
Complex-Valued B-Spline Neural Network and its Application to

Iterative Frequency-Domain Decision Feedback Equalization for

Hammerstein Communication Systems

Sheng Chen, Xia Hong, Emad Khalaf, Fuad E. Alsaadi and Chris J. Harris

Abstract— Complex-valued (CV) B-spline neural network
approach offers a highly effective means for identification and
inversion of Hammerstein systems. Compared to its conven-
tional CV polynomial based counterpart, CV B-spline neural
network has superior performance in identifying and inverting
CV Hammerstein systems, while imposing a similar complexity.
In this paper, we review the optimality of CV B-spline neural
network approach and demonstrate its excellent approximation
capability for a real-world application. More specifically, we
develop a CV B-spline neural network based approach for the
nonlinear iterative frequency-domain decision feedback equal-
ization (NIFDDFE) of single-carrier Hammerstein channels.
Advantages of B-spline neural network approach as compared
to polynomial based modeling approach are extensively dis-
cussed, and the effectiveness of CV neural network based
NIFDDFE is demonstrated in a simulation study.

I. INTRODUCTION

In many real-world applications, the underlying system

that generates complex-valued (CV) signals can be modeled

by the CV Hammerstein model. The system is grey-box, as

its structure is known to be consisting of an unknown static

nonlinearity followed by an unknown linear dynamic model.

A well-known example of CV Hammerstein systems is the

single-carrier (SC) block transmission communication chan-

nel with nonlinear high power amplifier (HPA) at transmitter,

whereby the CV static nonlinearity is the nonlinear transmit

HPA, and the linear dynamic subsystem is the dispersive

channel which can usually be modeled as a finite-duration

impulse response (FIR) filter.

CV B-spline neural network has been applied as an

effective means for identification and inversion of CV Ham-

merstein systems [1]–[3]. Compared to its conventional poly-

nomial based counterpart, B-spline models are proven to

have the optimal stability or numerical robustness [4]–[6],

and achieve superior performance in challenging practical

applications [1]–[3], while maintaining a similar compu-

tational complexity. This paper reviews the CV B-spline

neural network model as an effective means for identifying

and inverting practical Hammerstein systems. We analyze its

optimal robustness property, and provide the computational

S. Chen (sqc@ecs.soton.ac.uk) and C.J. Harris (cjh@ecs.soton.ac.uk)
are with Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK. S. Chen is also with King Abdulaziz Univer-
sity, Jeddah 21589, Saudi Arabia.

X. Hong (x.hong@reading.ac.uk) is with School of Systems Engineering,
University of Reading, Reading RG6 6AY, UK.

E. Khalaf (ekhalaf@kau.edu.sa) and F.E. Alsaadi
(fuad alsaadi@yahoo.com) are with Electrical and Computer Engineering
Department, Faculty of Engineering, King Abdulaziz University, Jeddah
21589, Saudi Arabia.

complexity required to calculate the output of a B-spline

model, which turns out to be similar to that of the conven-

tional polynomial model.

Our main contribution is however the derivation of a new

CV B-spline neural network based design for the nonlinear

iterative frequency-domain decision feedback equalization

(NIFDDFE) of SC Hammerstein channels. The existing

CV B-spline based nonlinear frequency-domain equalization

(NFDE) scheme [3] becomes naturally the first iteration

of this new NIFDDFE whereby no past detected data are

available yet. Therefore, our new NIFDDFE design signif-

icantly outperforms the previous NFDE design. We also

demonstrate that our B-spline based NIFDDFE has a superior

performance over the polynomial based NIFDDFE. Our

novel application therefore reinforces the CV B-spline neural

network as a versatile and effective means for solving real-

world applications where the underlying systems can be

represented by CV Hammerstein models.

Throughout this contribution, a CV number x ∈ C is

represented either by x = xR + jxI or by x = |x| exp(j∠x).
The transpose and conjugate transpose operators are denoted

by ( )T and ( )H, respectively, while ( )−1 stands for the

inverse operation and ( )∗ denotes the conjugate operation.

Furthermore, the expectation operator is denoted by E{ }.

II. NIFDDFE FOR HAMMERSTEIN CHANNELS

We begin by introducing our application senario, the SC

block transmission system [7]–[9], where each transmit block

consists of N data symbols with M -quadrature amplitude

modulation (QAM) expressed as

x =
[
x0 x1 · · ·xN−1

]T
, (1)

where xk, 0 ≤ k ≤ N − 1, take the values from the set

X={d(2l−
√

M −1)+ j ·d(2q−
√

M −1), 1 ≤ l, q ≤
√

M},
(2)

with 2d being the minimum distance between symbol points.

Adding the cyclic prefix (CP) of length Ncp to x yields

x̄ =
[
x−Ncp

x−Ncp+1 · · ·x−1 | xT
]T

, (3)

with x−k = xN−k for 1 ≤ k ≤ Ncp. The signal block x̄ is

amplified by the HPA to yield the transmitted signal block

w̄ =
[
w−Ncp

w−Ncp+1 · · ·w−1 | wT
]T

(4)

where w =
[
w0 w1 · · ·wN−1

]T
and

wk =Ψ(xk) , −Ncp ≤ k ≤ N − 1, (5)
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Fig. 1. System schematic of the NIFDDFE for SC Hammerstein communication systems with the nonlinear HPA Ψ at transmitter.

in which Ψ( ) represents the CV static nonlinearity of HPA,

and w−k = wN−k for 1 ≤ k ≤ Ncp. Typical HPA in

transmitter is the solid state power amplifier [10]–[12], whose

nonlinearity Ψ( ) is constituted by the HPA’s amplitude

response A(r) and phase response Υ(r) given by

A(r) =
gar

(
1 +

(
gar
Asat

)2βa
) 1

2βa

, (6)

Υ(r) =
αφrq1

1 +
(

r
βφ

)q2
, (7)

where r denotes the amplitude of the input to HPA, ga is the

small gain signal, βa is the smoothness factor and Asat is

the saturation level, while the phase response parameters, αφ.

βφ, q1 and q2, are adjusted to match the specific amplifier’s

characteristics. We adopt the following parameter set defined

in the standardization [11], [12]

ga = 19, βa = 0.81, Asat = 1.4;
αφ = −48000, βφ = 0.123, q1 = 3.8, q2 = 3.7.

(8)

Given the input xk = |xk|ej∠xk
, the output of the HPA is

wk = A(|xk|)ej
(
∠

xk+Υ(|xk|)
)
. (9)

The operating status of the HPA is specified by the output

back-off (OBO), which is defined as the ratio of the maxi-

mum output power Pmax of the HPA to the average output

power Paop of the HPA output signal, given by

OBO = 10 · log10

Pmax

Paop
. (10)

The smaller OBO is, the more the HPA is operating into the

nonlinear saturation region.

The amplified signal block w̄ is transmitted through the

channel whose channel impulse response (CIR) coefficient

vector is

h =
[
h0 h1 · · ·hLcir

]T
. (11)

The CIR length satisfies Lcir ≤ Ncp. It is assumed that h0 =
1 because if this is not the case, h0 can always be absorbed

into the CV nonlinearity Ψ( ), and the CIR coefficients are re-

scaled as hi/h0 for 0 ≤ i ≤ Lcir. The combined transmission

channel and transmitter, as seen in Fig. 1, is a Hammerstein

system containing the nonlinearity Ψ( ) defined by (6) and

(7) followed by the FIR filter with the CIR (11).

At receiver, after CP removal, the channel-impaired re-

ceived signals yk are given by

yk =

Lcir∑

i=0

hiwk−i + ek, 0 ≤ k ≤ N − 1, (12)

in which wk−i = wN+k−i for k < i, where ek is the additive

white Gaussian noise (AWGN) with E
{
|ek|2

}
= 2σ2

e . Our

NIFDDFE receiver is depicted in Fig. 1. First, passing y =[
y0 y1 · · · yN−1

]T
through the N -point fast Fourier transform

(FFT) processor yields the frequency-domain (FD) received

signal block Y =
[
Y0 Y1 · · ·YN−1

]T
with elements

Yn =

N−1∑

k=0

yke−j 2πkn
N , 0 ≤ n ≤ N − 1. (13)

Due to the well-known circular property of CP [7]–[9],

Yn =HnWn + Ξn, 0 ≤ n ≤ N − 1, (14)

in which Ξn is the FD AWGN with E
{∣∣Ξn

∣∣2} = 2σ2
e , and

W =
[
W0 W1 · · ·WN−1

]T
is the N -point FFT of w, i.e.,

Wn =

N−1∑

k=0

wke−j 2πkn
N , 0 ≤ n ≤ N − 1, (15)

with E
{∣∣Wn

∣∣2} = E
{∣∣wk

∣∣2} = σ2
w, while the FD channel

transfer function coefficients (FDCTFCs) Hn, 0 ≤ n ≤ N −
1, are the N -point FFT of h given by

Hn =

Lcir∑

i=0

hie
−j 2πin

N , 0 ≤ n ≤ N − 1. (16)

The proposed NIFDDFE involves an iterative detection

procedure with the iteration index l ≥ 1. Typically 2 to 4

iterations are sufficient. Specifically, let the FD feedforward

and feedback equalizers coefficients at the lth iteration be{
C

(l)
n

}N−1

n=0
and

{
B

(l)
n

}N−1

n=0
, respectively. Further denote

the estimate of {Wn}N−1
n=0 at the previous iteration be{

Ŵ
(l−1)
n

}N−1

n=0
. Then the ‘soft’ estimate of Wn is given by

W̃ (l)
n =C(l)

n Yn + B(l)
n Ŵ (l−1)

n , 0 ≤ n ≤ N − 1. (17)

Passing W̃
(l)
n for 0 ≤ n ≤ N−1 through the N -point inverse

FFT (IFFT) processor yields the soft estimate of the time-

domain (TD) transmitted signals {wk}N−1
k=0 as

w̃
(l)
k =

1

N

N−1∑

n=0

W̃ (l)
n ej 2πnk

N , 0 ≤ k ≤ N − 1. (18)

For the time being assume that the nonlinearity Ψ( ) of the

transmitter HPA and its inversion Ψ−1( ) are both known at

the receiver. The soft estimate
{
x̃

(l)
k

}N−1

k=0
of the transmitted

data symbols can be calculated according to

x̃
(l)
k =Ψ−1

(
w̃

(l)
k

)
, 0 ≤ k ≤ N − 1. (19)



By quantizing x̃
(l)
k , we obtain the hard-decision estimate{

x̂
(l)
k

}N−1

k=0
of the transmitted data block. Further distorting{

x̂
(l)
k

}N−1

k=0
by Ψ( ) yields the TD estimate

{
ŵ

(l)
k

}N−1

k=0
which is transformed by the N -point FFT to produce the

FD estimate
{
Ŵ

(l)
n

}N−1

k=0
to be used in the next iteration.

For the linear iterative FD decision feedback equalisation

(LIFDDFE), i.e., the HPA is linear and wk = xk,
{
C

(l)
n

}N−1

n=0

and
{
B

(l)
n

}N−1

n=0
can be obtained by minimizing the mean

square error but the computation is quite involved [8].

Extending this LIFDDFE design to our NIFDDFE also seems

to yield poor performance. However, we find the extension

of the low-complexity simplified LIFDDFE design [9] works

well with some modification. At the first iteration l = 1,

Ŵ
(0)
n = 0 and B

(1)
n = 0 for 0 ≤ n ≤ N − 1, and we have

C(1)
n =

H∗
n

|Hn|2 +
2σ2

e

σ2
w

, 0 ≤ n ≤ N − 1, (20)

which is identical to the NFDE solution of [3]. For the

iterations l ≥ 2, we have

C(l)
n =Cn =

(1 − γ)H∗
n

SNR−1
pre+βPe,pre|Hn|2

, 0 ≤ n ≤ N − 1, (21)

B(l)
n =Bn = −

(
CnHn − 1

)
, 0 ≤ n ≤ N − 1, (22)

with

̟ =
1

N

N−1∑

n=0

|Hn|2
SNR−1

pre + βPe,pre|Hn|2
, (23)

γ =
̟

1 + ̟
. (24)

For the LIFDDFE, the work [9] finds that the performance

is insensitive to the predefined SNR value SNRpre and the

predefined symbol error probability Pe,pre. In particular,

SNR−1
pre = 0.1 and Pe,pre = 0.1 yields excellent results. In

our NIFDDFE, we also find that SNR−1
pre = 0.1 and Pe,pre =

0.1 are appropriate. In the LIFDDFE case, i.e., wk = xk, β
is a parameter depending on the modulation scheme for xk.

Specifically, β = 2, 2/5 and 2/21 for 4-QAM, 16-QAM and

64-QAM, respectively. In our NIFDDFE, wk is a nonlinearly

distorted xk and the severity of this nonlinear distortion

depends on the OBO of the transmitter HPA. Intuitively,

β should be smaller than the linear case and how small β
is also depends on the value of OBO. For 64-QAM with

OBO = 3 dB, we find β = 0.01 is appropriate, i.e., ten

times smaller than the linear case. With OBO = 5 dB, an

appropriate value is β = 0.05, i.e., only two times smaller

than the linear case. This makes sense, as with OBO = 5 dB,

the HPA is operating closer to the linear region than the

case of OBO = 3 dB. Another modification made is in the

feedback coefficients Bn of (22). In the LIFDDFE design

[9], Bn = −
(
CnHn − γ

)
. But we find with Bn of (22), the

performance is better for the NIFDDFE.

III. CV B-SPLINE APPROACH FOR NIFDDFE

It can be seen that implementing the NIFDDFE requires

to identifying and inverting the Hammerstein channel that

consists of the unknown static nonlinearity Ψ( ) followed by

the FIR filter with the unknown CIR vector h.

A. Complex-valued B-spline neural network approach

The CV B-spline neural network approach [1]–[3] offers

an effective means for identifying and inverting this Ham-

merstein channel. Before introducing the B-spline model of

Ψ( ), we point out that Ψ( ) meets the following conditions.

1) Ψ( ) is a one-to-one mapping, i.e., a continuous and

invertible function.

2) xR and xI are upper and lower bounded by some known

finite real values, where x = xR + jxI is the input to Ψ( ),
and the distributions of xR and xI are identical.

According to the property 2), we have Umin < xs < Umax,

where Umin and Umax are known finite real values, while

xs represents either xR or xI , namely, the subscript s is

either R or I . A set of Ns univariate B-spline basis functions

on xs is parametrized by the piecewise polynomial degree

Po and a knot sequence of (Ns + Po + 1) knot values,

{U0, U1, · · · , UNs+Po
}, with

U0 < U1 < · · · < UPo−2 < UPo−1 = Umin < UPo
< · · · <

UNs
< UNs+1 = Umax < UNs+2 < · · · < UNs+Po

. (25)

At each end, there are Po−1 ‘external’ knots that are outside

the input region and one boundary knot. As a result, the

number of ‘internal’ knots is Ns + 1 − Po. Given the set

of predetermined knots (25), the set of Ns B-spline basis

functions can be formed by using the famous De Boor

recursion [13], yielding for 1 ≤ l ≤ Ns + Po,

B
(s,0)
l (xs) =

{
1, if Ul−1 ≤ xs < Ul,
0, otherwise,

(26)

as well as for l = 1, · · · , Ns + Po − p and p = 1, · · · , Po,

B
(s,p)
l (xs) =

xs − Ul−1

Up+l−1 − Ul−1
B

(s,p−1)
l (xs)

+
Up+l − xs

Up+l − Ul

B
(s,p−1)
l+1 (xs). (27)

Using the tensor product between the two sets of univariate

B-spline basis functions [14], B
(R,Po)
l (xR) for 1 ≤ l ≤ NR

and B
(I,Po)
m (xI) for 1 ≤ m ≤ NI , a set of new B-spline

basis functions B
(Po)
l,m (x) can be formed and used in the CV

B-spline neural network, giving rise to

ŵ = Ψ̂(x) =

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (x)θl,m

=

NR∑

l=1

NI∑

m=1

B
(R,Po)
l (xR)B(I,Po)

m (xI)θl,m, (28)

where θl,m = θl,mR
+ j θl,mI

∈ C, 1 ≤ l ≤ NR and 1 ≤
m ≤ NI , are the CV weights. Denote

θ =
[
θ1,1 θ1,2 · · · θl,m · · · θNR,NI

]T ∈ C
NB , (29)

where NB = NRNI . The task of identifying the nonlinearity

Ψ( ) is turned into one of estimating θ.
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Fig. 2. De Boor recursion: Po = 4, Ns = 5, Umin = U3 and Umax = U6.

B-spline structure parameters: De Boor recursion is illus-

trated in Fig. 2. Po = 4 is sufficient for most applications. In

our application, the knot sequence is symmetric and Umin =
−Umax. Given the required average transmitted signal power,

the peak amplitude in the symbol set (2) is known and hence

Umax is known. NR = NI = Ns = 6 to 10 is sufficient

for accurately modeling on the finite interval
[
Umin, Umax

]
.

The Ns + 1−Po internal knots may be uniformly spaced in

the interval
[
Umin, Umax

]
. Note that there exist no data for

xs < Umin and xs > Umax in identification but it is desired

that the B-spline model has certain extrapolating capability

outside the interval
[
Umin, Umax

]
. The external knots can be

set empirically to meet the required extrapolation capability.

However, the precise choice of these external knots does not

really matter, in terms of modeling accuracy.

Optimal robustness property: A critical aspect to consider

in a model representation is its stability with respect to

perturbation of the model parameters, because in identifi-

cation, the data are inevitably noisy, which will perturb the

model parameters away from their true values. Although the

conventional polynomial modeling with polynomial degree

Po, as defined by the set of Po + 1 basis functions

1, xs, x2
s , · · · , xPo

s , (30)

can be used to approximate a continuous function, a signif-

icant advantage of the B-spline model over the polynomial

model is its superior numerical stability. B-spline functions

are optimally stable bases [4]–[6], and this optimality is due

to the convexity of its model bases, i.e., they are all positive

and sum to one. We use the simple example of [15] to

demonstrate the excellent numerical stability of the B-spline

model over the polynomial model of (30) in Fig. 3.

Fig. 3 (a) plots a quadratic polynomial function y =
0.001x2 − 0.02x + 0.1 defined over x ∈ [0, 20] in solid

line. With the knot sequence {−5,−4, 0, 20, 24, 25}, this

function is modeled as a quadratic B-spline model of y =

0.14B
(s,2)
1 (x) − 0.10B

(s,2)
2 (x) + 0.14B

(s,2)
3 (x), which is

depicted in Fig. 3 (b) in solid line. We draw three noises

from a uniformly distributed random number (UDRN) in

[−0.0001, 0.0001], and add them to the three parameters

in the two models, respectively. Fig. 3 (a) and (b) depict the

ten sets of the perturbed functions in dashed line generated

by perturbing the two models’ parameters. It can be clearly

seen from Fig. 3 (a) that the polynomial model is seriously

perturbed, but there is no noticeable change at all in Fig. 3

(b) for the B-spline model. Next we draw three perturbation

noises from a UDRN in [−0.001, 0.001], and add them to

the three parameters of the B-spline model. Again, the B-

spline model is hardly affected, as can be seen from Fig. 3

(c). We then draw three perturbation noises from a UDRN

in [−0.01, 0.01] to add to the three B-spline parameters,

and the results obtained are shown in Fig. 3 (d). Observe

from Fig. 3 (a) and (d) that, despite of the fact that the

strength of the perturbation noise added to the B-spline

model coefficients is 100 times larger than that added to the

polynomial model coefficients, the B-spline model is much

less seriously perturbed than the polynomial model.

Complexity analysis: Complexity does not depend on the

number of basis functions Ns. Given xs ∈
[
Umin, Umax

]
,

there are only Po + 1 basis functions with nonzero values

at most. Fig. 4 illustrates the complexity of generating the

B-spline basis function set for Po = 4, which shows that the

total requirements are 26 additions and 38 multiplications at

most. Thus, in the tensor-product B-spline model (28), there

are only (Po + 1)2 non-zero basis functions at most for any

given input. Complexity of computing the B-spline model

(28) is therefore on the order of O
(
(Po + 1)2

)
. The upper

bound complexity for Po = 4 is listed in Table I, which

includes generating the two sets of B-spline basis functions

for real and imaginary parts, respectively, and the output

of the tensor-product B-spline model (28). This is in fact

comparable to the conventional polynomial modeling. For

the polynomial model with polynomial degree Po, there are

Po + 1 basis functions as given in (30). Thus, the tensor-

(a) (b)

(c) (d)
Fig. 3. (a) Polynomial model with UDRN perturbation noises drawn
from [−0.0001, 0.0001], (b) B-spline model with UDRN perturbation
noises drawn from [−0.0001, 0.0001], (c) B-spline model with UDRN
perturbation noises drawn from [−0.001, 0.001], and (d) B-spline model
with UDRN perturbation noises drawn from [−0.01, 0.01].
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product polynomial model have (Po + 1)2 non-zero basis

functions for any given input, and the complexity of the

polynomial model is also on the order of O
(
(Po + 1)2

)
.

B. Identifying Hammerstein channel

Given a block of N training data,
{
xk, yk

}N−1

k=0
, the

identification task is to minimize the cost function

J(h,θ) =
1

N

N−1∑

k=0

∣∣êk

∣∣2 =
1

N

N−1∑

k=0

∣∣yk − ŷk

∣∣2, (31)

subject to the constraint of h0 = 1, in which

ŷk =

Lcir∑

i=0

hiŵk−i =

Lcir∑

i=0

hi

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (xk−i)θl,m, (32)

where xk−i = xN+k−i if k < i. The cost function (31) is

convex with respect to h when fixing θ, and convex with

respect to θ given h. According to [16], [17], the estimates

of θ and h are unbiased, irrespective to the algorithm used to

minimize the cost function (31). In [15], an alternating least

squares (ALS) procedure was proposed which guarantees to

find the unique optimal solution of θ and h in only a few

iterations. This ALS procedure is summarized below.

Initialisation. Define the amalgamated parameter vector

ω =
[
θT h1θ

T h2θ
T · · ·hLcir

θT
]T ∈ C

(Lcir+1)NB . (33)

Further define the regression matrix P ∈ R
N×(Lcir+1)NB

P =




φT(0) φT(−1) · · · φT(−Lcir)
...

...
...

...

φT(k) φT(k − 1) · · · φT(k − Lcir)
...

...
...

...

φT(N−1) φT(N−2) · · · φT(N−1−Lcir)



, (34)

TABLE I

UPPER BOUND COMPLEXITY OF B-SPLINE MODEL (28) FOR Po = 4.

Computation Multiplications Additions

Two sets of 1-D basis functions 2 × 38 2 × 26
Output of (28) 2 × 25 24

Total 126 76

with φ(k) =
[
φ1,1(k) φ1,2(k) · · ·φl,m(k) · · ·φNR,NI

(k)
]T

,

in which φl,m(k) = B
(Po)
l,m (xk) for 1 ≤ l ≤ NR and 1 ≤

m ≤ NI . The least squares (LS) estimate of ω is ω̂ =(
P TP

)−1
P Ty, and the first NB elements of ω̂ provide an

initial estimate for θ, which is denoted as θ̂(0).

ALS estimation procedure. For 1 ≤ τ ≤ τmax, e.g., τmax =
4, perform:

a) Given θ̂(τ−1), calculate the LS estimate ĥ(τ). Specifically,

define the regression matrix Q ∈ C
N×(Lcir+1)

Q =




ŵ0 ŵ−1 · · · ŵ−Lcir

...
...

...
...

ŵk ŵk−1 · · · ŵk−Lcir

...
...

...
...

ŵN−1 ŵN−2 · · · ŵN−1−Lcir




, (35)

in which

ŵk =Ψ̂(xk) =

NR∑

l=1

NI∑

m=1

B
(Po)
l,m (xk)θ̂

(τ−1)
l,m . (36)

The LS estimate ĥ(τ) is readily given by

ĥ
(τ)

=
(
QHQ

)−1
QHy, (37)

ĥ
(τ)
i =ĥ

(τ)

i

/
ĥ

(τ)

0 , 0 ≤ i ≤ Lcir. (38)

b) Given ĥ(τ), calculate the LS estimate θ̂(τ). Specifically,

introduce

ϕl,m(k) =

Lcir∑

i=0

ĥ
(τ)
i B

(Po)
l,m (xk−i) ∈ C. (39)

Further define the regression matrix

S = [ϕ(0) ϕ(1) · · ·ϕ(N − 1)]
T ∈ C

N×NB , (40)

with ϕ(k) = [ϕ1,1(k) ϕ1,2(k) · · ·ϕl,m(k) · · ·ϕNR,NI
(k)]

T
.

The LS estimate θ̂(τ) is given by θ̂(τ) =
(
SHS

)−1
SHy.

C. Inverting HPA’s nonlinearity

We utilize another B-spline neural network to model the

inverse mapping of the HPA’s CV nonlinearity defined by

xk =Ψ−1(wk) = Φ(wk). (41)

Define two knots sequences similar to (25) for wR and wI ,

respectively. We construct the inverting B-spline model

x̂=Φ̂(w;α)=

NR∑

l=1

NI∑

m=1

B
(R,Po)
l (wR)B(I,Po)

m (wI)αl,m, (42)

where B
(R,Po)
l (wR) and B

(I,Po)
m (wI) are similarly calculated

based on De Boor recursion (26) and (27), while

α =
[
α1,1 α1,2 · · ·αl,m · · ·αNR,NI

]T ∈ C
NB . (43)



TABLE III

IDENTIFICATION RESULTS FOR THE CIR COEFFICIENT VECTOR h OF THE HAMMERSTEIN CHANNEL.

Tap True Estimated parameters
No. parameters OBO = 3 dB OBO = 3 dB OBO = 5 dB OBO = 5 dB

Ex/No = 5 dB Ex/No = 10 dB Ex/No = 5 dB Ex/No = 10 dB

h0 1 1 1 1 1

h1 −0.3732 − j 0.6123 −0.3722 − j 0.6116 −0.3724 − j 0.6118 −0.3722 − j 0.6116 −0.3726 − j 0.6119

h2 0.3584 + j 0.3676 0.3592 + j 0.3689 0.3590 + j 0.3683 0.3594 + j 0.3685 0.3589 + j 0.3681

h3 0.3052 + j 0.2053 0.3049 + j 0.2053 0.3051 + j 0.2052 0.3049 + j 0.2051 0.3050 + j 0.2052

h4 0.2300 + j 0.1287 0.2301 + j 0.1289 0.2302 + j 0.1288 0.2301 + j 0.1287 0.2301 + j 0.1287

h5 0.7071 + j 0.7071 0.7073 + j 0.7083 0.7072 + j 0.7077 0.7073 + j 0.7080 0.7072 + j 0.7076

h6 0.6123 − j 0.3732 0.6122 − j 0.3738 0.6123 − j 0.3734 0.6121 − j 0.3736 0.6122 − j 0.3734

h7 −0.3584 + j 0.3676 −0.3607 + j 0.3685 −0.3595 + j 0.3681 −0.3599 + j 0.3684 −0.3593 + j 0.3681

h8 −0.2053 − j 0.3052 −0.2073 − j 0.3057 −0.2063 − j 0.3054 −0.2068 − j 0.3054 −0.2062 − j 0.3053

h9 0.1287 − j 0.2300 0.1277 − j 0.2303 0.1283 − j 0.2301 0.1281 − j 0.2301 0.1284 − j 0.2300

To estimate α needs the input-output training data {wk, xk}
but wk is unavailable. We adopt the same pseudo training

data approach of [2], [3], by replacing wk with its estimate

ŵk = Ψ̂(xk) based on the identified HPA’s nonlinearity Ψ̂( ).

Over the pseudo training data set
{
ŵk, xk

}N−1

k=0
, the re-

gression matrix B ∈ R
N×NB can be formed as

B=




B
(Po)
1,1 (ŵ0) B

(Po)
1,2 (ŵ0) · · · B

(Po)
NR,NI

(ŵ0)

B
(Po)
1,1 (ŵ1) B

(Po)
1,2 (ŵ1) · · · B

(Po)
NR,NI

(ŵ1)
...

...
...

...

B
(Po)
1,1 (ŵN−1) B

(Po)
1,2 (ŵN−1) · · · B

(Po)
NR,NI

(ŵN−1)



,

(44)

and the LS solution is given by α̂ =
(
BTB

)−1
BTx.

IV. SIMULATION STUDY

We considered a 64-QAM Hammerstein channel in which

the HPA was described by (6) and (7) with the parameter
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Fig. 5. Comparison of the HPA’s nonlinearity Ψ( ) and its B-spline estimate
bΨ( ) under OBO= 3 dB and Ex

‹
No = 5 dB.

set given in (8). The size of the transmitted data block was

N = 2048. The piecewise quartic polynomial of Po = 4 was

chosen, and the number of B-spline basis functions was set

to NR = NI = 8. The knot sequences adopted by the two

CV B-spline neural networks for identifying and inverting

the HPA’s nonlinearity are listed in Table II. The dispersive

channel had 10 taps (Lcir = 9) whose CIR coefficients are

given in Table III. The system’s signal-to-noise ratio (SNR)

was defined as SNR = Ex

/
No, where Ex was the average

power of the input signal xk to the HPA and No = 2σ2
e .

TABLE II

KNOT SEQUENCES.

Knot sequence for xR and xI

-10.0, -9.0, -1.0, -0.9, -0.06, -0.04, 0.0, 0.04, 0.06, 0.9, 1.0, 9.0, 10.0

Knot sequence for wR and wI

-20.0, -18.0, -3.0, -1.4, -0.8, -0.4, 0.0, 0.4, 0.8, 1.4, 3.0, 18.0, 20.0

The effectiveness of the proposed CV B-spline neural

network approach to identify this Hammerstein channel is

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.02  0.04  0.06  0.08  0.1  0.12

O
u

tp
u

t 
a

m
p

lit
u

d
e

Input amplitude

true HPA
B-spline estimate

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  0.02  0.04  0.06  0.08  0.1  0.12

O
u

tp
u

t 
p

h
a

s
e

 S
h

if
t 

(r
a

d
)

Input amplitude

true HPA
B-spline estimate

Fig. 6. Comparison of the HPA’s nonlinearity Ψ( ) and its B-spline estimate
bΨ( ) under OBO= 5 dB and Ex

‹
No = 10 dB.



demonstrated in Table III as well as Figs. 5 and 6. It can

be seen from Table III that the identification of the CIR tap

vector in the Hammerstein channel was achieved with high

precision even under the adverse operational condition of

OBO= 3 dB and Ex

/
No = 5 dB. Note that under the HPA

operational condition of OBO= 5 dB, the peak amplitude of

|xk| was less less than 0.09, while under the condition of
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Fig. 7. Combined response of the true HPA and its estimated B-spline
inversion under OBO= 3 dB and Ex

‹
No = 5 dB.
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Fig. 8. Combined response of the true HPA and its estimated B-spline
inversion under OBO= 5 dB and Ex

‹
No = 10 dB.

OBO= 3 dB, the peak amplitude of |xk| was less less than

0.14. The results of Figs. 5 and 6 clearly demonstrate the

capability of the proposed CV B-spline neural network to

accurately model the HPA’s nonlinearity, within the HPA’s

operational input range. The combined responses of the

HPA’s true nonlinearity and its estimated inversion obtained

by the proposed B-spline inverting scheme under the two

operating conditions are depicted in Figs. 7 and 8. The

results clearly show the capability of the CV B-spline neural

network to accurately model the inversion of the HPA’s

nonlinearity based only on the pseudo training data. More

specifically, the results of Figs. 7 and 8 clearly indicate

that the combined response of the true HPA’s nonlinearity

Ψ( ) and its estimated inversion Φ̂( ) satisfies Φ̂
(
Ψ(x)

)
≈

x. That is, the magnitude of the combined response is∣∣Φ̂
(
Ψ(x)

)∣∣ ≈ |x| and the phase shift of the combined

response is approximately zero. In other words, Φ̂( ) is an

accurate inversion of Ψ( ).
We also used two tensor-product polynomial models, both

having a polynomial degree of Po = 4 in each dimension,

to estimate the CV HPA’s nonlinearity Ψ( ) and its inversion

Ψ−1( ), respectively, based on the same identification proce-

dure of Sections III-B and III-C. Each tensor-product poly-

nomial model had 25 basis functions which was comparable

to the tensor-product B-spline model of at most 25 non-zero

basis functions for any given input. As expected, the CIR

tap vector was identified with similarly high accuracy but

the polynomial based estimate Ψ̂( ) was less accurate than

the B-spline based estimate. Most strikingly, the polynomial

based inversion estimate Φ̂( ) was much less accurate than

the B-spline based estimate, as demonstrated in Fig. 9. This

is obviously due to the fact that the pseudo identification

input ŵk is highly noisy, and the polynomial model is much

less robust to noise as clearly shown in Section III-A.
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Fig. 9. Combined phase response of the true HPA and its estimated
polynomial inversion under OBO= 3 dB and Ex

‹
No = 5 dB.

The bit error rate (BER) performance of the B-spline based

NIFDDFE constructed based on the estimated CIR, HPA

and HPA’s inversion are plotted in Fig. 10 under the two

HPA operating conditions. From Fig. 10, it can be seen that

four iterations are sufficient for the NIFDDFE. Since the

first iteration of the NIFDDFE is identical to the NFDE,

the results of From Fig. 10 confirm that the NIFDDFE

significantly outperforms the NFDE. Fig. 11 demonstrates

that the B-spline based NIFDDFE significantly outperforms
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Fig. 10. BER performance of the B-spline based NIFDDFE under the two
HPA operating conditions of OBO= 3 dB and OBO= 5 dB.

the polynomial based NIFDDFE, particularly when the HPA

is operating in the severe nonlinear region.
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Fig. 11. BER performance comparison of the B-spline based NIFDDFE
and the polynomial based NIFDDFE.

V. CONCLUSIONS

This paper has demonstrated that the CV B-spline neural

network approach offers a highly effective and accurate

means for identifying and inverting Hammerstein channels

with nonlinear HPA at transmitter. Optimal robust property

of the B-spline modeling has bee reviewed, and it has

been shown that the CV B-spline modeling approach has

a comparable computational complexity to the conventional

CV polynomial modeling approach. The proposed CV B-

spline modeling approach has been applied to state-of-the-

art iterative frequency-domain decision feedback equaliza-

tion of Hammerstein communication systems. Simulation

results obtained have demonstrated that the CV B-spline

based NIFDDFE significantly outperforms the CV polyno-

mial based NIFDDFE design of comparable complexity.
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