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ABSTRACT

Recently, control techniques that adopt the geometrical structure and physical properties

of dynamical systems have gained a lot of interest. In this thesis, we address nonlinear

and robust control problems for systems represented by port-controlled Hami ltonian

(PCH) models using the interconnection and damping assignment passivity-based con-

trol (IDA-PBC) methodology, which is the most notable technique facilitating the PCH

framework.

In this thesis, a novel constructive framework to simplify and solve the partial differential

equations (PDEs) associated with IDA-PBC for a class of underactuated mechanical

systems is presented. Our approach focuses on simplifying the potential energy PDEs

to shape the potential energy function which is the most important procedure in the

stabilization of mechanical systems. The simplification is achieved by parametrizing the

desired inertia matrix that shapes the kinetic energy function, thus achieving total energy

shaping. The simplification removes some constraints (conditions and assumptions) that

have been imposed in recently developed methods in literature, thus expanding the class

of systems for which the methods can be applied including the separable PCH systems

(systems with constant inertia matrix) and non-separable PCH systems (systems with

non-constant inertia matrix). The results are illustrated through software simulations

and hardware experiments on real engineering applications.

We also propose an integral control and adaptive control schemes to improve the ro-

bustness of the IDA-PBC method in presence of uncertainty. We first provide some

results for the case of fully-actuated mechanical systems, and then extend those results

to underactuated systems which are more complex. Integral action control on both the

passive and non-passive outputs in the IDA-PBC construction, a strategy to ensure the

robustness of the systems by preserving its stability in face of external disturbances, is

introduced, establishing the input-to-state stability (ISS) property. The results are ap-

plied to both the separable and non-separable PCH systems and illustrated via several

simulations. The extension to the non-separable case exhibits more complicated design

as we need to take into account the derivative of the inertia matrix.

Finally, the IDA-PBC method is employed to solve an important nonlinear phenomenon

called ‘pull-in’ instability associated with the electrostatically actuated microelectrome-

chanical systems (MEMSs). The control construction is an output-feedback controller

that ensures global asymptotic stability and avoids velocity measurement which may not

be practically available. Furthermore, the integral, adaptive and ISS control schemes

proposed in this thesis for mechanical systems are extended to facilitate the stabiliza-

tion of electromechanical systems which exhibit strong coupling between different energy

domains.
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Chapter 1

Introduction and Motivation

1.1 The Impact of Control on Technology

Technology plays a significant role in everyone’s life. It makes life easier and more conve-

nient and people are becoming increasingly dependent on technology in their daily lives,

both for professional and social tasks. For example, smart phones and tablets have now

become not just a means of communication between people, but with their advanced

features and built-in applications, such as the Internet, GPS navigator, touch screen,

and a multi-purpose personal digital assistant (note pad, calendar, address book, cal-

culator, etc.), they help people to perform their daily work easily and quickly. Control

system is an integral part of modern society and a main contributor to the advances and

developments in technology. Control is a key enabling technology for numerous appli-

cations around us and control systems now play critical roles in many fields, including

manufacturing, electronics, communications, transportation, computers and networks,

and many others. Nowadays, manufacturing industries are equipped with fully auto-

mated machineries (Figure 1.1 shows cars being assembled by industrial robots); space

shuttles and robots are used for space exploration like the Mars Rover shown in Figure

1.2. These are just a few examples of automatic control systems.

The increase in complexity of systems, the continuing need to improve product quality,

the performance requirements, and demands for more effective, more accurate, more

flexible, and more autonomy are just few drivers for the existence of the field of control.

Furthermore, new developments in technology with emerging concepts and state-of-

the-art devices make the control system design increasingly challenging to find enabled

solutions, designs, tools and algorithms to ensure reliable, efficient and cost-effective

operations [58]. The objective of control system design is that [95]: ‘given a physical

system to be controlled and the specifications of its desired behaviour, a feedback control

law is constructed to make the closed-loop system displays the desired behaviour’. From

this definition several key concepts have to be carefully considered when a control design

1



2 Chapter 1 Introduction and Motivation

Figure 1.1: Automotive production lines [32].

Figure 1.2: The rover landed on Mars in August 2012 [112].

is carried out. Firstly, a dynamical system must be clearly defined and, based on the

definition, the system can then be modelled in mathematical terms. Secondly, a clear

specifications for a system’s desired behaviour should be given. Generally, the desired

behaviour can be investigated for two types of tasks: stabilization (or set-point regula-

tion) and tracking (time-varying trajectory tracking). Finally a controller is designed to

achieve the desired behaviour while other criteria such as accuracy, cost and robustness

should also be considered.

For many years, research and development in control system design have been devoted

to the area of linear (classical) control, with a variety of powerful techniques developed

in both frequency and time domains (see [30, 61, 62] and references therein), leading

to extremely successful industrial applications. Linearization is a successful common

practice in engineering, and whenever possible it should be used so that the powerful

tools of classical control can be utilized.

While linearization would work in a large domain of applications, many systems have

strong nonlinear dynamics that limits the application of the linear control approaches.

Especially, with the increase in complexity of modern developed systems that requires
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more accurate control to achieve stability and satisfactory performance. These factors

have increased the interest in the field of nonlinear control. Another contributor to the

application of nonlinear control is the advances in digital electronics which have led to a

rapid development in computing and the availability of powerful low-cost microproces-

sors that makes it possible to solve complex nonlinear problems numerically. In recent

years, nonlinear control has increasingly become more popular and extensive research

has contributed to the development of both analysis and design of nonlinear control

systems (see [95, 44, 51, 69, 109, 47, 7]).

In general, there are two main difficulties in controller design for real systems; nonlinear-

ity and uncertainty. The research presented in this thesis aims at finding constructive

solutions for both issues, and contributes to the development of the field of nonlinear

control. This research focuses on a class of models that have a specific structure, the

port-controlled Hamiltonian (PCH) framework. Among several nonlinear control ap-

proaches, passivity-based control (PBC), more specifically one of the PBC approaches

known as the interconnection and damping assignment (IDA-PBC) is the most conve-

nient approach to PCH framework. There are many advantages in adopting the PCH

framework in the construction of PBC schemes including [31, 72]: (i) it provides a sys-

tematic approach for the modelling, analysis and control of complex dynamical systems

stemming from various physical domains (electrical, mechanical, thermodynamics, etc.);

(ii) this formalism invokes the energy of the system as a modelling tool which gives

a clear physical interpretations such as conservation, dissipation and transformation of

energy; (iii) it captures the energy-balancing property of the physical systems as PH

systems are automatically passive (lossless). This property can be utilized to establish

a link between the passivity of a system and Lyapunov stability; (iv) the system has a

clear structural identification being the interconnection and damping matrices, i.e. the

system has a clear distinct structure for internal interconnection from one side and the

external interconnection between the system and the environment (the control action)

from the other side. This means that the structural information about the system is

available in the model description: the total energy of the system can be presented by

the Hamiltonian (storage) function, which can usually be used as a Lyapunov function,

while the interconnection property is contained in a structure matrix that is described

by the interconnection and dissipative matrices; (v) the geometric structure of the PCH

is a state space which provides a convenient and compact way to model and analyze

(nonlinear) control systems.

The IDA-PBC is a feedback control design methodology that aims at stabilizing the

dynamical system by rendering the closed-loop system passive with a desired storage

function [74]. The main idea is to transform, via a state feedback, a nonlinear dynam-

ical system, into a suitable closed-loop PCH form. This is achieved by modifying the

energy (Hamiltonian) function and/or changing the interconnection structure of sys-

tem and/or adding damping/dissipation controllers, thus the name (IDA). This method



4 Chapter 1 Introduction and Motivation

has been successful in various engineering domains and applications including: electri-

cal and power systems [77, 38], mechanical systems [37, 71], electromechanical systems

[72, 81], discrete-time IDA-PBC design for underactuated Hamiltonian control systems

[53], IDA-PBC design to general linear time-invariant systems [67, 49], a survey on IDA-

PBC and its application can be found in [66]. In this thesis we are interested in two

classes of systems; the mechanical systems, in particular the underactuted mechanical

systems (UMSs); and the electromechanical systems, in particular microelectromechan-

ical systems (MEMS).

One of the main contributions of this thesis is the control of underactuated mechanical

systems (UMSs) using IDA-PBC method. UMSs have fewer control inputs than degrees

of freedom. These systems are either naturally underactuated like in spacecrafts, wheeled

mobile robots and underwater vehicles, or by design to reduce the cost and weight

considering some practical issues like in satellites and flexible-link robots [63, 55]. The

complex dynamics of the UMSs, restrictions on control authority and controllability,

holonomic and non-holonomic constraints, and being not fully feedback linearizable are

the main reasons for the complexity of the control design for these systems. A number

of methods and tools have been recently developed for analysis and control of UMSs.

Among these, it is worth citing the major research lines: methods that are based on

partial feedback linearization [101], backstepping [64], immersion and invariance [89]

and energy-based methods; controlled Lagrangian [16, 60] and IDA-PBC [71]. See [55]

for an overview of some control design methods. From IDA-PBC design perspective,

the control of UMSs is achieved via the solution of a set of partial differential equations

(PDEs). Solving these PDEs is the main obstacle in the constitution of IDA-PBC. A

lot of research effort has been devoted to the solution of the matching equations (see

[39, 14, 2, 111]). In all proposed methods in literature, some conditions and assumptions

have been imposed and also in many cases, linearization or partial linearization has been

used to simplify the solution(s). These factors have restricted the proposed methods to

certain systems and have also affected the possibility of achieving global stabilization

of systems expected from applying the nonlinear control approaches. This motivates us

to continue the investigation aimed at providing constructive method(s) to simplify and

solve the PDEs associated with the IDA-PBC approach.

Another focus in this research is on nonlinear control design and analysis of electrome-

chanical systems. This is triggered by the importance of electromechanical system as

they are found in broad applications in industry such as electric drives, robotics, ser-

vomechanism. Electromechanical systems continue to increase in complexity. The mul-

tidisciplinary nature of such systems (they encompasses diverse domains), the higher

demands in their performance and precision in various industrial applications and the

fact that they exhibit complicated nonlinear phenomena such as saturation and dead-

zone, have brought new challenges to control analysis and design. Additional challenges

have recently appeared in dealing with electromechanical systems on the micro scale,
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with the so called MEMS. As a promising technology, MEMS have the ability to actuate,

sense and control in miniaturized dimensional scale and have several applications. Con-

trol of MEMS devices is critical. Their size, fabrication process, interdisciplinary nature,

working environment, and various applications and uses are issues that should be taken

into account in the design of control systems. In this thesis, we will show a methodology

to solve some stability issues related to the electrostatically actuated MEMS.

An important part of this research is the control of PCH systems with uncertainties.

The behaviour of the control systems can be influenced by some externally acting sig-

nals (disturbances, noises, etc.) and model uncertainties which can be clearly noticed

in the implementation phase. The control of nonlinear systems with uncertainties is

traditionally approached as a robust or an adaptive control problem. Little is known

about robust and adaptive control within PCH framework. Some major contributions

toward the solution of robust and adaptive control problems have been recently ap-

peared in works of [29, 26, 70, 82]. All these works have been dedicated to the case of

fully-actuated mechanical systems whose control design is relatively simple since direct

actuation is available on each degree of freedom. For underactuated mechanical systems,

the control design is usually more complicated. This thesis provides the first contribu-

tion towards robust and adaptive control of underactuated mechanical systems within

the PCH framework. In this thesis, we use the IDA-PBC method to (asymptotically)

stabilize nonlinear systems formulated in PCH structure. However, little is known about

the robustness of this method in response to the effects of uncertainty which could results

from disturbances, noises, and modelling errors. This thesis explores the possibility of

extending the IDA-PBC method by adopting a robustness perspective, with the aim of

maintaining (asymptotic) stability of the system in the face of such perturbations which

exist in any realistic problem. We propose constructive results on Robust IDA-PBC

and PID-like controllers for a class of PCH systems. The results extend some existing

methods and provide a new framework that allows the implementation of integral ac-

tion control to underactuated PCH systems that are quite commonly found in practice.

Furthermore, we provide a framework to add an integral action to robustly control the

electromechanical systems, the MEMS in particular. This inclusion is quite complicated

in the electromechanical systems applications due to the strong coupling in the dynamics

of different domains, the electrical and mechanical.

1.2 Research Objectives

The general aim of this thesis is to develop constructive and systematic nonlinear and

robust control design methods for PCH systems. In particular, the objectives of this

research are summarized as:
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• Providing constructive techniques for nonlinear PBC controller design for under-

actuated and electromechanical systems as alternatives to the classical ones. More

specifically, the research goal is to develop a set of tools and techniques to control

underactuated and electromechanical systems which constitute highly nonlinear

and coupled dynamical systems.

• Improving and extending the scope of the IDA-PBC methodology for underac-

tuated mechanical systems through simplification of the PDEs. The design con-

struction enlarges the class of UMSs that can be stabilized, as well as, makes the

application less cumbersome which is inherited in the nonlinear control designs

and the PBC approaches in particular.

• Developing robust and adaptive control schemes for PCH systems to accommodate

uncertainties, focusing on underactuated and electromechanical systems.

• Investigating the pull-in instability phenomenon which is associated with the elec-

trostatically actuated MEMS, and providing a solution to this problem through a

PBC design, to this instability issue.

• Applying the proposed controller design methods to some underactuated and elec-

tromechanical systems via realistic computer simulations and experimentally val-

idating these proposed methods.

1.3 Outline of this Thesis and Contributions

Chapter 2 contains the mathematical preliminaries and some necessary theoretical back-

grounds which will be used in the rest of this thesis. Stability is the most important

issue in every control problem, therefore some basic tools that are used for stability

analysis of nonlinear systems are presented. This includes Lyapunov stability and pas-

sivity theories. Input-to-state stability theory is also reviewed. In this research, the

control design is based on the passivity-based control for systems in special structure,

the port-controlled Hamiltonian systems. Thus, some background on PCH systems is

given and the formulation of their structure are discussed in some detail. Finally, in-

terconnection and damping assignment passivity-based control is explained, which is

the methodology used to control a group of mechanical and electromechanical systems,

namely, underactuated mechanical systems, and microelectromechanical systems.

In Chapter 3, we provide a constructive framework to solve the PDEs associated with

the IDA-PBC for underactuated mechanical systems. We describe novel methods to

simplify the matching PDEs for solving an IDA-PBC construction for separable and non-

separable UMSs. This significantly simplifies the design computation and also yield a

simpler form of the controller. Most importantly, it achieves ‘almost’ global stabilization

which was unachievable in most previous designs in the literature. The results have been
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applied to solve an almost global stabilization design of the inertia wheel pendulum which

represents a class of underactuated mechanical systems with a constant inertia matrix.

In Chapter 4, we apply the results obtained in Chapter 3 to investigate a stabilization

problem for the rotary inverted pendulum. First we derive the model of the system using

the Newton-Euler formulation. Then we present a linear control design for this system,

highlighting the limitations of this approach. Section 4.4 of this chapter, discusses the

application of the proposed simplified IDA-PBC design to the inverted pendulum system.

It is shown in this chapter, through both simulations and stability analysis, that this

design results in ‘almost’ global asymptotic stability and a very effective closed-loop

performance of this systems in its full nonlinear dynamics.

Chapter 5 considers the presence of uncertainties in the PCH framework and discusses

both the simple case of a constant inertia matrix system, and the complex case of a non-

constant inertia matrix that takes into account the derivative of the inertia matrix in the

construction of the controller. We first propose a PID-like controller, a state feedback

which imitates the concept of the proportional-integral-derivative (PID) controller. Then

we investigate the addition of the integral action to the IDA-PBC controller in the

PCH formulation for fully-actuated mechanical systems. Here, we show approaches

for dealing with two cases of passive and non-passive outputs. Section 5.3.3 of this

chapter establishes the main results, where the previous results are extended to the case

of underactuated mechanical systems which has not been discussed in the literature

before. We consider also in this chapter the development of a simplified robust controller,

adopting the input-to-state stability (ISS) theory, to deal with PCH systems subject to

external disturbances. Finally, parametric uncertainty in the PCH model is discussed

in this chapter, and a novel adaptive controller is developed to counteract the effects of

uncertainty in the model.

Chapter 6 provides an investigation on MEMS, particularly the pull-in instability that

generally limits the operation of the electrostatically driven MEMS. We use two ap-

proaches to explain this instability problem, namely; the energy (Hamiltonian) approach,

and the linearization approach. Next, we discuss a control design method based on the

IDA-PBC to solve the pull-in instability. The main advantage of the proposed method

is that it ensures achieving global asymptotic stability on one hand, while on the other

hand it is an output-feedback controller that does not require the velocity measurement

which is impossible in such applications. This chapter also discusses a new approach to

include an integral control action for the MEMS applications. This approach uses the

idea of coordinate transformations as proposed in the design of integral controllers for

underactuated systems, but the idea is extended to deal with the complexity of the elec-

tromechanical systems arises from the strong coupling between different electrical and

mechanical energy domains. The ISS property and the IDA-PBC method are combined

to control the electrostatically actuated MEMS subject to external perturbations which

has not been considered in existing works in the literature.
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In Chapter 7 we present the validation of the controller design presented in Chapter 4 by

applying it to a laboratory set-up rotary inverted pendulum. The application is modified

to include a friction compensator which is excluded throughout the PCH modelling. The

chapter demonstrates a successful experimental implementation of this approach to the

rotary inverted pendulum hardware, demonstrating the effectiveness of the controller

and its robustness with respect to disturbances.

Chapter 8 concludes the contributions of this research and provides directions for the

future research work in this area.
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Chapter 2

Preliminaries

2.1 Definitions and Notation

The set of real and natural numbers (including 0) are denoted respectively by R and N.

Given an arbitrary matrix G, we denote the transpose and the pseudo inverse of G by

G⊤ and G+, respectively. G⊥ denotes the full rank left annihilator of G, i.e. G⊥G = 0.

We denote an n × n identity matrix with In. For any continuous function H(i, j), we

define ∇iH(i, j) := ∂H(i, j)/∂i. ei, i ∈ {1, · · · , n} are the Euclidean basis vectors.

2.2 Stability of Nonlinear Systems

The stability theory presented in this section plays a central role in constructing the

nonlinear control design methods in this thesis. The fundamental stability theory for

nonlinear systems and most fruitful ideas were introduced by A.M. Lyapunov when he

published his PhD thesis in 1892, titled ‘The General Problem of Motion Stability’.

Lyapunov’s key ideas are the basis for the analysis of stability of dynamical systems.

Most nonlinear control theories revolve around Lyapunov’s approaches. The principles

of Lyapunov stability theory was originally used as a dynamical behaviour analysis tool

and became a powerful method for nonlinear control system design. Here, Lyapunov

stability theory is summarized for general nonlinear systems. The following paragraphs

discuss the stability notion in the sense of Lyapunov and are based on [47], where the

proofs of all theorems can be found.

Consider the autonomous system

ẋ = f(x), (2.1)

where f : D → R
n is a locally Lipschitz map from a domain D ⊂ R

n into R
n. Suppose

x̄ ∈ D is an equilibrium point for (2.1); that is f(x̄) = 0. Without loss of generality,

assume that x̄ = 0.

9
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Definition 2.1. (Stability of equilibrium point) The equilibrium point x = 0 of

(2.1) is

• stable, if for each ǫ > 0 there is δ = δ(ǫ) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀ t ≥ 0 (2.2)

• unstable, if not stable.

• asymptotically stable, if it is stable and δ can be chosen such that

‖x(0)‖ < δ =⇒ lim
t→∞

x(t) = 0.

�

Figure 2.1: Illustration of the definition of stability

Figure 2.1 shows the concepts of stability. For nonautonomous systems, the stability

properties of nonlinear systems can be characterized using the classes of scalar (compar-

ison) functions defined below:

Definition 2.2. (Class K and K∞ functions) A continuous function α : [0, a) → R+

is said to belong to class K if it is strictly increasing and α(0) = 0, and it is said to

belong to class K∞ if a = ∞ and lims→∞ α(s) = ∞. �

Definition 2.3. (Class KL function) A continuous function β : [0, a)× R+ → R+ is

said to belong to class KL if it is such that β(·, t) ∈ K for each fixed t ∈ R+, and the

function β(s, ·) is decreasing and limt→∞ β(s, t) = 0 for each fixed s ∈ [0, a). �

Figure 2.2 shows a plot of K and K∞ functions. The following definitions give equivalent

definitions of stability and asymptotic stability using class K and KL functions.

Consider the system

ẋ = f(x, t), (2.3)
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Figure 2.2: Class K (left) and class K∞ (right) functions.

where f : D×R
+ → R

n is piecewise continuous in t and locally Lipschitz in x on D×R
+,

and D ⊂ R
n is a domain that contains the origin x = 0. The origin is an equilibrium

point for (2.1) at t = 0 if f(0, t) = 0, ∀ t ≥ 0.

Definition 2.4. The equilibrium point x = 0 of (2.3) is said to be stable if there exist

a class K function α(·) and a positive constant c, independent of t0, such that

||x(t)|| ≤ α(||x(t0)||), ∀ t ≥ t0 ≥ 0, ∀ ||x(t0)|| < c, (2.4)

and is globally stable if this condition is satisfied for any initial state. �

Definition 2.4 suggests that we can keep the states in a ball of arbitrary small radius c

i.e. the solution is bounded and defined for all t ≥ t0 which implies stability.

Definition 2.5. The equilibrium point x = 0 of (2.3) is said to be asymptotically sta-

ble (AS) if there exist a class KL function β(·, ·) and a positive constant c, independent

of t0, such that

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀ t ≥ t0 ≥ 0, ∀ ||x(t0)|| < c, (2.5)

and is globally asymptotically stable (GAS) if this condition is satisfied for any

initial state. �

Definition 2.5 suggests that satisfaction of the inequality (2.5) implies boundedness and

hence stability. Moreover, for any initial condition x(t0) the trajectory of the solution

x(t) is asymptotically decaying to 0 as t → ∞. Before discussing Lyapunov’s stability

theorems, some important definitions are first provided.

Definition 2.6. A scalar function W (x) is called:

• Positive definite, if W (0) = 0 and W (x) > 0 ∀ x 6= 0.

• Positive semi-definite, if W (0) = 0 and W (x) ≥ 0 ∀ x 6= 0.
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• Negative definite (Negative semi-definite), if−W (x) is positive definite (pos-

itive semi-definite).

• Radially unbounded, if W (x) → ∞ as |x| → ∞. �

Lemma 2.7. Let W : Rn → R be a continuous positive-definite and radially unbounded

function. Then there exist class K∞ functions α(·) and α(·) such that

α(|x|) ≤ W (x) ≤ α(|x|).

�

Lyapunov’s stability theorems can now be given.

Theorem 2.8. (Lyapunov’s first (indirect) method) Let x = 0 be an equilibrium

point for the system ẋ = f(x), where f : D → R
n is continuously differentiable and D is

a neighborhood of the origin. Let

A =
∂f

∂x

∣
∣
∣
∣
x=0

. (2.6)

Then, the origin is

• asymptotically stable, if Re(λi) < 0 for every eigenvalue λ of A.

• unstable, if Re(λi) > 0 for any eigenvalue λ of A. �

Theorem 2.9. (Lyapunov’s second (direct) method) Let x = 0 be an equilibrium

point for the system ẋ = f(x) and D ⊂ R
n be a domain containing x = 0. Let W : D → R

be a continuously differentiable function such that

W (0) = 0 and W (x) > 0 ∀ x ∈ D − {0} (2.7)

Ẇ (x) ≤ 0 ∀ x ∈ D. (2.8)

Then x = 0 is stable. Moreover, if

Ẇ (x) < 0 ∀ x ∈ D − {0}, (2.9)

then x = 0 is asymptotically stable. �

Lyapunov’s second method can also be given by using the comparison functions:

Theorem 2.10. Consider the system (2.1), where x ∈ R
n and t ≥ t0, with an equilib-

rium point x = 0, and suppose that there exists a continuously differentiable function

W (x, t) such that

α(|x|) ≤ W (x, t) ≤ α(|x|), (2.10)
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∂W

∂x
f(x, t) +

∂W

∂t
≤ −W(|x|), (2.11)

where α(·), α(·) are class K∞ functions and W(·) is a continuous positive definite func-

tion. Then x = 0 is globally stable. Moreover, if in addition the function W(·) is of

class K, then x = 0 is GAS. �

A continuously differentiable function W (x) satisfying the conditions of Theorem 2.9 is

called a Lyapunov function. Similarly, a function W (x, t) satisfying the conditions of

Theorem 2.10 is called a Lyapunov function.

The idea in the first theorem is to linearize the system around the origin and use the

linearized model to investigate the stability of the nonlinear system. If the linearized

model is asymptotically stable, then the nonlinear system is locally asymptotically stable

around that equilibrium, in this case the origin. In the second theorem, stability can be

analyzed without linearization of the nonlinear system i.e. it is applied directly to the

nonlinear system, hence the name ‘direct method’.

Some physical systems fail to satisfy the asymptotic stability conditions of Theorem

2.9, when W(·) is only positive semi-definite. However, if in a domain about x = 0 a

Lyapunov function can be found such that its derivative along the trajectories of the

system is negative semi-definite, while no trajectory can stay identically at points where

Ẇ (x) = 0, except at x = 0, then x = 0 is asymptotically stable. This idea follows from

LaSalle’s invariance principle. To state LaSalle’s invariance principle the definition of

invariant set is needed.

Definition 2.11. A set M is said to be invariant with respect to (2.1) if

x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ≥ 0.

�

Theorem 2.12. (LaSalle’s invariance principle) Let Ω ⊂ X be a compact set

that is positively invariant with respect to (2.1). Let W (x) : D → R be a continuously

differentiable function such that Ẇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where

Ẇ (x) = 0 and let M be the largest invariant set contained in E. Then every solution

starting in Ω converges to M as t → ∞. �

2.3 Input-to-State Stability

The theory of input-to-state stability (ISS) introduced in [96] is an extension of Lya-

punov stability theory to deal with systems with inputs. ISS captures the Lyapunov

stability notion and the bounded-input-bounded-output (BIBO) stability notion [97]. ISS
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is a central tool in nonlinear systems analysis that studies the influence of input per-

turbations on the system and the robustness of the system with respect to such inputs.

The concept of ISS and its variants is discussed in details in many textbooks and articles

[96, 97, 98, 99, 47, 45, 51, 48, 6].

Consider a nonlinear system

ẋ = f(x, u, t) (2.12)

with state x(t) ∈ R
n and input u(t) ∈ R

m, where f(x, u) is locally Lipschitz and f(0, 0) =

0. The input function u : [0,∞) → R
m can be any measurable essentially bounded

function. The set of all such functions, endowed with the essential supremum norm

‖u‖∞ = ess sup|u(t)|, t ≥ 0 is denoted by Lm
∞, where | · | denotes the usual Euclidean

norm.

Definition 2.13. The system (2.12) is said to be input-to-state stable if there exist a

class KL function β and a class K∞ function γ, called a gain function, such that, for all

bounded input u ∈ Lm
∞ and all x0 ∈ R

n, the response x(t) of (2.12) for the initial state

x(0) = x0 and the input u satisfies

|x(t)| ≤ β(|x0|, t) + γ( sup
τ∈[0,t]

|u|∞) for all t ≥ 0. (2.13)

�

The following Lyapunov-like theorem gives a sufficient condition for ISS.

Theorem 2.14. Let W : Rn → R be a continuous differentiable function such that

α(|x|) ≤ W (x) ≤ α(|x|) (2.14)

|x| ≥ ρ(|u|) ⇒ ∂W

∂x
f(x, u) ≤ −α(|x|), (2.15)

for all x ∈ R
n, and all u ∈ R

m, where α, α, α are class K∞ functions and ρ is a class

K function. Then, the system (2.12) is input-to-state stable, and W is called an ISS

Lyapunov function. �

The following theorem provides a generalization to ISS.

Theorem 2.15. System (2.12) is input-to-state stable if and only if it admits a smooth

ISS Lyapunov function. �

An alternative characterization of the ISS property can be established by replacing the

inequality (2.15) in Theorem 2.14 with

∂W

∂x
f(x, u) ≤ −α(|x|) + ρ(|u|), for allx ∈ R

n and allu ∈ R
m (2.16)
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where ρ is a class K function [98]. Finally, As discussed in [97, Section 3.3] and [98,

Remark 2.4], the definition of ISS can be restated as:

Definition 2.16. A smooth function W is an ISS Lyapunov function for (2.12) if and

only if there exist α, α, α ∈ K∞ such that (2.14) holds, and

∂W

∂x
f(x, u) ≤ −α(|x|) + σ(|u|), for all x ∈ R

n and allu ∈ R
m (2.17)

where σ is a class K∞ function. �

2.4 Passivity

Dissipative systems are dynamical systems with states x(t), inputs u(t) and outputs

y(t), which satisfy the so-called dissipation inequality, which states that the increase in

storage over a time interval cannot exceed the supply delivered to the system during this

time-interval [115]. Passive systems are a class of dissipative systems in which the rate

at which the energy flows into the system is not less than the increase in storage. This

implies that a passive system cannot store more energy than what is supplied to it from

the outside, with the difference being the dissipated energy. The idea originates from

traditional circuit theory in which typical examples of dissipative systems can be found

in electrical circuits (energy of the systems is dissipated in resistors). Dissipativity and

passivity are of particular interest because of the connection between these properties

and the stability [113]. The concept of passivity has evolved in various stages; a study of

passive and dissipative systems, and investigation of their connections with the stability

of feedback systems were introduced in [113, 114]. These works have been extended in

[42, 43] to some classes of nonlinear systems. A technique to render a system passive

by means of a state feedback was introduced in [19]. Some passivity based control

techniques have been discussed in the text books [93, 69, 109].

Consider a general state space system

Σ :
ẋ = f(x, u), u ∈ U

y = h(x, u), y ∈ Y
(2.18)

with input u ∈ R
m output y ∈ R

p and x = (x1, · · · , xn)⊤ being the local coordinates for

an n-dimensional state space manifold X , and U and Y are linear spaces, together with

a scalar function s(u(t), y(t)) called the supply rate.

Now, recall the definitions of dissipative and passive systems [113, 109].

Definition 2.17. (Dissipative system) A system (2.18) is called dissipative with

respect to the supply rate s if there exists a function S : X → R+, called the storage
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function, such that, for all x0 ∈ X , all t1 ≥ t0, and all input functions u

S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0

s(u(t), y(t))dt, (2.19)

where x(t0) = x0 and x(t1) is the state of (2.18) at time t1 resulting from the initial

condition x0 and the input function u(·). If (2.19) hold with equality for all x0, t1 ≥ t0,

and all u(·), then (2.18) is lossless with respect to s. �

The inequality (2.19) is called a dissipation inequality. It shows that the maximum

stored energy S(x(t1)) is equal to the sum of the stored energy S(x(t0)) and the total

energy supplied by the external input
∫ t1
t0

s(u(t), y(t))dt during the time interval [t0, t1].

Thus, internal creation of energy is impossible; only internal dissipation of energy is

possible. To capture the dissipation effects, the inequality (2.19) can be written as

S(x(t1))− S(x(t0))
︸ ︷︷ ︸

stored energy

=

∫ t1

t0

s(u(t), y(t))dt

︸ ︷︷ ︸

energy supplied to the system

− d(t)
︸︷︷︸

dissipated energy

, (2.20)

where the nonnegative function d(t) ≥ 0 represents the dissipation. The following is an

example of a dissipative system.

Example 2.1. Consider the mass-spring-damper system which is shown in Figure 2.3,

where x is the mass position, v = ẋ is the mass velocity, and u = F (t) is the input. m,

k and b are the mass, spring constant, and the damping coefficient, respectively. The

power of the system is the input force u = F (t) times the output (velocity) y = v. Thus,

the energy of the system, which is the integration of power, is

∫ t1

t0

F (s)v(s)ds =

∫ t1

t0

(mv̇(s) + kx(s) + bv(s))v(s)ds,

=

∫ t1

t0

(mv̇(s)v(s)(s)ds+ kx(s)ẋ(s)ds+ bv(s)2ds), (2.21)

=

(
1

2
mv2(s) +

1

2
kx2(s)

)∣
∣
∣
∣

t1

t0

+ b

∫ t1

t0

v2(s)ds,

= S(x(t1))− S(x(t0)) + b

∫ t

0
v2(s)ds.

Rearranging the terms, we can write (2.21) as

S(x(t1))− S(x(t0)) =

∫ t

0
F (s)v(s)ds− b

∫ t

0
v2(s)ds, (2.22)

which satisfies the inequality (2.20).

The concepts of dissipativity/passivity can similarly be illustrated by an electric circuit

where energy is dissipated in the resistive elements, as depicted in Figure 2.4 [72].
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Figure 2.3: Mass-spring-damper system.

Figure 2.4: RLC circuit.

Definition 2.18. The system (2.18) with U = Y = R
m is passive if it is dissipative

with respect to the supply rate s(u, y) = u⊤y. The system (2.18) is input strictly

passive (ISP) if there exists a δ > 0 such that (2.18) is dissipative with respect to

s(u, y) = u⊤y − δ‖u‖2. The system (2.18) is output strictly passive (OSP) if there

exists a ǫ such that (2.18) is dissipative with respect to s(u, y) = u⊤y − ǫ‖y‖2. �

There are useful relationships between passivity and Lyapunov stability [47]:

Lemma 2.19. If the system (2.18) is passive with a positive definite storage function

S(x) = W (x), then the origin of f(x, 0) is stable. �

To show asymptotically stability of the origin of ẋ = f(x, 0), an additional condition of

observability must be satisfied.

Definition 2.20. (Zero-state observability & detectability) The system (2.18) is

zero-state observable if u(t) = y(t) = 0, ∀t ≥ 0, implies x(t) = 0, and is zero-state

detectable if u(t) = y(t) = 0, ∀t ≥ 0, implies limt→∞ x(t) = 0. �

Lemma 2.21. Consider the system (2.18). The origin of ẋ = f(x, 0) is asymptotically

stable if the system is output strictly passive and zero-state observable. �

Example 2.2. Consider the system

ẋ1 = x2,

ẋ2 = −k1x
3
1 − k2x2 + u, k1, k2 > 0

y = x2,
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with the Lyapunov function candidate

V (x) =
1

4
k1x

4
1 +

1

2
x22.

The derivative of V (x) is

V̇ (x) = k1x
3
1x2 + x2(−k1x

3
1 − k2x2 + u)

= uy − k2y
2.

Hence, the system is output strictly passive. The system is also zero-state observable

because

u(t) = y(t) ≡ 0 =⇒ x2(t) ≡ 0 =⇒ −k1x
3
1(t) ≡ 0 =⇒ x1(t) = 0.

Thus, the origin of the unforced system is asymptotically stable.

2.5 The Port-Controlled Hamiltonian Framework

Hamiltonian systems are an important class of nonlinear systems that are used to model

mechanical, electrical and electromechanical systems, e.g. robotics systems, electrical

networks, vehicles. The Hamiltonian function usually represents the total energy of the

system. For example, for many mechanical systems, the Hamiltonian function represents

the sum of the kinetic and the potential energies. Hamiltonian systems are conservative,

i.e. the total energy function remains constant along trajectories. For example, a simple

pendulum (assuming no friction and air drag) is a conservative Hamiltonian system, in

the sense that if no external force is applied to it, its total energy is conserved (the

summation of its kinetic energy and potential energy is a constant value). The passivity

of a Hamiltonian system is associated with the existence of passive elements such as

dampers in mechanical systems, and resistors, inductors and capacitors in electrical

networks. Passive elements dissipate energy from the system, and hence stability or

asymptotic stability can be achieved.

Port-based network modelling of lumped parameter physical systems naturally leads to

a geometrically defined class of systems which is referred to as port-Hamiltonian systems

[109]. The Hamiltonian approach has its roots in analytical mechanics as a generalization

of the classical Hamiltonian equations of motion while the network modelling described

by a Dirac structure arises from electrical engineering concept [109]. The Hamiltonian

dynamics are then described by their interconnection structure (Dirac structure) and

the Hamiltonian function which represents the total energy stored in the system. The

port-Hamiltonian system is controlled by interconnecting it to dissipation components,

energy shaping components, or by assigning its structure, or via energy transfer between

subsystems, or the combination of any of them [31]. This leads to a control paradigm
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known as the port-controlled Hamiltonian systems. The advantage of adopting the port-

controlled Hamiltonian framework from control perspective is that it describes a large

class of (nonlinear) systems including mechanical, electrical and electromechanical sys-

tems. The following shows the formulation of port-controlled Hamiltonian systems, and

gives more mathematical overview of the conservative and passive features of these sys-

tems. Most of the material is based on [109].

Port-controlled Hamiltonian systems originate from the classical framework of Lagrangian

and Hamiltonian differential equations. The standard Euler-Lagrange equations for me-

chanical systems are given as

d

dt

(
∂L

∂q̇
(q, q̇)

)

− ∂L

∂q
(q, q̇) = τ, (2.23)

where q = (q1, . . . , qk)
⊤ are the generalized configuration coordinates for the system

with k degrees of freedom, the Lagrangian L equals the difference K − V between the

kinetic energy K and the potential energy V , and τ = (τ1, . . . , τk)
⊤ is the vector of

generalized forces acting on the system. Furthermore, ∂L
∂q̇ denotes the column-vector of

partial derivatives of L(q, q̇) with respect to the generalized velocities q̇1, · · · , q̇k, and
similarly for ∂L

∂q .

In standard mechanical systems the kinetic energy K is of the form

K(q, q̇) =
1

2
q̇⊤M(q)q̇, (2.24)

where M(q) is the k× k inertia (generalized mass) matrix, which is symmetric and pos-

itive definite for all q. In this case the vector of generalized momenta p = (p1, . . . , pk)
⊤,

defined as p = ∂L
∂q̇ , is simply given by

p = M(q)q̇. (2.25)

Define the state vector (q1, . . . , qk, p1, . . . , pk)
⊤, then the k second-order equations (2.23)

are transformed into 2k first-order equations

q̇ =
∂H

∂p
(q, p) (= M−1(q)p)

ṗ = −∂H

∂q
(q, p) + τ,

(2.26)

where

H(q, p) =
1

2
p⊤M−1(q)p+ V (q)

(

=
1

2
q̇⊤M(q)q̇ + V (q)

)

, (2.27)

is the total energy of the system. The system of equations (2.26) is called the Hamilto-

nian equations of motion, and H is called the Hamiltonian (function). The following
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energy balance condition immediately follows from (2.26):

d

dt
H =

(
∂H

∂q
(q, p)

)⊤

q̇ +

(
∂H

∂p
(q, p)

)⊤

ṗ

=
∂H

∂q

⊤

(q, p)
∂H

∂p
(q, p) +

∂H

∂p

⊤

(q, p)

(

−∂H

∂q
(q, p) + τ

)

=
∂H

∂q

⊤

(q, p)
∂H

∂p
(q, p)− ∂H

∂p

⊤

(q, p)
∂H

∂q
(q, p) +

∂H

∂p

⊤

(q, p)τ

=
∂H

∂p

⊤

(q, p)τ

= q̇⊤τ,

(2.28)

expressing that the increase in energy of the system is equal to the supplied work q̇⊤τ

(conservation of energy).

If the Hamiltonian H(q, p) is assumed to be the sum of a positive kinetic energy and a

potential energy which is bounded from below, it means that for (2.27) we have

M(q) = M⊤(q) > 0, ∃ C > −∞ s.t. V (q) ≥ C. (2.29)

Then it follows that (2.26) with inputs u = τ and outputs y = q̇ is a passive (in fact,

lossless) state space system with storage function H(q, p) − C ≥ 0. Since the energy

is only defined up to a constant, one may also take as potential energy the function

V (q, p) − C ≥ 0, in which case the total energy H(q, p) becomes nonnegative and thus

itself is a storage function.

System (2.26) is an example of a Hamiltonian system, which more generally is given

in the following form

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H

∂q
(q, p) +G(q)u, u ∈ R

m

y = G⊤(q)
∂H

∂p
(q, p), (= G⊤(q)q̇) y ∈ R

m

(2.30)

whereG(q) is the input force matrix, withG(q)u denoting the generalized forces resulting

from the control input u.

Because of the form of the output equations y = G⊤(q)q̇, we again obtain the energy

balance
d

dt
H(q(t), p(t)) = u⊤(t)y(t), (2.31)

hence if H is non-negative (or bounded from below), any Hamiltonian system (2.30) is

lossless. A major generalization of the class of Hamiltonian systems (2.30) is to consider

systems which are described in local coordinates as
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ẋ = J (x)
∂H

∂x
(x) + g(x)u,

y = G⊤(x)
∂H

∂x
(x),

(2.32)

where J (x) is a n× n matrix with entries depending smoothly on x, which is assumed

to be skew-symmetric, i.e.

J (x) = −J ⊤(x), (2.33)

and x = (x1, . . . , xn)
⊤ are local coordinates for an n-dimensional state space manifold

X . Because J (x) is skew symmetric, we easily recover the energy-balance

d

dt
H(x(t)) = u⊤(t)y(t), (2.34)

showing that (2.32) is lossless if H ≥ 0. We call (2.32) with J (x) satisfying (2.33)

a port-controlled Hamiltonian system (PCH) with structure matrix J (x) and

Hamiltonian H. Energy dissipation is also included in the framework of PCH systems.

System (2.32) is then written as

ẋ = (J (x)−R(x))
∂H

∂x
(x) + g(x)u,

y = G⊤(x)
∂H

∂x
(x).

(2.35)

where R(x) is a positive definite symmetric matrix, also called the damping matrix. In

this case the energy balance property takes the form

dH

dt
(x(t)) = u⊤(t)y(t)−

(
dH

dt
(x(t))

)⊤

R(x(t))
dH

dt
(x(t)), (2.36)

showing that a port-controlled Hamiltonian system is passive if the Hamiltonian H is

bounded from below. We call (2.35) a port-controlled Hamiltonian system with

dissipation (PCHD). Note that in this case two geometric structures play a role: the

internal interconnection structure given by J and an additional resistive structure given

by R which represents the internal energy dissipation (e.g. friction).

Example 2.3. Consider a magnetic levitation system [72]. It consists of an iron ball

with mass m, in a vertical magnetic field created by a single electromagnet (see Figure

2.5). The state variables of the system are the ball position q, its momentum p and the

flux in the inductance φ. The system is controlled via an input voltage u applied to the

electromagnet. The equations of motion for this system are:

mq̈ − 1

2k
φ2 +mg = 0

φ̇+
1

Rk
(a− q)φ− u = 0.

(2.37)
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Then the dynamic of the system is described by a port-controlled Hamiltonian system

� �

� �

�

�

�

�

Figure 2.5: The magnetic levitation system.

of the form (2.35)






q̇

ṗ

φ̇




 =






0 1 0

−1 0 0

0 0 − 1
R











∂H
∂q (q, p, φ)
∂H
∂p (q, p, φ)
∂H
∂φ (q, p, φ)




+






0

0

1




u, (2.38)

with x = [q, p, φ]⊤ and

J =






0 1 0

−1 0 0

0 0 0




 , R =






0 0 0

0 0 0

0 0 1
R




 , G =






0

0

1




 .

The Hamiltonian is composed of the sum of the potential, kinetic and electromagnetic

energies

H(q, p, φ) = mgq +
1

2m
p2 +

1

2k
(a− q)φ2, (2.39)

where g is the gravitational acceleration, R is the coils resistance, a is the nominal gap

and the constant k > 0 depends on the number of coil turns. This electromechanical sys-

tem shows the coupling between the electrical and mechanical elements via their energy,

the Hamiltonian H(q, p, φ).
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2.6 Interconnection and Damping Assignment Passivity-

Based Control

Passivity-based control (PBC) is a control methodology which achieves stabilization by

passivation of the closed-loop dynamics and was first introduced in [105]. The objective

of PBC is to render the closed-loop system passive with a desired storage function which

usually qualifies as a Lyapunov function that has a minimum at the desired equilibrium

point. Asymptotic stability is ensured if detectability of the passive output is ensured

[74].

In general, there are two large divisions of PBC. The first is called classical PBC, where a

storage function is first selected and a controller is designed to render the storage function

non-increasing [66]. This type is applied to systems described by Euler-Lagrange equa-

tions of motion and the control design is called controlled Lagrangian method [69, 16].

In the second class, the control action is split into two tasks; energy-shaping where the

desired energy function to the passive map is assigned, and damping injection where

damping is applied to ensure asymptotic stability. This approach is known as inter-

connection and damping assignment passivity-based control (IDA-PBC) [74]. IDA-PBC

has proven to be successful for a wide range of applications: mechanical systems [71],

electromechanical systems [81], and discrete-time IDA-PBC design for underactuated

Hamiltonian control systems [53], to mention a few. A survey on IDA-PBC and its ap-

plications can be found in [66]. The standard formulation of IDA-PBC was introduced

in [73, 74], to control port-controlled Hamiltonian systems of the form (2.35).

Consider the general nonlinear system

ẋ = f(x) + g(x)u, (2.40)

with x ∈ R
n, u ∈ R

p. IDA-PBC concerns finding a smooth state feedback law u = β(x)

in order to render the closed-loop system a PCH system of the form

ẋ = (Jd(x)−Rd(x))
∂Hd

∂x
(x)

y = G⊤(x)
∂Hd

∂x
(x), y ∈ R

m
(2.41)

where Hd is the desired new Hamiltonian (storage function) of the closed loop, which

has to have a strict minimum at the desired equilibrium point x = xd to guarantee

stability, and Jd(x), and Rd(x) are the desired interconnection and damping matrices,

respectively. Jd(x) and Rd(x) should satisfy

Jd(x) = −J ⊤
d (x), Rd(x) = R⊤

d (x) ≥ 0.
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To render (2.40) with u = β(x) equal to (2.41), we need to find a solution to the equation

f(x) + g(x)u = (Jd(x)−Rd(x))
∂Hd

∂x
(x). (2.42)

which is called the matching equation. The strategy for solving this matching equation

is realized by the following Lemma [66].

Lemma 2.22. Consider the system (2.40). Assume there exist matrices

G⊥(x), Jd(x) = −J ⊤
d (x), Rd(x) = R⊤

d (x) ≥ 0,

and a smooth function Hd(x) such that the partial differential equation

G⊥(x)f(x) = G⊥(x)(Jd(x)−Rd(x))
∂Hd

∂x
(x), (2.43)

where G⊥(x) is a full rank left annihilator of G(x) , i.e. G⊥(x)g(x) = 0 holds (which

eliminates the input functions from the matching equation), and Hd(x) is such that

xd = arg min Hd(x), (2.44)

where xd is the desired equilibrium point to be stabilized. Then the closed loop system

(2.40) with u = β(x), where

β(x) = (G⊤(x)G(x))−1G⊤(x) ([Jd(x)−Rd(x)]∇Hd − f(x)) , (2.45)

with the pseudo inverse G+ = (G⊤G)−1G⊤ is used to obtain control law, can be presented

as the following PCH form

ẋ = (Jd(x)−Rd(x))
∂Hd

∂x
(x) (2.46)

with xd being a local stable equilibrium. �

Lemma 2.22 can only guarantee stability of the equilibrium point xd. Asymptotic sta-

bility is guaranteed if xd is an isolated minimum of Hd(x), and by invoking LaSalle’s

invariance principle (Theorem 2.12) as follows.

If the largest invariant set for the closed-loop system contained in

{x ∈ R
n | (∇H⊤

d Rd(x)∇Hd = 0)},

equals xd, then the closed loop system is asymptotically stable.

The basic idea of IDA-PBC is to transform, via static state-feedback, the system (2.40)

into a PCH system with some desired energy function. This is done in two stages. First,

the control signal is decomposed into two parts u = ues + udi, where ues is responsible
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for energy-shaping and udi is to inject damping into the system. Second, solving the

matching equation (2.42), a set of partial differential equations (PDEs) for the desired

closed-loop Hamiltonian, which is the main challenge in IDA-PBC design. There are

several ways to solve the matching equation, including [66]:

a. Non-Parameterized IDA: the interconnection Jd and damping Rd matrices are

fixed, then the matching equation is pre-multiplied by a left annihilator g⊥ such that it

becomes a pure PDE in Hd , which can then be solved.

b. Algebraic IDA: the desired Hamiltonian functionHd is fixed, and then the resulting

algebraic equations are solved for Jd, Rd, and g⊥.

c. Parameterized IDA: for some physical systems, mainly mechanical systems, the

knowledge of a priori structure of the desired Hamiltonian is used to simplify the PDE,

giving constraints on Jd, Rd, and g⊥.

There is no preferable method to solve the matching equation. One method may be

applicable to certain classes of systems while others are pertinent for other classes of

systems. Hence, the strategy to solve the matching equation depends mainly on the

systems (mechanical, electrical, etc.), energy considerations and one may use physical

insight to simplify and solve the PDEs.





Chapter 3

IDA-PBC of a Class for

Underactuated Mechanical

Systems

3.1 Introduction

Control of underactuated mechanical systems (UMSs) has been a central and challenging

topic that has attracted the attention of control researchers [55]. UMSs, defined as sys-

tems that have fewer control inputs than degrees of freedom to be controlled, can model

many important applications including robotics, spacecraft, and satellites as well as a

benchmark to study complex nonlinear control systems. While the absence of actuation

in some degrees of freedom imposes a challenging task to achieve the desired control ob-

jectives with a lower number of actuators, underactuation control has the advantages of

reducing the cost and complexity of the control system, and ensuring the functionality of

a system in the case of actuation failure [63]. However, the fact that UMSs have complex

internal dynamics and in many cases are not fully feedback linearizable complicates the

control design, because the nonlinear control methods proposed for general mechanical

systems often cannot be applied directly to this class of systems.

Various nonlinear control techniques have been developed for stabilization of UMSs (see

[55] for a survey). Among the most popular techniques, passivity-based control meth-

ods, such as controlled Lagrangian [16] and the interconnection and damping assignment

passivity-based control (IDA-PBC) [74], have proven to be powerful due to their struc-

ture preserving and systematic approach, and the fact that they capture the essential

physical property of energy conservation (passivity) [14, 74]. A constructive stabilization

method for a class of UMSs based on a newly developed immersion and invariance (I&I)

technique has been proposed in [89], and a comparison between the IDA-PBC and I&I

methods for UMSs has been presented in [50].

27
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IDA-PBC is a control design method formulated for systems described by port-controlled

Hamiltonian models. The main idea of this method is to assign a new (desired) closed-

loop PCH model that has certain features, utilizing the physically-inspired principles

of energy shaping, interconnection structure and damping assignment (dissipation) [2].

The stabilization of an UMS via IDA-PBC is usually achieved by shaping the kinetic and

potential energy functions and obtained through a state feedback law. The existence of

such law constitutes the matching conditions of the IDA-PBC method which are a set

of partial differential equations (PDEs) [71].

Solving these PDEs, which identify the desired potential and kinetic energy functions, is

the main obstacle in the applicability of the IDA-PBC method. A number of constructive

approaches to solve or simplify these PDEs for different classes of UMSs have been

recently proposed in [2, 14, 39, 56, 71, 111] and references therein. Also, IDA-PBC has

been applied to various underactuated systems, such as pendulum on a cart [107], inertia

wheel and ball and beam systems [71], Pendubot [88] and Acrobot [56]. However, the

existing results still leave open problems on solving a large class of PCH systems, either

too complicated or inapplicable.

In this chapter we develop a novel constructive strategy to simplify and solve the PDEs

in IDA-PBC design method for a class of UMSs with underactuation degree one. The

key idea is to parametrize the desired inertia matrix that shapes the kinetic energy, and

use it to simplify the potential energy PDEs, and solve them to shape the potential

energy function, thus achieving total energy shaping. That is, with suitable choice of

the desired inertia matrix that must be positive definite and taking into account some

physical considerations, the potential energy PDEs are simplified and the final solution,

the energy function must have a minimum at the desired equilibrium point. Furthermore,

asymptotic stability is achieved by means of damping injection. This strategy expands

the class of UMSs that can be dealt with compared to those in [2]. That is, we have

proposed some design methods to deal with two groups of underactuated PCH systems,

namely, the separable PCH systems (systems with constant inertia matrix) and non-

separable PCH systems (systems with non-constant inertia matrix). We apply our results

to the stabilization, as well as the swing up, of an inertia wheel pendulum and a rotary

inverted pendulum, also known as Furuta pendulum, systems. The latter has more

complex dynamics than most other commonly studied benchmark systems [63].

The main contributions of this and the next chapter are

• A constructive method to solve the potential energy PDEs for mechanical systems

with underactuation degree one. The motivation for this is that most position

stabilization problems can be solved by shaping the potential energy function [2].

For underactuated mechanical systems, the kinetic energy function also needs to

be shaped. We have assigned the inertia matrix that shapes the kinetic energy,
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and used it to simplify the potential energy PDE, and solve them to shape the

potential energy function, thus reshaping the total energy function.

• While most works in the literature use either normalized, linearized, or partial

feedback linearized model of the UMSs to simplify the problem, we have employed

a full nonlinear model of the system.

• The proof that our proposed controller design method ensures an ‘almost’ global

asymptotic stabilization for the rotary inverted pendulum in its full nonlinear

dynamics. To the best of our knowledge, this is the first work that achieves sta-

bilization of this system over the entire domain of attraction using the IDA-PBC

technique. Also, it shows an ‘almost’ global stabilization of the inertia wheel pen-

dulum using realistic model parameters.

3.2 Problem Formulation

We review the general procedure of the IDA-PBC design as has been proposed for

instance in [74, 66]. Some existing methods to solve the matching equations associated

with the IDA-PBC are also reviewed, highlighting some limitations of those methods.

Consider a PCH system the dynamics of which can be written as

[

q̇

ṗ

]

=

[

0 In

−In 0

][

∇qH

∇pH

]

+

[

0

G(q)

]

u,

y = G⊤(q)∇pH,

(3.1)

where q ∈ R
n, p ∈ R

n are the states and u, y ∈ R
m, m ≤ n, are the control input and

the output, respectively. The matrix G ∈ R
n×m is determined by the manner in which

the control u ∈ R
m enters into the system. If m = n the system is called fully-actuated,

while if m < n it is called underactuated. The Hamiltonian function, which is the total

energy of the system, is defined as the sum of the kinetic energy and the potential energy,

namely

H(q, p) = K(q, p) + V (q) =
1

2
pTM−1(q)p+ V (q), (3.2)

where M(q) > 0 is the symmetric inertia matrix and V (q) is the potential energy

function. The IDA-PBC control law

u = ues + udi, (3.3)

consists of two parts, which correspond to its design steps; the energy shaping and the

damping injection.

Energy shaping

The main objective of IDA-PBC is to stabilize the underactuated mechanical system by
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a state-feedback controller. This is achieved by replacing the interconnection matrix and

the energy function (Hamiltonian) of the system with a desired ones while preserving the

PCH structure of the total system in closed-loop. This can be mathematically expressed

as [

0 In

−In 0

][

∇qH

∇pH

]

+

[

0

G(q)

]

ues =

[

0 M−1Md

−MdM
−1 J2(q, p)

][

∇qHd

∇pHd

]

. (3.4)

The desired total energy in closed-loop is assigned to be

Hd(q, p) = Kd(q, p) + Vd(q) =
1

2
pTM−1

d (q)p+ Vd(q), (3.5)

with Md = MT
d > 0 the desired inertia matrix and Vd(q) the desired potential energy,

such that Hd has an isolated minimum at the desired equilibrium point qe, i.e.

qe = arg minHd(q) = arg minVd(q). (3.6)

The following conditions are required so that (3.6) hold.

Condition 3.1. Necessary extremum assignment: ∇qVd(qe) = 0.

Condition 3.2. Sufficient minimum assignment: ∇2
qVd(qe) > 0, i.e. the Hessian of the

function at the equilibrium point is positive [71].

Equation (3.4) constitutes the matching conditions of the IDA-PBC method [74], which

is a set of PDEs in the form of

G⊥{∇qH −MdM
−1∇qHd + J2M

−1
d p} = 0, (3.7)

with J2 = −JT
2 a free parameter. The PDE (3.7) can be equivalently written as the

kinetic energy PDE (dependent on p)

G⊥{∇q(p
TM−1p)−MdM

−1∇q(p
TM−1

d p) + 2J2M
−1
d p} = 0 (3.8)

and the potential energy PDE (independent of p)

G⊥{∇qV −MdM
−1∇qVd} = 0. (3.9)

If these sets of PDEs (3.8) and (3.9) are solved, or in other words Md, Vd and J2 are

obtained, then ues is given by

ues = (G⊤G)−1G⊤
(
∇qH −MdM

−1∇qHd + J2M
−1
d p

)

= G+
(
∇qH −MdM

−1∇qHd + J2M
−1
d p

)
. (3.10)

Damping injection

The next task after finding ues is to find the damping injection (dissipation) controller,
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udi which is

udi = −KvG
T∇pHd, Kv > 0 (3.11)

to add damping to the closed-loop system that ensures asymptotic stabilization to the

desired equilibrium. udi is applied via a negative feedback of the passive output to

achieve asymptotic stability, provided that the system is zero-state detectable (see Def-

inition 2.20). Given a PCH system (3.1), by applying the IDA-PBC design we obtain

the desired PCH dynamics

[

q̇

ṗ

]

=

[

0 M−1Md

−MdM
−1 J2 −Rd

][

∇qHd

∇pHd

]

yd = G⊤(q)∇pHd,

(3.12)

where Rd = GKvG
⊤ ≥ 0 is the dissipation matrix.

3.2.1 Total energy shaping

From the passivity-based control perspective the natural way to stabilize a mechanical

system is by modifying/shaping its energy function, which comprises the kinetic and

the potential energy functions. The most important procedure in this stabilization is to

shape its potential energy function. This is due to several reasons; first, the stability of

the system at its equilibria is achieved through the potential energy shaping [54, 108].

The energy of the mechanical system in its equilibria is represented by the potential

energy at the position coordinates q [101]. Secondly, the qualitative behavior of the

system can be concluded from the features of the potential energy function. Thirdly,

most approaches that rely on kinetic energy shaping only have resulted in unsatisfactory

stability and closed-loop performance of the system, in the sense that the stability is

limited to reduced domain of attraction. In [15, 16] where the method of controlled

Lagrangian restricted to kinetic energy shaping has been used, only local asymptotic

stability has been achieved (for instance in the inverted pendulum applications, the

pendulum can be stabilized at the upward position if it starts from a nearly horizontal

position i.e. small domain of attraction).

As for the PCH framework, where the IDA-PBC is the most popular method being used,

the focus in most approaches has been on solving the kinetic energy PDE, by modifying

the interconnection matrix Md and using it to produce the closed-loop potential energy

function Vd. As discussed in [2, Remark 7], the restriction on Md in solving the kinetic

energy PDE limits achieving global stability. This is evident by the reduced DoA ob-

tained in the cart pendulum system and the Furuta pendulum system applications in

[2] and [111]. While the potential energy shaping is sufficient in most regulation prob-

lems for mechanical systems, for underactuated systems it is necessary also to shape the
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kinetic energy function, thus achieving total energy shaping that enlarges the class of

systems that can be stabilized [71].

3.2.2 The matching equations

Some constructive techniques have been proposed in the literature, for instance in [2,

14, 39, 111], to solve the matching equations for various subclasses of PCH systems,

imposing particular conditions to satisfy. In [39], a method to reduce the kinetic energy

PDE (3.8) to a simpler nonlinear ODE has been proposed. This method has been

developed for a class of UMSs whose open-loop inertia matrix M depends only on the

non-actuated coordinate. The idea is then to parametrize the closed-loop inertia matrix

Md to follow the structure of M and to use the free parameter matrix J2 to force these

equations to satisfy certain mathematical properties and hence reducing these PDE to

a simpler nonlinear ODE. This procedure contributes to kinetic energy shaping. The

assigned Md which must be symmetric and positive definite is then substituted into (3.9)

to solve for Vd, i.e. potential energy shaping.

Another technique to simplify the kinetic energy PDEs has been proposed in [14]. A

notation of λ− Equations originally proposed in [12] to simplify a nonlinear system of

PDEs into a set of linear PDEs has been adopted to generate one quadratic PDE in λ

and subsequently a linear PDE in Md. This PDE has been solved and the resulting Md

is used in (3.9) to solve for Vd.

In [2] a constructive technique to solve the PDEs has been suggested. In the method

therein several conditions have been imposed on M , G and V to simplify these PDEs.

First, the system has underactuation degree one and M does not depend on the unactu-

ated coordinate. This condition eliminates the first term (also called the forcing term)

in (3.8) which transforms these equations from inhomogeneous to homogeneous PDEs.

If the first condition is not satisfied, a partial feedback linearization can be used. Then,

parametrizing Md and partially parametrizing J2, in such a way so that the PDEs (3.8)

are transformed into a set of algebraic equations in the (partially) unknown J2 for a fixed

Md, solve the kinetic energy shaping problem (see Proposition 3 of [2]). The potential

energy shaping is then achieved by using the fixed Md and by imposing that Md and

Vd are both functions of one and the same actuated subspace. Inspired by the work of

[2], several IDA-PBC controllers have been proposed in [56], [88], [107] and [111], for

various UMSs.

The aforementioned results have imposed conditions and assumptions, restricting their

applicability to small classes of UMSs.
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3.2.3 Simplifying the PDEs via change of coordinates

A common practice to simplify the PDEs is to employ a change of coordinates (see for

instance [2], [71], [111] and references therein). In [71], a change of coordinates is used

to obtain a simplified description of the dynamics of the inertia wheel pendulum which

belongs to separable PCH systems.

In [111], a simplification to the kinetic energy PDEs, which are nonlinear and inhomo-

geneous, is obtained via a certain change of coordinates that eliminates the forcing term

in this set of PDEs, making them homogeneous. This change of coordinates involves

replacing the momentum vector p by its corresponding quasi-velocities. The method is

known as quasi-linearization as it involves elimination of the quadratic terms of velocity

(resembles the linearization). As a result, the inertia matrix becomes constant in the

energy function (i.e., the system is only affected by the potential field) [111]. In [21] and

[110], some necessary and sufficient conditions (such as, Riemannian curvature, constant

inertia matrix, skew-symmetry, and zero Christoffel symbols) on the inertia matrix M

have been given, which need to be verified for the existence of such transformation.

Although these methods simplify the control problem, the applicability is limited to the

class of systems that admits quasi-linearization. For example, the method in [111] can

not be applied directly to the rotary inverted pendulum.

Inspired by the discussion above, we propose a novel approach to address this problem,

concentrating on simplifying and solving the potential energy PDEs which implies mod-

ifying the inertia matrix (note that in (3.9), Md is the only term that can be modified).

By parametrizing Md, which shapes the kinetic energy function it can be used to solve

the potential energy PDE rather than focusing on finding the solution for the kinetic

energy PDE itself.

3.3 Main Results: Simplifying the Potential Energy PDEs

In this section we propose a novel approach for IDA-PBC design, focusing on solving

(3.9), the set of PDEs associated with the potential energy. In [2], it was shown that

the potential energy PDEs can be explicitly solved, provided that the inertia matrix M

and the potential energy V depend only on the actuated coordinates. This method is

applicable only to a subclass of UMSs that satisfy the following conditions:

Condition 3.3. The inertia matrix M and the potential energy function V do not

depend on the unactuated coordinates.

Condition 3.4. The system has underactuation degree one, i.e. m = n− 1.

Violating Condition 3.3, the forcing term G⊥∇q(p
TM−1p) in (3.8) is not eliminated and

hence does not simplify the process of solving the PDEs. In this work, we propose a new
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procedure to relax Condition 3.3 (while Condition 3.4 is kept), with the implication to

also extend the class of underactuated systems that can be treated using this method.

In the sequel, for the sake of the clarity of the constructive presentation, we focus our

attention to systems with two degrees of freedom (and underactuation degree one), i.e

n = 2, m = 1. This is motivated by the fact that the majority of classical problems in

underactuated control such as all examples mentioned in Chapter 1 (see also the survey

paper [55] for most common examples of UMSs) share this property. However, extending

the results to more general classes of systems with underactuation degree 1 is possible,

although the formulation is more complicated. The following condition identifies the

class of PCH systems considered in this work.

Condition 3.5. The inertia matrix M and the potential energy function V depend only

on one coordinate, not necessarily the actuated coordinate.

Condition 3.5 is a relaxation of Condition 3.3, in the sense that this method can be

applied to all cases; either 1) M is constant, or 2) M depends only on one coordinate

either actuated or unactuated. Without loss of generality, we assume that the unac-

tuated coordinate is q1 and hence G = e2 (G⊥ = e⊤1 ), otherwise we may reorder the

coordinates to yield this structure.

Clearly, one source of difficulty in solving (3.9) arises from the complex structure and,

for many dynamical systems, the dependencies on q of the inertia matrix, and hence its

inverse. Recognizing that (3.9) contains a coupling term (MdM
−1), we can simplify this

PDE by choosing the structure of Md in a certain way that eliminates some terms as

follows.

Let the inertia matrix be
M(q) =

[

k1(q1) k2(q1)

k2(q1) k3(q1)

]

. (3.13)

Denote its determinant as ∆ := det(M) = k1(q1)k3(q1)− k22(q1). By the inclusion of ∆

in the desired inertia matrix, or in other words by choosing

Md(q) =

[

m1(q) m2(q)

m2(q) m3(q)

]

= ∆

[

m̄1(q) m̄2(q)

m̄2(q) m̄3(q)

]

, (3.14)

and suppose that Conditions 3.4 and 3.5 hold, (3.9) can then be written as

[

1 0
]
{[

∇q1V (q1)

0

]

−
[

m̄1∆ m̄2∆

m̄2∆ m̄3∆

][
k3
∆

−k2
∆

−k2
∆

k1
∆

][

∇q1Vd(q)

∇q2Vd(q)

]}

= 0, (3.15)

which further gives

(m̄1k3 − m̄2k2)∇q1Vd(q) + (−m̄1k2 + m̄2k1)∇q2Vd(q) = ∇q1V (q1). (3.16)

Notice that with this parametrization of Md, ∆ is eliminated from the potential energy

PDE, which gives the first step of the simplification.
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In general, based on the forms of the inertia matrix, PCH systems, or in our case the

UMSs, can be classified into two groups [52]: i) separable UMSs, if the inertia matrix is

constant i.e. M is independent of the states (q, p), ii) non-separable UMSs, if otherwise.

Now, we deal with each group separately.

3.3.1 Separable UMSs

An example of separable UMSs is the inertia wheel pendulum (IWP) [103]. In some

cases, a non-separable UMS model can be transformed into a separable one via partial

feedback linearization [100] or a change of coordinates [63, 110].

Because M is constant, we can choose Md to be also constant. Hence, we can write

(3.13) and (3.14) as

M =

[

k1 k2

k2 k3

]

, (3.17)

Md =

[

m1 m2

m2 m3

]

= ∆

[

m̄1 m̄2

m̄2 m̄3

]

. (3.18)

Further simplification to (3.16) is achieved by choosing

m̄2 =
k2
k1

m̄1 + ε, ε > 0 (3.19)

yielding

(m̄1k3 − m̄2k2)∇q1Vd(q) + εk1∇q2Vd(q) = ∇q1V (q1),
(

m̄1

(

k3 −
k22
k1

)

− εk2

)

∇q1Vd(q) + εk1∇q2Vd(q) = ∇q1V (q1). (3.20)

The general solution of this PDE is of the form

Vd(q) = Vd(q1) + Ψ(q2 + π1q1), (3.21)

where Ψ is an arbitrary differentiable function that we must choose to satisfy the con-

dition (3.6) for qe, and π1 is constant. The procedure can now be summarized in the

following proposition.

Proposition 3.6. Consider the separable underactuated PCH system (3.1) satisfying

Conditions 3.4 and 3.5. Let the inertia matrix M > 0 and the parametrized desired

inertia matrix Md > 0 take the form (3.17) and (3.18), respectively. Then the potential

energy PDE (3.9) can be written in its simplified form (3.20) by choosing m̄2 =
k2
k1
m̄1+ε,

with a constant ε > 0. Furthermore, the solution of the potential energy PDE is given

by (3.21). �
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Remark 3.7. The choice of m̄2 = k2
k1
m̄1 + ε in the separable case is critical to make

the potential energy PDE as simple as possible. The fact that M is constant gives

more freedom in parametrizing the matrix Md to assign m̄i, i = 1, 2, 3, where again the

parametrization is such that Md > 0 is symmetric and Vd admits a minimum at the

desired equilibrium point qe. Furthermore, since M and Md are constant, we can choose

J2 = 0.

3.3.2 Non-separable UMSs

Non-separable UMSs are more complex. This class of systems contains the majority of

UMSs that frequently appear in applications. We proceed with our simplification by

choosing

m̄2(q) =
k2(q1)

k1(q1)
m̄1(q), (3.22)

which simplifies (3.16) into

(m̄1(q)k3(q1)− m̄2(q)k2(q1))∇q1Vd(q) = ∇q1V (q1)

m̄1(q)

(

k3(q1)−
k22(q1)

k1(q1)

)

∇q1Vd(q) = ∇q1V (q1),
(3.23)

which is then rewritten as

∇q1Vd(q) =
∇q1V (q1)

m̄1(q)π(q1)
, π(q1) =

(

k3 −
k22
k1

)

. (3.24)

Notice that ∇q1V (q1) and π(q1) are known. The obvious next step is to find m̄1(q) in

(3.24) such that the solution of this potential energy PDE guarantees that Vd has an

isolated minimum. As M is a function of q1 only, we can simply take Md as also a

function of q1 only. Then (3.24) can be solved as either ODE or PDE. However, we

chose to solve it as PDE for two reasons; first, to satisfy Conditions 3.1 and 3.2, and

second, to keep track on the coordinate q2. The solution of (3.24) is given by

Vd(q) =

∫ q1

0

∇xV (x)

m̄1(x)π(x)
dx+Ψ(q2), (3.25)

where the function Ψ(·) is an arbitrary differentiable function that must be chosen such

that (3.6) is satisfied. This whole procedure can now be summarized in the following

proposition.

Proposition 3.8. Consider the non-separable underactuated PCH system (3.1) satis-

fying Conditions 3.4 and 3.5. Let the inertia matrix M(q) > 0 and the parametrized

desired inertia matrix Md(q) > 0 take the form (3.13) and (3.14), respectively. The

potential energy PDE (3.9) can then be written in its simplified form (3.24) by choosing

m̄2 =
k2
k1
m̄1. Furthermore, the solution of the potential energy PDE is given by (3.25) �
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Remark 3.9. Using Propositions 3.6 and 3.8, the PDE (3.8) and (3.9) are simplified and

their general solutions depend on the dynamics of the underactuated system. Clearly,

the inclusion of the determinant ∆ is essential in the parametrization of Md. It simplifies

the PDEs by canceling out the term ∆ from the denominator of each element of M−1.

Remark 3.10. The elimination of the second term on the left hand side of (3.16) by

choosing m̄2 = k2
k1
m̄1 in the non-separable case is critical to make the potential energy

PDE as simple as possible. The parametrization of Md to assign m̄i, i = 1, 2, 3 depends

mainly on the dynamics of the system. They must be chosen to ensure that Md is

symmetric and positive definite (i.e. m̄1 > 0, and m̄3 >
m̄2

2

m̄1
), and then from the set of

symmetric and positive definite Md, we can choose one that shapes the potential energy

function satisfying Conditions 3.1 and 3.2. Once all of the above are satisfied, then the

free skew-symmetric matrix J2(q, p) is brought into play. Since we have fixed Md, the

kinetic energy (3.8) is no longer a nonlinear and inhomogeneous PDE but is an algebraic

equation in the unknown J2 for a given Md.

Now, using Proposition 3.8, we have established the existence of a solution for the

potential energy PDE. It remains to verify the existence of solution(s) to the kinetic

energy PDEs (3.8). Solving (3.8) is essential for the completion of the kinetic energy

shaping, as well as to find J2 which contributes to the last term on the right hand side of

(3.10). Since we have fixed Md, the kinetic energy (3.8) becomes an algebraic equation

and can be written as

G⊥{2J2M−1
d p} = G⊥{MdM

−1∇qHd −∇qH}, (3.26)

and thus can be solved to obtain J2.

Remark 3.11. The application of the result in [2] to a pendulum on a cart, which is

a non-separable system, requires partial feedback linearization to satisfy Condition 3.3.

Using Proposition 3.8, we can solve it directly without linearization. Furthermore, our

proposed method is the first that guarantee an ‘almost’ global asymptotic stability of

the cart pendulum system using IDA-PBC. In Chapter 4 we show as an application

example a rotary inverted pendulum that has a similar but more complicated structure

than a pendulum on a cart.

Equations (3.20) and (3.24) represent simplified PDEs which are applicable to a wide

range of UMSs such as the inertia wheel pendulum, the pendulum on a cart, and the

rotary pendulum. In Section 3.4 and Chapter 4, we apply our results to an inertia wheel

pendulum system and a rotary inverted pendulum to illustrate the cases of separable

and non-separable Hamiltonian systems, respectively.



38 Chapter 3 IDA-PBC of a Class for Underactuated Mechanical Systems

3.4 Separable Hamiltonian Systems: The Inertia Wheel

Pendulum Example

In this section we apply the proposed design method to stabilize at the upright position,

an inertia wheel pendulum (IWP), also known as a reaction wheel pendulum. IWP was

first introduced in [103], where a control design based on a partial feedback linearization

was proposed. Another approach based on a global change of coordinates to transform

the dynamics of the system into strict feedback form and then applying the standard

backstepping procedure was presented in [63]. Energy-based approach was shown in [33].

IDA-PBC of IWP has been recently reported in [71], where a change of coordinates and

scaling have been used. Here, we apply our design method to the system without any

change of coordinates or scaling, simulating a practical set-up using parameters from a

real system.

3.4.1 Inertia wheel pendulum model

We use the model of the Quanser IWP module [17], as shown in Figure 3.1 together

with the simplified free body diagram of its mechanical part. The system comprises an

unactuated planar inverted pendulum with actuated symmetric wheel attached to the

end of the pendulum and is free to rotate about an axis parallel to the axis of rotation

of the pendulum. The system has two degrees-of-freedom; the angular position of the

pendulum q1 and the angular position of the wheel q2. As only the wheel is actuated,

the system is underactuated. The Euler-Lagrange’s equations of motion for the IWP

2qu

x

y

l

1cl ,p pm I

,w wm I

1q

Figure 3.1: The inertia wheel pendulum system and its free body diagram.

are [71] :
[

a1 + a2 a2

a2 a2

][

q̈1

q̈2

]

+

[

−a3 sin(q1)

0

]

=

[

0

1

]

τ, (3.27)
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where the control input u = τ is the motor torque, a1 = mpl
2
c1 +mwl

2+ Ip+ Iw, a2 = Iw

and a3 = g(mplc1 + mwl). The remaining parameters are listed in Table 3.1. The

Table 3.1: The parameters of the inertia wheel pendulum

Parameter Description Value Unit

mp Mass of the pendulum 0.2164 kg

l Total length of the pendulum 0.2346 m

lc1 length to the pendulum center of mass 0.1173 m

Ip Moment of inertia of the pendulum 2.233× 10−4 kg.m2

mw Mass of the wheel 0.0850 kg

Iw Moment of inertia of the wheel 2.495× 10−5 kg.m2

g Gravitational acceleration 9.81 m/s2

dynamic equations of the IWP can be written in PCH form (3.1) with n = 2, m = 1

and

M =

[

a1 + a2 a2

a2 a2

]

, G = e2 =

[

0

1

]

,

V (q1) = a3(cos(q1) + 1).

3.4.2 Controller design

We apply the procedure given in Section 3.3, Proposition 3.6 in particular, to design

the controller for the IWP. The main objective is to provide a continuous-time control

law to swing up the pendulum by spinning the wheel and to asymptotically stabilize the

pendulum at its upward position qe = (0, q2) for any q2 ∈ [0, 2π]. First we design the

energy shaping controller ues and then adding the damping to the closed-loop system

by designing the damping injection controller udi.

Reshaping the total energy

Following the procedures in Proposition 3.6, we fix Md in the form of

Md = ∆

[

m1 m2

m2 m3

]

= ∆

[

m1
m1a2
a1+a2

+ ε
m1a2
a1+a2

+ ε m3

]

, (3.28)

where ∆ = det(M) = a1a2. With this choice of Md, and having G⊥ = [1 0], the PDE

(3.9) becomes

[

1 0
]
{[

−a3 sin(q1)

0

]

−∆

[

m1
m1a2
a1+a2

+ ε
m1a2
a1+a2

+ ε m3

][
a2
∆

−a2
∆

−a2
∆

a1+a2
∆

][

∇q1Vd

∇q2Vd

]}

= 0,

which further gives

(

m1a2 −
m1a

2
2

a1 + a2
− εa2

)

∇q1Vd + ε(a1 + a2)∇q2Vd = −a3 sin(q1).
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Solving this PDE produces the desired potential energy

Vd(q) = −a3γ1 cos(q1) + Ψ(x(q)), (3.29)

x(q) = q2 + γ1ε(a1 + a2)q1, (3.30)

with γ1 =
a1+a2

a2(ε(a1+a2)−a1m1)
> 0. The function Ψ(·) in (3.29) is an arbitrary differentiable

function that must be chosen to satisfy condition (3.6). This condition, along with the

conditions m1 > 0 and m1m3 > m2
2 are satisfied by choosing Ψ(x(q)) = 1

2Kp(x(q))
2,

where Kp > 0 is the gain of the energy shaping controller. Note that Ψ is a quadratic

function such that the desired energy function is positive definite (see the proof of

Corollary 4.2).

Substituting all the terms into (3.10), we obtain the energy shaping controller

ues = γ2 sin(q1) +Kpγ3(q2 + γ1ε(a1 + a2)q1), (3.31)

with γ2 = −m0γ1a2(m2 −m3) and γ3 = m2a2(γ1 − 1) +m3(a1 + a2)(1− γ1a2).

Damping assignment

The damping injection controller follows the construction (3.11). From (3.5) and given

Md that has been obtained when reshaping the total energy, we have

∇pHd = M−1
d p =

∆

∆d

[

m3 − m1a2
a1+a2

− ε

− m1a2
a1+a2

− ε m1

][

p1

p2

]

=
∆

∆d




m3p1 −

(
m1a2
a1+a2

+ ε
)

p2

−
(

m1a2
a1+a2

+ ε
)

p1 +m1p2





(3.32)

with ∆d = det(Md) = ∆2(m1m3 − m2
2). Substituting (3.32) into (3.11), the damping

injection controller is then

udi = −Kv
∆

∆d

(

−
(

m1a2
a1 + a2

+ ε

)

p1 +m1p2

)

. (3.33)

We can conclude the IDA-PBC design for the IWP by the following corollary.

Corollary 3.12. The state feedback controller (3.31), (3.33) with Kp > 0, Kv > 0 and

m3 >
m2

2

m1
, is an asymptotically stabilizing controller for the IWP (3.27) at its unstable

equilibrium point qe = 0. �

Proof of Corollary 3.12: The proof can be established by verifying that Vd satisfies the

Conditions 3.1 and 3.2, and Md is positive definite and symmetric, thus, Hd qualifies

as a Lyapunov function. Moreover, asymptotic stability is proved invoking LaSalle’s

invariance principle (see the proof of Corollary 4.2). �
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3.4.3 Simulation results

Some simulation results are obtained by applying the controller (3.31), (3.33) to the

inertia wheel pendulum model. In all simulations, the initial condition [q0, p0] =

[π, 0, 0, 0.05], i.e. the pendulum vertical downward position, is used. The parameters

and gains for the stabilizing IDA-PBC controller are m1 = 0.7, m3 = 3.48 and ǫ = 1.

Figure 3.2 shows the response of the system for different values of Kp (with Kv =

2 × 10−5). Their corresponding control inputs are shown in Figure 3.3. As shown, the

pendulum asymptotically converges toward its upward position, from a point close to its

downward position, i.e. ‘almost’ global stabilization. Observe that the states converge

faster for small Kp, while high-gain controller causes more oscillations.
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Figure 3.2: State histories of the IWP for different values of Kp.

Figures 3.4 and 3.5 illustrate the effect of varying the damping gain Kv for a constant

Kp = 0.3. As expected, increasing this damping gain leads to achieving faster conver-

gence with less oscillations.
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Figure 3.3: Control torque of the IWP for different values of Kp.
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Figure 3.4: State histories of the IWP for different values of Kv.

3.5 Conclusion

In this chapter we have developed a method to simplify the partial differential equa-

tions associated with the potential energy for interconnection and damping assignment

passivity based control for a class of underactuated mechanical systems. Solving the

PDEs, also called the matching equations, is the main difficulty in the construction and

application of the IDA-PBC. The proposed methods in the literature have so far focused

on using the (partially) linearized models, and/or imposing some conditions to simplify

and solve these PDEs, limiting their applicability. We have proposed a simplification

to the potential energy PDEs through a particular parametrization of the closed-loop

inertia matrix that appears as a coupling term with the inverse of the original inertia
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Figure 3.5: Control torque of the IWP for different values of Kv.

matrix. This parametrization accounts for kinetic energy shaping, which is then used

to simplify the potential energy PDEs the solution of which accounts for potential en-

ergy shaping. Thus, leading to a new underactuated mechanical system with a totally

modified energy function. This approach avoids the cancellation of nonlinearities, and

extends the applicability of this method to a larger class of systems, including separable

and non-separable PCH systems. The proposed scheme has been tested via simulations

on the inertia wheel pendulum which belongs to the family of separable PCH systems.

The simulation results have shown the effectiveness of the proposed approach.

In Chapter 4 we apply this approach to more complicated systems: non-separable PCH

systems, the rotary inverted pendulum. The stability and performance of this system

using the proposed approach are demonstrated through stability analysis and numerical

simulations. Moreover, experimental validation of this scheme is presented in Chapter

7.





Chapter 4

IDA-PBC of the Rotary Inverted

Pendulum

4.1 Introduction

In this chapter we show the effectiveness of our proposed method applied to a more com-

plex structure of UMSs, the non-separable systems, using a rotary inverted pendulum

as an illustrative example. We show that this technique reduces the design complexity,

while at the same time preserves the effectiveness of the IDA-PBC design to asymptot-

ically stabilize this pendulum at its upright position.

The control problem of a rotary inverted pendulum has been classically solved via switch-

ing between two controllers. The first controller swings the pendulum up, close to its

upright position from its downward position, and is usually designed using energy based

techniques [11]. At this point, the second, a balancing controller often a linear control

is applied to stabilize the pendulum at the desired upright position. Some energy based

methods to control this system have been proposed in the literature such as a swing-

up control law for general pendulum-like systems [11], energy-based controller involving

passivity to enforce the system to converge to its homoclinic orbit [34], and a strategy

based on the controlled Lagrangian framework [60].

Two works have been reported for the control of this system within the PCH structure:

in [10], a method which incorporates shaping the ‘normalized’ Hamiltonian function of

the system and energy damping/pumping has been developed. In [111], the IDA-PBC

method is adopted, and the simplification of the kinetic energy PDEs has been achieved

using quasi-linearization. In this example, we apply Proposition 3.8, exploiting the full

nonlinear dynamics of the rotary inverted pendulum.

45
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4.2 Rotary Inverted Pendulum Model

We use the Quanser QUBE-Servo inverted pendulum module as shown in Figure 4.1.

This system consists of an inverted pendulum which is attached at the end of a motor-

driven horizontally-rotating arm. The pendulum is also free to rotate in a vertical plane.

Thus, the system has 2-DOF: the angular position of the arm (α) and the angular

position of the pendulum (θ). This system is underactuated because only the arm is

subjected to an input torque (applied by a DC motor), and hence the system is 2-DOF

with only one control input.

Figure 4.1: The QUBE-Servo inverted pendulum [79].

The simplified free body diagram of the mechanical part of the rotary pendulum is shown

in Figure 4.2. The servo-system is used to apply a torque τ to the arm which has mass

mr, length Lr and moment of inertia about its center of mass Jr. The reference frame

(x, y, z) is defined for the arm at point A and the arm rotates positively in the counter-

clock wise direction in the horizontal plane (x1, y1) only . The pendulum attached to

the arm has mass mp, length Lp and moment of inertia about its center of mass Jp. As

shown in Figure 4.2, the center of mass is
Lp

2 . The pendulum motion is restricted in the

(x2, y2) plane only and its angle, α, increases positively when it rotates counter-clock

wise. The parameters of the rotary pendulum and the servo-system along with their

physical values are listed in Tables 4.1 and 4.2, respectively.

4.2.1 Modeling using classical mechanics

In general, there are two methods to derive the equations of motion for mechanical

systems. The first is the Lagrangian formulation where the dynamic model of the system

is obtained starting from its energy. The second is the Newton-Euler formulation which

is based on a balance of all forces (and torques) acting on the system. Here, we have
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Figure 4.2: The free body diagram of the rotary pendulum system.

Table 4.1: The parameters of the rotary inverted pendulum

Parameter Description Value Unit

mp Mass of pendulum 0.024 kg

Lp Total length of pendulum 0.129 m

Jp Moment of inertia of pendulum 3.33× 10−5 kg.m2

mr Mass of arm 0.095 kg

Lr Total length of arm 0.085 m

Jr Moment of inertia of arm 5.72× 10−5 kg.m2

v Output Voltage range ±10 volt

Table 4.2: The parameters of the Servo-sytem

Parameter Description Value Unit

ηg Gearbox efficiency 0.9 -

ηm Motor efficiency 0.69 -

Kg Hign-gear total gear ration 70 -

Low-gear total gear ration 14 -

kt Motor current-torque constant 7.68× 10−3 N.m/A

km Motor back-emf constant 7.68× 10−3 V/(rad/s)

adopted the recursive, also known as iterative, Newton-Euler formulation which gives

some alternatives for modeling of the Furuta pendulum and to give better insight into the

structure of the equations. This approach has been described in some robotics textbooks

(see [22] and [94]), and has been recently presented for underactuated mechanical systems

in [20].

In the recursive Newton-Euler method, a set of equations is obtained via a recursive

type of solution; a forward computation of the positions, velocities and accelerations of

the arm and pendulum, followed by a backward computation of the forces and moments
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acting on them. We proceed with this method, by defining the geometric framework

using a tensor notation.

First we define the rotation matrix which is used to perform a rotation in Euclidean

space, and describes the position of a frame relative to another one. The rotation

matrix for the arm is

rR0 =






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




 , (4.1)

and for the pendulum is the rotation matrix from the arm to the pendulum multiplied

by another matrix represents the rotation of a pendulum of (π/2) about its z-axis, that

is

pRr =






cos(α) − sin(α) 0

− sin(α) − cos(α) 0

0 0 1











cos(π/2) 0 sin(π/2)

0 1 0

− sin(π/2) 0 cos(π/2)






=






cos(α) − sin(α) 0

− sin(α) − cos(α) 0

0 0 1











0 0 1

0 1 0

−1 0 0




 =






0 − sin(α) cos(α)

0 − cos(α) − sin(α)

−1 0 0




 , (4.2)

where the indices 0, r and p refer to the origin of the reference, arm and pendulum

frames respectively.

A) Forward computation

We first compute the angular velocity (w), angular acceleration (ẇ), linear velocity (v),

and linear acceleration (v̇) of each link in terms of the proceeding link. Let the initial

conditions for the reference (base) frame be w0 = ẇ0 = 0 and v0 = v̇0 = 0.

Angular velocity

The “propagation” of angular velocity from link i to link i− 1 is given by

iwi =
iRi−1(

i−1wi−1) +
i−1zi−1ϑ̇i, (4.3)

where i−1zi−1ϑ̇i is the angular velocity of link i relative to link i − 1, i−1zi−1 is a unit

vector pointing along the ith joint axis, and ϑ is the angle of rotation (α or θ in our

case). Hence, the angular velocity of the arm is

wr =






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1











0

0

0




+






0

0

1




 θ̇ =






0

0

θ̇




 , (4.4)

and of the pendulum is
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wp =






0 − sin(α) cos(α)

0 − cos(α) − sin(α)

−1 0 0











0

0

θ̇




+






0

0

1




 α̇ =






cos(α)θ̇

− sin(α)θ̇

α̇




 . (4.5)

Angular acceleration

The angular acceleration is obtained by differentiating (4.3) with respect to time

iẇi =
iRi−1(

i−1ẇi−1) +
iRi−1(

i−1wi−1)× i−1zi−1ϑ̇i +
i−1zi−1ϑ̈i, (4.6)

where (×) denotes the cross product. Hence, the angular velocity of the arm is

ẇr=






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1











0

0

0




+






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1











0

0

0




×






0

0

θ̇




+






0

0

θ̈




=






0

0

θ̈




, (4.7)

and of the pendulum is

ẇp =






0 − sin(α) cos(α)

0 − cos(α) − sin(α)

−1 0 0











0

0

θ̈




+






0 − sin(α) cos(α)

0 − cos(α) − sin(α)

−1 0 0











0

0

θ̇




×






0

0

α̇




+






0

0

α̈






=






cos(α)θ̈ − sin(α)θ̇α̇

− sin(α)θ̈ − cos(α)θ̇α̇

α̈




 . (4.8)

Linear velocity

The linear velocity of each link is obtained by

ivi =
iRi−1(

i−1vi−1 +
i−1wi−1 × iri), (4.9)

where iri is the position vector of the origin of the i-th link frame with respect to the

(i− 1)-th link frame. Then, the linear velocity of the arm is

vr =






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1











0

0

0




+






0

0

0




×






0

0

0




 =






0

0

0




 , (4.10)

and of the pendulum is

vp =






0 − sin(α) cos(α)

0 − cos(α) − sin(α)

−1 0 0
















0

0

0




+






0

0

θ̇




×






Lr

0

0









 =






−Lr sin(α)θ̇

−Lr cos(α)θ̇

0




 . (4.11)



50 Chapter 4 IDA-PBC of the Rotary Inverted Pendulum

Linear acceleration

The linear acceleration is obtained by differentiating (4.9) with respect to time

iv̇i =
iRi−1(

i−1v̇i−1 +
i−1ẇi−1 × iri +

i−1wi−1 × (i−1wi−1 × iri)), (4.12)

where the first term is the acceleration exerted on a link by its neighbours, the second

term is the centripetal acceleration and the last term is the rotational acceleration. The

linear acceleration of the arm is (note that vr = 0)

v̇r =
[

0 0 0
]⊤

, (4.13)

and for the pendulum is

v̇p =






0 − sin(α) cos(α)

0 − cos(α) − sin(α)

−1 0 0
















0

0

0




+






0

0

θ̈




×






Lr

0

0




+






0

0

θ̇




×











0

0

θ̇




×






Lr

0

0
















=






−Lr sin(α)θ̈

−Lr cos(α)θ̈

Lrθ̇
2




 . (4.14)

Acceleration of gravity

The linear acceleration acting on a link due to gravity is given by

ig = iRi−1(
i−1g), (4.15)

and computed for the arm as

gr =






cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1











0

0

g




 =






0

0

g




 (4.16)

and for the pendulum as

gp =






0 − sin(α) cos(α)

0 − cos(α) − sin(α)

−1 0 0











0

0

g




 =






g cos(α)

−g sin(α)

0




 . (4.17)

Linear acceleration of the centre of mass

The linear acceleration of the centre of mass for each link is computed by applying

iv̇ci =
iv̇i +

iẇi × irci +
iwi × (iwi × irci) +

ig, (4.18)
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which can be written for the arm as

v̇cr =






0

0

0




+






0

0

θ̈




×






1
2Lr

0

0




+






0

0

θ̇




×











0

0

θ̇




×






1
2Lr

0

0









+






0

0

g




 =






−1
2Lrθ̇

2

1
2Lrθ̈

g




 , (4.19)

and for the pendulum as

v̇cp =






−Lr sin(α)θ̈

−Lr cos(α)θ̈

Lrθ̇
2




+






cos(α)θ̈ − sin(α)θ̇α̇

− sin(α)θ̈ − cos(α)θ̇α̇

α̈




×






1
2Lp

0

0






+






cos(α)θ̇

− sin(α)θ̇

α̇




×











cos(α)θ̇

− sin(α)θ̇

α̇




×






1
2Lp

0

0









+






g cos(α)

−g sin(α)

0






=






−Lr sin(α)θ̈ − 1
2Lp sin

2(α)θ̇2 − 1
2Lpα̇

2 + g cos(α)

−Lr cos(α)θ̈ +
1
2Lpα̈− 1

2Lp sin(α) cos(α)θ̇
2 − g sin(α)

Lrθ̇
2 + 1

2Lp sin(α)θ̈ + Lp cos(α)θ̇α̇




 . (4.20)

The index c refers to the center of mass, i.e. irci is the position with respect to the

center of mass, ivci is the linear velocity with respect to the center of mass, and so on.

B) Backward computation

Having found the velocities and accelerations of the arm and pendulum, we can apply

the following Newton-Euler equations

ifi = mi
iv̇ci, (4.21)

ini =
iJi

iẇi +
iwi × (iJi

iwi), (4.22)

to compute the internal force (f) and moment (n) acting at the centre of mass of each

link, where iJi is the diagonal inertia tensor

iJi =






Jixx 0 0

0 Jiyy 0

0 0 Jizz




 . (4.23)

In most rotary pendulums, the arm and pendulum have rotational symmetries and a

relatively small cross-sectional areas, thus the inertia tensor can be approximated to

iJi =






0 0 0

0 Ji 0

0 0 Ji




 . (4.24)
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Next, the forces (F ) and moments (N) that each link exerts on the other are computed

in a backward manner and then the net forces and moments are computed by applying

i−1Fi,i−1 =
ifi +

iRi+1
iFi+1,i, (4.25)

i−1Ni,i−1 =
ini +

i−1Ri
iNi+1,i +

iri × (i−1Ri
iFi+1,i) +

irci × ifi,i−1. (4.26)

Backward computation for the pendulum

Applying equations (4.21)-(4.26) to the pendulum, we obtain the internal forces as

fp = mpv̇cp = mp






−Lr sin(α)θ̈ − 1
2Lp sin

2(α)θ̇2 − 1
2Lpα̇

2 + g cos(α)

−Lr cos(α)θ̈ +
1
2Lpα̈− 1

2Lp sin(α) cos(α)θ̇
2 − g sin(α)

Lrθ̇
2 +

Lp

2 sin(α)θ̈ + Lp cos(α)θ̇α̇




 , (4.27)

and the internal moments as

np =






0 0 0

0 Jp 0

0 0 Jp











cos(α)θ̈ − sin(α)θ̇α̇

− sin(α)θ̈ − cos(α)θ̇α̇

α̈




+






cos(α)θ̇

− sin(α)θ̇

α̇






×











0 0 0

0 Jp 0

0 0 Jp











cos(α)θ̇

− sin(α)θ̇

α̇









 =






0

−Jp sin(α)θ̈ − Jp cos(α)θ̇α̇

Jpα̈− Jp sin(α) cos(α)θ̇
2




 . (4.28)

The net forces (including internal and external) are

rFp,r = fp +
pR3(0) = fp, (4.29)

where iFi+1,i = 0 as the pendulum is the last link. The net moments acting on the

pendulum are

rNp(x, y, z) = np +
rRp(0) +






1
2Lp

0

0




× rRp(0) +






1
2Lp

0

0




× fp

=






0

−Jp sin(α)θ̈ − 2Jp cos(α)θ̇α̇

Jpα̈− Jp sin(α) cos(α)θ̇
2




 (4.30)

+







0

−1
2mpLpLrθ̇

2 − 1
4mpL2

p sin(α)θ̈ − 1
2mpL2

p cos(α)θ̇α̇
1
2mpLp

(

−Lr cos(α)θ̈ +
1
2Lpα̈− 1

2Lp sin(α) cos(α)θ̇
2 − g sin(α)

)






.

As the expressions become too long and complicated, we write them separately as
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rNp(x) = 0,

rNp(y) = −
(
Jp sin(α) +

1

4
mpL2

p

)
θ̈ −

(
2Jp cos(α) +

1

2
mpL2

p cos(α)
)
θ̇α̇− 1

2
mpLpLrθ̇

2,

rNp(z) =

(

Jp +
1

4
mpL

2
p

)

α̈−
(
1

2
mpLpLr cos(α)

)

θ̈ − 1

2
mpLpg sin(α)

−
(

Jp sin(α) cosα+
1

4
mpL

2
p sin(α) cos(α)

)

θ̇2.

Backward computation for the arm

We also apply equations (4.21)-(4.26) to the arm, thus obtaining the internal forces and

moments as

fr = mrv̇cr =






−1
2mrLrθ̇

2

1
2mrLrθ̈

mrg




 , (4.31)

nr =






0 0 0

0 Jr 0

0 0 Jr











0

0

θ̈




+






0

0

θ̇




×











0 0 0

0 Jr 0

0 0 Jr











0

0

θ̇









 =






0

0

Jrθ̈




 . (4.32)

The net forces and moments are computed as

0Fr,0 = fr +
rRp

rFp,r

=






−1
2mrLrθ̇

2

1
2mrLrθ̈

mrg




+











0 0 −1

− sin(α) − cos(α) 0

cos(α) − sin(α) 0




×






−mpLr sin(α)θ̈ − 1
2mpLp sin

2(α)θ̇2 − 1
2mpLpα̇

2 +mpg cos(α)

−mpLr cos(α)θ̈ +
1
2mpLpα̈− 1

2mpLp sin(α) cos(α)θ̇
2 −mpg sin(α)

mpLrθ̇
2 + 1

2mpLp sin(α)θ̈ +mpLp cos(α)θ̇α̇









 (4.33)

=






−1
2mrLrθ̇

2 −mpLrθ̇
2 − 1

2mpLp sin(α)θ̈ −mpLp cos(α)θ̇α̇
mrLr

2 θ̈+mpLrθ̈+
mpLp

2 (sin3(α)θ̇2+sin(α)α̇2−cos(α)α̈+sin(α) cos2(α)θ̇2)

mrg − 1
2mpLp cos(α)α̇

2 − 1
2mpLp sin(α)α̈+mpg




,
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0Nr = nr +






Lr

2

0

0




× fr +

rRp
rNp,r +






Lr

0

0




× rRp

rFp,r

=






0

0

Jrθ̈




+






Lr

2

0

0




×






−1
2mrLrθ̇

2

1
2mrLrθ̈

mrg




+











0 0 −1

− sin(α) − cos(α) 0

cos(α) − sin(α) 0




×






0

−Jp sin(α)θ̈ − 2Jp cos(α)θ̇α̇+ 1
2mpLp(−Lrθ̇

2 − 1
2Lp sin(α)θ̈ − Lp cos(α)θ̇α̇)

Jp(α̈−sin(α) cosαθ̇2)+
mpLp

2 (
Lp

2 α̈−Lr cos(α)θ̈−Lp

2 sin(α) cos(α)θ̇2−g sin(α))











+






Lr

0

0




×











0 0 −1

− sin(α) − cos(α) 0

cos(α) − sin(α) 0











−mpLr sin(α)θ̈ − 1
2mpLp sin

2(α)θ̇2 − 1
2mpLpα̇

2 +mpg cos(α)

−mpLr cos(α)θ̈ +
1
2mpLpα̈− 1

2mpLp sin(α) cos(α)θ̇
2 −mpg sin(α)

mpLrθ̇
2 + 1

2mpLp sin(α)θ̈ +mpLp cos(α)θ̇α̇









 . (4.34)

Here we write the elements of net moment separately (due to long expressions) as

0Nr(x) = −
(

Jp +
1

4
mpL2

p

)

α̈+

(
1

2
mpLpLr cos(α)

)

θ̈ − g sin(α)

+

(

Jp sin(α) cosα− 1

2
Lp sin(α) cos(α)

)

θ̇2,

0Nr(y) =

(
1

2
mpLpLr sin(α)

)

α̈+

(

Jp sin(α) cos(α) +
1

4
mpL

2
p sin(α) cos(α)

)

θ̈

+

(

2Jp cos
2(α) +

1

4
mpL

2
p cos

2(α)

)

θ̇α̇+

(
1

2
mpLpLr cos(α)

)

θ̇2

+

(
1

2
mpLpLr cos(α)

)

α̇2 −mpLrg −
1

2
mrLrg,

0Nr(z) =

(

−1

2
mpLpLr cos(α)

)

α̈+

(

Jr +
1

4
mrL

2
r + Jp sin

2(α) +
1

4
mpL

2
p sin

2(α) +mpL
2
r

)

θ̈

+

(

2Jp sin(α) cos(α) +
1

4
mpL

2
p sin(α) cos(α)

)

θ̇α̇+ (mpLpLr sin(α)) θ̇
2

+

(
1

2
mpLpLr sin(α)

)

α̇2.

C) The equations of motion

To obtain the equations of motion, the generalized moments at the pendulum and arm

are computed by projecting the moments (0Nr) and (rNp) along the joint axis. This can

be expressed as

τi =
i−1Ni,i−1 · ẑi +Biϑ̇i, (4.35)
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where (·) denotes the dot product, and the second term of (4.35) represents the viscous

force(s). By applying (4.35), we obtain the two dynamical equations as

− 1

2
mpLpLr cos(α)θ̈ +

(

Jp +
1

4
mpL

2
p

)

α̈− 1

2
mpLpg sin(α)

− 1

4
mpL

2
p cos(α) sin(α)θ̇

2 = −Bpα̇ (4.36)
(

Jr +mpL
2
r +

1

4
mrL

2
r + (Jp +

1

4
mpL

2
p) sin

2(α)

)

θ̈ − 1

2
mpLpLr cos(α)α̈

+
1

2
mpLpLr sin(α)α̇

2 +
1

2
mpL

2
p cos(α) sin(α)θ̇α̇ = τr −Brθ̇. (4.37)

Note that τp = 0 (the system is underactuated). These equations demonstrate vari-

ous dynamical effects, including Centrifugal forces (12mpLpLr sin(α)α̇
2), Coriolis forces

(12mpL
2
p cos(α) sin(α)θ̇α̇), Gravitational forces (−1

2mpLpg sin(α)), and coupling between

different forces.
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4.2.2 Port-controlled Hamiltonian model

To apply the IDA-PBC design, we need to obtain the PCH representation of the system.

We define the generalized coordinate q to be

q =

[

q1

q2

]

=

[

α

θ

]

, (4.38)

and introduce the new constants (to simplify the notations)

γ = Jp +
1

4
mpL

2
p, ρ = Jr +mpL

2
r +

1

4
mrL

2
r , σ =

1

2
mpLpLr, κ =

1

2
mpgLp. (4.39)

Applying Newton’s Second Law for rotational motion, and by ignoring the effect of

friction, from (4.36)-(4.37) we can extract the inertia matrix

M(q) =

[

γ −σ cos(q1)

−σ cos(q1) ρ+ γ sin2(q1)

]

, (4.40)

and also the potential energy of the system

V (q) = κ (1 + cos(q1)) . (4.41)

The Hamiltonian function of the system can then be obtained using (3.2). Moreover,

the PCH model of the rotary pendulum can be described by (3.1) with u = τ , and the

input matrix

G = e2 =

[

0

1

]

. (4.42)

The Hamiltonian model for general mechanical systems is

q̇ =
∂H

∂p
(q, p) (4.43)

ṗ = −∂H

∂q
(q, p) + τ, (4.44)

and hence for the rotary pendulum it is

q̇1 =
1

∆

[
(ρ+ γ sin2(q1))p1 + (σ cos(q1))p2

]
,

q̇2 =
1

∆
[(σ cos(q1))p1 + γp2] ,

ṗ1 =
1

2∆2

[(
ρ+ γ sin2(q1)

)
p21 + γp22 + 2σ cos(q1)p1p2

] (
(γ2 + σ2) sin(2q1)

)

+
1

2∆

[
2σ sin(q1)p1p2 − γ sin(2q1)p

2
1

]
+ κ sin(q1),

ṗ2 = Gu.

(4.45)

where ∆ = γρ+ γ2 sin2(q1)− σ2 cos2(q1) is the determinant of the matrix M .
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4.2.3 Passivity of the rotary inverted pendulum

The total energy of the system is

H = K(q, p) + V (q) =
1

2
p⊤M−1(q)p+ κ(1 + cos(q1)). (4.46)

Therefore, from (4.43) and (4.44), we obtain

Ḣ =
∂⊤H

∂q
(q, p)q̇ +

∂⊤H

∂p
(q, p)ṗ =

∂⊤H

∂p
τ = q̇⊤τ. (4.47)

Equation (4.47) shows the fact that the increase in energy of the system is equal to the

supplied work (conservation of energy). Integrating both sides of (4.47), we obtain

∫ ⊤

0
q̇⊤τ = H(t)−H(0) ≥ κ(1 + cos(π))−H(0) ≥ 0−H(0). (4.48)

Where κ is given in (4.39). Thus, the system is passive with the input τ and output q̇.

From equations of motion (4.36)-(4.37), notice that there are also the non-conservative

forces (viscous friction) attached to the output (the velocity of the arm and pendulum)

which are Brθ̇ and Bpα̇. Thus, we can conclude, following Definition 2.18, that the

system is output strictly passive. Note that in case of unforced system i.e. (u = 0)

and q1 ∈ [0, 2π], the system (4.45) has two equilibrium points; (q1 = π, q̇1 = 0, q2 =

q∗2, q̇2 = 0), corresponds to the pendulum in downward position which is stable, while

(q1 = 0, q̇1 = 0, q2 = q∗2, q̇2 = 0), corresponds to its upright position which is unstable.

The total energy H(q, q̇) of the rotary pendulum has the minimum (H = 0) at the stable

equilibrium point and the maximum (H = 2κ) at the unstable equilibrium. Figure 4.3

shows the total energy of the system over the range of q1 ∈ [−π, π]. It shows that the

system has minimum energy corresponding to the stable equilibrium, and maximum

energy corresponding to the unstable equilibrium. In Subsection 4.4, we will show how

we can reshape the total energy function of the system such that its minimum occurs at

the upright position, thus this equilibrium point is stabilized.

4.3 Preliminary Observations with Linear Control

One possible way to stabilize the upward equilibrium position of the rotary pendulum

is to linearize the model and then apply linear control. However, by linearization, the

dynamics of the system is approximated around a certain operating point and hence

cannot guarantee a stable behaviour in a large region of operation. This limitation can

be overcome by switching between different controllers; a swing-up controller (usually

designed using energy methods) that brings the pendulum from the downward position

to close to the upright position, then it switches to a balancing (stabilization) controller.

In this section, we discuss a design of a linear controller for the stabilization of the
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Figure 4.3: The energy of the uncontrolled inverted pendulum system.

rotary inverted pendulum, and will show the limitation of such type of controllers that

motivates the design of a nonlinear controller.

4.3.1 Linearization

Linearizing (4.36)-(4.37) about the upright position (α = θ = α̇ = θ̇ = 0) using the

Taylor series expansion

f(z) ≈ f(z0) +

(
∂f(z)

∂z

)

|z=z0 (z − z0),

the following linear equations are obtained

(mpL
2
r + Jr)θ̈ −

1

2
mpLrLpα̈ = τ −Brθ̇ (4.49)

−1

2
mpLrLpθ̈ −

(

Jp +
1

4
mpL

2
p

)

α̈− 1

2
mpgLpα = −Brα̇. (4.50)

Defining the state and output as

x =
[

θ α θ̇ α̇
]⊤

(4.51)

y =
[

x1 x2

]⊤
. (4.52)
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Then, the state-space representation of the complete system is obtained as

ẋ = Ax+Bu

y = Cx+Du, (4.53)

where

A =
1

JT









0 0 1 0

0 0 0 1

0 1
4m

2
pL

2
pLrg −

(
Jp +

1
4mpL

2
p

)
Br −1

2mpLpLrBp

0 1
2mpLpg(Jr +mpL

2
r) −1

2mpLpLrBr −(Jr +mpL
2
r)Bp









(4.54)

B =
1

JT









0

0

Jp +
1
4mpL

2
p

1
2mpLpLr









(JT = JpmpL
2
r + JrJp +

1

4
JrmpL

2
p) (4.55)

C =

[

1 0 0 0

0 1 0 0

]

(4.56)

D =

[

0

0

]

. (4.57)

4.3.2 Stability analysis of the linearized model

The stability of a system can be determined by examining the location of the eigenvalues

values of the transfer function (i.e. the roots of the system’s characteristic equation).

This characteristic equation can be expressed by det(λI−A) = 0 where λi (i = 1, . . . , n)

are the eigenvalues ofA ∈ R
n×n, which are also the open-loop poles, and In is the identity

matrix. By substituting the values of the parameters from Tables 4.1 and 4.2 into (4.55)

and (4.56), and considering the actuator dynamics, we obtain

A =









0 0 1 0

0 0 0 1

0 81.4 −10.25 −0.93

0 122.1 −10.33 −1.4









(4.58)

B =
[

0 0 83.47 80.32
]⊤

. (4.59)

Using MATLAB command eig(A), we find that the open-loop poles of the system, which

are λ1 = −17.1, λ2 = −2.88, λ3 = 0 and λ4 = 8.34 shows the system unstable. Moreover,

based on the state space equations of the system, the following two transfer functions

corresponding to two outputs (θ and α) can be derived as
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θ

U
=

83.5s2 + 42.2s− 3654

s4 + 11.65s3 − 117.4s2 − 410.7s
(4.60)

α

U
=

80.3s2 − 39s

s4 + 11.65s3 − 117.4s2 − 410.7s
, (4.61)

and their corresponding root-locus plots are shown in Figure 4.4.
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Figure 4.4: The root-locus of the open-loop system.

The analysis and root-locus plots show that there is one pole in the right-half of the

s-plane, thus we can conclude that the system is unstable. In the following subsection

we show how the linear control technique, namely the pole placement, is used to locally

stabilize the system.

4.3.3 Balancing control using pole-placement

As mentioned before, when the pendulum is in a neighborhood of its unstable equilibrium

point, a balancing controller is activated through a switching mechanism. The balancing

controller catches the pendulum and stabilizes the system at the equilibrium position

and keeps it at that position. In [4] a comparative study between some balancing

controllers has been presented. Here, we discuss the design of a full state feedback

regulator, also known as pole-placement. This method is based on the state model of

the system and its idea is to place the poles of the closed-loop system in any desirable

locations, characterizing stability and performance of the system. By placing the closed-

loop poles of the plant in pre-determined locations, we can control the characteristics of

the response of the system. To implement a full state feedback controller, the linearized

system must be considered controllable. Thus, the first step is to check if the following
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controllability condition is satisfied. A linear system is controllable if the rank of its

controllability matrix

CM =
[

B AB A2B · · · AnB
]

equals the number of states n [62]. The controllability matrix CM for the rotary pen-

dulum model is

CM =









0 83.5 −930.7 16989

0 80.3 −974.6 20780

83.5 −930.7 16989 −272898

80.3 −974.6 20780 −323519









,

and its rank is found, using the MATLAB command rank(CM), equal to the number of

states (rank(CM) = n = 4), thus the matrix is full rank, and the system is controllable.

In Subsection 4.3.2 it has been shown that the open-loop system is unstable due to the

presence of one pole on the right half side of the s-plane. By placing all the closed-loop

poles on the left half side of the s-plane, stability can be guaranteed. Pole-placement

is an effective technique to deal with this. The aim of pole placement control is to

construct a state feedback law u = −Kx by finding the state feedback gain matrix K

so that all closed-loop poles are placed on the left half side of the complex plane.

Given that the system is completely controllable, the next step is to locate the desired

closed-loop poles. One way of doing this is by using the root-locus design approach. The

“dominant second-order poles method” is used to place the dominant pair which

are the roots of the characteristic equation for a second order system

s2 + 2ζωns+ ω2
n = 0

so they are expressed as

s1 = −ζωn + jωn

√

1− ζ2 and s2 = −ζωn − jωn

√

1− ζ2.

These equations show the relation between the dominant poles and the natural frequency,

ωn, and the damping ratio, ζ. Consequently, defining the natural frequency and damping

ratio of the system determine the values of the two dominant poles. The values of ζ

and ωn are defined to meet some transient-response specifications such as rise time (tr),

peak time (tp), maximum overshoot (Mp) and settling time (ts) which specifies the

performance characteristics of a control system. The control design and time-response

requirements are.

Specification 1: The maximum overshoot in the unit step response is 4.6%.

Specification 2: The settling time within 2% allowable tolerance in the unit step

response is 1.43 sec.
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The maximum overshoot Mp is given by

Mp = e−(ζ/
√

1−ζ2)π. (4.62)

This value must be 4.6%. Thus,

0.046 = e−(ζ/
√

1−ζ2)π or 3.079 =
ζπ

√

1− ζ2

which yields ζ = 0.7. The settling time ts, for the 2% allowable tolerance is given by

ts =
4

ζωn
, (4.63)

and is specified as 1.43 sec. Thus, ωn = 4
tsζ

= 4 rad/sec.

Substituting ζ and ωn into the characteristic equation and solving for the roots, we

obtain the dominant pairs as s1,2 = −2.8±2.8566i. The rest of the poles are placed such

that they are far to the left of the dominant closed-loop poles, i.e. can be arbitrarily

chosen as long as the complex pairs dominates the response [62], and hence are chosen

as s3 = −30 and s4 = −40.

The final step it to compute the values of the gain matrix K. The most commonly used

approach is to find these values using Ackermann’s formula

K =
[

0 0 · · · 0 1
]

CM
−1φ(A), (4.64)

where φ(·) is the desired characteristic equation of the closed-loop system. The controller

gain for this system with the desired poles −2.8± 2.86i, −30 and −40 is

K =
[

−5.28 30.14 −2.65 3.55
]

.

Hence, using the state feedback control

u = −Kx, (4.65)

we can derive two transfer functions for the closed-loop system corresponding to two

outputs (θ and α) as

θ

U
=

s4 + 77s3 + 1684s2 + 9887s+ 27262

s4 + 76s3 + 1608s2 + 7840s+ 19200
(4.66)

α

U
=

422s− 205

s4 + 76s3 + 1608s2 + 7840s+ 19200
, (4.67)

and their corresponding root-locus plots along with those for the open-loop system are

shown in Figure 4.5. As expected, all the closed-loop poles are on the left-half side of the

s-plane and the system is asymptotically stable around the equilibrium point with the
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Figure 4.5: The root-locus of the open-loop and closed-loop systems.

proposed controller. Figure 4.6 shows the time response for the closed-loop system with

the initial conditions x0 =
[

0 0.1 0 0
]⊤

, corresponding to a starting position of the

pendulum (≈ 5.7◦) away from the upright position. It shows that the proposed balancing

controller asymptotically stabilizes the rotary pendulum around it’s equilibrium point

with all design specifications satisfied.

4.3.4 Applying a linear controller on the nonlinear model

To show the range where the linear controller can be applied, we define the states as









x1

x2

x3

x4









=









θ

α

θ̇

α̇









. (4.68)

For a generalized coordinate vector x, the rotary inverted pendulum model can be writ-

ten in the matrix form

D(x)ẍ+ C(x, ẋ)ẋ+ g(x) = τ, (4.69)
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Figure 4.6: State histories of the closed-loop system with x0 = [0, 0.1, 0, 0].

where D is the inertia matrix, C is the damping matrix, g is the gravitational vector,

and τ is the applied torque vector, as

[

ρ+ γ sin2(x2) −σ cos(x2)

−σ cos(x2) γ

][

ẍ1

ẍ2

]

+

[

γ sin 2(x2)ẋ2 +Br σ sin(x2)ẋ2

−1
2γ sin 2(x2)ẋ1 Bp

][

ẋ1

ẋ2

]

+

[

−κ sin(x2)

0

]

=

[

0

τ

]

.

Solving for the acceleration terms in the equations of motion, yields:

[

ẍ1

ẍ2

]

=

[

ρ+ γ sin2(x2) −σ cos(x2)

−σ cos(x2) γ

]−1([

γ sin 2(x2)ẋ2 +Br σ sin(x2)ẋ2

−1
2γ sin 2(x2)ẋ1 Bp

][

ẋ1

ẋ2

]

+

[

−κ sin(x2)

0

]

−
[

0

τ

])

. (4.70)

by carrying out the matrix multiplication in (4.70), the first and second equations (after

expanding the equations and collecting common terms) become

ẍ1 =
1

∆D

(

−1

2
γσ cos(x2) sin 2(x2)ẋ

2
1 + γσ sin(x2)ẋ

2
2 + γ2 sin 2(x2)ẋ1ẋ2 + γBrẋ1

+Bpσ cos(x2)ẋ2 − γκ sin(x2)− τσ cos(x2)) ,
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ẍ2 =
1

∆D

(

−1

2
γ sin 2(x2)

(
ρ+ γ sin2(x2)

)
ẋ21 + σ2 cos(x2) sin(x2)ẋ

2
2 +Brσ cos(x2)ẋ1

+γσ cos(x2) sin 2(x2)ẋ1ẋ2 +Bp

(
ρ+ γ sin2(x2)

)
ẋ2

−σκ cos(x2) sin(x2)− τ
(
ρ+ γ sin2(x2)

))
,

where ∆D = γρ + γ2 sin2(q1) − σ2 cos2(q1) is the determinant of the matrix D. From

(4.68), it is given that ẋ1 = x3 and ẋ2 = x4. Thus, the equations of motion is obtained

as

ẋ1 = x3

ẋ2 = x4

ẋ3 =
1

∆D

(

− 1

2
γσ cos(x2) sin 2(x2)x

2
3 + γσ sin(x2)x

2
4 + γ2 sin 2(x2)x3x4 + γBrx3

+Bpσ cos(x2)x4 − γκ sin(x2)− τσ cos(x2)
)

(4.71)

ẋ4 =
1

∆D

(

− 1

2
γ sin 2(x2)

(
ρ+ γ sin2(x2)

)
x23 + σ2 cos(x2) sin(x2)x

2
4 +Brσ cos(x2)x3

+ γσ cos(x2) sin 2(x2)x3x4 +Bp

(
ρ+ γ sin2(x2)

)
x4 − σκ cos(x2) sin(x2)

− τ
(
ρ+ γ sin2(x2)

) )

.

Figure 4.7 shows the response of the actual system to the pole placement controller.

It shows that this controller can stabilize the equilibrium of system starting very close

to the upright position (up to 20 degrees away from that position). It also shows that

starting from a slightly distanced point (25 degrees) the system becomes unstable, this

means that the proposed linear controller can only guarantee a local stability. This

motivates us to design a nonlinear controller to expand the domain of attraction and

so the pendulum can swing up from any position in the plane, achieving ‘almost’ global

stability.

4.4 IDA-PBC Control Design

Moving back to the IDA-BPC design, we apply the procedure given in Section 3.3, in

particular Proposition 3.8, to design the controller for the system. The main objective

is to asymptotically stabilize the rotary inverted pendulum at its unstable equilibrium

point qe = (0, q2) for any q2 ∈ [0, 2π]. First we design the energy shaping controller

ues and then adding the damping to the closed-loop system by designing the damping

injection controller udi.
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Figure 4.7: State histories of the closed-loop system with various initial condi-
tions.

4.4.1 Reshaping the total energy

We start with parametrizing the inertia matrix Md, then solve the PDE of the potential

energy. From (4.40), we obtain the inverse inertia matrix

M−1(q) =
1

∆

[

ρ+ γ sin2(q1) σ cos(q1)

σ cos(q1) γ

]

, (4.72)

where ∆ = det(M) = γρ + γ2 sin2(q1) − σ2 cos2(q1). Because M depends on q1, it is

clear that M−1 does not have a simple structure. Solving directly the PDEs (3.8)-(3.9)

incurs a high computational load, that leads to an unreasonable form of the controller.

Applying Proposition 3.8, with G⊥ = [1 0], the potential energy PDE (3.9) is

[

1 0
]
{[

−κ sin(q1)

0

]

−
[

∆m1(q1) ∆m2(q1)

∆m2(q1) ∆m3(q1)

][
ρ+γ sin2(q1)

∆
σ cos(q1)

∆
σ cos(q1)

∆
γ
∆

][

∇q1Vd

∇q2Vd

]}

= 0,

which further gives

(

ρ+ γ sin2(q1)−
σ2 cos2(q1)

γ

)

∇q1Vd =
−κ sin(q1)

m1
,

that can be written in its simplest form

∇q1Vd = −γκ sin(q1)

m1∆
, (4.73)
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by choosing m2 =
k2
k1
m1, and including ∆ in the expression of Md. The solution for the

PDE (4.73) is given by

Vd(q) = −γκ

∫ q1

0

sin(x)

m1(x)∆(x)
dx+Ψ(q2), (4.74)

where the function Ψ(·) is an arbitrary differentiable function that must be chosen to

satisfy condition (3.6). This condition, along with the conditions m1 > 0 and m1m3 >

m2
2 are satisfied by choosing Ψ(q2) =

1
2Kpq

2
2 (positive definite function), where Kp > 0

is the gain of the energy shaping controller. Note that the Ψ(·) term contributes for

the (2,2) term of the Hessian matrix (4.83), which must be positive to guarantee the

positive definiteness of the Hessian. The second step is to fix m1 in (4.73) such that the

solution of this PDE satisfies Conditions 3.1 and 3.2. Notice that M is a function of q1

only, hence, we can simply take Md as also a function of q1 only. Among the different

possible choices, we have fixed the desired inertia matrix as

Md(q) = ∆

[

m1 m2

m2 m3

]

= ∆

[

(cos(q1) + ǫ) −σ cos(q1)(cos(q1)+ǫ)
γ

−σ cos(q1)(cos(q1)+ǫ)
γ m3

]

. (4.75)

Choosing ǫ > 1 is to guarantee m1 > 0 and hence Md > 0 ∀ q1 ∈ [0, 2π]. Then, the

closed-loop potential function Vd is computed (using Maple software) as

Vd(q) = λ1

(

− λ2 tanh
−1
(
λ2 cos(q1)

)
+ ln

(
cos(q1) + ǫ

))

+Ψ(q2), (4.76)

with

λ1 =
κγ

γρ+ γ2 − σ2ǫ2 − γ2ǫ2
> 0, λ2 =

√

γ2 + σ2

γ(ρ+ γ)
,

where 0 < λ2 < 1 is such that tanh−1(·) is bounded.

Remark 4.1. For this particular design we have fixed m1 = cos(q1) + ǫ. The term

cos(q1) ensures that Vd is minimum at qe, and ǫ is added to guarantee the positivity of

Md in the whole DoA.

Now, using (3.26) we can compute J2, which after lengthy but straightforward calcula-

tions is obtained as

J2 =

[

0 j2

−j2 0

]

, (4.77)

where

j2 =
Kjγ∆d

2∆

(

(ϕB1 −A1)p
2
1 + 2(ϕB2 −A2)p1p2 + (ϕB3 −A3)p

2
2

)

(cos(q1) + ǫ) (σ cos(q1)p1 + γp2)
(4.78)

with Kj > 0, and



68 Chapter 4 IDA-PBC of the Rotary Inverted Pendulum

A1 =
sin(2q1)

∆2

(
γ∆−

(
ρ+ γ sin2(q1)

)
(γ2 + σ2)

)
,

A2 = −σ sin(q1)

∆2

(
∆+ 2 cos2(q1)(γ

2 + σ2)
)
,

A3 = −γ(γ2 + σ2) sin(2q1)

∆2
,

B1=
m3 sin(q1)

(γ∆d)2

(

− 2γ2∆d cos(q1)(γ
2+σ2)+∆3

(
m3γ

2−ǫσ2 cos2(q1)−σ2 cos3(q1)
)

− σ2∆3 cos(q1)
(
ǫ+ cos(q1)

)(
2ǫ+ 3 cos(q1)

))

,

B2 = − σ sin(q1)
(
ǫ+ cos(q1)

)

γ∆d

(
m3γ2 − ǫσ2 cos2(q1)− σ2 cos3(q1)

)

(

σ2∆cos2(q1)
(
2ǫ+ 3 cos(q1)

)

+
(
2 cos2(q1)(γ

2 + σ2) + ∆
)(
m3γ

2 − ǫσ2 cos2(q1)− σ2 cos3(q1)
))

,

B3 = − sin(q1) cos(q1)
(
ǫ+ cos(q1)

)

∆d

(
m3γ2 − ǫσ2 cos2(q1)− σ2 cos3(q1)

)×
(

2(γ2 + σ2)
(
m3γ

2 − ǫσ2 cos2(q1)− σ2 cos3(q1)
)
+ σ2∆

(
2ǫ+ 3 cos(q1)

))

,

ϕ =
(
cos(q1) + ǫ

)
(

ρ+ γ sin2(q1)−
σ2 cos2(q1)

γ

)

,

and ∆d = det(Md) =
∆2

γ2

(
cos(q1) + ǫ

)(

m3γ
2 − σ2 cos2(q1)

(
cos(q1) + ǫ

))

.

Now, we substitute all the terms into (3.10) to obtain the energy shaping controller

ues=−σ cos(q1)

γ

(

γm3−
(
ρ+γ sin2(q1)

)(
ǫ+cos(q1)

))
(B1

2
p21+B2p1p2+

B3

2
p22

+
ǫλ1λ

2
2 sin(q1)

1− λ2
2 cos

2(q1)
− λ1 sin(q1)

ǫ+ cos(q1)

)

−
(

γm3−
σ2 cos2(q1)(cos(q1) + ǫ)

γ

)

Kpq2

− j2
∆

γ∆d

(

γm3p1 + σ cos(q1)
(
cos(q1) + ǫ

)
p2

)

. (4.79)

4.4.2 Damping assignment

The damping injection controller follows the construction (3.11). Given Md that has

been obtained when reshaping the total energy, we have

∇pHd = M−1
d p =

∆

∆d

[

m3
σ cos(q1)(cos(q1)+ǫ)

γ
σ cos(q1)(cos(q1)+ǫ)

γ ǫ+ cos(q1)

][

p1

p2

]

=
∆

∆d

[

m3p1 +
σ cos(q1)(cos(q1)+ǫ)

γ p2
σ cos(q1)(cos(q1)+ǫ)

γ p1 + (cos(q1) + ǫ)p2

]

. (4.80)

Substituting (4.80) into (3.11), the damping injection controller is obtained as
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udi = −Kv∆
(
cos(q1) + ǫ

)

γ∆d

(
σ cos(q1)p1 + γp2

)
. (4.81)

Now, we can conclude the IDA-PBC controller design for our rotary inverted pendulum

by stating the following corollary.

Corollary 4.2. The state feedback controller (4.79), (4.81), with m3 > (cos(q1) +

ǫ)σ
2 cos2(q1)

γ2 , ǫ > 1 and Kp,Kv,Kj > 0 is an asymptotically stabilizing controller for

the rotary pendulum system (4.36)-(4.37) at its unstable equilibrium point q = (0, q2) for

any q2 ∈ [0, 2π]. �

Proof of Corollary 4.2: The proof of Corollary 4.2 is discussed in Section 4.5. �

4.5 Stability Analysis

As mentioned earlier (see also Proposition 1 in [2]), one important property of the IDA-

PBC method is that the closed-loop energy function Hd(q, p) qualifies as a Lyapunov

function candidate W (q, p), thus has a stable equilibrium point at (qe, 0). For this to

apply, Hd(q, p) itself must satisfy two conditions: 1) Md is positive definite and symmet-

ric, and 2) the closed-loop potential energy function Vd must have an isolated minimum

at this equilibrium point. Furthermore, this equilibrium point is asymptotically stable

provided that the closed-loop system satisfies the detectability condition from the output

yd = G⊤∇pHd.

As explained through the design procedures, a sufficient condition to guarantee the

positive definiteness of Md in (4.75) is that m1 > 0 and m1m3 > m2
2. The former is

achieved by assigning m1 = (cos(q1)+ǫ) with ǫ > 1. By choosing m3 such that it satisfies

the condition m3 >
(
ǫ+ cos(q1)

)σ2 cos2(q1)
γ2 , for instance m3 := (cos(q1) + ǫ)σ

2 cos2(q1)
γ2 + µ

with a constant µ > 0, the latter condition is also achieved. Finally, it is clear that Md

is symmetric since the elements m12 = m21 := m2.

To prove the assignment of the minimum of the potential energy qe = arg minVd(q), we

show that Conditions 3.1 and 3.2 are satisfied. The gradient of Vd is computed as

∇qVd = λ1 sin(q1)

[
ǫ(σ2+γ2)

γ(ρ+γ)−(σ2+γ2) cos2(q1)
− 1

(ǫ+cos(q1))

Kpq2

]

.

Solving at the equilibrium point qe = (0, 0), yields ∇qVd|qe =
[

0 0
]⊤

. Hence, Condition

3.1 is satisfied. To verify that the Hessian of Vd is positive definite, we evaluate

∇2
qVd =

[

(∇2
qVd)11 0

0 Kp

]

, (4.82)
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where

(∇2
qVd)11 =

(

λ1 cos(q1)ǫ(σ
2 + γ2)

γ(ρ+ γ)− (σ2 + γ2) cos2(q1)
− λ1 cos(q1)
(
ǫ+ cos(q1)

)

)

−
(

2ǫ cos(q1)(σ
2 + γ2)2λ1 sin

2(q1)
(
γ(ρ+ γ)− (σ2 + γ2) cos2(q1)

)2 +
λ1 sin

2(q1)
(
ǫ+ cos(q1)

)2

)

,

at qe, thus we obtain

∇2
qVd|qe =




λ1

(

ǫ(σ2+γ2)
γρ−σ2 − 1(

ǫ+1
)

)

0

0 Kp



 , (4.83)

which is positive definite for Kp, λ1 > 0 and ǫ > 1. Notice that ǫ > 1 in (4.83) guarantees

that ǫ(σ2+γ2)
γρ−σ2 > 1(

ǫ+1
) . Hence Condition 3.2 also holds. Since all conditions are satisfied,

we can conclude that Hd qualifies as a Lyapunov function, i.e.

Hd(q, p) = W (q, p) =
1

2
p⊤M−1

d (q)p+ Vd(q), (4.84)

and so that the rotary inverted pendulum system (4.36)-(4.37) is stabilized at its unstable

equilibrium point q = (0, q2) by the proposed IDA-PBC design. To prove that the system

is asymptotically stable, either detectability condition should be guaranteed, or, since

the closed-loop energy function of the system qualifies as a Lyapunov function candidate,

we can invoke LaSalle’s invariance principle as follows.

The derivative of (4.84) along the trajectories of the closed-loop system is

Ẇ (q, p) = (∇qHd)
⊤q̇ + (∇pHd)

⊤ṗ = −p⊤M−1
d GKvG

⊤M−1
d p

= −Kv(G
⊤∇pHd)

2 ≤ 0,
(4.85)

where Kv > 0. Thus, Ẇ is negative semidefinite. Using LaSalle’s invariance principle

[47], we define the set Ω as

Ω = {(q, p) : Ẇ (q, p) = G⊤∇pHd = G⊤M−1
d (q)p = 0}. (4.86)

Using

M−1
d =

∆

∆d

[

m3
σ cos(q1)(cos(q1)+ǫ)

γ
σ cos(q1)(cos(q1)+ǫ)

γ ǫ+ cos(q1)

]

, (4.87)

we obtain

G⊤M−1
d (q)p =

[

0 1
]
(

∆

∆d

[

m3
σ cos(q1)(cos(q1)+ǫ)

γ
σ cos(q1)(cos(q1)+ǫ)

γ ǫ+ cos(q1)

])[

p1

p2

]

= 0

=
∆
(
cos(q1) + ǫ

)

γ∆d

(
σ cos(q1)p1 + γp2

)
= 0,

(4.88)
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which implies

σ cos(q1)p1 + γp2 = 0, (4.89)

as the term
∆
(
cos(q1)+ǫ

)

γ∆d
> 0 due to ǫ > 1. From (4.89), there are two cases to satisfy

Ḣd = 0:

Case 1: cos(q1) =
kπ
2 with k odd and p2 = 0, or

Case 2: p1 = p2 = 0.

We will now show that Case 1 is not feasible. Note that p2 = 0 =⇒ ṗ2 = 0, and from

the system dynamics (4.45), ṗ2 is the control input (4.79), (4.81). That is

ṗ2 = −σ cos(q1)

γ

(

γm3 −
(
ρ+ γ sin2(q1)

)(
ǫ+ cos(q1)

))
(B1

2
p21 + B2p1p2 +

B3

2
p22

+
ǫλ1λ

2
2 sin(q1)

1− λ2
2 cos

2(q1)
− λ1 sin(q1)

ǫ+ cos(q1)

)

−
(

γm3 −
σ2 cos2(q1)(cos(q1) + ǫ)

γ

)

Kpq2

− j2
∆

γ∆d

(

γm3p1 + σ cos(q1)
(
cos(q1) + ǫ

)
p2

)

− Kv∆
(
cos(q1) + ǫ

)

γ∆d

(
σ cos(q1)p1 + γp2

)
= 0.

Substituting cos(q1) =
kπ
2 (with k odd) and p2 = 0 yields

j2
∆

γ∆d
γm3p1 = 0, (4.90)

which implies that p1 = 0 =⇒ ṗ1 = 0. Now, from the system dynamics,

ṗ1 =
1

2∆2

[(
ρ+ γ sin2(q1)

)
p21 + γp22 + 2σ cos(q1)p1p2

] (
(γ2 + σ2) sin(2q1)

)

+
1

2∆

[
2σ sin(q1)p1p2 − γ sin(2q1)p

2
1

]
+ κ sin(q1) = 0. (4.91)

Note that because of the last term (κ sin(q1)) in (4.91), ṗ1 = 0 is only satisfied if q1 6= kπ
2

with k odd. It is indeed satisfied if q1 = 0. Thus, Case 1 cannot happen, and only Case

2 is true. Hence, the system can maintain the Ḣd = 0 condition only at the equilibrium

point (qe, 0), which proves that this equilibrium is ‘almost’ globally asymptotically stable.

Remark 4.3. Note that for these type of systems, a global asymptotic stabilization

cannot be achieved as the systems evolve on manifolds which are not diffeomorphic to

the euclidean space. Thus, the best it can be achieved is ‘almost’ globally asymptotically

stable [5].

Figure 4.8 depicts the energy evolution for the rotary pendulum for an initial pendulum

angle of 180◦. It shows that the system converges to its stable manifold corresponding to

its isolated minimum energy. It also illustrates the fact that for the closed-loop system,

the total energy function Hd and the potential energy function Vd satisfy the relation

Vd(t) < Hd(t) < Hd(0), ∀t.
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Figure 4.8: The total energy of the rotary inverted pendulum.

4.6 Simulation Results

We present some simulation results obtained for the model of Quanser QUBE-Servo

rotary pendulum shown in Figure 4.1 with the IDA-PBC controller (4.79), (4.81). The

closed-loop performance is evaluated with two sets of simulations. In the first set, the

pendulum starts at (q10 = π
4 ) and the controller parameters Kp = 0.01, Kv = 1.7×10−5,

Kj = 2 × 10−5, m3 = 50, ǫ = 1.1. This q10 is more than twice the initial angular

position of the pendulum that is recommended for the balancing experiment of this

rotary pendulum hardware using a linear state feedback controller obtained via a pole

placement design shown in Subsection 4.3.3. The results are depicted in Figures 4.9

and 4.10. As can be observed, the pendulum can easily be stabilized at its upright

position using the proposed controller with very little effort as shown by the low value of

the control input. To show the global behaviour of the closed-loop system, simulations

have been carried out with the pendulum swings up from the hanging position (q10 = π),

and having the parameters Kp = 6, Kv = 2.1× 10−4, Kj = 1× 10−5, m3 = 54, ǫ = 1.3.

It is apparent from Figure 4.11 that the proposed controller yields an almost global

asymptotic stabilization of the rotary inverted pendulum pendulum. However, it can

be observed from Figure 4.12 that the control effort significantly increases with the

increased initial angular position of the pendulum. More simulations on a different type

of rotary inverted pendulum hardware can be found in [84].
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Figure 4.9: State histories with [q0, p0] = [π4 , 0.8,−0.7× 10−3,−0.5× 10−3].

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

Time (sec)

C
on

tr
ol

 e
ffo

rt
 (

V
ol

t)

Figure 4.10: Control input with [q0, p0] = [π4 , 0.8,−0.7× 10−3,−0.5× 10−3].

4.7 Conclusion

In Chapter 3 a constructive methodology to simplify the partial differential equations

associated with the design of IDA-PBC for two groups of underactuaded mechanical

systems has been presented. Also in that chapter, the methodology has been successfully

applied to one of these groups: separable underactuated mechanical systems, with the

inertia wheel pendulum system as an example. In this chapter, we have shown the
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Figure 4.11: State histories with [q0, p0] = [π, 0.6,−1.5× 10−3,−0.5× 10−3].
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Figure 4.12: Control input with [q0, p0] = [π, 0.6,−1.5× 10−3,−0.5× 10−3].

effectiveness of this methodology applied to a more complex structure of underactuated

mechanical systems, the non-separable systems, with the rotary inverted pendulum as

an illustrative example.

First we have provided a complete derivation of the equations of motion using a recursive

Newton-Euler method to obtain a PCH model of the rotary inverted pendulum system.

Then a linear control design using pole-placement has been discussed, highlighting the

limitation of applying this approach. The design of nonlinear IDA-PBC controller for the
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system is thoroughly discussed in this chapter. The almost global asymptotic stability

has been proved as discussed in the stability analysis section. To the best of our knowl-

edge, this is the first method that achieves almost GAS of this system using IDA-PBC.

Finally, simulations using real parameters have been carried out to verify the stability

and performance of the closed-loop system using the proposed scheme. Experimental

validation of this approach is discussed in Chapter 7.





Chapter 5

Robust IDA-PBC and PID-like

Control for PCH Systems

5.1 Introduction

In Chapters 3 and 4, we have proposed some control design methods for the stabiliza-

tion problem of mechanical systems within the PCH framework using the IDA-PBC

methodology. These methods assume accurate modelling of the system as well as ignore

the external effects such as noises and disturbances. Though these methods have shown

good simulation results, the real time implementation of such controllers may be highly

affected by model uncertainties.

One major factor that influences the performance of dynamical systems is uncertainty.

Uncertainties in dynamical system may result from modeling errors where some aspects

of the physical system are approximated or neglected, or environmental influences such

as disturbances or noises. The complexity of systems and demand for accurate control

systems have made control design problems more challenging. This motivates the estab-

lishment of the robust control paradigm, with the integral and adaptive control among

the main approaches. In the context of linear control design, the integral action control

is the most popular approach, and PI, PID controllers still dominate in practice, to

improve the robustness of systems by eliminating the steady-state errors. PI controller

is also one of the most popular tools in nonlinear control design [7, 82].

Control design methods for systems described by PCH model have recently been in-

vestigated in several works (see [66] for a survey). Adopting the PCH structure that

geometrically describes a large class of nonlinear models gives a number of advantages

such as the obvious relation between the dynamics and the energy of the system, the

energy conservative property that makes the model marginally stable to start with, and

77
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the coupling between the non-damping and the damping elements. However, this model-

ing approach results in exclusion of important ingredients of the system’s dynamics such

as friction. Hence, relying only on the pure PCH model, often results in a controller that

works very well in simulation, but needs further adjustment in implementation [66, 47].

The IDA-PBC, introduced in [74], is a physically inspired control design method that

invokes the principles of energy shaping and dissipation and formulated for systems de-

scribed by PCH models. The main objective of this method is to stabilize the dynamical

system by rendering the closed-loop system passive (by shaping its energy) with a de-

sired storage function (which is a proper Lyapunov function) [72]. Furthermore, the

system can be asymptotically stabilized if it can be rendered strictly (output) passive

by means of damping injection [109]. While IDA-PBC controller is theoretically proven

to asymptotically stabilize classes of PCH systems, in real applications, the effect of

disturbances, uncertainties or reference signal may deteriorate the performance of the

control system [29], and the closed-loop system is more likely to suffer from steady-state

errors or even instability. Moreover, when it comes to parametric uncertainties, the

real-time implementation of control system requires a real-time and reasonably accurate

estimate of these uncertainties.

There have been relatively few works that discuss the robustness issues in the con-

text of the PCH framework. A general method to add integral action that depends

on the passive outputs has been proposed in [66]. In [29], a framework that includes

state transformation to add the integral action on the non-passive outputs have been

developed. Integral control has been also introduced to PCH systems to deal with

unmatched disturbances in [70]. The robustness of fully actuated mechanical systems

subject to external disturbances has been recently discussed in [82]. This method which

incorporates a change of coordinates and adopts the ISS and integral ISS (iISS) theo-

ries has improved the robustness of these systems by rejecting matched and unmatched

disturbances. Using a power-based modelling framework of PCH and using a canonical

change of coordinates, integral and adaptive control schemes have been presented in

[27]. For parametric uncertainty in the control input where uncertainties can be lin-

early parametrized as errors in the control input, an adaptive stabilization and tracking

control methods for fully-actuated mechanical systems have been proposed in [28].

In this chapter extension of results from [29, 82] for fully-actuated PCH mechanical sys-

tems are proposed. In Subsection 5.3.1, we extend the robust PI controller of mechanical

system proposed in [82] to the robust PID-like controller that provides a more general

framework. In Subsection 5.3.2, inspired by the work of [29] and using the idea of coordi-

nates transformation [82], we show that the integral action control can be incorporated

to improve the robustness of IDA-PBC controller for PCH mechanical systems. Subsec-

tion 5.3.3 provides the most important contribution of the work reported in this chapter,

i.e. a novel integral control scheme for underactuated mechanical systems within PCH

structure which has not previously been investigated in the literature. As we will discuss



Chapter 5 Robust IDA-PBC and PID-like Control for PCH Systems 79

later, the system being underactuated significantly complicates the inclusion of the inte-

gral control. For this, we first introduce a technique to modify the structure of the model

of the underactuated system, which then allows the implementation of the integral IDA

controllers on the separable underactuated PCH systems.

The robustness of the separable PCH mechanical systems under the presence of matched

and unmatched time-varying disturbances is discussed in Subsection 5.3.4. We show that

using a certain change of coordinates a new method to characterize the property of sys-

tem with disturbances such that the well-known input-to-state stability (ISS) property

is satisfied. This method provides a simpler controller design than the one proposed

in [82]. Furthermore, it provides a framework to apply this method to underactuated

PCH systems. We also show that in some conditions asymptotic stability property of

the closed-loop system can be achieved. Subsection 5.3.5 describes the design of a novel

adaptive controller for uncertain PCH systems. Extension of the results to the case of

non-separable inertia matrix is presented in Section 5.4. The results are validated in

Section 5.5 where we apply our various proposed methods to robustly control an iner-

tia wheel pendulum (IWP) system. Finally, concluding remarks are made in the last

section.

5.2 Preliminaries

Review on integral control within PCH framework

In PCH framework, the states p and q are known as the passive outputs and the

non-passive outputs, respectively [29].

To improve control performance, particularly with respect to steady-state error and

reference inputs, the idea of applying integral action on the passive outputs of PCH

systems has been proposed in [66]. In this method the integral control (IC)

v = −Ki

∫

yddt = −KiG
⊤

∫

∇pHddt, (5.1)

with the integral gain Ki = K⊤
i > 0, is added to the IDA-PBC stabilized PCH system

(3.12) to form an extended dynamical system

[

q̇

ṗ

]

=

[

0 M−1Md

−MdM
−1 J2 −Rd

][

∇qHd

∇pHd

]

+

[

0

G

]

v (5.2)

which can be written into an extended PCH form as






q̇

ṗ

v̇




 =






0 M−1Md 0

−MdM
−1 J2 −Rd GKi

0 −KiG
⊤ 0











∇qHdv

∇pHdv

∇vHdv




 (5.3)
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where

Hdv = Hd +
1

2
v⊤K−1

i v. (5.4)

In reality, applying the IC only to the states which are the passive outputs is often

insufficient. In Section 5.3, we present the extension of this approach to more general

classes of PCH systems allowing the IC input on the states which are the non-passive

outputs.

5.3 Robust Control of Separable Hamiltonian Systems

Subsections 5.3.1 and 5.3.2 present extensions to the results in [29] and [82] which deal

with the fully-actuated mechanical systems. Then, Subsection 5.3.3 extends the integral

IDA-PBC results to deal with underactuated mechanical systems. In Subsection 5.3.4

an ISS controller is proposed for general PCH mechanical systems subject to external

matched and unmatched disturbances. It shows also an extension to the case of under-

actuated systems. An adaptive control design method is also proposed in Subsection

5.3.5.

5.3.1 PID-like control for separable PCH systems

In [82], a PI controller has been proposed to reject constant disturbance(s) for the case

of a separable PCH system which is assumed to have natural damping. On the contrary,

here we start with assuming that the system does not have natural damping and we

introduce the damping to the system (3.1) by means of a derivative controller, thus, we

obtain a PID-like controller. This assumption of no damping is consistent with the PCH

model that we consider in this thesis.

Remark 5.1. Note that we call the controller as PID-like controller because it consists

of the P, I and D terms. However, this controller is a state feedback controller and not

exactly the same as the conventional PID controller which sits on the feed-forward path

of the system. This type of control has been used for instance in [82].

Given the separable PCH system (3.1) with the PID-like controller

u = −Mẋv −Kdxv −KdM
−1p

= −MKiG
⊤∇xqV (xq)

︸ ︷︷ ︸

Proportional

−KdKiG
⊤

∫

∇xqV (xq)dt

︸ ︷︷ ︸

Integral

−KdM
−1p

︸ ︷︷ ︸

Derivative

, (p = Mq̇) (5.5)

where Ki = K⊤
i > 0, Kd = K⊤

d > 0 and introducing xv such that

ẋv = KiG
⊤∇xqH̃ = KiG

⊤∇xqV.
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Using the coordinate transformation

xq = q; xp = p+MGxv (5.6)

the closed-loop system in the new variables x := [xq xp xv] takes the form






ẋq

ẋp

ẋv




 =






0 In −GKi

−In −Kd 0

KiG
⊤ 0 0











∇xqH̃

∇xpH̃

∇xvH̃




 , (5.7)

with the total energy function

H̃ =
1

2
x⊤p M

−1xp +
1

2
x⊤v K

−1
i xv + V (xq). (5.8)

The procedure can now be summarized in the following proposition.

Proposition 5.2. Consider the separable PCH system (3.1). Define the state transfor-

mation (5.6) to realize the augmented closed-loop PCH system (5.7) with the Hamilto-

nian function (5.8). Then, the PID-like controller (5.5) is an asymptotically stabilizing

controller for the system. �

Proof of Proposition 5.2: Consider the Hamiltonian function (5.8) as a candidate

Lyapunov function for the system (5.7). Because M is constant, then ∇xqH̃ = ∇xqV .

Its derivative along the trajectories of the system is

˙̃H = x⊤p M
−1ẋp + x⊤v K

−1
i ẋv +∇xqV

⊤(xq)ẋq

= x⊤p M
−1(−∇xqV −KdM

−1xp) + x⊤v K
−1
i (KiG

⊤∇xqV ) +∇xqV
⊤(x⊤p M

−1 −Gxv)

= −x⊤p M
−1KdM

−1xp,

which is negative semi-definite. By invoking LaSalle’s invariance principle [47], one can

prove that the largest invariant set contained in

Ω = {x{q,p,v} : ˙̃H = −x⊤p M
−1KdM

−1xp = 0 | xp = 0}

is the equilibrium point xe = (xqe, 0, 0) = (qe, 0, 0), thus it is asymptotically stable (see

the proof of Proposition 5.4). The PID-like controller (5.5) is found by equating (3.1)

and (5.7) and applying the coordinate transformation (5.6), that is

ṗ ≡ ẋp −Mẋv

−∇qH +Gu = −∇xqH̃ −Kd∇xpH̃ −Mẋv.

Notice that with (5.6) we have ∇qH = ∇xqH̃ and ∇xpH̃ = M−1(p + Mxv), thus, we

obtain (5.5). �



82 Chapter 5 Robust IDA-PBC and PID-like Control for PCH Systems

Remark 5.3. The PCH structure of the original model (3.1) has been preserved in the

augmented system (5.7). This can be shown from i) the coincidence of the state equations

of both models (they are matched) ii) the preservation of the Hamiltonian and the

Poisson structure [82] of the model, i.e. the positive definiteness of the interconnection

matrix. This preservation in the closed-loop system ensures asymptotic stability of the

system as shown in the Proof of Proposition 5.2, and robustness property is provided

through the introduction of the integral action.

5.3.2 Integral IDA-PBC (IIDA) for separable PCH systems

In Subsection 5.3.1, a PID-like controller has been proposed for both asymptotically

stabilizing and robustifying the fully-actuated PCH system. In this section, we assume

that the stabilization problem has been solved using IDA-PBC method and we need to

introduce an integral action to solve the robustness issue. As discussed in Subsection 5.2,

a method to include the IC for passive outputs has existed. However for non-passive

outputs, it is difficult to add the IC action while preserving the PCH structure and

stability properties simultaneously.

In [36] a method that involves canonical transformation of coordinates and solving a

set of PDEs was proposed. Coordinate transformation was also used in [70] to deal

with the robust control of non-passive outputs with unmatched disturbances. An initial

result towards applying IC on non-passive outputs of PCH systems has been recently

proposed in [29]. In this method the IC is added to the PCH model that has already

been stabilized using a PBC method, exploiting a state transformation that preserves

the Poisson structure of the open-loop system. However, this method requires solving

a set of algebraic equations that account for defining the state transformation which

makes it quite complicated.

Inspired by the work of [29, 70, 82], we present a simpler method to include the IC

for non-passive outputs of PCH system assuming a stabilizing IDA-PBC controller has

already been obtained and we are dealing with steady-state error. The main idea is to

use the change of coordinates as in Subsection 5.3.1 and [82] to obtain the IC, while

preserving the structure and stability properties of the original PCH model.

Consider the closed-loop PCH system (5.2) with equilibrium satisfying (3.6) when v = 0.

Since throughout the IDA-PBC design procedures, J2 is set to 0 as both M and Md are

constants [71], the system can be rewritten as

[

q̇

ṗ

]

=

[

0 M−1Md

−MdM
−1 −Rd

][

∇qHd

∇pHd

]

+

[

0

G

]

v. (5.9)
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Applying the same coordinate transformation (5.6), with the integral control

v = −RdM
−1
d MGxv

ẋv = KiG
⊤∇xqH̃,

(5.10)

the closed-loop system can be written in the augmented PCH form






ẋq

ẋp

ẋv




 =






0 M−1Md −GKi

−MdM
−1 −Rd 0

KiG
⊤ 0 0











∇xqH̃

∇xpH̃

∇xvH̃




 (5.11)

with the total energy function

H̃ =
1

2
x⊤p M

−1
d xp +

1

2
x⊤v K

−1
i xv + V (xq). (5.12)

The total control input is then

u = uIDA + v + up (5.13)

where up = −MKiG
⊤∇xqV (xq) is an additional control term that appears through the

procedure of finding the closed-loop controller.

Proposition 5.4. Consider the separable PCH system (3.1). Assume a stabilizing IDA-

PBC controller (3.3) has already been obtained with the desired (closed-loop) energy func-

tion (3.5) and the desired PCH dynamics take the form (5.9). Defining the state trans-

formation (5.6) to realize the augmented closed-loop PCH system (5.11) with the Hamil-

tonian function (5.12), asymptotic stability of the equilibrium point xe = (xqe, 0, 0) =

(qe, 0, 0) is preserved with the integral control (5.10). Furthermore, the total control input

with integral action takes the form (5.13). �

Proof of Proposition 5.4: The proof can be established following the same procedures

as in the proof of Proposition 5.2. Furthermore, in view of (3.6), (5.6) and (5.12), we

obtain ˙̃H = −x⊤p M
−1
d RdM

−1
d xp ≤ 0, i.e the system is stable. LaSalle’s invariance

principle is then used to prove that the largest invariant set contained in

Ω = {x{q,p,v} : ˙̃H = −x⊤p M
−1
d RdM

−1
d xp = 0 | xp = 0},

is the equilibrium point xe = (qe, 0, 0), thus it is asymptotically stable. Notice that for

the system to maintain ˙̃H = 0 condition, the trajectory must be confined to xp = 0.

Using the system closed-loop dynamics (5.11) we show that

xp ≡ 0 =⇒ ẋp ≡ 0 =⇒ −MdM
−1∇xqH̃ −Rd∇xpH̃ = 0 =⇒ ∇xqH̃ = 0,

as MdM
−1 > 0 by definition. For PCH systems, the gradient of the potential energy

function vanishes (∇xqH̃ = ∇xqV (xq) = 0) if the system converges to its equilibrium
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point qe (see (3.6), Section IV in [2] and Lemma 4.2. in [40]). Thus,

∇xqH̃ ≡ 0 =⇒ xq = qe and xv = 0.

Hence, the system can maintain ˙̃H = 0 only at the equilibrium point xe = (qe, 0, 0),

which proves that this equilibrium is asymptotically stable. The controller is obtained

by matching the momenta of (5.9) and (5.11), that is

ṗ = −MdM
−1∇qHd −Rd∇pHd + v

≡ ẋp −MGẋv

= −MdM
−1∇xqH̃ −Rd∇xpH̃ −MGẋv.

(5.14)

Solving (5.14), we get (5.10) and the controller extra term up = −MKiG
⊤∇V (xq). �

Remark 5.5. The integral control laws (5.5) and (5.10) obtained in the PID-like and

IIDA methods, respectively, are very similar, except that there is the term M−1
d M in the

one constructed using IDA-PBC method. This is due to the different interconnection

matrices used for the design; the original interconnection matrix is used in the case of

PID-like and the desired one in the case of IIDA. Also, the total control input u of IIDA

includes an additional proportional control term up.

5.3.3 Integral control for underactuated PCH mechanical systems

In Subsections 5.3.1 and 5.3.2, we have discussed the construction of controllers for sep-

arable PCH systems, requiring the input matrix G to be full rank. This condition makes

the application to underactuated systems in which G is non full rank, not straightfor-

ward, whereas these systems are often found in practice, either by design or due to

faults. In this section, a more general result, the design of integral control action for

underactuated mechanical systems is proposed.

While PCH models allow some extensions in the system coordinates, such as adding

integral action, two main properties must be ensured when these extensions are added

to the model:

a. Preserving the PCH Poisson structure matrix (consult [90] for detailed formula-

tion). The extension must not break the skew-symmetry of the interconnection

matrix and the positive definiteness of the dissipation matrix.

b. Preserving the passivity and (asymptotic) stability of the closed-loop system.

Due to these constraints, all existing integral control schemes within PCH framework

were limited to fully-actuated mechanical systems, imposing the following conditions:
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(i) The input matrix G is full rank.

(ii) G = G⊤, or sometimes Ki = K⊤
i is used instead.

In fact, Condition (i) can be relaxed because the PCH structure can still be preserved

even if the system is underactuated. This can be proved for instance using the Schur’s

complement [117], by showing the positive definiteness of the interconnection and dis-

sipation matrices even if rank(G)=m < n. Moreover, the formalism of IDA-PBC for

underactuated mechanical systems also shows that the PCH structure is preserved even

when G is not invertible [71].

Unfortunately, stability cannot be easily verified if the integral action is added to the

underactuated PCH mechanical systems, because Condition (ii) is not satisfied. This

can be illustrated in the following case. A simple calculation of the derivative of the

Hamiltonian function (5.12) along the trajectories of the system gives

˙̃H = −x⊤p M
−1
d RdM

−1
d xp −M−1

d xpGxv +M−1
d xpG

⊤xv.

If G = G⊤ like in the case of fully-actuated PCH system, the last two terms are equal

except with opposite signs, thus cancel out each other. Hence,

˙̃H = −x⊤p M
−1
d RdM

−1
d xp ≤ 0,

which proves the stability of the equilibrium point. For underactuated mechanical sys-

tems, since G ∈ R
n×m 6= G⊤ ∈ R

m×n, we cannot draw any conclusion about the stability

of the system. A similar illustration can also be shown for the integral control presented

in Subsection 5.2. Therefore, a modification is needed to deal with underactuated sys-

tems, as discussed next.

A) Integral control on passive outputs

Here we present results for underactuated PCH systems with n = 2, m = 1. Recall the

desired closed-loop PCH system (5.3). For underactuated systems, the matrix G can be

defined as

G =

[

g1

g2

]
(

G⊤ =
[

g1 g2

])

. (5.15)

Depending on how the input acts on the states, we may have either

G1 =

[

g1

0

]
(

G⊤
1 =

[

g1 0
])

,

if the first passive output receives the direct action from the input, or

G2 =

[

0

g2

]
(

G⊤
2 =

[

0 g2

])

,
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if the second passive output receives the direct action from the input. Without loss of

generality, for the augmented system we define a new matrix G as

G =

[

g1 0

0 g2

]

,

(

G⊤ =

[

g1 0

0 g2

])

(5.16)

thus, we obtain either

G1 =

[

g1 0

0 0

]

,

(

G⊤
1 =

[

g1 0

0 0

])

corresponding to G1, or

G2 =

[

0 0

0 g2

]

,

(

G⊤
2 =

[

0 0

0 g2

])

corresponding to G2.

Remark 5.6. Notice that G = G⊤. When either g1 or g2 is zero, exclusively, replac-

ing G with G in (5.3) neither breaks the PCH structure (the dynamics) nor changes

the contribution of the augmented state to the system. This is due to the fact that

rank(G) = rank(G). For example, using G1 in the extended state equation, we have

v̇ = −KiG
⊤∇pHdv = −Ki

[

g1 0
]
[

∇p1Hdv

∇p2Hdv

]

= −Kig1∇p1Hdv,

and using G1, we obtain

v̇ = −KiG⊤
1 ∇pHdv = −Ki

[

g1 0

0 0

][

∇p1Hdv

∇p2Hdv

]

=

[

−Kig1∇p1Hdv

0

]

.

As the last column is zero, it can be excluded. Thus, the same result is obtained in both

cases, and the PCH dynamics are preserved. The same case also applies to (G2,G2).

Hence, with this substitution we obtain

Ḣdv = −p⊤M−1
d RdM

−1
d p ≤ 0,

which proves the stability of the system.

Remark 5.7. Note that the replacement of G with G, is not meant to change the input

matrix of the original PCH system, but it is applied to the augmented system to proceed

with the design procedure.

Proposition 5.8. Replacing the G in the PCH model (5.3) with G to obtain






q̇

ṗ

v̇




 =






0 M−1Md 0

−MdM
−1 J2 −Rd GKi

0 −KiG⊤ 0











∇qHdv

∇pHdv

∇vHdv




 , (5.17)
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allows for the integral action to be applied to underactuated mechanical systems. �

Proof of Proposition 5.8 is established in Remark 5.6. �

B) Integral control on non-passive outputs

In Subsection 5.3.3 we have considered integral control on passive outputs. However in

the context of PCH mechanical systems, non-passive outputs, usually being the states

representing displacement or positions, are often the outputs of interest. In this subsec-

tion we will present the method of introducing the integral action on non-passive outputs

for underactuated systems. The construction of this integral control for non-passive out-

puts follows closely the procedures as in Subsection 5.3.2, with the replacement of matrix

G by G.

Introducing the integral control action to the non-passive outputs, in the same way

as how it was done to the passive outputs, yields the closed-loop PCH system (note:

compare this with (5.17)):






q̇

ṗ

v̇




 =






0 M−1Md 0

−MdM
−1 J2 −Rd GKi

−KiG⊤ 0 0











∇qHdv

∇pHdv

∇vHdv




 . (5.18)

However, this way destroys the PCH structure of the system (the system is no more

Hamiltonian), which is obvious from the unsymmetrical interconnection matrix.

Another option is to write the augmented system as






q̇

ṗ

v̇




 =






0 M−1Md GKi

−MdM
−1 J2 −Rd 0

−KiG⊤ 0 0











∇qHdv

∇pHdv

∇vHdv




 , (5.19)

which preserves the PCH structure. However, with this form, the integral control action

is not included in the control law, i.e. the integral control term is not attainable from

the augmented system. To solve this, some methods have recently been reported in

literature where the integral action is admitted by means of coordinates transformation

such as using canonical transformation in [36, 26] or other methods as in [29, 82, 70].

C) Integral IDA-PBC

To complete our results in this chapter, we present the extension of the integral IDA-

PCB from Subsection 5.3.2 to apply to underactuated PCH systems. The following

result is a direct extension of Proposition 5.4.

Proposition 5.9. Consider the separable PCH system (3.1) with G non-full rank. As-

sume a stabilizing IDA-PBC controller (3.3) is already obtained with the desired (closed-

loop) energy function (3.5) and the desired PCH dynamics take the form (5.9). We
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employ the state transformation (5.6) to realize the augmented closed-loop PCH system






ẋq

ẋp

ẋv




 =






0 M−1Md −GKi

−MdM
−1 −Rd 0

KiG⊤ 0 0











∇xqH̃

∇xpH̃

∇xvH̃




 , (5.20)

with the Hamiltonian function (5.12) and replacing G with G. Then, asymptotic stability

of the equilibrium point xe = (qe, 0, 0) is preserved with the integral control

v = −G+RdM
−1
d MGxv

ẋv = KiG⊤∇xqH̃.
(5.21)

Furthermore, the total control input takes the form

u = uIDA + v + up (5.22)

where up = −G+MKiGẋv is an additional control term which appears through the pro-

cedure of finding the feedback controller. �

Proof of Proposition 5.9 is established following the same procedures as in the proof

of Proposition 5.4 and involving Remark 5.6. �

Later in Section 5.5, we will illustrate by example, how this integral control action

eliminates the steady-state error.

5.3.4 Input-to-State Stability for separable PCH systems using IDA-

PBC method

We present our results for the Input-to-State Stability (ISS) control for separable PCH

mechanical systems with time-varying disturbances employing IDA-PBC method to ob-

tain the stabilizing controller. First, we present our results for the fully-actuated me-

chanical systems, and then we present some extensions to deal with the underactuation

case.

Consider the PCH system

[

q̇

ṗ

]

=

[

0 In

−In 0

][

∇qH

∇pH

]

+

[

0

G

]

u+

[

d1

d2

]

. (5.23)

The objective is to provide a control method to deal with systems subject to matched,

d2, and unmatched, d1, time-varying bounded disturbances. We first discuss the case

of matched disturbances where we adopt the integral Input-to-State Stability (iISS)

approach, and then we give a general method based on ISS approach to deal with both

types of disturbances.
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A) iISS for time-varying matched disturbance

Interestingly, the system (5.23) subject to matched disturbance d2 (d1 = 0) is naturally

iISS using the integral control proposed in Proposition 5.4 with the PCH form (5.11)

rewritten (to include the disturbance) as:






ẋq

ẋp

ẋv




 =






0 M−1Md −GKi

−MdM
−1 −Rd 0

KiG
⊤ 0 0











∇xqH̃

∇xpH̃

∇xvH̃




+






0

d2

0




 . (5.24)

This can be proven by taking

H̃ =
1

2
x⊤p M

−1
d xp +

1

2
x⊤v K

−1
i xv + V (xq) (5.25)

as a candidate iISS-Lyapunov function. The Lyapunov derivative along the trajectories

of (5.24) is computed as

˙̃H = x⊤p M
−1
d ẋp + x⊤v K

−1
i ẋv +∇V ⊤(xq)ẋq

= −x⊤p M
−1
d RdM

−1
d xp + x⊤p M

−1
d d2

≤ −λmin(Rd)|M−1
d xp|2 + x⊤p M

−1
d d2

(5.26)

where λmin(Rd) is the smallest non-zero eigenvalue of Rd. Using the Young’s inequality

[82], rewritten as −ζ|y|2 + η|y||z| ≤ − ζ
2 |y|2 +

η2

2ζ |z|2, this yields

˙̃H ≤ −λmin(Rd)

2
|M−1

d xp|2 +
1

2λmin(Rd)
|d2|2

≤ −α(|xp|) + σ(|d2|),
(5.27)

with α, σ ∈ K∞. The inequality (5.27) proves that the system is smoothly dissipative.

Furthermore, the system is zero-state detectable from the output M−1
d xp. This can be

shown as follows, from (5.24) and (5.26)

d2 ≡ 0, M−1
d xp ≡ 0 =⇒ xp = xq = xv = 0.

Thus, all conditions of the iISS property [6] are satisfied, which proves that the closed-

loop PCH system is iISS w.r.t the matched disturbances.

B) ISS for time-varying matched and unmatched disturbances

Here we show the general case when both matched and unmatched disturbances are

present. A method to deal with this situation has been recently reported in [82]. How-

ever, this method results in a complicated closed-loop system, due to the complex aug-

mented PCH structure and the complex controller. The following proposition shows our

new approach, providing a simpler ISS control design method. This approach requires
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a change of coordinates on both the positions and momenta states to establish the ISS

property.

Proposition 5.10. Consider the separable PCH system (5.23) with time-varying bounded

disturbances d1(t), d2(t). Define the state transformation

xq = q − xv; xp =
1

2
p+ xv (5.28)

to realize the closed-loop system in the new variables x := [xq xp xv] as






ẋq

ẋp

ẋv




 =






−M−1 M−1Md −M−1

−MdM
−1 −Rd −MdM

−1

M−1 M−1Md −M−1











∇xqH̃

∇xpH̃

∇xvH̃




+






d1
1
2d2

0




 , (5.29)

with the desired Hamiltonian function

H̃ =
1

2
x⊤p M

−1
d xp +

1

2
x⊤v xv + V (xq), (5.30)

then the closed-loop system is ISS with respect to the disturbances d1 and d2 and the

function (5.25) is the ISS-Lyapunov function for the system (5.29). Furthermore, the

control law is obtained as

Gu = ∇qH − 2(M−1 +MdM
−1)∇xqH̃ −M−1p−RdM

−1
d p

− 2(RdM
−1
d +MdM

−1)xv

ẋv = M−1∇xqH̃ +
1

2
M−1p.

(5.31)

�

Proof of Proposition 5.10: First, we show the coincidence of the positions and

momenta states of system (5.23) with their corresponding states in (5.29). For the

position states q, from (5.28) we have

q̇ ≡ ẋq + ẋv

M−1p+ d1 ≡ −M−1∇xqH̃ +M−1xp −M−1xv + d1 +M−1∇xqH̃ +M−1xp −M−1xv

=
1

2
M−1p+M−1xv −M−1xv + d1 +

1

2
M−1p+M−1xv −M−1xv,

and for the momenta p,

ṗ ≡ 2ẋp − 2ẋv

Gu−∇qH + d2 ≡ −2MdM
−1∇xqH̃ − 2Rd∇xpH̃ − 2MdM

−1∇xvH̃

− 2M−1∇xqH̃ − 2M−1Md∇xpH̃ + 2M−1∇xvH̃ + d2.

Substituting (5.28) and cancelling equal terms but with opposite signs, and rearranging

we obtain the control law (5.31). Consider (5.30) as a candidate ISS-Lyapunov function.
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Its time-derivative along the trajectories of (5.29) along with (5.28) is given by

˙̃H = ∇xpH̃
⊤ẋp + x⊤v ẋv +∇xqH̃(xq)

⊤ẋq

= ∇xpH̃
⊤(−MdM

−1∇xqH̃ −Rd∇xpH̃ −MdM
−1∇xvH̃ + d2)

+∇xvH̃
⊤(M−1∇xqH̃ +M−1Md∇xpH̃ −M−1∇xvH̃)

+∇xqH̃
⊤(−M−1∇xqH̃ +M−1Md∇xpH̃ −M−1∇xvH̃ + d1)

= −∇xpH̃
⊤Rd∇xpH̃ −∇xvH̃

⊤M−1∇xvH̃ −∇xqH̃
⊤M−1∇xqH̃ +∇xpH̃

⊤d2

+∇xqH̃
⊤d1

= −x⊤p M
−1
d RdM

−1
d xp −M−1|∇xqH̃|2 −M−1|∇xvH̃|2 + x⊤p M

−1
d d2 +∇xqH̃

⊤d1

≤ −λmin(Rd)|M−1
d xp|2 − ρ|∇xqH̃|2 − ρ|∇xvH̃|2 + x⊤p M

−1
d d2 +∇xqV

⊤d1,

where the constant ρ is such that ρIn ≤ M−1(q). Applying the Young’s inequality, gives

˙̃H ≤ −λmin(Rd)

2
|M−1

d xp|2 +
1

2λmin(Rd)
|d2|2 −

ρ

2
|∇xqH̃|2 + 1

2ρ
|d1|2

− ρ

2
|∇xvH̃|2

≤ −α(|xq, xp, xv|) + σ(|d|),

(5.32)

Now, from (5.32) and the fact that H̃ function is positive definite, proper and has an

isolated minimum (3.6) as a consequence of using IDA-PBC method, all conditions of

the ISS property from Theorem 2.14 and Definition 2.16 are satisfied, which proves

that the closed-loop PCH system is ISS with respect to the matched and unmatched

disturbances.

Remark 5.11. Proposition 5.10 can be extended to apply to underactuated PCH me-

chanical systems by replacing the matrix G in (5.29) with G as in (5.16), in a similar

way as the results in Section 5.3.3.

5.3.5 Adaptive IDA-PBC control for separable PCH systems

The implementation of the IDA-PBC controller (3.3) requires the exact knowledge of the

system’s parameters, essentially the inertia matrix M and the potential energy function

V . Neglecting parameter uncertainties may cause inaccuracy or instability for the control

systems [95]. This motivates the establishment of an adaptive scheme to estimates the

uncertainties.

A commonly occurring uncertainties in PCH models is the uncertainty in the poten-

tial energy function, thus in the gradient of this function. The linearly parameterized

gradient of the potential energy function can then be written as

∇qV (q, θ) = F (q)θ, (5.33)
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where the matrix function F (q) is known and the constant vector θ contains the unknown

parameters. Notice that in the IDA-PBC method the desired potential energy function

Vd(q) (the second term in (3.5)) contains V (q) in its terms. Therefore, the gradient of

this function can be written as

∇qVd(q, θ) = ∇qV (q, θ) + S(q) = F (q)θ + S(q), (5.34)

where S(q) is known as Vd is chosen by design through solving the matching equations.

To deal with the class of PCH systems with this type of uncertainty, we propose two

adaptive-IDA-PBC control methods. In the first method, the integral action is applied on

the passive outputs, while in the second method it is applied on the non-passive outputs

and includes a change of coordinates. First we introduce the following assumption.

Assumption 5.1. The matrix F (q) is symmetric, i.e. F (q) = F (q)⊤.

Assumption 5.1 essentially imposes that the potential energy function V (q) is on the

form V (q) =
n∑

i=1
V (qi).

Remark 5.12. Although we focus here on the uncertainty of the potential energy

function V (q), the parameters of this function are also the parameters of the inertia

matrix M which forms the kinetic energy function K = 1
2pM

−1p. Thus, there could be

uncertainty in the kinetic energy function, which we do not take into account in this

case.

A) Integral control on passive outputs

Proposition 5.13. Consider the separable PCH system (3.1) which can be written on

the form ẋ = f∗(x(t)), where f∗(x(t)) represents the ideal system, x =

[

q

p

]

, and xe =

(qe, 0) is the equilibrium of the ideal system. Assume that the potential energy function

V (q, θ) of the system contains uncertainties, hence its gradient can be represented as in

(5.33). Define the augmented closed-loop PCH system as







q̇

ṗ
˙̂
θ






=






0 M−1Md 0

−MdM
−1 −Rd QF (q)

0 −(QF (q))⊤ 0











∇qHd

∇pHd

∇θ̃Hd




 , (5.35)

where θ̂ is the estimate of θ, θ̃ = θ̂ − θ is the estimation error, Q = (In −MdM
−1) and

Hd(q, p, θ̃) =
1

2
p⊤M−1

d p+
1

2
|θ̃|2 + Vd(q, θ) (5.36)

is the desired Hamiltonian function. Then, the controller

Gu = F θ̂ −MdM
−1F θ̂ −MdM

−1S −RdM
−1
d p, (5.37)
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with the update law
˙̂
θ = −(QF )⊤∇pHd, (5.38)

stabilizes the system at the equilibrium (qe, 0, θ). �

Proof of Proposition 5.13: Consider the desired Hamiltonian function (5.36) as a

candidate Lyapunov function. Its time derivative along the trajectories of (5.35) satisfies

Ḣd = p⊤M−1
d ṗ+ θ̃⊤

˙̃
θ +∇qV

⊤
d q̇

= p⊤M−1
d (−MdM

−1∇qVd −Rd∇pHd +QF∇θ̃Hd)− θ̃⊤(F⊤Q⊤∇pHd)

+∇qV
⊤
d (M−1Md∇pHd)

= −p⊤M−1∇qVd − p⊤M−1
d RdM

−1
d p+ p⊤M−1

d QFθ̃ − θ̃⊤F⊤Q⊤M−1
d p

+∇qV
⊤
d M−1p

= −p⊤M−1∇qVd + (p⊤M−1∇qVd)
⊤ + p⊤M−1

d QFθ̃ − (p⊤M−1
d QFθ̃)⊤

− p⊤M−1
d RdM

−1
d p

= −p⊤M−1
d RdM

−1
d p ≤ −|M−1

d p|2Rd
≤ 0

(5.39)

with ∂Hd

∂x f∗(x(t)) ≤ 0. If ∂Hd

∂x f∗(x(t)) < 0, for all x 6= xe, then LaSalle’s invariance

principle is sufficient to conclude the convergence of the states to their equilibrium.

Otherwise, it is necessary to add the following detectability assumption to complete the

stability proof [7].

Assumption 5.2. (Detectability) The trajectories of the system (5.35) are such that
∂Hd

∂x f∗(x(t)) ≡ 0 implies limt→∞ x(t) = xe.

Note that from (5.39), we have Ḣd = 0 =⇒ p = 0. Furthermore, p ≡ 0 =⇒ ṗ ≡ 0.

Thus, under the dynamics (5.35) yields:

ṗ = −MdM
−1∇qVd −Rd∇pHd +QF (q)∇θ̃Hd

= −MdM
−1(Fθ + S(q))−RdM

−1
d p

︸ ︷︷ ︸

=0

+QFθ̃

= −MdM
−1(Fθ + S) + (In −MdM

−1)F (θ̂ − θ)

= −MdM
−1Fθ +MdM

−1Fθ −MdM
−1S −MdM

−1F θ̂ + F θ̂ − Fθ

= −MdM
−1(S + F θ̂) + F (θ̂ − θ) = 0.

(5.40)

From (5.36) and (5.39), p ∈ L2 ∩ L∞ and q, θ̃ ∈ L∞. Therefore, the zero momentum

(velocity) may guarantee boundedness of θ̃ and consequently the convergence of the

position states (q) to their desired values, although this could involve steady-state errors.

If θ̃ is very small, which means θ̂ ≈ θ, then the term F (θ̂−θ) in (5.40) ≈ 0 which implies

that F θ̂ + S ≈ 0. Since F θ̂ + S = ∇qHd = 0, using similar arguments as in the proof of

Proposition 5.4, we have

∇qHd ≡ 0 =⇒ q = qe.
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This shows that some asymptotic properties of the proposed design method can be

concluded. The adaptive controller (5.37) is obtained by matching the momenta of (3.1)

and (5.35), that is

−∇qV +Gu ≡ −MdM
−1∇qVd −Rd∇pHd +QF (q)∇θ̃Hd

−Fθ +Gu ≡ −MdM
−1 (Fθ + S(q))−RdM

−1
d p+ (In −MdM

−1)F (θ̂ − θ)

Gu ≡ −MdM
−1Fθ −MdM

−1S −RdM
−1
d p+MdM

−1Fθ −MdM
−1F θ̂

+ F θ̂ − Fθ + Fθ

Gu ≡ F θ̂ −MdM
−1F θ̂ −MdM

−1S −RdM
−1
d p.

Hence, it completes the proof. �

B) Integral control on non-passive outputs

Another method to design an adaptive controller is by applying the integral action on

the non-passive outputs. The motivation for this approach is that the IC on passive

output cannot guarantee the convergence of the states towards an equilibrium.

Consider the following closed-loop PCH model







q̇

ṗ
˙̂
θ






=






0 M−1Md U
−MdM

−1 −Rd 0

−U⊤ 0 0











∇qHd

∇pHd

∇θ̃Hd




 . (5.41)

Where U is a symmetric matrix to be defined later. Two problems arise from this

method; 1) the update law
˙̂
θ = −U⊤∇qHd = −U⊤(F (q)θ + S(q)), is a function of the

unknown θ, and 2) the integral action is unattainable from the closed-loop system. To

solve these problems we propose a change of coordinates similar to those proposed in

the previous sections, aiming at asymptotically stabilizing the uncertain system (3.1) at

the equilibrium point (qe, 0, θ).

Proposition 5.14. Consider the separable PCH system (3.1). Assume that the potential

energy function V (q, θ) of the system contains uncertainties, hence its gradient can be

represented as in (5.33). Define the state transformation

xq = q

xp = p− U θ̃
xθ̃ = θ̃,

(5.42)

to realize the augmented closed-loop PCH system






ẋq

ẋp

ẋθ̂




 =






0 M−1Md M−1U
−MdM

−1 −Rd Λ

−(M−1U)⊤ −Λ⊤ −Υ











∇xqH̃

∇xpH̃

∇x
θ̃
H̃




 . (5.43)
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where θ̂ is the estimate of θ, θ̃ = θ̂ − θ is the estimation error, Υ = Υ⊤ > 0,

Λ = F (q)−MdM
−1F (q)−RdM

−1
d U

Υ = (M−1U)⊤F (q) + Λ⊤M−1
d U

(5.44)

and

H̃(q, p, θ̃) =
1

2
x⊤p M

−1
d xp +

1

2
|θ̃|2 + V (xq, θ), (5.45)

is the desired Hamiltonian function. Then, the controller

Gu = F (q)θ̂ −MdM
−1F (q)θ̂ −MdM

−1S(q)−RdM
−1
d p+ U ˙̂

θ, (5.46)

with the update law

ẋθ̂ =
˙̂
θ = −M−1UF (q)θ̂ −M−1US(q)− ΛM−1

d p, (5.47)

asymptotically stabilizes the system at the equilibrium (qe, 0, θ). �

Remark 5.15. The free matrix U is to be selected such that Υ is symmetric as to

preserve the Hamiltonian structure. Note that in (5.44), substituting Λ we obtain

Υ = (M−1U)⊤F (q) + Λ⊤M−1
d U

= (M−1U)⊤F + (F −MdM
−1F −RdM

−1
d U)⊤M−1

d U
= (M−1U)⊤F + FM−1

d U − (MdM
−1F )⊤M−1

d U − (RdM
−1
d U)⊤M−1

d U
= (M−1U)⊤F − ((M−1U)⊤F )⊤ + FM−1

d U − (RdM
−1
d U)⊤M−1

d U
= FM−1

d U − (RdM
−1
d U)⊤M−1

d U .

(5.48)

For example, choosing U = Md we obtain

Υ = FM−1
d Md − (RdM

−1
d Md)

⊤M−1
d Md = F −Rd.

Thus, Υ = Υ⊤ as both F and Rd are symmetric.

Proof of Proposition 5.14: The proof is established by (i) verifying the coincidence

of the position and momenta states of system (3.1) with their corresponding states in

(5.43). (ii) Showing that the expression of the update law ẋθ̂ doesn’t depend on θ. (iii)

Showing that the proposed method achieves asymptotic stability.

(i) For the position states q, we have

q̇ ≡ ẋq

M−1p ≡ M−1Md∇xpH̃ +M−1U∇x
θ̃
H̃ = M−1MdM

−1
d xp +M−1U θ̃

= M−1(p− U θ̃) +M−1U θ̃,
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and for the momenta p,

ṗ ≡ ẋp + U ˙̂
θ (

˙̃
θ =

˙̂
θ as θ is constant by definition)

−∇qH +Gu = −MdM
−1∇xqH̃ −Rd∇xpH̃ + Λ∇x

θ̃
H̃ + U ˙̂

θ

−Fθ +Gu = −MdM
−1(Fθ + S)−RdM

−1
d (p− U θ̃)

+ (F −MdM
−1F −RdM

−1
d U)θ̃ + U ˙̂

θ.

Using (θ̃ = θ̂ − θ) and solving, we obtain (5.46).

(ii) The update law is given by

ẋθ̂ = −M−1U∇xqH̃ − Λ∇xpH̃ −Υ∇x
θ̃
H̃

= −M−1U(Fθ + S)− ΛM−1
d (p− U θ̃)− (M−1UF + ΛM−1

d U)θ̃
= −M−1U(Fθ + S)− ΛM−1

d p+ ΛM−1
d U θ̃ −M−1UF θ̃ − ΛM−1

d U θ̃
= −M−1UFθ −M−1US − ΛM−1

d p−M−1UF θ̃.

(5.49)

Substituting (θ̃ = θ̂ − θ) in the last row in (5.49), yields

ẋθ̂ = −M−1UFθ −M−1US − ΛM−1
d p−M−1UF θ̂ +M−1UFθ.

Cancelling equal terms but with opposite signs, we obtain (5.47).

(iii) Consider the function (5.45), whose time-derivative along the trajectories of (5.43)

along with (5.42) is

˙̃H = (∇xpH̃)⊤ẋp + (∇x
θ̃
H̃)⊤ẋθ̂ + (∇xqH̃)⊤ẋq

= ∇xpH̃
⊤(−MdM

−1∇xqH̃ −Rd∇xpH̃ + Λ∇x
θ̃
H̃)

+∇x
θ̃
H̃⊤(−M−1U∇xqH̃ − Λ∇xpH̃ −Υ∇x

θ̃
H̃)

+∇xqH̃
⊤(M−1Md∇xpH̃ +M−1U∇x

θ̃
H̃) (5.50)

= −∇xpH̃
⊤MdM

−1∇xqH̃ −∇xpH̃
⊤Rd∇xpH̃ +∇xpH̃

⊤Λ∇x
θ̃
H̃

−∇x
θ̃
H̃⊤M−1U∇xqH̃ −∇x

θ̃
H̃⊤Λ∇xpH̃ −∇x

θ̃
H̃⊤Υ∇x

θ̃
H̃

+∇xqH̃
⊤M−1Md∇xpH̃ +∇xqH̃

⊤M−1U∇x
θ̃
H̃.

Taking the transpose of the terms ∇xqH̃
⊤M−1Md∇xpH̃, ∇x

θ̃
H̃⊤Λ∇xpH̃ and

∇xqH̃
⊤M−1U∇x

θ̃
H̃ and rearranging, yields
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˙̃H = −∇xpH̃
⊤MdM

−1∇xqH̃ + (∇xpH̃
⊤MdM

−1∇xqH̃)⊤ −∇xpH̃
⊤Rd∇xpH̃

+∇xpH̃
⊤Λ∇x

θ̃
H̃ − (∇xpH̃

⊤Λ∇x
θ̃
H̃)⊤ −∇x

θ̃
H̃⊤Υ∇x

θ̃
H̃

−∇x
θ̃
H̃⊤M−1U∇xqH̃ + (−∇x

θ̃
H̃⊤M−1U∇xqH̃)⊤ (5.51)

= −∇xpH̃
⊤Rd∇xpH̃ −∇x

θ̃
H̃⊤Υ∇x

θ̃
H̃

≤ −|∇xpH̃|2Rd
− |∇x

θ̃
H̃|2Υ.

Thus, the system (5.43) has a stable equilibrium at (qe, 0, θ) with xp, xθ̃ ∈ L2 ∩ L∞.

The convergence of the states is established invoking the following practical corollary of

Barbalat’s lemma [7]:

Corollary 5.16. Consider a function φ : R≥0 → R and suppose that φ(t) ∈ L2 ∩ L∞

and φ̇(t) ∈ L∞. Then limt→∞ φ(t) = 0. �

Applying Corollary 5.16, implies the convergence of states xp and xθ̃ to zero (xp, xθ̃ → 0

as t → ∞). Moreover, θ̃ = 0 =⇒ θ̂ = θ. Finally, the convergence of the states xq to

their desired states is established as follows:

xp, xθ̃ ≡ 0 =⇒ ẋp,
˙̂
θ ≡ 0. Thus, under the dynamics of (5.43) yields:

ẋp = −MdM
−1∇xqH̃ −Rd∇xpH̃ + Λ∇x

θ̃
H̃ = 0

= −MdM
−1∇xqH̃ −RdM

−1
d xp

︸ ︷︷ ︸

=0

+ Λθ̃
︸︷︷︸

=0

= 0

= −MdM
−1∇xqH̃ = 0.

(5.52)

This implies ∇xqH̃ = 0. Invoking similar arguments to those in the proof of Proposition

5.4, we obtain

∇xqH̃ ≡ 0 =⇒ xq = qe.

Since all trajectories converge to their desired values, we can conclude that the closed-

loop system (5.43) has an asymptotically stable equilibrium at (qe, 0, θ). �

5.4 Robust Control of Non-separable Hamiltonian Systems

In this section, we extend our results in Section 5.3 to deal with non-separable PCH

systems. In this case, as M and Md are functions of q, their derivatives need to be taken

into account in the construction of the control law. Fortunately, our approaches do not

require significant changes in the interconnection matrices (thus the augmented closed-

loop PCHmodels) which have been constructed from their separable counterparts (in [82]

significant changes applied). As expected, more complicated control laws are obtained
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as a consequence. Before we state the results, we show some necessary differentiations

that are used throughout the proof of results. Similar to (5.6), we start by defining

xp = p+ P
P = M(xq)Gxv.

(5.53)

The derivative is obviously

ẋp = ṗ+ Ṗ, (5.54)

while ẋp and ṗ are obtained directly from the PCH model. The term Ṗ is calculated as

Ṗ = ṀGxv +MGẋv,

ṀGxv =
n∑

i=1

(∇qiMGxv)(e
⊤
i ẋq).

(5.55)

Second, given non-constant M(xq) and Md(xq), the derivative of the Hamiltonian func-

tion

H̃ =
1

2
x⊤p M

−1
d (xq)xp +

1

2
x⊤v K

−1
i xv + V (xq), (5.56)

becomes

˙̃H = (∇xpH̃)⊤ẋp + (∇xvH̃)⊤ẋv + (∇xqH̃)⊤ẋq

= x⊤p M
−1
d ẋp + x⊤v K

−1
i ẋv +

(

∇xqV
⊤
x +

1

2

n∑

i=1

eix
⊤
p ∇qiM

−1
d xp

)

ẋq,
(5.57)

where the derivative of Md is now taken into account.

5.4.1 Integral IDA-PBC for non-separable PCH systems

Proposition 5.17. Consider the non-separable PCH system (3.1). Assume a stabilizing

IDA-PBC controller (3.3) has already been obtained with the desired (closed-loop) energy

function (3.5) and the desired PCH dynamics take the form

[

q̇

ṗ

]

=

[

0 M−1(q)Md(q)

−Md(q)M
−1(q) J2 −Rd

][

∇qHd

∇pHd

]

+

[

0

G

]

v. (5.58)

Defining the state transformation (5.6) to realize the augmented closed-loop PCH system






ẋq

ẋp

ẋv




 =






0 M−1(xq)Md(xq) −GKi

−Md(xq)M
−1(xq) J2 −Rd 0

KiG
⊤ 0 0











∇xqH̃

∇xpH̃

∇xvH̃




 , (5.59)



Chapter 5 Robust IDA-PBC and PID-like Control for PCH Systems 99

with the Hamiltonian function (5.56), asymptotic stability of the equilibrium point xe =

(xqe, 0, 0) = (qe, 0, 0) is preserved with the integral control

Gv = −1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d MGxv −

1

2
MdM

−1
n∑

i=1

eix
⊤
v GM∇qiM

−1
d p

− 1

2
MdM

−1
n∑

i=1

eix
⊤
v GM∇qiM

−1
d MGxv + (J2 −Rd)M

−1
d MGxv

−
n∑

i=1

(
∂M

∂xqi
Gxv

)

(e⊤i ẋq)−MGẋv

(5.60)

and ẋv = KiG
⊤∇xqH̃. �

Proof of Proposition 5.17: The proof can be established following the same proce-

dures as in the proof of Proposition 5.4. The time derivative of the Hamiltonian function

(5.56) along the trajectories of the system is

˙̃H = (∇xpH̃)⊤ẋp + (∇xvH̃)⊤ẋv + (∇xqH̃)⊤ẋq

= −(∇xpH̃)⊤MdM
−1∇xqH̃ + (∇xpH̃)⊤J2∇xpH̃ − (∇xpH̃)⊤Rd∇xpH̃

+ (∇xvH̃)⊤KiG
⊤∇xqH̃ + (∇xqH̃)⊤M−1Md∇xpH̃ − (∇xqH̃)⊤GKi∇xvH̃.

Taking a transpose of certain terms (to cancel out equal terms with different signs) and

rearranging:

˙̃H = −(∇xpH̃)⊤MdM
−1∇xqH̃ +

(

(∇xpH̃)⊤MdM
−1∇xqH̃

)⊤

+ (∇xvH̃)⊤KiG
⊤∇xqH̃ −

(

(∇xvH̃)⊤KiG
⊤∇xqH̃

)⊤

+ (∇xpH̃)⊤J2∇xpH̃ − (∇xpH̃)⊤Rd∇xpH̃

= (∇xpH̃)⊤J2∇xpH̃ − (∇xpH̃)⊤Rd∇xpH̃

= −x⊤p M
−1
d RdM

−1
d xp ≤ 0.

Note that because J2 = −J⊤
2 , the term (∇xpH̃)⊤J2∇xpH̃ is equal to zero. Furthermore,

asymptotic stability is concluded by applying LaSalle’s invariance principle:

−x⊤p M
−1
d RdM

−1
d xp = 0 =⇒ xp ≡ 0 =⇒ ẋp ≡ 0 =⇒ Md(xq)M

−1(xq)∇xqH̃ = 0.

Given M(xq),Md(xq) > 0, then we have ∇xqH̃ = 0 which is only true if the system

converges to its equilibrium point qe. Thus,

∇xqH̃ ≡ 0 =⇒ xq = qe and xv = 0,

which proves that this equilibrium is asymptotically stable. The controller is obtained

by matching the momenta of (5.58) and (5.59) along with the change of coordinates
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(5.6) and its time derivative (5.54), we get

ṗ = −MdM
−1∇qHd + J2∇pHd −Rd∇pHd +Gv

≡ ẋp − Ṗ
= −MdM

−1∇xqH̃ + (J2 −Rd)∇xpH̃ − Ṗ.

(5.61)

Rearranging the terms,

− 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p−MdM

−1∇qVd + (J2 −Rd)M
−1
d p+Gv

≡ −1

2
MdM

−1
n∑

i=1

eix
⊤
p ∇qiM

−1
d xp −MdM

−1∇qVd + (J2 −Rd)M
−1
d xp − Ṗ.

(5.62)

Now, substituting (5.53) and (5.55) in (5.62 ) and computing we obtain

− 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p−MdM

−1∇qVd + J2M
−1
d p−RdM

−1
d p+Gv

≡ −1

2
MdM

−1(p⊤∇qM
−1
d p)− 1

2
MdM

−1
n∑

i=1

eip
⊤(∇qiM

−1
d )MGxv

− 1

2
MdM

−1

(
n∑

i=1

eix
⊤
v GM(∇qiM

−1
d )p+

n∑

i=1

eix
⊤
v GM(∇qiM

−1
d )MGxv

)

−MdM
−1∇qVd + (J2 −Rd)M

−1
d p+ (J2 −Rd)M

−1
d MGxv

−
n∑

i=1

(
∂M

∂xqi
Gxv

)

(e⊤i ẋq)−MGẋv.

(5.63)

Cancelling equal terms on the left-hand side and right-hand side of (5.63), we get the

control law (5.60) and thus the proof is completed. �

5.4.2 Input-to-State-Stability for non-separable PCH systems using

IDA-PBC method

A) iISS for time-varying matched disturbance

Proposition 5.18. The PCH system (5.23) subject to matched disturbance d2 only, is

naturally iISS using the integral control proposed in Proposition 5.17 with the augmented

PCH form (5.59) rewritten (to include the disturbance) as:






ẋq

ẋp

ẋv




 =






0 M−1(xq)Md(xq) −GKi

−Md(xq)M
−1(xq) J2 −Rd 0

KiG
⊤ 0 0











∇xqH̃

∇xpH̃

∇xvH̃




+






0

d2

0




 , (5.64)

with the Hamiltonian function (5.56). �
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Proof of Proposition 5.18: This can be proved following similar procedures in Sub-

section (5.3.4) and Proposition 5.17. That is, by taking (5.56) as the candidate of the

iISS-Lyapunov function, its derivative along the trajectories of (5.64) is computed as

˙̃H = x⊤p M
−1
d ẋp + x⊤v K

−1
i ẋv +

(

∇xqV
⊤
x +

1

2

n∑

i=1

eix
⊤
p ∇qiM

−1
d xp

)

ẋq

= −x⊤p M
−1
d RdM

−1
d xp + x⊤p M

−1
d d2 ≤ −λmin(Rd)|M−1

d xp|2 + x⊤p M
−1
d d2

˙̃H ≤ −λmin(Rd)

2
|M−1

d xp|2 +
1

2λmin(Rd)
|d2|2

≤ −α(|xp|) + σ(|d2|).

with α, σ ∈ K∞. This inequality proves that the system is smoothly dissipative. Fur-

thermore, the system is zero-state detectable from the output M−1
d xp. This can be

shown as follows, from (5.64) d2 ≡ 0, M−1
d xp ≡ 0 =⇒ xp = xq = xv = 0. Thus, all

conditions of the iISS property [6] are satisfied, which proves that the closed-loop PCH

system is iISS w.r.t the matched disturbances.

B) ISS for time-varying matched and unmatched disturbances

Proposition 5.19. Consider the non-separable PCH system (5.23) with time-varying

bounded disturbances d1(t), d2(t). Define the state transformation

xq = q − xv; xp =
1

2
p+ xv (5.65)

to realize the closed-loop system in the new variables x := [xq xp xv] as






ẋq

ẋp

ẋv




 =






−M−1(xq) M−1Md(xq) −M−1(xq)

−MdM
−1(xq) J2 −Rd −MdM

−1(xq)

M−1(xq) M−1Md(xq) −M−1(xq)











∇xqH̃

∇xpH̃

∇xvH̃




+






d1
d2
2

0




 , (5.66)

with the desired Hamiltonian function

H̃ =
1

2
x⊤p M

−1
d (xq)xp +

1

2
x⊤v xv + V (xq), (5.67)

then the closed-loop system is ISS with respect to the disturbances d1 and d2 and the

function (5.56) is the ISS-Lyapunov function for the system (5.66). Furthermore, the

control law is obtained as

Gu = ∇qH − 2(M−1 +MdM
−1)∇xqH̃ + (J2 −Rd)M

−1
d p−M−1p

+ 2(J2 −Rd)M
−1
d xv − 2MdM

−1xv −M−1xv

ẋv = M−1∇xqH̃ +
1

2
M−1p,

(5.68)

�
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Proof of Proposition 5.19: Consider the desired Hamiltonian function (5.67) as a

candidate ISS-Lyapunov function. Its time-derivative along the trajectories of (5.66)

along with (5.65) is given by

˙̃H = ∇xpH̃
⊤ẋp + x⊤v ẋv +∇xqH̃(xq)

⊤ẋq

= ∇xpH̃
⊤(−MdM

−1∇xqH̃(J2 −Rd)∇xpH̃ −MdM
−1∇xvH̃ + d2)

+∇xvH̃
⊤(M−1∇xqH̃ +M−1Md∇xpH̃ −M−1∇xvH̃)

+∇xqH̃
⊤(−M−1∇xqH̃ +M−1Md∇xpH̃ −M−1∇xvH̃ + d1)

= ∇xpH̃
⊤J2∇xpH̃ −∇xpH̃

⊤Rd∇xpH̃ −∇xvH̃
⊤M−1∇xvH̃ −∇xqH̃

⊤M−1∇xqH̃

+∇xpH̃
⊤d2 +∇xqH̃

⊤d1

= −x⊤p M
−1
d RdM

−1
d xp −M−1|∇xqH̃|2 −M−1|∇xvH̃|2 + x⊤p M

−1
d d2 +∇xqH̃

⊤d1

≤ −λmin(Rd)|M−1
d xp|2 − ρ|∇xqH̃|2 − ρ|∇xvH̃|2 + x⊤p M

−1
d d2 +∇xqV

⊤d1,

where the constant ρ is such that ρIn ≤ M−1(q), and the term ∇xpH̃
⊤J2∇xpH̃ = 0 due

to J2 = −J⊤
2 . Applying the Young’s inequality, gives

˙̃H ≤ −λmin(Rd)

2
|M−1

d xp|2 +
1

2λmin(Rd)
|d2|2 −

ρ

2
|∇xqH̃|2 + 1

2ρ
|d1|2

− ρ

2
|∇xvH̃|2

≤ −α(|xq, xp, xv|) + σ(|d|),

(5.69)

Now, from (5.69) and the fact that H̃ function is positive definite, proper and has an

isolated minimum (3.6) as a consequence of using IDA-PBC method, all conditions of

the ISS property from Theorem 2.14 and Definition 2.16 are satisfied, which proves

that the closed-loop PCH system is ISS with respect to the matched and unmatched

disturbances.

5.4.3 Adaptive IDA-PBC control for non-separable PCH systems

A) Integral control on passive outputs

Proposition 5.20. Consider the non-separable PCH system (3.1) which can be written

on the form ẋ = f∗(x(t)), where f∗(x(t)) represents the ideal system, x =

[

q

p

]

, and xe =

(qe, 0) is the equilibrium of the ideal system. Assume that the potential energy function

V (q, θ) of the system contains uncertainties, hence its gradient can be represented as in

(5.33). Define the augmented closed-loop PCH system as







q̇

ṗ
˙̂
θ






=






0 M−1(q)Md(q) 0

−Md(q)M
−1(q) J2 −Rd Q(q)F (q)

0 −(Q(q)F (q))⊤ 0











∇qHd

∇pHd

∇θ̃Hd




 , (5.70)
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where θ̂ is the estimate of θ, θ̃ = θ̂ − θ is the estimation error,

Q = (In −MdM
−1) and

Hd(q, p, θ̃) =
1

2
p⊤M−1

d (q)p+
1

2
|θ̃|2 + Vd(q, θ) (5.71)

is the desired Hamiltonian function. Then, the controller

Gu = F θ̂ +
1

2

n∑

i=1

eip
⊤∇qiM

−1p−MdM
−1F θ̂ − 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p

−MdM
−1S + (J2 −Rd)M

−1
d p,

(5.72)

with the update law
˙̂
θ = −(QF )⊤∇pHd, (5.73)

stabilizes the system at the equilibrium (qe, 0, θ). �

Proof of Proposition 5.20: Consider the desired Hamiltonian function (5.71) as a

candidate Lyapunov function. Its time derivative along the trajectories of (5.70) satisfies

Ḣd = p⊤M−1
d (q)ṗ+ θ̃⊤

˙̃
θ +∇qH

⊤
d q̇

= p⊤M−1
d (−MdM

−1∇qHd + J2∇pHd −Rd∇pHd +QF∇θ̃Hd)− θ̃⊤(F⊤Q⊤∇pHd)

+∇qH
⊤
d (M−1Md∇pHd)

= −p⊤M−1∇qHd + p⊤M−1
d J2M

−1
d p− p⊤M−1

d RdM
−1
d p+ p⊤M−1

d QFθ̃

− θ̃⊤F⊤Q⊤M−1
d p+∇qH

⊤
d M−1p.

Taking the transpose of certain terms and rearranging, yields

Ḣd = −p⊤M−1∇qHd + (p⊤M−1∇qHd)
⊤ + p⊤M−1

d QFθ̃ − (p⊤M−1
d QFθ̃)⊤

− p⊤M−1
d RdM

−1
d p (5.74)

= −p⊤M−1
d RdM

−1
d p ≤ −|M−1

d p|2Rd
≤ 0.

The stability proof can be established following the same procedures as in the proof of

Proposition 5.13. The adaptive controller (5.72) is obtained by matching the momenta

of (3.1) and (5.70), that is

−∇qH +Gu ≡ −MdM
−1∇qHd + (J2 −Rd)∇pHd +QF (q)∇θ̃Hd

− Fθ − 1

2

n∑

i=1

eip
⊤∇qiM

−1p+Gu ≡ −MdM
−1 (Fθ + S(q)) + (J2 −Rd)M

−1
d p

− 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p+ (In −MdM

−1)F (θ̂ − θ),
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Rearranging and using θ̃ = θ̂ − θ, yields

Gu ≡ −MdM
−1Fθ −MdM

−1S +
1

2

n∑

i=1

eip
⊤∇qiM

−1p+ (J2 −Rd)M
−1
d p+MdM

−1Fθ

−MdM
−1F θ̂ + F θ̂ − Fθ + Fθ − 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p.

Cancelling like terms but with opposite signs, we obtain the controller

Gu ≡ F θ̂ +
1

2

n∑

i=1

eip
⊤∇qiM

−1p−MdM
−1F θ̂ − 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p

−MdM
−1S + (J2 −Rd)M

−1
d p.

Hence, it completes the proof. �

B) Integral control on non-passive outputs

Proposition 5.21. Consider the nonseparable PCH system (3.1). Assume that the

potential energy function V (q, θ) of the system contains uncertainties, hence its gradient

can be represented as in (5.33). Define the state transformation

xq = q

xp = p− U θ̃
xθ̃ = θ̃,

(5.75)

to realize the augmented closed-loop PCH system






ẋq

ẋp

ẋθ̂




 =






0 M−1(xq)Md(xq) M−1(xq)U
−Md(xq)M

−1(xq) J2 −Rd Λ

−(M−1(xq)U)⊤ −Λ⊤ −Υ











∇xqH̃

∇xpH̃

∇x
θ̃
H̃




 . (5.76)

where θ̂ is the estimate of θ, θ̃ = θ̂ − θ is the estimation error, Υ = Υ⊤ > 0,

Λ = F (q)−MdM
−1F (q) + (J2 −Rd)M

−1
d U −MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d U

+
1

2
MdM

−1
n∑

i=1

ei(U θ̃)⊤∇qiM
−1
d U (5.77)

Υ = (M−1U)⊤F (q) + Λ⊤M−1
d U (5.78)

and

H̃(q, p, θ̃) =
1

2
x⊤p M

−1
d (xq)xp +

1

2
|θ̃|2 + V (xq, θ), (5.79)
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is the desired Hamiltonian function. Then, the controller

Gu = F (q)θ̂ −MdM
−1(F (q)θ̂ + S(q)) + (J2 −Rd)M

−1
d p+

1

2

n∑

i=1

eip
⊤∇qiM

−1p

− 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p+ U ˙̂

θ,

(5.80)

with the update law

ẋθ̂ = −M−1U(F (q)θ̂+S(q))+(M−1−M−1
d )F (q)p+

1

2
M−1U

n∑

i=1

eip
⊤∇qiM

−1
d p, (5.81)

asymptotically stabilizes the system at the equilibrium (qe, 0, θ). �

Proof of Proposition 5.21:

Following the same procedures as in the proof of Proposition 5.14; the time derivative

of the Hamiltonian function (5.79) along the trajectories of the system is obtained as

˙̃H = −∇xpH̃
⊤(J2 −Rd)∇xpH̃ −∇x

θ̃
H̃⊤Υ∇x

θ̃
H̃

≤ −|∇xpH̃|2Rd
− |∇x

θ̃
H̃|2Υ,

where the term (∇xpH̃)⊤J2∇xpH̃ is equal to zero because J2 = −J⊤
2 . Thus, the system

(5.76) has a stable equilibrium at (qe, 0, θ) with xp, xθ̃ ∈ L2∩L∞. By applying Corollary

5.16, we can conclude the convergence of states xp and xθ̃ to zero (xp, xθ̃ → 0 as t → ∞).

Moreover, θ̃ = 0 =⇒ θ̂ = θ.

The convergence of the states xq to their desired equilibrium is established as follows:

xp, xθ̃ ≡ 0 =⇒ ẋp,
˙̂
θ ≡ 0.

Thus, under the dynamics of (5.76) yields:

ẋp = −MdM
−1∇xqH̃ + (J2 −Rd)∇xpH̃ + Λ∇x

θ̃
H̃ = 0

= −MdM
−1






∇xqVx +

1

2
x⊤p (∇xqM

−1
d )xp

︸ ︷︷ ︸

=0







+ (J2 −Rd)M
−1
d xp

︸ ︷︷ ︸

=0

+ Λθ̃
︸︷︷︸

=0

= 0

= −MdM
−1∇xqVx = 0.

(5.81)

This implies ∇xqVx = 0. Invoking similar arguments to those in the proof of Proposition

5.4, we obtain

∇xqVx ≡ 0 =⇒ xq = qe.

Since all trajectories converge to their desired values, we can conclude that the closed-

loop system (5.43) has an asymptotically stable equilibrium at (qe, 0, θ). The controller
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is obtained by matching the momenta of (3.1) and (5.76), that is

ṗ ≡ ẋp + U ˙̂
θ

Gu−∇qH = −MdM
−1∇xqH̃ + (J2 −Rd)∇xpH̃ + Λ∇x

θ̃
H̃ + U ˙̂

θ

Gu− Fθ − 1

2

n∑

i=1

eip
⊤∇qiM

−1p = −MdM
−1(Fθ + S)− 1

2
MdM

−1
n∑

i=1

eix
⊤
p ∇qiM

−1
d xp

+ (J2 −Rd)M
−1
d xp + Λθ̃ + U ˙̂

θ. (5.82)

Substituting xp = p− U θ̃ and (5.77) in (5.82) yields:

Gu = Fθ +
1

2

n∑

i=1

eip
⊤∇qiM

−1p−MdM
−1(Fθ + S)− 1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p

+MdM
−1

n∑

i=1

eip
⊤∇qiM

−1
d U θ̃ − 1

2
MdM

−1
n∑

i=1

eiU θ̃⊤∇qiM
−1
d U θ̃

+

(

F −MdM
−1F + (J2 −Rd)M

−1
d U −MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d U

+
1

2
MdM

−1
n∑

i=1

eiU θ̃⊤∇qiM
−1
d U

)

θ̃ + (J2 −Rd)M
−1
d p− (J2 −Rd)M

−1
d U θ̃ + U ˙̂

θ.

Using θ̃ = θ̂−θ and cancelling like terms but with opposite signs, we obtain the controller

(5.80). Finally, the update law is computed as:

ẋθ̂ = −M−1U∇xqH̃ − Λ∇xpH̃ −Υ∇x
θ̃
H̃

= −M−1U(Fθ + S)− 1

2
M−1U

n∑

i=1

eix
⊤
p ∇qiM

−1
d xp − ΛM−1

d xp −Υθ̃.
(5.83)

Substituting xp = p− U θ̃, (5.77) and (5.78) in (5.83) yields:

ẋθ̂ = −M−1U(Fθ + S)− 1

2
M−1U

n∑

i=1

eip
⊤∇qiM

−1
d p+M−1U

n∑

i=1

eip
⊤∇qiM

−1
d U θ̃

− 1

2
M−1U

n∑

i=1

eiU θ̃⊤∇qiM
−1
d U θ̃ −

(
F −MdM

−1F + (J2 −Rd)M
−1
d U

−MdM
−1

n∑

i=1

eip
⊤∇qiM

−1
d U +

1

2
MdM

−1
n∑

i=1

eiU θ̃⊤∇qiM
−1
d U

)

M−1
d p

+

(

F −MdM
−1F + (J2 −Rd)M

−1
d U −MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d U

+
1

2
MdM

−1
n∑

i=1

eiU θ̃⊤∇qiM
−1
d U

)

M−1
d U θ̃ −

(
FM−1

d U − (J2 −Rd)(M
−1
d U)2

−1

2
M−1U

n∑

i=1

eip
⊤(∇qiM

−1
d )U

)

θ̃
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Using θ̃ = θ̂− θ and cancelling like terms but with opposite signs, we obtain the update

law (5.81). Hence, it completes the proof. �

5.5 Application: the Inertia Wheel Pendulum

In this section, we use the Quanser IWP module (see [17]), as shown in Figure 3.1

together with the simplified free body diagram of its mechanical part, to illustrate in

realistic simulations our results. The full description of the system was presented in

Subsection 3.4.1. The dynamic equations of the IWP system can be written in a PCH

form (3.1) with n = 2, m = 1 and

M =

[

k1 k2

k2 k2

]

, G = e2 =

[

0

1

]

, and (5.83)

V (q1) = k3 (1 + cos(q1)) , (5.84)

where the control input u is the motor torque, k1 = mpl
2
c1 + mwl

2 + Ip + Iw, k2 = Iw

and k3 = g(mplc1 +mwl). The complete parameters of the IWP are listed in Table 3.1.

5.5.1 IDA-PBC stabilizing controller

To start with, a stabilizing controller is obtained using IDA-PBC design procedures

proposed in Subsection 3.4.2. The main objective is to provide a continuous control

law to swing up the pendulum by spinning the wheel and to stabilize it at its upward

position q = (0, q2) for any q2 ∈ [0, 2π].

By fixing Md to be a constant matrix of the form

Md = ∆

[

m1 m2

m2 m3

]

= ∆




m1

(
k2
k1

)

m1 + ε
(
k2
k1

)

m1 + ε m3



 , (5.85)

where ε > 0, ∆ = k1k2 − k22 and having G⊥ = [1 0], the desired Hamiltonian (3.5) is

obtained as

Hd =
1

2
p⊤M−1

d p+ Vd(q), (5.86)

Vd(q) = −k3γ1 cos(q1) +
1

2
Kp(εk1γ1q1 + q2)

2, (5.87)

with γ1 = 1
k2(m2−m1)

and Kp > 0 the gain of the energy shaping controller which is

calculated as

ues = γ2 sin(q1) +Kpγ3(εk1γ1q1 + q2), (5.88)
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with γ2 = −k3γ1(m2k2 − m3k2), γ3 = −εk1γ1(m2k2 − m3k2) − (−m2k2 + m3k1). The

damping injection controller is

udi = −Kv
∆

∆d
(−m2p1 +m1p2), (5.89)

with ∆d = det(Md) = ∆2(m1m3 − m2
2) and Kv > 0 the damping injection controller

gain. Thus, the IDA-PBC control law is of the form

uIDA = ues + udi. (5.90)

5.5.2 Integral action controller

We apply the procedure given in Proposition 5.9 to design the integral controller for the

IWP system. Given G =
[

0 1
]⊤

, then the matrix G is defined as

G =

[

0 0

0 1

]

.

The integral controller on the non-passive output is then calculated as

v = KvKi
∆

∆d
(m2k1 −m1k2)xv,

ẋv = Kp(εk1γ1q1 + q2)

(5.91)

and the extra term up = −Kik2Kp(εk1γ1q1 + q2).

5.5.3 ISS controller

Following the ISS controller design presented in Subsection 5.3.4, in particular Proposi-

tion 5.10, the control input is obtained as

u = uIDA − ρ∆

∆d

(
β1(m3p1 −m2p2)− β2(m2p1 −m1p2)

)

− ρ∆

∆d

(
β1(m3k2 −m2k2)− β2(m2k2 −m1k2)

)
xv

−KiKvk2
∆

∆d
(m2 +m1)xv −Kik2Kp(εk1γ1q1 + q2),

(5.92)

with

ẋv = KiKp(εk1γ1q1 + q2) +
1

2
(k1 − k2)p2, (5.93)

and

β1 = Kp(εk1γ1q1 + q2)
(
k3γ1 sin(q1) +Kpεk1γ1(εk1γ1q1 + q2)

)

β2 = K2
p(εk1γ1q1 + q2)

2.
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5.5.4 Adaptive controller

Following the discussion in Subsection 5.3.5, here we show the design of an adaptive

controller to compensate for the uncertainty in the potential energy function V (q).

Consider the potential energy function of IWP system (5.84), the gradient of this func-

tion is

∇qV = −k3 sin(q1), (5.94)

which can be linearly parametrized as (5.33), with F (q1) = − sin(q1) and θ = k3 the

uncertain term. Thus, the energy shaping controller (5.88) is rewritten as

ues = −θγ1(m2k2 −m3k2) sin(q1) +Kpγ3(εk1γ1q1 + q2). (5.95)

Now, applying Proposition 5.13, the overall adaptive-IDA control input (5.37) is obtained

as

u = −θ̂γ1(m2k2 −m3k2) sin(q1) +Kpγ3(εk1γ1q1 + q2)−Kv
∆

∆d
(−m2p1 +m1p2), (5.96)

with the update law (5.38) takes the form

˙̂
θ = − ∆

∆d
(k2m1 − k2m2 − 1)(−m3p1 +m2p2)θ̂ sin(q1). (5.97)

5.5.5 Simulation results

In this Subsection the integral, ISS and adaptive IDA-PBC controllers designed for the

IWP system are implemented in a MATLAB/SIMULINK environment to evaluate the

performance of the control system. The values of the model parameters are shown in

Table 3.1. In all simulations, the initial condition [q0, p0] = [π, 0, 0, 0] for the system is

used.

A) Integral IDA-PBC simulations

Two sets of simulation set-up have been used to test the effectiveness of the proposed

integral IDA-PBC controller.

The first set-up simulates a tracking control problem where the pendulum is required

to track a sinusoidal reference signal q1r . A constant force disturbance of 1N , which

represents a constant force pushing the pendulum, is also injected into the dynamic

of q1. We implement the integral IDA-PBC controller with the parameters m1 = 0.4,

m3 = 5, ǫ = 1, Kp = 0.5, Kv = 1 × 10−5 and Ki = 1.2. The simulation results in

Figure 5.1 show that without integral action, the system subject to external disturbance

exhibits a large steady-state error, which can be observed particularly in the trajectory

of q2. With integral action, the trajectories track their desired references despite the
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presence of the constant disturbance, bringing the trajectories to converge smoothly to

their desired values. In Figure 5.2 we show the trajectory of q2 comparing it to the case

of no disturbance as the reference.
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Figure 5.1: State histories and control input of the IWP system for the tracking
and disturbance rejection control problem.
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Figure 5.2: Angle of the wheel q2 for the tracking and disturbance rejection
control problem.

The second set-up illustrates the case of rejecting a constant torque disturbance of 1Nm

injected into (pushing against) the dynamic of q2, which represents a constant force

pushing the pendulum, and highlights the effect of the integral gain. The controller
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parameters for this set-up are m1 = 0.4, m3 = 5, ǫ = 1, Kp = 1.5, Kv = 5 × 10−5.

Figure 5.3 shows the response of the system at different integral gains: Ki = 0 (no

integral action), Ki1 = 0.1 and Ki2 = 1.0. Figure 5.4 shows that steady-state errors

induced by this disturbance appear when applying no integral action, while the integral

action control eliminates these errors.
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Figure 5.3: State histories and control input of the IWP system for the distur-
bance rejection control problem.
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B) ISS simulations

The ISS control law described above has been implemented on the IWP system for the

case of both matched and unmatched disturbances with the design parameters m1 = 0.4,

m3 = 5, ǫ = 1, Kp = 1.1, and Kv = 5.6 × 10−5. The disturbance vector is selected as

d = λ tanh(ṗ), which represents a time varying bounded torque d = λ tanh(ṗ) pushing

against the arm and the pendulum for the case of matched and unmatched disturbances,

respectively.

We first consider the robust control problem of the IWP system having matched dis-

turbances. Figures 5.5 and 5.6 show the behaviour of the system subject to small

(λ = 0.5) and large (λ = 1) disturbances where the ISS controller parameters have been

chosen as Ki = 1 and ρ = 0.1 × 10−12. As expected, we can see that all states (sig-

nals) converge to their respective desired equilibrium values with excellent performance.

Also, we have simulated the perturbed system when a non-robust controller is used (i.e.

Ki = ρ = 0). Figure 5.7 shows that the system becomes unstable even with a small

disturbance λ = 0.5.

−2

−1

0

1

2

3

4

q
1 (

ra
d)

 

 

−600

−400

−200

0

200

400

600

800

1000

q
2 (

ra
d)

 

 

0 2 4 6 8 10
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (sec)

p
1 (

kg
.m

2 .r
ad

.s
−1

)

 

 

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (sec)

p
2 (

kg
.m

2 .r
ad

.s
−1

)

 

 

λ=0.5
λ=1.0

λ=0.5
λ=1.0

λ=0.5
λ=1.0

λ=0.5
λ=1.0

Figure 5.5: State histories of the IWP system for matched disturbance control
problem using a robust IDA controller.

For the case of unmatched disturbances, we have selected two different sets of controller’s

parameters (Kp = 1.1, Kv = 5.6 × 10−5, Ki1 = 1.5, ρ1 = 0.09 × 10−12) and (Kp =

0.4, Kv = 5.6 × 10−5, Ki2 = 1.5, ρ2 = 0.09 × 10−11), in response to two different

disturbance gains (λ = 60) and (λ = 90), respectively. The simulation results are

shown in Figures 5.8 and 5.9. Again, we can see the convergence of all states to their
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matched disturbance control problem using a robust IDA controller.
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Figure 5.7: State histories of the IWP for matched disturbance control problem
using a non-robust IDA controller (λ = 0.5).



114 Chapter 5 Robust IDA-PBC and PID-like Control for PCH Systems

desired values with reasonable transients. These figures also shows that for relatively

high disturbances (λ = 90), we have selected a large value of ρ2 to enlarge the domain

of attraction and thus the system is ultimately bounded. This follows the proof of

Proposition 5.10. Notice that we have also decreased the proportional gain Kp to make

sure that the maximum torque does not exceed the actuator limit. For comparison,

the perturbed system is also simulated without using the robust controller as shown in

Figure 5.10. It is apparent that in this case the system exhibits a significant steady-state

error.
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Figure 5.9: Control input, update law and disturbance input of the IWP for
unmatched disturbance control problem using a robust IDA controller.
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Figure 5.10: State histories of the IWP for unmatched disturbance control prob-
lem using a non-robust IDA controller (λ = 60).
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C) Adaptive IDA-PBC simulations

For the adaptive control method, we have selected the parameters and gains of the

controller as m1 = 0.2, m3 = 10, ǫ = 1, Kp = 4.5, and Kv = 2.2 × 10−4. Furthermore,

we have adjusted the uncertain term θ = k3 as θ = ϑ + ζ, with ζ is a fixed estimate.

This enables us to compare this method with the non-adaptive one. Given the value of

θ = g(mplc1 +mwl), we have selected ζ = θ/2 for this case.

Figures 5.11 and 5.12 show a comparative plot of the system’s response with the adaptive

IDA and the non-adaptive IDA-PBC controllers. As shown, without adaptation law the

uncertainty in V (q) results in a relatively large steady state error and unacceptable

transients. In contrast, adding the proposed adaptive law, the trajectories of the IWP

system converge to their desired states with excellent performance. Figure 5.12 shows

the convergence of the estimate θ̂ to the true value θ.
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Figure 5.11: State histories of the IWP system for the adaptive control problem.

5.6 Conclusion

In this chapter, we have discussed the possibility of extending the IDA-PBC method by

adopting a robustness perspective, with the aim of maintaining (asymptotic) stability of

the system in the presence of uncertainty which could result from disturbances, noises,

and modelling errors. The results extend some existing methods and provide a new
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Figure 5.12: Control input and update law (estimate) of the IWP system for
the adaptive control problem.

framework that allows the implementation of integral action control to underactuated

PCH systems that are quite commonly found in practice.

First we have developed some robust control design methods to deal with the case

of separable PCH mechanical systems. A crucial procedure of these designs is to use

a change of coordinates which allows adding the integral action on the non-passive

outputs which are the signals of interest. This has significantly enhanced the robustness

of the closed loop PCH systems by eliminating the steady-state errors and rejecting

disturbances, achieving stabilization in the ISS sense. Furthermore, An adaptive control

scheme has been presented to deal with uncertainties in the potential energy function.

Second, we have successfully extended the proposed control design methods to deal with

the non-separable PCH systems. As expected, this has resulted in more complex designs

as the derivative of the inertia matrices M and Md are needed to be taken into account.

Finally, Application to an inertia wheel pendulum which is an underactuated system

has been presented, and the effectiveness of the proposed controllers has been shown

through numerical simulations. The simulation results demonstrate that the system

is robust with respect to different perturbations; preserving the PCH structure, and

retaining the (asymptotic) stability with high performance.





Chapter 6

IDA-PBC of

Microelectromechanical Systems

6.1 Introduction

In previous chapters we have discussed the IDA-PBC methodology for mechanical sys-

tems. In this chapter we focus on microelectromechanical systems (MEMSs). MEMSs

are devices that are made using the techniques of microfabrication, integrating micrometer-

sized mechanical structures (gears, levers, pistons, cantilevers, etc.) and electrical/elec-

tronic components [92]. MEMS devices are very small; their components are usually

microscopic, generally range in size from few micrometers to a millimeter (see Figure

6.1). The highly integrated and interdisciplinary nature of MEMS with a strong and

complex coupling between a wide range of energy domains, including mechanical, elec-

trical, thermal, magnetic, all in miniaturized scale impose challenges on the design,

fabrication and control of these devices.

Figure 6.1: (a) A MEMS silicon motor together with a strand of human hair,
and (b) the legs of a spider mite standing on gears from a micro-engine [76].

119
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Due to its advantages of low cost through batch fabrication techniques, reduced size,

reliability and lower power consumption, MEMS technology has been commercially and

scientifically successful in various applications, and several interesting new products and

applications are being developed. Automotive industry is among the major sectors where

the success and reliability of MEMS have been proven. For example, inertia sensors such

as accelerometers and gyroscopes, have now been in use for decades in airbag sensors,

active suspension and anti-lock braking systems. Figure 6.2 shows an accelerometer

MEMS which is in widespread use as an automotive airbag sensor.

Figure 6.2: Modern day MEMS accelerometer [80].

A notable use of a MEMS inertia sensors is in motion sensing applications such as

smartphones, digital audio players, and navigation control systems. For example, a

three-axis accelerometer, three-axis gyroscope, and three-axis electronic compass are all

employed to constitute much better and complete motion sensing, gaming and image

stabilization. Figure 6.3 shows the MEMS sensors, introduced in the iPhone by Apple,

to reorient the iPhone’s screen [23].

The radio frequency (RF) MEMS is one of the fastest growing areas. The innovative RF

MEMS elements, including switches, resonators, filters, and relays are extremely small,

cheap, and require little power which make them suitable for mobile phones and wireless

communication applications such as radar and global positioning systems. BioMEMS is

another successful area where MEMS technology is becoming more popular for medical

applications. Examples of BioMEMS are pressure sensors which are used to monitor

blood pressure, a ‘lab-on-a-chip’ which performs one or several laboratory functions on

a single chip utilising the advances in microfluidic systems and devices [76].

Among different actuation methods of MEMS, electrostatic actuation is the most pop-

ular one. In addition to the advantages of general MEMS, electrostatically actuated

MEMS have advantages of simplicity of structure, versatility, flexibility in operation
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Figure 6.3: Apple uses an accelerometer to change the iPhone’s screen orienta-
tion when rotating the device [23].

and the fact that they can be easily fabricated from standard and well-understood ma-

terials [57]. The actuation principle behind them is the Coulombic attractive force

between oppositely charged conductors. Electrostatically actuated MEMS devices can

be split into two major configurations. The first is a comb drive type [78], in which

an electrostatic force is generated when a voltage is applied between a set of ‘interdig-

itated fingers’. The second configuration is a parallel plates type which consists of two

parallel plates, one movable and one fixed. By applying a voltage across these plates

an attractive electrostatic force is generated that drives the movable plate towards the

fixed one. Electrostatically actuated MEMSs have been used in all the above mentioned

applications but have been particularly successful to use in micro-mirrors, resonators,

switches and accelerometers [41]. Figure 6.4 shows the electrostatically actuated mirrors

which can be used in optical/photonic switches.

Figure 6.4: An electrostatically actuated micro-mirror array [18].

It is well known that the use of electrostatic actuated MEMS devices is significantly

limited by their highly nonlinear dynamics leading to a saddle-node bifurcation known
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as snap-through or pull-in. Pull-in instability limits the travel range of the movable

plate to a third of its full gap. Over one-third of this gap the system becomes unstable

and the movable plate collapses to the fixed one. Beside limiting the travel range or

operation region of the MEMS, the repeated collapse may eventually damage the device

[13]. To overcome this problem, with the aim of enhancing the functionality of MEMS to

achieve a full operation range, fast responses and accurate positioning, several control

methods have recently been developed. In [91], an approach that includes geometry

or structure modification by adding additional circuitry (capacitor) in series with the

actuator has been proposed. Static charge feedback method is introduced to control

charge in the actuator by means of current driving [59]. Also, several nonlinear control

techniques have been proposed including input-output linearization and passivity-based

control using charge feedback [57], feedback linearization [75], sliding mode control [41],

backstepping, flatness-based control and Control Lyapunov Function (CLF) synthesis

[118].

However, beside solving the pull-in instability, two essential and challenging control

issues for the MEMS need to be considered. First, while the position of the plate and

charge of the device are available for measurement in practice by measuring the input

current, capacitance and voltage across the plates [118], the velocity of the plate cannot

be measured directly. Velocity observers have been constructed in some control schemes

as in [118, 57]. The second important issue is that the above mentioned works require

exact knowledge of the model parameters. However, modelling errors due to parametric

uncertainties have not explicitly been taken into account in designing the controllers

[106, 120]. These uncertainties may result from the difficulty on accurately identifying

the model parameters in a miniaturized scale in practice, or parameter’s variations due

to inconsistencies in bulk micromachining. Other uncertainties may also exist due to

measurement noise, environmental fluctuations and external disturbances that affect the

stability and the performance of the system.

Few works have been reported in the literature to deal with uncertainties in the electro-

statically actuated MEMS system. In [120], the adaptive backstepping state-feedback de-

sign along with an observer for unavailable velocity measurement have been constructed

to control the MEMS system with parametric uncertainties. Furthermore, robustness

of this method has been proved using input-to-state stabilization. Another adaptive

backstepping design has been adopted in [106] to control the mechanical part of the

bidirectionally driven electrostatic MEMS. Again, the backstepping adaptive observer

has been used due to lack of velocity measurement. Adaptive tracking control problem

has been developed in [104], and application of adaptive controller to electrostatically

and electromagnitically actuated microrelays has been discussed in [13].

While most works in the literature have focused on solving the pull-in instability and

control of MEMS in the presence of parametric uncertainties, still little is known about

the robustness of these systems with respect to external disturbances due to noises
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and environmental effects. Furthermore, in some works, only the mechanical dynamics

of the system have been taken into account or the requirement of incorporating an

observer to account for the lack of velocity measurements which makes the control

system more complicated and difficult to implement practically. Motivated by this,

we aim in this chapter to firstly solve the pull-in stability problem by designing an

output-feedback controller that ensures that the system has global asymptotic stability

equilibrium without the requirement of velocity measurement. Secondly, we propose a

robust controller to counteract the external disturbances and other uncertainties in the

system. These controllers are based on the passivity-based control approach, the IDA-

PBC method in particular. While some PBC robust methods for PCH systems have

been recently proposed to improve the robustness of mechanical systems (see Chapter 5

and [29, 82]), there has been relatively few works on robust control for electromechanical

systems. The coupling between different energy domains in such systems complicates the

design of such dynamic controller. In this chapter we show a framework to incorporate

the integral control to improve the robustness of the MEMS described by PCH models.

The main contributions of this chapter are:

• While most works have discussed the pull-in instability using a linearization of the

model, we will show the stability analysis based on both the energy (Hamiltonian)

and linearization methods.

• The design of an output-feedback controller based on the IDA-PBC method pro-

posed in [66] while avoiding the velocity measurement which is difficult to do in

practice.

• A control design framework to include the integral control action to electromechan-

ical PCH systems. (Note: in earlier chapters only mechanical dynamic systems

have been considered).

• A novel robust control scheme, based on ISS combined with the IDA-PBC, that

preserves the stability of the MEMS in the face of external disturbances.

The organization of this chapter is as follows. Section 6.2 presents the model of the 1DOF

electrostatically actuated MEMS. The analysis of the pull-in phenomena is investigated

in Section 6.3. Main results are discussed in Sections 6.4 and 6.5, where the output-

feedback and robust control designs are presented, respectively. In Section 6.6, some

simulation results are provided, and in the last section conclusions are drawn.

6.2 Modelling of the Electrostatic MEMS

A simplified 1-DOF electrostatic micro-actuator model is schematically represented in

Figure 6.5. The system is driven by controlling the voltage source E which is modelled
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as a constant input voltage connected in series with the resistance R. The mass, spring

and dashpot represent the mechanical part of the actuator for which m, k and b are

the mass of the moveable upper plate, the elastic constant, and the damping coefficient,

respectively. q is the position of the top plate relative to the bottom plate, and the zero

voltage gap is denoted by qz.

Figure 6.5: 1DOF model of parallel-plate electrostatic micro-actuator.

Applying Newton’s law of motion in the mechanical domain and Kirchhoff’s Current

Law in the electrical domain, the equations of motion governing the behaviour of the

actuator can be written as [57]

mq̈(t) + bq̇(t) + k(q(t)− qz) = −F (t), (6.1)

and

Q̇(t) =
1

R

(

E(t)− Q(t)q(t)

Aǫ

)

, (6.2)

where

F (t) =
Q2(t)

2Aǫ
=

AǫE2(t)

2q2
, (6.3)

is the attractive electrostatic force induced to the movable plate, Q(t) is the charge of

the device, A is the plate area and ǫ is the permittivity in the gap. Rearranging, the

system takes the following form of nonlinear dynamics [66]

q̇ =
p

m
(6.4a)

ṗ = −k(q − qz)−
Q2

2Aǫ
− b

m
p (6.4b)

Q̇ = − qQ

RAǫ
+

1

R
u, (6.4c)

where p is the momentum. The nonlinearities mainly arise from the Coulomb electro-

static force. The total energy of the system, which is the sum of the elastic potential

energy arising from a linear elastic force, the electrostatic potential energy of the capac-

itor subject to a voltage E, and the kinetic energy is given by the expression
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H(q, p,Q) =
1

2
k(q − qz)

2 +
1

2m
p2 +

q

2Aǫ
Q2. (6.5)

System (6.4) is defined on the state space

X = {(q, p,Q) ∈ R
3 | 0 ≤ q ≤ qz}. (6.6)

6.3 “Pull-in” Stability Analysis

At some critical voltage when a displacement of the top plate is equal to one-third of

the zero-voltage gap, the system becomes unstable and this movable top plate rapidly

snaps down to the fixed bottom plate, i.e. the gap collapses to zero. This phenomenon is

called “snap-through” or “pull-in” and arises mainly from the tight and highly nonlinear

electromechanical coupling. In this section we perform stability analysis of the MEMS

device, and will show using energy (Hamiltonian) and linearization approaches why the

equilibria of this system is only stable on one-third of the nominal gap.

The stability of this actuator is achieved from the balance between the elastic restoring

force k(q − qz) and the electrostatic force (6.3), which must be equal at equilibrium

position qeq ∈ (0, qz)

Fspring = Felectrostatic

k(qeq − qz) =
Q2

eq(t)

2Aǫ
=

AǫE2
eq(t)

2q2eq

(6.7)

6.3.1 Energy approach

As discussed in [74], also in Subsection 3.2, a Hamiltonian system is stable if the potential

energy function V (q) has an isolated minimum at the desired equilibrium point

qeq = arg minV (q).

This is satisfied if both ∇qV |q=qeq = 0 and ∇2
qV |q=qeq > 0 hold. The total potential

energy V of the system comprises the elastic potential of the linear spring and the

electrostatic energy

V (q) =
1

2
k(q − qz)

2 +
AǫE2

eq

2q
. (6.8)

Substituting E2
eq from (6.7) in (6.8), we obtain

V (q) =
1

2
k(q − qz)

2 +
kq2eq(qeq − qz)

q
. (6.9)
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Therefore,

∇qV = k(q − qz)−
kq2eq(qeq − qz)

q2

∇qV |q=qeq = k(qeq − qz)−
kq2eq(qeq − qz)

q2eq
= 0,

(6.10)

and

∇2
qV = k +

2kq2eq(qeq − qz)

q3

∇2
qV |q=qeq = k

(

1 +
2(qeq − qz)

qeq

)

= k

(

3− 2qz
qeq

)

> 0 =⇒ qeq >
2

3
qz.

(6.11)

From (6.11), the Hessian is only positive if qeq > 2
3qz. Thus, the energy function has a

local minimum and only stable at qeq >
2
3qz which is the upper one-third region of gap.

6.3.2 Linearization approach

In this section we perform the stability analysis of the MEMS device using linearization.

The equilibrium points are determined by finding the solution so that the original state

equations are zero, i.e. solving the following set of equations

q̇ =
p

m
= 0 (6.12a)

ṗ = −k(q − qz)−
Q2

2Aǫ
− b

m
p = 0 (6.12b)

Q̇ = − qQ

RAǫ
+

1

R
u = 0. (6.12c)

Thus, we obtain

p = 0, (6.13a)

q = qz −
Q2

2kAǫ
, (6.13b)

Q =
u

Aǫq
. (6.13c)

Substituting (6.13c) into (6.13b) yields

q3 − qzq
2 +

u2

c0
= 0; c0 = 2k(Aǫ)3. (6.14)

There are three solutions for (6.14), one is negative for positive input voltages and can

thus be ignored. The other two solutions are both positive. One of these equilibrium

points is stable and the other is unstable. The stability of the system can also be
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analyzed by applying Theorem 2.8 to the system (6.4), which gives

A =






0 1
m 0

−k − b
m − Q

Aǫ

− Q
RAǫ 0 − q

RAǫ




 . (6.15)

The eigenvalues of A are obtained by solving det(λI −A) = 0. In this case

∣
∣
∣
∣
∣
∣
∣

λ − 1
m 0

k λ+ b
m

Q
Aǫ

Q
RAǫ 0 λ+ q

RAǫ

∣
∣
∣
∣
∣
∣
∣

= λ3 +

(
q

RAǫ
+

b

m

)

λ2 +

(
bq

RAǫm
+

k

m

)

λ+
kq

RAǫm

− Q2

R(Aǫ)2m
= 0.

(6.16)

From (6.13b) we have −Q2 = 2kAǫ(q − qz). Substituting this into (6.16), yields

λ3 +

(
q

RAǫ
+

b

m

)

λ2 +

(
bq

RAǫm
+

k

m

)

λ+
k

RAǫm
(3q − 2qz) = 0. (6.17)

As all terms are positive, it is clear from (6.17) that a condition for negative eigenvalues

is that 3q − 2qz > 0, which implies

qeq >
2

3
qz,

i.e. the system is only stable in one third of its full gap and the region of stability is

q ∈
(
2
3qz, qz

]
.

The explanation of the ‘pull-in’ phenomenon is that the stability of the equilibrium is

governed by two forces; the electrostatic force applied to the movable plate which pulls

the plate down, and the elastic stiffness (spring force) which pulls the spring and thus

the top plate up. Therefore, at equilibrium the relationship (6.7) is satisfied. From (6.7)

with the spring force constant k = 1 and using (6.14), we can draw the relationship

between the spring force linear (straight line) and the electrostatic force (curved line).

Figure 6.6 plots the relationship between the spring force and the electrostatic force for

various values of the input voltage u. As shown, there are two intersections, which means

two equilibrium points, one is stable and one is unstable (saddle-node) [47]. When the

upper plate’s deflection is less than one-third of the zero voltage gap, and with small

perturbation of the gap, the actuator returns to its equilibrium point as the increase in

the restoring force of the linear spring is greater than the increase in the electrostatic

force. As the displacement becomes greater than or equal to one-third of the zero voltage

gap, any perturbation will result in the attractive electrostatic force being the dominant

force and hence causes the top plate to collapse to the fixed plate. For voltage values

above the pull-in limit, there are no equilibrium points (the curves never intersect).
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Figure 6.6: Pull-in displacement characteristic of the microactuator.

6.4 IDA-PBC Control Design

In this section we apply the IDA-PBC control method, suggested by [66], to design a

suitable control law for the electrostatically actuated MEMS device. The objective is to

control the gap between the two plates according to a given constant set-point. Consider

the system (6.4) that can be written as PCH form (2.35) as






q̇

ṗ

Q̇




 =






0 1 0

−1 −b 0

0 0 − 1
R











∇qH

∇pH

∇QH




+






0

0
1
R




u

y = G⊤∇H

(6.18)

with the total energy function or the Hamiltonian function (6.5) and G =






0

0
1
R




.

The idea here is to reshape the total energy function of the system, such that the system

is stabilized over the entire gap. The controller design is concluded in the following

proposition.

Proposition 6.1. Consider the system (6.4) described by the open-loop PCH form

(6.18) and the energy function (6.5). Assign the desired energy function as

Hd(q, p,Q) =
1

2
k(q − qz)

2 +
1

2m
p2 +

q

2Aǫ
Q2 +

1

2
k1Q

2, (6.19)
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and the desired PCH structure as






q̇

ṗ

Q̇




 =






0 1 0

−1 −b 0

0 0 −Kv











∇qHd

∇pHd

∇QHd






yd = G⊤∇Hd.

(6.20)

Then, the output feedback controller

uIDA = (1−RKv)
qQ

Aǫ
−RKvk1Q, (6.21)

with Kv, k1 > 0, asymptotically stabilizes the system over the full gap. �

Proof of Proposition 6.1: Consider the Hamiltonian function (6.19) as a candidate

Lyapunov function for the system (6.20). Its derivative along the trajectories of the

system is

Ḣd = ∇qHdq̇ +∇pHdṗ+∇QHdQ̇

=

(

k(q − qz) +
Q2

2Aǫ

)

∇pHd −∇pHd

(

k(q − qz) +
Q2

2Aǫ
+

b

m
p

)

−
(
qQ

Aǫ
+ k1Q

)

Kv

(
qQ

Aǫ
+ k1Q

)

= − b

m2
p2 −Kv

(
qQ

Aǫ
+ k1Q

)2

< 0,

which is negative definite. Thus, the desired equilibrium point (qe, 0, 0) is asymptotically

stable. �

Remark 6.2. The shaping of the total energy function includes the addition of the

new quadratic term (last term in (6.19)). This implies adding more damping to the

Q coordinate represented by the last term in the controller (6.21). Consequently, the

damping can only affect the electrical part of the system while the mechanical part is not

significantly affected; limiting its application onto insufficiently damped MEMS devices,

a problem that cannot be solved using a static feedback controller [57]. In Section 6.5,

we propose a novel dynamic controller that enables adding damping in both electrical

and mechanical coordinates of the MEMS which solves this problem on one hand, and

improve the robustness of the system on the other hand.

Remark 6.3. In the MEMS applications, the velocity state is unmeasurable or even

if possible the measurement is very expensive. The proposed controller is an output

feedback control law that neither depends on the state p nor requires constructing a

velocity observer, which would clearly lead to a more complicated control law.



130 Chapter 6 IDA-PBC of Microelectromechanical Systems

6.5 Robust IDA-PBC Control Design

The design method in Section 6.4 assumes an ideal system model. However, as discussed

earlier in Section 6.1, in practice parametric uncertainty, external disturbances, and noise

may exist as a result of parasitic capacitance, manufacturing deformations (tolerance)

from bulk micromachining, states measurements and environmental fluctuations [120].

Consequently the reliability and performance of the MEMS are highly affected by the

modelling errors and unmodelled dynamics. An obvious example is the accelerometers

used in vehicle’s airbag to sense the vehicle’s acceleration. In such application, modelling

errors may affect the estimation of the accelerometer’s threshold (the point of maximum

acceleration) and hence the decision whether to deploy the bag or not.

6.5.1 Problem formulation

One of the most popular approaches to counteract the effects of uncertainties, distur-

bances and noises on control systems is to add an integral action to the stabilization

controller. For the PCH formulation, the inclusion of the integral action depends on

how the inputs act on the states [29]. We call the states that receive direct action from

the input as passive outputs, or non-passive otherwise. While the case of passive output

can be applied directly on the MEMS using the method proposed in [66], the case of

non-passive output is more complicated. In Chapter 5 (see also [29] and [82]), some

constructive methods have been proposed to deal with the case of non-passive outputs

for mechanical systems using a change of coordinates on the momenta. For electrome-

chanical systems, or the MEMS in our case, since the control input is attainable from

the charge Q coordinates, then a change of coordinates can be applied to the state Q to

inject the integral control action to the dynamic of p. However, for the state q (displace-

ment), which are usually the states of interest, and given the complex coupling between

different energy domains at micro-scale, the application of integral action becomes more

complicated and requires change of coordinates in both p and Q.

Consider the MEMS in PCH form






q̇

ṗ

Q̇




 =






0 1 0

−1 −b 0

0 0 − 1
R











∇qH

∇pH

∇QH




+






0

0
1
R




u+






d1

d2

d3




 ,

y = G⊤∇H

(6.22)

with the Hamiltonian function

H(q, p,Q) =
1

2
k(q − qz)

2 +
1

2m
p2 +

q

2Aǫ
Q2, (6.23)
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where d1, d2 ∈ R1 are unmatched disturbances and d3 ∈ R1 is the matched disturbance.

The control objective is to find a dynamic feedback control law u such that the stabil-

ity of the closed-loop system is preserved despite the presence of uncertainties and/or

disturbances. That is, we consider enhancing the IDA-PBC (6.21) by adding integral

action such that the following are achieved:

• With no disturbances, the incorporation of the integral action on the passive and

non-passive output improves the performance of the closed-loop system, such as

eliminating the steady-state errors that may result from uncertainties.

• Preserving stability of the closed-loop system even in the presence of the matched

and unmatched disturbances, ensuring the iISS and ISS with respect to matched

and unmatched disturbances, respectively.

In the next subsections, we will discuss the inclusion of integral action for the MEMS

starting from the simple case of passive output to the most complicated case of the

non-passive output. Then, we investigate the design of a dynamic IDA-PBC controller

for the disturbance rejection problem.

6.5.2 Integral control on passive output

From (6.22), the charge Q is the passive output. Using the method proposed in [66],

the integral action on the passive output can be added to the closed-loop PCH system

(6.20) to form an augmented dynamical system









q̇

ṗ

Q̇

v̇









=









0 1 0 0

−1 −b 0 0

0 0 −Kv −Ki

0 0 Ki 0

















∇qHd

∇pHd

∇QHd

∇vHd









(6.24)

with the integral control

v = −Ki

∫

yddt = −KiG
⊤

∫

∇QHddt, (6.25)

and the integral gain Ki = K⊤
i > 0.

6.5.3 Integral control on non-passive output: the momentum state

Proposition 6.4. Consider the open-loop MEMS (6.22) with d = 0. Define the state

transformation

xq = q; xp = p; x2Q = Q2 + 2Aǫxv, (6.26)
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to realize the augmented closed-loop PCH system









ẋq

ẋp

ẋQ

ẋv









=









0 1 0 0

−1 −b 0 Ki

0 0 −Kv 0

0 −Ki 0 0

















∇xqH̃

∇xpH̃

∇xQ
H̃

∇xvH̃









, (6.27)

with the desired Hamiltonian function

H̃ =
1

2
k(xq − qz)

2 +
1

2m
x2p +

xq
2Aǫ

x2Q +
1

2
k1x

2
Q +

1

2
K−1

i x2v. (6.28)

Asymptotic stability of the equilibrium point xe = (xqe, 0, 0) = (qe, 0, 0) is preserved using

the integral control

v = −2RKv

Q
(q + k1Aǫ)xv −

1

Q
RAǫẋv

ẋv = −Ki∇xpH̃.

(6.29)

Furthermore, the total control input consisting of the IDA-PBC (6.21) with an integral

action (6.29) takes the form

u = uIDA + v = (1−RKv)
qQ

Aǫ
−RKvk1Q− 2RKv

Q
(q + k1Aǫ)xv −

1

Q
RAǫẋv. (6.30)

�

Proof of Proposition 6.4: Consider the Hamiltonian function (6.28) as a candidate

Lyapunov function for the system (6.27). Its derivative along the trajectories of the

system and using (6.26) is

˙̃H = ∇xqH̃ẋq +∇xpH̃ẋp +∇xQ
H̃ẋQ +∇xvH̃ẋv

= ∇xqH̃∇xpH̃ +∇xpH̃(−∇xqH̃ − b∇xpH̃ +Ki∇xvH̃)

+∇xQ
H̃(−Kv∇xQ

H̃) +∇xvH̃(−Ki∇xpH̃)

= ∇xqH̃∇xpH̃ −∇xpH̃∇xqH̃ +∇xpH̃Ki∇xvH̃ −∇xpH̃Ki∇xvH̃

− b|∇xpH̃|2 −Kv|∇xQ
H̃|2

= −b

∣
∣
∣
∣

1

m
xp

∣
∣
∣
∣

2

−Kv

∣
∣
∣
xqxQ
Aǫ

+ k1xQ

∣
∣
∣

2
≤ 0,

(6.31)

which is negative semi-definite. Furthermore, asymptotic stability can be proven invok-

ing detectability condition as in the proof of Proposition 6.7. The controller (6.30) is

found by equating (6.22) and (6.27) and applying the coordinate transformation (6.26),
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that is

2QQ̇ ≡ 2xQẋQ − 2Aǫẋv

2Q

(

− 1

R
∇QH +

1

R
u

)

= 2xQ(−Kv∇xQ
H̃)− 2Aǫẋv

2Q

(

− qQ

RAǫ
+

1

R
u

)

= 2xQ

(

−Kv

Aǫ
xqxQ −Kvk1xQ

)

− 2Aǫẋv

−2qQ2

RAǫ
+

2Q

R
u = −2Kv

Aǫ
xqx

2
Q − 2Kvk1x

2
Q − 2Aǫẋv.

Substituting xq and x2Q from (6.26) yields

2Q

R
u− 2qQ2

RAǫ
= −2Kv

Aǫ
q(Q2 + 2Aǫxv)− 2Kvk1(Q

2 + 2Aǫxv)− 2Aǫẋv

2Q

R
u =

2qQ2

RAǫ
− 2Kv

Aǫ
qQ2 − 2Kvk1Q

2 − 4Kvqxv − 4Kvk1Aǫxv − 2Aǫẋv.

Multiplying both sides with R
2Q , we obtain the control law (6.30). �

Remark 6.5. Note that the denominator of the control law (6.30) is equal to zero if

Q = 0. However, by definition, zero charge is corresponding to zero voltage which means

the system is at rest or at the equilibrium. Thus, we can ensure that the denominator

of the control law is never be zero for Q 6= 0, i.e. there are no singularities.

6.5.4 Integral control on non-passive output: the position state

The state q is the signal of interest in this application. The inclusion of the integral

action in the position state is more complicated. This is due to the coupling between

the position and momentum states in the interconnection matrix in one side, and the

coupling between the position and the charge in the energy function, particularly the

term q
2AǫQ

2. Consequently, the incorporation of integral action requires a change of

coordinates on both p and Q states, as constructed in the following proposition.

Proposition 6.6. Consider the the open-loop MEMS (6.22) with d =
[

d1 d2 d3

]⊤
=

0. Define the state transformation

xq = q

xp = p+mxv

x2Q = Q2 + 2Aǫ(bxv +mẋv),

(6.32)

to realize the augmented closed-loop PCH system


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


ẋq
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ẋv


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0 1 0 Ki

−1 −b 0 0

0 0 −Kv 0
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
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∇xQ
H̃

∇xvH̃









, (6.33)
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with the desired Hamiltonian function

H̃ =
1

2
k(xq − qz)

2 +
1

2m
x2p +

xq
2Aǫ

x2Q +
1

2
k1x

2
Q +

1

2
K−1

i x2v. (6.34)

Asymptotic stability of the equilibrium point xe = (xqe, 0, 0) = (qe, 0, 0) is preserved with

the integral control

v = −2RKvb

Q
(q + k1Aǫ)xv −

2R

Q
(Kvmq +Kvk1Aǫm+Aǫb)ẋv −

2R

Q
Aǫmẍv

ẋv = −Ki∇xqH̃.

(6.35)

Furthermore, the total control input consisting of the IDA-PBC (6.21) with integral

action (6.35) takes the form

u = uIDA + v = (1−RKv)
qQ

Aǫ
−RKvk1Q− 2RKvb

Q
(q + k1Aǫ)xv

− 2R

Q
(Kvmq +Kvk1Aǫm+Aǫb)ẋv −

2R

Q
Aǫmẍv.

(6.36)

�

Proof of Proposition 6.6: Consider the Hamiltonian function (6.34) as a candidate

Lyapunov function for the system (6.33). Its derivative along the trajectories of the

system is

˙̃H = ∇xqH̃ẋq +∇xpH̃ẋp +∇xQ
H̃ẋQ +∇xvH̃ẋv

= ∇xqH̃(∇xpH̃ +Ki∇xvH̃) +∇xpH̃(−∇xqH̃ − b∇xpH̃)

+∇xQ
H̃(−Kv∇xQ

H̃) +∇xvH̃(−Ki∇xqH̃)

= ∇xqH̃∇xpH̃ −∇xpH̃∇xqH̃ +∇xqH̃Ki∇xvH̃ −∇xqH̃Ki∇xvH̃

− b|∇xpH̃|2 −Kv|∇xQ
H̃|2

= −b

∣
∣
∣
∣

1

m
xp

∣
∣
∣
∣

2

−Kv

∣
∣
∣
xqxQ
Aǫ

+ k1xQ

∣
∣
∣

2
≤ 0,

(6.37)

which is negative semi-definite. Furthermore, asymptotic stability can be proven invok-

ing detectability condition as in the proof of Proposition 6.7. We complete the proof by

showing that the system (6.22) with the controller (6.36) coincide with the desired PCH

system (6.33). Applying the change of coordinates (6.32) for the state q, we have

q̇ =
p

m

≡ ẋq

= ∇xpH̃ +Ki∇xvH̃ =
1

m
(p−mxv) +KiK

−1
i xv,
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and for the state p we have

ṗ = −∇qH − b∇pH = k(q − qz)−
Q2

2Aǫ
− b

m
p

≡ ẋp +mẋv

= −∇xqH̃ − b∇xpH̃ +mẋv = k(xq − qz)−
x2Q
2Aǫ

− b

m
xp +mẋv.

Finally for the state Q, we have

2QQ̇ ≡ 2xQẋQ − 2Aǫbẋv − 2Aǫmẍv

2Q

(

− 1

R
∇QH +

1

R
u

)

= 2xQ(−Kv∇xQ
H̃)− 2Aǫbẋv − 2Aǫmẍv

2Q

(

− qQ

RAǫ
+

1

R
u

)

= 2xQ

(

−Kv

Aǫ
xqxQ −Kvk1xQ

)

− 2Aǫbẋv − 2Aǫmẍv

−2qQ2

RAǫ
+

2Q

R
u = −2Kv

Aǫ
xqx

2
Q − 2Kvk1x

2
Q − 2Aǫbẋv − 2Aǫmẍv.

(6.38)

Substituting xq, xp and x2Q from (6.32) yields

2Q

R
u− 2qQ2

RAǫ
= −2Kv

Aǫ
q(Q2 + 2Aǫ(bxv +mẋv))− 2Aǫbẋv − 2Aǫmẍv

− 2Kvk1(Q
2 + 2Aǫ(bxv +mẋv))

2Q

R
u =

2qQ2

RAǫ
− 2Kv

Aǫ
qQ2 − 2Kvk1Q

2 − 4Kvb(q + k1Aǫ)xv

− (4Kvm+ 4Kvk1Aǫm+ 2Aǫb)ẋv − 2Aǫmẍv.

(6.39)

Multiplying both sides of (6.39) by R
2Q yields the control law (6.36). �

6.5.5 iISS and ISS for time-varying matched and unmatched distur-

bances

In previous subsections, we have introduced the integral action for both passive and non-

passive outputs assuming no disturbances. In this subsection, we propose new control

design approaches that ensure robustness of the system in the presence of disturbances.

Particularly, we are interested in designing controllers that ensure the integral input-to-

state and input-to-state properties with respect to matched and unmatched disturbances,

respectively, for the MEMS system.

Interestingly, the system (6.22) subject to matched disturbance d3 only (d1 = d2 = 0),

is naturally iISS using the integral control on passive outputs as in Subsection 6.5.2 and

following the same procedures as in Subsection 5.3.4. The case of unmatched distur-

bances d1, d2 requires a change of coordinates on the position, momentum and charge

states to establish the ISS property. The whole procedure is concluded in the following

proposition.
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Proposition 6.7. Consider the open-loop MEMS (6.22) with time-varying bounded un-

matched d1, d2 disturbances. Define the state transformation

xq = q − xv

xp = p+ xv

x2Q = Q2 + Cxv,
(

C = 2Aǫ

(

k − b

m

))
(6.40)

to realize the closed-loop system in the new variables x := [xq xp xv] as
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0
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, (6.41)

with the desired Hamiltonian function

H̃ =
1

2
k(xq − qz)

2 +
1

2m
x2p +

xq
2Aǫ

x2Q +
1

2
k1x

2
Q +

1

2m
x2v. (6.42)

Then the closed-loop system is ISS with respect to the disturbances d1 and d2 and the

function (6.42) is the ISS-Lyapunov function for the system (6.41). Furthermore, the

control law is obtained as

u =
R

2Q

(
2Q2

Aǫ

( q

R
− kvq + kvxv

)

− 2kvC
Aǫ

qxv +
2kvC
Aǫ

x2v − 2kvk1Q
2

−2kvk1Cxv − Cẋv)

ẋv =
1

2
∇xqH̃ +

1

2
∇xpH̃ − 1

2
∇xvH̃.

(6.43)

�

Proof of Proposition 6.7: Consider the desired Hamiltonian function (6.42) as a

candidate ISS-Lyapunov function. Its time-derivative along the trajectories of (6.41)

along with (6.40) is given by

˙̃H = ∇xqH̃ẋq +∇xpH̃ẋp +∇xQ
H̃ẋQ +∇xvH̃ẋv

= ∇xqH̃(−1

2
∇xqH̃ +

1

2
∇xpH̃ − 1

2
∇xvH̃ + d1)

+∇xpH̃(−1

2
∇xqH̃ − b∇xpH̃ − 1

2
∇xvH̃ + d2)

+∇xQ
H̃(−Kv∇xQ

H̃) +∇xvH̃(
1

2
∇xqH̃ +

1

2
∇xpH̃ − 1

2
∇xvH̃)

= −1

2
|∇xqH̃|2 +∇xqH̃d1 − b|∇xpH̃|2 +∇xpH̃d2 − kv|∇xQ

H̃|2

− 1

2
|∇xvH̃|2.

(6.44)
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Applying Young’s inequality, yields

˙̃H ≤ −1

4
|∇xqH̃|2 + |d1|2 −

b

2
|∇xpH̃|2 + 1

2b
|d2|2 − kv|∇xQ

H̃|2 − 1

2
|∇xvH̃|2

≤ −α(|xq, xp, xQ, xv|) + σ(|d|),
(6.45)

with α, σ ∈ K∞. Now, from (6.45) and the fact that H̃ is positive definite and proper,

all conditions of the ISS property from Theorem 2.14 and Definition 2.16 are satisfied,

which proves that the closed-loop PCH system is ISS with respect to the unmatched

disturbances. �

6.6 Simulation Results

To make the system analysis and control design easier and to avoid numerical problems

in simulation, we transform the system (6.1)-(6.2) through normalized coordinates by

using scaling of t = σt̂, where σ is the attenuation. The normalization is performed as

follows [57]:

Let v = σRβ, α = ǫσAR, β = ǫσA
√
σmR and the state vector x =

[
q
α ,

q̇
α ,

Q
β

]

. The

system parameters are defined as

w2
n =

k

m
,

2ζwn =
b

m
,

w =
wn

σ
,

where wn and ζ are the natural frequency and the damping ratio of the system, respec-

tively. Through this normalization, the system takes the following form of nonlinear

dynamics

ẋ1 = x2 (6.46a)

ẋ2 = −w2(x1 − qz)− 2ζwx2 −
x23
2

(6.46b)

ẋ3 = −x1x3 + u, (6.46c)

with the normalized energy function

H(x1, x2, x3) =
1

2
(x1 − g0)

2 +
1

2
x1x

2
3 +

1

2
x22. (6.47)

This model is defined on the state space X = {(x1, x2, x3) ∈ R
3 | 0 ≤ x1 ≤ 1}.

Simulations have been carried out using MATLAB/SIMULINK. A pulse voltage with

a width of 0.2 seconds and amplitude of 2 volts is applied to steer the operation. The

actuator is supposed to be driven by a voltage source, whose amplitude is limited to ±3
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volts. The IDA-PBC design is applied to the normalized nonlinear electrostatic actuator

model. The considered task is a set point regulation where the responses of the control

system are observed, to test and validate the and the performance of MEMS using the

proposed control algorithm.

The positions of the movable plate at different set-points 10%, 50%, and 90% deflections

corresponding to 0.9, 0.5 and 0.1 gap positions, respectively using IDA-BPC proposed

controller (6.21) with controller parameters Kv = 2, k1 = 1, w = 1, and ζ = 1 are shown

in Figure 6.7. The results show that the proposed controller ensures a stable full gap

operation.
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Figure 6.7: Stabilization of 0.1, 0.5 and 0.9 gap positions.

The positions of the movable plate and the control effort corresponding to 40% deflection

(0.6 gap position) with varied Kv are shown in Figure 6.8 and Figure 6.9, respectively.

It can be seen that, values of Kv < 1 result in a large steady-state error. Furthermore

in (6.21), Kv = 1
R , the first term on the right-hand side becomes zero and we obtain

the simple linear feedback controller which is directly proportional to charge Q [57].

We note also that the amplitude of the control input is high at the initial stage, this is

due to a significantly law charge and hence excessive control signal is required to charge

the capacitor [119]. However, as demonstrated in Figure 6.9 the control signal becomes

quite smooth afterwards.

The system is also simulated at various values of the damping ratio ζ. As shown in

Figure 6.10, when ζ = 0 , the response becomes oscillatory. An increase in ζ (0 < ζ < 1)
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Figure 6.8: Stabilization of 0.4 gap position at different values of Kv.

reduces the oscillations and shorten the settling time, with ζ = 1 brings the fastest

response. An overdamped system with ζ > 1 responds more slowly to any inputs. The

variations in ζ give rise to an important issue related to the uncertainty in dynamical

systems. Bulk micromachining of MEMS may cause manufacturing inconsistencies in

MEMS devices [118]. This results in uncertain MEMS devices, and parameters such

as damping ratio ζ, is difficult to be accurately identified, especially when dealing with

systems in micro scale, where a very tiny error may bring significant effects to system’s

functionality. Hence, robust control techniques is very useful to apply to control MEMS

devices.
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6.7 Conclusion

Electrostatically actuated MEMS devices exhibit an inherently nonlinear operational

instability phenomena called pull-in which is associated with the interaction between

the electrostatic and elastic restoring forces. We have investigated this phenomenon

from the energy-based and linearization perspectives, and we have proposed an output-

feedback IDA-PBC design that can successfully extend the stable operational range of

these systems. This method ensures global asymptotic stability without the need to

construct an observer for the velocity, thus reducing the complexity of the control law.

We have also presented some results to include the integral action for both passive and

non-passive outputs in the IDA-PBC construction, to improve the robustness of the

MEMS. This inclusion of integral action has been achieved by exploiting a change of

coordinates, which is more complicated for electromechanical systems than for mechan-

ical systems, due to the coupling between different energy domains. The robust control

scheme presented in this chapter ensures that the stability of the MEMS is maintained

in a robust sense, under the effect of external disturbances. This is proved by demon-

strating that by using this robust controller the closed-loop MEMS subject to matched

and unmatched disturbances satisfies the ISS property.





Chapter 7

Experimental Results

7.1 Introduction

In Chapter 3 we have proposed novel results to simplify the PDEs associated with the

IDA-PBC methodology for underactuated mechanical systems. The results significantly

simplify the IDA-PBC design and expand the class of systems that can be stabilized

using this method. In Chapter 4 we have applied the results to design a controller to

stabilize the rotary inverted pendulum. In that chapter, we have proved theoretically

by stability analysis the ‘almost’ global asymptotic stability of the closed-loop system

at its equilibrium point. The theoretical results have been illustrated through numerical

simulations which have also shown good performance of the rotary inverted pendulum.

These simulations are based on a model which cannot exactly capture the real behaviour

of the system. For example in the modeling procedure of this system we have ignored

the effect of friction. Thus, the results are experimentally validated by implementing

the proposed controller on a laboratory setup of rotary inverted pendulum.

7.2 Experimental Setup

Experiments are performed with the Quanser QUBE-Servo rotary pendulum. The hard-

ware comprises an 18V brushed DC motor contained in a solid aluminium frame and

attached to the arm using magnets. Two single-ended optical shaft encoders are used

to measure the angular positions of the pendulum, q1, and arm, q2. The hardware

is connected to a PC through the QUBE-Servo USB interface. This interface has its

own built-in PWM voltage-controlled power amplifier and data acquisition device. The

output voltage range to the load is between ±10V. The interaction between the PC

and the hardware is interfaced using QUARC real-time control software integrated with

Matlab/Simulink to drive the DC motor and read the angular positions q1 and q2. The

sampling time of the control is 0.002 second.

143
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Remark 7.1. The motor dynamics are omitted as it is much faster than the dynamics of

the mechanical part of the system. From the equations of motions of the rotary inverted

pendulum (4.36-4.37), the control input u for the mechanical system is the motor torque

τ . This applied torque at the base of the rotary arm generated by the servo motor is

described by the equation:

τ =
km(Vm − kmθ̇

Rm
).

This equation represents the relationship between the voltage and the torque and was

implemented on the SIMULINK model.

7.3 Non-Conservative Forces Compensation

Note that the PCH modeling framework neglects some components of the dynamics to

comply with the underlying concept of energy conservation in this modelling approach.

For the inverted pendulum, the PCH model used in Chapter 4 and throughout this

thesis does not consider non-conservative forces (e.g. friction) [1]. Thus, applying the

controller (4.79), (4.81) alone is not enough to stabilize the pendulum in the hardware

implementation, due to the effects of friction which are not taken into account in the

controller design. Friction is present in almost every mechanical system and is a crucial

aspect of many control systems. It can be highly nonlinear and may lead to steady-

state errors, tracking errors, limit cycles and other undesirable behaviour [65]. Friction

compensation is a common approach to deal with such effects and to achieve improved

performance.

In general, friction compensation models can be divided into two groups: static and dy-

namic models [65]. The static friction models are described by a static relation between

velocity and applied external forces. The classical examples are Coulomb friction and

viscous friction. Coulomb friction can be described as

Fr = kfsign(v), (7.1)

where Fr is the friction force, v is the velocity, and kf is the friction coefficient. Viscous

friction is given by

Fr = bv, (7.2)

where b is the viscous damping coefficient. The viscous friction is often combined with

Coulomb friction as shown in Figure 7.1. This model has been widely used for friction

compensation in many control systems applications (see [3, 102, 89]). However, in some

situations such as at very low or zero velocities, stiction or bristles effects, friction forces

can be more accurately described by dynamic models [24]. Some dynamic friction com-

pensation models has been developed such as Dahl model and LuGre model [24] (see also

[65] for a survey of friction models and friction compensation). While dynamic friction
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Figure 7.1: Static friction model.

models provide more adequate and precise description of the friction behaviour, they

depend on a number of parameters which need to be identified. Identifying/estimating

and tuning these parameters are not straightforward as they depend on the availability

of measuring devices and often affected by noise. This also imposes higher demands on

hardware and software [25].

We have chosen to use the static model of friction, the Coulomb and viscous friction

models that capture the essential behaviour of the friction, as well as to avoid any

complications resulting from applying the dynamic friction model.

Friction compensation for the rotary inverted pendulum

For a rotary inverted pendulum, the friction phenomenon appears on both joints; the

pendulum joint and the arm joint. The friction in the pendulum joint can be modelled

by a viscous/damping coefficient which has a relatively small value and, in most cases,

can be neglected [1]. The friction on the arm joint is the main source of friction in the

system. Initial experiments have shown that the friction parameters provided by [79] do

not adequately describe the friction that influence the rotary system. This is because it

does not take into account the unmodelled dynamics introduced by the encoder cable

as shown in Figure 4.1. Hence, we have taken these parameters as first estimates and

we have tuned them manually in several experiments at different input voltages and

angular velocities to obtain more accurate friction model and parameters. The friction

compensation term is:

uf = b(q̇2 − q̇1) + kfsign(q̇2 − q̇1), (7.3)

where kf is the Coulomb friction coefficient and b is the viscous damping coefficient of the

link. This is added to the IDA-PBC controller (4.79), (4.81) in order to overcome/com-

pensate friction, thus enhances the performance of the closed-loop system. Considering

the friction in the joints and taking into account the unmodelled dynamics introduced

by the encoder cable as shown in Figure 4.1, the best friction model’s parameters are

estimated as kf = 0.5755 and b = 0.005755. Thus, the total control law applied to the

hardware is of the form

u = ues + udi + uf . (7.4)
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7.4 States Measurement

The two optical shaft encoders that measure the angular positions of the pendulum and

the arm have the resolution of 2048 counts per revolution in quadrature mode (512 lines

per revolution). The momenta p1 and p2 are obtained from the relation p = Mq̇, where

the angular velocities q̇1 and q̇2 of the pendulum and arm are obtained by differentiating

their corresponding measured angular positions. A low-pass filter has been added to

the output of each differentiator to remove some high-frequency components (noise)

which appears as a result of quantization due to the encoder measurement. The low-

pass filters have been set as 50/(s + 50), with the cutoff frequency wf = 50 rad/sec or

wf = 50/(2π) = 7.96 Hz. This is constructed in Matlab/Simulink as shown in Figure

7.2.

X = [theta, alpha, theta_dot, alpha_dot]

X

1

theta_dot

du/dt

low−pass filter.

50

s+50

low−pass filter

50

s+50

alpha_dot

du/dt

alpha

2

theta

1

Figure 7.2: Obtaining velocity from position measurement.

7.5 Experimental Results

In this section, we present the results of our experiments on the QUBE- rotary pendulum

system. The total control law (7.4) has been applied to stabilize the pendulum at its

upward position. The initial condition for the position of the pendulum was q10 =

45◦. We will discuss later in this chapter the limiting factors from achieving a larger

DoA. However, this DoA is still much larger than what was obtained using some linear

controllers (the maximum achieved using a linear controller given in [79] was q10 = 20◦).

In the experiment, the pendulum was set to start from a downward position. A swing-

up controller based on the strategy developed in [11] has been applied to drive the

pendulum up to the initial angle (q10). Once the pendulum reaches this angle, the

controller switches to the IDA-PBC stabilizing controller. The controller parameters

used in the experiment were m3 = 67, Kp = 8.0× 10−4, Kv = 6× 10−6 and ǫ = 1. Note

that while in simulation we can set the initial value of every state, this is not the case
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for the experiment. The only state for which the initial value can be set directly is the

pendulum angle q10 , as the other states depend on the swing-up movement.

Figures 7.3 and 7.4 show the experimental results when applying the hybrid controller

(i.e. swing-up and stabilizing) to the inverted pendulum. In order to clearly show the

effect of our proposed controller, we have magnified the parts of these figures starting

from the instant of commutation (t = 6.16 sec), i.e. the instant in which the switching

to IDA-PBC stabilizing controller takes place as shown in Figures 7.5 and 7.6. We

can observe from Figure 7.5, which depicts the time histories of the angular positions

and velocities of the pendulum and the arm, that all states converge to their desired

equilibrium point, thus achieving asymptotic stabilization of the closed-loop system with

the controller (7.4). Furthermore, this figure shows the smooth and fast convergence

of the states while the pendulum and arm exhibit slight oscillatory behaviour (< 1.5

degrees). The profile of the control input is shown in Figure 7.6. We can observe the

smooth control effort, with a more demanding effort to balance the pendulum at its

vertical upward position.
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Figure 7.3: Experimental results (swing-up and stabilization): state histories of
the rotary inverted pendulum system.

Remark 7.2. Comparing the results obtained from the simulations (see Section 4.6)

and the experiments, we can observe that in the experimental results the system exhibits

more oscillations and longer settling times. These differences could be due to 1) a friction

compensator is added to the control input in the experiments while it is not considered
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Figure 7.4: Experimental results (swing-up and stabilization): control input.
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Figure 7.5: Experimental results (stabilization): state histories of the rotary
inverted pendulum system.

in the simulations. 2) modelling errors and actuator dynamics not being taken into

account. 3) high-frequency noises which appear as a result of quantization due to the

velocity measurement using a differentiator.
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Figure 7.6: Experimental results (stabilization): control input.

7.6 Robustness of the Proposed IDA-PBC

In order to show the robustness of the proposed controller, the pendulum was perturbed,

by slight push to it, at t = 14.5 sec. The experimental results are shown in Figures 7.7

and 7.8. As we can observe, the states recover from the injected disturbance, converging

fast and smoothly to their desired values. While the trajectories of the states q1, q̇1 and q̇2

converge to their exact desired values, the arm position, q2, converges to another position.

This is expected as each position of the arm is a stable equilibrium. Furthermore, Figure

7.8 shows that the control effort in response to the perturbation is smooth and remains

within the acceptable voltage range. It is evident from these graphs that, the closed-loop

system is robust with respect to disturbances on the pendulum.

7.7 Discussion and Conclusion

The experimental results presented in this chapter show the effectiveness of the proposed

controller for the stabilization of the rotary inverted pendulum at its unstable vertical

upward position. The smooth behaviour and fast response of the closed-loop system,

as well as its robustness against perturbations have been observed. In the following,

we will analyze the general performance of the closed-loop systems and the factors that

limit achieving ‘almost’ global stabilization as expected by the theory.

• The closed-loop system exhibits oscillatory behaviour: Although of small magni-

tude (< 1.5 degrees), the oscillation in the system was unavoidable. The main

reasons are that the oscillatory behaviour is typical of systems with low inertia

[89], and also the friction in the arm and pendulum has not perfectly compen-

sated for. Finally, the noise and additional delays imposed by measurements and

the differentiator as well as the filter used to obtain the velocities of the arm and

pendulum [35]. These factors also affect the transient performance of the system.
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Figure 7.7: Experimental results (robustness): state histories of the rotary in-
verted pendulum system.
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Figure 7.8: Experimental results (robustness): control input.

• Although in theory, as also shown in simulation in Chapter 4, ‘almost’ global

asymptotic stabilization can be achieved, the maximum experimental value of the

pendulum angle achieved was q10 = 45◦. This can be attributed mainly to hard-

ware limitations: 1) Saturation of the control input; the motor is relatively small

and provides insufficient torque to enlarge the initial pendulum angle, thus the

domain of attraction. As shown in Figure 7.6, the control signal reaching ±10V ,
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which is the maximum amplifier voltage range to the load, was required already

to stabilize the system starting from q10 = 45◦. 2) The arm does not rotate a full

360◦ by design: the encoder cable is attached from the pendulum module encoder

to the Encoder 1 connector on the top panel of the QUBE-Servo, hence a stopper

is used to avoid any contact between the pendulum and the cable as shown in

Figure 7.9(a). The QUBE-Servo with the attached pendulum and connected cable

is pictured in Figure 7.9(b).

• While the closed-loop system has exhibited a reasonable robustness margin, os-

cillations, steady-state errors (especially in the arm position), and uncertainty in

the parameters are still important issues that need to be considered to enhance

the performance of this system. One option to deal with this is to add an integral

control. We have discussed in Chapter 5 a framework to add the integral action

control to the underactuted mechanical system. Moreover, we have introduced the

adaptive control procedure to deal with parametric uncertainties.

(a) QUBE-Servo top view (b) QUBE-Servo with pendulum module

Figure 7.9: QUBE-Servo components.





Chapter 8

Conclusions and Future Research

8.1 Conclusion

In this thesis, we have investigated important issues on the design and analysis of non-

linear control systems, with a focus on electromechanical and underactuated mechanical

systems. We have developed methodologies for controlling systems with a specific phys-

ical structure, the port-controlled Hamiltonian systems which have several advantages

and are suitable modelling framework for the application of passivity-based control ap-

proaches. These methods have provided solutions to the main important challenges in

controller design for real systems; nonlinearity and uncertainty.

In this work, we have improved the IDA-PBC method for underactuated mechanical

systems. This improvement is achieved via a particular simplification of the matching

PDEs. Solving these PDEs is the main difficulty in application of this method. We have

developed a novel general procedure to reparametrize the inertia matrix, which is then

used to simplify and solve the potential energy PDEs, achieving total energy shaping

which is essential for stabilization of the underactuated mechanical systems. The result

has been successfully applied to solve a global stabilization control design for an inertia

wheel pendulum and a rotary inverted pendulum which belong to two groups of PCH

systems, the separable and non-separable systems, respectively. The proposed method

has significantly simplified the design computation and also yields a simpler form of

the controller for both systems. It has also been shown by realistic simulations that

this design results in a very high closed-loop performance of these systems in their full

nonlinear dynamics.

We have also extended our results to several control designs to deal with various ro-

bustness related issues within PCH framework. In particular, IDA-PBC method along

with a dynamic state-feedback controller that involves integral action is used to im-

prove the robustness of the closed-loop system. First, we have presented several results

153
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on integral control for a class of PCH systems, extending the results of [29, 82]. Sec-

ond, we have provided a general framework that allows the use of integral action for

under-actuated mechanical systems. This work is the first of its kind that discusses

the incorporation of integral control for under-actuated mechanical system within PCH

framework. The matched and unmatched disturbance rejection problems are solved us-

ing the integral action controller with a particular change of coordinates that involves

adding some damping terms such that the well know iISS and ISS properties are sat-

isfied. A novel adaptive IDA-BPC framework to deal with parametric uncertainties in

PCH models, particularly uncertainties in the potential energy function, has been also

proposed, for both separable and non-separable PCH systems. Application to an inertia

wheel pendulum which is an underactuated system has been presented, and the effective-

ness of the proposed controllers has been demonstrated through numerical simulations.

The simulation results demonstrate that the system is robust with respect to different

perturbations; preserving the PCH structure and retaining the (asymptotic) stability

without much degradation.

We have also presented results on MEMS control design. The electrostatically actuated

type of MEMS suffers from a limitation in its operational range known as pull-in, a

nonlinear structural instability phenomenon that results from the interaction between

the electrostatic and elastic forces. After an in-depth analysis of this phenomenon, we

have employed the IDA-PBC design, proposed in [66] to solve the stabilization problem

for this device. The proposed method has successfully extended the range of operation of

these actuators, achieving global asymptotic stability. Another advantage of this method

is that it is an output-feedback control design that avoids the unmeasurable velocity state

and the need to construct observer to account for the lack of velocity measurements which

makes the control system more complicated and difficult to implement practically. In

addition, we have considered in this thesis improving the robustness of the MEMS devices

in the presence of uncertainties. First, we have introduced a framework to incorporate

the integral action in the PCH model for electromechanical systems which exhibit a

strong coupling between different energy domains. Similar to the case of underactuated

mechanical systems, this incorporation requires a change of coordinates but involves

more states due to the coupling in the energy and interconnection matrix. Finally, the

integral action is combined with the IDA-PBC controller to asymptotically stabilize

the MEMS subject to external matched and unmatched disturbances. In this case the

robustification objective has been achieved ensuring the satisfaction of the ISS property.

Finally, we have successfully experimentally implemented our simplified IDA-PBC con-

troller to the rotary inverted pendulum hardware. The results have proved the effective-

ness of the controller and its robustness with respect to disturbances. The theoretical

results presented in this thesis and the experimental results can be used as the motivation

to apply this method in other real engineering applications.
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8.2 Future Research

This thesis has presented a comprehensive investigation of underactuated mechanical

and electromechanical systems in the field of nonlinear control. A number of nonlinear

and robust control methods has been developed based on the passivity-based control

approach by adopting the port-controlled Hamiltonian framework. However, new open

problems and further potential areas of research have been revealed, which can be sum-

merized as follows:

• In this thesis we have presented a framework to simplify the PDEs considering

underactuated systems with n = 2 and m = 1 which are the most popular systems

in literature. It is possible to extend our results to a more general case of systems

with underactuation degree 1, with the challenge of more complicated formalism

as it will require the inverse operation for a matrix with dimension higher than

2× 2.

• The control laws proposed in this thesis for underactuted mechanical systems are

state-feedback controllers that assume measurement availability of all states. As

the velocities are usually difficult or unavailable for direct measurement in prac-

tice, it would be interesting to design a speed observer. In an interesting paper [9],

an observer has been constructed using the I&I methodology for mechanical sys-

tems within the PCH framework. This design has been recently combined with a

new static state-feedback passivity-based controller (PBC) in [83] to design a glob-

ally exponentially stable tracking controller for mechanical systems. It is possible

to start from these results to propose an observer that facilitates the IDA-PBC

methodology in particular.

• We have developed an adaptive scheme to deal with uncertainties in the potential

energy function V for underactuated mechanical systems. It will be very useful to

develop a general scheme which takes into account uncertainties in other functions

and structures. At the same time, particularly important and troublesome is the

uncertainties in the inertia matrix M . This is because not all its elements are

attainable from the control input (only the passive outputs) due to the underactu-

ation nature of such systems. However, with the change of coordinates proposed

in this research, it should be possible to develop a general adaptive controller.

• In this thesis, the robust control methods which are based on the inclusion of

integral action are applied only for the MEMS device. It is very important to

broaden the class of electromechanical systems that can be robustly controlled.

• Another area of future research is to link the results in this thesis with the immer-

sion and invariance (I&I) methodology introduce in [8]. The reasons for adopting

I&I are twofold:
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1. Equivalence of I&I and IDA-PBC. Some relationships between the two meth-

ods have been shown in [89, 50]. For example, the relationships have been

utilized in the Acrobot application to design I&I controller from the struc-

tural knowledge of the IDA-PBC approach. Hence, we may exploit these

relationships to develop constructive results in both directions.

2. The I&I is a successful approach for the stabilization of nonlinear systems

with established adaptive scheme that has been developed and applied to

many classes of dynamical systems. Although, there has been no adaptive

control design method for underactuated mechanical systems within PCH

framework using this method, a constructive I&I stabilization method for a

class of underactuated mechanical systems with constant inertia matrix has

been recently presented [89]. Therefore, one may extend these results to the

case of non-constant inertia matrix and then develop an adaptive scheme.

• There has been a lot of interest on the PID control of robotic manipulators since

the 1980s and 1990s of the last century led by a pioneering work of [105]. The fact

that the dynamics of these manipulators are highly nonlinear with strongly cou-

pled joints, this limits the application of the linear control theory. Exploiting the

physical structure of these manipulators and their energy and passivity properties,

a number of nonlinear PID control designs has been proposed in literature, among

them are [105, 46, 68], see [116] for outlook. The drawbacks of these methods

are that some of these proposed designs can only ensure local stability, or lack ro-

bustness against uncertainties, or impose constraints on the controller parameters

[116]. It is of great interest to investigate the PID-like control design developed

in this thesis more extensively. This may provide solutions to these problems in a

unified scheme leading to improved performance of the manipulators.

• Finally, implementation of the proposed schemes to various hardware setups is still

another interesting challenge.



References

[1] Acosta, J. A. (2010). Furuta’s pendulum: A conservative nonlinear model for theory

and practise. Mathematical Problems in Engineering, 2010:29.

[2] Acosta, J. A., Ortega, R., Astolfi, A., and Mahindrakar, A. (2005). Interconnection

and damping assignment passivity based control of mechanical systems with under-

actuation degree one. IEEE Transactions on Automatic Control, 50:1936–1955.

[3] Akesson, J. and Aström, K. J. (2001). Safe manual control of the Furuta pendulum.

In Proceedings of the IEEE International Conference on Control Applications, pages

890–895.

[4] Akhtaruzzaman, M. and Shafie, A. A. (2010). Modeling and control of a rotary

inverted pendulum using various methods, comparative assessment and result analy-

sis. In Proceedings of the International Conference on Mechatronics and Automation

(ICMA), pages 1342–1347.

[5] Angeli, D. (2001). Almost global stabilization of the inverted pendulum via contin-

uous state feedback. Automatica, 37:1103–1108.

[6] Angeli, D., Sontag, E., and Wang, Y. (2000). A characterization of integral input-

to-state stability. IEEE Transactions on Automatic Control, 45(6):1082–1097.

[7] Astolfi, A., Karagiannis, D., and Ortega, R. (2007). Nonlinear and adaptive control

design and applications. Springer-Verlag, London.

[8] Astolfi, A. and Ortega, R. (2003). Immersion and invariance: a new tool for stabi-

lization and adaptive control of nonlinear systems. IEEE Transactions on Automatic

Control, 48(4):590–606.

[9] Astolfi, A., Ortega, R., and Venkatraman, A. (2010). A globally exponentially con-

vergent immersion and invariance speed observer for mechanical systems with non-

holonomic constraints. Automatica, 46(1):182–189.

[10] Aström, K. J., Aracil, J., and Gordillo, F. (2008). A family of smooth controllers

for swinging up a pendulum. Automatica, 44:1841–1848.

157



158 REFERENCES

[11] Aström, K. J. and Furuta, K. (2000). Swing up a pendulum by energy control.

Automatica, 36:287–295.

[12] Auckly, D. and Kapitanski, L. (2002). On the λ−equations for matching control

laws. SIAM Journal on Control and Optimization, 41:1372–1388.

[13] Bastani, Y. and de Queiroz, M. S. (2008). Lyapunov-based stabilization of MEMS

relays. Journal of Dynamic Systems, Measurement, and Control, 131(1):9.

[14] Blankenstein, G., Ortega, R., and van der Schaft, A. J. (2002). The matching

conditions of controlled Lagrangians and IDA-passivity based control. International

Journal of Control, 75:645–665.

[15] Bloch, A., Leonard, N., and Marsden, J. (1999). Stabilization of the pendulum

on a rotor arm by the method of controlled Lagrangians. In Proceedings of IEEE

International Conference on Robotics and Automation, volume 1, pages 500–505.

[16] Bloch, A., Leonard, N., and Marsden, J. (2000). Controlled Lagrangians and the

stabilization of mechanical systems. I. The first matching theorem. IEEE Transactions

on Automatic Control, 45(12):2253–2270.

[17] Block, D. J., Aström, K. J., and Spong, M. W. (2007). The Reaction Wheel Pen-

dulum. Morgan & Claypool Publishers.

[18] Bryzek, J., Flannery, A., and Skurnik, D. (2004). Integrating microelectromechan-

ical systems with integrated circuits. IEEE Instrumentation Measurement Magazine,

7(2):51–59.

[19] Byrnes, C. I., Isidori, A., and Willems, J. C. (1991). Passivity, feedback equivalence,

and the global stabilization of minimum phase nonlinear systems. IEEE Transactions

on Automatic Control, 36(11):1228–1240.

[20] Cazzolato, B. and Primeo, Z. (2011). On the dynamics of the Furuta pendulum.

Journal of Control Science and Engineering, 2011(6):8.

[21] Chang, D. E. and McLenaghan, R. (2013). Geometric criteria for the quasi-

linearization of the equations of motion of mechanical systems. IEEE Transactions

on Automatic Control, 58(4):1046–1050.

[22] Craig, J. J. (2005). Introduction to Robotics-Mechanics and Control. Pearson Pren-

tice Hall, Upper Saddle River, NJ, USA, 3rd edition.

[23] Crothers, B. (2009). Device made popular in iphone catching on. http://www.

cnet.com/news/device-made-popular-in-iphone-catching-on/. [Online; ac-

cessed 12-April-2013].

http://www.cnet.com/news/device-made-popular-in-iphone-catching-on/
http://www.cnet.com/news/device-made-popular-in-iphone-catching-on/


REFERENCES 159

[24] De Wit, C., Olsson, H., Aström, K. J., and Lischinsky, P. (1995). A new model for

control of systems with friction. IEEE Transactions on Automatic Control, 40(3):419–

425.

[25] Dietz, T. (2006). Model-based friction compensation for the the Furuta pendulum

using the LuGre model. Master’s thesis, Department of Automatic Control, Lund

University.

[26] Dirksz, D. A. and Scherpen, J. M. (2010). Adaptive tracking control of fully actu-

ated port- Hamiltonian mechanical systems. In Proceedings of the IEEE International

Conference on Control Applications (CCA), pages 1678–1683.

[27] Dirksz, D. A. and Scherpen, J. M. (2012a). Power-based control: Canonical coor-

dinate transformations, integral and adaptive control. Automatica, 48(6):1045–1056.

[28] Dirksz, D. A. and Scherpen, J. M. (2012b). Structure preserving adaptive control of

port-Hamiltonian systems. IEEE Transactions on Automatic Control, 57(11):2880–

2885.

[29] Donaire, A. and Junco, S. (2009). On the addition of integral action to port-

controlled Hamiltonian systems. Automatica, 45(8):1910–1916.

[30] Dorf, R. C. and Bishop, R. (2007). Modern Control Systems. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 11th edition.

[31] Duindam, V., Macchelli, A., Stramigioli, S., and Bruyninckx, H. (2009). Modeling

and Control of Complex Physical Systems: The Port-Hamiltonian Approach. Springer.

[32] Evans, S. (2013). 1812 miles in three 2013 Honda Accords. http://www.

motortrend.com/features/travel/1301_1812_miles_in_three_2013_honda_

accords/photo_03.html. [Online; accessed 2-March-2013].

[33] Fantoni, I. and Lozano, R. (2002a). Nonlinear Control for Underactuated Mechan-

ical Systems. Springer.

[34] Fantoni, I. and Lozano, R. (2002b). Stabilization of the Furuta pendulum around

its homoclinic orbit. International Journal of Control, 75(6):390–398.

[35] Freidovich, L., Shiriaev, A., and Manchester, I. (2007). Experimental implemen-

tation of stable oscillations of the Furuta pendulum around the upward equilibrium.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 171–176.

[36] Fujimoto, K., Sakurama, K., and Sugie, T. (2003). Trajectory tracking control of

port-controlled Hamiltonian systems via generalized canonical transformations. Au-

tomatica, 39(12):2059–2069.

http://www.motortrend.com/features/travel/1301_1812_miles_in_three_2013_honda_accords/photo_03.html
http://www.motortrend.com/features/travel/1301_1812_miles_in_three_2013_honda_accords/photo_03.html
http://www.motortrend.com/features/travel/1301_1812_miles_in_three_2013_honda_accords/photo_03.html


160 REFERENCES

[37] Fujimoto, K. and Sugie, T. (2001). Stabilization of Hamiltonian systems with non-

holonomic constraints based on time-varying generalized canonical transformations.

Systems & Control Letters, 44(4):309–319.

[38] Galaz, M., Ortega, R., Bazanella, A. S., and Stankovic, A. M. (2003). An energy-

shaping approach to the design of excitation control of synchronous generators. Au-

tomatica, 39(1):111–119.

[39] Gomez-Estern, F., Ortega, R., Rubio, F., and Aracil, J. (2001). Stabilization of a

class of underactuated mechanical systems via total energy shaping. In Proceedings

of the 40th IEEE Conference on Decision and Control, volume 2, pages 1137–1143.

[40] Gomez-Estern, F. and van der Schaft, A. J. (2004). Physical damping in IDA-

PBC controlled underactuated mechanical systems. European Journal of Control,

10(5):451–468.

[41] Gronle, M., Zhu, G., and Saydy, L. (2010). Sliding mode tracking control of an

electrostatic parallel-plate MEMS. In Proceedings of the IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (AIM), pages 999–1004.

[42] Hill, D. and Moylan, P. (1976). The stability of nonlinear dissipative systems. IEEE

Transactions on Automatic Control, 21(5):708–711.

[43] Hill, D. and Moylan, P. (1980). Dissipative dynamical systems: Basic input-output

and state properties. Journal of the Franklin Institute, 309(5):327–357.

[44] Isidori, A. (1995). Nonlinear Control Systems. Springer-Verlag, London, UK, 3rd

edition.

[45] Isidori, A. (1999). Nonlinear Control Systems II. Springer-Verlag, London, UK.

[46] Kelly, R. and Carelli, R. (1996). A class of nonlinear PD-type controllers for robot

manipulators. Journal of Robotic Systems, 13(12):793–802.

[47] Khalil, H. (2002). Nonlinear Systems. Prentice Hall, NJ, USA, 3rd edition.
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