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Abstract. This paper is obtained as as synergy of homotopy theory, commutative algebra and

combinatorics. We give various bounds for the Lusternik-Schnirelmann category of moment-angle

complexes and show how this relates to vanishing of Massey products in Tor+
R[v1,...,vn](R[K],R)

for the Stanley-Reisner ring R[K]. In particular, we characterise the Lusternik-Schnirelmann cat-

egory of moment-angle manifolds ZK over triangulated d-spheres K for d ≤ 2, as well as higher

dimension spheres built up via connected sum, join, and vertex doubling operations. This char-

acterisation is given in terms of the combinatorics of K, the cup product length of H∗
(ZK), as

well as a certain generalisation of the Golod property. As an application, we describe conditions

for vanishing of Massey products in the case of fullerenes and k-neighbourly complexes.

1. Introduction

A covering of a topological space X is said to be categorical if every set in the covering is open and

contractible in X. That is, the inclusion map of each set into X is nullhomotopic. The Lusternik-

Schnirelmann category (or simply category) cat(X) of X is the smallest integer k such that X admits

a categorical covering by k + 1 open sets {U0, . . . , Uk}.

Lusternik-Schnirelmann category and related invariants have been computed for polyhedral prod-

ucts of the form (X,∗)K for certain nice spaces X in [18, 26], though the methods there do not

extend to moment-angle complexes ZK = (D2, ∂D2)K for several reasons. For example, the con-

tractibility of the disk D2 does not give nice lower bounds in terms of the dimension of K. Indeed,

there is a fairly large literature that is focused on determining those K for which the moment-angle

complex ZK has category 1 (c.f. [4, 5, 28, 30, 29, 34, 33, 6]).

Our work is motivated by a problem in commutative algebra and our results although stated in

homotopy theory have direct applications in commutative algebra. Let R be a local ring. One of the

fundamental aims of commutative algebra is to describe the homology ring of R, that is TorR(k, k),
where k is a ground field. The first step in understanding TorR(k, k) is to obtain information about

its Poincaré series P (R), more specifically, whether P (R) is a rational function. A far reaching

contribution to this problem was made by Golod. A local ring R is Golod if all Massey products in

Tork[v1,...,vn](R,k) vanish. Golod[25] proved that if a local ring is Golod, then its Poincaré series

represents a rational function and it is determined by P (Tork[v1,...,vn](R,k)). Although being Golod

is an important property, not many Golod rings are known. Using our results on the homotopy type

of moment angle complexes, we are able to use homotopy theory to gain some insight into these

difficult homological-algebraic questions.

We will mostly be interested in moment-angle complexes ZK over triangulated spheres K. These

are known as moment-angle manifolds since it is here that ZK takes the form of a topological

manifold. Moment-angle complexes of this form have generated a lot of interest due to their con-

nections to quasitoric manifolds in toric topology and intersection of quadrics in complex geometry,

amongst other things. Their topology and cohomology is, however, very intricate, with many ques-

tions remaining open even for low dimensional K (see for example [12, 15, 24, 14, 40, 8, 38, 39]).
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None-the-less, we will characterise those triangulations of d-spheres where d ≤ 2 for which ZK has a

given category, as well as certain higher dimensional spheres built up via join, connected sum, and

vertex doubling operations.

Our motivation for doing this is a combinatorial and algebraic characterisation of Golod complexes

K and co-H-space (category ≤ 1) moment-angle complexes ZK given in [28] in the case of flag

complexes K. The authors there showed that both of these concepts are equivalent, and moreover,

that they both coincide with chordality of the 1-skeleton of K and the triviality of the multiplication

on Tor+R[v1,...,vn](R[K],R) for R = Z or R any field, where R[K] is the Stanley-Reisner ring of K

over R. From the perspective of commutative algebra, an interesting algebraic consequence of this

was that triviality of the multiplication on Tor+R[v1,...,vn](R[K],R) implies that all higher Massey

products are also trivial, at the very least when K is flag. 1 This depended on the general fact

that the cohomology ring of a space of category ≤ 1 has trivial multiplication and Massey products

vanish [23, 43]. It is natural to ask what the corresponding statement is for spaces with larger

category, more so, if the characterisation for Golod flag complexes in [28] can be generalised in this

sense. An answer to the first question was given by Rudyak in [42], which inspires the following

definition.

Definition 1.1. A simplicial complex K on vertex set [n] is m-Golod over R if

(1) nill(TorR[v1,...,vn](R[K],R)) ≤m + 1;

(2) Massey products ⟨v1, . . . , vk⟩ vanish in Tor+R[v1,...,vn](R[K],R) whenever vi = a1⋯ami and

vj = b1⋯bmj , and mi+mj >m for some odd i and even j and as, bt ∈ Tor+R[v1,...,vn](R[K],R).

Proposition 1.2. If cat(ZK) ≤m, then K is m-Golod. ◻

In this respect, the vanishing of certain Massey products can be established whenever the Lusternik-

Schnirelmann category of a moment-angle complex is determined. Here the nilpotency nillA of a

graded algebra A is the smallest integer k such that all length k products in the positive degree

part A+ vanish. Notice that K is (m + 1)-Golod whenever it is m-Golod, and 1-Golodness of K

coincides with the classical notion of Golodness [25], namely, that all products and (higher) Massey

products are trivial in Tor+R[v1,...,vn](R[K],R). All of this can be restated equivalently in terms

of the cohomology of ZK due to an isomorphism of graded commutative algebras H∗(ZK ;R) ≅
TorR[v1,...,vn](R[K],R) when R is a field or Z [3]. We will consider (co)homology with integer

coefficients.

Theorem 1.3. If K is k-neighbourly, then cat(ZK) ≤ 1+dimK
k

and K is ( 1+dimK
k

)-Golod. ◻

Theorem 1.4. If K is any d-sphere for d ≤ 2, or (under a few conditions) built up as a connected

sum of joins of such spheres, then the following are equivalent: (a) cat(ZK) ≤ k; (b) K is k-Golod;

(c) length k + 1 cup products of positive degree elements in H∗(ZK) vanish; (d) there does not exist

a spherical filtration of full subcomplexes of K of length more than k. Moreover, k ≤ d + 1. ◻

Applying vertex doubling operations, the range of spheres in Theorem 1.4 can be extended using

the following.

Theorem 1.5. If K(J) is the simplicial wedge of K for some integer sequence J = (j1, . . . , jn), then

cat(ZK(J)) ≤ cat(ZK). ◻

In the case when K is the boundary of the dual of a fullerene P we obtain the following result.

Theorem 1.6. For a fullerene P , cat(Z∂P ∗) = 3 and ∂P ∗ is 3-Golod. ◻

We remark that the question of determining higher Massey products in H∗(ZK) is an important

one but notoriously difficult and equally interesting both for algebraist and topologists. Currently,

1A theorem in [7] claims this is true for all K, but a recent paper [37] provides a simple counter-example.
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a systematic answer is known in the case of moment-angle complexes associated to one dimen-

sional simplicial complexes, and only for triple Massey products of three dimensional cohomological

classes (see [15]). The relation between Massey products to the Lusternik-Schnirelmann category of

moment-angle complexes, one can obtain (for example)

Theorem 1.7. For a fullerene P , all Massey products of decomposable elements in H+(Z∂P ∗)
vanish. ◻

More general bounds for cat(ZK) will be given along the way, for instance, when K is formed by

gluing simplicial complexes along common full subcomplexes. We note that many of the results in

this paper extend to polyhedral products of the form (Cone(X),X)K in place of ZK = (D2, S1)K .

2. Preliminary

Recall the following concepts from [36, 13, 19, 22]. The geometric category gcat(X) of a space X

is the smallest integer k such that X admits a categorical covering {U0, . . . , Uk} of X with each Ui
contractible (in itself), and the category cat(f) of a map f ∶X Ð→ Y is the smallest k such that X

admits an open covering {V0, . . . , Vk} such that f restricts to a nullhomotopic map on each Vi. It is

easy to see that cat(X) = cat(1∶X Ð→X), cat(f) ≤ min{cat(X), cat(Y )}, cat(h ○h′) ≤ cat(h′). For

path-connected paracompact spaces,

cat(f × g) ≤ cat(f) + cat(g),

which follows from the also well-known fact that cat(X × Y ) ≤ cat(X) + cat(Y ) together with the

preceding inequalities. Unlike cat(), gcat() is not a homotopy invariant, though one can obtain a

homotopy invariant from gcat() by defining the strong category

Cat(X) = min{gcat(Y ) ∣ Y ≃X} .

In fact, the strong category satisfies Cat(X) − 1 ≤ cat(X) ≤ Cat(X) ≤ gcat(X). We shall let

cup(X) = nillH∗(X) − 1 denote the length of the longest non-zero cup product of positive degree

elements in H∗(X). The main use of this is the classical lower bound

cup(X) ≤ cat(X).

2.1. Some General Bounds. We begin by giving upper bounds for the Lusternik-Schnirelmann

category over some general spaces.

Lemma 2.1. Let A be a subcomplex of X and S an open subset of A. Then S is a deformation

retract of an open subset U of X such that U ∩A = S.

Proof. Let Ij be an index set for the j-cells ejα of X − A, Φα∶Dj Ð→ X its characteristic map,

and φα∶∂Dj ↪Ð→ Dj ΦαÐ→ X its attaching map. Given a subset B ⊆ X, let Vα,B be the image of

φ−1
α (B) × [0, 1

2
) ⊆Dj ≅ (∂Dj × [0,1])/(∂Dj × {1}) under Φα. Notice Vα,B deformation retracts onto

a subspace of φα(∂Dj) ∩B, and if B ∩ ejα = ∅, B ∪ Vα,B deformation retracts onto B.

Construct Ri+1 ⊆ X such that Ri ⊆ Ri+1, Ri is a deformation retract of Ri+1, and Ri ∩X⟨i⟩ is

open in the i-skeleton X⟨i⟩, by letting R0 = S and Ri+1 = Ri∪⋃α∈Ii+1 Vα,S . Then U = ⋃i≥0Ri is open

in X, deformation retracts onto S, and U ∩A = S.

�

Lemma 2.2. Given a filtration X0 ⊆ ⋯ ⊆ Xm = X of subcomplexes of a CW -complex X, suppose

Xi+1 −Xi is contractible in X for each i. Then cat(X) ≤ cat(X0 ↪Ð→X) +m ≤ cat(X0) +m.

Proof. Let k = cat(X0 ↪Ð→ X), and {U0, . . . , Uk} be a categorical cover of the inclusion X0 ↪Ð→ X.

Note Vi = Xi+1 − Xi is open in Xi+1 since the subcomplex Xi is closed in Xi+1. Then iterating

Lemma 2.1, we have open subsets Ūi and V̄i that deformation retract onto each Ui and Vi respectively.
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Since the Ui’s and Vi’s cover X and are contractible in X, so do the Ūi’s and V̄i’s, thus they form a

categorical cover of X.

�

For any spaces X and Y , and a fixed basepoint ∗ ∈ X, we let X ⋊ Y = (X × Y )/(∗ × Y ) denote

the right half-smash of X and Y , and Y ⋉X = (Y ×X)/(Y × ∗) the left half-smash.

Lemma 2.3. If X and Y are CW -complexes and X is path-connected, then cat(X ⋊ Y ) = cat(X).

Proof. Let X̃ be given by attaching the interval [0,1] to X by identifying 0 ∈ [0,1] with the basepoint

∗ ∈ X, and fix 1 ∈ X̃ to be the basepoint. Given k = cat(X̃) and {U0, . . . , Uk} a categorical cover of

X̃, take the open cover {U0 ⋊ Y, . . . , Uk ⋊ Y } of X̃ ⋊ Y = (X̃ × Y )/(1 × Y ) (here Ui ⋊ Y = Ui × Y if

1 ∉ Ui). Notice that the contractions of each Ui in X̃ can be taken so that 1 remains fixed if 1 ∈ Ui.
If Ui contracts to a point bi in X̃, Ui ⋊ Y deforms onto {bi} ⋊ Y in X̃ ⋊ Y , which in turn contracts

to the basepoint in X̃ ⋊ Y by homotoping the coordinate bi to 1. Therefore cat(X̃ ⋊ Y ) ≤ k, and we

have cat(X ⋊Y ) ≤ k since X ≃ X̃ and X ⋊Y ≃ X̃ ⋊Y . Moreover, cat(X ⋊Y ) ≥ k since X is a retract

of X ⋊ Y .

�

Let S be m copies of the interval [0,1] glued together at the endpoints 1 in some order. Given a

collection of maps X
fiÐ→ Yi for i = 1, . . . ,m, the homotopy pushout P of the maps fi is the m-fold

mapping cylinder

P = (Y1∐⋯∐Ym∐(X × S)) / ∼
under the identification (x, t) ∼ fi(x) whenever t is in the ith copy of [0,1] in S and t = 0.

Lemma 2.4. Fix m ≥ 2. For i = 1, . . . ,m, let Ai and Ci be basepointed CW -complexes, Bi = ∏j≠iAj,

and E be a contractible space. Suppose Ai×E
fiÐ→ Ci are nullhomotopic maps, and P is the homotopy

pushout of the maps Ai ×E ×Bi
fi×1BiÐ→ Ci ×Bi for i = 1, . . . ,m. Then

cat(P ) ≤ max{1, cat(C1), . . . , cat(Cm)}.

Proof. We proceed by induction on m. Start with m = 2. By Lemma 7.1 in [30], there is a splitting

P ≃ (ΣA1 ∧A2) ∨ (C1 ⋊A2) ∨ (C2 ⋊A1). Thus using Lemma 2.3,

cat(P ) = max{cat(ΣA1 ∧A2), cat(C1 ⋊A2), cat(C2 ⋊A1)} = max{1, cat(C1), cat(C2)}.

The statement holds when m = 2.

Take B0 = ∗, B` = ∏j≤`Aj , B
′
i = ∏j≠i,j<mAj , and Bi as basepointed subspaces of B = ∏j Aj .

Let P ′ be the homotopy pushout of fi × 1B′
i

for i = 1, . . . ,m − 1 (these are all maps from E ×Bm =
E × Bm−1). Suppose the lemma holds whenever m < m′ for some m′ > 2. Let m = m′. Then

cat(P ′) ≤ max{1, cat(C1), . . . , cat(Cm−1)}. Notice that P is the homotopy pushout of fm ×1Bm and

the inclusion Am×E×Bm
1Am×g
Ð→ Am×P ′, where g is the inclusion Wm−1 ⊂ P ′, and W` = E×B`×{1}.

We can deform W` into W`−1 in P ′ as follows. First deform W` onto f`(A` ×E) ×B`−1 by moving it

down the mapping cylinderM = ((E×Bm×[0,1])∐(C`×B`))/ ∼ of P ′ and onto the base C`×B`, then

deform it onto ∗×B`−1 in C` ×B` using the nullhomotopy of f`. Finally, move B`−1 back up towards

the top of the mapping cylinder M and into W`−1. Composing these deformations for ` =m−1, . . . ,1

gives a contraction in P ′ of Wm−1 to a point. Thus, g is nullhomotopic, as is fm. Since the lemma

holds for the base case m = 2, cat(P ) = max{1, cat(P ′), cat(Cm)} ≤ max{1, cat(C1), . . . , cat(Cm)}.

�

Lemma 2.5. Fix m ≥ 2, and for i = 1, . . . ,m, let Ai, Ci, E be basepointed CW -complexes, E is path-

connected, and let Bi = ∏j≠iAj. Suppose Ai ×E
fiÐ→ Ci are maps such that the restriction (fi)∣Ai×∗
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of fi to Ai×∗ is nullhomotopic, and P is the homotopy pushout of the maps Ai×E×Bi
fi×1BiÐ→ Ci×Bi

for i = 1, . . . ,m. Then

cat(P ) ≤ max{1, cat(C1), . . . , cat(Cm)} + Cat(E).

Moreover, if each Ci × Bi is a subcomplex of some CW -complex Xi such that Xi − Ci × Bi is

contractible in Xi, and P ′ is the homotopy pushout of the maps Ai ×E ×Bi
fi×1BiÐ→ Ci ×Bi ↪Ð→ Xi

for i = 1, . . . ,m, then also

cat(P ′) ≤ max{1, cat(C1), . . . , cat(Cm)} + Cat(E).

Proof (part 1). Let B = A1 ×⋯×Am, and D = ∐i=1,...,m(Ci ×Bi), and let St for t < 1 be m copies of

the interval [t,1] glued together at the endpoints 1, and S ′t be its interior, namely, m copies of (t,1]
glued at 1.

Let k = Cat(E) and take E′ ≃ E to be such that k = gcat(E′). Then P is homotopy equivalent to

the homotopy pushout Q of the maps Ai×E′×Bi
f ′i×1BiÐ→ Ci×Bi for i = 1, . . . ,m, where Ai×E′ f ′iÐ→ Ci

is the composite of fi with the homotopy equivalence Ai×E′ 1Ai×≃Ð→ Ai×E. Since E is path-connected

and gcat() is unaffected by attaching an interval [0,1] to a space, we may assume that the homotopy

equivalence E′ ≃Ð→ E is basepointed for some ∗ ∈ E′.

Let U0, . . . , Uk be an open cover of E′ with each Ui a contractible subspace. Take Qj to be the

homotopy pushout of Ai ×Uj ×Bi
gi,j×1BiÐ→ Ci ×Bi for i = 1, . . . ,m, where gi,j is the restriction of f ′i

to Ai × Uj , and let Vj = Qj − D ≅ Uj × B × S ′0. Since gi,j × 1Bi restricts f ′i × 1Bi , Qj is a subspace

of Q and Vj is open in Q. Moreover, we may contract Vj in Q to a point as follows. Let B0 = ∗
and B` = ∏i≤`Ai ⊆ B, and take the subspace W` = ∗ × B` × {1} of E′ × B × S ′0 ⊂ Q. We can deform

W` into W`−1 in Q, first by deforming W` onto f ′`(A` × ∗) × B`−1 by moving it down the mapping

cylinder M = ((E′×B×[0,1])∐(C`×B`))/ ∼ of Q and onto C`×B`, then deforming it onto ∗×B`−1

in C` ×B` using the nullhomotopy of (f ′`)∣A`×∗, and finally, moving B`−1 back up towards the top of

the mapping cylinder M and into E′ ×B×{1}. Composing these deformations of W` into W`−1 in Q

for ` =m,m − 1, . . . ,1, and deforming Vj onto Wm using contractibility of Uj and S ′0 (onto 1), gives

our contraction of Vj in Q to a point.

Assume ∗ ∈ U0. Since U0 is contractible and (gi,0)∣Ai×∗ = (f ′i)∣Ai×∗ is nullhomotopic, gi,0 is also

nullhomotopic. Lemma 2.4 then applies to Q0, namely, we have

cat(Q0) ≤ max{1, cat(C1), . . . , cat(Cm)}.

Let R = S ′0−S 1
2
≅ ∐i=1,...,m(0, 1

2
) and R̄ = S0−S 1

2
≅ ∐i=1,...,m[0, 1

2
), and consider the open subspace

Q′
0 = Q0∪(E′×B×R) of Q. Notice Q′

0 deformation retracts in the weak sense onto Q0 by deformation

retracting the subspace of Q0

((E′ × B × R̄) ∐ D)/ ∼

onto D, this being done by contracting each copy of [0, 1
2
) in the factor R̄ to 0, at the same time

expanding (U0 ×B)×S 1
2

in Q′
0 by expanding each copy of [ 1

2
,1] in the factor S 1

2
outwards to [0,1].

Then cat(Q′
0) = cat(Q0). So take k′ = max{1, cat(C1), . . . , cat(Cm)} and {U ′

0, . . . , U
′
k′} to be a

categorical cover for Q′
0. Notice that U ′

i is open in Q since Q′
0 is, and Q = ⋃nj=0Qj = Q′

0 ∪ ⋃nj=1 Vj .

As each Vj is open and contractible in Q, then {U ′
0, . . . , U

′
k′ , V1, . . . , Vk} is a categorical cover of Q.

Therefore cat(P ) = cat(Q) ≤ k′ + k.

�

Proof (part 2). Since Ci ×Bi is a subcomplex of Xi, P is a subspace of P ′ with

P ′ − P = ∐
i=1,...,m

(Xi −Ci ×Bi),
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so P ′ −P is open and contractible in P ′. Notice each Vj is an open (and contractible) subset of P ′,

while Sj = U ′
j ∩(∐i=1,...,mXi) is an open subset of D. By Lemma 2.1, there exists an open subset Rj

of ∐i=1,...,mXi that deformation retracts onto Sj such that Rj ∩ D = Sj . Then R′
j = Rj∐(U ′

j − Sj)
is an open subset of P ′ that deformation retracts onto U ′

j , thus is contractible in P ′. Since P ′ − P
and Vj are both open in P ′, and (P ′ − P ) ∩ Vj = ∅, then the subspace (P ′ − P )∐Vj is contractible

in P ′. We can therefore take {R′
0, . . . ,R

′
k′ , (V1∐(P ′ − P )), V2, . . . , Vk} as a categorical cover for P ′,

so cat(P ′) ≤ k′ + k.

�

3. Moment-Angle Complexes

Given a simplicial complex K on vertex set [n] and a sequence of of pairs of spaces

S = ((X1,A1), . . . , (Xn,An)),
Ai ⊆Xi, the polyhedral product SK is the subspace of X×n defined by

SK = ⋃
σ∈K

Y σ1 ×⋯ × Y σn ,

where Y σi =Xi if i ∈ σ, or Y σi = Ai if i ∉ σ. If the pairs (Xi,Ai) are all equal to the same pair (X,A),
we usually write SK as (X,A)K . The moment-angle complex ZK is defined as the polyhedral product

(D2, ∂D2)K , and the real moment-angle complex RZK is the polyhedral product (D1, ∂D1)K .

The join of two simplicial complexesK and L is the simplicial complexK∗L = {σ ⊔ τ ∣ σ ∈K, τ ∈ L},

and one has ∣K ∗ L∣ ≅ ∣K ∣ ∗ ∣L∣ ≃ Σ∣K ∣ ∧ ∣L∣ and ZK∗L ≅ ZK × ZL. If I ⊆ [n], KI = {σ ∈K ∣ σ ⊆ I}
denotes the full subcomplex of K on vertex set I, in which case ZKI is a retract of ZK . Notice that

if KI and LJ are full subcomplexes of K and L, then KI ∗LJ is the full subcomplex (K ∗L)I⊔J of

K ∗L. As a convention, we let Z∅ = ∗ when ∅ is on empty vertex set.

We let S0 denote both the 0-sphere and the simplicial complex ∂∆1 consisting of only two vertices.

Generally, we assume our simplicial complexes (except ∅) are non-empty and have no ghost vertices,

unless stated otherwise. Under this assumption, it is not difficult to see that the following holds.

3.1. The Hochster Theorem. When R is a field or Z, it was shown in [11, 20, 3, 32] that there

are isomorphisms of graded commutative algebras

(1) H∗(ZK ;R) ≅ TorR[v1,...,vn](R[K],R) ≅ ⊕
I⊆[n]

H̃∗(Σ∣I ∣+1∣KI ∣;R).

The isomorphism on the left is induced by a quasi-isomorphism of DGAs between the Koszul complex

of the Stanley-Reisner ring R[K] and the cellular cochain complex of ZK with coefficients in R. The

multiplication on the right is given by maps H∗(KI)⊗H∗(KJ) Ð→H∗+1(KI∪J) that are zero when

I ∩ J ≠ ∅, otherwise they are induced by maps ιI,J ∶ ∣KI∪J ∣ Ð→ ∣KI ∗KJ ∣ ≅ ∣KI ∣ ∗ ∣KJ ∣ ≃ Σ∣KI ∣ ∧ ∣KJ ∣
geometrically realizing the canonical inclusions KI∪J ↪Ð→ KI ∗ KJ . One can iterate so that any

length ` product ⊗`
i=1H

∗(KIi) Ð→H∗+`−1(KI1∪⋯∪I`) is induced by the inclusion

ιI1,...,I` ∶ ∣KI1∪⋯∪I` ∣ ↪Ð→ ∣KI1 ∗⋯ ∗KI` ∣
where the Ii’s are mutually disjoint.

3.2. A Necessary Condition. Suppose cat(ZK) ≤ ` − 1, so cup products of length l vanish in

H+(ZK). Then in light of the Hochster theorem, the inclusions ιI1,...,I` must induce trivial maps on

cohomology. In fact, their suspensions must be nullhomotopic by the following argument.

Let ẐK = ZK/ {(x1, . . . , xn) ∈ ZK ∣ at least one xi = ∗}. Fix m = ∣I1 ∪ ⋯ ∪ I`∣, Y = ZKI1∪⋯∪I` ,
and Ŷ = ẐKI1∪⋯∪I` . Since Y is a retract of ZK , cat(Y ) ≤ ` − 1. Recall from [36] that a path-

connected basepointed CW -complex such as Y satisfies cat(Y ) ≤ ` − 1 if and only if there is a

map Y
ψÐ→ FW`(Y ) such that the diagonal map Y

△Ð→ Y ×` factors up to homotopy as Y
ψÐ→

FW`(Y ) includeÐ→ Y ×`. Here FW`(Y ) = {(y1, . . . , y`) ∈ Y ×` ∣ at least one yi = ∗} is the fat wedge.
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This implies the reduced diagonal map △̄ ∶ Y △Ð→ Y ×` Ð→ Y ×`/FW`(Y ) ≅Ð→ Y ∧` is nullhomotopic.

Then so is ζ ∶ Y △̄Ð→ Y ∧` Ð→ ⋀j ZKIj Ð→ ⋀j ẐKIj , where the second last map is the smash of the

coordinate-wise projection maps onto each ZKIj , and the last map is the smash of quotient maps.

This last nullhomotopic map ζ coincides with Y
qÐ→ Ŷ

ι̂Ð→ ⋀j ẐKIj , where q is the quotient map

and ι̂ is the inclusion given simply by rearranging coordinates. Moreover, ι̂ is homeomorphic to

Σm+1ιI1,...,I` and Σq has a right homotopy inverse (c.f. [1], and also the proof of Proposition 2.5 and

pg. 23 in [4]). It follows that Σm+1ιI1,...,I` is nullhomotopic.

3.3. Skeleta and Suspension on Coordinates. Let K(i) denote the i-skeleton of K, and K(−1) =
∅ on vertex set [n]. An inclusion of simplicial complexes L ↪Ð→ K induces a canonical inclusion of

CW -complexes ZL ↪Ð→ ZK . This gives ZK(i) and ZK(−1) = (∂D2)×n = (S1)×n as subcomplexes of

ZK .

Lemma 3.1 (Corollary 3.3 in [30]). If K is on vertex set [n] with no ghost vertices, then ZK(−1) =
(∂D2)×n is contractible in ZK . ◻

Lemma 3.2. If 0 ≤ l ≤ dimK, then ZK(`) −ZK(`−1) is contractible in ZK .

Proof. We have a decomposition

ZK(`) −ZK(`−1) = ∐
σ∈K, ∣σ∣=`+1

Ỹ σ1 ×⋯ × Ỹ σn

where Ỹ σi = D2 − ∂D2 if i ∈ σ and Ỹ σi = ∂D2 if i ∉ σ. This being a disjoint union of open subspaces

of ZK(l) , each of which can be deformed into ZK(−1) in ZK (by contracting Ỹ σi to a point in ∂D2

whenever i ∈ σ). Thus ZK(`) − ZK(`−1) can also be deformed into ZK(−1) . Then ZK(`) − ZK(`−1) is

contractible in ZK by Lemma 3.1.

�

Lemma 3.3. If −1 ≤ j ≤ dimK, then

cat(ZK) ≤ cat(ZK(j) ↪Ð→ ZK) + dimK − j.

In particular, cat(ZK) ≤ dimK + 1.

Remark: Lemma 3.2 and 3.3 can be generalized to any filtration Lj ⊆ ⋯ ⊆ Lk =K satisfying ∂σ ⊆ Li
whenever σ ∈ Li+1 (in place of the skeletal filtration).

Proof. The skeletal filtration K(j) ⊆ ⋯ ⊆ K(dimK) = K induces a filtration of subcomplexes ZK(j) ⊆
⋯ ⊆ ZK , and for 0 ≤ j ≤ dimK, ZK(j) − ZK(j−1) is contractible in ZK by Lemma 3.2. The result

then follows using Lemma 2.2. In particular, when j = −1, we get cat(ZK) ≤ dimK + 1 since

cat(ZK(−1) ↪Ð→ ZK) = 0 by Lemma 3.1. �

Proposition 3.4. Let S = ((X1,A1), . . . , (Xn,An)) and T = ((Σm1X1,Σ
m1A1), . . . , (ΣmnXn,Σ

mnAn))
be sequences of pairs of spaces for some integers mi and connected basepointed Xi. Then for any K

(with no ghost vertices),

cat(T K) ≤ cat(SK).

Proof. Let K be on vertex set [n], k = cat(SK), and take a categorical cover {U0, . . . , Uk} of SK .

For any open subset V of SK , define the following open subset V 1 of T K

V 1 = {((t1, x1), . . . , (tn, xn)) ∈
n

∏
i=1

ΣmiXi ∣ (x1, . . . , xn) ∈ V, ti ∈Dmi} .

In particular, T K = (SK)1. Then {U1
0 , . . . , U

1
k} is an open cover of T K . Since K has no ghost

vertices, Ai ⊆ Xi, and each Xi is path-connected, then SK is path-connected. Since ΣmiXi is the

reduced suspension of the basepointed space Xi, we have identifications (t,∗) ∼ ∗ ∈ ΣmiXi. Then
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we can define a contraction of U1
i in T K by contracting Ui in SK to a point p and homotoping p to

the basepoint (∗, . . . ,∗) ∈ SK . Therefore, {U1
0 , . . . , U

1
k} is a categorical cover of ZK .

�

Notice that the (i + 1)-skeleton (RZK)(i+1)
of RZK is equal to RZK(i) (this is not true for the

complex moment-angle complex ZK).

Corollary 3.5. For any K (with no ghost vertices),

(2) cat(ZK) ≤ cat(RZK)

and if RZK is not contractible and i ≥ 0, then

(3) cat(ZK(i)) ≤ cat(RZK(i)) ≤ cat(RZK).

Proof. Inequality (2) and the first inequality in (3) follow from Proposition 3.4. By the main corollary

of Theorem 1 in [17], the i-skeleton X(i) of any connected non-contractible CW -complex X satisfies

that cat(X(i)) ≤ cat(X). Since (RZK)(i+1) = RZK(i) holds for real moment-angle complexes, the

last inequality follows.

�

It is plausible that the second bound can be strengthened to cat(ZK(i)) ≤ cat(ZK). In any case,

even if it is true, we will sometimes need a sharper bound.

Let X and Y be path-connected paracompact spaces, and U = {U0, . . . , Uk} and V = {V0, . . . , V`}
be categorical covers of X and Y , respectively. We recall James’ construction of a categorical cover

W = {W0, . . . ,Wk+`} of X × Y from the covers U and V (see [36], page 333).

Let {πj}j∈{0,...,k} be a partition of unity subordinate to the cover U . For any subset S ⊆ {0, . . . , k},

define

WU(S) = {x ∈X ∣ πj(x) > πi(x) for any j ∈ S and i ∉ S} ,
and for any point p ∈X, let

SU(p) = {j ∈ {0, . . . , k} ∣ πj(p) > 0}
(since the context is clear, let W (S) =WU(S) and S(p) = SU(p)). Then W (S) is an open subset of X

and X = ⋃S⊆{0,...,k}W (S) (given x ∈ X, x ∈W (S) where S = {i ∣ πi(x) = max{π1(x), . . . , πk(x)} }).

Moreover, W (S′) ∩W (S) = ∅ when S ⊈ S′ and S′ ⊈ S (in particular, when ∣S∣ = ∣S′∣ and S ≠ S′),
and W (S) ⊆ Uj whenever j ∈ S. Therefore W (S) is contractible in X. Then so is the disjoint union

of open sets

(4) U ′
i = ∐

S=S(p) for some p∈X
∣S∣=i+1

W (S).

Since W (S) = ∅ when S ≠ S(p) for every p ∈X, the set {U ′
0, . . . , U

′
k} forms a categorical cover of X.

We obtain a categorical cover {V ′
0 , . . . , V

′
` } of Y from V by an analogous construction.

Now let Ūi = U ′
k−i ∪⋯ ∪U ′

k and V̄j = V ′
`−j ∪⋯ ∪ V ′

` , and for −1 ≤ s ≤ k + `, let C−1 = ∅ and

Cs = ⋃
i+j=s
i≤k, j≤`

Ūi × V̄j

Take Ws = Cs −Cs−1. Notice that

(5) Ws = ∐
i+j=s
i≤k, j≤`

U ′
i × V ′

j .

This defines a categorical cover W of X × Y .

Given subcomplexes B ⊆ Y and A ⊆X, consider the polyhedral product

XS
0

=X ×B ∪A×B A × Y
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over the sequence X = ((X,A), (Y,B)).

Lemma 3.6. If X −A is contractible in X and Y −B is contractible in Y , then

cat(XS
0

) ≤ cat(A) + cat(B) + 1.

Proof. Suppose we have categorical covers {R1, . . . ,Rk} and {S1, . . . , S`} ofA, andB. By Lemma 2.1,

we have open subsets Ui ⊆ X and Vi ⊆ Y such that Ui and Vi deformation retract onto Ri and Si
respectively, and Ui ∩ A = Ri and Vi ∩ B = Si for i ≥ 1. Then taking U0 = X − A and V0 = Y − B,

U = {U0, . . . , Uk} and V = {V0, . . . , V`} are categorical covers of X and Y .

Notice that

X × Y −U0 × V0 = XS
0

,

and since Ri = Ui ∩A = Ui −U0 and Sj = Vj ∩B = Vj − V0 for i, j ≥ 1,

(6) Di,j ∶= Ui × Vj −U0 × V0 = (Ri × Vj) ∪Ri×Sj (Ui × Sj).

Notice that Di,j is contractible in XS0

by deformation retracting the factor Ui onto Ri and Vj onto

Sj , then contracting Ri × Sj in A ×B.

Take the categorical cover W = {W0, . . . ,Wk+`} of X × Y constructed from U and V as above.

By (5),

Ws −U0 × V0 = ∐
i+j=s
i≤k, j≤`

(U ′
i × V ′

j −U0 × V0),

and by (4),

U ′
i × V ′

j −U0 × V0 = ∐
S=SU(p) for some p∈X
T=SV(q) for some q∈Y

∣S∣=i+1, ∣T ∣=j+1

(WU(S) ×WV(T ) −U0 × V0).

These are disjoint unions of open subsets of XS0

. Since WU(S) is contained in some Ui′ and WV(T )
is contained in some Vj′ , it follows that (WU(S) ×WV(T ) − U0 × V0) is contained in Di′,j′ , so it

is contractible in XS0

. Therefore, so are the disjoint unions U ′
i × V ′

j − U0 × V0 and Ws − U0 × V0.

Moreover, since Wk+` = U ′
k × V ′

` , and U ′
k =WU({0, . . . , k}) and V ′

` =WV({0, . . . , `}) are contained in

Ui′ and Vj′ respectively for each i′ ∈ {0, . . . , k} and j′ ∈ {0, . . . , `}, Wk+` −U0 × V0 = ∅. Then

{(W0 −U0 × V0), . . . , (Wk+`−1 −U0 × V0)}

is a categorical cover of XS0

.

�

Corollary 3.7. Let K and L be simplicial complexes with d = dimK and d′ = dimL (so dimK ∗L =
d + d′ + 1). Then

cat(Z(K∗L)(d+d′)) ≤ cat(ZK(d−1)) + cat(Z
L(d

′−1)) + 1.

Proof. Notice (K ∗L)(d+d
′) = (K ∗L(d′−1)) ∪(K(d−1)∗L(d′−1)) (K

(d−1) ∗L), ZK∗L = ZK ×ZL, so

Z(K∗L)(d+d′) = (Z
K∗L(d′−1)) ∪Z(K(d−1)∗L(d′−1)) (ZK(d−1)∗L)

= (ZK ×Z
L(d

′−1)) ∪Z
K(d−1)×ZL(d′−1)

(ZK(d−1) ×ZL),

and ZK −ZK(d−1) and ZL−ZL(d′−1) are contractible in ZK and ZL by Lemma 3.2. The result follows

by Lemma 3.6.

�



10 PIOTR BEBEN AND JELENA GRBIĆ

3.4. Missing Face Complexes. Take K on vertex set [n]. We fix the basepoint in the unreduced

suspension Σ∣K ∣ = (∣K ∣ × [0,1])/ ∼ to be the tip of the double cone corresponding to 1 under the

indentifications (x,0) ∼ 0 and (x,1) ∼ 1. Let MF (K) = {σ ⊆ [n] ∣ σ ∉K, ∂σ ⊆K} be the collection

of (minimal) missing faces of K. We will need a somewhat more flexible alternative to the directed

missing face complexes defined in [27].

Definition 3.8. K on vertex set [n] is called a homology missing face complex (or HMF-complex )

if for each non-empty I ⊆ [n], KI is a simplex or there exists a subcollection CI ⊆ MF (KI) such

that the wedge sum of suspended inclusions

γI ∶ ⋁
σ∈CI

Σ∣∂σ∣ Ð→ Σ∣KI ∣

induces an isomorphism on homology (therefore it is a homotopy equivalence since it is a map

between suspensions).

Remark 3.9. Given H∗(KI) is torsion-free, since each Σ∣∂σ∣ is a sphere, one needs only to find γI
that induces surjection on homology in order for K to be an HMF -complex.

Proposition 3.10. If K is an HMF -complex, then ZK is homotopy equivalent to a wedge of spheres

or is contractible. Therefore cat(ZK) ≤ 1 and Cat(ZK) ≤ 1.

Proof. For each I ⊆ [n], either KI is a simplex, boundary of a simplex, or else for each σ ∈ CI , we

can pick an iσ ∈ I such that ∂σ ⊆ KI−{iσ}, so each inclusion ∣∂σ∣ Ð→ ∣KI ∣ factors through inclusions

∣∂σ∣ Ð→ ∣KI−{iσ}∣ Ð→ ∣KI ∣. Take the composite

f ∶ Σ∣KI ∣
γ−1IÐ→ ⋁

σ∈CI
Σ∣∂σ∣ Ð→ ⋁

i∈I
Σ∣KI−{iσ}∣ Ð→ Σ∣KI ∣

where γ−1
I is a homotopy inverse of γI , the second last map includes the summand Σ∣∂σ∣ into the

summand Σ∣KI−{iσ}∣, and the last map is the standard inclusion on each summand. Since the

composite of the last two maps is γI , f is a homotopy equivalence. Then K is an extractible complex

as defined in [33]. Therefore ZK is homotopy equivalent to a wedge of spheres or contractible by

Corollary 3.3 therein. �

3.5. Gluing and Connected Sum. If L and K are simplicial complexes and C is a full subcomplex

common to both L and K, then we obtain a new simplicial complex L ∪C K by gluing L and K

along C. One can always glue along simplices since they are always full subcomplexes. When C = ∅,

L ∪C K is just the disjoint union L ⊔K.

Given σ ∈K, define the deletion of the face σ from K to be the simplicial complex given by

K/σ = {τ ∈K ∣ σ /⊆ τ} .

If σ is a common face of L and K, define the connected sum L#σK to be the simplicial complex

(L/σ) ∪∂σ (K/σ). In other words, L#σK is obtained by deleting σ from L and K and gluing along

the boundary ∂σ. As a convention, we let Z∅ = ∗ when ∅ is on empty vertex set.

Proposition 3.11. If C is a (possibly empty) full subcomplex common to K1, . . . ,Km, then

cat(ZK1∪C⋯∪CKm) ≤ max{1, cat(ZK1), . . . , cat(ZKm)} + Cat(ZC).

Moreover, if each Ki is the di − 1 skeleton of some di dimensional simplicial complex K̄i, and C is

also a full subcomplex of each K̄i, then

cat(ZK̄1∪C⋯∪CK̄m) ≤ max{1, cat(ZK1), . . . , cat(ZKm)} + Cat(ZC).
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Proof. Let Ki be on vertex set [ni], and C has ` vertices. If C is on vertex set [ni], possibly with

ghost vertices, the inclusion C ↪Ð→Ki induces a coordinate-wise inclusion (∂D2)×ni−`×ZC
fi
↪Ð→ ZKi .

By Lemma 3.1, fi is nullhomotopic when restricted to (∂D2)×ni−` × ∗. Let Ni = Σj≠inj . Note

ZK1∪C⋯∪CKm is the pushout of (∂D2)×ni−`×ZC ×(∂D2)×Ni−` fi×1↪Ð→ ZKi ×(∂D2)×Ni−` for i = 1, . . . ,m.

Since each of these maps are inclusions of subcomplexes, ZK1∪C⋯∪CKm is homotopy equivalent to

the homotopy pushout P of these maps. The first inequality therefore follows from the first part of

Lemma 2.5.

By Lemma 3.2, ZK̄i −ZKi is contractible in ZK̄i , so the second equality follows from the second

part of Lemma 2.5.

�

Example 3.12. In particular, when C is a simplex cat(ZL∪CK) ≤ max{1, cat(ZL), cat(ZK)} and

cat(ZL̄∪CK̄) ≤ max{1, cat(ZL), cat(ZK)} since ZC is contractible. These also hold when C is the

empty simplex and ZC = ∗ (in which case L̄ ∪C K̄ = L̄ ⊔ K̄ and L ∪C K = L ⊔K). When C is the

boundary of a simplex, cat(ZL∪CK) ≤ max{1, cat(ZL), cat(ZK)} + 1 since ZC here is a sphere.

The bound in Proposition 3.11 is not always optimal, sometimes far from it. If K and ∆n−1 are

on vertex set [n] and L is formed by gluing ∆n−1 and {n+ 1}∗K along K, then ZL is a co-H-space

by [33] so cat(ZL) = 1 (in fact, it is not difficult to directly show that ZL ≃ Σ2ZK). On the other

hand, Proposition 3.11 gives cat(ZL) ≤ max{1, cat(ZK)}+Cat(ZK) since Z{n+1}∗K ≅D2×ZK ≃ ZK
and Z∆n is contractible.

Corollary 3.13. Suppose

K = L1#σ1L2#σ2⋯#σk−1Lk

where dimLi = d, σi is a d-face common to Li and Li+1, and σi ∩ σj = ∅ when i ≠ j. Then

cat(ZK) ≤ max{1, cat(ZL1
(d−1)), . . . , cat(ZLk(d−1))} + 1.

Proof. Take the disjoint unions

C = ∂σ1 ⊔⋯ ⊔ ∂σk−1,

K1 = ⊔
1≤2i+1≤k−1

L2i+1

K2 = ⊔
2≤2i≤k−1

L2i,

and take the iterated face deletions K ′
1 =K1/(σ1⊔⋯⊔σk−1) and K ′

2 =K2/(σ1⊔⋯⊔σk−1). Then C is a

full subcomplex common to both K ′
1 and K ′

2, and to both K ′
1
(d−1)

and K ′
2
(d−1)

. Moreover, K ′
1
(d−1) =

K1
(d−1) and K ′

2
(d−1) =K2

(d−1), and K =K ′
1 ∪C K ′

2, so by the second part of Proposition 3.11,

cat(ZK) ≤ max{1, cat(ZK1
(d−1)), cat(ZK2

(d−1))} + Cat(ZC)

It is clear that C is an HMF -complex, so ZC is homotopy equivalent to a wedge of spheres and

Cat(ZC) = 1 (alternatively, this follows from Theorem 10.1 in [29]). Moreover, we can think of

ZK1
(d−1) as being built up iteratively by gluing ⊔1≤1≤j ZL2i+1

(d−1) and ZL2j+3
(d−1) along the empty

simplex, so iterating the first inequality in Example 3.12,

cat(ZK1
(d−1)) ≤ max{1, cat(ZL1

(d−1)), cat(ZL3
(d−1)), . . .}.

Likewise, cat(ZK2
(d−1)) ≤ max{1, cat(ZL2

(d−1)), cat(ZL4
(d−1)), . . .}. The inequality in the lemma

follows. �
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4. Triangulated Spheres

Let C0 = {S0}, C1, and C2 consist of all triangulated 0,1, and 2-spheres, and for d ≥ 3, let Cd be

the class of triangulated d-spheres defined by K ∈ Cd if

(1) K = L1 ∗⋯ ∗Lk for some Li ∈ Cdi , di ≤ 2, and d1 +⋯ + dk = d − k + 1;

(2) K = K1#σ1⋯#σ`−1K` where σi is a d-face common to Ki and Ki+1 with σi ∩ σj = ∅ when

i ≠ j, and each Ki = L1,i ∗⋯∗Lki,i is of the form (1) such that each Lj,i is not the boundary

of a simplex.

The join L∗L′ is the simplicial complex {σ ⊔ σ′ ∣ σ ∈ L, σ′ ∈ L′}, and the connected sum K#σK
′

is given topologically by gluing triangulations K and K ′ of Sd along a common d-face σ, and deleting

its interior.

Remark 4.1. If L and L′ are boundaries ∂P ∗ and ∂P ′∗ of the duals of simple polytopes P and

P ′, then L ∗L′ is the boundary of (P × P ′)∗, while L#σL
′ is the boundary of dual Q∗, where Q is

obtained by taking the vertex cut at the vertices of P and P ′ that are dual to σ, gluing along the

new hyperplane and removing it after gluing.

Our goal in this section will be to show the following.

Theorem 4.2. If K on vertex set [n] = {1, . . . , n} is any triangulated d-sphere for d = 0,1,2, or

K ∈ Cd for d ≥ 3, then the following are equivalent.

(1) K is m-Golod over Z;

(2) nill(TorZ[v1,...,vn](Z[K],Z)) ≤m + 1 (equivalently cup(ZK) ≤m);

(3) for any filtration of full subcomplexes

∂∆d+2−` =KI` ⊊KI`−1 ⊊ ⋯ ⊊KI1 =K
such that ∣KIi ∣ ≅ Sd+1−i, we have ` ≤m;

(4) cat(ZK) ≤m.

Moreover, 1 ≤ m ≤ d + 1; that is, K satisfies any of the above for some m which cannot be greater

than d + 1. ◻

4.1. Well-Behaved Triangulations.

Definition 4.3. We say a triangulation K of a d-sphere Sd on vertex set [n] is well-behaved if for

all I ⊆ [n] and any k < d:

(1) if ∣KI ∣ ≅ Sk and KI ⊆KJ for some J ⊆ [n] such that ∣KJ ∣ ≅ Sk+1, then ∣KJ−I ∣ ≃ S0;

(2) if H∗(KI) ≅H∗(Sk), then there is I ′ ⊆ [n] such that KI′ ⊆KI and ∣KI′ ∣ ≅ Sk;

(3) if I is a face in K, then ∣K[n]−I ∣ ≃ ∗;

(4) H∗(KI) is torsion-free.

As we will see, conditions (2)-(4) are there to keep the well-behaved condition invariant under

join and connected sum operations.

Lemma 4.4. Triangulations K of 0, 1, and 2-spheres are well-behaved.

Proof. This is trivial for d = 0,1. When d = 2, Conditions (1) and (3) are also clear. Since ∣K ∣ is

a sphere and ∣KI ∣ has the homotopy type of a dimension ≤ 1 CW -complex when I ⊊ [n], H∗(KI)
is torsion-free. To see that Condition (2) holds, notice that if H∗(KI) ≅ H∗(S0) then we can pick

KI′ = S0 ⊆ KI (∣I ′∣ = 2). If H∗(KI) ≅ H∗(S1), we obtain a 1-dimensional full subcomplex KI′′ ⊆ KI

such that H∗(KI′′) ≅ H∗(S1) via a sequence of elementary collapses of 2-faces in KI , and then we

can choose KI′ ⊆KI′′ such that ∣KI′ ∣ ≅ S1. �

If K and L are triangulations of the d-sphere Sd, then so is K#σL. If K and L are triangulations

of Sd and Sd
′
, then K ∗L is a triangulation of Sd+d

′+1 since ∣K ∗L∣ ≅ ∣K ∣ ∗ ∣L∣.
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Lemma 4.5. Suppose K and L are both triangulations of Sd, and σ is a d-face common to K and

L. If K and L are well-behaved, then so is K#σL.

Lemma 4.6. If K and L are well-behaved triangulations of Sd and Sd
′
, then K∗L is a well-behaved

triangulation of Sd+d
′+1.

We will need three lemmas before we can prove these.

Lemma 4.7. Suppose K and L are well-behaved triangulations on vertex sets V and V ′, and let N

be a full subcomplex of K ∗L.

If H∗(N) ≅ H∗(Sk) for some k, then for some I ⊆ V and J ⊆ V ′, we have N =KI ∗LJ such that

H∗(KI) ≅H∗(Si) and H∗(LJ) ≅H∗(Sj). Moreover, if ∣N ∣ ≅ Sk, then ∣KI ∣ ≅ Si and ∣LJ ∣ ≅ Sj.

Proof. Since N is a full subcomplex of K ∗L, N =KI ∗LJ where I ⊔J is the vertex set of N . Since

K and L are well-behaved, H∗(KI) and H∗(LJ) are torsion-free, and since

(7) H̃∗+1(N) ≅ H̃∗+1(∣KI ∣ ∗ ∣LJ ∣) ≅ H̃∗(∣KI ∣ ∧ ∣LJ ∣) ≅ H̃∗(KI) ⊗ H̃∗(LJ),
then H∗(N) is torsion-free.

If I = ∅ then N =K∅ ∗LJ = ∅ ∗LJ = LJ , and the lemma follows. Similarly when J = ∅. Assume

I ≠ ∅ and J ≠ ∅. Suppose H∗(N) ≅ H∗(Sk). Then by (7), we must have H∗(KI) ≅ H∗(Si) and

H∗(LJ) ≅H∗(Sj) for some i, j such that i + j + 1 = k.

Now suppose, moreover, that we have ∣N ∣ ≅ Sk. Suppose ∣KI ∣ /≅ Si. Since K is well-behaved and

H∗(KI) ≅ H∗(Si) , there exists a full subcomplex KI′ ⊆ KI such that ∣KI′ ∣ ≅ Si, and KI′ ≠ KI

since ∣KI ∣ /≅ Si. Then Hk(KI′ ∗ LJ) ≅ Hk(KI ∗ LJ) = Hk(N) ≅ Z, so under the inlusion KI′ ∗ LJ ⊆
KI ∗ LJ = N , there exists a cycle ω in the simplicial chain subgroup Ck(KI′ ∗ LJ) ⊆ Ck(N) that

represents a generator Z ⊆Hk(KI′ ∗LJ). But since dim(KI′ ∗LJ) = dimN = k, KI′ ∗LJ ≠KI ∗LJ ,

and the k-faces of N generate N (since ∣N ∣ is a sphere), KI′ ∗LJ does not contain all k-faces of N ,

so ω must be a cycle in Ck(N) that does not contain all k-faces of N . But this is impossible since

∣N ∣ ≅ Sk, so any k-dimensional cycle must contain all the k-faces, so we must have ∣KI ∣ ≅ Si. By a

similar argument, ∣LJ ∣ ≅ Sj .
�

Lemma 4.8. Let K be a triangulation of a d-sphere Sd on vertex set [n]. If H∗(KI) is torsion-

free for some I ⊆ [n], I ≠ [n], then so is H∗(KI/σ) for any d-face σ ∈ KI , and the inclusion

∣∂σ∣ ↪Ð→ ∣KI/σ∣ induces an injection on homology groups with torsion-free cokernel.

Proof. Since ∣KI ∣ /≅ ∣K ∣ ≅ Sd, any cycle in the simplicial chain group Cd(K) consists of all the d-faces

of K, and there are no cycles in Cd(KI) and Cd(KI/σ), so Hi(KI) ≅Hi(KI/σ) = 0 for i ≥ d. By the

homology long exact sequence for the cofibration sequence ∣KI/σ∣ ↪Ð→ ∣KI ∣ Ð→ ∣KI ∣/∣KI/σ∣ ≅ Sd, we

have Hi(KI/σ) ≅Hi(KI) for i < d − 1, and a short exact sequence

0Ð→Hd(Sd) Ð→Hd−1(KI/σ) Ð→Hd−1(KI) Ð→ 0.

Therefore Hd−1(KI/σ) is torsion-free since Hd−1(KI) and Hd(Sd) ≅ Z are, and the second map in

the sequence has torsion-free cokernel. Since ∣KI ∣ is the homotopy cofiber of Sd−1 ≅ ∣∂σ∣ ↪Ð→ ∣KI/σ∣,
the second map is induced by this inclusion in degree d−1, so it induces an injection with torsion-free

cokernel on each homology group. �

Lemma 4.9. Suppose K and L are triangulations of Sd on vertex sets V and V ′, σ is a d-face

common to K and L, and take K#σL on vertex set W.

If H∗(KI) and H∗(LJ) are torsion-free for each I ⊆ V and J ⊆ V ′, then H∗((K#σL)I) is

torsion-free for each subset I ⊆ W.

Proof. Let Z = K#σL. Given I ⊆ W, and I = V ∩ I and J = V ′ ∩ I, we have ∣ZI ∣ is homotopy

equivalent to: (a) ∣KI ∣ ∨ ∣LJ ∣ when I ∩σ ≠ ∅ and σ /⊆ I; (b) ∣KI ∣∐ ∣LJ ∣ when I ∩σ = ∅; (c) otherwise
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it is equal to ∣KI ∣#σ ∣LJ ∣ when σ ⊆ I. Therefore H∗(ZI) is torsion free in the first two cases, or

the last case when I = W. To see that it is torsion-free in the last case when I ≠ W, notice that

one of I ≠ V or J ≠ V ′. If I = V or J = V ′, then ∣ZI ∣ ≅ ∣LJ ∣ or ∣ZI ∣ ≅ ∣KI ∣ respectively, and we are

done. Assume I ≠ V and J ≠ V ′. Notice that ∣KI/σ∣ ∪ ∣LJ/σ∣ = ∣ZI ∣, ∣KI/σ∣ ∩ ∣LJ/σ∣ = ∣∂σ∣, and

by Lemma 4.8, H∗(KI/σ) and H∗(LJ/σ) are torsion-free, with the inclusions ∣∂σ∣ ↪Ð→ ∣KI/σ∣ and

∣∂σ∣ ↪Ð→ ∣LJ/σ∣ inducing injections on homology groups with torsion-free cokernel. Then it follows

by the Mayer-Vietoris sequence for (∣ZI ∣, ∣KI/σ∣, ∣LJ/σ∣) that H∗(ZI) is torsion free. �

Proof of Lemma 4.5. Let Z = K#σL on vertex set W, and K and L be on vertex sets V and V ′.
By Lemma 4.9, any full subcomplex ZI has torsion-free homology, so condition (4) in Definition 4.3

holds for ZI .

Since Z is K/σ and L/σ glued along the boundary of the d-simplex ∂σ, I is a face in K or L

whenever it is a face in Z. Then K and L being well-behaved, we have ∣ZW−I ∣ ≃ ∣KV−I ∣ ∨ ∣LV ′−I ∣ ≃ ∗
when I ∩ σ ≠ ∅. Since ∣L/σ∣ ≅ ∣K/σ∣ ≅ Dd, then ∣ZW−I ∣ ≅ ∣KV−I ∣ ≃ ∗ or ∣ZW−I ∣ ≅ ∣LV ′−I ∣ ≃ ∗ when

I ∩ σ = ∅. Condition (3) holds as well.

If ∣ZI ∣ ≅ Sk for some k < d, then ZI is either a full subcomplex of one of K or L, or else ZI = ∂σ
(otherwise ZI would have a (k−1)-face contained in three k-faces) so the only case to check is the last

one ZI = ∂σ. Here, condition (2) in Definition 4.3 clearly holds. Since K and L are well-behaved,

∣KV−σ ∣ ≃ ∣LV ′−σ ∣ ≃ ∗, so it follows that ∣ZW−σ ∣ ≃ S0, and condition (1) holds as well.

�

Proof of Lemma 4.6. Let K and L be on vertex sets V and V ′, Z =K∗L be on vertex setW = V⊔V ′,
and let I ⊆ W. Then ZI =KI ∗LJ where I ⊔J = I, and since H∗(KI) and H∗(LJ) are torsion-free,

H̃∗+1(ZI) ≅ H̃∗(KI) ⊗ H̃∗(LJ) is torsion-free.

If I is a face in Z, then I and J are faces in K and L, so we have ∣KV−I ∣ ≃ ∗ and ∣LV ′−J ∣ ≃ ∗ since

K and L are well-behaved. Therefore ∣ZW−I ∣ = ∣KV−I ∗LV ′−J ∣ ≃ ∗, and condition (3) of Definition 4.3

holds.

Suppose H∗(ZI) ≅ H∗(Sk). Suppose I ≠ ∅ and J ≠ ∅. By Lemma 4.7, H∗(KI) ≅ H∗(Si) and

H∗(LJ) ≅H∗(Sj) for some i,j such that i+ j + 1 = k. Since K and L and well-behaved, this implies

there are KI′ ⊆ KI and LJ ′ ⊆ LJ such that ∣KI ∣ ≅ Si are ∣LJ ∣ ≅ Sj . Then ZI′⊔J ′ = KI′ ∗ LJ ′ ⊆
KI ∗KJ = ZI and ∣ZI′⊔J ′ ∣ ≅ Si+j+1. Thus condition (2) holds when I ≠ ∅ and J ≠ ∅.

Now consider that case where I = ∅ or J = ∅. Without loss of generality, suppose I = ∅. We have

ZI =K∅ ∗LJ = ∅∗LJ = LJ , so if H∗(ZI) ≅H∗(Sk), then H∗(LJ) ≅ Sk, and we have LJ ′ ⊆ LJ = ZI
such that ∣LJ ′ ∣ ≅ Sk since L is well-behaved. Thus condition (2) holds when I = ∅ or J = ∅.

Let S−1 = ∅. Suppose ∣ZI ∣ ≅ Sk and ZI ⊆ ZJ such that ∣ZJ ∣ ≅ Sk+1. Then ZJ = KI′ ∗LJ ′ where

I ′ ⊔ J ′ = J ⊊ I = I ⊔ J , so KI ⊆ KI′ and LJ ⊆ LJ ′ , and by Lemma 4.7, we must have ∣KI ∣ ≅ Si,
∣LJ ∣ ≅ Sj , ∣KI′ ∣ ≅ Si

′
, ∣LJ ′ ∣ ≅ Sj

′
, where i+j+1 = k and i′+j′+1 = k+1. Since KI ⊆KI′ and LJ ⊆ LJ ′ ,

then i ≤ i′ and j ≤ j′, so either (a) i′ = i and j′ = j + 1; or (b) i′ = i + 1 and j′ = j. Without any loss

of generality, assume (a) holds. Then KI =KI′ (i.e. I = I ′), KI−I′ = ∅, and

∣ZJ−I ∣ = ∣KI′−I ∗LJ ′−J ∣ = ∣LJ ′−J ∣ ≃ S0,

with the last homotopy equivalence since L is well-behaved. It follows that condition (1) of Defini-

tion 4.3 holds.

�

4.2. Spherical Filtrations and Filtration Length.

Definition 4.10. Given a triangulation of a d-sphere K on vertex set [n], suppose we have a

filtration of full subcomplexes

∂∆d+2−` =KI` ⊊ ⋯ ⊊KI1 =K
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such that KIi is a triangulation of a (d+ 1− i)-sphere. Then we say that this is a spherical filtration

of K of length `.

Remark: Implicitly, I` ⊊ ⋯ ⊊ I1 = [n] and ∣I`∣ = d + 3 − `.

Definition 4.11. For any triangulated sphere K, define the filtration length filt(K) to be the largest

integer ` such that K admits a spherical filtration of length `.

For example, filt(∂∆d+1) = 1. Generally, there are the following bounds with respect to joins,

connected sums, and cup product length.

Lemma 4.12. If K and L are both triangulations of Sd, and σ is a d-face common to K and L,

then

filt(K#σL) ≥ max{2,filt(K),filt(L)}.

Proof. As in the proof of Lemma 4.5, a full subcomplex ZI of K#σL satisfying ∣ZI ∣ ≅ Sk for some

k < d must either be a full subcomplex of exactly one of K or L, or else ZI = ∂σ. Moreover, K#σL

always has the length 2 spherical filtration ∂σ ⊊K#σL. The lemma follows immediately. �

Lemma 4.13. If K and L are any triangulated spheres, then

filt(K ∗L) ≥ filt(K) + filt(L).

Proof. LetK and L be on vertex sets [n] and [m]. Let d = dimK, d′ = dimL′, ` = filt(K), `′ = filt(L),
and take ∂∆d+2−` =KI` ⊊ ⋯ ⊊KI1 =K and ∂∆d′+2−`′ = LJ`′ ⊊ ⋯ ⊊ LJ1 = L to be spherical filtrations

of K and L.

Since ∣KIi ∗LJj ∣ ≅ ∣KIi ∣ ∗ ∣LJj ∣ ≅ Sd+1−i ∗Sd′+1−j ≅ Sd+d′−i−j+3, and ∣KIi ∗LJj ∣ is a full subcomplex

of ∣KIi′ ∗LJj′ ∣ when i ≤ i′ and j ≤ j′, we have a length ` + `′ spherical filtration of K ∗L

∂∆d+2−` ⊊ (KI` ∗LJ`′ ) ⊊ ⋯ ⊊ (KI` ∗LJ2) ⊊ (KI` ∗LJ1) ⊊ (KI`−1 ∗LJ1) ⊊ ⋯ ⊊ (KI1 ∗LJ1) =K ∗L,

where ∂∆d+2−` is the full subcomplex of KI` ∗LJ`′ = ∂∆d+2−` ∗ ∂∆d′+2−`′ on the vertices of ∂∆d+2−`.

Therefore filt(K ∗L) ≥ ` + `′.
�

Lemma 4.14. If K is a well-behaved triangulation of Sd, then filt(K) ≤ cup(ZK).

Proof. Let ` = filt(K) and ∂∆d+1−` =KI` ⊊ ⋯ ⊊KI1 =K be a spherical filtration of length `.

Let Ji+1 = Ii − Ii+1 for i < `. Since K is well-behaved, ∣KJi+1 ∣ ≃ S0, so ∣KJi+1 ∣ ≅ Di∐D′
i for some

contractible subcomplexes Di and D′
i of ∣KIi ∣. Take the inclusion induced by KIi ↪Ð→KIi+1 ∗KJi+1

ιi ∶ ∣KIi ∣ ↪Ð→ ∣KIi+1 ∗KJi+1 ∣ ≅ ∣KIi+1 ∣ ∗ ∣KJi+1 ∣,
and let hi∶ ∣KIi+1 ∣ ∗ ∣KJi+1 ∣ Ð→ ∣KIi+1 ∣ ∗ S0 be the join of the identity map on the left factor with the

map collapsing Di and D′
i to −1 and 1 in S0 = {−1,1} on the right factor. Then hi is a homotopy

equivalence since Di and D′
i are contractible. Notice hi ○ ιi is the quotient map that collapses Di to

a point and D′
i to another point. Since Di and D′

i are disjoint contractible subcomplexes of ∣KIi ∣,
hi ○ ιi is a homotopy equivalence. Therefore, ιi is a homotopy equivalence.

Take the composite of inclusions

(8) ∣K ∣ = ∣K1∣
ι1
↪Ð→ ∣KI2 ∗KJ2 ∣

ι′2
↪Ð→ ∣KI3 ∗KJ3 ∗KJ2 ∣

ι′3
↪Ð→ ⋯

ι′`−1
↪Ð→ ∣KI` ∗KJ` ∗⋯ ∗KJ2 ∣.

The ith map (i ≥ 2) in this composite

ι′i ∶ ∣KIi ∗KJi ∗⋯ ∗KJ2 ∣ ↪Ð→ ∣KIi+1 ∗KJi+1 ∗KJi ∗⋯ ∗KJ2 ∣

is the join of the homotopy equivalence ιi and the identity ∣KJi∗⋯∗KJ2 ∣
1iÐ→ ∣KJi∗⋯∗KJ2 ∣, and since

each ∣KJj ∣ ≃ S0, then 1i is homotopy equivalent to the identity Si−2 1Ð→ Si−2. Each ι′i (and ι1) is
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therefore a homotopy equivalence, and then so is composite (8) (in fact, since ∣KIi ∣ ≅ Sd+1−i, ιi and (8)

are homotopy equivalent to homeomorphisms Sd+1−i ≅Ð→ Sd+1−i and Sd
≅Ð→ Sd). Therefore (8)

induces a non-trivial map on cohomology, and so the Hochster theorem implies there is a non-trivial

length ` cup product in H+(ZK).
�

4.3. Triangulated d-spheres for d = 0,1,2. The only triangulated 0-sphere is S0, and the only

triangulated 1-sphere with n ≥ 3 vertices is the n-gon. We will say that C is a chordless cycle in K

if C is a full subcomplex KI of K, and C is an m-gon for some m ≥ 3. When K is a graph, this is

the same as C being an induced cycle of G. K is said to be chordal if it contains no chordless cycles

with 4 or more vertices.

Lemma 4.15. If K is a triangulation of S1 on vertex set [n], then

(i) filt(K) ≥ 2 whenever K has at least 4 vertices.

If K is a triangulation of S2, then

(ii) filt(K) ≥ 2 whenever K has a chordless cycle;

(iii) filt(K) ≥ 3 whenever K has a chordless cycle with at least 4 vertices.

Proof. Let ∣K ∣ ≅ S1. If K has at least n ≥ 4 vertices, then K being an n-gon means we can take

I ′ ⊂ [n], ∣I ′∣ = 2, such that ∣KI′ ∣ = S0. Then S0 ⊊K is a length 2 spherical filtration of K.

Let ∣K ∣ ≅ S2, and C =KI be a chordless cycle for some I ⊂ [n]. We have ∣KI ∣ ≅ S1 and KI = ∂∆2

when KI has 3 vertices, in which case KI ⊊K is a length 2 spherical filtration. Otherwise, when KI

has at least 4 vertices, filt(K) ≥ 3 since there is a spherical filtration S0 ⊊KI ⊊K by part (i). �

Proposition 4.16. Let K be a triangulated d-sphere, d = 0,1,2. Then

1 ≤ filt(K) = cup(ZK) = cat(ZK) ≤ d + 1.

In particular, letting m = cat(ZK), when d = 1 we have m = 1 iff K = ∂∆2, and m = 2 iff K at least

4-vertices; and when d = 2 we have m = 1 iff K = ∂∆3, m = 2 iff K has a chordless cycle but none

with more than 3 vertices, and m = 3 iff K has a chordless cycle with at least 4 vertices.

Proof. The case d = 0 is immediate since S0 is the only triangulated 0-sphere, and ZS0 ≅ S3. Since

K is well-behaved by Lemma 4.4, we have by Lemma 3.3 and Lemma 4.14

1 ≤ filt(K) ≤ cup(ZK) ≤ cat(ZK) ≤ d + 1,

so it remains to show that cat(ZK) ≤ filt(K).
Fix d = 1. Using Lemma 4.15, if K has at least 4 vertices, then filt(K) ≥ 2, so cat(ZK) ≤ filt(K)

since cat(ZK) ≤ d + 1 = 2. Otherwise, if K has 3-vertices, then K = ∂∆2 and ZK ≅ S5, so filt(K) =
cat(ZK) = 1.

Now fix d = 2. By Lemma 4.15, filt(K) ≥ 3 wheneverK has chordless cycles with at least 4 vertices,

so cat(ZK) ≤ filt(K) since cat(ZK) ≤ d + 1 = 3. On the other hand, suppose K has chordless cycles,

but none with more than 3 vertices. Then filt(K) = 2 by Lemma 4.15, and the 1-skeleton K(1) is

a chordal graph. The chordal property is closed under vertex deletion (taking full subcomplexes).

Moreover, recall from [21] that chordal graphs have a total elimination ordering, that is, they can

be built up one vertex v at a time in some order such that at each step the neighbours of v form

a clique. Inducting on this ordering, one sees that chordal graphs are HMF -complexes, therefore

cat(ZK(1)) ≤ 1 by Proposition 3.10 (this also follows the main result in [35]). Using Lemma 3.3, we

have cat(ZK) ≤ cat(ZK(1)) + 1 ≤ 2 = filt(K). Otherwise, K = ∂∆3 when K has no chordless cycles

at all, so we have ZK ≅ S7 and filt(K) = cat(ZK) = 1.

�
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Corollary 4.17. Let K be a triangulated d-sphere, d = 1,2, then

cat(ZK(d−1)) ≤ max{1, cat(ZK) − 1} = max{1,filt(K) − 1}.

Proof. The last equality filt(K) = cat(ZK) is from the previous proposition. Letm = cat(ZK). Using

Proposition 4.16, the statement simplifies to cat(ZK(0)) ≤ 1 when d = 1, or d = 2 and m = 1. This is

true since ZK(0) has the homotopy type of a wedge of spheres by [31], or by Proposition 3.10 (as K(0)

is a collection of disjoint points). Fix d = 2. As in the proof of Proposition 4.16, cat(ZK(1)) ≤ 1 <m
when m = 2, since filt(K) = 2. This last inequality also holds when m = 3 since cat(ZK(1)) ≤
dimK(1) + 1 = 2 is always true by Lemma 3.3. �

4.4. Triangulated d-spheres for d ≥ 3.

Proposition 4.18. Suppose K ∈ Cd, d ≥ 0. Then

1 ≤ filt(K) = cup(ZK) = cat(ZK) ≤ d + 1.

Proof. Triangulations of 0,1,2-spheres are well-behaved by Lemma 4.4, so iterating Lemmas 4.6

and 4.5, any K ∈ Cd is well-behaved. Then by Lemmas 3.3 and 4.14,

1 ≤ filt(K) ≤ cup(ZK) ≤ cat(ZK) ≤ d + 1.

It remains to show that cat(ZK) ≤ filt(K). The d = 0,1,2 case is Proposition 4.16.

Suppose K = L1 ∗ ⋯ ∗ Lk ∈ Cd for some Li ∈ Cdi , di ≤ 2, and d1 + ⋯ + dk = d − k − 1. Then

ZK = ZL1 ×⋯ ×ZLk , and so using Proposition 4.16 and iterating Lemma 4.13,

cat(ZK) ≤ ∑
i=1,...,k

cat(ZLi) = ∑
i=1,...,k

filt(Li) ≤ filt(L1 ∗⋯ ∗Lk) = filt(K).

Moreover, iterating Corollary 3.7, and using Corollary 4.17, when each Li ≠ S0

cat(ZK(d−1)) ≤ ∑
i=1,...,k

cat(Z
Li
(di−1)) + k − 1 ≤ ∑

i=1,...,k

max{1,filt(Li) − 1} + k − 1,

and when each Li ≠ ∂∆di+1, we have filt(Li) > 1, therefore

(9) cat(ZK(d−1)) ≤
⎛
⎝ ∑
i=1,...,k

filt(Li)
⎞
⎠
− 1 ≤ filt(L1 ∗⋯ ∗Lk) − 1 = filt(K) − 1,

the second inequality by iterating Lemma 4.13.

Suppose K = K1#σ1⋯#σ`−1K` where each Ki = L1,i ∗ ⋯ ∗ Lki,i is a join of the above form such

that each Lj,i is not the boundary of a simplex, and σi is a d-face common to Ki and Ki+1 with

σi ∩ σj = ∅ when i ≠ j. By Corollary 3.13 and inequality (9), we have

cat(ZK) ≤ max{1, cat(ZK1
(d−1)), . . . , cat(ZK`(d−1))} + 1

≤ max{1,filt(K1) − 1, . . . ,filt(K`) − 1} + 1

= max{2,filt(K1), . . . ,filt(K`)}
= filt(K1#σ1⋯#σ`−1K`)
= filt(K),

where the second last inequality follows from iterating Lemma 4.12.

�



18 PIOTR BEBEN AND JELENA GRBIĆ

4.5. Proof of Theorem 4.2. The following is an immediate consequence of Theorem 4.4 in [42]

and the fact that category weight cwgt() as defined there is bounded below by 1, and linearly below

with respect to cup products.

Theorem 4.19 (Rudyak [42]). If cat(X) ≤m, then

(1) cup(X) ≤m;

(2) Massey products ⟨v1, . . . , vk⟩ vanish in H∗(X) whenever vi = a1⋯ami and vj = b1⋯bmj , and

mi +mj >m, for some odd i and even j and as, bt ∈H+(X). ◻

By our remarks in Section 3.1, and by definition cup(X) = nillH∗(X) − 1, we obtain

Proposition 4.20. If cat(ZK) ≤m, then K is m-Golod. ◻

Now Theorem 4.2 follows from Propositions 4.16 and 4.18, and the fact that cup(ZK) ≤m when

K is m-Golod (by definition).

5. Further Applications

5.1. Fullerenes. A fullerene P is a simple 3-polytope all of whose 2-faces are pentagons and

hexagons. These are mathematical idealisations of physical fullerenes - spherical molecules of carbon

such that each carbon atom belongs to three carbon rings, and each carbon ring is either a pentagon

or hexagon.

The authors in [16] have shown that the cohomology ring of moment-angle complexes is a complete

combinatorial invariant of fullerenes, while Buchstaber and Erokhovets [9, 10] show that the finer

details of their cohomology encode many interesting properties of fullerenes. For example, if P ∗ is

the dual of P , then the bigraded Betti numbers of Z∂P ∗ count the number of k-belts in P . Here, a

k-belt of a simple polytope such as P is a sequence of 2-faces (F1, . . . , Fk) such that Fk ∩ F1 ≠ ∅,

Fi ∩ Fi+1 ≠ ∅ for 1 ≤ i ≤ k − 1, and all other intersections are empty. Notice that the k-belts of

P correspond to full subcomplexes of ∂P ∗ that are n-gons. But since fullerenes can have no 3-

belts [9, 10], ∂P ∗ must only have n-gons as full subcomplexes for n ≥ 4. Moreover, since ∂P ∗ is a

triangulated 2-sphere that is not a boundary of the 2-simplex, it must have at least one such n-gon

as a full subcomplex. Thus, filt(∂P ∗) = 3, so by Theorem 4.2, we have the following description.

Theorem 5.1. For a fullerene P , cat(Z∂P ∗) = 3 and ∂P ∗ is 3-Golod. ◻

Now, using Rudyak’s result stated as Theorem 4.19, we relate Massey product to the Lusternik-

Schnirelmann category of moment-angle complexes and describe conditions for vanishing of Massey

products.

Theorem 5.2. For a fullerene P , all Massey products consisting of decomposable elements in

H+(Z∂P ∗) vanish. ◻

5.2. Neighbourly Complexes. For any finite simply-connected CW -complex X, let

hd(X) = max{max{i ∣ H̃i(X) ⊗Q ≠ 0} , max{i ∣ Torsion(H̃i−1(X)) ≠ 0}}
and

hc(X) = min{i ∣ H̃i+1(X) ≠ 0} .
These coincide with the dimension and connectivity of X up to homotopy equivalence. It is well

known (c.f. [36]) that X satisfies

(10) cat(X) ≤ hd(X)
hc(X) + 1

.

A version of the Hochster formula also holds for real moment-angle complexes, namely,

(11) H∗(RZK) ≅ ⊕
I⊆[n]

H̃∗(Σ∣KI ∣).
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Thus,

hd(RZK) = 1 +max{hd(∣KI ∣) ∣ I ⊆ [n] } ≤ 1 + dimK

and

hc(RZK) = 1 +min{hc(∣KI ∣) ∣ I ⊆ [n] } ,
and using the inequality cat(ZK) ≤ cat(RZK) from Corollary 3.5,

Proposition 5.3. For any simplicial complex K,

cat(ZK) ≤ hd(RZK)
hc(RZK) .

Comparing the Hochster formula for H∗(RZK) to the Hochster formula for H∗(ZK) in Sec-

tion 3.1, one sees that the inequality hd(RZK)
hc(RZK) ≤ hd(ZK)

hc(ZK) usually holds, with the disparity between

these two often being very large. In such case, the bound in Proposition 5.3 is an improvement over

what one would get by applying (10) directly to X = ZK .

Consider, for instance, the case of k-neighbourly complexes. A simplicial complex K on vertex

set [n] is said to be k-neighbourly if every subset of k or less vertices in [n] is a face of K. In this

case Hi(KI) = 0 for i ≤ k − 2 and each I ⊆ [n], so hc(RZK) ≥ k − 1. Therefore we have the following

result.

Theorem 5.4. If K is k-neighbourly, cat(ZK) ≤ 1+dimK
k

. In particular, K is ( 1+dimK
k

)-Golod. ◻

Corollary 5.5. Suppose K is ⌈n
2
⌉-neighbourly. If K ≠ ∆n−1, then dimK ≤ n−2. Thus, cat(ZK) ≤ 1

(ZK is a co-H-space), K is 1-Golod and therefore all Massey products in H∗(ZK) are trivial. ◻

5.3. Simplicial Wedges. We recall the simplicial wedge construction defined in [41, 2]. Let K be

a simplicial complex on vertex set {v1, ..., vn}, and for any face σ ∈K, define the link of σ in K the

subcomplex of K given by

linkK(σ) = {τ ∈K ∣ τ ∩ σ = ∅, τ ∪ σ ∈K} .

By doubling a vertex vi in K, we obtain a new simplicial complex K(vi) on vertex set

{v1, . . . , vi−1, vi1, vi2, vi+1, . . . , vn}

defined by

K(vi) = (vi1, vi2) ∗ linkK(vi) ∪{vi1,vi2}∗linkK(vi) {vi1, vi2} ∗K/{vi},
where (vi1, vi2) is the 1-simplex with vertices {vi1, vi2}. One can of course iterate this construction

by reapplying the doubling operation to successive complexes, and the order of vertices on which

this is done is irrelevant. To this end, take any sequence J = (j1, . . . , jn) of non-negative integers,

let uj be the jth vertex in the sequence v1, v12, . . . , v1j1 , v2, . . . , vn, vn2, . . . , vnjn and N = j1 +⋯+ jn,

and define

K(J) =KN

where Kj+1 = Kj(uj+1) and K0 = K. In algebraic terms, the Stanley-Reisner ideal of K(J) is

obtained from the Stanley-Reisner ideal of K by replacing each vertex vi by vi1, vi2, . . . , viji in each

monomial. This construction arises in combinatorics (see [41]) and has the important property

that if K is the boundary of the dual of d-polytope, then K(J) is the boundary of the dual of a

(d +N)-polytope.

Theorem 5.6. For any J , cat(ZK(J)) ≤ cat(ZK).

Proof. Let (DJ , SJ) be the sequence of pairs ((D2j1+2, S2j1+1), . . . , (D2jn+2, S2jn+1)). By [2, 30],

there is a homeomorphism

ZK(J) = (D2, S1)K(J) ≅ (DJ , SJ)K ,
and by Proposition 3.4, cat((DJ , SJ)K) ≤ cat((D2, S1)K) = cat(ZK). �



20 PIOTR BEBEN AND JELENA GRBIĆ

This result becomes algebraically useful when a good bound on cat(ZK) is known. For instance,

there are many examples of complexes K for which cat(ZK) = 1, duals of sequential Cohen Macaulay

and shellable complexes, and chordal flag complexes to name a few [28, 33]. In each of these

examples cat(ZK(J)) ≤ 1, so K(J) is Golod. Generally, K(J) is at least (1 + dimK)-Golod since

cat(ZK) ≤ 1 + dimK, even though dimK(J) − dimK can be arbitrarily large.

Notice K(J) is a triangulation of a (d +N)-sphere whenever K is a triangulation of a d-sphere.

Combining Theorem 5.6 and Proposition 4.20, the range of spheres for which Theorem 4.2 holds

generalises as follows.

Corollary 5.7. Let K be be any triangulated d-sphere for d = 0,1,2, or K ∈ Cd when d ≥ 3, and let

m = filt(K) (equivalently m = cup(ZK)). Then cat(ZK(J)) ≤m and K(J) is m-Golod. ◻
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