface phytoplankton biomass, which should result in less
irradiance reaching those deeper in the water column, where the chl-to-carbon
ratios would be expected to increase. However, chlorophyll production is

scaled relative to nitrogen production using the equation:

nuP,SI

Opg - ISI,Z 'echz,SI

R _ Ochl .

chl ,SI — Y'max

(3.5)

This represents the balance between the rate of production, u, g, , and the

instantaneous light harvesting capacity of the phytoplankton, «, -1 -6, - If

»Z

the achieved rate of photosynthesis is less than the current potential

maximum, then R decreases, reducing the rate of chlorophyll production in

chl SI
relation to nitrogen production, and therefore there is a decrease in the chl-to-
carbon ratio. Therefore, increasing a variable in the denominator of the

fraction (i.e. irradiance), will decrease the calculated R and decrease the

chl,sP’
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ratio of chl-to-carbon. However, the phytoplankton production, u,, , is also a

function of the average concentration of nutrient (DIN) in the mixed layer. An
increase in the steady-state prediction of phytoplankton biomass results in a
decrease in the steady-state concentration of DIN, which reduces the achieved
rate of production. The steady state values for DIN for the simulations in
Figure 52:Figure 54 are shown in Figure 55. The maximum potential rate of
photosynthesis shown in eq. (3.5) is based on no nutrient limitation, so a
simulation with a lower concentration of DIN will have a lower achieved-to-
maximum rate of photosynthesis, which will result in a lower value for R, and

a decreased rate of chlorophyll production in relation to nitrogen production,

which will lower the overall chl-to-carbon ratio.

14
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Figure 55: Steady-state DIN concentrations for the simulations shown in Figure 52:Figure 54

Although the above plots give some idea as to the steady-state predictions of
both the integrated and vertical profile of chl-to-carbon ratios, there is still not
enough information about the rates of acclimation, and whether they reach the
predicted, optimal steady-state chl-to-carbon values. As previously mentioned,
one advantage of using an existing Eulerian model for this study, is that it
allows for mathematical analysis of the model. It is possible to solve the

growth equations for the condition of balanced growth in order to produce a
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predicted relationship between irradiance and chl:carbon (steady-state solution

provided by Prof. T. Anderson):

chl
VP emax (3 . 6)

0
(Vp2+oc,,2 -12)0‘5

chl =

This gives a predicted steady state value for 8., for any value of /, which can

be compared to the predictions of 8., for super-individuals, under different

mixing regimes. If the phytoplankton were responding as expected, then

running a simulation with no mixing (stationary phytoplankton) should result

in the phytoplankton acclimating to the values predicted by eq. (3.6), which

would provide a good test that the model was behaving as it should. However,

in order to do this, | had to modify the model in several ways:

1.

Removal of nitrogen dependence. The steady-state chl-to-carbon
equation (3.6) uses the maximum rate of photosynthesis, V,, so in
order to be able to compare the model predicted values with the optimal

values, there has to be no nutrient limitation

. Change to the attenuation model. The Anderson (1993) attenuation

model splits the water column into three regions (Om to 5m, 6m to
23m, and <23m), and calculates the attenuation coefficient for each
region, based on the chlorophyll concentration. However, these
coefficients are calculated using polynomial expressions, which, in
Anderson (1993) are tested using chlorophyll concentrations up to 16
mg m>=. Running a fixed-slab model with stationary phytoplankton (i.e.
no mixing) results in unrealistically high levels of chlorophyll
concentrations (>50 mg m-3), which are outside the useable limits of
these polynomials. Therefore, the coefficients were assumed to be
constant above a concentration of 16 mg m?(i.e. if the chlorophyll
concentration at a particular depth exceeded 16 mg m?, the coefficient

was calculated using a value of 16 mg chl m?).

In addition, some of the experiments involve changing the turbidity of
the water in a quantifiable manner, and for that a simpler light

attenuation model (as in Evans et al. (1985)) was implemented:

k,, =k, +k P (3.7)

conc
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where k represents the light extinction coefficient, k the background
turbidity, and k_the attenuation due to phytoplankton (self-shading).
This calculates attenuation based on the average concentration, rather
than the concentration at each depth in the mixed layer, and the effect
of this light attenuation model on the entire ecosystem is fully explored

in section 3.6.1.

. Changes to the mortality. As described in the Chapter 2, phytoplankton
losses through grazing and the non-linear mortality rate are calculated
using the average biomass (mmol N m?) in the mixed layer, rather than
the biomass contained within each super-individual. As the biomass
contained in one individual increases, the average phytoplankton
biomass in the water column increases, which, in turn, increases the
loss rate. At the same time, the smaller individuals are effectively
reducing the loss rate in relation to the larger individuals, meaning that
there is less grazing pressure on larger super-individuals. This creates a
positive feedback effect, ensuring that the largest individuals keep
increasing in size, whilst the smallest keep decreasing, until all of the
phytoplankton biomass is effectively contained in one super-individual.
Allowing the super-individuals to divide into 2 super-individuals, each
contained half the biomass of the original, alleviates this problem in the
full model, however, this does not work with a model with no mixing. If
there is no phytoplankton movement, then each 1-metre layer is
analogous to one super-individual, as the biomass contained within the
layer is the same, regardless of how many super-individuals it is divided
between. Therefore, the mortality was applied to each individual, using

a simple quadratic equation:
My :mPPs12 (3.8)

where m_ = 0.3 d', which was a value chosen in order to allow the
simulations to reach steady-state, without resulting in excessive levels of

chlorophyll and nitrogen biomass.
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3.4.2 Relationship between the mixing rate and individual chl-to-carbon

ratios: random walk movement rules

In order to attain a picture of how well acclimated the super-individuals were to
their local irradiance at any one point during the simulation, | plotted the chl-
to-carbon ratios of super-individuals against the irradiance at their current
depth, and compared these points to the steady-state predictions obtained
using eq. (3.6). As explained previously, the model used was a simplified
version of the fixed-slab model, with no dependence of photosynthetic rate on
DIN concentration, and with the non-linear mortality calculated for each super-
individual, based on its biomass. A simple quadratic equation (eq. (3.8)) was

used for mortality (M_), and both linear mortality and grazing were neglected.

The first set of simulations focussed on the relationship between the rates of
mixing and photoacclimation. A range of mixing rates was investigated, based
on wind speeds of 100m s', TOm s’, Tms’, 0.1m s, 0.0Im s', and O m s (i.e.
= 410", 4107, 4°10°,

4¢10* 4+10° and 0 m? s, respectively. For comparison, the study by

no mixing), which correspond to diffusivities of K
McGillicuddy (1995) used mixing rates based on turbulent diffusivities of 0.01
m? s’ and 4.64m? s”, and Lande et al. (1989) investigated a single value of 0.01
m? s’ . Increasing the diffusivity coefficient beyond 4¢10" m? s did not result
in any further changes to the steady-state predictions, as the rate of mixing
was high enough to ensure that the phytoplankton were evenly distributed at

all times.
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Figure 56: The relationship between irradiance and Chl:C for 100 super-individuals using a
range of mixing rates. The red line shows the predicted steady state value, using equation
(3.6), the red dot shows the predicted Chl:C based on the average irradiance in the water
column, and the yellow dot shows the predicted Chl:C based on the average irradiance in

the euphotic zone (surface to 1% of surface irradiance).

Figure 56 shows how far the chl-to-carbon ratio of each super-individual is
from the predicted steady-state value for its current irradiance. Each blue circle
represents the chl-to-carbon ratio and current irradiance of a single SI. The red
line represents the predicted, steady-state relationship between chl:carbon and
irradiance, using equation (3.6). If an individual Sl is currently fully acclimated
to its irradiance, then it will fall on the red line. If the model is responding in a
predictable fashion, then removing the mixing should result in all
phytoplankton achieving the predicted steady-state values of chl:carbon, which
can indeed be seen in Figure 56a).
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Several important observations and questions highlighted by Figure 56 are:

1. There appears to be little acclimation to the local irradiance until the
=4¢10"m?s")

2. For diffusivities of 4¢10° m? s and above, the range of chl-to-carbon

wind speed falls to 0.1 ms' (K
ratios decreases with increasing mixing rates

3. The phytoplankton in scenarios with wind speeds of 1 ms" (K = 4e?
m? s') and above, show no correlation between chl-to-carbon ratio and
irradiance, although they exhibit a wide range of values for Chl:C.

e There are two values of Chl:C also shown in the plots: the red circle,
which corresponds to the predicted steady-state chl-to-carbon ratio for
the average irradiance in the mixed layer, and the yellow dot, which
shows the predicted steady-state chl-to-carbon ratio for the average
irradiance in the euphotic zone (taken as stretching from the surface to
the depth at which the irradiance falls to 1% of the surface value). The
average acclimation appears to be closer to the value suggested by the
irradiance in the euphotic zone. This is because changes to the ratio of
chl-to-carbon depend upon phytoplankton growth - chlorophyll
production is increased or decreased relative to nitrogen production. If
there is no irradiance, then there will be no production, and the ratios
will be unaffected. Therefore, when the phytoplankton are in complete
darkness, then their chl-to-carbon ratios will remain fixed at the same

value, until they move back into the light.

Although these plots show the relationship between the instantaneous rates of
acclimation, they don’t provide information about how the previous history of
irradiance has impacted on the current chl-to-carbon ratios. This can be
illustrated by plotting the trajectory of irradiance exposure against the chl-to-
carbon ratio of a random super-individual, and then comparing this to the
optimal chl-to-carbon ratio for each plotted irradiance point, as predicted by

equation (3.6).
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Sensitivity analysis of the fixed-slab model
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Figure 57: The trajectories of irradiance and depth followed by a single super-individual
over the course of 10 days, along with the resulting chl-to-carbon ratios. Also shown are
the predicted, steady-state chl-to-carbon values for each irradiance experienced by the
super-individual.

Figure 57 illustrates more clearly what is happening in Figure 56. As the rate of
mixing decreases, the changes in irradiance decrease, and the phytoplankton
have time to acclimate to their local light field. The timescales of acclimation

seem to be on the order of days, rather than hours, for example, in Figure 57d,
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the predicted steady state chl-to-carbon ratio is never reached, even when the
irradiance has changed very little over a number of days. However, the
phytoplankton do appear to be acclimating towards the steady-state chl-to-
carbon ratios, which would explain the range of chl-to-carbon values shown in
Figure 56. The time necessary for the phytoplankton to fully acclimate to their
irradiance can be seen in Figure 58, which shows the specific change in chl-to-
carbon (6., ,,) ratio each time step (30 minutes), for a single super-individual
at different constant irradiances, assuming no nutrient dependence. This is
calculated for each individual, by dividing the absolute change in chl-to-carbon

ratio, by the chl-to-carbon ratio at the beginning of the time step. This is then

averaged out over the entire population.

Full acclimation takes on the order of 8-10 days, although most of the

acclimation is complete in 5 days.
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Figure 58: Specific rate of change of chl-to-carbon, GCMSP , under different irradiances,
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3.4.3 Relationship between the mixing rate and individual chl-to-carbon

ratios: random position movement algorithm

Next, the rates of acclimation in a simulation using the random position
movement algorithm were investigated. As stated in Chapter 2, the mixing rate
in the random position model of movement is a function of the time step, as
that is the implied time taken for a super-individual to move from the surface
to the base of the mixed layer. There were four different time steps
investigated: 1 min, 30 minutes, 300 minutes, and 1000 minutes. Using the
method to estimate the diffusivity described in Chapter 2 gives values of K =
20.8m?s’, 0.7m?s', 0.07m? s, and 0.02m? s, respectively. Decreasing the
mixing rate should result in the chl-to-carbon ratios falling closer to the

theoretical values calculated by equation (3.6).
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Figure 59: The relationship between irradiance and Chl:C for 100 super-individuals using
the randomisation movement, with differing time steps. The red line shows the predicted
steady state value, using equation (3.6). Time steps correspond to estimated diffusivities of
a) 20.8m? s, b) 0.7m? s, ¢) 0.07m? s, and d) 0.02m? s™.

The results shown in Figure 59 are inconclusive. Increasing the time step (and
therefore decreasing the rate of mixing) does not result in any visible
individual acclimation (i.e. the blue circles do not fall on the red line). However,
the minimum estimated mixing rate - for the time step of 1000 minutes - was
0.02m? s, which would not be low enough to cause significant acclimation in
the random walk model, where visible acclimation was not seen until the
mixing rates fell to < 4¢10° m? s'. Unfortunately, increasing the model time
step beyond 1000 minutes moved the model outside of its workable

boundaries. Therefore, in order to investigate estimated rates of mixing that
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are comparable to those used with the random walk movement algorithm in

Figure 56, the simulation was run again, but for a shallower mixed layer of

10m. Using a shallower mixed layer depth meant that the phytoplankton were

assumed to be moving a shorter distance each time step, so that the calculated

diffusivities for each time step length were lower. In order to make sure that

the phytoplankton were exposed to a wide range of irradiances within such a

shallow depth, the Evans and Parslow model of light attenuation was used,

with the background attenuation coefficient, k , increased from the standard

value of 0.04m™",

0.025 T

to 0.4m".
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Figure 60: The relationship between irradiance at Chl:C for 100 individuals in a simulation

using the random position movement algorithm, for a mixed layer depth of 100m, a surface

PAR of 200 W m?, and a background attenuation coefficient, kw = 0.4 m". Four different time
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steps are investigated: 1 min, 30 mins, 300 mins and 1000 mins, which correspond to

estimated diffusivities of 2¢10'm? s, 7¢10°m? s’, 7¢10“m? s, and 2¢10*m? s, respectively.

Decreasing the mixing rate results in a small increase in the range of chl-to-
carbon ratios, but not to the same extent as in the simulation using the
random walk model. This is because there is no correlation between each step
taken by the phytoplankton. For this reason, the mixing rate estimated for the
random position model, from the depth of the mixed layer and the time step,

is not comparable to the mixing rates of the random walk model.

3.44 Relationship between the mixed layer depth and the individual
chl-to-carbon ratios

The next set of simulations was designed to see whether there is a relationship
between the depth of the mixed layer and the chl-to-carbon ratios of the super-
individuals. Again, the super-individuals were simulated in the simple fixed
slab model, although this time, using a range of different mixed layer depths,
and a constant mixing rate, based on a wind speed of 10 m s'. Changing the
depth of the mixed layer also results in a change to the turbulent diffusivity, as
described in Chapter 2.
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Figure 61: The relationship between irradiance and Chl:C for 100 super-individuals using
the random walk movement, with differing mixed layer depths. The red line shows the
predicted steady state value, using equation (3.6), the red dot shows the predicted Chl:C
based on the average irradiance in the water column, and the yellow dot shows the
predicted Chl:C based on the average irradiance in the euphotic zone (surface to 1% of

surface irradiance).

The diffusivities used in Figure 61 are based on the standard settings: a
surface wind speed of 10 m s’ and the depth of the mixed layer. Mixed layer
depths of 10m, 50m, 100m, 250m, 500m, and 1000m correspond to
diffusivities of 4103 m? s, 2¢102 m?s’, 4¢102m? s, 210" m? s, 210" m? s,
and 4¢10' m? s, respectively. The range of values of Chl:C observed in the
phytoplankton super-individuals is low when the mixed layer is 10m deep, but
then increases until the mixed layer is 100m deep. Once the mixed layer
deepens beyond 250m, this range decreases again. This is to do with the

irradiance conditions experienced by the phytoplankton in each mixed layer.
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When the mixed layer is only 10m deep, the range of irradiances experienced
by the phytoplankton is low, because the light is only attenuated over 10 m.
The maximum range of irradiances experienced by the phytoplankton will be
achieved once the mixed layer depth has deepened to include the entire
euphotic zone. However, deepening the mixed layer significantly beyond this
depth means that the phytoplankton will spend the majority of their time in the
dark. This means that, on average, they will spend less time in the euphotic

zone, and will have less time to acclimate to the irradiance.

Figure 61 also clearly demonstrates the difference between the average
irradiance in the euphotic zone, and the average irradiance in the entire mixed
layer. Even though the average irradiance in the mixed layer is very low, and
the predicted steady state chl-to-carbon ratio is very high (red circle), below the
euphotic zone, the phytoplankton are not photosynthesizing, and are therefore
also not producing chlorophyll, so there is no change to their chl-to-carbon
ratios. The average values of chl-to-carbon ratios displayed by the
phytoplankton is therefore dependent on the average irradiance in the
euphotic zone (predicted steady-state chl-to-carbon shown by the yellow

circle).

3.4.5 Relationship between the light attenuation and the individual chl-

to-carbon ratios

The final simulations looked at how the rate at which irradiance is attenuated
through the water column affects the chl-to-carbon ratios of the super-
individuals. In order to increase the turbidity of the water in a quantifiable
manner, the Evans and Parslow light attenuation model was used, with
increasing levels of background turbidity. Three different values were
investigated: k = 0.08m", 0.16m", and 0.32m". The simulations were run in a
100m deep mixed layer, with a constant surface PAR of 200 W m?, and

assuming nutrient replete conditions (i.e. no nutrient limitation term).
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Figure 62: The relationship between irradiance and Chl:C for 100 super-individuals using
the random position movement, for different levels of background attenuation,

representing increasingly turbid conditions.

The range of chl-to-carbon ratios was not sensitive to the background
attenuation. This is because changing the attenuation does not affect the
range of irradiances experienced by the phytoplankton - 100 m is deeper than
the euphotic zone for all cases, so each scenario involves a range of values

from 200 W m? at the surface, to 0 at the base of the mixed layer.

3.4.6 Determining the timescale between photoacclimation and mixing.

The timescales for acclimation are shown to be on the order of 7-10 days
Figure 58. However, this is the time taken for a phytoplankton to fully

acclimate to a constant irradiance, a situation that is unlikely to occur in the
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ocean, where the surface irradiance is constantly fluctuating. Therefore, the
effect of the degree of correlation between steps on the time taken for

acclimation was investigated, by simulating two extreme scenarios:

1. A simple trajectory with a strong correlation between each step. A single
super-individual was exposed to an irradiance level that oscillated
between 0 and 200 W m?. The irradiance increased by T W m?, until a
value of 200 W m? was reached, at which point it started to decrease.
The irradiance increased or decreased by 1 W m? every n time steps,
using time steps of 1 minute. The value of n was then increased, until
the chl-to-carbon ratios shown by the super-individual matched those

predicted by the steady-state equation.

2. The second simulation was designed to represent a simulation using the
random position movement algorithm, where each irradiance has no
relationship with previous levels of irradiance. The irradiance
experienced by the super-individual was updated using a randomly

selected value between 0 and 200 W m? every n time steps.

The aim was to estimate the length of time necessary for an individual to
acclimate to any changes in its irradiance field, for both a highly correlated
trajectory and one with no correlation between steps (random position
movement). Both movement rules were investigated, to show the rates of
acclimation in models where the individuals move in small increments (i.e.
random walk), so that the current chl-to-carbon ratio would be influenced by
the history of irradiance, and also in models where the changes in irradiance

were sudden and random (i.e. random position).

121



50 mins - 100 mins

0.020 - , 0.020 -
__ 0018} —— Model 0.018}
N 0.016 | ; 0.016 -
g o014t Optimal 0.014}
o 0.012f 0.012}
£ 0.010 0.010}
3] o.oosk 0.008 )
5 0,006\ N\ \ ) 0.006 | /
0.004 |~ S o a 0.004 |-
0.002 s . ‘ s . 0.002 . . s s
0 10 20 30 40 50 0 10 20 30 40 50
0.020 - 200 mins (3.3 hrs) - 0,020 - 400 mins (6.7 hrs)
__ 0018 0.018
N 0.016 0.016
g 0.014 0.014
o 0.012 0.012
£ 0.010 0.010
O 0.008 0.008
= 0.006 0.006
© 0.004 0.004
0.002 s L ‘ s . 0.002 ‘ . . )
0 20 40 60 80 100 0 50 100 150 200
0.020 - 600 mins (10 hrs) 0.020 - 800 mins (13.3hrs)
0018} 0.018}
o 0.016 | 0.016 |
g 0014} 0.014}
o 0.012f 0.012}
£ o010} 0.010}
L 0.008} 0.008 |
5 0.006 E 0.006 i
0.004 0.004
0.002 ‘ 0.002 ‘ ‘ . . . . . )
0 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (days) Time (days)

Figure 63: A single phytoplankton super-individual exposed to a series of irradiances,
whilst oscillating between the surface and the base of the mixed layer. The irradiance
starts at 200 W m-2, and is then decreased by 1 W m-2 every n time steps until 0 W m-2 is
reached, at which point it is increased by 1 W m-2 every n time steps (n = 50, 100, 200, 400,
600, 800). The chl-to-carbon ratio predicted by the model (blue line) is then compared to the
calculated steady-state chl-to-carbon ratio for each irradiance (orange line). MLD = 100m
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Figure 64: A single phytoplankton super-individual exposed to a series of irradiances,
designed to represent a random position movement. The irradiance is updated every n time
steps (n = 7500, 10000, 12500, 15000) to a random value between 0 and 200 W m-2. The
chl-to-carbon ratio predicted by the model (blue line) is then compared to the calculated
steady-state chl-to-carbon ratios for each irradiance (orange line). MLD = 100m, time step =

1 minute

Figure 63 and Figure 64 suggest that phytoplankton in a model using realistic
rates of mixing, are unlikely to ever be fully acclimated to their irradiance.
Even though the phytoplankton in Figure 63 are showing significant
acclimation after only 50 minutes under each irradiance, their ambient
irradiance is only changing a small amount (1 W m?) every 50 minutes, so little
change is needed to acclimate to the new irradiance. At the other end of the
scale, the phytoplankton using the random position model (Figure 64) require
250 hours (~10 days) to acclimate to every change in their ambient irradiance.
Phytoplankton in the ocean are being constantly mixed through fluctuating
irradiance levels, that depend not only on their depth in the ocean, but also on
the annual and diel cycles of irradiance. It seems unlikely that there will be
significant differences in phytoplankton photoacclimative properties resulting
from differences in their irradiance histories. Photoacclimation is still

important seasonally, but can be adequately captured through the use of an
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Eulerian model. However, Figure 52 shows that steady state predictions from
fixed slab Eulerian and Lagrangian models do diverge with wind speeds of less
than 1 m s, suggesting that there is a mechanism causing model divergence
under lower mixing regimes. In the next section, | propose and provide
evidence for an alternative hypothesis for the cause of differences between
Eulerian and Lagrangian phytoplankton models, based on the vertical profile of

phytoplankton biomass.

3.5 The relationship between growth and mixing rates:

vertical phytoplankton profiles

The previous section has demonstrated that the rates of acclimation are slow -
on the order of days, rather than hours - and, as a consequence, low rates of
mixing are necessary to result in the phytoplankton developing a range of chl-
to-carbon ratios. However, it is not clear whether differences in the range of
chl-to-carbon ratios displayed by the super-individuals results in differences to
the overall rates of primary production. The model predicts that decreasing the
mixing rate increases the overall steady state values of chlorophyll, but it also
shows a strong vertical profile of phytoplankton, which would result in an

increase in production.

Determining how much of the increase in production can be accounted for by
the vertical profile of phytoplankton can be achieved by calculating the
distribution of phytoplankton in the Lagrangian model, and then simulating
the same distribution in an Eulerian model. A fixed slab model with a mixed
layer depth of 100m, and a surface irradiance of 200 W m?, using a range of
different mixing rates (as in section 3.4.1) results in different relationships

between the chl-to-carbon ratios and the irradiance (Figure 65).
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Chapter 3: Modelling growth and acclimation in Lagrangian phytoplankton
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Figure 65: The relationship between the individual chl-to-carbon ratios for 100 super-
individuals and their local irradiance, for a fixed slab simulation where H = 100m, surface
PAR = 200 W m?
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Figure 66: Steady state predictions of chlorophyll for the simulations shown in Figure 65
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Figure 65 shows that changing the mixing rate changes the relationship
between the local irradiance of a super-individual, and its current chl-to-carbon
ratio. The steady-state chlorophyll predictions for each of the mixing rates
depicted in Figure 65 are shown in Figure 66, and it is clear that decreasing

the mixing rate increases the steady state values.

Reducing the mixing rate allows phytoplankton to remain at, or close to, one
depth for longer. This means that phytoplankton near the surface can grow for
longer, and those deeper in the water column stay in conditions unsuitable for
growth longer, and so decline more. The resulting vertical profiles for the 3

reduced mixing rates, K __ = 4+10°m?s’, 410" m? s’ and 4¢10° m? s", are

b

shown in Figure 67.
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Figure 67: Steady state vertical chlorophyll profiles for a 100 m deep mixed layer, a

constant surface irradiance of 200 W m?, and 3 different mixing rates

These profiles can be estimated using a four-parameter shifted Gaussian
model, as described in Platt et al. (1988). This model uses four parameters to

describe the shape of the chlorophyll profile: the background chlorophyll
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concentration (B, mg m?), the total chlorophyll concentration beneath the

curve (h, mg m?), the width of the peak (g, mg m?), and the depth of the
chlorophyll maximum (z , m).

h
—_— 3.9
G\/27‘Ee (3.9)

L

Depth (z)

Y

Figure 68: A shifted Gaussian curve showing the four parameters (B, h, 0 and Z ) used to
describe vertical chlorophyll profiles. Redrawn from Platt et al. (1988)
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Figure 69: Relative chlorophyll distribution predicted by the steady state model, compared
to the fitted function (see text). Parameter values: B = 0.0 mg m*, h =103, 110, 155 mg m?,
o=5.6,13.0,34.0 mg m? and Z =15,16,10 m for Kturb = 4¢10%,4¢10%, 4°10° m? s,

respectively.

Figure 69 shows the shifted Gaussian curves fitted to the relative chlorophyll
distribution predicted by the fixed-slab model, run to steady state, under the 3
different mixing rates. The function of this curve can be used as a shape

function, S_ , to modify the calculation of the new production, P, throughout

Chl

the mixed layer:

(3.10)

z=0
o, -1(2)-V,
ZPCZ I Scm(z)'ecm' 2P 3 PT2 05
z=mld (VPT +o," - 1(2) )

The full explanation of the terms in these equations can be found in Chapter 2.
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Figure 70: The steady state predictions of chlorophyll biomass for the Eulerian and
Lagrangian formulations, and also the prediction from the Eulerian model with the vertical

distribution applied (fixed Eulerian model).

Figure 70 shows the ‘fixed’ Eulerian model predictions of steady state
chlorophyll for each of the three mixing rates. It demonstrates that the
difference between the Eulerian model and equivalent Lagrangian simulations
using moderate to low mixing rates can be accounted for by the vertical profile
of phytoplankton, thus indicating that individual differences due to
photoacclimation have little or no impact on the overall rates of primary

production.

3.6 Sensitivity analysis of the full ecosystem

The previous sections (3.4 and 3.5) have demonstrated the relationship
between the mixing rates and both the individual chl-to-carbon ratios of the
phytoplankton, and their vertical distribution through the mixed layer. In this
final section, the response of the seasonal cycle of chlorophyll and chl-to-
carbon to changes in the mixing rates, the choice of the light attenuation
model, the mixed layer depth, and the surface irradiance are investigated,
using the full OWS | model.
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3.6.1 Mixing rates and choice of attenuation model

The random walk algorithm is parameterised using the vertical turbulence
diffusivity, K, as described in Chapter 2. This is a function of both the depth
of the mixed layer, and the surface wind speed, which follows a sinusoidal
function based on 5 year averaged ERA 40 data. To investigate the response of
the ecosystem to changes in the mixing rate, the surface wind speeds were
decreased by increasing orders of magnitude. The values on the plots show
the average annual wind speeds for each model run - each simulation still
employed the seasonal cycle of wind speed shown in Chapter 2, but the daily
values were decreased by a scaling factor (i.e. 10, 100 and 1000, which
resulted in average annual wind speeds of 1 ms', 0.1 m s’ and 0.01 m s”,
respectively). The simulation was run for both light attenuation models: the
Anderson (1993) model, which calculates attenuation for each metre,
depending on the chlorophyll above each depth, and the Evans and Parslow
(1985) model, which calculates attenuation based on the average

concentration of phytoplankton in the entire mixed layer.
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Figure 71: Seasonal cycle of averaged chlorophyll biomass for Lagrangian models with a
range of wind speeds. Light attenuation using Anderson (1993). Wind speeds shown are the

average values for the seasonal cycle over the year.
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b) Chl-to-carbon ratios

a) Chlorophyll 0.018 -

»
o

— 10 m s-1 (standard)
1 ms-1 0.016
— 0.1ms-1
, — 0.01ms1 0.014}
i - - Eulerian

w
w

g
o
T

~ 0.012

N
€]
T

€ 0.010}

N
o
T

9

7 0.008

Chl (mg m-3)
C

=
w
T

0.006 |-

=
o
T

0.004 -

Chl:C (m g

o
¢

0.002 +

0.0 =— . 1 1 1 - 0.000 1 1 . 1 1 1 1
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Day of year Day of year

Figure 72: Seasonal cycle of averaged chlorophyll biomass for Lagrangian models with a

range of different wind speeds. Light attenuation using Evans and Parslow (1985).

Figure 71 and Figure 72 show that a decrease in the rate of mixing results in
an increase in the predicted chlorophyll over winter, and a decrease in the
magnitude of the peak of the spring bloom for both types of light attenuation
model. The reduction in the rate of mixing results in a strong vertical profile of
phytoplankton (profiles are shown in Figure 73 and Figure 74), with a greater
concentration of phytoplankton being located in the region of the mixed layer
that is the most conducive to growth (i.e. not enough irradiance for
photoinhibition to occur, but sufficient for both a high level of chlorophyll
production and light fixation). This results in a higher overall rate of
production, which explains the high level of chlorophyll over winter, compared
to the standard model, where the chlorophyll falls close to zero over winter. In
addition, changing the mixing rates appears to have little effect on the average
chl-to-carbon ratios for all cases, except the simulation using the Anderson
(1993) light attenuation model under a mixing rate based on a surface wind
speed of 0.01 m s”, which shows a significant decrease in the average chl-to-
carbon ratio over summer. The reason for this decrease is explained in section
3.4.1: chlorophyll production is downgraded when the achieved rate of
photosynthesis is less than the light-harvesting capacity. Reducing the mixing
rate results in a higher rate of production earlier in the year, which lowers the
concentration of DIN, and therefore reduces the rate of photosynthesis. A
reduction in the reduced rate of photosynthesis reduces the amount of

chlorophyll production, even at low irradiances, because it reduces the ratio
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between the achieved rate of production and the light-harvesting capacity of

the phytoplankton individual.
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Figure 73: Average vertical profiles of phytoplankton nitrogen, chlorophyll and chli-to-
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Figure 74: Average vertical profiles of phytoplankton nitrogen, chlorophyll and chli-to-

carbon ratios for day 150:250 for the simulations using the Evans and Parslow (1985)
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The choice of light attenuation model clearly has a large effect on the vertical

structure of the phytoplankton for scenarios with low to moderate mixing. In

order to accurately represent phytoplankton growth in low to moderate mixing

rates, the light attenuation model should therefore take account of the
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phytoplankton biomass at each depth, rather than using an average
concentration.
To further test the conclusion in section 3.5 that the change in primary

production under lower mixing rates results from the vertical profile of

phytoplankton, rather than a change in chl-to-carbon ratios, a simulation was

run using a fixed ratio of chl-to-carbon.
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Figure 75: The OWS India simulation using the different cycles of wind speed as in Figure

71:Figure 74 but with a constant ratio of chl-to-carbon (0.01 mg mg"). Light attenuation as

in Anderson (1993)

Figure 75 shows that changing the rate of mixing for a model with
phytoplankton with a fixed chl-to-carbon ratio has a very similar effect on the
predictions of average chlorophyll as for the same model with a variable chl-to-
carbon ratio (Figure 71). This shows that differences in model predictions from
changes to the mixing rate are due to vertical profiles of phytoplankton rather

than photoacclimation in the full model, as well as for a fixed slab version.

3.6.2 Water turbidity

The fixed slab model in section 3.4.5 suggested that there is little relationship
between the range of individual chl-to-carbon ratios and the turbidity of the
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water for the model using the Evans and Parslow light attenuation. The same
simulation was run with the full OWS | model, with the background attenuation
being increased from the standard value of 0.04 m'to 0.08, 0.16 and 0.32 m".
In all cases, the Eulerian and Lagrangian models showed very similar
predictions of both chlorophyll and chl-to-carbon ratios, suggesting that, as for
the fixed slab model, increasing the turbidity of the water does not result in a

increase in the individual variability of the chl-to-carbon ratios.
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Figure 76: Seasonal cycle of chlorophyll in Lagrangian and Eulerian models with different

levels of attenuation (Evans and Parslow attenuation model)
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3.6.3 Surface irradiance

a) Chlorophyll

b) Chl-to-carbon ratios
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Figure 77: Seasonal cycle of a) chlorophyll and b) Chl:C for a simulation with the full
seasonal cycles of mixed layer depth and mixing, but with the surface irradiance held at a

constant value. Anderson attenuation.
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Figure 78: Seasonal cycle of a) chlorophyll and b) Chl:C for a simulation with the full
seasonal cycles of mixed layer depth and mixing, but with the surface irradiance held at a

constant value. Evans and Parslow attenuation.

One point of interest in both Figure 77 and Figure 78, is that the seasonal
cycle of chlorophyll for a constant irradiance of 10 W m? looks very similar to
the seasonal cycle predicted with a seasonally and diel varying irradiance. This
demonstrates the importance of the conditions at the beginning of the year to

the timing and magnitude of the peak of the spring bloom, which is discussed
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in more detail in the next chapter. However, the average irradiance over the
first 50 days of the full OWS India model is ~ 10 W m*, which accounts for the
beginning of the cycle looking the same. After that, the phytoplankton
concentration is controlled by the loss rates, and growth is limited by the DIN
concentrations, so the phytoplankton are not overly affected by increases to

the irradiance at this point.

3.64 Mixed layer depth

In the final simulation, | ran the full OWSI model, but with a fixed mixed layer
depth. The resulting seasonal cycles of chlorophyll biomass showed a slight
difference between the Eulerian and Lagrangian model version, which

appeared to increase with the depth of the mixed layer (Figure 79).
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Figure 79: Predicted seasonal cycle of chlorophyll biomass for OWSI model, using a fixed
mixed layer depth. Solid line shows Lagrangian model, dashed line the Eulerian equivalent.

The mixing rate is constant throughout the simulation (10 m s™)

The increase in divergence between the Eulerian and Lagrangian models with
an increase in the depth of the mixed layer results from the degree to which
the phytoplankton growth is light limited. Section 3.6.3 demonstrated that the
phytoplankton are not light limited over the summer, and that their growth is
controlled by other factors i.e. nutrient concentration and grazing. Therefore,
increasing the mixed layer depth decreases the average irradiance in the
mixed layer, which increases the extent to which phytoplankton growth is

limited by irradiance. The more light limited the phytoplankton are, the greater
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effect a non-uniform distribution of phytoplankton will have, which explains,
the greater divergence between the Eulerian and Lagrangian models when the

mixed layer depth is increased to 500m in Figure 79.

The results in this section show that the results for the fixed slab model
(section 3.4) also hold true for the full OWS India model. The Eulerian and
Lagrangian model implementations will only diverge as a result of a non-
uniform distribution of phytoplankton throughout the mixed layer in the
Lagrangian model, resulting from low mixing rates. In addition, the effect of a
vertical profile of phytoplankton is dependent on the degree to which
phytoplankton growth is limited by the surface irradiance: it will have more
impact at low irradiances, or when the mixed layer is very deep. Variability in
physiology as a result of individual phytoplankton super-individuals
acclimating to their local irradiance, on the other hand, appears to have little
affect on the model output. Even when the individual phytoplankton showed a
wide range of chl-to-carbon ratios, the divergence between the Eulerian and
Lagrangian models could be accounted for by the vertical distribution of

phytoplankton.

In addition, this section has demonstrated the importance of identifying the
correct timescales for models of primary production. For example, for this
model, it appears that growth happens on a timescale much faster than that of
acclimation, and so exerts a stronger control over the response of overall rates
of primary production to changes in turbulence. The timescales of mixing, T,

growth, T, and acclimation, T, can be estimated from:

T, = g, =— T, =— (3.11)
" krurb ¢ Ausp g 9Chl Sp

where u _and 6., represent the average daily specific production (gross) rate,

and specific rate of change in 6, for the super-individuals, respectively.
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Figure 80: The timescales associated with mixing, growth and acclimation for the OWS India

model

Figure 80 shows how close the timescales of growth and mixing are, especially
in the time leading up to the spring bloom. Small changes in the rate of mixing
during this time will have large effects on the vertical structure of the
phytoplankton, which, because growth is light limited, will strongly affect the
rates of primary production. On the other hand, the timescales of acclimation
are much slower than the mixing, and a significant reduction in the mixing
would be required to bring them closer. However, as this would also strongly
affect the growth, it shows that the accurate representation of growth, and the
resulting vertical phytoplankton profiles, is more important than representing

photoacclimation.

It’s important to note that these results do not suggest that photoacclimation
does not have an impact on the rates of primary production. Both the Eulerian
and Lagrangian models demonstrate a clear annual cycle of average chl-to-
carbon ratios in response to the seasonal cycle of irradiance. However, the
results do suggest that photoacclimation impacts overall rates of primary

production on a seasonal, rather than a daily or hourly, timescale.
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3.7 Conclusion

There were three main aims to this chapter: firstly to discover whether there
are any differences between Eulerian and Lagrangian implementations of
phytoplankton models, secondly to understand whether these differences are
due to acclimation, and finally to understand the relationship between

acclimation and mixing rates. The simulations have shown that:

1. Although the phytoplankton in the Lagrangian model do show a large
range of photoacclimative properties, the average chl-to-carbon ratio
predicted does not differ significantly from that predicted by the
Eulerian model.

2. Photoacclimation happens slowly. Phytoplankton do not have time to
acclimate to the ambient irradiance at any particular time, instead they
acclimate to the average irradiance experienced over a longer period of
time (days). In the short term, this results in the range of
photoacclimative properties observed in the Lagrangian model, but also
explains why the average of these does not differ from the those
predicted by the Eulerian model.

3. Divergence between Eulerian and Lagrangian models results from
changes in the vertical distribution of phytoplankton in the water
column, and not from photoacclimation. For this model, this is achieved
by slowing the mixing rate, allowing those phytoplankton near the
surface more time to grow, and those near the base more time to
decline. However, it is possible to approximate this using an Eulerian
model and a function describing how the vertical profile of

phytoplankton changes with depth.

It is important, however, to view these results in context. The rate at which the
phytoplankton adjust to changes in their light environment is controlled by the
chosen model of photoacclimation. The model chosen for this study, described
in Geider et al. (1997), calculates chlorophyll synthesis based on the rate of
photosynthesis, therefore assuming that phytoplankton do not synthesise
chlorophyll in the dark. This assumption explains why the phytoplankton
particles appear to be acclimating to the average irradiance in the euphotic
zone, rather than over the mixed layer as a whole (Figure 56). However, Ross &

Geider (2009) point out that this assumption does not produce
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photoacclimation dynamics that allow for a sufficiently rapid response to shifts
from high to low light. They developed a cell-based model in which carbon
accumulated by phytoplankton during the day, can then be utilised after
sunset, allowing them to continue to synthesise chlorophyll for some time into
the night. They showed that this approach increased the performance of the
model, in particular with regards to the response time of phytoplankton to

changes from high to low irradiance.

Although the question of whether the model accurately represents the
phytoplankton light shift dynamics will obviously impact on the vertical
distribution of phytoplankton light-harvesting properties, the results here have
suggested that the vertical distribution of phytoplankton has a greater impact
on overall rates of primary production. Increasing understanding of mixing
rates in the ocean and how these impact on the vertical distribution of
phytoplankton - even within a fully mixed layer - will help to further the
accuracy of future ecosystem models. Also of interest for this field are the
development of new techniques to predict vertical profiles from satellite
measurements, for example, Richardson et al. (2003) have developed an
approach to predict phytoplankton profiles, using the four-parameter Gaussian
curve described in section 3.5, based on environmental variables such as the

depth of the water column, the season, and the geographical location.

It is also important to note that, even though the chapter has shown no
advantage to the use of Lagrangian models in terms of their accuracy in
predicting primary production, it has also shown their great utility for the
creation and testing of hypotheses. It suggests that the place for Lagrangian
models in marine ecology is for the testing of ecosystem theory, on which
Eulerian models for prediction can then be based. This idea will be further
tested in the next chapter, where the Lagrangian model is used to explore the
mechanisms that control the spring bloom in the North Atlantic, to see if the
use of this method can resolve some of the controversy that current exists in

the literature regarding this important phenomenon.
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Chapter 4: Using a Lagrangian
phytoplankton model to test the controls

of the spring bloom

4.1 Introduction

The North Atlantic is a key region for carbon sequestration, accounting for an
estimated 25% of the global oceanic CO, uptake (Bagniewski et al., 2011). The
phytoplankton spring bloom in the North Atlantic contributes significantly to
carbon export, playing an important role in the annual dynamics of the
phytoplankton community (Lindemann & St John, 2014). There has therefore
been a great deal of research focussed on understanding the drivers of the
spring bloom, in order to aid prediction of the system’s response to changes in
environment pressure, whether that be ephemeral phenomena, such as eddies

and fronts, or long-term changes in climate.

The canonical study for the explanation of the mechanisms driving the spring
bloom was performed by Sverdrup (1953). Sverdrup’s critical depth hypothesis
(CDH) proposes that in order for the spring bloom to occur, vertically averaged
phytoplankton growth rates have to exceed phytoplankton loss rates. This can
only occur if the vertically averaged irradiance through which the
phytoplankton are mixed is above some critical value. There therefore exists a
critical depth, above which the average irradiance exceeds the level required
for positive net growth. If the phytoplankton are mixed below this depth, net
growth cannot occur, and the population will decline. At the end of the winter,
the water column stratifies due to the reduction in mixing rates combined with
an increase in net surface heat flux, from the seasonal increase in irradiance.
Once the depth of the fully mixed portion of the surface layer shoals above the
critical depth, positive net growth can occur, and conditions are favourable for

a spring bloom.

Despite being published over 60 years ago, Sverdrup’s paper is still cited over
50 times a year (Sathyendranath et al., 2015), due, in part, to its elegant way

of summarising a complex oceanographic process with a simple mathematical



model. Although the simplicity of the model has attracted its fair share of
criticism (e.g. Evans & Parslow (1985); Smetacek & Passow (1990)) no suitable
alternative was suggested until Huisman et al. (1999) proposed that a
reduction in mixing rates could also result in a spring bloom (the critical
turbulence hypothesis, CTH). Although Sverdrup had indicated that a reduction
in turbulence could enable a population to survive even if they were being
mixed beyond the critical depth, Huisman et al. (1999), and later Taylor &
Ferrari (2011), were able to quantify the turbulence below which positive
production could occur, regardless of the depth to which the phytoplankton
are mixed. However, the CTH was not intended to replace the CDH, Huisman et
al. suggested that each hypothesis described an independent mechanism by

which the spring bloom could be initiated.

Behrenfeld (2010) and later Behrenfeld & Boss (2014), offered a different
explanation, which they termed the disturbance-recovery hypothesis (DRH).
They proposed that the seasonal increases in phytoplankton biomass were a
result of disturbances to the balance between phytoplankton growth and loss
through grazing. During the winter, the phytoplankton and zooplankton are
mixed down to greater depths, essentially diluting their respective
concentrations. This results in fewer encounter rates, lower specific grazing
losses, and effectively decouples the phytoplankton-zooplankton balance. The
reduction in specific grazing loss results in an increase of specific
phytoplankton growth, irrespective of the available resources, with positive net
growth being apparent during the winter. This growth continues, until the
zooplankton populations are able to recover, and once again keep pace with
the phytoplankton production (i.e. the phytoplankton-zooplankton balance

recouples).

In this chapter, | use the Lagrangian model to test each of these hypotheses.
My main aim is to reconcile these theories, showing that, rather than being
alternatives to the critical depth hypothesis, the critical turbulence and
disturbance-recovery hypotheses describe mechanisms by which the critical
depth can be altered. In essence, | extend the critical depth hypothesis to
include scenarios with reduced mixing, and scenarios with a disturbance to the

phytoplankton-zooplankton balance.
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Although in the previous chapter, | have demonstrated little predictive
advantage in the use of a Lagrangian model over the use of an Eulerian model,
| have also demonstrated the utility of the Lagrangian model for analysis of the
individual life-histories of the phytoplankton super-individuals. This justifies
the use of a Lagrangian model for this study. In addition, the Lagrangian
model offers more precision in regards to the irradiance experienced by the
super-individuals in the water column, because it calculates the irradiance at
each, exact depth, rather than integrating through the water column using a
discrete number of depth intervals. | demonstrate that the critical depth
predicted by an Eulerian model using 1 metre intervals is significantly deeper

than that predicted by a Lagrangian model, for this reason.
4.1.1.1 The spring bloom

One of the difficulties in reconciling the various hypotheses that describe the
controls on the initiation of the spring bloom is the lack of consistency of
terms in the literature. For example, the onset of the spring bloom can refer to
the point where the net phytoplankton growth first becomes positive
(Behrenfeld, 2010), or when the surface chlorophyll concentrations first exceed
a threshold value (Cole et al., 2015). Llort et al. (2015) circumvented this
problem by splitting the spring bloom into three, distinct stages: the onset, the
point where net growth first becomes positive; the climax, where growth rate
is at its maximum; and the apex, where total biomass reaches its peak. | follow
this convention for this study, focussing only on the onset of the spring bloom,

and the mechanisms that determine its timing.

4.1.2 Testing the hypotheses surrounding the initiation of the spring
bloom

Franks (2014) proposed that in order to properly test the critical depth model,
it is necessary to investigate both phytoplankton growth rates and the water
column mixing rates. This was previously attempted through the use of an
Eulerian NPZ model, which was forced with vertical mixing, by Lévy (2015). She
ran a suite of simulations, starting from a simple representation of Sverdrup’s
assumptions, and gradually increasing complexity, in order to investigate how

the adding complexity affected the timing of the onset of the theoretical
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bloom (as calculated from the point where the mixed layer shoaled above the
predicted critical depth) compared to the modelled bloom. She found that even
the model that used the simplified assumptions proposed by Sverdrup showed
a time lag of 1 week between the theoretical and modelled spring bloom. She
also observed that, although the loss rate remained constant between winter
and spring, suggesting that grazing plays little part in the timing of the spring
bloom, if she included a seasonal cycle of mixed layer depth where the mixed
layer deepened during the autumn, the model predicted positive growth rates
due to the phytoplankton and zooplankton being significantly diluted by water
entrained from below. She concluded that in order to fully understand bloom
dynamics, it is necessary to simulate the full seasonal cycle, in order to
account for the evolution of the physical parameters from the previous

summer.

This model differs from the work carried out by Lévy, in that | am using a full
ecosystem, including representation of photoacclimation, with Lagrangian
phytoplankton. | carry out an in-depth study of each of the three main
hypotheses that describe mechanisms controlling the timing of the onset of
the spring bloom. Rather than simplify the model to fit with Sverdrup’s
assumptions, | derive an analytical equation to predict the critical depth, based
on my model parameterisations (i.e. non-linear phytoplankton loss rate, non-
linear P-1 curve). | then demonstrate that the analytical predictions, and those
obtained numerically with the model are the same. The inclusion of non-linear
terms means that the critical depth is not a constant value in a dynamic
simulation (i.e. one where the phytoplankton are not in steady-state), and |
show that taking this into account allows for the theoretical and actual
predictions of the onset of the spring bloom in the OWSI model to match,
exactly. At the end of the first section, | show the sensitivity of the predicted

critical depth to the parameterisation of the phytoplankton loss rate.

In the second section, | investigate the disturbance-recovery hypothesis. This
essentially proposes that the spring bloom results from a decoupling between
phytoplankton and zooplankton due to lowered concentrations over winter, so
| run two scenarios, one with decoupling, one without, to see how this affects
the initiation of the spring bloom. | demonstrate that, as predicted by
Behrenfeld & Boss (2014), dilution of the phytoplankton and zooplankton

populations results in a reduction of the specific loss rate, and therefore an
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increase in the specific rate of net growth. However, if the change in the rate of
loss is taken into account when calculating the critical depth, the timing of the

onset of the spring bloom is still completely predictable.

For the first two sections, | used the assumption that the phytoplankton are
fully mixed within the water column at any one time, so used the random
position movement algorithm (the depth of each super-individual is set to a
random point between the surface and the base of the mixed layer every 30
minute time step). For the final section, | investigate the critical turbulence
hypothesis, which states that if the turbulence falls below a certain level, a
spring bloom can develop, regardless of the depth of the mixed layer. In order
to allow for changes to the mixing rate, | use the random walk model of
movement (both types of movement rules are fully described in Chapter 2).
This allows me to investigate how reductions in the mixing rate affect the
timing of the spring bloom. | demonstrate that, contrary to Huisman et al.
(1999), reducing the turbulence does not result in a bloom, irrespective of the
mixed layer depth, instead it increases the value of the critical depth. There is
a clear, hyperbolic relationship between the rate of turbulence and the critical
depth - as the turbulence moves towards 0, the critical depth moves towards
infinity. | further show that, if the vertical profile of phytoplankton resulting
from a reduced rate of turbulence is known, it is possible to predict the critical

depth, and therefore the onset of the spring bloom.

4.1.3 Objectives

1. Demonstrate the existence of the critical depth, as defined by Sverdrup,
using a fixed slab model

2. Demonstrate how a Lagrangian model can be used to calculate the daily
critical depth, and how this is affected by changes to the phytoplankton
loss rates

3. Use the model to investigate the relationship between the critical depth
and the point at which net growth becomes positive (i.e. the point at
which a bloom could potentially develop)

4. Show how the critical depth hypothesis can be extended to include the

critical turbulence and disturbance-recovery hypotheses
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4.2 The critical depth hypothesis

In this section, | use the Lagrangian model to perform an in-depth analysis of
the critical depth hypothesis. Firstly, | derive an analytical equation to
determine the critical depth for a simulation, and then use the model to
provide a numerical test of the equation. | then compare the predicted critical
depth in a fixed slab, steady state model, to the critical depth predicted in a
dynamic model. Next, | use the full OWS India model (described in Chapter 2)
to determine which variables have the greatest impact on the critical depth,
before moving on to evaluate whether the mixed layer depth shoaling above
the critical depth triggers the spring bloom. Finally, | investigate the sensitivity
of the critical depth to the parameters controlling the rate of phytoplankton

loss.

4.2.1 Deriving an analytical equation to predict the critical depth

The critical depth hypothesis proposes that when the mixed layer depth shoals
above some critical depth, the spring bloom is initiated. This critical depth is
defined as the depth at which the integrated rates of phytoplankton growth are
equal to the integrated rates of phytoplankton loss. Sverdrup described an
equation that could be used to predict the critical depth for any surface
irradiance:

Zy _ L1 (4.1)

ko Ze. 7
_kparZe
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where Z represents the critical depth (m), kW the light attenuation coefficient
(m™), | the surface irradiance, and /_the compensation irradiance. The
compensation irradiance is the irradiance at which the rate of photosynthesis

exactly balances the rate of the sum of the losses in a phytoplankton cell.

However, one of the assumptions for Sverdrup’s equation is that the
relationship between photosynthesis and irradiance should be linear, whereas

my model uses a non-linear Smith function to represent photosynthesis:
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where:
1(2) =1, -exp(~k,, - z) (4.3)

Eq. (4.2) calculates the integrated rate of photosynthesis for a mixed layer,
Pcuw , from the chl-to-carbon ratio, 6., the initial slope of the P-I curve, a,,,

the maximum growth rate at the current temperature, V,, and the irradiance

through the water column, I(z).

In order to find an equation to predict the critical depth, | first needed to
derive an analytical solution for the integral in equation (4.2) together with
equation (4.3). This has already been done in Anderson et al. (2015), who used

a trigonometric transformation and then integration by parts to give:

X, + (VPT2 +x,° )0'5

In

c H Y (4.4)
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where x=a,-1(z) , and x, is x(z=0) and x__is x(z=H).

The final step was to use equation (4.4), with the intention of finding the

mixed layer depth at which the predicted integrated rate of photosynthesis
would equal the loss rate i.e. when P_C(MLD) =m, where m represents the

average daily phytoplankton loss (assumed to be constant with depth). This

depth represents the critical depth, Z :

X, + (VPT2 +x,° )0'5
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Equation (4.5) assumes that the irradiance at the base of the mixed layer is
known. For deeper mixed layers (i.e. greater than 50 m), the irradiance at the
base of the mixed layer will be close to zero, so | set x_ to a small value, just

above zero (1e*W m?), to prevent division by zero errors. This assumption
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would not be suitable for mixed layer depths shallower than ~50m, however,
the irradiance at the base of the mixed layer can be estimated for models with
shallower mixed layers, by numerically integrating equation (4.2) with equation
(4.3).

Equation (4.5) shows that the critical depth is affected by four variables: the

surface irradiance, /, the chl-to-carbon ratio, €, the attenuation coefficient,

chi’
k .. and the phytoplankton loss rate, m. Increases to the surface irradiance and
the chl-to-carbon ratio will increase the critical depth, whereas increases to the

attenuation coefficient and phytoplankton loss rate will decrease it.

| used the model to provide a numerical test of equation (4.5) by firstly using
the equation to predict the critical depth for a particular scenario, then running
a model version of that scenario at increasing mixed layer depths, until | found
the depth at which the phytoplankton population could no longer survive. For
these model runs, | used a fixed slab model, with a constant surface
irradiance. In order to ensure that the phytoplankton were fully mixed through
the water column, | used the random position movement method (described in
Chapter 2), which randomises the position of the phytoplankton super-
individuals each time step (30 mins). In the first instance, | wanted to simplify
the model as much as possible, and so | removed the non-linear mortality
terms (mortality, grazing), and just used a linear mortality term, as per
Sverdrup. As the critical depth depends on the irradiance, the chl-to-carbon
ratio, the light attenuation coefficient, and the phytoplankton loss rate, | set
these variables to constant values. That way, | could use these values along
with equation (4.5) to predict the critical depth for the scenario. | investigated
two scenarios, using the parameter values: 8., = 0.02 mg chl (mg C)-1, kpar =
0.04 m!, m=0.1d1 forlp=10W m-=2and lp = 20 W m-2. In addition, |
removed the nutrient limitation term from the growth equation, so that
phytoplankton growth was unaffected by the external concentration of

nutrient, simulating growth in nutrient replete conditions.

Using these parameters with Equation (4.5) gave predicted critical depths of
141.7 m and 271.6 m for surface irradiances of 10 W m? and 20 W m?,
respectively. | tested these predictions by setting up the same scenarios in the
model, and running it at a range of different mixed layer depths: between 140

and 142m for the surface irradiance of 10 W m-2 and between 270 and 272 m

148



for the surface irradiance of 20 W m-2. If the equation were working as
expected, then the phytoplankton would be expected to decline in simulations
with a mixed layer depth greater than the predicted critical depth, and would
be expected to increase in simulations with a mixed layer depth shallower than

the predicted critical depth.

a)l0o =10 W m-2

b) 10 = 20 W m-2
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Figure 81: The predicted integrated chlorophyll biomass for fixed slab simulations with a
constant irradiance, mixed layer depth, light attenuation coefficient and chl-to-carbon ratio,

under a range of different mixed layer depths.

Figure 81 shows that, for both scenarios, the critical depth predicted by
equation (4.5), is equal to the critical depth predicted by the model. This
demonstrates that | can use the analytical equation to predict the critical depth
for a fixed slab model, using a constant irradiance, linear mortality, and fixed

values for chl-to-carbon and light attenuation.

4.2.2 Non-linear loss terms and critical depth

Having demonstrated that the analytical equation calculates the same critical
depth as that determined numerically by a model with only linear mortality, |
next investigated how non-linear phytoplankton loss terms affect the predicted
critical depth. | first looked at steady-state solutions provided by a fixed-slab
model, before investigating a dynamic model with a seasonal cycle of forcing,

where the phytoplankton are in a state of continuous flux.

Predicting the critical depth using equation (4.5) requires knowledge of the
total rate of phytoplankton loss, m (d"). If mis a linear term, as in the previous
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section, then this is simple, however, calculating m in simulations with non-
linear mortality and grazing is more complicated. The total phytoplankton loss
rate then becomes a function of both the phytoplankton and zooplankton
concentration, because increases in phytoplankton concentration will increase
the specific rate of loss, and decreases in phytoplankton concentration will

decrease the specific phytoplankton loss rate.

| used the model to estimate the values for m in simulations with a mixed layer
depth close to the critical depth. | started with the same scenario as above, G
= 0.02 mg chl (mg C)-1, kpar = 0.04 m-1, no nutrient limitation, and /o = 10 W
m-2, but this time, | used the phytoplankton mortality rates, as for OWS India,
and also reintroduced the zooplankton (the full equations can be found in
Chapter 2). | started by using equation (4.5) to calculate the predicted critical
depth based on the respiration alone (linear loss, p; = 0.02 d-1), and then took
this depth as a starting point. | then ran simulations at decreasing mixed layer
depths, until | found the depth at which the phytoplankton reached a steady
state, and did not die out. In order to achieve this with a model with a deep
mixed layer, | had to run the model for a very long time (65,000 days, or 178
years). This is because changes in the depth of the mixed layer makes very
small changes to the average irradiance level. This can be demonstrated by
calculating the difference in average irradiance between a mixed layer of 100m
and 101m, and between a mixed layer depth of 700m and 701m, by
integrating the irradiance function in equation (4.3). Increasing the mixed layer
depth from 100 to 101 m decreases the average irradiance from 2.454 W m? to
2.432 W m?, a decrease of 0.024 W m?, whereas increasing the mixed layer
depth from 700 to 701 m decreases the average irradiance from 0.3571 W m?
to 0.3566 W m?, a decrease of 0.0005 W m*. This demonstrates that as the
depth of the mixed layer becomes deeper, the proportional difference in an
increase or decrease by 1 metre becomes smaller (i.e. 1 metre becomes a
smaller fraction of the mixed layer depth). Therefore, the resulting increase or
decrease in the average irradiance also becomes smaller, and it becomes more

difficult to observe changes in the phytoplankton at a population level.
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a) Phytoplankton b) Non-linear mortality
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Figure 82: The predicted a) phytoplankton biomass and b) phytoplankton non-linear
mortality for a fixed slab model with a constant irradiance (10 Wm?), a fixed chl-to-carbon
ratio (0.02), and the full loss rates used in the OWSI model

Figure 82 shows how both the phytoplankton concentration and the daily non-
linear mortality rate respond to different mixed layer depths. It suggests that
the critical depth, as predicted by the model, lies between 706 and 707 m. It
also shows how the non-linear mortality rate increases along with the increase
in phytoplankton biomass. Unlike the scenario with the linear mortality (Figure
81), decreasing the mixed layer depth does not result in a continual increase in
phytoplankton biomass, as the increase in the non-linear mortality rate
prevents this from happening. Instead, the concentration of phytoplankton
biomass reaches a new, higher, steady-state value. The steady-state values for
the non-linear mortality are very low - less than 0.0002 d', compared to 0.02
d’ for the respiration, which supports findings by Platt et al. (1991), who found
that when they calculated a generalised loss term to determine critical depth, it
was dominated by the respiratory costs of phytoplankton growth and

metabolism.

Figure 82 only shows the model predicted critical depth; it gives no
information about the behaviour of the model around that depth. The time
scales are extremely long, due to the size of the changes when the mixed layer
is at the critical depth, and are therefore not biologically relevant, where
changes to the mixed layer depth are important on time scales of days. An

indication of how changes around the critical depth can impact the biology can
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be give by running the model to steady state at close to the critical depth, and
then deepening the mixed layer depth, and observing the changes to the
predictions of phytoplankton biomass. The biomass was normalised to the
value predicted at steady state, in order to remove changes due to dilution by
the deepening of the mixed layer, and Figure 83 shows how an increase of 200

m only results in a 4% decline in phytoplankton biomass.
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Figure 83: The decline of the steady state phytoplankton population, when the mixed layer

depth is deepened, using the same conditions as in Figure 75.

However, steady-state simulations such as these may not be representative of
conditions in the open ocean. The ocean is a highly dynamic environment, and
marine systems are in a state of continuous flux. Changes in the
concentrations of phytoplankton and zooplankton, resulting from changes to
the depth of the mixed layer, can have a sudden impact on the specific grazing
rates, and therefore the predicted critical depth. This is explained in more

detail in the next section.
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4.2.3 Calculating the compensation irradiance

| can demonstrate how dynamic scenarios can impact upon the predicted
critical depth by using the model to predict the compensation irradiance, /..
The compensation irradiance is the irradiance at which phytoplankton
photosynthesis exactly balances phytoplankton loss. It is an important
parameter in the definition of the critical depth, because the critical depth is
the mixed layer depth at which the average irradiance from the surface to the
base of the mixed layer is equal to the compensation irradiance. It is generally
believed to be a constant, based on phytoplankton physiology, and is
estimated either from laboratory experiments, or estimated from satellite
pictures of chlorophyll (e.g. Siegel et al. (2002)). However, in dynamic
scenarios, the rates of grazing and non-linear phytoplankton mortality change
according to the concentrations of phytoplankton and zooplankton, which

would change the value of the compensation irradiance.
4.2.3.1 Calculating I_analytically

Sverdrup’s original model was based on the assumption that the
phytoplankton growth is linearly dependent, with slope a, on the irradiance. As
mentioned earlier, the relationship between the compensation irradiance, the

constant mortality rate, and apis:
I.=— (4.6)

However, my model uses a non-linear P-I curve, so the equation to determine
the compensation irradiance is derived through rearranging equation (4.4)

(solution kindly provided by Prof. Tom Anderson and Dr. Adrian Martin):

1
2, 2 P
]C:h[%_l} (4.7)

o, 2
| calculated the analytical solution for a simulation with a constant chl-to-
carbon ratio, 6, =0.02 (mg Chl (mg C™")), a constant loss rate, p = 8.3 e* h"
(0.02 d") , and the model value for o, =0.12 (gC (gChl)" h™" (Wm™)™', using
both equations (4.6) and (4.7). (Note that, because production is a function of
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0., in my model, the actual form of the equation (4.6) used is I, ="
xp 'ecm
Both equations (4.6) and (4.7) predict a compensation irradiance of 0.3472 for

the scenario outlined above.

The reason that both equations predict the same solution is that

phytoplankton experiencing very low irradiance will only experience the very

beginning of the P-I curve, which is linear. More precisely, when «, -1 <V,,,
Vv . : . .

so when [ <« L, Therefore, for a model run at a low irradiance i.e. without
*p

saturated growth, the initial slope of the P-I curve, «,, can be used in

Sverdrup’s original formulation.
4.2.3.2 Calculating I_numerically

There are three possible ways that | can predict the compensation irradiance

from the model:

1. Replicating a laboratory experiment, by running a single, stationary
phytoplankton super-individual at decreasing levels of irradiance, until |
find the lowest level of irradiance at which it can survive

2. The critical depth can also be described as the point above which the
average irradiance (i.e. calculated from the surface down to the critical
depth) is equal to the compensation irradiance. Therefore, if | use the
model to calculate the critical depth for a particular scenario, as
described in section 4.2.1, | can then determine the compensation
irradiance by calculating the average irradiance over the entire mixed
layer.

3. Running a fixed slab model, and calculating the net growth
(photosynthesis - total loss) at each depth in the water column. The
compensation irradiance is the irradiance at the depth where net growth

is zero.

If I is a constant determined only by phytoplankton physiology, then all three

of these methods should, theoretically, produce the same result.

Determining the compensation irradiance in a laboratory involves growing

phytoplankton cells under low irradiances, in order to find the lowest

154



irradiance at which they can survive. In order to simulate this with the model
(Method 1), | used a fixed slab model with a single, stationary phytoplankton
cell. As | was only interested in the effects of a single irradiance level (i.e. the
surface irradiance, no attenuation) | used a very shallow mixed layer (1 metre)
to represent the phytoplankton remaining at the surface. | also assumed no
nitrogen limitation, as this does not feature in eq. (4.4). | ran each simulation
until the phytoplankton either declined to (or very close to) 0, or reached a
steady, positive, state. If the phytoplankton did not die out, | repeated the

simulation, with a slightly lower irradiance.
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Figure 84: Predicted steady-state chlorophyll under a range of different irradiances for

phytoplankton in a 1 metre mixed layer (no nutrient dependence, no mixing)

Figure 84 shows that the first irradiance level that allows the phytoplankton to
reach a steady state (i.e. photosynthesis at a rate high enough to balance their
loss rate) is 0.347 W m=. This is the same value as predicted by both forms of

the analytical equation (linear and non-linear) in the previous section.

The next method of calculating the compensation irradiance is to calculate the
integrated irradiance between the surface and the mixed layer depth, if the

mixed layer depth is equal to the critical depth (Method 2). In section 4.2.1, |
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calculated the critical depth for a particular scenario (8cw = 0.02 mg chl (mg
O)1, kpar = 0.04 m-1, and = 10 W m-2) using a fixed-slab model, and the
random position movement algorithm. The model predicted a critical depth of
706 m (the deepest depth at which the phytoplankton reached a steady-state).
The average irradiance over this depth, calculated by finding the average of the
function describing the attenuation of irradiance with depth (described in
section 4.2.2) is 0.354 W m—2.

The final way to measure the compensation irradiance is by finding the
irradiance at the depth in the water column where phytoplankton growth and
loss is in exact balance (Method 3). To do this, | ran a simulation with a fixed
mixed layer depth and irradiance, and then calculated the net phytoplankton
growth rate at each 1 metre interval, finding the point at which this became
negative, and then taking the compensation irradiance to be the irradiance 1
metre above this point. This provides a slight underestimation of the true
compensation irradiance, which would be somewhere in between these two
depths. Doing this shows that /_is not a constant value. For example, a
simulation with a mixed layer depth of 100m and a surface irradiance of 10 W
m* will predict a compensation irradiance of 2.1 W m?, whereas a simulation
with a mixed layer depth of 500m and a surface irradiance of 10 W m? will
predict a compensation irradiance of 0.52 W m?. This is because deeper mixed
layers, with the same surface irradiance, have lower average irradiances over
the entire depth. This reduces the average rate of photosynthesis, which
results in lower concentrations of phytoplankton. As the phytoplankton
concentration decreases, the specific rate of non-linear mortality and grazing
will also decrease, meaning that the phytoplankton require a lower rate of
photosynthesis in order to balance out the rate of loss. The irradiance at which
the rates of growth and loss are in balance (i.e. the compensation irradiance) is
therefore also reduced. This demonstrates that the compensation irradiance,
and therefore the critical depth, is not a constant, because it is a function of

the phytoplankton (and zooplankton) concentration, which changes over time.
4.2.3.3 Comparing the Lagrangian results with Eulerian results

| ran the simulations for sections 4.2.2 and 4.2.3.2 with the Eulerian model, in

order to compare and understand any differences.
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Figure 85: Predicted chl biomass for the completely Eulerian version of the model, for a
constant irradiance (10 W m?), a fixed mixed layer depth, constant Gcm (0.02 mg mg-2), and a

linear loss rate (0.1 d")

Figure 85 shows the results predicted by the Eulerian model for the scenario
described in section 4.2.1 (I =10 Wm?, 8_ = 0.02 mg Chl (mg C)', m= 0.1 d"
and kW = 0.04 m"). The analytical equation predicted a critical depth of
141.67m, and this was demonstrated numerically with the Lagrangian model.
However, the Eulerian model predicts a deeper critical depth (~144 m). This
results from the way that the Eulerian model is implemented, as it integrates
from the surface to the base of the mixed layer depth in 1-metre steps; there is
no attenuation in the first metre. The Lagrangian model, on the other hand,
calculates the exact attenuation at any point in the water column, leading to a
greater precision in the predictions. Rounding the depth of each super-
individual up to the nearest metre in order to calculate its ambient irradiance
causes the model predictions to converge (i.e. increases the critical depth
predicted by the Lagrangian model). In the same way, increasing the precision
of the Eulerian model, by integrating over steps of 0.1 m decreases the critical

depth predicted by the Eulerian model to ~141 m.
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Figure 86: Compensation irradiance, as predicted by the Eulerian model

Using the Eulerian model to predict the compensation irradiance based on
method 1 (section 4.2.3.2) produces an identical result to the Lagrangian
model. This is because both models assume that the phytoplankton super-

individual is at the surface, and so there is no light attenuation.

4.2.4 Calculating the critical depth over the build up to the spring

bloom for Station India

In the section 4.2.1, | introduced the analytical equation to calculate critical
depth, and in section 4.2.2, | showed that, for a fixed-slab, steady state model,
the only phytoplankton loss term that affects the critical depth significantly is
the linear respiration rate. In this section, | show the controls on critical depth
in a dynamic model, and demonstrate the relationship between the mixed layer

depth, the critical depth, and the net phytoplankton growth rate.

Calculating the critical depth requires knowledge of the attenuation coefficient,
kw. In order for this to be a constant value throughout the water column, |
calculated attenuation as in Evans and Parsons (1985), who used a single value
for kW, based on the average phytoplankton biomass (nitrogen) in the water

column:
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k,,=k,+k. P

conc

where k represents the light attenuation coefficient for water, k_represents

the light attenuation due to chlorophyll, and P_ is the phytoplankton nitrogen

biomass (mmol N m?3).

This gave a slightly different annual cycle of phytoplankton and dissolved

inorganic nutrients than using the Anderson (1993) model:

(4.8)
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Figure 87: The seasonal cycle of a) chlorophyll and b) dissolved inorganic nitrate for the
full Station India Model, using the Anderson 1993 model compared to the model using the

Evans and Parslow 1985 model. Both simulations use the randomisation movement

method.

The predicted seasonal cycle of phytoplankton using the Evans & Parslow
(1985) model of attenuation shows increased production compared to the
model that uses the model of attenuation from Anderson (1993). These results
are very similar to plots produced by the EMPOWER model, ((Anderson et al.,
2015), which includes settings for both the Evans and Parslow (1985), and
Anderson (1993) methods of light attenuation. The Anderson (1993) model
shows a decrease in predicted production, due to the increase in attenuation in
the surface layers. The increase in production in the spring, shown by the
increased magnitude of the spring bloom, in the Evans and Parslow model,

results in a lower concentration of DIN over the summers, leading to the

159



reduced chlorophyll concentration shown here, compared to the Anderson

model.

As shown in section 4.2.1, there are four variables that effect the value of the
critical depth: the light attenuation, kw; the chl-to-carbon ratio, 6_ ; the surface
irradiance, /; and the total phytoplankton mortality rate, m. For the first set of
simulations, | investigated the relationship of each of these variables to the
predicted critical depth, over the period of the run-up to the spring bloom (i.e.
the first 100 days of the year). | used equation (4.5) to calculate the predicted
critical depth for each day, using updated values for each of the four variables,
taken from the model at run-time. | used the annual cycle of irradiance,
however, in order to simplify the analysis, | removed the diel cycle of

irradiance, setting the daily irradiance to the average over the 24 hours.
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Figure 88: Relationship between the variables that influence the critical depth (I, chl:carbon,

k, m) over the first 100 days of the Station India model, with no diel cycle of irradiance

Figure 88 suggests a correlation between the critical depth and each of the
four variables investigated. In order to further test how each variable affected
the predicted critical depth, | ran the model three more times, each time
setting a different variable to a constant value. The light attenuation | set to
0.04 d' (attenuation due to water only), in order to see how removing self-
shading affected the predicted critical depth. The chl-to-carbon ratio | set to
the average value over the 100 days in the full model (0.018 mg mg™"). In order
to use a constant for mortality, | applied a linear term for mortality, which |

parameterised to the average rate of phytoplankton loss over the first 100
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days of the year in the full model (0.024 d'). However, applying this rate of
loss over the full annual cycle resulted in levels of chlorophyll over the summer
that were outside the workable boundaries of the model (i.e. too high), so |
only applied this linear mortality rate over the first 100 days of year 3 (the
section of data being analysed). | wanted to see if setting any of these
variables to a constant value affected the way that the predicted critical depth
changed over the first 100 days. If the increase in critical depth shown in
Figure 88 resulted from a change in one of these variables, then setting it to a

constant value would change the slope of the plot of critical depth against

time.
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Figure 89: Predicted critical depth for a simulation with a) all variables using dynamic

variables, b) fixed k, c) fixed Chl:C, and d) linear mortality

The results in Figure 89 are somewhat unexpected. The predicted critical
depth does not appear to be significantly affected by setting any of the
variables to a constant value. There is also little difference in the first day
where the mixed layer depth is shallower than the critical depth - day 36, day
35, day 37, and day 37 for the simulations with all dynamic variables, constant
k .. constant chl-to-carbon and linear mortality, respectively. There are,

however, some small variations:
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1. Using a fixed value for chl-to-carbon results in a deeper predicted
critical depth after day 80. This is because, as the irradiance increases,
the chl-to-carbon ratio decreases in the dynamic model, which reduces
the rate of photosynthesis. A reduced rate of production results in a
shallower critical depth.

2. Removing the non-linear mortality (i.e. setting the mortality to a
constant, linear rate, shown by the purple line), prevents the predicted
critical depth from becoming shallower around day 90, as it does in the
model that includes non-linear mortality. This is because, as the
phytoplankton concentration increases, a non-linear rate of mortality
results in a higher specific rate of loss, and therefore a shallower

predicted critical depth.

Figure 89 suggests that the main control on the predicted critical depth in the
model is the surface irradiance. | tested this by running the simulation again,

but this time with constant values for 6

, k , and with a constant, linear
Chl par

mortality rate.
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Figure 90: The relationship between critical depth and irradiance for a model with fixed 6_,

kw, linear mortality
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Figure 89 and Figure 90 show that the increase in predicted critical depth over
the first 80 days of the year is almost entirely due to the increase in irradiance.
After this, the predicted critical depth starts to decrease, due to the increase in
phytoplankton concentration resulting in a higher specific phytoplankton loss
rate, although this is tempered by the reduction in the rate of photosynthesis
that results from the lower ratio of chlorophyll to carbon due to the seasonal
increase in surface irradiance. The critical depth deepens beyond the mixed

layer depth on day 37.

4.2.5 Determining whether the spring bloom is triggered by the mixed
layer depth shoaling above the critical depth

In order for the spring bloom to take place, the rate of production in the mixed
layer needs to exceed the rate of loss (Siegel et al., 2002; Sverdrup, 1953).
Therefore, as defined by Llort et al. (2015), the initiation of the spring bloom is
the point where the net phytoplankton production first becomes positive. The
critical depth hypothesis proposes that this occurs when the mixed layer depth
shoals above the critical depth, and in this section, | test this hypothesis by
using the analytical model to calculate the daily predicted critical depth for the
OWS India model, and comparing this to the model predictions of net specific

phytoplankton growth rates.
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Figure 91: The predicted critical depth (calculated through the use of the analytical
equation described in (4.5)) for the OWS India model.

Figure 91 shows the predicted annual cycle of critical depth for OWS India,
based on the phytoplankton loss rates predicted by the model. The critical
depth is calculated for each time step, and then averaged over 24 hours, in
order to find the daily average critical depth. This is a more accurate method
than using the daily averaged irradiance in order to calculate the critical depth,
the reasoning for which is explained in section 4.2.5.1. At the beginning of the
year, the critical depth is less than 200 m, which is shallow compared to the
mixed layer depth, which is deeper than 600 m. At this point, the critical depth
is controlled by the irradiance, because both phytoplankton and zooplankton
production are very low. As the year progresses, increases in irradiance start to
increase the critical depth, until it deepens past the mixed layer depth. Around
day 100, it then starts to shallow once more, due to a combination of the
decreases in mixed layer depth resulting in an increase of averaged irradiance
across the water column, and an increase in phytoplankton production
resulting in an increase in the turbidity of the water column, plus an increase
in the mortality rate both from natural mortality and grazing. The peak of the
phytoplankton spring bloom, around day 140, results in the critical depth

shallowing above the mixed layer depth once more, suggesting that light
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limitation could play a part in controlling the magnitude of the peak of the
spring bloom. Over the summer, the critical depth is very shallow, due to the
shallow mixed layer depth and the high concentration of phytoplankton both
reducing the available light, and increasing the total phytoplankton loss rate.
The critical depth then remains relatively shallow as the mixed layer depth

deepens, until the increase in seasonal irradiance, the following year.

4.2.5.1 Calculating critical depth based on daily averaged irradiance

versus daily averaged critical depth

| ran the full OWS India model, using the random position movement
algorithm, without the diel cycle of irradiance, for 3 years, and took the data
from the first 100 days of the last year. | calculate the predicted critical depth,
using the full model, and plotted this against the mixed layer depth, to find
the point where the mixed layer depth shoaled above the critical depth. | also
plotted the net nitrogen-specific grown rate (growth - loss), noting in particular
where this became positive. If the critical depth hypothesis is correct, then the
net growth rate should become positive at the point where the mixed layer

depth and critical depth cross.
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Figure 92: The predicted critical depth (analytical equation) and the net specific growth rate
for the first 100 days of a simulation parameterised for OWS India, but with no diel cycle

and the irradiance set to the daily averages for OWS India

Figure 92 shows that the net specific growth rate becomes positive (green line
crosses dashed line) at the same time that the critical depth becomes deeper
than the mixed layer depth (red line crosses blue line). It is interesting to note
that it is the critical depth deepening below the mixed layer depth due to the
increase in irradiance that results in the net phytoplankton growth rate
becoming positive, rather than the mixed layer depth physically shoaling above
the critical depth. At the point where the net growth becomes positive, the
mixed layer depth is still deep (> 500m). This suggests that the spring bloom
is driven by the seasonal increase in irradiance rather than by the shoaling of

the mixed layer.

For the next simulation, | reintroduced the diel cycle of irradiance. Since |
wanted to calculate a daily value for the critical depth, | could either calculate it
based on the daily averaged irradiance, or | could calculate the critical depth
based on the model output for each time step, and then calculate the average

critical depth over each day.
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Figure 93: The model predicted critical depth and net daily n-specific growth rates for the
first 100 days of the simulation with a diel cycle

Figure 93 shows the predicted critical depth for the same simulation,
calculated in two different ways. The red line shows the daily critical depth
calculated using the daily averaged irradiance for a simulation with a full diel
cycle of irradiance, and the purple line shows the daily averaged critical depth,
calculated from the critical depth predicted for each time step, from a model
with a full diel cycle of irradiance. The predictions of daily critical depth using
the daily averaged irradiance are deeper than those that are predicted using
the average of the critical depths calculated each time step, because of the
non-linear relationship between the rate of photosynthesis and the irradiance.
Sverdrup proposed the use of the daily averaged irradiance to calculate critical
depth, as he was using a model with a linear dependence of photosynthesis on

irradiance.

4.2.6 The sensitivity of the critical depth

The critical depth is dependent on parameters that are notoriously difficult to
measure, such as the rate of respiration. Here, | investigate how sensitive the

critical depth, and therefore the point at which net production becomes
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positive, is to changes in the rates of respiration and mortality. Firstly, |
determine the important loss terms over the period of interest (i.e. the first
100 days of the year) by plotting the specific rates of respiration, non-linear

mortality, mixing, and grazing.
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Figure 94: The nitrogen specific phytoplankton loss rate of the first 100 days of the year in
the Station India model, separated into losses from grazing, respiration, mortality and
mixing

Figure 94 shows that the main source of phytoplankton loss over the first 100
days of the year for the Station India model comes from the linear respiration.
Due to the low concentrations of phytoplankton resulting from the deep mixed
layer, and lower irradiance, the non-linear mortality rate is very low, and the
grazing rates are negligible. Therefore, | focussed on the phytoplankton loss

parameters p (respiration) and p, (non linear mortality).

For the first set of simulations, | ran the model, with the full ecosystem and
seasonal cycle, but using values for p, ranging from 0.0025 to 0.04 d"
(standard value = 0.02 d") . Figure 95 shows the predicted critical depth
compared to the phytoplankton net growth rate when the respiration is halved
and doubled (i.e. p, = 0.01, 0.02 and 0.04 d"). The simulation was run for

three years, and the data in Figure 95 are taken from the final year.
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Figure 95: The predicted critical depth and daily specific growth rates for simulations with
respiration rates of p = 0.01, 0.02 and 0.04 d-1

Figure 95 shows the daily-predicted critical depth for each simulation, over the
first 100 days (solid red, orange and green lines), along with the daily net
specific growth rates (dashed red, orange and green lines). This demonstrates
the sensitivity of the predicted critical depth to the linear rate of respiration
(p). An increased rate of respiration leads to a shallower critical depth,
because a higher rate of phytoplankton loss requires a higher rate of
phytoplankton photosynthesis, in order to ensure the survival of the
phytoplankton population. This can only be achieved with a higher rate of
integrated irradiance, which comes from a shallower mixed layer depth.
Doubling or halving the respiration rate impacts upon the point at which the
mixed layer depth (solid blue line) shallows above the critical depth, and
therefore the point at which net production becomes positive. The other
important features of Figure 95 are the points where the mixed layer depth
shallows above the critical depth (solid blue line crosses solid red, orange,
green lines), and the points where the net growth rate becomes positive

(dashed red, orange and green lines cross dashed black lines). In all cases, net
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production does not become positive, until the mixed layer is shallower than

the critical depth.
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Figure 96: Relationship between rate of respiration and the first day where the net growth

becomes positive after the winter

Figure 96 shows how the day on which the net phytoplankton growth rate

becomes positive changes is proportional to the rate of respiration.
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Figure 97: The annual cycle of predicted chlorophyll biomass for simulations with varying
rates of respiration (pI = 0.01, 0.02 and 0.04 d-1)

Figure 97 shows how halving and doubling the rate of respiration affects the
predicted annual cycle of integrated chlorophyll. Decreasing the rate of
respiration results in a spring bloom peak that is both earlier, and smaller in
magnitude. The predicted critical depth is deeper, because the daily loss rate
is lower, and therefore a lower rate of production will balance respiration (i.e. a
decreased compensation irradiance). This means that the mixed layer will
shallow above the critical depth earlier in the year, resulting in an earlier

spring bloom

| next repeated the experiment, but this time | doubled and halved the non-
linear mortality rate (p,). Although the non-linear mortality does appear to be a
significant source of phytoplankton loss in Figure 94, increases and decreases
to the parameter value do not appear to have a significant effect on either the
predicted critical depth, or the point at which the net production becomes

positive (Figure 98).
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Figure 98: The predicted critical depth and daily specific growth rates for simulations with
non-linear mortality rates of p, = 0.05, 0.1 and 0.2 d-1
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Figure 99: The annual cycle of predicted integrated chlorophyll biomass for simulations
with varying rates of non-linear mortality (p, = 0.05, 0.1 and 0.2 d-1)
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Figure 99 shows the predicted annual cycle for each of the simulations with
the different values for p,, and suggests that changes in non-linear mortality
affect the magnitude of the spring bloom, but not the timing. Plotting the

chlorophyll concentration over the first 100 days, shows this more clearly.
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Figure 100: The first 100 days of predicted integrated chlorophyll biomass for simulations
with varying rates of non-linear mortality (p, = 0.05, 0.1 and 0.2 d")

Figure 100 clearly shows that changes to the value used for p, affects the

magnitude of the spring bloom, but not the timing.

| repeated these simulations, although this time doubling and halving the half
saturation constant for phytoplankton non-linear mortality, k, but neither the
timing or the magnitude of the spring bloom appeared to be sensitive to this

parameter (Figure 101 and Figure 102).
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Figure 101: The predicted critical depth and daily specific growth rates for simulations with

half-saturation constants of kp =0.25,0.5 and 1.0 d-1
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Figure 102: Predicted seasonal cycle of integrated chlorophyll for the simulations with kp =
0.25,0.5 and 1.0

174



Figure 94 suggested that there were two significant sources of phytoplankton
loss over the time leading up to the initiation of the spring bloom: respiration,
p, (linear), and non-linear mortality, p,. However, performing a sensitivity
analysis on these two parameters has demonstrated that, whilst the magnitude
of the spring bloom can be affected by p,, the timing of the bloom is almost

entirely controlled by the value chosen for p..

This section has demonstrated that there is a predictable critical depth, as
proposed by Sverdrup, for the mixed layer, above which net phytoplankton
production can become positive, an essential condition for the start of the
spring bloom. | have further demonstrated that the critical depth is not a
constant value, but depends upon the phytoplankton and zooplankton

concentrations.

4.3 The disturbance-recovery hypothesis

In this section, | use the model to investigate the disturbance-recovery
hypothesis, as proposed by (Behrenfeld & Boss, 2014). The disturbance-
recovery hypothesis states that the spring bloom is a result of decoupling
between phytoplankton growth and loss, during times of extremely low
phytoplankton concentrations, due to deep mixed layers, polar nights, eddies,
or other physical processes. | investigated this hypothesis by running two
versions of the OWS India model: the first with a constant mixed layer depth of
200m, and the second with a constant mixed layer depth of 200m, but that
deepened to 500m for the last day of the year. This should have the effect of
reducing the concentration of phytoplankton, and, in theory, decoupling the
phytoplankton growth and loss. If, as according to the critical depth
hypothesis, the spring bloom is purely a product of mechanical factors, i.e. the
shoaling of the mixed layer above the critical depth, then these two
simulations should produce similar predictions of the timing of the spring

bloom.

Both simulations included the seasonal cycle of forcing (e.g. temperature and
wind speed) and full ecosystem parameterised for OWS India. The simulations

were run for three years, and the data in Figure 103 were taken from year 3.
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Figure 103: Predicted seasonal cycle of integrated phytoplankton chlorophyll for a
simulation with a fixed mixed layer depth of 200m for two scenarios: the first with a
constant mld for the entire simulation, and the second with the mld deepening to 500m for

the final day of the year.

In Figure 103, the model with the single day of deep mixing shows a delay in
the peak of the spring bloom. The phytoplankton and zooplankton
concentrations are diluted by the mixed layer deepening, and then a large
amount of biomass is detrained and lost from the simulation when the mixed
layer depth shallows back to 200 m. This dilution means that the specific non-
linear loss rate on the phytoplankton is reduced, and the decreases in the
zooplankton population mean that it takes longer for grazing to catch up with

phytoplankton growth.
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Figure 104: Specific rates of grazing and non-linear mortality for the OWS India model, set
with a fixed mixed layer depth (200 m), and the simulation with the mixed layer depth set
to 200m, but deepening to 500 m for the last day of the year.

Figure 104 shows how the specific rates of grazing and non-linear mortality
change over the course of the year. The dilution of the phytoplankton and
zooplankton on the last day of the previous year has reduced the specific
grazing rates and non-linear mortality of the phytoplankton in the simulation
with the deep mixing (red lines). After the peak of the spring bloom, the
grazing and non-linear mortality have caught up with the phytoplankton, and

the two model predictions converge.

This dependence on the non-linear loss rates appears to be contrary to the
findings in section 4.2, where | demonstrated that the linear loss rate has the
greatest impact on the critical depth and therefore the timing of the initiation
of the spring bloom. However, | also demonstrated that there is a difference
between predicted critical depths from steady-state simulations i.e. the
deepest mixed layer depth to which the model predicts a positive steady-state
value for the phytoplankton concentration (where concentrations decrease to
such a level that non-linear loss rates fall close to zero), and the predicted
critical depth for a particular moment during a simulation, where the
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phytoplankton may not be in steady-state. Non-linear mortality and grazing

losses have a far greater importance in dynamic scenarios.

As in the previous section, | can calculate and plot the predicted critical depth
against the mixed layer depth, and compare this to the point when the net
specific phytoplankton growth becomes positive. This reveals that although
the peak of the spring bloom is delayed by the deep mixing, the spring bloom
is initiated (point where net growth becomes positive) earlier (Figure 105). This
demonstrates the difference between basing the timing of the bloom on
specific growth rate or on biomass accumulation. For the simulation with the
day of deep mixing, the bloom is initiated earlier, but allowed to proceed for
longer, so that the peak appears after the peak of the bloom for the simulation

with no deep mixing.
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Figure 105: The predicted critical depth and net growth rate for the first 100 days of a fixed
slab model, with a constant mld (200m), and a full seasonal cycle of forcing, for two
scenarios: the first with a constant mld for the entire simulation, and the second with the

mld deepening to 500m for the final day of the year.

This has demonstrated some important points. Firstly, as suggested by

Behrenfeld (2010) and Behrenfeld & Boss (2014), measurements of the
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maximum chlorophyll concentrations may not give a good indication as to the
timing of the initiation of the spring bloom i.e. the model with the single day
of deep mixing shows an earlier positive net growth rate of phytoplankton, but
a later peak in chlorophyll concentration. Secondly, the critical depth and
disturbance-recovery hypotheses are not mutually exclusive. Instead, the
disturbance-recovery hypothesis describes a mechanism that can affect the
predicted critical depth: reductions in phytoplankton and zooplankton
concentrations lead to reductions in the non-linear loss rates, which change
the critical depth. For both scenarios in Figure 105, the net production does
not become positive until after the mixed layer depth has shoaled above the

predicted critical depth.

4.4 Critical turbulence

Huisman et al. (1999) proposed that there are two independent mechanisms
that drive the development of phytoplankton blooms: the classical critical
depth theory, which is relevant for well-mixed environments, and the critical
turbulence theory, which applies in cases with low to moderate mixing, and
low turbidity. The critical turbulence hypothesis states that if the mixing rate
falls below some critical value, then the resulting vertical profile of
phytoplankton will allow sufficient phytoplankton growth near the surface to
ensure that a bloom can develop, regardless of the depth of the mixed layer.
Therefore if the mixing rate is below the critical value, the growth dynamics
are independent of processes further down in the water column and the
production by the phytoplankton should not be affected by changes to the
mixed layer depth.

Up until now, | have been using the random position movement algorithm, in
order to ensure that the phytoplankton super-individuals are fully mixed
through the water column. However, in order to investigate the critical
turbulence hypothesis, the mixing rate needed to be changed in some
quantifiable and meaningful manner, so the simulations in this section use the
random walk movement algorithm (described in Chapter 2). Figure 106 shows
the predicted cycle of chlorophyll for the random walk model, compared to the

model using the random position movement algorithm.
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Figure 106: The annual cycle of chlorophyll predicted by the model using the random

position movement algorithm (30 minute time step) and the random walk algorithm

The random walk model predicts a spring bloom peak that occurs earlier and

is of a higher magnitude than the random position model. The differences
between the predictions from the random walk and random position
movement algorithms result from the non-homogeneous vertical profile of
phytoplankton in the random walk model. This occurs because the mixing rate
is not high enough to overcome the phytoplankton growth rates, and the
phytoplankton near the surface have more time to grow. Figure 107 shows the
average vertical chlorophyll profile from the surface to 500m for both
movement algorithms, over the first 100 days of the year (data taken from year

3 of a 3 year simulation).
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Figure 107: Comparison of the average vertical profile of chlorophyll over the first 100
days of the year of the OWS | model, using the random position and random walk

movement algorithms

The differences in the vertical profiles of chlorophyll in Figure 109 are not a
result of differences in the mixing rates. Plotting the diffusivity coefficient for
the random walk model, and the assumed diffusivity for the random position
model (how this is obtained is described in Chapter 2), shows that the random
walk model has a higher rate of mixing over the first 100 days of the year
(Figure 110). However, as explained in Chapter 2, even when the random
position and random walk movement algorithms use the same diffusivity, they
are not directly comparable, because there is a degree of relatedness between
each step in the random walk model. Reducing the mixing rate in the random
walk model increases the proximity of one step to the last, whereas reducing
the mixing rate in the random position model (by increasing the time step)
increases the length of time spent at each depth, but has no effect on the

relationship between one step and the next.
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Figure 108: Seasonal cycle of diffusivity coefficients for the random walk model and the

random position model with a time step of 30 mins

The change in the timing of the peak of the spring bloom in the random walk
model shown in Figure 107 suggests that there could have been a change to
the timing of the initiation of the bloom. | therefore examined the net growth
rate and predicted critical depth over the first 100 days of the year, in order to
deduce whether the point where the net phytoplankton growth first becomes

positive happens when the mixed layer depth is equal to the critical depth.
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Figure 109: The predicted critical depth and net growth rate for the first 100 days of the

year for the OWS | simulation, using the random walk model

Figure 109 shows that there is a lag between the net growth becoming positive
(i.e. green line crosses the dashed line, day 47) and the critical depth
deepening below the mixed layer depth (blue line crosses the red line, day 53).
This would suggest that there is positive net phytoplankton growth, even
though the mixed layer depth is deeper than the critical depth. This is
happening because, as shown in Figure 107, the phytoplankton are not evenly
distributed throughout the mixed layer, thus violating one of the assumptions
of the critical depth hypothesis i.e. that mixing is high enough to result in an
even distribution of phytoplankton. According to the critical turbulence
hypothesis, this means that the mixing rate on day 47 is below the critical

value, allowing a bloom to occur.

4.4.1 Calculating the critical turbulence for a fixed slab model

In order to investigate the critical turbulence, | set up a fixed slab model with a

mixed layer depth deeper than the critical depth, and reduced the mixing rate
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until the phytoplankton were able to reach a positive steady-state (i.e. not die
out). In section 4.2.2, | demonstrated that the critical depth for a model using
the random position movement algorithm (time step of 30 minutes) with a
surface irradiance of 10 W m?, an attenuation coefficient, kW, of 0.04 m’, no
nutrient dependence, and with a constant ratio of phytoplankton chl-to-carbon
(0.02 mg mg") is 706 m. | ran the above scenario with the random walk model,
but increased the mixed layer depth to 800 m, to ensure that all the
phytoplankton died out. The turbulence diffusivity was based on a surface
wind speed of 10 m s, and was equal to 0.32 m s”. | then imposed decreasing
values for K on the model - usually K is calculated as a function of the
mixed layer depth, but | overrode this - until | found the rate of mixing below
which the phytoplankton could reach a positive steady state. This was the
critical turbulence, Kmﬂand, for this model scenario, me =0.18 m?s’. This
is a factor of ten higher than the value found by Huisman et al. in their model,
however, they were investigating a model with a far higher level of background
turbidity (0.2 m™). Increasing kW to 0.2 m™ for the above scenario, decreased

the critical turbulence to 0.003 m? s.

| could then use the model to test the assertion by Huisman et al., that once
the mixing rate falls below the critical value, the phytoplankton production
should be unaffected by changes to the mixed layer depth, | ran the simulation
with increasing mixed layer depths, but with the same, imposed value for K__
(0.18m?* s™).
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Figure 110: Predicted chlorophyll biomass for a simulation with a fixed diffusivity (0.18 m s
?), fixed irradiance (10 W m?), fixed chl-to-carbon (0.02 mg Chl (mg C)"), and a fixed

attenuation coefficient (0.04)

Figure 110 shows that even though the rate of turbulence is below the critical
value necessary to allow a bloom when the mixed layer depth is at 800 m,
deepening the mixed layer depth below 1000 m results in all of the
phytoplankton dying out. There is still, it seems, a critical depth below which
phytoplankton cannot survive, reducing the mixing rate has just deepened it.
Instead of the critical depth and the critical turbulence being two independent
mechanisms, the value of the critical depth is a function of the mixing rate (or
rather, of the vertical profile of phytoplankton, which is a function of the

mixing rate).

| investigated the relationship between the mixing rate and the critical depth
by running a series of simulations for different mixing rates, under two
different surface irradiances: 5 W m? and 10 W m?. The critical time in the OWS
India model that determines the timing of the spring bloom and the magnitude
of its peak is over the first 100 days. During this time, the daily average
surface irradiance varies from ~5 W m? to ~12 W m*, and the mixing rate
(diffusivity coefficient) is shown in Figure 108. In order to further relate these
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results back to the full OWS India model, | reintroduced the variable chl-to-

carbon ratio, and the nutrient limitation term in the photosynthesis equation.
For each simulation, | used the model to predict the critical depth, by finding
the deepest mixed layer depth at which the phytoplankton could still reach a

positive steady-state.
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Figure 111: Critical depth predicted by a fixed slab model by finding the depth at which the
phytoplankton could just survive (i.e. reach a positive steady) for a range of mixing rates,

under constant surface PARs of 5 and 10 W m-2
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Figure 112: The critical depths predicted in Figure 111 normalised to the critical depth

predicted by a model using the randomisation movement

Figure 111 shows the critical depths predicted by the fixed slab model, for a
range of different mixing rates, under the two different surface PARs. It shows
two important features: firstly, the relationship between the predicted critical
depth and the mixing rate is hyperbolic, as the mixing moves towards 0, the
critical depth will move towards infinity. At 0 mixing, the phytoplankton
maintain their position in the water column, so the depth of the mixed layer
will have no effect on the growth rate. Therefore, there will be no depth at
which net production will become negative. Conversely, as the mixing moves
towards infinity, the critical depth will reach a minimum, which equates to the
value calculated using Sverdrup’s original assumptions. Secondly, increases in
the surface irradiance have a large effect on the shape of the curve describing
the relationship between mixing and critical depth. This can be more clearly
seen in Figure 112, where | have plotted each predicted critical depth
normalised to the minimum possible critical depth for that scenario (i.e. the
critical depth for a simulation with the random position movement algorithm,
and a time step of 30 mins). A much lower mixing rate is needed to change the

critical depth when the surface irradiance is 5 W m*, than when the surface
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irradiance is 10 W m?. This means that it is not only the extent to which the
turbulence is decreased that is of importance, but also the time of year. Low
mixing rates earlier in the year could have less impact on the timing of the
bloom, because, although the critical depth could potentially be deepened, it

could still not be by enough to provoke a bloom.

These results vary from those predicted by Huisman et al. (1999), in that they
show an hyperbolic relationship between the rate of turbulence and the depth
at which no blooms are possible, whereas Huisman et al. suggested that the
critical turbulence for a particular surface irradiance is a constant, below which
blooms can develop, regardless of the depth of the water column and, above
which, bloom development is dependent on the depth of the water column, as
per Sverdrup. However, the first points plotted for both the scenarios with | =
5Wm?and/ 10 Wm?in Figure 111 (K _ = 0.02 and 0.08 m* s", respectively),
represent the lowest diffusivities at which the model could reasonably predict a
critical depth. Below these values, the predicted critical depth moved beyond
15,000 metres, which is deeper than the deepest part of the ocean. This could
explain the difference in the results obtained by Huisman et al., because they
only investigated whether blooms were possible in mixed layer depths down to
1000m.

4.4.2 Calculating the critical depth for non-homogeneous
phytoplankton profiles

For the final part of this section, | demonstrate that it is possible to predict the
critical depth for a scenario with a non-homogeneous distribution of
phytoplankton, if the vertical phytoplankton profile is known. | use the random
walk model, with the value for K calculated from a relatively low wind speed
of 2.5 m s (25% of the average value observed at OWS India). | used a low
wind speed because | wanted the rate of mixing to be low enough to cause

sufficient divergence from the predictions from the random position model.

The predicted critical depth for a scenario with a surface irradiance of 5 W m?,
an attenuation coefficient, kw, of 0.04 m, no nutrient dependence, and with a
constant ratio of phytoplankton chl-to-carbon of 0.02 mg Chl mg C" is 358 m.
Running the random walk model with the mixing based on a surface wind

speed of 2.5 m s’ (K = 0.0358 m? s”) results in positive steady state
turb
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phytoplankton population, with an average specific rate of production (gross)
of 0.025 d'. This is above the linear respiration rate (0.02 d), so this
population will survive. To predict the critical depth, | took the normalised
vertical chlorophyll profile of the steady state phytoplankton (the absolute
value at each depth divided by the mean value over the mixed layer), and then

fit a polynomial to the resulting profile (Figure 113).
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Figure 113: The normalised vertical chlorophyll profile from a simulation with a mixed

layer depth of 358 m, surface irradiance of 5 W m?, surface wind speed 2.5 ms' (k =

turb

0.0358 m? s"), chl-to-carbon ratio of 0.02 mg Chl (mg C", no nutrient dependence, and kw =
0.04 m"

The function of the curve shown in Figure 113 can then be used as a shape
function to modify the calculation of the new production throughout the mixed

layer. The shape function for the curve in Figure 113 is:
S.u=(32e°2")—(23¢72)+13 (4.9)

| could then estimate the average daily gross specific production in the mixed
layer for scenarios with the same relative distribution, by numerically
integrating equation (4.10), modifying the production at each depth by the

shape function:
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The depth for which equation (4.10) is equal to the linear rate of respiration
(0.02 d") is then the predicted critical depth. For the above scenario, this was
440 m.

| tested this prediction by running the scenario again, but this time with a
mixed layer depth of 440 m. As the diffusivity coefficient is a function of the
mixed layer depth, increasing the mixed layer to 440 m increased K_, to 0.044
m? s'. The phytoplankton were able to maintain a steady state at a depth of
440 m, with an average production rate of 0.020 d', which is equal to the
linear respiration rate, and a good indication that the method has been
successful in predicting the critical depth. Increasing the mixed layer depth

beyond 440 m resulted in the phytoplankton population declining.

4.5 Conclusions

In this chapter, | have tested three main hypotheses surrounding the controls
of the initiation of the spring bloom, using a Lagrangian phytoplankton model
with a full seasonal cycle. | have shown that these hypotheses can be
reconciled if some of Sverdrup’s original assumptions are relaxed. Although
the study has successfully achieved its aims, it has also demonstrated that an
Eulerian model using an appropriate step for integrations (i.e. 0.1 m) and that
captured the same vertical profile of phytoplankton would have produced the

same result.

The critical depth hypothesis was first formulated over 60 years ago, and has
been hotly debated ever since. Testing the hypothesis is complicated due to
the difficulties surrounding the necessary empirical measurements, such as the
compensation irradiance, and the point where the net growth first becomes
positive after winter. Siegel et al. (2002) proposed that laboratory
measurements of compensation irradiance taken from the lowest irradiance at
which a phytoplankton cell can survive are not necessarily applicable to
oceanic environments, and my results have backed this up, showing how the
compensation irradiance is not constant in dynamic scenarios, due to the

changing rates of grazing and non-linear mortality. In addition, there has been
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some controversy in the literature surrounding the definition of the start of the
spring bloom. Behrenfeld (2010), Behrenfeld et al. (2013), and Behrenfeld &
Boss (2014) suggested that peak chlorophyll concentration may not be a good
indicator of the timing of the initiation of spring bloom, and my model has
demonstrated this. Decreasing the concentration of phytoplankton by
deepening the mixed layer at the start of the year will result in a delayed peak
chlorophyll measurement, even though the net growth rate will become
positive sooner. Finally, Sverdrup’s assumption of phytoplankton that are
evenly distributed throughout the mixed layer does not hold true for mixed
layers with moderate turbulence rates, so accurately predicting the critical
depth also requires knowledge about the rates of turbulence and mixing
(Franks, 2014).

Traditionally, the critical depth hypothesis views the spring bloom as resulting
from the mixed layer depth shoaling above the critical depth, but my model
has shown that this is not necessarily the case. Increases to surface irradiance
can increase the critical depth, so that net growth can occur even when the
mixed layer is still deep (> 500m). This would account for studies that observe
positive net phytoplankton growth without any mixed layer stratification, such
as Behrenfeld (2010) who looked at a nine-year satellite record of
phytoplankton biomass in the subarctic Atlantic, and found that in no case was
positive net growth delayed until the mixed layer had shoaled significantly.
Also, the model has given some indication as to how changes in external
forcing and phytoplankton physiology can influence the critical depth. The
critical depth is highly sensitive to the respiration rate, making this a crucial
parameter in its definition. Also, increases in winter mixing that deepen the
mixed layer and dilute the concentrations of both phytoplankton and
zooplankton will reduce the specific non-linear phytoplankton loss rates,
resulting in a decreased critical depth. Finally, if the turbulent mixing is
reduced sufficiently to allow a nonhomogeneous vertical phytoplankton profile
to develop, then both the timing of the initiation of the spring bloom and its

peak will occur earlier.

There is plenty of opportunity for further research surrounding this topic, in

particular regarding the parameterisation of the rates of respiration. These are

usually parameterised as a constant, linear function of the biomass, which has
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previously been criticised in the literature. Smetacek & Passow (1990) stated
that maintenance respiration varies with growth rate, and that studies have
shown that some species of diatoms show very low rates of respiration when
grown at low irradiances. Lindemann et al. (2015) used a Lagrangian
phytoplankton model to demonstrate that including variable rates of
respiration (and sinking) in response to changes in irradiance allowed the
model to capture the observed phytoplankton concentrations during deep
mixing, and the timing and onset of the spring bloom at OWS Mike, in the
North Atlantic. Fixed rates of respiration could only achieve the same result
when using unrealistic model parameters. Also, this chapter focussed on the
controls of the initiation of the spring bloom only, not on the timing and
magnitude of its peak. Although | have shown that the point at which net
growth becomes positive is predictable, given information regarding the
turbulence, and the balance between the rates of growth and loss, the onset of
the spring bloom does not necessarily impact upon the magnitude of its peak.
In fact, the significant lag between the onset and the peak of the bloom shown
in section 4.2.4 (> 50 days), raises the question of whether the net growth
becoming positive is the sole mechanism controlling the climax and the peak
of the spring bloom, or whether other factors have to come into play to result

in the rapid increase in accumulated biomass that typifies the spring bloom.

Sverdrup’s hypothesis was a mathematical simplification of a complex ocean
phenomenon, which stated that phytoplankton blooms cannot take place,
unless the conditions are favourable for positive net growth. This chapter has
demonstrated that this theory is still valid, providing that additional factors,
such as the turbulence and the balance between growth and loss, are taken
into account. In addition, like Chapter 3, it has shown the utility of vertical
phytoplankton profiles for the use of accurately predicting rates of
photosynthesis for mixed layers with moderate mixing rates, providing further
evidence that improving the accuracy of phytoplankton models could be
improved by an increase in empirical observations regarding the vertical

structure of phytoplankton in the mixed layer.
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Chapter 5: Discussion

Ocean primary production constitutes an important link in the cycling of
carbon between living and organic stocks, regulating the global climate
through the removal of carbon dioxide from the atmosphere. At the same
time, photosynthesis by oceanic phytoplankton is controlled by the availability
of light and nutrients, which are, in turn, regulated by physical processes such
as ocean circulation, mixed-layer dynamics, and the solar cycle. Understanding
the relationships between the ocean biology and the climate depends upon the
accuracy to which changes in the ocean ecosystems can be detected
(Behrenfeld et al., 2006). Numerical and computational models can provide
insight into these relationships, and recent technological advances in computer
hardware, software, and data storage have allowed researchers to greatly
expand their range of modelling tools. However, as Einstein is believed to have
once said, “...everything should be as simple as it can be, but not simpler”
(Prausnitz, 2002). In other words, before embarking on the construction of a
complicated model of a system, it is important to be satisfied that a simpler
model would not be just as suitable for the job at hand. In addition, if a more
complex simulation will provide differing predictions to an equivalent simpler
formulation, it is important to understand what is driving the differences

between the two formulations.

The present study has focussed on gaining understanding into the potential
differences between two marine ecosystem formulations: one that models all
phytoplankton biomass as a homogeneous concentration (Eulerian), and the
other which allows for the tracking of individual variability in phytoplankton
individuals as they are mixed through the changing light field (Lagrangian). In
addition, two ecological questions are investigated via Lagrangian modelling
studies: whether the individual response of phytoplankton to their local
irradiance affects the overall rates of primary production, and whether
understanding the mechanisms that control the timing of the onset of the
spring bloom requires knowledge about mixing rates, and individual

phytoplankton growth rates.



Lagrangian models represent primary production as a number of particles,
each of which experiences a different light history as they are vertically mixed
through the surface layer of the ocean. It is a complex approach, requiring a
number of decisions regarding its implementation, and a number of these
were approached in Chapter 2. The resulting model included Lagrangian
phytoplankton, a full ecosystem, with explicit state variables for zooplankton,
detritus, and dissolved inorganic nitrate, with new techniques employed for
dealing with the interactions between the Eulerian and Lagrangian components
of the model. In order to obtain the model parameters, in particular, the
parameters controlling photoacclimation, the model was set up for Ocean
Weather Station in the North Atlantic. Empirical data were used to parameterise
the turbulent mixing, and therefore also the random walk model that
determined how the phytoplankton were redistributed each time step. In
Chapter 3, the model was used for an intercomparison study, which was the
first study of its kind to directly compare equivalent Eulerian and Lagrangian
formulations of a full ecosystem model that included a seasonal, and diel,
cycle of forcing. The results were unexpected - the two models demonstrated
very similar predictions, and further investigation, through the use of
controlled, fixed-slab models showed that the phytoplankton were moved
through the mixed layer too fast to have time to acclimate to their local
irradiance. Finally, in Chapter 4 three hypotheses surrounding the mechanisms
controlling the timing of the onset of the spring bloom in the North Atlantic
were investigated. Again, this study was the first of its kind to investigate the
spring bloom using such a detailed Lagrangian ecosystem model, and was able
to reconcile the three hypotheses under the one concept of critical depth.
Although the model achieved the aims successfully, the same results could
have been obtained through the use of an Eulerian model, given information
about the vertical structure of phytoplankton, and also if using appropriate

intervals for integration.
The following paragraphs will provide a summary of the key findings and give

suggestions for further work.

5.1 Fundamental assumptions of Lagrangian modelling

This section investigated some of the fundamental assumptions underpinning

Lagrangian models, such as how the ecosystem is structured, the manner in
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which the particles are redistributed, how the numbers of particles are
managed i.e. particle splitting, and the interactions between the phytoplankton

and the rest of the model.

5.1.1 Structure of the ecosystem

Choosing the appropriate framework for the ecosystem is a balance between
complexity and computational cost, and the necessary detail for the question
at hand. Simulating the entire ecosystem on a Lagrangian basis, a method
which is employed for the WB model (Barkmann & Woods, 1996a; Woods &
Barkmann, 1993a; Woods & Barkmann, 1993b; Woods & Barkmann, 1994), and
subsequent models based on it (i.e. Sinerchia et al. (2012)) is a highly
complex, non-trivial undertaking, involving a great deal of computational
expense. In addition, one of the aims of the current study, was to strip the
model back to its fundamental components, in order to both investigate how
different variables, (e.g. turbulence, grazing), influenced phytoplankton
growth, and also to enable comparison with an equivalent Eulerian model.
Therefore, the Lagrangian phytoplankton were implemented in an otherwise
Eulerian ecosystem, a method previously seen in Broekhuizen (1999); Cianelli
et al. (2009); Cianelli, D’Alcala, Saggiomo, & Zambianchi (2004). However,
these previous studies chose not to represent interactions between the
phytoplankton and zooplankton, instead implicitly including grazing through
an increase in the mortality term. This was insufficient for the aims of the
current study, which required explicit representation of the interplay between
the phytoplankton and zooplankton in order to understand how the balance
between zooplankton and phytoplankton populations affected the seasonal
cycles of primary production, as well as the consequences of individual
phytoplankton response for the ecosystem as a whole. The Eulerian ecosystem
in which the Lagrangian phytoplankton were simulated therefore included
explicit zooplankton, nutrients and detritus, in a manner which has not
previously been seen in the literature. Essentially, Lagrangian phytoplankton
were implemented in an otherwise Eulerian model that assumed complete
homogeneity of dissolved nutrients, zooplankton, and detritus. This method is
not without its issues, in particular, handling the interactions between the
Lagrangian phytoplankton and Eulerian zooplankton was not a trivial matter,

and the method for this is fully explained in section 0. Overall, though, the
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model was highly successful, achieving both aims of creating an environment
for Lagrangian phytoplankton that allowed for investigation of the interplay
between the phytoplankton and the other components of the ecosystem, whilst

also producing results that were directly comparable to an Eulerian equivalent.

5.1.2 Particle movement rules

The choice of particle movement rules is crucial to the model, because it
determines the timescales at which the phytoplankton are mixed. The
relationships between the timescales of mixing and the timescales of growth
and acclimation determine whether it is necessary to represent primary
production using a Lagrangian framework, which is fully explored in section
5.2. The particle movement rules need to redistribute the phytoplankton in a
way that meaningfully represents the mixing timescales in the mixed layer,
whilst avoiding any inconsistencies of distribution that could artificially

influence the model predictions.
5.1.2.1 Random position movement algorithm

The simplest method of redistributing the phytoplankton particles is to update
their depth to a new random position between the surface and the base of the
mixed layer each time step. Woods (2005) proposes that this is a valid method
for scenarios with time steps that are much greater than the turbulence time
scale, and it is used in several models that are based on his WB model (e.qg.
Sinerchia et al., 2012; Woods & Barkmann, 1993a,b, 1994). Whether this would
be a valid method for OWS India, where the mixed layer depth can reach to
greater than 600m, can be determined by calculating the time scale of
turbulence, T (s), which can be estimated using the diffusivity coefficient, K

(m? s7), and the depth of the mixed layer, H (m):

T, = (5.1)

For the mixing time scale to be on the order of a time step of 30 minutes for a
mixed layer depth of 600m would require a turbulent diffusivity of 200 m? s™.
For comparison, the turbulent diffusivity calculated for the random walk
algorithm (discussed in more detail in section 5.1.2.3) for a mixed layer depth

of 600 m and a surface wind speed of 10 m s’ would be 0.24 m? s”, almost 3
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orders of magnitude smaller, and representing an estimated mixing time of ~
17 days. Although time scales of mixing in the ocean, especially in large,
turbulent eddies, have been observed at rates as fast as 0.5 h, these are on the
order of 10m, rather than 600m (Denman & Gargett, 1983).

In addition, further detailed analyses that included comparisons with the
Eulerian model, along with investigations into the individual rates of
acclimation, demonstrated that the concept behind the random position
movement algorithm is flawed. There is no difference in predictions between
the Eulerian model and the random position model, because, on average, the
phytoplankton particles experience the same conditions. Essentially, the
phytoplankton particles in the random position model can be seen as random
samples drawn from an Eulerian model each time step. There is no difference
in the predictions of primary production, or average chl-to-carbon ratios.
Therefore, there is no modelling scenario for which a Lagrangian model that
utilises the random position movement algorithm would be a useful choice.
However, a random position movement could be used to obtain the rates of
growth and loss from a Lagrangian model, for use in an Eulerian model. One of
the difficulties in creating equivalent Eulerian and Lagrangian models is how to
apply average loss rates to individual phytoplankton particles. Knowing that
Eulerian models and Lagrangian random position models are equivalent allows
for average rates of loss to be determined from Lagrangian models where the
rates of loss and grazing are applied on an individual, rather than an average,

basis.
5.1.2.2 Random walk algorithm

The alternative to the random position movement algorithm is to implement a
random walk, where the phytoplankton particles move a predetermined
distance each time step in a random direction. As this was a 0D model that
considered only vertical movement, the phytoplankton could move up or down.
Although there has been a great deal of research in the literature with regards
to the physicality of the random walk, in terms of how to determine the step
length, and how to prevent accumulation of particles in regions with lower
rates of mixing, few studies have investigated how the implementation of a

random walk can affect the model predictions of primary production.

Most random walks involve some form of the Brownian motion equation:
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Z.,=27+2K,, ot (5.2)

where K__ represents the turbulent diffusivity, Z represents the current depth,
and Z_ the depth at the end of the time step. This model formulation was
revised by (Visser, 1997), due to the fact that for mixed layers with non-
uniform diffusivity, particles would accumulate in the areas with the lowest
diffusivity, and his revised model formulation (and the extended version
described by (Ross & Sharples, 2004)) forms the base of many Lagrangian
phytoplankton models (e.g. Broekhuizen (1999); Cianelli et al. (2009); Nagai et
al. (2003); Ross et al. (2011a); Ross et al. (2011b)). The current study assumed
a uniform diffusivity throughout the mixed layer, so used a simpler version of
the Visser (1997) model that neglected the expression for redistributing
particles from areas of low turbulence, although this could easily be added to
allow the model to simulate profiles of diffusivity. The model described in
Visser (1997) also included an additional random element through multiplying
the step length calculated in equation (5.2) by a random process between 0
and 1. The study compared the random walk described in Visser (1997), to a
simple, Brownian motion equation, as shown in equation (5.2), and used in
(Falkowski & Wirick (1981). The Visser (1997) implemented was deemed to be
the better choice, due to the introduction of the random element to the step
length, ensuring an even sampling of the entire model space, unlike the
Falkowski and Wirick (1981) random walk, which moved in steps of the same
length each time step. The random walk model was fully tested in order to
ensure that the phytoplankton were randomly distributed, and the appropriate
boundary conditions (i.e. reflecting at both boundaries) were chosen. Both the
random walk and the choice of boundary conditions were successful at evenly

redistributing the phytoplankton throughout the mixed layer.
5.1.2.3 Rates of turbulence

Surface water mixing in the ocean is driven by energy from wind, waves,
Langmuir circulations, or convection - gravitational instability caused by a
cooling of the ocean’s surface (Franks, 2014). Representing all of these
difference processes with a single parameter is a daunting task. Nevertheless,
a parameter that reasonably estimates the rate of mixing in the surface layer is
essential in order to determine meaningful mixing timescales. This section
therefore examines the formulation for turbulence used in the current model,
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evaluating its success at reproducing mixing in the North Atlantic in terms of

previous studies, and of empirical evidence.

Parameterisations of turbulent diffusivity in previous studies have ranged from
complex methods, such as 2"-order turbulence closure models (e.g. Nagai et
al. (2003)), and non-hydrostatic convection models (Lindemann et al., 2015) to
the use of constant values (Cianelli et al., 2004; Dippner, 1993; Dippner, 1998;
Dusenberry, 2000; Ross et al., 2011a; Ross et al., 2011b). This study required
a method that was simple enough to allow the model to be stripped back to its
fundamental assumptions, but that would still produce a value for diffusivity
that was reasonable for the location, and representative of the seasonal cycle.
Therefore, as in Lizon et al. (1998), who parameterised a simple turbulence
model with empirical tidal measurements, and in Yamazaki & Kamykowski
(1991), who used a simple Ekman model, based on surface wind speed only, to
define both the eddy diffusivity and the depth of the mixed layer, this study
used a simple turbulence model, parameterised by data. However, unlike
Yamazaki & Kamykowski (1991), the turbulence model in this study used
empirical measurements of mixed layer depth, along with the surface wind
speeds, to calculate turbulence, as described in the KPP model for boundary
layer scenarios described in Large et al. (1994). In addition, while Yamazaki &
Kamykowski (1991) only investigated several constant values for wind speed,
this study investigated the effects on mixing of a full seasonal cycle of
empirical measurements of surface wind forcing. Changes to the mixing as a
consequence of changes to the surface wind forcing could be investigated, as

well as how changes to the mixed layer depth influenced rates of mixing.

The model of turbulence used in this study used several simplifying
assumptions, the consequences of which will be addressed here. Firstly, the
model assumed that the rate of mixing was vertically constant, which is
something that is not seen in the ocean, where the rate of mixing tends to
increase towards the middle of the mixed layer, and decrease towards the
boundaries. In addition, mixing in the ocean is not constant over a diel cycle -
surface warming during the day will suppress mixing, whereas cooler
conditions at night will increase it. Phytoplankton in the ocean are also
subjected to lateral mixing, and ephemeral phenomena such as fronts and
eddies. The aims of the current study were to understand the relationship
between acclimation and mixing, rather than the creation of an accurate model
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of the phytoplankton primary production in the North Atlantic. The use of a
more complex model, as a Large Eddy Simulation model, could potentially
provide differing predictions of primary production. Nevertheless, the current
study provides a good first step towards understanding the complex
relationship between individual phytoplankton response and overall rates of

primary production.

5.1.3 Grazing and non-linear mortality

How to best represent grazing by zooplankton in Lagrangian phytoplankton
models is a question that has not yet been satisfactorily answered. As a result,
most models choose to not explicitly represent zooplankton, instead implicitly
representing grazing through use of a higher rate of mortality (e.qg.
Broekhuizen, 1999; Daniela Cianelli et al., 2009; D. Cianelli et al., 2004;
Hellweger & Kianirad, 2007; Lindemann, Backhaus, & St John, 2015). However,
as mentioned in section 5.1.1, one of the aims of this study was to investigate
the interplay between the phytoplankton and the zooplankton, so explicit

zooplankton needed to be included.

As mentioned in section 5.1.1, previous models have either only included
grazing implicitly, or included fully Lagrangian phytoplankton. Neither of these
options was deemed as suitable: the former as it would not have allowed for
the dynamic interplay between phytoplankton and zooplankton, including the
seasonal variation in specific grazing rates, and the latter due to its complexity
which would complicate comparison with an Eulerian model, so a middle
ground solution was devised. This involved including explicit Eulerian
zooplankton that would graze on the Lagrangian phytoplankton. However,
implementing the interaction between these Eulerian zooplankton and the
Lagrangian phytoplankton was fraught with difficulties. The grazing equations
are in terms of concentrations of phytoplankton, and these need to be applied
to the phytoplankton super-individuals in a meaningful manner. As each super-
individual represents a quantity of biomass, it first seemed logical to apply
these equations on an individual basis i.e. the grazing on each individual
would be determined by the use of a non-linear function, and then the overall
rates of grazing could be calculated through summing all of the individual
rates. However, there were two problems to this: firstly, the overall loss rates

then became sensitive to the threshold for particle splitting (particle splitting is
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discussed in section 5.1.4), and secondly, it caused difficulties when it came to
creating an equivalent Eulerian model, because the loss rates were not
equivalent. A novel solution that successfully links the Eulerian zooplankton
with the Lagrangian phytoplankton was therefore devised. The grazing rates
are based on the concentration of phytoplankton biomass over the entire
mixed layer, as in the Eulerian model. This translates into an absolute value of
biomass to be lost every time step. This is then proportionally applied to each
phytoplankton super-individual, according to its biomass. The grazing rates in
the Eulerian and Lagrangian models are therefore comparable. However, as
explained in Chapter 2, there are potential sources of error with this method.
The grazing pressure ought to be relatively higher on large phytoplankton and
lower for smaller phytoplankton, but this is not the case. This increases
pressure on the smallest phytoplankton individuals, and reduces pressure on
the largest, creating a positive feedback that results in the larger individuals
increasing in size, whilst the smallest die out. In an extreme scenario, the
largest individual could eventually dominate the simulation. Implementing
particle splitting (section 5.1.4) alleviates this effect, but could be seen as not
addressing the underlying cause of the issues. However, overall, this was a

successful method of linking the two different model components.

5.1.4 Particle splitting

Lagrangian phytoplankton models can either use a fixed number of particles,
or need to include some method of controlling the number of particles in the
simulation. Too many particles can be difficult to model, whereas too few
could lead to inaccuracies due to some parts of the mixed layer being devoid
of phytoplankton. Previous studies have controlled the numbers of particles in
one of three ways: using a constant number (Nagai et al., 2003; Ross et al.,
2011a; Ross et al., 2011b), including particle splitting designed to represent
cell division (Hellweger & Kianirad, 2007), or using particle division as a
mechanism purely to control the number of particles in the simulation by
employing a minimum number (Barkmann & Woods, 1996a; Woods &
Barkmann, 1993b; Woods & Barkmann, 1994), or both a minimum and

maximum number (Broekhuizen, 1999).

The current study uses a dynamic mixed layer cycle, which results in
phytoplankton particles being lost through detrainment when the mixed layer
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shallows. A constant number of particles would therefore not be appropriate,
as the particles lost through detrainment need to be replaced. In addition, the
use of non-linear growth rates that are applied proportionally to particles
(explained in section 0) would result in an uneven distribution of biomass,
without some method to control the size of the particles. Unlike the previous
methods that employed particle splitting, there was no maximum number of
particles prescribed, instead, a maximum particle size was established, and the
number of particles in the simulation allowed to reach its natural value. The
maximum size to which the particles could grow was determined through the
sensitivity analysis in Chapter 2. Particle splitting is purely a method for
controlling the number of super-individuals in the simulation, and is not meant

to represent the biological process of cell division.

The model was not particularly sensitive to the threshold for particle splitting,
which determined the numbers of super-individuals in the simulation. Even for
mixed layer depths of > 600m, total particle numbers of ~2000 produced a
sufficient level of precision, with an acceptable level of noise. This is similar to
the number used by (Barkmann & Woods, 1996b; WOODS & BARKMANN, 1993;
Woods & Barkmann, 1994), who initialised their model with 4000 particles,
noting a minimum value of ~800. It is significantly more, however, than the
number recommended in (Dippner, 1991), who performed a sensitivity analysis
using a Lagrangian model, concluding that increasing the number of particles
above 10 resulted in little change to the model predictions. (Nagai et al., 2003;
Ross et al., 2011a; Ross et al., 2011b) used up to 80,000 particles for
simulations with a mixed layer depth greater than 60m, but this was in order
to have a statistically significantly number at each depth, for the purposes of

analysis.

The particles in the model split into two, equally sized new particles, and
introducing a random component to this (i.e. the particles being of unequal

size) did not influence the results in any way.

5.2 Modelling growth and acclimation in Lagrangian

phytoplankton

One reason behind the use of Lagrangian models is the belief that

phytoplankton acclimate to their light environment, which will cause
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divergence between Lagrangian and Eulerian models. This section used novel
approaches in order to investigate this. First, a model intercomparison study
was performed, which, like the studies performed by McGillicuddy (1995) and
Lande & Lewis (1989) demonstrated no difference in the predictions of primary
production between each model formulation. However, two studies differed in
their explanations of the results, and this was resolved through the use of an
in-depth study that used a fixed slab model to thoroughly investigate the rates
of acclimation in the individual phytoplankton. Acclimation happens at a much
slower rate than mixing, so phytoplankton do not have time to acclimate to
their local irradiance as they are being mixed through the mixed layer. In
addition, it was demonstrated that the timescales of importance are actually
those of the mixing and the rate of phytoplankton growth. Changes to the
turbulent diffusivity can result in the mixing rate becoming insufficient to
overcome the phytoplankton growth rates, resulting in an non-uniform vertical
structure of phytoplankton, which increases the overall rate of primary
production. As growth occurs on a faster timescale than acclimation, this has a

far stronger response to changes in the mixing rate.

5.2.1 Model intercomparison study

There were two objectives behind setting up the model for OWS India: firstly,
to obtain the parameters for the photoacclimation equations, and secondly to
investigate the consequences of photoacclimation on the ecosystem as a
whole. This was the first study to perform a model intercomparison between
Eulerian and Lagrangian representations of a full marine ecosystem that
included both explicit zooplankton, and mixing based on empirical data. The
results of the study showed that there was little difference between the
predictions of both primary production and chl-to-carbon ratios between the

Eulerian and Lagrangian models.
5.2.1.1 Photoacclimation parameters

One of the reasons why different studies have produced different results is the
way in which photoacclimation is represented. Previous studies (notably the
models by Lande & Lewis (1989); Wolf & Woods (1988), which were
investigated in McGillicuddy (1995) have used different formulations for the

rate of change in the photoacclimative properties of the phytoplankton. In
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order to address this issue, this study used the growth model described in
Geider (1997), in which the photoacclimative properties (the ratio between
chlorophyll and carbon) are not modelled directly, but instead result from the
differing rates of production of pigment and biomass, dependent on the
external conditions (i.e. irradiance, nutrients). However, the behaviour of the
model is highly dependent on its parameterisation, and the rate at which the
phytoplankton acclimate is controlled by the maximum chl-to-carbon ratio,
which varies between species: smaller phytoplankton functional groups, such
as cyanobacteria and dinoflagellates, show low values for thetacmax, and
larger groups, such as diatoms, show higher values Geider et al. (1997). In
addition, estimates are often obtained in the laboratory, and these can vary
from those measured in the ocean. The initial values used for the model, as
used in Taylor et al. (1997); Yool et al. (2011); Yool et al. (2013) of 0.05 mg
Chl mg C"' resulted in overall ratios of chl-to-carbon that were too high, by a
factor of two, for OWS India. Satellite measurements taken by Behrenfeld et al.
(2005) suggest a maximum ratio of ~0.017 for that region of the ocean, and
changing the maximum chl-to-carbon ratio to 0.02 mg Chl mg C' gave a much

better representation of the seasonal observations of chl-to-carbon.
5.2.1.2 Fixed slab models

The investigations with the fixed slab models demonstrated the real strength
of Lagrangian implementations. Not only could the effects on overall growth by
changes to external forcing be investigated, but also the changes in individual
phytoplankton as they moved through the mixed layer could be tracked. The
model successfully demonstrated why there is little difference between the
Lagrangian and Eulerian implementations - even at low to moderate mixing
rates, the phytoplankton do not have time to significantly acclimate to their

local irradiance.
5.2.1.3 Vertical phytoplankton profiles

One observation from the experiments was that the mixing that was
parameterised for OWS India resulted in vertical profiles of phytoplankton,
even though the mixed layer was fully mixed (section 5.1.2.3). Investigations
into these vertical profiles showed that when the mixing rate was slowed to

significantly affect the overall rates of primary production, these changes to
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the rates of production were almost entirely due to the vertical profile of

phytoplankton, rather than from the chl-to-carbon ratios of the phytoplankton.
5.2.1.4 Sensitivity of the ecosystem

Testing the entire marine ecosystem using the same scenarios as for the fixed
slab experiments produced some interesting results. First of all, the growth of
the phytoplankton over the summer is not controlled by the irradiance, but by
the nutrient concentration and the loss rates. Secondly, the formation of a
vertical profile of phytoplankton has the most effect when the phytoplankton
growth is light limited, so when the mixed layer is deep, and/or the surface

irradiance is low. This would be observed in early spring.

5.3 The main controls on the timing of the initiation of

the spring bloom

Franks (2014) proposed that the critical depth hypothesis could not be
properly tested by a model that did not included information about the rates at
which the phytoplankton were mixed through the water column. Therefore the
model was used to investigate the critical depth, critical turbulence, and
disturbance-recovery hypotheses, for OWS India. The aims were twofold: to
investigate which hypothesis best describes the controls of the spring bloom at
OWS India, and to evaluate the suitability of a Lagrangian model to achieve this

aim.

Critical depth, defined as the depth above which the integrated net growth was
equal to 0, was calculated from the full ecosystem model, based on the
predicted rates of growth and loss. This is something that has previously not
been seen in the literature, where predictions of critical depth are based on
constant parameters, such as the compensation irradiance. However, the non-
linearity of phytoplankton loss rates mean that the critical depth will change as
a function of the concentrations of both phytoplankton, and the zooplankton
that graze on them. In addition, the daily critical depth was calculated in a
number of different ways: without a diel cycle of irradiance, with a diel cycle,
but using the daily averaged irradiance, and with a diel cycle of irradiance, but
calculating the average critical depth over the day. This latter method was

shown to provide the most accurate estimate, demonstrating that Sverdrup’s

205



recommendation for using the average irradiance over the course of each day
to calculate the critical depth introduces errors if the relationship between
irradiance and photosynthesis is non-linear. In addition, an analytical equation
for the critical depth was devised, and the critical depths predicted by the

model matched those provided by the equation.

The predicted critical depth and the modelled day of the onset of the bloom
were shown to match exactly, which has not previously been achieved in the
literature. The study carried out by Lévy (2015), which used a 1D NPZ model to
investigate critical depth, found a lag between the predicted (i.e. using
Sverdrup’s theory) and the modelled day of the onset of the bloom, even when
the model adhered to all of the assumptions in Sverdrup’s theory (i.e. constant
rate of loss with depth, no grazing, linear dependence of photosynthesis on
irradiance). This was attributed to the fact that Sverdrup’s equations were
solved for steady-state conditions, but the results from the current study
suggest the use of a constant for the compensation irradiance, and the loss of
accuracy through integrating an Eulerian model over 5 m intervals, could also
affect the accuracy of the predicted critical depth. For example, the current
demonstrated that an Eulerian model that integrated over 1 m intervals would
predict a critical depth that differed from the Lagrangian predictions by ~2%,
due to the loss in accuracy through integration. If the model integrated over

smaller intervals (i.e. 0.1 m), the two predictions would converge.

The study yielded several interesting findings about the timing on the onset of

the spring bloom in the North Atlantic:

1. The spring bloom is triggered by the increase in irradiance deepening
the depth at which the mixed layer can sustain net production, rather
than by the mixed layer shoaling. There is little change in the depth of
the mixed layer at the point where production first becomes positive - it
is still > 500m deep. This is an important result, because it provides an
explanation as to how net growth can become positive in the absence of
significant mixed layer stratification, as observed by Boss & Behrenfeld
(2010); Townsend et al. (1994).

2. The timing of the onset of the spring bloom is controlled by the
phytoplankton respiration (linear loss rate), whereas the magnitude of

its peak is more strongly controlled by grazing (non-linear loss rate).
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This is because the non-linear losses are very low at the beginning of
the year, due to the deep winter mixing, which dilutes the
concentrations of both phytoplankton and zooplankton. However, non-
linear rates would have more impact on the timing of the onset of the
spring bloom for scenarios without deep winter mixing, where the
concentrations of zooplankton and phytoplankton were maintained over

winter (as proposed in the disturbance-recovery hypothesis).

. The critical depth and critical turbulence hypotheses do not describe
independent mechanisms that control the onset of the spring bloom. If
the timescale of growth is faster than the timescale of mixing, then the
mixing is not sufficient to overcome to phytoplankton growth rate, and
a vertical profile will start to form. This increases the overall growth rate
of the phytoplankton population, which decreases the critical depth.
This critical depth is still predictable, given information regarding the
vertical structure of the phytoplankton, although it quickly becomes
very deep - i.e. deeper than the depth of the deepest point of the ocean

- meaning that, for all intents and purposes, there is no critical depth.

. The predicted values for the critical depth are very deep, making the
concept only relevant for regions with of high turbidity (increases to
turbidity decrease the critical depth, by reducing the average irradiance,
and therefore the rate of primary production), or with very deep mixed
layers. This backs up results by Platt et al., (1991) who predicted the
critical depth for various locations in the ocean, concluding that, except
at the highest latitudes, it was very deep. They suggested that it is
therefore possible that almost any surface mixed layer would satisfy the

Sverdrup criterion.

The model has demonstrated that the timing of the spring bloom can be

predicted, given certain information about the conditions. For regions with

deep winter mixing, and therefore very low phytoplankton concentrations in

early spring, the timing of the onset of the bloom is determined by the rate of

respiration. For regions without deep winter mixing, and where a

phytoplankton population is maintained throughout the winter, grazing rates

play a much stronger role in controlling the onset of the spring bloom.

However, it is important to note that the timing of the onset of the bloom does
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not yield information regarding how rapidly phytoplankton biomass might

accumulate (Platt et al., 1991), and therefore might have limited use for

predicting the magnitude of the peak of the phytoplankton bloom, which is

generally of greater use in terms of carbon export.

5.4

Future research

This study has highlighted several areas in which Lagrangian models could be

useful for advancing knowledge in this field:

1.

Include variability in the rates of photoacclimation. One important
question that this study has highlighted is regarding the rates of
photoacclimation. The study has suggested that phytoplankton
acclimate very slowly to changes in their local irradiance, responding on
seasonal, rather than diel cycles. However, only one functional group
was represented, with a low maximum chl-to-carbon ratio, which would
be typical of a small phytoplankton species, such as a dinoflagellate or
cyanobacteria. Implementing the model with Lagrangian phytoplankton
with a range of different photoacclimative traits could demonstrate the
potential advantages to differing rates of acclimation, by determining
the traits that become dominant in response to changes in external
forcing. For example, Lewandowska et al. (2015) proposed that the
timing of the spring bloom is not only determined by factors such as
light, nutrients and grazing, but also by the photoacclimative properties
of the phytoplankton. In addition, they stated that without the necessary
combination of traits for a particular location and time, the spring
bloom could not take place. They concluded that variability in
photoacclimative and growth traits is essential in order to accurately

model the spring bloom.

. Investigate whether the results would change, if the phytoplankton were

allowed to synthesise chlorophyll at night. In the cell-based
phytoplankton growth model described in Ross & Geider (2009),
phytoplankton cells can accumulate reserves of carbon during the day,
which allows them to synthesise chlorophyll, in the absence of sunlight,
over night. This effectively allows the phytoplankton cells to

photoacclimate over the full 24-hour period, rather than just during the
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4.

day, when they are in the euphotic zone. This would be likely to result in
different dynamics, in particular in terms of the average state of
photoacclimation of the cells, as they would adjust to the average
irradiance in the entire mixed layer, rather than just in the euphotic
zone (as described in section 3.4.2). Implementing a completely cell-
based model would also constitute a good next step from the model in
the current study, which would then form a useful basis for comparison,
starting, as it does, from a fully Eulerian model, and then moving to a

Lagrangian equivalent.

Improving the representation of respiration. This study has
demonstrated that for regions with deep winter mixing, such as the
North Atlantic, the main control on the timing of the onset of the spring
bloom is the phytoplankton rate of respiration. This tends to be
assumed to be proportional to phytoplankton biomass in phytoplankton
models, a technique that has been criticised (e.g. Smetacek & Passow
(1990)). A modelling study performed by Lindemann et al. (2015)
investigated the effect of including variable rates of phytoplankton
respiration, and buoyancy, into ecosystem models. They demonstrated
that the use of variable rates for respiration and sinking enabled their
model to fit all of the observations (concentration during winter mixing,
and timing and magnitude of the onset of the spring bloom), whereas
using fixed rates only allowed the model to fit the observations when
using unrealistic parameter values. It would be useful to see how
incorporating variable rates of phytoplankton respiration into the
current model would influence both the seasonal cycle of
phytoplankton, and the predictions relating to the timing of the spring

bloom.

This study has only focussed on one ocean site - the North Atlantic, in a
region that is characterised by deep winter mixing. However, the model
predictions suggest that in regions without deep winter mixing, the
timing of the spring bloom would be determined more by the grazing
rates than by the rates of acclimation. In addition, Cole et al., (2015)
suggested that the mechanisms in the North Atlantic are not
representative of the ocean basins as a whole, making it a poor choice
for developing general theories surrounding the controls of spring
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blooms. Testing other sites in the ocean, such as the North Pacific or
the Southern Ocean, could enhance our understanding of the
mechanisms that control phytoplankton blooms on a global basis.
However, in order to properly investigate other sites, the model should
be extended to include vertical profiles of nutrients and zooplankton, in
order to allow for sub-surface chlorophyll maximum and zooplankton

vertical migration.

5.5 Conclusion

This study has investigated two linked applications for marine ecosystem
models: predicting the seasonal patterns of primary production, and gaining
understanding about individual cellular processes such as photoacclimation. It
might be expected that photoacclimation in Lagrangian models would have an
impact on seasonal cycles, however, the timescales of mixing did not permit
photoacclimation, resulting in no difference in seasonal predictions between
the Lagrangian and Eulerian models. Therefore, the use of a Lagrangian
approach did not demonstrate any advantage in terms of the accuracy of
predictions, when set up for Ocean Weather Station India. However, this was
the only ocean site investigated, and these findings need to be tested for
locations that display different characteristics, such as a deep chlorophyll
maximum, or a stratified water column. Overall, though, this study has
demonstrated that Eulerian ecosystem models, as for example applied in
biogeochemical modelling studies, do not suffer deficiencies due to their not
representing the interaction of phytoplankton with their physico-chemical

environment at the individual cell level.

Additionally, this study has demonstrated the utility of Lagrangian models for
the purpose of testing current ecological theory. It is only by running a
Lagrangian model that it was possible to investigate the time scales of
acclimation and mixing in a dynamic environment. In particular, it has shown
that, as the timescale for growth is faster than that of acclimation; reducing
the mixing rate will affect the vertical profile of phytoplankton in the water
column, before having a significant effect on individual chl-to-carbon ratios.
This suggests that the accuracy of future models could benefit from improved
parameterisation of the rates of mixing, and how these affect the vertical

structure of phytoplankton through the mixed layer. For example, Behrenfeld
210



et al. (2006) found a clear link between net primary production and climate
resulting from changes in water column stratification. Climatic changes that
resulted in surface warming increased the density contrast between the surface
layer and the underlying nutrient rich waters, thereby suppressing nutrient
exchange through vertical mixing, and decreasing net primary production. A
recent study by Wijffels et al. (2016) showed that the constant planetary
radiation imbalance over the years 2006 to 2015 have resulted in a steady rise
in ocean heat content, and therefore it is critical for future research to focus on
how, if this trend continues, this could affect both the vertical structure of the

ocean, and the overall rates of primary production.

The study also demonstrated that, as proposed by Franks (2014), knowledge
about the rates of turbulent mixing are crucial for proper testing of the critical
depth hypothesis (and therefore also the critical turbulence and disturbance-
recovery hypotheses). As described above, reductions to the rate of mixing
result in changes to the vertical profile of phytoplankton, which deepen the
critical depth. In addition, it has demonstrated that, as proposed by Platt et al.
(1991), the critical depths are deep, which means that, in order for net
phytoplankton growth to occur, stratification of the mixed layer does not need
to occur. Seasonal increases in the surface irradiance are sufficient to result in
the critical depths deepening beyond that of the mixed layer. Most
importantly, it has indicated that the different hypotheses for the control of the
spring bloom are just describing the different processes that determine it.
Sverdrup’s hypothesis is correct, in that it is possible to accurately describe the
point at which net production becomes positive, based on the rates of growth
and loss. However, as this point tells us little about the magnitude, or even
timing of the peak of phytoplankton production, it is unlikely to have a great

deal of predictive power.
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