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Abstract

In this paper we present a wave-based technique for modelling waveguides

equipped with piezoelectric actuators in which there is no need for common sim-

plifications regarding their dynamic behaviour, the interaction with the waveg-

uide or the bonding conditions. The proposed approach is based on the semi-

analytical finite element (SAFE) method. We developed a new piezoelectric

element and employed the analytical wave approach to model the distributed

electrical excitation and scattering of the waves at discontinuities. The model

was successfully verified numerically and validated against an experiment on a

beam-like waveguide with emulated anechoic terminations.

Keywords: wave propagation, piezoelectric excitation, semi-analytical finite

element method, wave approach, smart structures, guided waves

1. Introduction

Piezoelectric actuators and sensors play a key role in many modern engi-

neering systems in various areas ranging from non-destructive testing, through

active control, energy harvesting to power ultrasonics. The electromechanical

coupling in the piezoelectric material enables an active interaction with the

structure providing the means of excitation and sensing its dynamic response.

The ability to describe the interaction between the piezo patch and the host

structure accurately is an essential aspect of both the design and operational

stages of piezo equipped dynamic systems.
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Over the past decades this problem has been widely studied bringing a con-

siderable number of modelling approaches. A review of these can be found in

a paper by Huang et al. [1]. Among research published to date, two general

approaches to the described problem can be distinguished [2]. The first group

considers the dynamics of the structure and piezo actuation separately assum-

ing that they are fully decoupled - a set of equivalent forces is applied to the

substrate model. The second group of models accounts for the dynamic inter-

action between the actuator and the structure and is based on the solution to

a boundary problem.

The majority of models belonging to the first group originate from the work

by Crawley and de Luis [3] who formulated the famous quasi-static assumption

stating that the actuator behaves quasi-statically provided that it operates at

frequencies far below its own resonances and is thin and light compared to

the host structure. The model implies that the dynamics of the actuator are

neglected and that for thin bonding layers the shear load transfer is confined

to the ends of the actuator (the so-called pin-force assumption). For other

bonding conditions a shear lag parameter that describes the effectiveness of the

shear load is proposed [3]. Modelling of more complex structures was facilitated

by employing the frequency-domain spectral element method (SEM) to describe

coupled flexural-longitudinal-shear vibration of homogeneous [4–6] or composite

[7] beams based on Timoshenko and Mindlin-Hermann theories.

Piezo actuators have become a standard for high-frequency wave-based non-

destructive testing (NDT) [8]. The high frequency regime is associated with

more complex through-thickness field variations, therefore the limitations of el-

ementary approximate theories needed to be overcome. To achieve this, one

might use a higher-order analytical theory, such as the Mindlin plate theory

[9] or employ hybrid techniques, e.g. the coupling between the finite element

method and normal modes expansion [10]. A paper by Raghavan and Cesnik

[11] discusses a model based on an integral transform solution to the full 3-D

elasticity equations with the external forcing approximated using the pin-force

assumption. Alternatively, Lamb wave excitation with a piezoelectric wafer can
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be treated as a boundary problem. Giurgiutiu [12] presented a methodology in-

corporating full Lamb wave equations solved for external piezo-induced traction

excitation. Based on this contribution, the influence of the bonding layer has

been further investigated in e.g. [13, 14].

Most of the aforementioned models do not take into account the dynamics of

the piezo layer and the mutual interaction between the patch and the structure.

Some studies attempting to include these phenomena have been presented in

[15, 16] where wave propagation induced by piezoelectric elements attached to

an elastic half-space was studied. An integral equation based methodology for

modelling piezo-structure interaction that accounts for the dynamic contribution

of the piezo actuator and can be applied both to a plate and an elastic half-space

has been published by Glushkov et al. [17].

Apart from analytical solutions, piezoelectric excitation can well be mod-

elled using a conventional finite element method (FE). Although this technique

is versatile and allows for modelling complicated structures, it has important

drawbacks in high frequency applications such as a very large computational

cost and a limited insight into wave propagation phenomena. However, in other

numerical methods, some of these can be circumvented, e.g. by using the time-

domain spectral finite element method as proposed in [18–20] where the num-

ber of degrees of freedom required is significantly reduced. Recent advances

in computational engineering resulted in an interesting work by Paćko et al.

[21] where a hybrid local interaction simulation approach (LISA)-FE method

has been implemented using parallel computing and graphical card processing

offering significant time savings when compared to FE.

The wide range of models discussed above serve many purposes in SHM

applications well, but have certain limitations. The motivation for developing

the presented wave-based methodology originates from attempting engineering

problems for which the modelling requirements are not entirely fulfilled by the

available methods. These requirements include: (a) ability to model an arbi-

trarily shaped/multi-layered cross-section of the waveguide; (b) ability to model

thick actuators operating close to resonance (i.e. include actuator’s dynamics);
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(c) insight into the wave composition of the response; (d) straightforward imple-

mentation of infinite boundaries; (e) facilitating the assembly of piezo-actuated

built-up waveguides.

The approach presented in this paper is based on the semi-analytical finite

element (SAFE) method. We develop a piezoelectric SAFE element, that allows

for modelling piezoelectric excitation directly in the wave domain and accounts

for the dynamics of the actuator. The analytical wave approach [22, 23] is used

to represent scattering of waves at the junctions and reflection at the bound-

aries. Consequently, the proposed framework enables modelling the dynamics of

complex multi-component piezo-equipped structures in a wave-based manner.

Alternatively, similar advantages can be gained from using the scaled boundary

finite element method (SBFEM) which was employed e.g. for analysis of dy-

namic cracks in piezoelectric materials in [24] and for simulating guided waves

interaction with defects [25].

SAFE is a well established method for mechanical waveguides. The plane

of the cross-section is discretised using an FE-like procedure and the derived

equations of motion are solved with the aid of the spatial Fourier transform

(SFT) in the direction of propagation. Semi-analytical approaches have been

used in various configurations in structural dynamics and acoustics, e.g. in the

strip element method [26, 27] or infinite elements (see review in [28]). The

SAFE method as used in this paper was proposed in the 1970s [29, 30] and was

further developed and expanded in the following years by many researchers.

More details of the method can be found in e.g. [31–34].

The proposed approach enables modelling the piezoelectric excitation in

structures without the need for common assumptions on the dynamics of the

actuator, the actuator/structure interaction and the bonding conditions. The

coupled-field wave model originates from the piezoelectric constitutive equa-

tions, so that a distributed voltage can be applied directly. It also allows

for modelling of the bonding conditions by an additional layer of either elas-

tic/viscoelastic SAFE elements or spring SAFE elements [35]. Moreover, it is

not limited to the plane strain assumption, which is often the case for the com-
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monly used models. The approximations in place result from the finite element

discretisation of the cross-section, the quasi -electrostatic approximation [36] and

the fact that the electric field in the propagation direction is neglected. Thanks

to the wave-based formulations, the proposed model provides insight into the

wave composition of the computed response and enables modelling wave prop-

agation in multi-component waveguides. To the best knowledge of the authors

such a methodology has not been proposed to date.

The paper is outlined as follows. Firstly, we present the derivation of the

piezoelectric SAFE element in Sec. 2. The free wave solution and propagation

characteristics are discussed in Sec. 3. In Sec. 4 we calculate the response to

a distributed voltage excitation for an infinite elastic waveguide covered with a

piezoelectric layer powered over a finite length. We introduce wave reflection

and scattering in Sec. 5 in order to represent wave excitation with a finite

actuator. The convergence of the proposed element is assessed in Sec. 6. In

Sec. 7 we verify the developed technique against conventional finite element

simulations and a model from the open literature. Finally, an illustrative model

of an infinite beam-like waveguide with a finite piezoelectric actuator is validated

with an experiment in Sec. 8. The wave-based nature of the model is exploited

to analyse the experimental results in Sec. 9. We draw a set of conclusions

summarising the contributions of the paper in Sec. 10.

2. Semi-analytical finite element formulation for an elastic waveguide

with piezoelectric coupling

The mathematical framework for the SAFE method for an elastic waveguide

with piezoelectric coupling is developed below. It is assumed that the cross-

section of the structure lies in the x-y plane and that the wave propagates along

the z direction (see Fig. 1). The cross-section in general can be zero-, one-

or two-dimensional. Only the two dimensional case is presented in this work,

however the other cases can easily be recovered by removing appropriate degrees

of freedom and altering the element shape functions.
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Figure 1: Piezoelectric SAFE element – the coordinates and degrees of freedom.

2.1. Cross-section discretisation

The displacement and strain fields in the waveguide are defined as [31]

u =
[
ux uy uz

]>
ε =

[
εxx εyy εzz γyz γxz γxy

]> (1)

where the time-harmonic term eωt is omitted for brevity.

The cross-section is discretised in an FE-like manner using elements and

shape functions chosen according to the type of analysis. In this work an 8-

node quadrilateral biquadratic element was used for which the shape functions

may be found in any standard textbook on the finite element method, e.g. [37].

Linear elements can also be used, however an accurate approximation of the

wave field at high frequencies can be achieved at lower cost with quadratic

elements.

The field variables from Eq. (1) are expressed using element shape functions

(in the cross-section plane) and nodal degrees of freedom (DOFs) as implied

by the FE approximation. Denoting the nodal displacements vector as q, the

displacement at any point within the SAFE element is

u(x, y, z) = N(x, y)q(z) (2)

where N(x, y) is the displacement shape function matrix.

Following from Eq. (2) one writes the strain in terms of the shape functions
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and the nodal DOFs as

ε(x, y, z) =

[
Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z

]
u(x, y, z) =[

LxN,x + LyN,y + Lz
∂

∂z
N

]
q(z) =

B1q(z) + B2
∂

∂z
q(z)

(3)

where N,x = ∂
∂xN and Lx, Ly, Lz, are

Lx =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


Ly =



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


Lz =



0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0


(4)

In a piezoelectric element each node has an additional degree of freedom

representing the electrical potential ϕ. Therefore, the electrical potential in the

waveguide ϑ is expressed using potential shape functions Nϕ and nodal potential

ϕ as

ϑ(x, y, z) = Nϕ(x, y)ϕ(z) (5)

2.2. Constitutive equations

The constitutive equations for the piezoelectric material are written in ma-

tricial ‘e’ form [38]

σ = CEε− e>E

D = eε+ εεE
(6)

where CE, e, E, D, εε are the stiffness matrix measured under zero-electric

field (short-circuit) condition, piezoelectric stress coefficient matrix, electric field

vector, electric displacement vector and permittivity matrix measured at zero-

strain (clamped) condition, respectively. Material damping is represented using

constant loss factor η [33].
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The electric field is assumed to be quasi-static (curl E is zero) and thus it

is expressed as a scalar gradient of the potential [39]

E(x, y, z) = −∇ϑ(x, y, z) (7)

Given the discretisation of the cross-section one writes [40–42]

E(x, y, z) = −
[
∂
∂x

∂
∂y

∂
∂z

]
Nϕ(x, y)ϕ(z) (8)

where the electrical potential shape functions Nϕ(x, y) are chosen to be the

same as the displacement shape functions N(x, y).

In this work piezoelectric elements are developed to be used for modelling

actuators made of bulk piezoelectric ceramic (PZT) with two electroded sur-

faces. A driving voltage is applied across the thickness of the PZT element (y

direction). To enable condensation of the potentials (though it is not necessary),

the electric field is assumed not to change along the propagation direction z.

By doing so, the contribution of the shear piezoelectric coefficient associated

with the voltage gradient along z is neglected, which is not expected to invoke

a significant error for wave excitation calculation if the corresponding shear

deformation in the actuator is relatively small. Eq. (8) is rewritten as:

E(x, y, z) =−
[
Nϕ,x Nϕ,y 0

]>
ϕ = −Bϕϕ (9)

Substituting Eqs. (3), (9) into Eq. (6) one gets the constitutive equations

expressed in terms of nodal degrees of freedom and element shape functions:

σ = CE

(
B1q + B2

∂

∂z
q

)
+ e>Bϕϕ

D = e

(
B1q + B2

∂

∂z
q

)
− εεBϕϕ

(10)

If one sets the piezoelectric coefficients in e and dielectric constants in εε to

zero, standard elastic Hooke’s Law equations are recovered.

2.3. Virtual work principle for piezoelectric semi-analytical finite element

The governing equations for wave propagation are obtained with the aid of

the virtual work principle for deformable bodies and the analogous principle of
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virtual electric potentials [39, 41, 42]. The analysed section of the waveguide

occupies volume V which is formed by a cross-section Ω extruded through length

L and is bounded by surface Γ. The boundary conditions (BC) on Γ are the

following:

• Essential mechanical BC on Γu (Dirchelet BC): u = u

• Essential electrical BC on Γϕ (Dirchelet BC): ϕ = ϕ

• Natural mechanical BC on Γσ (Neumann BC): σijnj = ti

• Natural electrical BC on Γ% (Neumann BC): niDi = −%i

where u and ϕ are the prescribed displacement and potential, respectively, and

ti, %i are the applied surface traction and the applied surface charge, respec-

tively. The bounding surfaces related to each pair of the boundary conditions are

exclusive and their unions form the whole surface, i.e. Γu∪Γσ = Γ, Γu∩Γσ = 0

and analogously Γϕ ∪ Γ% = Γ, Γϕ ∩ Γ% = 0.

Given the constitutive equations, the mechanical equilibrium condition and

the essential boundary conditions given above, the virtual work principle states

that for every time t

work done by
external surface

tractions︷ ︸︸ ︷∫
Γσ

δu>t dΓσ +

work done by
nodal forces︷ ︸︸ ︷
δq>f =

work done by
inertia body forces︷ ︸︸ ︷∫
V

δu>(ρü) dV +

work done by
the stress field︷ ︸︸ ︷∫
V

δε>σ dV
(11)

where t is the external tractions vector, f is the vector of nodal forces applied

at the ends of the considered section of the waveguide of length L and ρ is the

density of the material.

Similarly, under the essential boundary conditions, the virtual electric po-

tentials principle states that for every time t

work done by
external surface

charges︷ ︸︸ ︷∫
Γ%

δϕ>% dΓ% =

work done by
the electric

displacement field︷ ︸︸ ︷∫
V

δE>D dV (12)
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where % is the external surface charge vector.

The constitutive equations from Eq. (10) are substituted into each of the

components in Eqs. (11) and (12) along with the finite element approximations

given in Eqs. (2), (3) and (9). The detailed algebraic manipulations and integra-

tion by parts for all of the components are omitted below for the sake of brevity.

To clarify the formulation the following notation is adopted which results from

the integration of the matrices over the cross-sectional element domain:

M =

∫
Ω

N>ρN dΩ Kf =

∫
Ω

B>2 CB1 dΩ

K0 =

∫
Ω

B>1 CB1 dΩ Kuϕ
0 =

∫
Ω

B>1 e>Bϕ dΩ

K1 =

∫
Ω

K>f −Kf dΩ Kuϕ
1 =

∫
Ω

B>2 e>Bϕ dΩ

K2 =

∫
Ω

B>2 CB2 dΩ Kϕϕ =

∫
Ω

B>ϕε
sBϕ dΩ

p =

∫
Γσ

N>Nti dΓσ Υ =

∫
Γ%

% dΓ%

(13)

Let us now rewrite both Eq. (11) and Eq. (12) using the notation from

Eq. (13). Rearranging the terms one obtains

0 =

∫
L

{
δq>

(
M

∂2

∂t2
q + K0q + K1

∂

∂z
q−K2

∂2

∂z2
q
)

+

δq>
(
Kuϕ

0 ϕ−Kuϕ
1

∂

∂z
ϕ
)
− δq>p

}
dz+

δq>
[
Kfq + K2

∂

∂z
q + Kuϕ

1 ϕ

]
− δq>f

(14)

and

0 =

∫
L

{
δϕ>Kϕϕϕ− δϕ>

(
Kϕu

0 q + Kϕu
1

∂

∂z
q

)
− δϕ>Υ

}
dz (15)

Eq. (14) contains two main terms – the first is related to the wave field behaviour

over the length L and the second corresponds to cross-sections at the ends of

L. Both equations need to hold for every time t and any admissible virtual
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displacement δq and virtual potential δϕ, which leads to the governing equation

for wave propagation in an elastic waveguide with piezoelectric coupling.

2.4. Governing equations for wave propagation and resultant nodal forces

From Eqs. (14), (15) one can conclude the set of the governing equations for

wave propagation,

M
∂2q

∂t2
+ K0q + K1

∂q

∂z
−K2

∂2q

∂z2
+ Kuϕ

0 ϕ−Kuϕ
1

∂ϕ

∂z
= p

Kϕu
0 q + Kϕu

1

∂q

∂z
−Kϕϕϕ = −Υ

(16)

and the natural boundary condition stating that at the ends of the considered

section of the waveguide

q = 0 or f i = Kfq + K2
∂q

∂z
+ Kuϕ

1 ϕ (17)

which directly provides the expression for the resultant nodal forces. Solution

to Eq. (16) is performed using the Spatial Fourier Transform (SFT) defined as

F {q} = q̄ =

∞∫
−∞

qekz dz and q =
1

2π

∞∫
−∞

q̄e−kz dk (18)

which yields that the SFT of the space derivative of a quantity is

F
{
∂

∂z
q

}
= −kF {q} = −kq̄ (19)

Applying Eqs. (18) and (19) to Eq. (16) and assuming time harmonic motion

assumption, one writes(−ω2M 0

0 0

+

K0 − kK1 − (−k)2K2 Kuϕ
0 + kKuϕ

1

Kϕu
0 − kK

ϕu
1 −Kϕϕ

)·
q̄

ϕ̄

 =

 p̄

−Ῡ


(20)

Eq. (20) is the governing equation for wave propagation in a waveguide with

piezoelectric coupling in the wavenumber-frequency domain. After the same

transformations the resultant forces over the cross-section are given by

f̄ = Kf q̄− kK2q̄ + Kuϕ
1 ϕ̄ (21)
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2.5. Static condensation of the internal potentials

Typical piezoceramic actuators are electroded on the surfaces perpendicular

to the thickness direction. One of the electrodes is grounded and the other is

driven. It may therefore be advantageous to express the above equation in terms

of the driving voltage which can be done by condensing out the potentials at the

internal nodes via static condensation [40, 41, 43]. The procedure is described

in detail in the Appendix. The governing equation becomesK̃0 − kK̃1 − (−k)2K̃2 − ω2M K̃
uϕ

0 + kK̃
uϕ

1

K̃
ϕu

0 − kK̃
ϕu

1 −K̃
ϕϕ

 ·
 q̄

V

 =

 p̄

−Q

 (22)

where Q is the total charge over the powered electrode and V is the amplitude

of the time-harmonic driving voltage. The tilde {̃} symbol indicates that the

matrix is amended to account for the condensed potentials.

Analogously, the internal forces vector is rewritten as

f̄ = K̃f q̄− kK̃2q̄ + K̃
uϕ

1 V (23)

Although condensation simplifies the notation and the solution procedure, it

also involves the loss of sparsity of SAFE matrices. Therefore, from a numerical

performance viewpoint condensation may not be the optimal choice. Moreover,

static condensation requires neglecting the shear piezoelectric coefficient (see

Sec. 2.2). This, in some cases may lead to inaccurate prediction. If static

condensation is not desired, the solution procedure outlined below remains the

same, but it is performed on the original set of equations.

3. Free elastic waves in a waveguide with piezoelectric coupling

Let us now look at free wave propagation in an elastic waveguide with piezo-

electric coupling. As a consequence of the quasi -electrostatic assumption, only

elastic waves are permitted. The role of the piezoelectric coupling is to provide

means of exciting the waveguide, sensing the travelling waves or harvesting the

mechanical energy. Before the response to the distributed voltage is introduced

we look at the calculation and basic characteristics of the free waves which form

a basis for the forced response solution.
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3.1. Electrical conditions

Free waves in a waveguide with piezoelectric coupling can be considered

either in the short-circuit or in the open-circuit condition. The former implies

that the voltage in the powered electrode is set to zero (v = 0) resulting in the

quadratic eigenvalue problem (QEP)[
K̃0 + λK̃1 − λ2K̃2 − ω2M

]
φ = 0 (24)

where φ is the eigenvector and λ = −k.

Conversely, for the open-circuit electrodes the ‘driving’ charge Q is set to

zero. The modal potential at the powered electrode is extracted from the second

row of Eq.(22), i.e. V =
(
K̃
ϕϕ
)−1 (

K̃
ϕu

0 − kK̃
ϕu

1

)
φ and substituted back in

the first row equation. After some manipulation one obtains{[
K̃0 + K̃

uϕ

0

(
K̃
ϕϕ
)−1

K̃
ϕu

0 − ω2M

]
+

λ

[
K̃1 + K̃

uϕ

0

(
K̃
ϕϕ
)−1

K̃
ϕu

1 − K̃
uϕ

1

(
K̃
ϕϕ
)−1

K̃
ϕu

0

]
−

λ2

[
K̃2 + K̃

uϕ

1

(
K̃
ϕϕ
)−1

K̃
ϕu

1

]}
φ = 0

(25)

The form of the eigenvalue problem is similar to Eq. (24) but the stiffness

matrices are enhanced. Therefore, Eq. (25) indicates that in the open-circuit

condition the structure is stiffened compared to the short-circuit case. This is

a well-known effect of the piezoelectric coupling on the elastic behaviour of the

material.

In this paper we consider the voltage to be the ‘driving’ variable. The

charge is a response variable associated with how the actuator-structure system

responds to the applied voltage. Therefore, the short-circuit condition equations

are considered hereafter.

3.2. Free wave solution

Solution to the QEP in Eq. (24) can be performed using any available nu-

merical approach [44]. The most common is companion matrix linearisation.
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A new eigenvector is introduced as φ̂ =
[
φ λφ

]>
and the SAFE governing

equation from Eq. (24) is rewritten as a generalised eigenvalue problem (GEP)( 0 ω2M− K̃0

ω2M− K̃0 K̃1

− λ
ω2M− K̃0 0

0 K̃2

) φ

λφ

 = 0 (26)

or more concisely as

[A(ω)− λB(ω)] φ̂ = 0 (27)

where A, B are of dimensions 2n × 2n, n is the number of the displacement

degrees of freedom in the cross-section.

The GEP from Eq. (27) can be readily solved using any of the common

scientific computing packages. For a given frequency ω one finds the set of 2n

eigenvalues Λ (associated with n positive- and n negative-going waves), and

2n × 2n matrices of the corresponding right and left eigenvectors denoted by

Φ̂ and Ψ̂, respectively. The right eigenvectors φ̂i are columns of Φ̂ and left

eigenvectors ψ̂i are rows of Ψ̂.

The wavenumbers can be extracted from the eigenvalues since k = λ. The

wave is considered to be positive-going if [45]:

∣∣e−ki∆∣∣ < 1 or
∣∣e−ki∆∣∣ = 1 and Πi > 0 (28)

where ∆ is a distance smaller than the smallest wavelength of interest and

Πi is the wave power flow along the propagation direction adopted from the

mechanical complex Poynting theorem [36]. Wave power flow is calculated in

SAFE as [46]

Πi = ω
Im
{
φ∗>i

[
K̃f − kiK̃2

]
φi

}
2

(29)

The left and right eigenvectors are normalised according to their orthogo-

nality with respect to the B matrix (assuming that B is not rank deficient), so

that

ψ̂iB(ω)φ̂j

 1 if i = j

0 otherwise
and ψ̂iA(ω)φ̂i = λi (30)
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3.3. Wave basis

The SAFE formulation is used to obtain the characteristics of the waveguide

(wavenumbers and mode shapes) which are called a wave basis [47, 48]. The

nodal displacements and nodal resultant forces at any location in the waveguide

are expressed in terms of the wave basisq(z)

f(z)

 =

Φ

Θ

a(z) =

φ+ φ−

θ+ θ−

a+(z)

a−(z)

 (31)

where φ+,− are positive- and negative-going displacement wave mode shapes ob-

tained by taking the upper half of the extended eigenvector φ̂, θ+,− are the force

wave mode shapes, and a+(z), a−(z) are the corresponding wave amplitudes.

The force wave mode shapes are obtained from Eq. (23):

θ =
[
K̃f K̃2

]
φ̂ (32)

The change of the wave amplitude along the waveguide is described by the

space-harmonic term called the propagation matrix τ (z) = diag
(
e−kiz

)
.

4. Excitation of structural waves in an elastic waveguide covered with

a piezoelectric layer powered over a finite length

In this section we calculate structural waves excitation as a response to

a spatially distributed voltage using the piezoelectric wave element developed

above. We consider an infinite elastic layer covered over its whole length by

an electroded piezoelectric layer (Fig. 2). A finite section of the electrode is

driven with a time-harmonic voltage v0(t) (dotted region). The ‘driving’ section

is electrically isolated from adjacent parts of the waveguide which are in the

short-circuit condition. Vectors p− and p+ represent the waves generated by

the distributed patch-like piezoelectric excitation as they enter the non-powered

region. A local coordinate system (z′) is introduced with the origin in the middle

of the length of the piezoelectric actuator. The spatial distribution of voltage
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powered

grounded
PZT→
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z′

v(z′)

L/2−L/2

v0

Figure 2: Elastic waveguide covered by a piezoelectric layer powered over a finite length.

Excited waves amplitudes and voltage spatial distribution.

v(z′, t) is a rectangular box function as shown in Fig. 2, such that

v(z′, t) =

v0(t) = V0eωt if z′ ≤ |L/2|

0 otherwise

(33)

The time-harmonic term in the driving voltage is dropped for brevity hereafter.

The wave amplitudes can be found by solving the SAFE equation in the

wavenumber-frequency domain directly, given the spatial distribution of voltage

(this approach is similar to [48] where the response to a distributed pressure is

considered).

Let us recall the top row of the governing equation for wave propagation in

the waveguide with piezoelectric coupling in Eq. (22) and assume no external

tractions for the sake of clarity of the formulation:[
K̃0 − kK̃1 − (−k)2K̃2 − ω2M

]
q̄ =

(
−K̃

uϕ

0 − kK̃
uϕ

1

)
V̄0 (34)

where V̄0 is the SFT of the driving voltage spatial distribution given by

V̄0 = 2V0
sin (kL/2)

k
(35)

The solution is performed on the linearised form of Eq.(34) which enables
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the use of GEP properties:

[A(ω)− (−k)B(ω)] q̄ =

 0

−K̃
uϕ

0 − kK̃
uϕ

1

 V̄0 (36)

The right hand side matrix in Eq. (36) is for brevity denoted as H hereafter. The

displacement vector q̄ can be written as an expansion in terms of eigenvectors,

that is as a weighted superposition of the travelling waves, i.e. q̄ =
∑2n
i=1 φ̂ip̄i.

After pre-multiplying by ψ̂i, exploiting the orthogonality of the eigenvectors

with respect to B (Eq. (30)) and substituting V̄0 with Eq. (35), one writes the

nodal displacement solution

p̄i =
2V0 sin (kL/2)

k(k − ki)
ψ̂iH (37)

The modal weighting factor representing the amplitude of wave i in the space

domain is found via the inverse SFT defined in Eq. (18):

pi(z
′) =

1

2π

+∞∫
−∞

p̄ie
−kz′ dk =

1

2π

+∞∫
−∞

2V0 sin (kL/2)

k(k − ki)
ψ̂iHe−kz

′
dk (38)

The above complex integral has simple poles at ki and a removable singular-

ity at k = 0 (since the limit for k approaching 0 is 1), therefore it is evaluated

using Cauchy’s residue theorem [49]. The choice of the contour of integration

depends on the solutions of interest. In the case of an undamped waveguide the

contours need to be properly amended to classify the purely real wavenumbers

appropriately(see Fig. 3).

Given the notation from Fig. 3, the Cauchy residue theorem states that [49]

+∞∫
−∞

F (k)e−kz
′
dk =

−2π
∑

Res(ki) where ki are poles within C+ if z′ > 0

2π
∑

Res(ki) where ki are poles within C− if z′ < 0

(39)

where the residues are calculated as [50]

Res

(
a(k)

b(k)
, k0

)
=

a(k0)

d b(k)
d k

∣∣∣∣
k=k0

(40)

17



Im(k)

Re(k)

k−i

k+i

C− Im(k)

Re(k)

k−i

k+i

C+

Figure 3: Contours for integration [48].

After evaluating the integral one obtains the excited wave amplitudes in the

space domain:

p+
i (z′) = −2V0 sin (k+

i L/2)

k+
i

ψ̂+
i He−k

+
i z
′

p−i (z′) =
2V0 sin (k−i L/2)

k−i
ψ̂−

i He−k
−
i z
′

(41)

Note that p+
i (z′), p−i (z′) are expressed with reference to the local coordinate

system as depicted in Fig. 2. To obtain the excited wave amplitudes as they

appear at the ends of the electrically driven region, they are evaluated at x =

±L/2, yielding:

p+
i = −

V0

(
1− e−k

+
i L
)

k+
i

ψ̂+
i H

p−i =
V0

(
ek
−
i L − 1

)
k−i

ψ̂−
i H

(42)

Eq. (42) provides expressions for wave amplitudes excited by a voltage uniformly

distributed over L in an infinite piezo-covered waveguide as they appear at the

ends of the driving section.

5. Excitation of structural waves with a finite piezoelectric actuator

In this section the tools outlined previously are put together to form a cou-

pled electro-mechanical wave model. An illustrative example of a beam-like

waveguide (2D rectangular cross-section) with a PZT actuator is presented in

detail, however the framework can be applied to an arbitrary multi-component

18



φ1, θ1 φ2, θ2

section 1 section 2
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φ, θ
BCs given by:

A, B

g+

g−

Figure 4: (a) Wave scattering at a junction between two waveguides; (b) Wave reflection at

the boundary.

structural waveguide with piezoelectric actuators [51]. The chosen example

shows the technique’s capability of predicting a 3D wave field. Lamb waves

can be simulated if the cross-section is modelled using mono-dimensional plane

strain elements.

The proposed algorithm can be summarised in the following steps: the struc-

ture is first divided into sections that have homogeneous properties along the

propagation direction (wave elements); for each of the wave elements the wave

bases and excited wave amplitudes are obtained using the SAFE methodology

outlined above; afterwards, the coupling between the wave elements is imple-

mented using scattering matrices which describe how the waves behave when

incident upon discontinuities (e.g. junctions between different wave elements);

the final response is calculated using wave propagation/scattering relationships

expressed in matrix form.

5.1. Wave scattering and reflection

The wave approach involves coupling together wave elements that have dif-

ferent dimensions and properties. The wave elements are required to be meshed

in such a way that all the nodes from the overlapping regions of two adjacent

waveguides are coincident. Wave scattering at discontinuities and reflection at

the boundaries is represented here in the same way as proposed in [47, 52].

When incident on a junction, the wave scatters into reflected and transmit-

ted components. The frequency dependent scattering matrix can be found by
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solving simultaneously the conditions of displacement continuity and force equi-

librium between the adjacent wave elements [52]. With reference to Fig. 4, let

us write them in matrix form using the wave basis defined in Eq. (31)−C1φ
−
1 C2φ

+
2

−E1θ
−
1 E2θ

+
2

g−

f+

 =

C1φ
+
1 −C2φ

−
2

E1θ
+
1 −E2θ

−
2

g+

f−

 (43)

where C1, C2 are continuity matrices that provide information about the co-

incident nodes in neighbouring wave elements and leaving the uncoupled nodes

free, whereas E1, E2 are equilibrium matrices that are balancing the nodal re-

sultant forces at the coincident nodes and setting the resultant nodal forces at

the uncoupled nodes to zero.

By multiplying Eq. (43) by the inverse of the matrix on the left hand side,

one can express the waves leaving the junction in terms of the waves incident

upon the junction by means of the scattering matrix T:g−

f+

 =

R11 T21

T12 R22

g+

f−

 = T

g+

f−

 (44)

where the structure of the scattering matrix is shown clearly.

Similarly, wave reflection at a boundary can be determined using the wave

basis. Depending on the type of the boundary condition either the displacement

or the force degree of freedom is set to zero. With reference to Fig. 4 this can

be represented in a matrix form as [47]

Af + Bq = 0 (45)

which in terms of the wave basis defined in Eq. (31) is written as

A
[
θ+g+ + θ−g−

]
+ B

[
φ+g+ + φ−g−

]
= 0 (46)

The reflection matrix relates the wave leaving the boundary to the wave incident

upon the boundary, such that g− = Rg+ (for the ‘right’ boundary). After

rearranging Eq. (46) one obtains an expression for a reflection matrix at the

‘right’ boundary, i.e. with positive-going wave incident, given the characteristics

of the boundary A, B

R = −
[
Aθ− + Bφ−

]−1 [
Aθ+ + Bφ+

]
(47)
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a−1 a+2 a+3a−2

p− p+
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V0

TL TR
L

b+
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Figure 5: Infinite waveguide excited with a piezoelectric actuator - schematic diagram for

calculating the travelling waves outside the PZT-covered section; the excited waves p+, p−

are defined at the edges of the actuator just before they are incident on the discontinuity; a+
i ,

a−
i are the travelling waves at different stages.

5.2. Example: an infinite beam-like waveguide with a piezoelectric actuator

The approach is demonstrated on a simple model of an infinite waveguide

with a rectangular cross-section equipped with a finite piezo actuator. There

are two possible desired outputs of such a calculation, namely either the excited

wave field propagating in the elastic substrate or the electrical impedance of the

actuator. Both cases are considered below.

5.2.1. The response outside the piezo-covered region

Of interest is finding the wave amplitudes induced in the substrate waveguide

at a position zr to the right of the actuator, denoted hereafter by b+. The

travelling waves at different stages and the excited waves at the ends of the

actuator are depicted in Fig. 5.

The wave amplitudes resulting from the distributed voltage excitation p−,

p+ as found in Sec. 4 are immediately incident upon the discontinuities at

the ends of the piezoelectric actuator, and therefore scattered according to the

appropriate scattering matrices for the junctions.

The right boundary condition is ideally absorbing (located at +∞), so there

is no negative-going wave in element 3. The response of the structure at zr is
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written in the wave domain as

q(zr) = φ+b+(zr) = φ+τ (zr)a
+
3 (48)

To obtain the response at a desired location zr, one needs to find the travelling

wave amplitude a3
+ first

a+
3 = T12

R p+ + T12
R τ (L)a+

2 (49)

where

a+
2 =R22

L p− + R22
L τ (L)a−2

a−2 =R11
R p+ + R11

R τ (L)a+
2

(50)

Appropriate manipulation of the above equations leads to

a+
3 = T12

R p+ + T12
R τ (L)

[
I−R22

L τ (L)R11
R τ (L)

]−1·[
R22

L p− + R22
L τ (L)R11

R p+
] (51)

which after substituting into Eq. (48) gives the desired response.

5.2.2. The response within the piezo-covered region: electrical impedance extrac-

tion

Many engineering applications take advantage of the electromechanical cou-

pling in piezoelectric elements to sense the dynamic behaviour of a structure

by means of a frequency dependent electrical impedance of the PZT element

Z(ω) = V (ω)
I(ω) .

The driving voltage V0 is kept fixed, whereas the current drawn is obtained

from the second row of Eq. (22) which provides an expression for the total

reaction charge on the electrode:

[
K̃
ϕu

0 − kK̃
ϕu

1 −K̃
ϕϕ
] q̄

V0

 = −Q (52)

The total charge consists of two parts: the component resulting from the electri-

cal properties of the piezoelectric (K̃
ϕϕ

) which has a capacitive nature, and the

component resulting from the mechanical deformation of the element generating

charge via piezoelectric coupling (K̃
ϕu

0 − kK̃
ϕu

1 ).
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Figure 6: Infinite waveguide excited with a piezoelectric actuator - schematic diagram for cal-

culating the travelling waves inside the PZT-covered section; the excited waves p+
2L, p−

2L, p+
2R,

p−
2R are defined at the edges of the actuator just before they are incident on the discontinuity;

a+
i , a−

i are the travelling waves at different stages.

The reaction charge needs to be summed over the length of the actuator,

hence the response inside the actuator is required. At each location zi along

the length of the PZT-covered wave element we split it into two parts: the

one to the left from zi and that to the right from zi. The excited waves are

calculated separately for each part using the framework presented in the previous

paragraphs and substituting the correct lengths depending on zi. A schematic

diagram for the calculation is shown in Fig. 6.

One starts the calculation by writing the expressions for travelling waves at

different stages

a+
2R = p+

2L + τ (LL)a+
2L a−2R = R11

R p+
2R + R11

R τ (LR)a+
2R

a−2L = p−2R + τ (LR)a−2R a+
2L = R22

L p−2L + R22
L τ (LL)a−2L

(53)

After some algebraic manipulations, one obtains the expressions for the positive-

and negative-going waves at a location zi within the piezoelectric actuator

a−2L =
[
I− τ (LR)R11

R τ (L)R22
L τ (LL)

]−1

{
p−2R + τ (LR)

[
R11
R p+

2R + R11
R τ (LR)

(
p+

2L + τ (LL)R22
L p−L

)]}
a+

2R = p+
2L + τ (LL)R22

L p−2L + τ (LL)R22
L τ (LL)a−2L

(54)
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Therefore, the total charge is

Q = K̃
ϕϕ
vL−

L∫
0

K̃
ϕu

0 q(z)− kK̃ϕu

1 q(z) dz (55)

where

q(zi) = Φ+a+
2R + Φ−a−2L (56)

The integral in Eq. (55) can be evaluated numerically.

6. Convergence

Since the cross-section is discretised, the frequency range in which the re-

sults are credible is related to the density of the mesh. To determine how many

elements are needed in a desired frequency range, one can check the convergence

of the cut-off frequencies of the higher-order wave modes. This can be conve-

niently performed using the SAFE governing equation from Eq. (24) by setting

k = 0. The cut-off frequencies can then be found from(
K0 − ω2M

)
q̄ = 0 (57)

The element size Lmax ensuring that the cut-off frequencies converge is re-

lated to the bulk shear wavelength λT [53, 54]

Lmax = λT /γ (58)

where γ = 4 for quadratic elements, and γ = 10 for linear elements.

For a free rectangular piezoelectric actuator (0.03× 0.003× 0.1 m), made of

Noliac NCE40 material (see Table 2 for material properties) and meshed using

8-node biquadratic quadrilaterals, Eq. (58) indicates that a structured mesh

grid of 18×2 elements is sufficient. Below we verify that result by calculating

the response to a driving voltage for increasing mesh densities in the frequency

range 1–300 kHz.

The results for the end-displacement at the middle of the cross-section and

the electrical admittance of the actuator as a response to a driving voltage are

presented in Fig. 7. Both mechanical and electrical responses are shown to

converge with increasing mesh density, proving the element formulation valid.
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Figure 7: Response for different mesh configurations denoted in the legend as elements along

x × elements along y. In each graph the results for a particular mesh are compared with a

benchmark case in light grey: (a) displacement; (b) electrical admittance.

7. Numerical verification

Before the experimental validation is presented, the developed methodology

is verified against numerical results from a commercial FE package (ABAQUS)

and against a model based on the spectral element formulation from the open

literature ([6]). Note that one of the considered cases involves a more complex

waveguide configuration than the illustrative example presented in Sec. 5.2.

Derivation of the equations proceeds, however, along the same lines. For sim-

plicity, a generalised piecewise formulation can be used as given in [51].

7.1. Verification with FE

Structural configurations for the benchmark cases are depicted in Fig. 8 and

the corresponding material properties are listed in Table 1 and Table 2. The

cross-sections in both the FE and SAFE are meshed using structured mesh (con-

figurations in Fig. 8) and the element size along the propagation direction in FE

is chosen to be 0.5 mm providing at least 4 quadratic elements per the shortest

wavelength. The results of the comparison are shown in Fig. 9 and Fig. 10
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Cross-section mesh configurations:

SAFE:  8x2 (8-node biquadratic
                     quadrilateral)
ABAQUS: 8x2 (C3D20E)

Cross-section mesh configurations:

SAFE: 6 elements through each layer 
             (3-node quadratic)
ABAQUS: 6 elements through each layer
                 (CPE8 and CPE8E)

Figure 8: Structural configurations for the numerical verification: (a) case 1; (b) case 2.

Table 1: Isotropic material constants used in the paper.

Material E, GPa ν ρ, kgm−3 η,%

Aluminium 69 0.33 2700 0.5

Ice 8.3 0.351 900 1

Steel 163 0.3 8000 0.01

Epoxy 15 0.4 1000 0.01

showing very good agreement between the wave-based technique presented in

this paper and conventional FE simulations.

7.2. Verification against a beam model from the open literature

In this section we compare the presented methodology with a model from

the open literature [6] based on the spectral element formulation. In [6] the

authors study a 0.6 m long and 2 mm thick aluminium cantilever beam excited

by a piezoelectric actuator (PZT-5A, 0.2 m long and 0.5 mm thick, mounted

0.2 m from the fixed end). Their formulation employs the Timoshenko and

Mindlin-Hermann theories with the piezoelectric excitation being represented

by a pair of equivalent forces.

The response to the piezoelectric excitation computed using the model based

on [6] is compared to the SAFE model presented in this paper and to a full 3D

finite element model (as a benchmark) in Fig. 11. The longitudinal responses

in Fig. 11(a) agree very well except for two regions: around 20 and 27 kHz.

For the out-of-plane response in Fig. 11(b), all presented methods provide the
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Table 2: Piezoelectric material constants used in the paper.

Property NCE40 PZT-5A

ρ, kgm−3 7850 7750

η,% 0.7 0

cExxxx = cEzzzz, GPa 126.35 121

cExxyy = cEyyzz, GPa 58.68 75.2

cEyyyy, GPa 99.88 111

cExxzz, GPa 62.93 75.4

cExzxz, GPa 31.71 21.1

cEyzyz = cExyxy, GPa n 36.77 22.6

εεxx, Fm−1 ×10−9 5.5 8.119

εεzz, Fm−1 ×10−9 5.5 8.119

εεyy, Fm−1 ×10−9 5.196 7.349

ey,xxxx, NV−1 m−1 -3.239 -5.46

ey,zzzz, NV−1 m−1 -3.239 -5.46

ez,yzyz, NV−1 m−1 13.075 13.198

ex,xyxy, NV−1 m−1 13.075 13.198

ey,yyyy, NV−1 m−1 16.335 15.796
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Figure 9: Verification case 1: velocity at a point on the electrode surface of a free PZT actuator

in response to a driving voltage.
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Figure 10: Verification case 2: electrical impedance of a PZT actuator bonded to an aluminium

cantilever with an ice patch.
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Figure 11: Verification against a model based on [6] and 3D FE (as a benchmark) – response

to a driving voltage: a) longitudinal displacement; b) transverse displacement.
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Figure 12: Experimental setup for the validation of the model: (a) schematic diagram; (b)

response locations on the cross-section plane.

same results up to 5 kHz. Further in frequency, the discrepancy between the

models increases and around 10 kHz starts to be significant. At around 27 kHz

higher-order waves start to propagate in the structure and significantly alter its

response. These effects are well captured by the SAFE model and 3D FE only.

Whilst the methodology from [6] is fast and reliable for a range of applications

at low frequencies, the SAFE model allows for accurate calculations at mid- and

high-frequencies with the ability to represent the dynamics of piezo-equipped

structures correctly.

8. Experimental validation

The framework proposed in this paper was validated with an experiment

on a piezo-equipped beam with emulated anechoic terminations. A schematic

diagram of the experimental set-up is shown in Fig. 12, whereas corresponding

material properties are listed in Table 1 and Table 2. The piezoelectric actuator

(0.076 m × 0.024 m × 0.0022 m) was made of Noliac NCE40 material and

attached to the beam using a thin (ca. 0.1 mm) layer of silvered epoxy (Circuit

Works CW2400). The properties of NCE40 from [55] were updated based on the

free-free actuator impedance measurement to provide the closest match (within

stated tolerances) giving the values listed in Table 2. The properties of steel

resulted from model updating based on an impact hammer test.
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Figure 13: Magnitude and phase of the out-of-plane velocity with respect to the driving

voltage measured at scan point #1 (see Fig. 12).

The response was measured at a few locations across the width of the beam

using a Polytec PSV300 laser vibrometer, two of which are presented below (see

Fig. 12). The ends of the beam were placed in boxes filled with sand in such

a way that the thickness of the sand cover was gradually increased to ensure a

smooth change in the mechanical impedance of the boundary and minimise any

reflections.

A corresponding wave model consisted of 3 wave elements and was exactly

the same as described in Sec. 5.2. Each cross-section was modelled with six

8-node biquadratic quadrilateral elements across the width and one element

through the thickness of each layer.

Illustrative recorded responses from scan point #1 and #2 are compared

with the wave model predictions in Fig. 13 and Fig. 14, respectively. The choice

of scan points demonstrates the variation of the response across the width of

the beam especially between 30 and 40 kHz.

The response at mid-width of the beam (point #1) is shown in Fig. 13. At

low frequencies it follows the behaviour expected from the approximate theories

with simple bending being dominant. The sudden jump in magnitude at around
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Figure 14: Magnitude and phase of the out-of-plane velocity with respect to the driving

voltage measured at scan point #2 (see Fig. 12).

27 kHz corresponds to the cut-off frequency of the first across-width bending

wave in the steel beam (denoted as U-wave). At around 35 kHz the response

reaches its maximum which is related to the cut-off frequency of the U-wave in

the PZT-covered section. The PZT-covered section is then at resonance. Pre-

dictions obtained with the model based on [6] (see Sec. 7.2) included in Fig. 13

agree with the experiment up to ca. 5 kHz but deviate at higher frequencies as

the dynamics of the PZT-covered section cannot be captured by simple beam

theories.

Fig. 14 shows the response measured at a location close to the node of the U-

wave (point #2). Consequently, there is no significant increase in the amplitude

between 27 and 35 kHz. Our model is shown to represent the experimental

response very well including higher-order wave effects.

The wave absorption in the sandboxes was observed to have a nonlinear

character and depended significantly on the amplitude of the waves. Large am-

plitude waves near the cut-off frequency are poorly absorbed by the sandboxes.

Nevertheless, despite the absorption being imperfect, the mobilities presented

in Fig. 13 and Fig. 14 capture predominantly the effect of the incident waves

and show a very good agreement between the modelling approach presented in
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Figure 15: Dispersion curves for the cross-sections used in the validation experiment: (a) steel

beam; (b) PZT-epoxy-steel beam.

this paper and the experimental data.

9. Wave analysis of the experimental case

In this section the experimental case is analysed from a wave perspective

using the SAFE model. The wave-based nature of the proposed model renders

insight into the wave characteristics of the structure and the wave composition

of the FRF. The dispersion curves for the cross-sections used in the experiment

are presented in Fig. 15. At each frequency the wavenumbers are arranged

according to the WAC matrix (Wave Assurance Criterion [47]) ensuring the

continuity of the wave mode shape along the dispersion curve.

Points A-G as marked in Fig. 15 are used to describe the displacement wave

mode shape associated with particular waves in a steel beam which are shown in

32



z, m x , m
y,

m

A

z, m x , m

y,
m

B

z, m
x , my,

m

C

z, m x , m

y,
m

D

z, m x , m

y,
m

E

z, m
x , my,

m

F

z, m x , m

y,
m

G

Figure 16: Predicted wave displacement mode shapes for the steel beam used in the experiment

associated with the points highlighted in Fig. 15. The geometry scale is not preserved in order

to facilitate visualisation.

Fig. 16. When the PZT layer is present the cut-off frequencies of the transverse

across-width bending waves are shifted up since the bending stiffness of the

cross-section is increased.

The wave model enables decomposition of the response into contributions

from particular waves. The piezoelectric actuator in the chosen configuration is

able to activate only three of the seven waves in the frequency range of interest

(Fig. 15). The velocities associated with each propagating wave (as magnitudes)

are shown in Fig. 17 with the legend and labelling convention adopted from

Fig. 15. The FRF corresponds to the surface out-of-plane velocity at scan

point #4. One can observe that at low frequencies the fundamental flexural

wave is prevalent in the response. When the U-wave cuts off at 27 kHz it

locally dominates the FRF and from that frequency onwards it is mainly the

two aforementioned waves that contribute to the overall response. The influence

of the compressional wave is very small as expected from the direction of the

velocity measurement (out-of-plane).
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10. Conclusions

In this paper, a new wave-based methodology for modelling piezoelectric

excitation in waveguides was proposed resulting from the coupling of the semi-

analytical finite element method and the analytical wave approach. We devel-

oped a piezoelectric semi-analytical finite element suited to representing elec-

troded piezoelectric actuators and outlined the mathematical framework for

modelling distributed voltage excitation. The actuator-covered element was

coupled to the other sections of the waveguide using scattering matrices. A few

numerical examples were used to verify the model against conventional finite

element simulations and a model from the open literature, which highlighted

the physical insight gained with the proposed method. Finally, we conducted

an experimental validation which showed very good agreement between the pre-

dictions of the model and the measured responses of a piezo-actuated beam with

emulated anechoic terminations.
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Appendix A. Static condensation of the internal potentials

A static condensation scheme is briefly recalled here following [40, 41, 43]

and extended to the case of wavenumber-dependent matrices. For the sake of

brevity we write the SAFE matrices in the following manner:

Kuu(k) = K0 − kK1 − (−k)2K2

Kuϕ(k) = Kuϕ
0 + kKuϕ

1

Kϕu(k) = Kϕu
0 − kK

ϕu
1

(A.1)

In the following the index i denotes the internal nodes, index v denotes the

nodes on the powered electrode and finally the index 0 denotes the nodes on

the grounded electrode. Eq. (20) is then rewritten as follows:
Kuu(k)− ω2M Kuϕ

v (k) Kuϕ
0 (k) Kuϕ

i (k)

Kϕu
v (k) −Kϕϕ

vv −Kϕϕ
v0 −Kϕϕ

vi

Kϕu
0 (k) −Kϕϕ

0v −Kϕϕ
00 −Kϕϕ

0i

Kϕu
i (k) −Kϕϕ

iV −Kϕϕ
i0 −Kϕϕ

ii





q̄

ϕ̄v

ϕ̄0

ϕ̄i


=



p̄

−Ῡv

0

0


(A.2)

We assume that there are no external forces and remove rows and columns

associated with the grounded electrode ϕ̄0 since ϕ̄0 = 0. Potentials at the

internal nodes can be extracted from the last equation:

ϕ̄i = (Kϕϕ
ii )
−1

(Kϕu
i (k)q̄−Kϕϕ

iV ϕ̄v) (A.3)

Eq. (A.3) is substituted into Eq. (A.2) and the matrices are expanded ac-

cording to the shorthand notation introduced in Eq. (A.1). The resulting equa-

tions are rearranged and grouped with respect to the order of the wavenumber.
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Consequently, one can write the expressions for condensed matrices

K̃0 = K0 + Kuϕ
0i (Kϕϕ

ii )
−1

Kϕu
0i

K̃1 = K1 +
[
Kuϕ

0i (Kϕϕ
ii )
−1

Kϕu
1i −Kuϕ

1i (Kϕϕ
ii )
−1

Kϕu
0i

]
K̃2 = K2 + Kuϕ

1i (Kϕϕ
ii )
−1

Kϕu
1i

K̃
uϕ

0 = K̃
ϕu>

0 =

[
Kuϕ

0v −Kuϕ
0i

(
K̃
ϕϕ

ii

)−1

Kϕϕ
iv

]
Iv

K̃
uϕ

1 = K̃
ϕu>

1 =
[
Kuϕ

1v −Kuϕ
1i (Kϕϕ

ii )
−1

Kϕϕ
iV

]
Iv

K̃
ϕϕ

= Iv
>
[
Kϕϕ
vv −Kϕϕ

V i (Kϕϕ
ii )
−1

Kϕϕ
iV

]
Iv

K̃f = Kf + Kuϕ
1i (Kϕϕ

ii )
−1

Kϕu
0i

(A.4)

In the above equation the contributions of all nodes on the powered electrode are

summed up since voltage is constant over the driving electrode. To accomplish

that appropriate matrices are multiplied by vector Iv =
[
1 1 . . . 1

]>
of the

length equal to the number of nodes on the powered piezoelectric electrode [41].
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