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1 Introduction

This presentation describes work undertaken as part of INNOVATE UK funding led by
Witt Energy Ltd to investigate the efficacy of a novel design of wave energy converter
(WEC). A sealed spherical hull is floating on the surface of the water (Fig. 2(b)) and
is moored to the sea bed under a four point catenary mooring system. A mechanical
device known as the WITT (Fig. 1) is housed within the hull and generates power
via a heavy compound pendulum which is free to pivot independently about either
horizontal axis. When waves excite the WITT WEC the motion of the pendulum
is transferred into a single unidirectional output from which mechanical energy is
converted into electrical energy. The device has some similarities to the SEAREV
design and Wello Oy Penguin. There are signficant differences. For example, the
mooring design used here is crucial in providing multiple device resonances which
result in a broadbanded response in power capture characteristics.

The project includes a number of partners whose combined goal is to estimate the
Levelised Cost of Energy (LCOE) of a WITT WEC. The University of Bristol have
developed a mathematical model of the operation of the WITT WEC in waves and
have used this model to produce a numerically optimised design at different scales
in a realistic wave climate and using constraints imposed from practical engineering

considerations. The University of Southampton have conducted experimental tank



Figure 1: A photo of a prototype of the WITT pendulum mechanism

testing to validate and test the model assumptions used in the theoretical model.

2 Operation and assumptions

Fig. 3 depicts the configuration of the model of the WITT WEC. The spherical hull
is assumed to sit semi-immersed in the undisturbed fluid. A heavy chain four point
catenery system is modelled by point masses placed an arbitrary distance along inex-
tensible lines. All mooring parameters, including points of attachment to the hull and

the bed are treated as free and their values are determined as part of a constrained

Figure 2: Images of the experimental set up: In (a) the internal set-up of the sphere

used in the experimental tests and (b) the sphere semi-submerged during tank-testing.
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Figure 3: Sketch in plan, elevation and internal cross section of the system

optimisation. The same is true of the parameters which configure the internal pen-
dulum system. For simplicity it is assumed that the pendulum will only move about
a single horizontal axis which will be aligned perpendicular to the dominant incident
wave direction.

Under the action of incident waves, the hull is allowed to move in surge, heave
and pitch (X(t), Z(t), ©(t)) and the mooring provides restoring forces to each of
the motions. The internal pendulum has a motion given by 6,(¢) and is restored by
gravity. Power is taken off via a damper which is assumed to acts in proportion to
angle of rotation of the pendulum 6,(t) relative to the rotation of the hull ©(¢). In
our model a point mass is positioned on the lower vertical axis of the spherical shell,
representing the combined effect of ballast, the WITT gearbox and (Power Take Off)
PTO machinery such that the centre of gravity of the hull and the point mass lies
some distance below the centre of the sphere. Resolving the vertical forces on the
sphere and mooring lines determines the mass of ballast required for the device to be
semi-submerged when in equilibrium.

Throughout the modelling a small-amplitude assumption is made so that the lin-
earised theory of water waves can be exploited. For example, the fluid is assumed
to be inviscid and incompressible and its motion irrotational. Waves are assumed to
be of small steepness and motions of the cylinder and pendulum are assumed to be
small in relation to appropriate scales. The effects of turbulent and viscous drag on

the motion of the hull are neglected as well as mechanical losses within the PTO.



3 Theoretical modelling

The Euler-Lagrange equations are used to describe the motion of the hull due to
hydrodynamic and hydrostatic forces and external forces from the mooring and the

PTO. When linearised and after a time harmonic dependence e “* is factorised from

the equations, they can be expressed as
MU = X, — — (C+ KU + X., (1)
W

where U = (U,, U., Ug,v)T is the unknown vector of velocties in each of the three hull
motions with v representing the relative rotation of the pendulum against the hull.
The matrices M, C and K include, respectively, inertia coefficients, and the effects of
hydrostatic restoring forces and mooring spring forces. All are determined in terms
of the geoemetrical parameters. The vector X, = (X1, X2, 0,0)7 represents the

total wave forces in each mode of motion and is decomposed using
X =X;(8) + (wA - B)U, (2)

into static wave forces dependent on the incident wave direction 8 and radiation wave
forces characterised in the usual way in terms of frequency dependent added inertia
and damping matrices A and B. The effect of the PTO is modelling in (1) by

X,=—-~vGU, (3)

where v is the real damping PTO parameter and G;; = 04054 for i,7 = 1,2,3,4.
The mean power absorbed by the device can be shown, after considerable effort,

to be given by

1| X B+ XS,2E42‘2 (y— Y]’
W = — 5 l— (4)
4Epl* (Y] + Re{Y}) v+ Y]
where
Y = Zyy + (Z14E1y + ZoyEoy + Z34E3y) [ Eny, (5)
E=(Z++6)', Z=B-iw(A+M—-w?(C+K)). (6)

The relation (4) has many desirable properties. It can be computed very quickly, a
key requirement for numerical optimisation. But we can also see that tuning the PTO

to v = |Y| gives the optimal power

1| Xs1En + Xs,2E42\2
41Eul* (Y] + Re{Y})

Wopt = (7)
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Figure 4: Maximum, optimum and achievable capture width ratio, [/2a =

W/(2aW,.), for a device of diameter (a) 2a = 15m and (b) 2a = 5m, under head

seas. The crosses indicate the resonant periods at which Im{Y} vanishes.

and further that it transpires that this has an upper bound

1| Xs1En + Xy oEp|*
8 By1|Es1]? + Baa|Esol?

with equality when Im{Y} = 0 and where W,,,, = (3A/27)W;,. is the theoretical

mazximum power, A is the incident wavelength and W, is the power per unit length

Wopt S < Wmax (8)

of the incident wave. This information allows us both to analyse the resonances of the
device and then tune it to operate optimally.

Fig. 4 shows two realisations for a 15m and a 5m sphere of the actual power, W
for a fixed v, the optimal power W,,; which can be achieved when ~ is allowed to vary
with frequency w and W), the (unattainable, due to (8)) maximum theoretical power.
Also shown using crosses are values where Im{Y} = 0 where the device is resonant.
Thus we see there are as many as five resonances across a broad range of periods for
an optimised WEC. A numerical optimisation distributes these to maximise the power
harnessed by the WITT WEC and values of mean power W for each size of device
under the EMEC wave climate are also displayed in Fig. 4.

4 Experimental validation

Fig. 5 show the device RAOs following wave tank testing at Plymouth University of
a 1.2m diameter sphere fitted with a model pendulum (see Fig. 2(a)) without a PTO



attached. Elastic bungee cord lines were used for these experiments and the theory
was modified accordingly to incorporate these effects in K. Ballast was used to weigh
down the sphere to nearly half submergence although the lip on the sphere caused
some difficulties with slamming loads in motion. Except for the Fig. 5(d) — which we
suspect is due to contanimated data — the agreement between theory and experiment
seems very good even for the steepest waves.
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Figure 5: Comparison of the theoretical (line) and experimental (points) results. In
(a) the surge; (b) heave; (c¢) pitch and (d) relative pendulum RAOs are plotted. The

different symbols represent results from different incident wave heights used in the
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experiments.
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Figure 6: Mean capture factor against device size and the effect of motion constraints.

5 Optimisation
Most of the results are based on a dimensionless mean capture factor
W

= —, 9
Winc2a ( )

which uses the power weighted over a model wave energy density spectrum S (T, B)

W
VVinc ’

W = pg / /0 co(T)S(T, B)I(T, B)T~2dT dg, where (T, ) = (10)

is the capture width of the device expressed in terms of period 7" and angle of incidence
B. Wine is the equivalent mean incident wave energy per unit length and cq is the
group velocity:.

Results of applying a numerical optimisation over different sized cylinder and under
three different levels of motion constraint are summarised in Fig. 6. The wave energy
data from the EMEC site in Scotland is used to generate the wave energy density
spectrum. In Case One, the relative motion of the pendulum is constrained to 60°
and the surge motion to one hull diameter (per 2m wave height). In Case Two the
values of these constraints are halved. Unconstrained motions can lead to results
which invalidate the underlying model assumptions.

A good insight into the optimisation of the device size can gained by comparing the

capture factor normalised against surface area and mass and the result of performing



Case One Case Two

Hull diam. (m) [ I . I 1 I

5) 0.14 3.27 4.91 0.04 1.02 1.37
7.5 0.43 642 6.66 0.23 3.51 3.37
10 0.58 6.67 5.34 0.41 4.78 3.59
12.5 0.65 5.98 3.77 0.52 4.85 2.98
15 0.70 5.35 2.75 0.60 4.67 2.41

Table 1: Absorbed energy per submerged surface area I, (Mwh/m?) and absorbed
energy per total device mass I,,, (Mwh/t).
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Figure 7: Mean capture factor against device width. The overlaid black crosses rep-
resent the results for the WITT WEC given in Table 1 for Case One.

these calculations for different hull sizes is summarised in Table 1 which suggests a
device about 10m in diameter is optimal. The results from Case One in Table 1 for
the WITT WEC is compared with data from Babarit (2015, Renewable Energy 80

610-628) across a variety of existing WECs and appears to compare very well.
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