1 IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit

- 2
- 3 Alison R Hill^a, Jessica E Donaldson^a, Cornelia Blume^a, Natalie Smithers^a, Liku Tezera^a, Kamran Tariq^b,
- 4 Patrick Dennison^{a, b}, Hitasha Rupani^{a, b}, Matthew J Edwards^d, Peter H Howarth^{a, b} Christopher Grainge^a,
- 5 Donna E Davies^{a, b, c} and Emily J Swindle^{a, b, c*}.
- 6 ^aClinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital
- 7 Southampton, Southampton, UK; ^bNIHR Southampton Respiratory Biomedical Research Unit, University
- 8 Hospital Southampton, Southampton, UK; 'Institute for Life Sciences, Highfield Campus, University of
- 9 Southampton, Southampton, UK; dNovartis Institutes for BioMedical Research, Horsham, UK.

10 *Corresponding author and requests for reprints:

- 11 Dr Emily J Swindle,
- 12 Clinical and Experimental Sciences,
- 13 Henry Wellcome Laboratories
- Level F, South Academic Block, Mailpoint 810, Faculty of Medicine,
- 15 University Hospital Southampton, Southampton SO16 6YD, UK.
- 16 Tel.: +44(0)23 8079 6736;
- 17 Fax.: +44(0)23 8051 1761;
- 18 E-mail: <u>E.J.Swindle@soton.ac.uk</u>
- 19 ¶,present address: School of Medicine and Public Health, The University of Newcastle, Australia
- 20 Financial disclosure. Prof. Donna Davies reports personal fees from Synairgen, other from Synairgen,
- 21 outside the submitted work and has a patent for use of Inhaled interferon beta for virus-induced
- 22 exacerbations of asthma and COPD with royalties paid. Dr. Grainge reports personal fees from Astra Zeneca
- 23 Pharmaceuticals and Boehringer Ingleheim and grants from Boehringer Ingelheim, outside the submitted
- work. Prof. Peter Howarth reports part time employment as Global Medical Expert by GSK since 2016.

- 25 **Keywords:** Epithelial cells, fibroblasts, viral infection, in vitro models of the airway, cross-talk
- Abbreviations: 16HBE, the 16HBE140⁻ human bronchial epithelial cell line; ALI, air-liquid interface;
- 27 BEC, bronchial epithelial cell; dsRNA, double-stranded RNA; EMTU, epithelial-mesenchymal trophic unit;
- 28 HBEC, human bronchial epithelial cell; HLF, human lung fibroblast; HRV, human rhinovirus; IL-1R1, IL-
- 29 1 receptor; IL-R2, IL-1 decoy receptor; IL-1Ra, IL-1 receptor antagonist; MOI, multiplicity of infection;
- 30 poly(I:C), polyinosinic:polycytidylic acid; TCID₅₀, tissue culture infective dose resulting in 50% death;
- 31 TER, transepithelial electrical resistance

ABSTRACT

32

The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) 33 34 which controls the airway microenvironment. We hypothesised that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. 35 36 EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial 37 epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. 38 Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was 39 40 synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1a which was unaffected by the presence of fibroblasts. Blockade of IL-1 signalling with IL-1 receptor 41 42 antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except 43 CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were 44 45 confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study 46 47 provides the first direct evidence of integrated IL-1 signalling within the EMTU to propagate inflammatory 48 responses to viral infection.

INTRODUCTION

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

The structural cells of the conducting airways control the tissue microenvironment and are critical in the maintenance of homeostasis. Central to this is the bronchial epithelium which forms a protective barrier against the external environment, with functions including secretion of a protective layer of mucus, control of paracellular permeability and production of immunomodulatory growth factors and cytokines.¹ Below the epithelium, the attenuated fibroblast sheath directs immune responses and it has been proposed that these cells work together as an epithelial mesenchymal-trophic unit (EMTU) to co-ordinate appropriate responses to environmental stimuli.² Evidence of cellular cross-talk has already been demonstrated in simple experiments using epithelialderived conditioned media or in epithelial-fibroblast co-cultures where fibroblasts respond to epithelialderived signals to drive inflammatory or remodelling responses. For example, conditioned media from human bronchial epithelial cells (HBECs) subjected to endoplasmic reticulum stress can cause proinflammatory mediator release from human lung fibroblasts (HLFs) via a mechanism involving the alarmin, IL-1α.³ In other studies, scrape-wounding of HBECs induced α-smooth muscle actin expression in fibroblasts in a co-culture model via TGFB. 4 While several studies have examined cross-talk in response to chemical or mechanical damage to the epithelium, none have examined the effects of human rhinovirus (HRV) infection of the epithelium on the EMTU. HRV infects the upper airways and causes symptoms of the common cold in healthy adults but in chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) it is a major cause of viral-induced exacerbations, causing increased lower respiratory tract symptoms.^{5, 6} The bronchial epithelium is the major target for HRV infection and replication in chronic airways disease ⁷. Following in vitro stimulation of either monolayer or fully differentiated HBECs with HRV or pathogen associated molecular patterns (PAMPs), such as double stranded RNA (dsRNA), increases in ionic permeability^{7,8} and release of proinflammatory mediators are observed. ^{6,7,9,10} A critical role for some of these epithelial-derived mediators on immune cell activation has been demonstrated following incubation of immune cells with

epithelial conditioned medium from virus or dsRNA-treated cultures. For example, HRV-dependent epithelial IL-33 causes Th2 cytokine release from T cells and group 2 innate lymphoid cells, ¹¹ while dsRNAdependent epithelial-derived thymic stromal lymphopoietin promotes CCL17 production from monocytederived dendritic cells¹² and Th2 cytokine release from mast cells.¹³ HRV also induces HBECs to release growth factors such as amphiregulin, activin A, and vascular endothelial growth factor (VEGF);¹⁴⁻¹⁶ such conditioned medium can result in VEGF-dependent angiogenesis in endothelial cells¹⁴ and basic fibroblast growth factor-dependent proliferation of fibroblasts. 16 A key feature of the epithelial barrier is its polarized structure due to the expression of tight junction proteins. leading to the vectorial release of mediators. This not only allows establishment of chemotactic gradients, required for immune cell recruitment and retention, but also controls signalling to underlying fibroblasts which orchestrate responses within the local tissue microenvironment. Here we investigated, for the first time, the integrated responses to HRV infection of the epithelial barrier in co-culture with fibroblasts. Within this system, the polarized epithelium ensured apical delivery to the epithelium of HRV (or dsRNA), as occurs in vivo, and enabled direct assessment of vectorial cytokine signalling. We report that challenge of polarized HBECs with dsRNA results in enhanced release of fibroblast-derived proinflammatory mediators in the EMTU model. Furthermore, blockade of IL-1 signalling revealed a key role for basolateral IL-1α release in mediating epithelial-fibroblast cross-talk. These observations of direct epithelial-mesenchymal signalling via IL-1α were confirmed utilising fully differentiated primary HBECs infected with HRV and in co-culture with fibroblasts.

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

MATERIALS AND METHODS

93

94 A full description of the methods can be found in the online supplement. 95 Cell culture. The human bronchial epithelial (16HBE14o⁻) and fibroblast (MRC5) cell lines used in this study were a gift from Professor D. C. Grunert (San Francisco, USA) and from the European Collection of 96 97 Authenticated Cell Cultures (ECACC) respectively. Normal primary HBECs were obtained by epithelial brushing using fiberoptic bronchoscopy. All procedures were approved by the Southampton and South West 98 99 Hampshire Research Ethics Committee (Rec codes 13/SC/0182, 09/H0504/109 and 10/H0504/2) and were 100 undertaken following written informed consent. 101 Establishment and challenge of the EMTU co-culture models. For the polarized EMTU model, fibroblasts (MRC5) were seeded onto the basolateral surface of an inverted Transwell® insert and incubated 102 103 for 2h at 37°C before the addition of 16HBE cells into the apical compartment. Co-cultures were placed into 104 24-well plates containing 16HBE medium and cultured for 5 days. On day 6, cultures were challenged 105 apically with 1µg/ml synthetic dsRNA (polyinosinic:polycytidylic acid (poly(I:C)); Invivogen); this concentration had minimal effects on cell viability (Suppl. Fig. 1A-C). Where required, 16HBE or MRC5 106 107 monocultures were similarly treated. For the primary differentiated EMTU co-culture model, fibroblasts (MRC5) were seeded onto the 108 basolateral surface of inverted Transwell® inserts containing primary fully differentiated air-liquid interface 109 (ALI) (21 day) cultures as previously described. ¹⁷ The primary EMTU models were infected apically with 110 111 HRV16 for 6h at 33°C, then the apical surface was washed (3X, HBSS) before culturing at 37°C. Twenty four hours post-infection the apical secretions (200µl) were harvested by washing with HBSS and the 112 113 basolateral (500µl) supernatants collected. Controls of UV-irradiated HRV16 (1200mJ/cm² on ice for 114 50min) were included in all experiments. The viral titre of cell-free supernatants was determined by TCID₅₀ assav. 18, 19 115

- For IL-1 blocking experiments, cultures were pre-incubated with IL-1 receptor antagonist (IL-1Ra;
- 500ng/ml, R&D systems) apically and/or basolaterally for 1h prior to challenge.
- MRC5 and 16HBE monocultures were challenged with human recombinant IL-1α (Miltenyi Biotec,)
- apically (10ng/ml) and basolaterally (1ng/ml).
- 120 **Epithelial permeability.** Ionic permeability was measured as transepithelial electrical resistance (TER)
- using chopstick electrodes with an EVOM voltohmeter (World Precision Instruments, Aston, UK). Data are
- expressed as ohms.cm² and have been corrected for the resistance of an empty Transwell[®]. Macromolecular
- permeability was measured 3 and 21 hours after dsRNA challenge by adding FITC-labelled dextran to the
- apical compartment of co-cultures; FITC-dextran flux into the basolateral compartment was quantified 3h
- later by spectrofluorometry.
- **Detection of cytokines and chemokines.** Cell-free supernatants were assayed for IL-1α, IL-1β and IL-1Ra
- using a Luminex® multiplex assay according to the manufacturer's instructions (R&D systems). IL-6,
- 128 CXCL8, CXCL10, GM-CSF and IL-1α were determined by ELISA according to the manufacturer's
- protocol (R&D Systems).
- 130 **Statistical analysis.** Normality of distribution was assessed using the Shapiro-Wilk test (Sigma-Plot version
- 131 12.5, Systat Software) and the appropriate parametric or non-parametric tests used. Results are expressed
- as means \pm SD or as box plots representing the median with 25% and 75% interquartiles and whiskers
- representing minimum and maximum values, as appropriate. All data were analysed using Prism (GraphPad,
- 134 CA, USA). *P*<0.05 were considered significant.

RESULTS

DsRNA increases ionic permeability but not macromolecular permeability in the polarized EMTU

model 137

Compared to equivalent HBEC monocultures, ionic permeability at baseline was significantly lower in the polarized EMTU model as measured by an increase in TER (Fig. 1A $P \le 0.05$). The polarized EMTU model was stimulated with dsRNA (poly(I:C)), a molecular pattern associated with viral replication²⁰, at a concentration (1µg/ml) that induced significant effects on ionic permeability and cytokine release with minimal effects on cell viability in HBEC monocultures (Suppl. Fig. 1). DsRNA increased ionic permeability of either HBEC monocultures or the polarized EMTU model, with a significant decrease in TER by 6h (Fig. 1A). This increase in permeability was sustained 24h after dsRNA stimulation in HBEC monocultures, but partially recovered in the EMTU model. Macromolecular permeability of the epithelium was not significantly affected by co-culture with fibroblasts or following challenge with dsRNA (Fig. 1B). These data suggest that even after dsRNA treatment, epithelial polarization is maintained in the polarized EMTU model.

DsRNA induces polarized release of proinflammatory mediators which is enhanced in the basolateral

compartment

Consistent with the restricted movement of macromolecules across the epithelial barrier, dsRNA induced vectorial proinflammatory mediator release in the polarized EMTU model. In the apical compartment, dsRNA induced significant increases in IL-6, CXCL8, and CXCL10 release which was comparable with HBEC monocultures (Fig. 2A-C). In contrast, in the basolateral compartment, dsRNA-stimulated cytokine levels were synergistically enhanced compared to dsRNA-stimulated HBEC monocultures (Fig. 2D-F, Suppl. Fig. 2). At the concentration of dsRNA tested (1µg/ml), fibroblast monocultures were unresponsive to stimulation (Fig. 2A-F). Taken together, these data suggest that epithelial-fibroblast cross-talk is occurring within the EMTU model.

In contrast with IL-6, CXCL8, GM-CSF and CXCL10 release, the polarity of dsRNA-dependent IL-1 α release was mainly apical (Fig. 3A-B), even when corrected for differences in volume between the apical and basolateral compartments (data not shown), and was comparable between HBEC monocultures and the polarized EMTU model. No IL-1 β was detected. Since IL-1 α levels were similar in cultures containing HBECs alone this strongly suggests that HBECs are the primary source of IL-1 α following dsRNA stimulation.

IL-1 mediates dsRNA-dependent proinflammatory responses

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

IL-1 has previously been shown to drive autocrine mediator release in epithelial¹⁰ or fibroblast³ monocultures. To test whether epithelial-derived IL-1 α was responsible for augmenting responses in the EMTU model, we used IL-1 receptor antagonist (IL-Ra). In unstimulated cultures, IL-1Ra caused a small decrease in constitutive proinflammatory mediator release (Suppl. Fig. 3). In dsRNA-stimulated co-cultures, pre-incubation with IL-1Ra significantly reduced dsRNA-induced IL-6, CXCL8 and GM-CSF release (Fig. 4, Suppl. Fig. 4 & Suppl. Table 1). For apical cytokine release, IL-1Ra only partially reduced dsRNAdependent IL-6 and CXCL8 (Fig. 4A-B) release and was most effective when added apically or to both compartments. For basolateral cytokine release, IL-1Ra had the greatest effect when added basolaterally or to both compartments with complete abrogation of dsRNA-dependent IL-6, CXCL8 and GM-CSF (Figure 4D-E & Suppl. Fig. 4). The partial inhibitory effect of IL-1Ra when added apically could be explained by a small (0.1-1%) but significant passage of exogenously applied IL-1Ra to the basolateral compartment regardless of dsRNA stimulation (Suppl. Fig. 5). Neither apical nor basolateral dsRNA-dependent CXCL10 release was affected by IL-1Ra (Fig. 4C, F). Since IL-1β could not be detected in any cultures, these data suggest that epithelial-derived IL-1α is absolutely required to drive a subset of proinflammatory responses by the underlying fibroblasts.

Fibroblasts are the main responders to IL-1 α

To investigate the direct effect of IL-1 α on the different cell types, HBEC and fibroblast monocultures were directly stimulated with IL-1 α at concentrations similar to those measured apically (10ng/ml) or basolaterally (1ng/ml) following dsRNA challenge (See Fig. 3). In fibroblast monocultures IL-1 α significantly induced IL-6 and CXCL8 release (Fig. 5A-B & Suppl. Table 2). In HBEC monocultures, IL-1 α responses were low relative to those observed in the fibroblasts (Figure 5C-D & Suppl. Table 2) suggesting that within the polarized EMTU model, fibroblasts are the main responders to dsRNA-induced IL-1 α .

A role for IL-1alpha in epithelial-fibroblast signalling in response to rhinovirus infection in a primary

EMTU co-culture model

As HBECs are the primary source of IL-1 α , we initially characterised the response of fully differentiated primary HBECs to HRV16 infection. Similar to the dsRNA-challenged polarized EMTU model, HRV16 infection induced IL-1 α release from HBEC ALIs which was higher in the apical compared to the basolateral compartment (Figure 6). IL-1 α was also detected intracellularly and was significantly increased following HRV16 infection. Of note, the amount of intracellular IL-1 α production was 50-100X greater than that detected extracellularly following HRV infection.

In either HBEC mono- or co-cultures with fibroblasts, HRV16 infection resulted in polarised release of mediators. HRV16-dependent basolateral IL-6 release was significantly augmented in the primary EMTU co-culture model compared to HBEC monocultures (Fig. 7A-B). This enhancement was not due to differences in viral replication (median TCID₅₀ of 17.6x10⁶/ml in both primary HBEC monocultures and differentiated EMTU model). As observed with dsRNA, HRV16-dependent IL-1α release was higher in the apical compartment and levels were comparable in both the primary EMTU co-culture model and HBEC monocultures (Fig. 7C-D). HRV16-dependent IL-1β release was not detected. The importance of IL-1 in epithelial-fibroblast cross-talk was confirmed by blocking IL-1 signalling using IL-1Ra. This significantly reduced basolateral HRV16-dependent IL-6 and CXCL8 release (Fig. 8A-B) to levels comparable to the

non-replicating UV-irradiated HRV control. CXCL10 release was only modestly reduced (Fig. 8C) and viral replication was unaffected (median TCID₅₀ of 17.6x10⁶/ml in both control and IL-1Ra-treated cultures). Together these data demonstrate an essential role for IL-1α in mediating paracrine proinflammatory signalling following viral infection of primary differentiated epithelium.

DISCUSSION

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Although cell-cell communication is essential for normal function of all tissues, the relationship between structural organization and function is not addressed in most in vitro studies. Here we examined this relationship using an integrated co-culture system in which fully differentiated (or polarized HBECs) were apically challenged with HRV (or dsRNA) and demonstrated clear evidence of a synergistic interaction between the infected bronchial epithelium and fibroblasts. This interaction was mediated, in part, by epithelial-derived IL- 1α which drives a marked proinflammatory response from the underlying fibroblasts. To our knowledge this is the first study to demonstrate direct epithelial-fibroblast cross-talk in response to HRV infection or dsRNA and it highlights the importance of epithelial barrier function and integrity. An advantage of the EMTU models is the ability to investigate polarized epithelial function which is essential for development of chemotactic gradients for immune cell trafficking and/or retention. In contrast with previous studies using epithelial monocultures, where HRV (or dsRNA) increased both ionic and macromolecular permeability, ^{7, 8, 21, 22} we show that only ionic permeability is affected in the EMTU models. Consistent with the absence of any effects on paracellular permeability, apical challenge of the epithelium with HRV or dsRNA resulted in polarized inflammatory mediator release. Most notably, a synergistic enhancement in the basolateral compartment of the EMTU models suggests a co-ordinated response to viral infection. This was observed in both the polarised and primary EMTU models but the magnitude of the enhanced responses was different between cultures. The less robust response observed in the primary EMTU model may be due to the use of HRV instead of dsRNA. For a response to HRV, the virus first needs to infect the epithelial cells and replicate to generate dsRNA, in contrast with the bolus treatment with exogenously added dsRNA. Furthermore, the fully differentiated epithelial culture has a protective mucus layer which may reduce accessibility of the epithelial surface to the virus and, even if the HRV reaches the cell surface, differentiated epithelial cells are less susceptible to infection than basal cells²³. Irrespective of the differences in the magnitude of response, synergistic enhancements in basolateral mediator release in both models suggest cross-talk between epithelial cells and fibroblasts following viral infection. This adds

to previous studies where influenza virus infection enhanced mediator release in alveolar epithelial cell and fibroblast co-cultures, however polarized responses were not examined.²⁴ The ability of fibroblasts to respond to and amplify signals from a virally-infected epithelium reflects their role as sentinels of the immune system.^{2, 25, 26} In the EMTU models we determined a key role for epithelial-derived IL-1α in mediating cellular cross-talk and amplifying innate immune responses following viral stimulation. IL-1α is constitutively expressed in the cytoplasm of cells and is released in a mature form following necrotic cell death, however it can also be released in the absence of cell death. 10, 27-29 While we found no evidence of epithelial cell death in the coculture model following dsRNA (Suppl. Fig. 1C), we observed approximately 10% cell death in HRVinfected ALI cultures. However we also observed upregulation of intracellular IL-1α in HBECs following exposure to HRV or dsRNA suggesting intracellular IL-1α protein is induced by viral challenge and may be actively released, as reported previously. 10 We also concluded that the IL-1 α was epithelial-derived since it was detected equivalently in HBEC mono- and co-cultures but not in fibroblast monocultures. This is consistent with immunohistochemical staining of bronchial tissue showing that the epithelium is a major site of IL-1 α expression,³ with localization towards the apical surface of the epithelium. The polarized nature of the models also gave us the opportunity to investigate the importance of apical and basolateral IL-1 signalling. Thus, basolateral application of IL-1Ra was sufficient to completely suppress basolateral release of IL-6, CXCL8 and GM-CSF, but had minimal effect on CXCL10 release. As CXCL10 is strongly induced by Type I and III interferons, it is of considerable interest that this anti-viral response can be separated from the IL-1 α mediated proinflammatory response. In contrast with its potency in the basolateral compartment, apical application of IL-1Ra was less effective with only a partial suppression of mediator release. Although both IL-1 α and IL-1 β can be inhibited by the use of IL-1Ra³⁰, in our system it is likely that IL-1Ra primarily blocks IL-1α signalling as we could not detect IL-1β in the EMTU co-culture models. IL-1\beta has previously been detected from primary HBEC monolayer cultures following viral infection^{10, 31, 32}, however we could not detect it in our models using differentiated HBEC cultures. This may

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

be due to use of undifferentiated cells versus polarized or fully differentiated cultures. Our data suggest that in response to dsRNA or HRV, epithelial cells release IL-1α basolaterally and that this is required to drive IL-6, CXCL8 and GM-CSF release from fibroblasts. Consistent with this, we showed that the fibroblasts were highly sensitive to direct stimulation with IL- 1α . These results are consistent with previous findings that IL-1a present in conditioned medium from damaged epithelial cells induces IL-6 and CXCL8 production from fibroblasts.^{3, 33} Given the relatively high levels of apically released IL-1 α , it was surprising that the low levels of basolateral IL-1α measured in the EMTU co-culture models were not only sufficient, but essential, for dsRNA-induced proinflammatory mediator release in this compartment. This may be explained by the close proximity of the fibroblasts to the basolateral surface of the epithelium resulting in high localised concentrations of IL-1α. Also IL-1R1 is highly expressed by fibroblasts³ suggesting that they are highly sensitive to activation, even at low concentrations of IL-1α. Furthermore IL-6 is known to act as an autocrine factor that can drive its own release. 34 thus IL-1 α may be a trigger for this effect. In contrast to the marked sensitivity of fibroblasts to exogenous or paracrine IL-1 α . HBECs were relatively unresponsive to direct IL-1 α stimulation. Thus, we observed little response using a concentration similar to that measured in the cell-free supernatants of challenged cultures; however, at higher concentrations of IL-1 α , IL-6 production could be observed (data not shown). Furthermore, when HBEC monocultures were challenged with dsRNA in the presence of IL-1Ra, partial inhibition of dsRNA-dependent cytokine release was observed, similar to findings with HRVinfected HBECs. 10 In such a complex antiviral response, it is possible that other factors synergize with IL- 1α to promote an epithelial inflammatory response. Although out of the scope of the current study, the high levels of IL-1α in the apical compartment are of considerable interest as they have the potential to amplify local innate and adaptive immunity through direct activation or enhancement of luminal immune cell functions. Macrophages are the first line of cellular defence against invading pathogens and the IL-1α-IL-1RI pathway has been identified as a key driver of inflammatory cytokine and chemokine activation after adenovirus infection.³⁵ However, direct evidence for

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

IL-1 α -mediated cross talk with infected epithelium has not been investigated. The human monocytic cell line, THP-1, expresses IL-1R1 and alveolar macrophages have reduced LPS-dependent CXCL8 release in the presence of IL-1Ra.^{3,36} Mast cells also respond to IL-1 α with enhanced Th2 cytokine production.^{37,38} In conclusion, we provide evidence of direct cellular cross-talk in an integrated model of the EMTU where apical HRV infection or exposure to dsRNA of the epithelium results in the maintenance of polarized responses and drives synergistic basolateral proinflammatory mediator release from underlying fibroblasts. Epithelial-derived IL-1 α plays a key role in enhancing proinflammatory but not anti-viral responses of the underlying fibroblasts. In chronic respiratory diseases, such as asthma and COPD, where respiratory viral infections are a major cause of acute exacerbations⁶ targeting IL-1 α may suppress airway inflammation while maintaining anti-viral signalling. The IL-1R1 antagonist anakinra is already FDA-approved³⁹ and clinical trials have shown its effectiveness in inflammatory diseases⁴⁰ and LPS-induced airway inflammation in healthy volunteers without adverse effects.⁴¹

ACKNOWLEDGEMENTS

We thank Graham Berreen (University of Southampton) for technical support. Support for the work was provided by a joint studentship from The Gerald Kerkut Charitable Trust and the University of Southampton, Faculty of Medicine to ARH, the Asthma, Allergy and Inflammation Research (AAIR) Charity, the Medical Research Council, UK (MRC) (G0900453) and an MRC CASE studentship (G100187) to JED sponsored by Novartis.

- 304 1. Swindle EJ. Collins JE. Davies DE. Breakdown in epithelial barrier function in patients with
- asthma: identification of novel therapeutic approaches. J Allergy Clin Immunol 2009; 124:23-34; quiz 5-305 306
- 307 Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG. The attenuated fibroblast sheath of the 2.
- 308 respiratory tract epithelial-mesenchymal trophic unit. American journal of respiratory cell and molecular 309 biology 1999; 21:655-7.
- 310 Suwara MI, Green NJ, Borthwick LA, Mann J, Mayer-Barber KD, Barron L, et al. IL-1alpha 3.
- 311 released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in
- 312 human lung fibroblasts. Mucosal immunology 2014; 7:684-93.
- Morishima Y, Nomura A, Uchida Y, Noguchi Y, Sakamoto T, Ishii Y, et al. Triggering the 313
- 314 induction of myofibroblast and fibrogenesis by airway epithelial shedding. American journal of
- 315 respiratory cell and molecular biology 2001; 24:1-11.
- 316 Kennedy JL, Turner RB, Braciale T, Heymann PW, Borish L. Pathogenesis of rhinovirus
- 317 infection. Current opinion in virology 2012; 2:287-93.
- Gavala ML, Bertics PJ, Gern JE. Rhinoviruses, allergic inflammation, and asthma. Immunol Rev 318
- 319 2011; 242:69-90.
- Sajjan U, Wang Q, Zhao Y, Gruenert DC, Hershenson MB. Rhinovirus disrupts the barrier 320
- 321 function of polarized airway epithelial cells. American journal of respiratory and critical care medicine 322 2008; 178:1271-81.
- Comstock AT, Ganesan S, Chattoraj A, Faris AN, Margolis BL, Hershenson MB, et al. 323
- 324 Rhinovirus-induced barrier dysfunction in polarized airway epithelial cells is mediated by NADPH
- 325 oxidase 1. Journal of virology 2011; 85:6795-808.
- 326 Wark PA, Bucchieri F, Johnston SL, Gibson PG, Hamilton L, Mimica J, et al. IFN-gamma-
- 327 induced protein 10 is a novel biomarker of rhinovirus-induced asthma exacerbations. The Journal of 328 allergy and clinical immunology 2007; 120:586-93.
- 329 Piper SC, Ferguson J, Kay L, Parker LC, Sabroe I, Sleeman MA, et al. The role of interleukin-1
- 330 and interleukin-18 in pro-inflammatory and anti-viral responses to rhinovirus in primary bronchial
- 331 epithelial cells. PLoS One 2013; 8:e63365.
- 332 Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J, et al. IL-33-
- 333 dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. American journal
- 334 of respiratory and critical care medicine 2014; 190:1373-82.
- 335 Hui CC, Murphy DM, Neighbour H, Al-Sayegh M, O'Byrne S, Thong B, et al. T cell-mediated
- 336 induction of thymic stromal lymphopoietin in differentiated human primary bronchial epithelial cells.
- 337 Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology
- 338 2014; 44:953-64.
- 339 Nagarkar DR, Poposki JA, Comeau MR, Biyasheva A, Avila PC, Schleimer RP, et al. Airway
- 340 epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal
- 341 lymphopoietin. The Journal of allergy and clinical immunology 2012; 130:225-32 e4.
- 342 Psarras S, Volonaki E, Skevaki CL, Xatzipsalti M, Bossios A, Pratsinis H, et al. Vascular 14.
- 343 endothelial growth factor-mediated induction of angiogenesis by human rhinoviruses. The Journal of
- 344 allergy and clinical immunology 2006; 117:291-7.
- 345 Leigh R, Oyelusi W, Wiehler S, Koetzler R, Zaheer RS, Newton R, et al. Human rhinovirus 15.
- 346 infection enhances airway epithelial cell production of growth factors involved in airway remodeling. The
- 347 Journal of allergy and clinical immunology 2008; 121:1238-45 e4.

- 348 16. Skevaki CL, Psarras S, Volonaki E, Pratsinis H, Spyridaki IS, Gaga M, et al. Rhinovirus-induced
- 349 basic fibroblast growth factor release mediates airway remodeling features. Clinical and translational
- 350 allergy 2012; 2:14.
- 351 17. Blume C, Swindle EJ, Dennison P, Jayasekera NP, Dudley S, Monk P, et al. Barrier responses of
- human bronchial epithelial cells to grass pollen exposure. The European respiratory journal 2013; 42:87-
- 353 97.
- 354 18. Papi A, Johnston SL. Rhinovirus infection induces expression of its own receptor intercellular
- adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription. The Journal of
- 356 biological chemistry 1999; 274:9707-20.
- 357 19. Bedke N, Sammut D, Green B, Kehagia V, Dennison P, Jenkins G, et al. Transforming growth
- 358 factor-beta promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune
- 359 response. PloS one 2012; 7:e44580.
- 360 20. Takeuchi O, Akira S. Innate immunity to virus infection. Immunological reviews 2009; 227:75-86.
- 361 21. Rezaee F, Meednu N, Emo JA, Saatian B, Chapman TJ, Naydenov NG, et al.
- Polyinosinic:polycytidylic acid induces protein kinase D-dependent disassembly of apical junctions and
- barrier dysfunction in airway epithelial cells. The Journal of allergy and clinical immunology 2011;
- 364 128:1216-24 e11.
- 365 22. Unger BL, Ganesan S, Comstock AT, Faris AN, Hershenson MB, Sajjan US. Nod-like receptor X-
- 1 is required for rhinovirus-induced barrier dysfunction in airway epithelial cells. Journal of virology
- 367 2014; 88:3705-18.
- 368 23. Jakiela B, Brockman-Schneider R, Amineva S, Lee WM, Gern JE. Basal cells of differentiated
- bronchial epithelium are more susceptible to rhinovirus infection. American journal of respiratory cell and
- 370 molecular biology 2008; 38:517-23.
- 371 24. Ito Y, Correll K, Zemans RL, Leslie CC, Murphy RC, Mason RJ. Influenza induces IL-8 and GM-
- 372 CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-alpha/EGFR signaling.
- 373 American journal of physiology Lung cellular and molecular physiology 2015; 308:L1178-88.
- 374 25. Alkhouri H, Poppinga WJ, Tania NP, Ammit A, Schuliga M. Regulation of pulmonary
- inflammation by mesenchymal cells. Pulmonary pharmacology & therapeutics 2014; 29:156-65.
- 376 26. Kitamura H, Cambier S, Somanath S, Barker T, Minagawa S, Markovics J, et al. Mouse and
- 377 human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through
- integrin alphaybeta8-mediated activation of TGF-beta. The Journal of clinical investigation 2011;
- 379 121:2863-75.
- 380 27. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway
- required for the sterile inflammatory response triggered by dying cells. Nature medicine 2007; 13:851-6.
- 382 28. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nature reviews
- 383 Immunology 2010; 10:826-37.
- 384 29. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annual
- 385 review of immunology 2009; 27:519-50.
- 386 30. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity
- 387 2013; 39:1003-18.
- 388 31. Proud D, Sanders SP, Wiehler S. Human rhinovirus infection induces airway epithelial cell
- production of human beta-defensin 2 both in vitro and in vivo. Journal of immunology 2004; 172:4637-
- 390 45.
- 391 32. Shi L, Manthei DM, Guadarrama AG, Lenertz LY, Denlinger LC. Rhinovirus-induced IL-1beta
- release from bronchial epithelial cells is independent of functional P2X7. American journal of respiratory
- 393 cell and molecular biology 2012; 47:363-71.
- 394 33. Tracy EC, Bowman MJ, Henderson BW, Baumann H. Interleukin-1alpha is the major alarmin of
- lung epithelial cells released during photodynamic therapy to induce inflammatory mediators in
- 396 fibroblasts. British journal of cancer 2012; 107:1534-46.

- 397 34. Melkamu T, Kita H, O'Grady SM. TLR3 activation evokes IL-6 secretion, autocrine regulation of
- 398 Stat3 signaling and TLR2 expression in human bronchial epithelial cells. J Cell Commun Signal 2013;
- 399 7:109-18.

- 400 35. Di Paolo NC, Miao EA, Iwakura Y, Murali-Krishna K, Aderem A, Flavell RA, et al. Virus binding
- 401 to a plasma membrane receptor triggers interleukin-1 alpha-mediated proinflammatory macrophage
- 402 response in vivo. Immunity 2009; 31:110-21.
- 403 36. Mazzarella G, Grella E, D'Auria D, Paciocco G, Perna F, Petillo O, et al. Phenotypic features of
- alveolar monocytes/macrophages and IL-8 gene activation by IL-1 and TNF-alpha in asthmatic patients.
- 405 Allergy 2000; 55 Suppl 61:36-41.
- 406 37. Allakhverdi Z, Smith DE, Comeau MR, Delespesse G. Cutting edge: The ST2 ligand IL-33
- 407 potently activates and drives maturation of human mast cells. Journal of immunology 2007; 179:2051-4.
- 408 38. Nagarkar DR, Poposki JA, Comeau MR, Biyasheva A, Avila PC, Schleimer RP, et al. Airway
- 409 epithelial cells activate T(H)2 cytokine production in mast cells through IL-1 and thymic stromal
- 410 lymphopoietin. J Allergy Clin Immunol 2012; 130:225-32.
- 411 39. Mertens M, Singh JA. Anakinra for rheumatoid arthritis: a systematic review. The Journal of
- 412 rheumatology 2009; 36:1118-25.
- 413 40. Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans.
- 414 Seminars in immunology 2013; 25:469-84.
- 415 41. Hernandez ML, Mills K, Almond M, Todoric K, Aleman MM, Zhang H, et al. IL-1 receptor
- antagonist reduces endotoxin-induced airway inflammation in healthy volunteers. The Journal of allergy
- 417 and clinical immunology 2015; 135:379-85.

FIGURE LEGENDS

420

442

1β was below the level of detection of the assay.

421 Figure 1. Effect of double-stranded RNA (dsRNA) on epithelial barrier function in the polarized epithelial 422 mesenchymal trophic unit (EMTU) co-culture model. The EMTU co-culture model or HBEC or fibroblast 423 monoculture controls were challenged with poly(I:C) (1ug/ml) and ionic or macromolecular permeability 424 determined by transepithelial resistance (TER) measurements (A) or FITC-dextran diffusion (B) 425 respectively. Results are means \pm SD, n=7 (A) and n=3-5 (B). *P<0.05, ***P<0.001 compared to 426 unstimulated controls (two-way ANOVA with Bonferroni correction). 427 Figure 2. Effect of double-stranded RNA (dsRNA) on proinflammatory mediator release in the polarized epithelial mesenchymal trophic unit (EMTU) co-culture model. Apical (A-C) and basolateral (D-F) cell-428 free supernatants were harvested from the EMTU co-culture model or human bronchial epithelial cell 429 430 (HBEC) and fibroblast monocultures 24h after challenge with poly(I:C) (1µg/ml) and assayed for IL-6 431 (A,D), CXCL8 (B,E), and CXCL10 (C,F) by ELISA. Results are means \pm SD, n=3-5. *P \le 0.05, and *** $P \le 0.001$ for comparison between control and poly(I:C)-stimulated cultures and $^{+++}P \le 0.001$ for 432 comparison with HBEC monocultures and EMTU co-culture model (two-way ANOVA with Bonferroni 433 434 correction). b.d. indicates levels below the detection limit of the assay. 435 Figure 3. Comparison of IL-1α release from double-stranded RNA (dsRNA)-stimulated human bronchial 436 epithelial cell (HBEC) and fibroblast monocultures with the polarized epithelial mesenchymal trophic unit 437 (EMTU) co-culture model. Apical (A) and basolateral (B) cell-free supernatants were harvested 24h after 438 challenge with poly(I:C) (1μg/ml) and assayed for IL-1α and IL-1β by Luminex®. Results for IL-1α release 439 are shown as box plots representing the median with 25% and 75% interquartiles, and whiskers representing 440 minimum and maximum values, n=3-5. * $P \le 0.05$, ** $P \le 0.01$ for comparison between control and poly(I:C) stimulated cultures (Mann-Whitney U test). b.d. indicates levels below the detection limit of the assay. IL-441

Figure 4. The effect of IL-1R antagonism on double-stranded RNA (dsRNA)-induced cytokine and chemokine release in the polarized epithelial mesenchymal trophic unit (EMTU) co-culture model. The EMTU co-culture model was cultured in the absence or presence of IL-1Ra (500ng/ml) applied either apically, basolaterally or both for 1h prior to stimulation with poly(I:C) (1µg/ml). Apical (A-C) and basolateral (D-F) cell-free supernatants were harvested 24h after stimulation and assayed for IL-6 (A, D), CXCL8 (B, E), and CXCL10 (C, F) by ELISA. To investigate the effects of IL-1Ra on dsRNA-dependent responses, control mediator levels were subtracted from stimulated levels and expressed as a percentage of the response to dsRNA. Results are mean responses compared to the poly(I:C)-induced response in the absence of IL-1Ra (100%) \pm SD, n=3-6. ** $P \le 0.01$, *** $P \le 0.001$ for comparison between poly(I:C)stimulated cultures in the absence or presence of IL-1Ra (one-way ANOVA with Bonferroni correction). Figure 5. Effect of IL-1α stimulation on IL-6 and CXCL8 release from fibroblast and human bronchial epithelial cell (HBEC) monocultures. Fibroblast (A-B) and HBEC (C-D) monocultures were stimulated with IL-1α either apically (10ng/ml), basolaterally (1ng/ml) or in combination, or with poly(I:C) (1μg/ml) as a positive control. After 24h, cell-free supernatants were assayed for IL-6 and CXCL8 by ELISA. Fold change in mediator release compared to the unstimulated control was calculated for each experiment. Results are mean fold changes \pm SD, n=4-5. * $P \le 0.05$, *** $P \le 0.001$ compared to untreated control (two-way ANOVA with Bonferroni correction). Figure 6. Increased extracellular and intracellular IL-1α release from human bronchial epithelial cell (HBEC) monocultures infected with human rhinovirus (HRV)16. ALI monocultures were infected apically with HRV16 (MOI=2) or UV-HRV16 as a negative control. After 24h, apical and basolateral supernatants

462 were removed and the remaining cells went through 3 cycles of freeze/thaw before cell-free supernatants 463 464 were assayed for IL-1 α by ELISA. Results are means \pm range, n=5. * $P \le 0.05$, ** $P \le 0.01$ compared to UV-465

HRV16 control (ANOVA with Bonferroni correction).

443

444

445

446

447

448

449

450

451

452

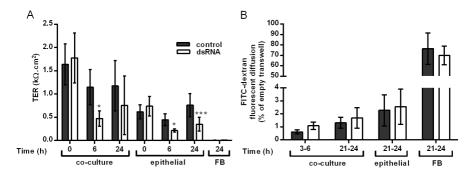
453

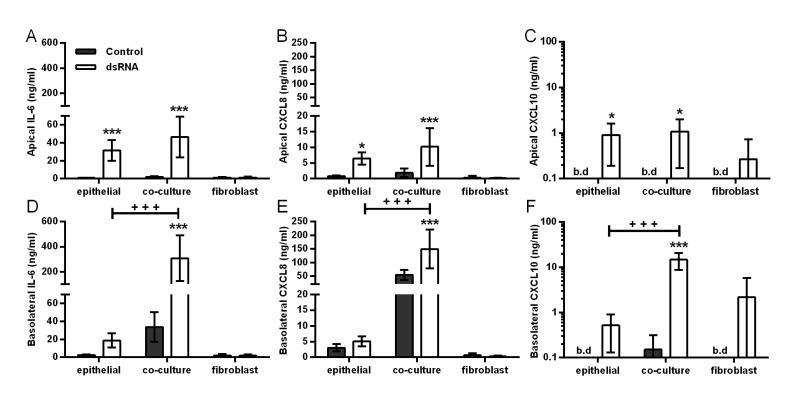
454

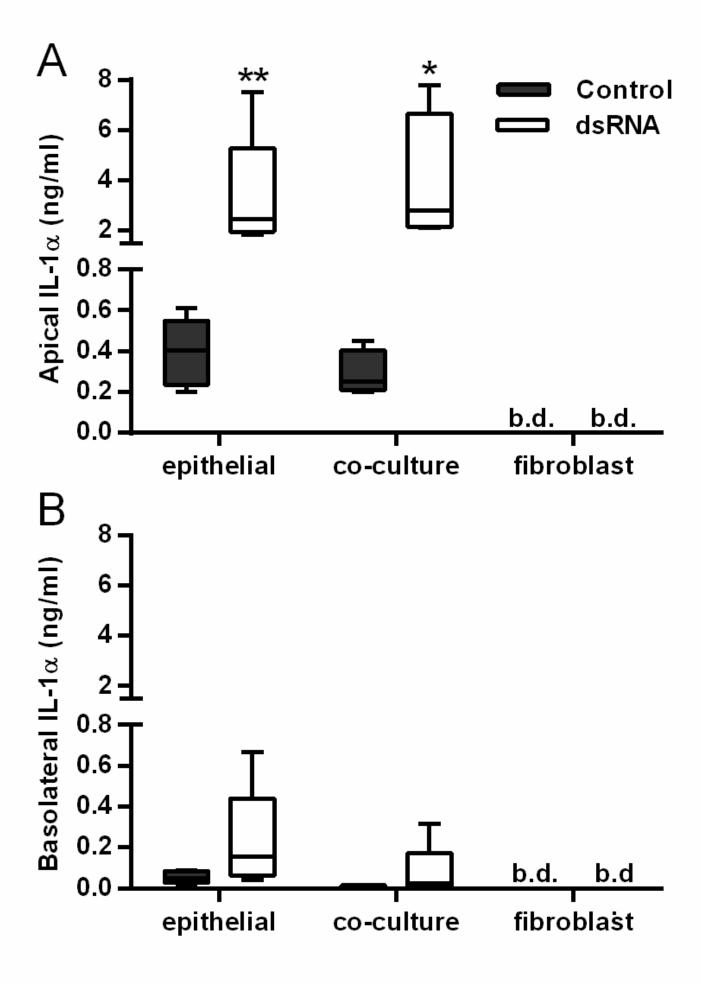
455

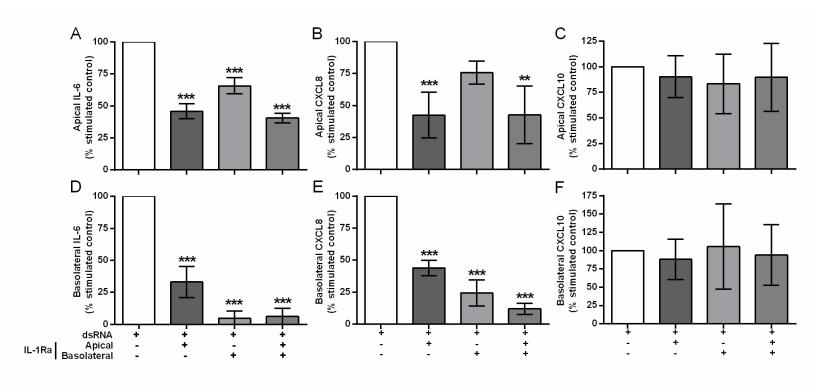
456

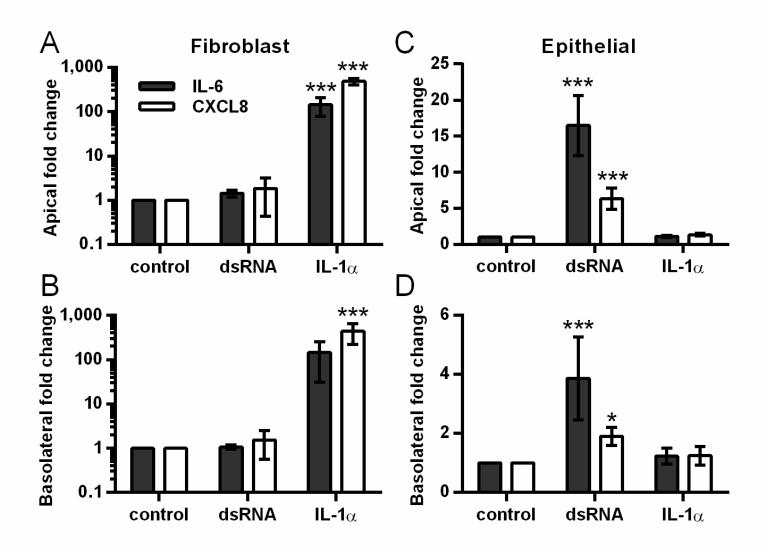
457

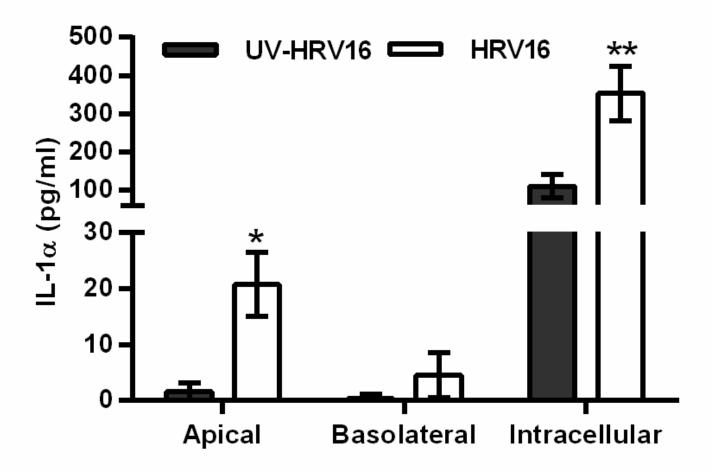

458

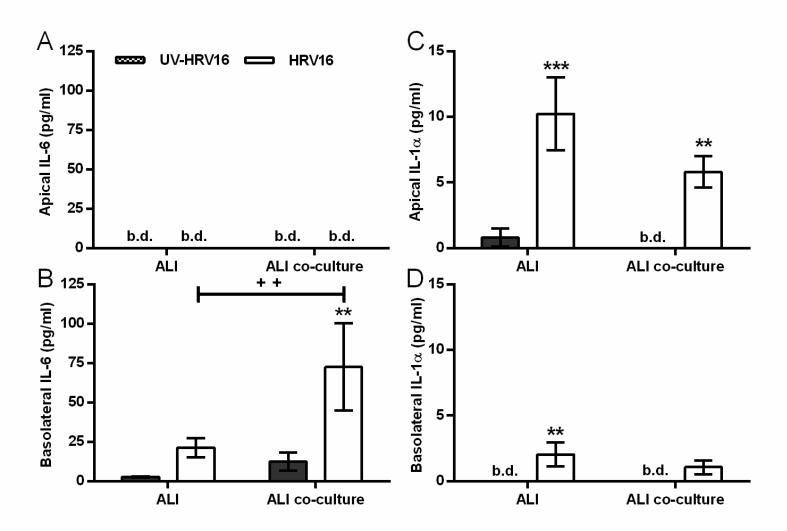

459

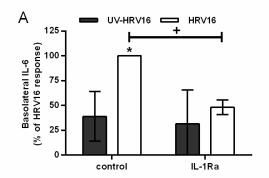

460

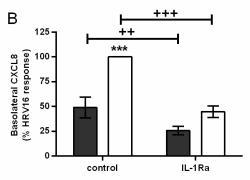

Figure 7. Increased human rhinovirus (HRV)16-induced IL-6 and IL-1α release from the primary differentiated epithelial mesenchymal trophic unit (EMTU) co-culture model compared to air-liquid interface (ALI) monocultures. ALI mono- or co-cultures with fibroblasts were infected apically with human rhinovirus (HRV)16 (MOI=2) or UV-HRV16 as a negative control. After 24h, apical (A, C) and basolateral (B, D) cell-free supernatants were assayed for IL-6 (A-B) or IL-1α (C-D). Results are means \pm SD, 3 separate experiments from one epithelial cell donor and are representative of 3 donors. **P<0.01, ***P<0.001 compared to UV-HRV16 control and P<0.01 comparing HRV16-treated mono- and co-cultures (two-way ANOVA with Bonferroni correction). b.d. indicates levels below the detection limit of the assay.

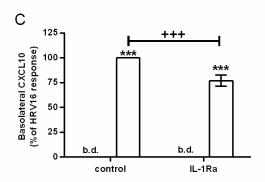

Figure 8. Role for IL-1α in human rhinovirus (HRV)16-induced proinflammatory responses in the primary differentiated epithelial mesenchymal trophic unit (EMTU) co-culture model. Co-cultures were treated with IL-1Ra (500ng/ml) basolaterally for 1h prior to HRV16 (MOI=2) or UV-HRV16 as a negative control. After 24h, cell-free supernatants were assayed for IL-6 (A), CXCL8 (B), and CXCL10 (C) by ELISA. To examine the effect of IL-1Ra on HRV16-induced cytokine release, cytokine levels are expressed as % of HRV16-induced control response (100%). Results are means \pm SD, n=3 separate epithelial cell donors. ***P<0.001 compared to UV-HRV16 control and P<0.05, P<0.01 or P<0.01 comparing control and IL-1Ratreated cultures (two-way ANOVA with Bonferroni correction). b.d. indicates levels below the detection limit of the assay.











SUPPLEMENTARY MATERIAL

IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit

Alison R Hill^a, Jessica E Donaldson^a, Cornelia Blume^a, Natalie Smithers^a, Liku Tezera^a,

Kamran Tariq^b, Patrick Dennison^{a,b}, Hitasha Rupani^{a,b}, Matthew J Edwards^d, Peter H Howarth^a,

^b Christopher Grainge^a, Donna E Davies^{a, b, c} and Emily J Swindle^{a, b, c*}.

^aClinical and Experimental Sciences, Faculty of Medicine, University of Southampton,

University Hospital Southampton, Southampton, UK; ^bNIHR Southampton Respiratory

Biomedical Research Unit, University Hospital Southampton, Southampton, UK; ^cInstitute for

Life Sciences, Highfield Campus, University of Southampton, Southampton, UK; ^dNovartis

Institutes for BioMedical Research, Horsham, UK.

*Corresponding author and requests for reprints:

Dr Emily J Swindle,

Clinical and Experimental Sciences,

Henry Wellcome Laboratories

Level F, South Academic Block, Mailpoint 810, Faculty of Medicine,

University Hospital Southampton, Southampton SO16 6YD, UK.

Tel.: +44(0)23 8079 6736;

Fax.: +44(0)23 8051 1761;

E-mail: E.J.Swindle@soton.ac.uk

¶,present address: School of Medicine and Public Health, The University of Newcastle,

Australia

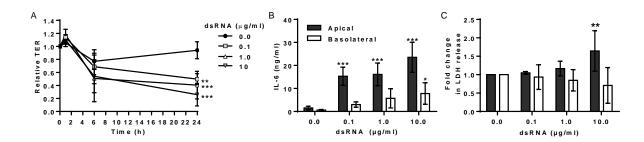
SUPPLEMENTARY METHODS

Cell culture. The human bronchial epithelial cell line, 16HBE14o⁻, (16HBE, a gift from Professor D. C. Grunert, San Francisco, USA), was maintained in MEM with Glutamax and supplemented with 10% heat-inactivated FBS and penicillin (50IU/ml)/streptomycin (20μg/ml). The fibroblast cell line, MRC5, was maintained in DMEM supplemented with 10% FBS, penicillin (50IU/ml)/streptomycin (20μg/ml), L-glutamine (1%), non-essential amino acids (1%) and sodium pyruvate (1%). All cell culture reagents were supplied by Life Technologies)

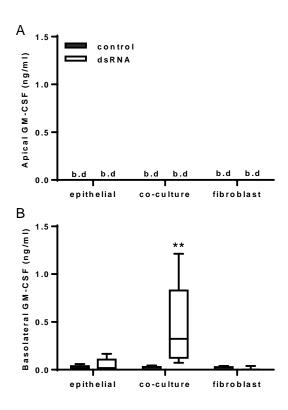
Establishment of the polarized EMTU co-culture model. Transwell[®] culture inserts (6.5mm diameter, 0.4μm pore size permeable polyester membrane; Corning, the Netherlands) were used for the culture of epithelial cells (16HBE) and fibroblasts (MRC5). After coating the membrane with collagen I (30μg/ml; Advanced Biomatrix, USA), inserts were inverted and seeded with MRC5 cells (5x10⁴ cells in 50μl medium/Transwell[®]) and incubated in a humidified incubator at 37°C, 5% CO₂ for 2h to allow adherence. Non-adherent cells were gently washed away with HBSS, inserts inverted and placed in 24-well plates containing 16HBE medium (500μl) before 16HBEs cells (1.5x10⁵ cells in 200μl medium/well) were seeded into the apical compartment. Hence 16HBEs were cultured on the apical surface while MRC5 cells were cultured on the basolateral surface of the permeable culture insert. Control cultures of 16HBE and MRC5 cells alone were also established. Cells were cultured for 5 days and media changed every 2-3 days.

Establishment of the primary differentiated EMTU co-culture model. Primary fully differentiated ALI cultures were established as previously described ¹ and at day 21 the underside of the Transwell[®] was seeded with MRC5 cells as described above. After fibroblast

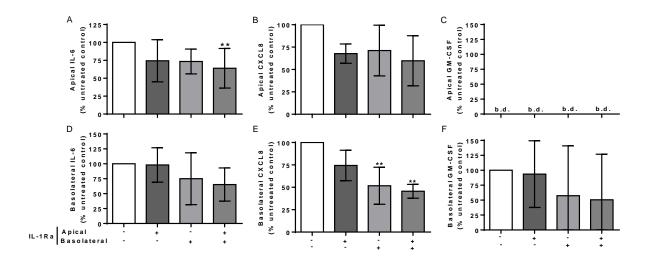
attachment, the inserts were placed in 24-well plates containing BEC basal medium (500µl) (Lonza, Switzerland) containing insulin (5µg/ml), transferrin (5µg/ml) and sodium selenite (5ng/ml) (ITS; Sigma, UK), BSA (0.01%; Sigma, UK) and penicillin (50IU/ml)/streptomycin (20µg/ml) before HRV16 infection the next day.

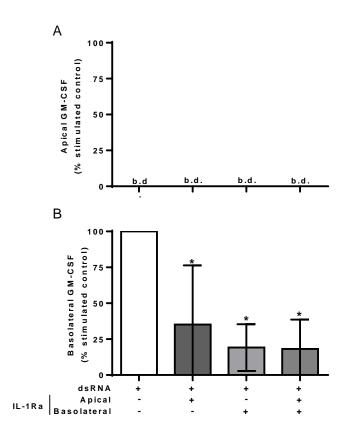

Assessment of macromolecular permeability. Three or 21 hours after apical challenge with dsRNA, FITC-labelled dextran (4kDa or 20kDa, 2mg/ml, Sigma, UK) was added to the apical compartment and incubated for 3h in a humidified atmosphere of 5% CO₂ at 37°C. Samples (50μl) were then removed from the basolateral compartment and quantified by comparison with a FITC-dextran standard curve (2–1000μg/ml) and fluorescence (ex 485nm and em 530nm) determined using a Fluoroskan Ascent FL2.5 plate reader (ThermoFisher, UK). FITC-dextran diffusion was expressed as a percentage of diffusion through an empty Transwell[®].

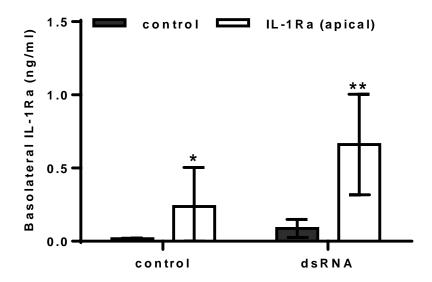
Detection of cytokines and chemokines. Cell-free supernatants were assayed for IL-1α (detection range; 3 - 2300pg/ml), IL-1β (detection range; 4 – 2700pg/ml) and IL-1Ra (detection range 13 – 9,000pg/ml) using a Luminex[®] screening assay on a Bio-Rad Bioplex 200 platform according to the manufacturer's instructions (R&D systems, UK). IL-6 (detection range; 9 – 600pg/ml), CXCL8 (detection range; 31 - 2,000pg/ml), CXCL10 (detection range; 31 - 2,000pg/ml) and GM-CSF (detection range; 6-750pg/ml) were determined by ELISA according to the manufacturer's protocol (R&D Systems, UK)


SUPPLEMENTARY REFERENCE

1. Blume C, Swindle EJ, Dennison P, Jayasekera NP, Dudley S, Monk P, et al. Barrier responses of human bronchial epithelial cells to grass pollen exposure. Eur. Respir. J. 2013; 42:87-97.


SUPPLEMENTARY FIGURES


Supplementary figure 1. Concentration responses of polarized HBEC monocultures to dsRNA. Polarised HBEC monocultures were apically challenged with poly(I:C) (0.1- $10\mu g/ml$). Over 24h. TER was measured at 6 and 24h post-stimulation and expressed as TER relative to the TER value prior to challenge (n=3) (A). After 24h, apical and basolateral cell-free supernatants were assayed for IL-6 (B) and LDH release (C). LDH release was determined by a non-radioactive cytotoxic assay according to manufacturer's instructions (Promega, Southampton, UK). Treatment of cells with 1% Triton X-100 was used as a positive control for 100% cell lysis and used to construct a standard curve. Spiking the positive control with poly(I:C) did not interfere with the assay. Results are means \pm SD, n=3-4. * $P \le 0.05$, ** $P \le 0.01$ and *** $P \le 0.001$ compared to controls (two-way ANOVA with Bonferroni correction).


Supplementary Figure 2. Effect of double-stranded RNA (dsRNA) on GM-CSF release in the polarized epithelial mesenchymal trophic unit (EMTU) co-culture model. Apical and basolateral cell-free supernatants were harvested 24h after stimulation of the EMTU co-culture model or HBEC and fibroblast monocultures with poly(I:C) ($1\mu g/ml$). Supernatants were assayed for GM-CSF by ELISA. Results are shown as box plots representing the median with 25% and 75% interquartiles, and whiskers representing minimum and maximum values, n=3-5. ** $P \le 0.01$ for comparison between control and poly(I:C)-stimulated cultures (Kruskal-Wallis test with Dunn's correction). b.d. indicates levels below the detection limit of the assay.

Supplementary Figure 3. Effect of IL-1Ra on constitutive cytokine release in the EMTU coculture model. HBEC and fibroblast co-cultures were treated with IL-1Ra (500ng/ml) either apically, basolaterally or in combination for 25h before harvesting apical (A-C) and basolateral (D-F) cell-free supernatants for detection of IL-6 (A, D), CXCL8 (B, E) and GM-CSF (C, F) by ELISA. The effects of IL-1Ra were expressed as a % of untreated control for each experiment (see Table 1 for raw data). Results are means \pm SD, n=3-6. **P<0.01 compared to untreated controls (one-way ANOVA with Bonferroni correction).

Supplementary Figure 4 The effect of IL-1R antagonism on double-stranded RNA (dsRNA)-induced GM-CSF release in the polarized epithelial mesenchymal trophic unit (EMTU) co-culture model. The EMTU co-culture model was cultured in the absence or presence of IL-1Ra (500ng/ml) applied either apically, basolaterally or both for 1h prior to stimulation with poly(I:C) (1µg/ml). Apical and basolateral cell-free supernatants were harvested 24h after stimulation and assayed for GM-CSF by ELISA. To investigate the effects of IL-1Ra on dsRNA-dependent responses, control mediator levels were subtracted from stimulated levels and expressed as a percentage of the response to dsRNA. Results are mean responses compared to the poly(I:C)-induced response in the absence of IL-1Ra (100%) \pm SD, n=3. *P<0.05, for comparison between poly(I:C)-stimulated cultures in the absence or presence of IL-1Ra (one-way ANOVA with Bonferroni correction). b.d. indicates levels below the detection limit of the assay.

Supplementary Figure 5. Macromolecular flux of exogenous IL-1Ra from the apical to basolateral compartments in unstimulated and dsRNA-stimulated co-cultures. Exogenous IL-1Ra (500ng/ml) was added to the apical compartment of the polarized EMTU model and incubated for 1h prior to stimulation with poly(I:C) (1µg/ml). Basolateral cell-free supernatants were harvested after 24h for detection of IL-1Ra by Luminex® assay. Results are means \pm SD, n=3. *P<0.05, **P<0.01 comparing cultures with and without exogenous IL-1Ra in the apical compartment (two-way ANOVA with Bonferroni correction).

Table 1. The effect of IL-1R antagonism on double-stranded RNA (dsRNA)-induced cytokine and chemokine release in the polarized epithelial mesenchymal trophic unit (EMTU) co-culture model. The EMTU co-culture model was cultured in the absence or presence of IL-1Ra (500ng/ml) applied either apically, basolaterally or both for 1h prior to stimulation with poly(I:C) (1µg/ml). Apical and basolateral cell-free supernatants were harvested 24h after stimulation and assayed for IL-6, CXCL8, CXCL10 and GM-CSF by ELISA. Results are means ±SD, n=3-6. b.d. indicates levels below the detection limit of the assay. Raw data for figure 4A-F, supplemental figure 2B and supplemental figure 3A-F.

	IL-6 (ng/ml)				CXCL8 (ng/ml)				CXCL10 (ng/ml)			GM-CSF (pg/ml)				
	Apical		Basolateral		Apical		Basolateral		Apical		Basolateral		Apical		Basolateral	
dsRNA	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
- IL-1Ra	1.8±1.9	33.9±28.2	25.6±22.3	207.7±194.7	1.7±0.7	9.3±4.1	58.8±24.7	172±68.5	b.d.	0.8±0.5	0.1±0.1	6.6±3.1	b.d.	b.d.	74±87	276±105
+ IL-Ra apical	1.3±1.4	16.0±14.0	24.8±19.5	93.9±90.4	1.1±0.5	4.0±1.4	41.8±14.1	93.2±38.9	b.d.	0.7±0.6	b.d.	6.3±4.9	b.d.	b.d.	40±20	113±103
+ IL-Ra basolateral	1.4±1.5	21.2±18.8	15.9±14.8	19.3±18.2	1.0±0.5	5.9±2.9	27.2±13.9	47.7±20.6	b.d.	0.7±0.6	b.d.	8.5±8.9	b.d.	b.d.	22±19	66±27
+ IL-1Ra apical and	1.2±1.3	14.6±11.9	14.2±13.5	15.6±13.6	0.9±0.5	3.1±1.1	24.0±10.1	34.9±9.2	b.d.	0.8±6	b.d.	7.3±6.9	b.d.	b.d.	18±16	62±36
basolateral																

Table 2. Fibroblast and HBEC monocultures were stimulated with IL-1 α either apically (10ng/ml), basolaterally (1ng/ml) or in combination, or with poly(I:C) (1 μ g/ml) as a positive control. After 24h, cell-free supernatants were assayed for IL-6 and CXCL8 by ELISA. Results are means \pm SD, n=4-5. Raw data for figure 5A-D; Effect of IL-1 α stimulation on IL-6 and CXCL8 release from fibroblast and HBEC monocultures.

		IL-6 (r	ng/ml)		CXCL8 (ng/ml)					
	Api	cal	Basol	ateral	Api	cal	Basolateral			
	Fibroblast	Epithelial	Fibroblast	Epithelial	Fibroblast	Epithelial	Fibroblast	Epithelial		
control	0.4±0.4	0.4±0.2	0.7±0.7	0.6±0.3	0.3±0.2	0.8±0.2	0.3±0.1	1.4±0.3		
dsRNA	0.6±0.6	6.1±3.7	0.9±0.8	1.9±1.1	0.5±0.4	5.3±0.8	0.4±0.2	2.6±0.2		
IL-1α	49.8±42.4	0.4±0.2	72.5±58.8	0.7±0.3	146.6±113.7	1.1±0.2	137.1±125.6	1.7±0.4		