

## Metadevice for intensity modulation with sub-wavelength spatial resolution

Pablo Cencillo-Abad, Nikolay I. Zheludev and Eric Plum

The manuscript contains all information required to reproduce the simulation results that it contains. Here, the numerical simulation results are given by csv (comma-separated value) tables.

**Figure2a.csv:** Reflection, transmission and absorption spectra of the metamaterial without the backing mirror for illumination at normal incidence by a plane wave with electric field polarized parallel to the metastrips, for wavelengths from 600 nm to 2000 nm. The first column corresponds to the wavelength in nanometers; second, third and fourth columns correspond to the reflection, transmission and absorption spectra respectively.

**Figure2c\_I.csv, Figure2c\_II.csv, Figure2c\_III.csv, Figure2c\_IV.csv:** Resonant modes of the metamaterial without the backing mirror in terms of the z-component of the instantaneous magnetic field extracted 10 nm above one  $500 \times 500 \text{ nm}^2$  unit cell of a metastrip. The field values are normalized by the incident wave's magnetic field amplitude. The modes are extracted for wavelengths  $\lambda = 615 \text{ nm}$ ,  $\lambda = 785 \text{ nm}$ ,  $\lambda = 930 \text{ nm}$  and  $\lambda = 1600 \text{ nm}$  respectively. The data points are spaced by 0.5 nm along the x and y axes. The x-coordinate increases with increasing column (left to right in the corresponding figures) and the y-coordinate increases with increasing row (bottom to top in the corresponding figures).

**Figure3\_I.csv, Figure3\_II.csv, Figure3\_III.csv, Figure3\_IV.csv:** Metadevice absorption (column 2) as a function of the distance (column 1) between metastrips and mirror, where the distance is varied in steps of 5 nm from 200 nm to 1200 nm for wavelengths  $\lambda = 615 \text{ nm}$ ,  $\lambda = 785 \text{ nm}$ ,  $\lambda = 930 \text{ nm}$  and  $\lambda = 1600 \text{ nm}$ , respectively.

**Figure3\_I\_Max.csv, Figure3\_II\_Max.csv, Figure3\_III\_Max.csv, Figure3\_IV\_Max.csv, Figure3\_I\_Min.csv, Figure3\_II\_Min.csv, Figure3\_III\_Min.csv, Figure3\_IV\_Min.csv:** Modes of excitation of the metamaterial with the backing mirror for absorption maxima (Max) and minima (Min) in terms of the z-component of the instantaneous magnetic field extracted 10 nm above one  $500 \times 500 \text{ nm}^2$  unit cell of a metastrip. The field values are normalized by the incident wave's magnetic field amplitude. The modes are extracted for wavelengths  $\lambda = 615 \text{ nm}$ ,  $\lambda = 785 \text{ nm}$ ,  $\lambda = 930 \text{ nm}$  and  $\lambda = 1600 \text{ nm}$  respectively. The data points are spaced by 0.5 nm along the x and y axes. The x-coordinate increases with decreasing column (left to right in the corresponding figures) and the y-coordinate increases with increasing row (bottom to top in the corresponding figures).

**Figure4\_a.csv, Figure4\_b.csv:** Absorption of the metamaterial for metastrip-to-mirror distances from 200 nm to 1200 nm and wavelengths from 600 nm to 2000 nm for the numerical and semi-analytical models respectively. Figure4\_a.csv 10 nm steps and Figure4\_b.csv 5 nm steps in wavelength and distance. The wavelength increases with increasing row. The distance increases with increasing column.

**Figure4\_c.csv, Figure4\_d.csv, Figure4\_e.csv:** Dependence of absorption on the metastrip scattering coefficient  $r$  for metastrip-to-mirror distances  $d = \lambda/4$ ,  $d = \lambda/2$  and  $d = \lambda/8$  respectively. Real part of  $r$  increasing from -1 to 0 with increasing column. Imaginary part of  $r$  increasing from -0.5 to +0.5 with increasing row.

**Figure5\_a.csv:** Total electric field amplitude normalized to the incident electric field amplitude as a function of  $x$  and  $z$ .  $x$ -axis from  $-3 \mu\text{m}$  to  $0 \mu\text{m}$  in 6 nm steps and  $z$ -axis from  $-0.5 \mu\text{m}$  to  $4.5 \mu\text{m}$  in 10 nm steps. The  $x$ -coordinate increases with increasing column. The  $z$ -coordinate increases with increasing row.

**Figure5\_b.csv:** Square of the reflected electric field's amplitude normalized to the incident wave as a function of  $x$  and  $z$ .  $x$ -axis from  $0$  to  $3 \mu\text{m}$  in 6 nm steps and  $z$ -axis from  $1 \mu\text{m}$  to  $4.5 \mu\text{m}$  in 10 nm steps. The  $x$ -coordinate increases with decreasing column. The  $z$ -coordinate increases with increasing row.