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Abstract—Accurate and stable CPU power modelling is funda-
mental in modern system-on-chips (SoCs) for two main reasons:
1) they enable significant online energy savings by providing
a run-time manager with reliable power consumption data for
controlling CPU energy-saving techniques; 2) they can be used
as accurate and trusted reference models for system design
and exploration. We begin by showing the limitations in typical
performance monitoring counter (PMC) based power modelling
approaches and illustrate how an improved model formulation
results in a more stable model that efficiently captures relation-
ships between the input variables and the power consumption.
Using this as a solid foundation, we present a methodology
for adding thermal-awareness and analytically decomposing the
power into its constituting parts. We develop and validate our
methodology using data recorded from a quad-core ARM Cortex-
A15 mobile CPU and we achieve an average prediction error of
3.7% across 39 diverse workloads, 8 Dynamic Voltage-Frequency
Scaling (DVFS) levels and with a CPU temperature ranging from
31◦C to 91◦C. Moreover, we measure the effect of switching
cores offline and decompose the existing power model to estimate
the static power of each CPU and L2 cache, the dynamic
power due to constant background (BG) switching, and the
dynamic power caused by the activity of each CPU individually.
Finally, we provide our model equations and software tools
for implementing in a run-time manager or for using with an
architectural simulator, such as gem5.

I. INTRODUCTION

While mobile devices are required to be ever-more energy
efficient, mobile CPU designs are becoming more complex in
order to achieve the ever-increasing performance demand of
new applications. Key to saving energy is the system’s run-
time manager (RTM), which controls CPU energy-saving tech-
niques (such as dynamic voltage frequency scaling [DVFS] or
heterogeneous cores [e.g. ARM’s big.LITTLE technology]) in
order to trade off power and performance based on the current
conditions and requirements. However, in order to make these
trade-offs effectively, run-time knowledge of how power is
being consumed is essential. A fast and accurate power model,
that is able to predict the current power consumption at run-
time, can therefore be used with a run-time manager to make
significant energy savings [1].

Previously, top-down regression-based models using perfor-
mance monitoring counters (PMCs) as inputs have been widely
shown to be effective in estimating CPU power [2]–[13]. Top-
down approaches use power measurements from real devices
and predict this measured power using metrics. Therefore they

can potentially be very accurate and this accuracy can be
validated. However, they are only valid for the specific device
implementation they were developed on.

Saving energy in modern CPUs is a key current research
topic, much of which is conducted using an architectural
simulator, such as gem5 [14], in conjunction with a bottom-up
power simulator, such as McPAT [15], which uses theoretical
knowledge to estimate the power of each component. Bottom-
up power models are adaptable to any design specification but,
as a result, suffer from large errors, largely due to abstraction
and specification errors [16]–[18]. Obtaining trustworthy sim-
ulation results is a key challenge in research and using tools
without understanding their limitations can lead to incorrect
research conclusions. While the flexibility of bottom-up tools
is sometimes required, there are many cases where a top-
down model (built and validated on a real hardware platform)
can be used to provide an accurate and trusted reference, as
highlighted in [13].

There is a lack of existing work in top-down power mod-
elling that utilises measured PMC-data combined with power
measurements collected on real mobile devices, largely due to
technical challenges involved in doing so. A recent work [13]
overcomes this and significantly improves on the state-of-
the-art by presenting a statistically-rigorous methodology that
ensures stability, deals with heteroscedasticity and achieves a
low error on two mobile CPUs of differing microarchitecture.
However, the effects of temperature on power consumption
are not considered and the model could be improved by
further decomposing the estimated power consumption, and
therefore providing more information on how the power is
being consumed.

We use the methodology in [13] as a starting point and
model the effects of temperature on the CPU power con-
sumption and add thermal compensation to the models. We
then measure the effects of switching cores offline and then
analytically decompose the power consumption.

Our proposed model significantly improves the accuracy
across wide temperature ranges, results in a more stable model
with statistically significant input components, and gives a
breakdown of the power consumption. This provides higher
quality online data to a run-time manager. Moreover, in
research and design-space exploration, the power breakdown



allows this accurate and validated top-down model to be com-
bined with bottom-up techniques, allowing some flexibility
in model specification. Using a combination of the two, as
opposed to relying fully on a bottom-up approach, means that
more confidence can be placed in the resulting estimations.

This work focusses on mobile CPUs due to the significant
importance of energy-efficiency in mobile applications and
because the diversity of mobile workloads makes power mod-
elling particularly difficult. However, the presented methodol-
ogy is generic and applicable to other systems (e.g. desktop
and server CPUs). The resulting models themselves accurately
model the specific CPU implementation they were built on.

The key contributions of this paper are:
• Temperature compensated accurate and stable run-time

CPU power models, built and validated using data mea-
sured from a real device;

• Decomposition of the state-of-the-art PMC-based power
models to give static and dynamic power estimations for
individual components.

• An analysis of the effect of temperature on the static
power of a real-world mobile CPU;

• Evaluation of the effects of switching cores offline.
We describe our experimental setup in Section II. We then

look closely at the typical modelling approaches presented
in related work, explain the problems with these approaches
using an example, and describe the benefits of our approach in
Section III. Section IV details our methodology of analysing
how thermal behaviour affects the power consumption and
how we make our models thermally-aware. We then describe
how we are able to decompose the estimated power consump-
tion accurately into its constituting parts in Section V.

II. EXPERIMENTAL SETUP

We use the ODROID-XU3 development board by Hardker-
nel, which contains an Exynos-5422 SoC (System-on-Chip)
featuring a quad-core ARM Cortex-A7 and quad-core ARM
Cortex-A15 CPU. These two clusters utilise the same ISA
(instruction set architecture) but have differing microarchitec-
tures to achieve different energy-performance trade-offs. The
ODROID-XU3 board contains built-in power sensors to give
power measurements of each of these two clusters, as well as
the DRAM memory and the GPU. It also contains four CPU
temperature sensors and one GPU temperature sensor.

In this work we use the higher-performance Cortex-A15
cluster to illustrate our approach. The Cortex-A15 CPUs each
have 32 KB instruction and data caches and they share a
2 MB L2 cache (Fig. 1). Each CPU contains a NEON SIMD
processing unit, which is accounted for in the power models.
Unlike the older ODROID-XU board, the ODROID-XU3
board supports global task scheduling (GTS), also known as
big.LITTLE MP, which allows all of the 8 cores, whether ‘big’
Cortex-A15s or ‘LITTLE’ Cortex-A7s, to be available to the
operating system’s scheduler simultaneously. The maximum
clock rate of the Cortex-A15 cluster is 2 GHz and the
device is implemented in a 32 nm Low-Power High-K Metal
Gate (HKMG) technology. The SoC also contains an ARM
Mali-T626 MP6 GPU and 2 GB LPDDR3 RAM that has a
maximum bandwidth of 14.9 GB/s.

Fig. 1. Cortex-A15 quad-core cluster

This is the same platform as used by [13] and we use their
provided experimental platform software and tools (available
at [19]) to collect experimental data. We run workloads on
the board while varying the clock frequency and recording
the PMCs, power, voltage and temperature.

We use 39 diverse workloads from several benchmarking
suites: MiBench [20], which is a suite of representative embed-
ded workloads; LMbench [21], which contains microbench-
marks for activating and testing specific microarchitectural
behaviours, such as memory reads at a specific level of cache;
Roy Longbottom [22], which contains many multi-threaded
workloads that make heavy use of the NEON SIMD processing
unit and OpenMP; ParMiBench [23], which is a multi-threaded
version of MiBench; and, ALPBench [24], which contains
complex, parallel multimedia workloads.

Once the experimental data has been collected, we use
the model building software tools (also available at [19]) to
implement their automated methodology. We use the resulting
models as a starting point to our work.

III. REGRESSION-BASED MODELLING METHODOLOGY

We create a linear regression model, using an ordinary
least squares (OLS) estimator to estimate its coefficients. In
existing works on PMC-based run-time power models, the
independent variables (i.e. PMC events and sometimes the
CPU voltage (VDD), the clock frequency (fclk and/or the
temperature, T ) are inserted directly into a regression tool [9],
[10], [25]–[27]; the relationships between the variables and
power consumption are not considered. A recent work [27],
which evaluates the state-of-the-art and typifies the general
approach, proposes the model equation shown in Equation 1.
There are several problems with this formulation, e.g. the
VDD is included but the dynamic power consumption is
known to be proportional to V 2

DDfclk. Moreover, this model
attempts to include temperature (T ) compensation, but the
actual relationship between power and temperature has not
been established; simply inserting a variable in the model does
not mean that the regression analysis will be able to resolve the
relationship between it and power. Later in this paper we will
show, for example, that there needs to be terms in the equation
proportional to T 2 (note that other terms related to VDD, fclk
and T are not included in Equation 1; the terms not shown
include PMC events and operating system statistics). This
method results in poor models as the relationships between
power and the available input variables have not been correctly
captured. Additionally, as in the example shown in Equation 1,
there is a tendency to specify many independent variables



(often providing similar information) in an attempt to improve
the accuracy of the mis-specified model, resulting in instability
due to large errors in the model coefficients [13].

P = const.+ β1VDD + β2fclk + β3T + β4IPC

+β5
INT

N
+ β6

V PF

n
+ ...+ β15SoftIRQ

(1)

We use the model formulation presented in [13] (including
their selection of PMC events) as our starting point (Equa-
tion 2), where N is the total number of PMC events in the
model; n is the index of each event; E is the cluster-wide
PMC event rate (events-per-second) after being divided by
the operating frequency in MHz, fclk, and averaged across
all cores; and VDD is the cluster operating voltage. Pcluster
is the power for the overall quad-core Cortex-A15 cluster.
This model formula breaks down the power consumed by the
dynamic CPU activity and the idle power (which includes the
static power and background (BG) switching power, and hence
includes the fclk term).

Pcluster =

(
N−1∑
n=0

βnEnV
2
DDfclk

)
︸ ︷︷ ︸

dynamic activity

+ f(VDD, fclk)︸ ︷︷ ︸
static and BG dynamic

(2)

Such a model formulation is built by understanding the
relationships between the variables. For example, a known
component of CMOS power consumption is the dynamic
power caused by switching activity, which is proportional to
V 2
DDfclk. Therefore, the PMC events, which indicate dynamic

activity, should only be included in the dynamic power cal-
culation and be inserted into the model after being multiplied
by VDDfclk (dynamic activity, Equation 2).

This approach has several benefits: it allows the power
consumption to be broken down; results in a more stable
model with more accurate coefficients; results in a model with
more physical meaning; and allows relationships and power
contributions to be deduced.

For example, we can show that there is a constant dynamic
power component (BG switching) present by building the
model with and without the constant V 2

DDfclk (BG dynamic,
Equation 3). When this component is added, the accuracy
of the model increases significantly and the corresponding p-
value of its coefficient is very low (p < 0.0001), indicating
strong statistical significance. We can therefore infer that there
is a constant dynamic power component (i.e. present even
when there is no activity on the cluster) and its magnitude
can be estimated. The equation can therefore be rewritten as
shown in Equation 3. Later in this paper we show how we can
use this to decompose the power model further and understand
the L2 cache behaviour when all cores are switched offline.
This is not possible with the typical approaches.

Pcluster =

(
N−1∑
n=0

βnEnV
2
DDfclk

)
︸ ︷︷ ︸

dynamic activity

+βbV
2
DDfclk︸ ︷︷ ︸

BG dynamic

+ f(VDD)︸ ︷︷ ︸
static

(3)

IV. THERMAL MODELLING

This section describes how we extend the power models to
make use of the instantaneous temperature readings from the
on-board thermal sensors to significantly improve the power
prediction accuracy.

The static power consumption of CMOS devices is known
to be highly dependent on the temperature. The static power of
a CMOS device can be calculated using Equation 4 [28]. The
two key components of leakage current are sub-threshold and
gate-oxide leakage (Equation 5). The thermal voltage (Vθ) in-
creases linearly with temperature and the sub-threshold current
therefore has a strong temperature dependence (Equation 6).
There is a potential for thermal runaway because the device
will heat up if the sub-threshold current increases. The gate-
oxide has a smaller, dependence on temperature [28].

Vstatic = IleakV (4)

Ileak = Isub + Iox (5)

Isub = K1We
−Vth
nVθ

(
1− e

−V
Vθ

)
(6)

The models built in [13] do not include any temperature
compensation, despite its large effect on the static power con-
sumption. The temperature of the device is mainly influenced
by the CPU voltage (VDD), the activity/load of the CPU,
and the ambient temperature conditions. A relatively accurate
model is achieved in this previous work by including higher
order terms related to V in the static power equation (e.g.
V 3) to absorb the error in the static power estimation caused
by the temperature changing due to the DVFS level. It does
not absorb the error caused by temperature changes due to
the ambient temperature or CPU load. In this section we use
recorded thermal data to build a fully thermal-aware model
that has superior accuracy, even with extreme ambient temper-
ature differences. As well as the accuracy being significantly
improved, this temperature-dependent model is better-suited
for cominging with with bottom-up approaches and applying
theoretical equations to further decompose the model.

We run three experiments: one with the default fan settings
on the ODROID board; one with the fan switched to its maxi-
mum speed; and one with the fan switched off completely. All
experiments are conducted under the same ambient conditions
and run 39 different workloads at clock frequencies from
200 MHz to 1600 MHz in steps of 200 MHz.

We then build two models (labelled a and b, Table I) using
the methodology and software tools presented in [13]; the first
one using data collected at normal ambient conditions and built
using model equation 2, and the second one using data from
all three experiments (varying temperature, V. T) and model
equation 3.

When observations taken with different fan settings are used
with a model without thermal compensation (model b), the
average error increases to 6%. This average value is opti-
mistic as many of the observations have similar temperatures,
particularly at lower frequencies. However, for observations



TABLE I
COMPARISON OF THREE MODELS USING DIFFERENT MODEL EQUATIONS

AND UNDER DIFFERENT THERMAL CONDITIONS.

Model Eqn. V. T Avg. Error (%) Adj. R2 SER (W)

a 2 N 3.34223 0.997691 0.0423673
b 3 Y 5.97732 0.994498 0.0604720
c 8 Y 3.67805 0.997418 0.0414211
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Fig. 2. Residuals of model b plotted against temperature. Red line shows an
equation predicting this trend.

with significantly varying temperature, the errors can be large.
For example, when idle at 1600 MHz, the three experiments
(automatic fan setting, fan on, fan off), which have average
temperatures of 43.5◦, 40.2◦and 73.5◦, respectively, achieve
average errors of 1.6%, 2.7% and 25%; despite the relatively
low average error, individual observations with significant
temperature deviations can have large errors. Our thermally-
aware power model, which we present later in this section
achieves errors of 1.2%, 0.96%, and 5.0% for these obser-
vations, respectively, therefore improving the accuracy by as
much as 20%.

This dependence on temperature needs to be approximated
in the regression model and the static power model therefore
needs to take temperature, T, as an input (Equation 8). We
plot the residuals (the difference between the observed value
and the estimated value) over temperature and identify that
there is a clear relationship that is not being captured in the
current model (Fig. 2). We use regression analysis to predict
the residuals from the temperature and find that Equation 7
fits optimally. A T and T 2 term therefore should to be added
to the power model.

Residuals = αaT
2 + αbT + c (7)

Pcluster =

(
N−1∑
n=0

βnEnV
2
DDfclk

)
︸ ︷︷ ︸

dynamic activity

+βbV
2
DDfclk︸ ︷︷ ︸

BG dynamic

+ f(VDD, T )︸ ︷︷ ︸
static

(8)
As previously stated, the model created in [13] does not

use temperature as an input but does indirectly compensate

TABLE II
CORTEX-A15 MODEL COEFFICIENTS AND P-VALUES, GROUPED INTO

THREE COMPONENTS: DYNAMIC ACTIVITY (DYN. ACT.) POWER;
CONSTANT BACKGROUND DYNAMIC POWER (BG DYN.); AND STATIC

POWER.

Comp. Coefficient Weight p-value

Dyn. act. 0x11×V 2f 5.966e-10 p < 0.0001

Dyn. act. 0x1b-0x73×V 2f 8.885e-10 p < 0.0001

Dyn. act. 0x50×V 2f 1.091e-8 p < 0.0001

Dyn. act. 0x6a×V 2f 1.622e-8 p < 0.0001

Dyn. act. 0x73×V 2f 3.445e-10 p < 0.0001

Dyn. act. 0x14×V 2f 4.413e-10 p < 0.0001

Dyn. act. 0x19×V 2f 2.900e-9 p < 0.0001

BG Dyn. V 2f 1.508e-4 p < 0.0001

Static Intercept -1.785e+0 p < 0.001

Static V T 2 8.894e-4 p < 0.0002

Static V T -6.877e-2 p < 0.003

Static V 1.850e+0 p < 0.0009

Static T 2 -8.592e-4 p < 0.0003

Static T 6.807e-2 p < 0.004

partially for temperature. As VDD increases, the temperature,
T also increases. The model in [13] includes V 2 and V 3 terms
in the static power equation to absorb the temperature effects
due to the cluster voltage. An important step is to remove all
the terms that absorb these temperature effects before adding
the new temperature compensation. Not doing so would result
in a model with too many inputs and the same effect being
captured by a combination of several inputs. This would result
in a less stable model.

We remove all of the V 2 and V 3 components from the
existing model and add our temperature compensation. The
static power equation now only contains a V component, T 2

component, a T component, and an intercept (Table II). A
lower apparent average error can be achieved by including
every combination of these three components into the model.
However, doing so actually reduced the quality of the model
and it over-fits mechanisms within the model. We carefully
select six terms (including the intercept) to predict the static
power consumption, all of which have an associated p-value
of less than 0.003 indicating that they are all statistically
significant.

Our resulting temperature-compensated model equation
(Model c, Table I) achieves a 10-fold cross-validated mean
absolute percentage error of 3.7% with observation tempera-
tures as low as 30.9◦C and as high as 90.6◦C.

We re-draw the same graph showing the residuals against
temperature and observe that there is no longer a trend between
the two, confirming that the model has successfully captured
the effect of temperature on the power consumption (Fig. 3).
The cone shape of the residuals indicates the presence of
heteroscedasticity (non-constance variance), which is inherent
to PMC-based power modelling. We address this problem by
using a heteroscedasticity-consistent standard error (HCSE)
estimator as described in [13].

Figure 4 shows how the modelled static power varies with
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Fig. 3. Residuals of model c (temperature-compensated) plotted against
temperature. Red line shows an equation predicting this trend.
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Fig. 4. Model output response when varying the temperature input at various
cluster voltage points.
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Fig. 5. Model output response when varying the voltage input at various
temperature points.

temperature at several fixed voltages, while Figure 5 shows
how it varies with voltage at several fixed temperatures. Later
in this paper we will show how temperature impacts the static
power for measured observations.

V. MODEL DECOMPOSITION AND OFFLINE CORES

In the previous section we have created a thermally-aware
model that estimates the overall power of a quad-core ARM
Cortex-A15 cluster. In this section, we decompose the model,
allowing it to give accurate estimation of the static and
dynamic power consumed by each core and to predict the
power consumption when cores are switched offline.

In [13] the PMC events used to estimate the dynamic
activity power consumption are averaged across all four cores
in the cluster. Therefore, the assumption is that the dynamic
power impact of a PMC event is the same, whether, say, 95%
of the cluster-wide event come from one core and 5% from
the rest, or each core contributes to 25%. We confirm this
assumption is correct by estimating the dynamic activity power
of each core individually and comparing this directly with the
measured power consumption. The modelling methodology
provided by [13] calculates the arithmetic mean of the PMC
events across all four cores and uses this data to calculate the
model coefficients. We therefore take the counters from each
core and divide them by four, before multiplying each event
by the calculated coefficient. This per-CPU estimated dynamic
activity power consumption includes the dynamic activity of
the CPU itself and the dynamic power of the L2 cache caused
by that CPU.

We measure the quad-core Cortex-A15 power when it is idle
and switch off each core one-by-one to observe how static
power is consumed (Fig. 6). We conduct this experiment at
every DVFS level to see how it varies with voltage (plotted in
red) and frequency (x-axis). The blue line shows the measured
cluster power consumption when all four cores are online but
idle. The purple line shows the power when only one core is
online and the brown line shows the power when all cores are
switched offline.

The power decreases significantly when the last core is
switched off. At first glance one may assume that this may
be because the shared 2 MB L2 cache is switched off at this
point. However, we observe that, even when the voltage is
constant (e.g. 200 MHz-800 MHz), the power (when more
than 0 cores are online) increases with frequency, showing
that there is a component of dynamic power. As shown in
Section III, a constant dynamic component (BG dynamic) is
present. This component occurs even when there is no activity
(e.g. the system is idle) and it is therefore present in Fig. 6. We
calculate this component using V 2

DD and fclk as well as the
static power of the final online core (by subtracting the average
power between n=4, n=3, n=2 and n=1 from n=1). We find
that the magnitude of these two components at each frequency
fit the gap between the measured power when all four cores
are off and n=1. The difference between n=1 and n=0 is
therefore due to the BG dynamic power. We can therefore
infer that the drop in power when the last core is switched off
is due to a constant dynamic power (BG dynamic) component
disappearing (possibly due to clock gating in the L2 cache and
bus) and that the L2 cache remains powered but inactive, as
there is a significant static power component remaining.

We can therefore break this idle power consumption into
the following:

• static power of the L2 cache and cluster-wide logic;
• constant background (BG) dynamic power which is

present when one or more cores is online;
• static power of each of the four cores and their respective

L1 caches.
Unlike with the dynamic power consumption, the propor-

tion of static power consumed by each component remains
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Last updated:Fig. 6. The measured idle quad-core Cortex-A15 cluster power at various
clock frequencies (fclk) when all four cores are online (n=4) and switching
each off in turn until no core is online (n=0). The cluster voltage is also
shown.

constant, with respect to the total static power, across each
DVFS level. Each core and its L1 cache consumes 11.8% and
the remaining static power consumption, consisting largely of
the L2 cache, makes up 52.6%.

We can therefore break down our static power estimation,
which takes both voltage and temperature into account. The
base static power (mostly consisting of the L2 cache static
power) is calculated using the average temperature value
recorded from all four thermal sensors, while the static power
for each CPU is calculated using its respective thermal sensor.

With this idle power breakdown added to our model, we can
see the static power breakdown across different DVFS points
when the fan was manually switched on (Fig. 7) and when the
fan was permanently off (Fig. 8).

Note how the static power remains almost constant at
400 MHz, 600 MHz and 800 MHz whereas BG dynamic
power increases as it is proportional to the clock frequency.
There is a small increase in static power from 400 MHz to
800 MHz due to the temperature increasing with voltage.

At 1600 MHz with the fan on, the static power consumption
is less than 0.14 W (temperature: 40.2 ◦C) and with the fan
off, the static power consumption is over 0.33 W (temperature:
73.5 ◦C). This illustrates the importance of considering tem-
perature within a model, particularly if the model is providing
per-component static and dynamic power predictions. When
summing the individual components of static power and the
BG dynamic component, our model achieves an average idle
power prediction error of less than 7% across the full range
of temperatures considered and every DVFS level.

We calculate each component of power and sum them to
obtain the overall cluster power and compare it to the measured
cluster power and, as previously reported, obtain an average
error of 3.7%. Fig. 9 shows the error of each individual
workload (aggregated over DVFS levels and fan settings).
We also plot the power consumption and its breakdown of
each workload, again aggregrated over every DVFS level and
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the contibution from the static power and BG dynamic power. Fan switched
on. Average temperature is 35.5 ◦C.
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fan setting (Fig. 10). The static power varies across different
workloads because the intensity of the workloads affect the
temperature. It also varies because the voltage provided by
the non-ideal voltage regulator changes with the dynamic CPU
current draw. This effect was identified and addressed in [13].

VI. CONCLUSION

We present our methodology of developing accurate and
decomposable thermally-aware run-time power models which
have uses in both online energy management and design-space
exploration. We illustrate our approach using measured data
from a mobile device utilising an ARM Cortex-A15 quad-core
CPU. We demonstrate how we are able to build stable models
that can efficiently capture the relationships between the model
inputs and power, allowing us to decompose the power model
into smaller components, by significantly improving on the
model formulation presented in existing works. We analyse
the effect of temperature on the static power consumption
and add thermal compensation to our power models and
show how it improves the accuracy by as much as 20%.
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5 Coefficients

Coefficient Weight
95% Confidence

Interval p-Value

Lower Upper

Intercept -1.785e+0 -2.847e+0 -7.224e-1 0.000991263797482538

EPH_0x11:Frequency_A15:Voltage_A15_Squared 5.966e-10 5.621e-10 6.311e-
10

p < .0001

EPH_0x1b_minus_EPH_0x73:Frequency_A15:Voltage_A15_Squared 8.885e-10 8.520e-10 9.250e-
10

p < .0001

EPH_0x50:Frequency_A15:Voltage_A15_Squared 1.091e-8 9.783e-9 1.204e-8 p < .0001

EPH_0x6a:Frequency_A15:Voltage_A15_Squared 1.622e-8 1.015e-8 2.228e-8 p < .0001

EPH_0x73:Frequency_A15:Voltage_A15_Squared 3.445e-10 3.108e-10 3.781e-
10

p < .0001

EPH_0x14:Frequency_A15:Voltage_A15_Squared 4.413e-10 3.520e-10 5.306e-
10

p < .0001

EPH_0x19:Frequency_A15:Voltage_A15_Squared 2.900e-9 2.097e-9 3.703e-9 p < .0001

Frequency_A15:Voltage_A15_Squared 1.508e-4 1.396e-4 1.620e-4 p < .0001

Fig. 9. Average error (mean absolute percentage error [MAPE]) for all 39 workloads, aggregated across each DVFS level and three fan settings
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Fig. 10. Power breakdown for all 39 workloads, aggregated over every DVFS level and three different fan settings



We analyse the power consumption as CPUs are switched
offline and combine this data with analytically derived power
components to infer internal CPU behaviour and break down
the power consumption. We are able to accurately predict the
temperature-compensated static power of each CPU and the
L2 cache, the background dynamic switching power, and the
dynamic power caused by the workload of each CPU. We then
test the validity of our analytical methods and assumptions by
testing our model using measured data with large temperature
deviations, a diverse selection of workloads, eight differ-
ent voltage and frequency (DVFS) levels and with different
numbers of CPUs utilised. Each component of the model
is calculated individually and summed together to form the
cluster power estimate, which was found to have an average
error of 3.7%. We demonstrate the importance of applying
statistical rigour to the modelling process and how our model
captures the relationship between each input variable and the
power consumption. We provide equations and software tools
for implementing our power model (available at [19]).
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