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Abstract— Evidence indicates that downloading on-demandAQ:1 1

videos accounts for a dramatic increase in data traffic over2

cellular networks. Caching popular videos in the storage of small-3

cell base stations (SBS), namely, small-cell caching, is an efficient4

technology for reducing the transmission latency while mitigating5

the redundant transmissions of popular videos over back-haul6

channels. In this paper, we consider a commercialized small-cell7

caching system consisting of a network service provider (NSP),8

several video retailers (VRs), and mobile users (MUs). The9

NSP leases its SBSs to the VRs for the purpose of making10

profits, and the VRs, after storing popular videos in the rented11

SBSs, can provide faster local video transmissions to the MUs,12

thereby gaining more profits. We conceive this system within the13

framework of Stackelberg game by treating the SBSs as specific14

types of resources. We first model the MUs and SBSs as two15

independent Poisson point processes, and develop, via stochastic16

geometry theory, the probability of the specific event that an17

MU obtains the video of its choice directly from the memory of18

an SBS. Then, based on the probability derived, we formulate a19

Stackelberg game to jointly maximize the average profit of both20

the NSP and the VRs. In addition, we investigate the Stackelberg21

equilibrium by solving a non-convex optimization problem. With22

the aid of this game theoretic framework, we shed light on23

the relationship between four important factors: the optimal24

pricing of leasing an SBS, the SBSs allocation among the VRs,25

the storage size of the SBSs, and the popularity distribution26

of the VRs. Monte Carlo simulations show that our stochastic27

geometry-based analytical results closely match the empirical28

ones. Numerical results are also provided for quantifying the29

proposed game-theoretic framework by showing its efficiency on30

pricing and resource allocation.
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I. INTRODUCTION 34

W IRELESS data traffic is expected to increase exponen- 35

tially in the next few years driven by a staggering 36

proliferation of mobile users (MU) and their bandwidth- 37

hungry mobile applications. There is evidence that streaming 38

of on-demand videos by the MUs is the major reason for 39

boosting the tele-traffic over cellular networks [1]. According 40

to the prediction of mobile data traffic by Cisco, mobile video 41

streaming will account for 72% of the overall mobile data 42

traffic by 2019. The on-demand video downloading involves 43

repeated wireless transmission of videos that are requested 44

multiple times by different users in a completely asynchronous 45

manner, which is different from the transmission style of live 46

video streaming. 47

Often, there are numerous repetitive requests of popular 48

videos from the MUs, such as online blockbusters, leading 49

to redundant video transmissions. The redundancy of data 50

transmissions can be reduced by locally storing popular videos, 51

known as caching, into the storage of intermediate network 52

nodes, effectively forming a local caching system [1], [2]. 53

The local caching brings video content closer to the MUs 54

and alleviates redundant data transmissions via redirecting the 55

downloading requests to the intermediate nodes. 56

Generally, wireless data caching consists of two stages: 57

data placement and data delivery [3]. In the data placement 58

stage, popular videos are cached into local storages during 59

off-peak periods, while during the data delivery stage, videos 60

requested are delivered from the local caching system to 61

the MUs. Recent works advanced the caching solutions of 62

both device-to-device (D2D) networks and wireless sensor 63

networks [4]–[6]. Specifically, in [4] a caching scheme was 64

proposed for a D2D based cellular network relaying on 65

the MUs’ caching of popular video content. In this scheme, the 66

D2D cluster size was optimized for reducing the downloading 67

delay. In [5] and [6], the authors proposed novel caching 68

schemes for wireless sensor networks, where the protocol 69

model of [7] was adopted. 70

Since small-cell embedded architectures will dominate 71

in future cellular networks, known as heterogeneous net- 72

works (HetNet) [8]–[13], caching relying on small-cell base 73

stations (SBS), namely, small-cell caching, constitutes a 74

promising solution for HetNets. The advantages brought about 75

by small-cell caching are threefold. Firstly, popular videos are 76

placed closer to the MUs when they are cached in SBSs, hence 77
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reducing the transmission latency. Secondly, redundant trans-78

missions over SBSs’ back-haul channels, which are usually79

expensive [14], can be mitigated. Thirdly, the majority of video80

traffic is offloaded from macro-cell base stations to SBSs.81

In [15], a small-cell caching scheme, named82

‘Femtocaching’, is proposed for a cellular network having83

embedded SBSs, where the data placement at the SBSs is84

optimized in a centralized manner for the sake of reducing85

the transmission delay imposed. However, [15] considers an86

idealized system, where neither the interference nor the impact87

of wireless channels is taken into account. The associations88

between the MUs and the SBSs are pre-determined without89

considering the specific channel conditions encountered.90

In [16], small-cell caching is investigated in the context of91

stochastic networks. The average performance is quantified92

with the aid of stochastic geometry [17], [18], where the93

distribution of network nodes is modeled by Poisson point94

process (PPP). However, the caching strategy of [16] assumes95

that the SBSs cache the same content, hence leading to a96

sub-optimal solution.97

As detailed above, current research on wireless caching98

mainly considers the data placement issue optimized for reduc-99

ing the downloading delay. However, the entire caching system100

design involves numerous issues apart from data placement.101

From a commercial perspective, it will be more interesting102

to consider the topics of pricing for video streaming, the103

rental of local storage, and so on. A commercialized caching104

system may consist of video retailers (VR), network service105

providers (NSP) and MUs. The VRs, e.g., Youtube, purchase106

copyrights from video producers and publish the videos on107

their web-sites. The NSPs are typically operators of cellular108

networks, who are in charge of network facilities, such as109

macro-cell base stations and SBSs.110

In such a commercial small-cell caching system, the VRs’111

revenue is acquired from providing video streaming for112

the MUs. As the central servers of the VRs, which store113

the popular videos, are usually located in the backbone net-114

works and far away from the MUs, an efficient solution is115

to locally cache these videos, thereby gaining more profits116

from providing faster local transmissions. In turn, these local117

caching demands raised by the VRs offer the NSPs prof-118

itable opportunities from leasing their SBSs. Additionally, the119

NSPs can save considerable costs due to reduced redundant120

video transmissions over SBSs’ back-haul channels. In this121

sense, both the VRs and NSPs are the beneficiaries of the122

local caching system. However, each entity is selfish and123

wishes to maximize its own benefit, raising a competition124

and optimization problem among these entities, which can be125

effectively solved within the framework of game theory.126

We note that game theory has been successfully applied127

to wireless communications for solving resource allocation128

problems. In [19], the authors propose a dynamic spectrum129

leasing mechanism via power control games. In [20],130

a price-based power allocation scheme is proposed for spec-131

trum sharing in Femto-cell networks based on Stackelberg132

game. Game theoretical power control strategies for maxi-133

mizing the utility in spectrum sharing networks are studied134

in [21] and [22].135

In this paper, we propose a commercial small-cell caching 136

system consisting of an NSP, multiple VRs and MUs. We opti- 137

mize such a system within the framework of Stackelberg game 138

by viewing the SBSs as a specific type of resources for the 139

purpose of video caching. Generally speaking, Stackelberg 140

game is a strategic game that consists of a leader and several 141

followers competing with each other for certain resources [23]. 142

The leader moves first and the followers move subsequently. 143

Correspondingly, in our game theoretic caching system, we 144

consider the NSP to be the leader and the VRs as the followers. 145

The NSP sets the price of leasing an SBS, while the VRs 146

compete with each other for renting a fraction of the SBSs. 147

To the best of the authors’ knowledge, our work is the first 148

of its kind that optimizes a caching system with the aid of 149

game theory. Compared to many other game theory based 150

resource allocation schemes, where the power, bandwidth 151

and time slots are treated as the resources, our work has 152

a totally different profit model, established based on our 153

coverage derivations. In particular, our contributions are as 154

follows. 155

1) By following the stochastic geometry framework 156

of [17] and [18], we model the MUs and SBSs in 157

the network as two different ties of a Poisson point 158

process (PPP) [24]. Under this network model, we define 159

the concept of a successful video downloading event 160

when an MU obtains the requested video directly from 161

the storage of an SBS. Then we quantify the probability 162

of this event based on stochastic geometry theory. 163

2) Based on the probability derived, we develop a profit 164

model of our caching system and formulate the profits 165

gained by the NSP and the VRs from SBSs leasing and 166

renting. 167

3) A Stackelberg game is proposed for jointly maximizing 168

the average profit of the NSP and the VRs. Given this 169

game theoretic framework, we investigate a non-uniform 170

pricing scheme, where the price charged to different VRs 171

varies. 172

4) Then we investigate the Stackelberg equilibrium of this 173

scheme via solving a non-convex optimization problem. 174

It is interesting to observe that the optimal solution is 175

related both to the storage size of each SBS and to the 176

popularity distribution of the VRs. 177

5) Furthermore, we consider an uniform pricing scheme. 178

We find that although the uniform pricing scheme is 179

inferior to the non-uniform one in terms of maximizing 180

the NSP’s profit, it is capable of reducing more back- 181

haul costs compared with the latter and achieves the 182

maximum sum profit of the NSP and the VRs. 183

The rest of this paper is organized as follows. We describe 184

the system model in Section II and establish the related profit 185

model in Section III. We then formulate Stackelberg game for 186

our small-cell caching system in Section IV. In Section V, 187

we investigate Stackelberg equilibrium for the non-uniform 188

pricing scheme by solving a non-convex optimization prob- 189

lem, while in Section VI, we further consider the uniform 190

pricing scheme. Our simulations and numerical results are 191

detailed in Section VII, while our conclusions are provided 192

in Section VIII. 193
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Fig. 1. An example of the small-cell caching system with four VRs.

II. SYSTEM MODEL194

We consider a commercial small-cell caching system con-

AQ:3

195

sisting of an NSP, V VRs, and a number of MUs. Let us196

denote by L the NSP, by V = {V1, V2, · · · , VV } the set of the197

VRs, and by M one of the MUs. Fig. 1 shows an example of198

our caching system relying on four VRs. In such a system, the199

VRs wish to rent the SBSs from L for placing their videos.200

Both the NSP and each VR aim for maximizing their profits.201

There are three stages in our system. In the first stage, the202

VRs purchase the copyrights of popular videos from video203

producers and publish them on their web-sites. In the second204

stage, the VRs negotiate with the NSP on the rent of SBSs205

for caching these popular videos. In the third stage, the MUs206

connect to the SBSs for downloading the desired videos.207

We will particulary focus our attention on the second and third208

stages within this game theoretic framework.209

A. Network Model210

Let us consider a small-cell based caching network com-211

posed of the MUs and the SBSs owned by L, where each212

SBS is deployed with a fixed transmit power P and the storage213

of Q video files. Let us assume that the SBSs transmit over214

the channels that are orthogonal to those of the macro-cell215

base stations, and thus there is no interference incurred by the216

macro-cell base stations. Also, assume that these SBSs are217

spatially distributed according to a homogeneous PPP (HPPP)218

� of intensity λ. Here, the intensity λ represents the number of219

the SBSs per unit area. Furthermore, we model the distribution220

of the MUs as an independent HPPP � of intensity ζ .221

The wireless down-link channels spanning from the SBSs222

to the MUs are independent and identically distributed (i.i.d.),223

and modeled as the combination of path-loss and Rayleigh224

fading. Without loss of generality, we carry out our analysis225

for a typical MU located at the origin. The path-loss between226

an SBS located at x and the typical MU is denoted by ‖x‖−α ,227

where α is the path-loss exponent. The channel power of228

the Rayleigh fading between them is denoted by hx , where229

hx ∼ exp(1). The noise at an MU is Gaussian distributed230

with a variance σ 2.231

We consider the steady-state of a saturated network, where232

all the SBSs keep on transmitting data in the entire frequency233

band allocated. This modeling approach for saturated networks234

characterizes the worst-case scenario of the real systems,235

which has been adopted by numerous studies on PPP analysis,236

such as [18]. Hence, the received signal-to-interference-plus- 237

noise ratio (SINR) at the typical MU from an SBS located at 238

x can be expressed as 239

ρ(x) = Phx‖x‖−α

∑
x ′∈�\x Phx ′ ‖x ′‖−α + σ 2 . (1) 240

The typical MU is considered to be “covered” by an 241

SBS located at x as long as ρ(x) is no lower than a pre-set 242

SINR threshold δ, i.e., 243

ρ(x) ≥ δ. (2) 244

Generally, an MU can be covered by multiple SBSs. Note that 245

the SINR threshold δ defines the highest delay of downloading 246

a video file. Since the quality and code rate of a video clip 247

have been specified within the video file, the download delay 248

will be the major factor predetermining the QoS perceived by 249

the mobile users. Therefore, we focus our attention on the 250

coverage and SINR in the following derivations. 251

B. Popularity and Preferences 252

We now model the popularity distribution, i.e., the distri- 253

bution of request probabilities, among the popular videos to 254

be cached. Let us denote by F = {F1, F2, · · · , FN } the file 255

set consisting of N video files, where each video file contains 256

an individual movie or video clip that is frequently requested 257

by MUs. The popularity distribution of F is represented by a 258

vector t = [t1, t2, · · · , tN ]. That is, the MUs make independent 259

requests of the n-th video Fn , n = 1, · · · , N , with the 260

probability of tn . Generally, t can be modeled by the Zipf 261

distribution [25] as 262

tn = 1/nβ

∑N
j=1 1/jβ

, ∀n, (3) 263

where the exponent β is a positive value, characterizing the 264

video popularity. A higher β corresponds to a higher content 265

reuse, where the most popular files account for the majority 266

of download requests. From Eq. (3), the file with a smaller n 267

corresponds to a higher popularity. 268

Note that each SBS can cache at most Q video files, and 269

usually Q is no higher than the number of videos in F , i.e., 270

we have Q ≤ N . Without loss of generality, we assume that 271

N/Q is an integer. The N files in F are divided into F = N/Q 272

file groups (FG), with each FG containing Q video files. The 273

n-th video, ∀n ∈ {( f − 1)Q + 1, · · · , f Q}, is included in the 274

f -th FG, f = 1, · · · , F . Denote by G f the f -th FG, and by 275

p f the probability of the MUs’ requesting a file in G f , and 276

we have 277

p f =
f Q∑

n=( f −1)Q+1

tn, ∀ f. (4) 278

File caching is then carried out on the basis of FGs, where 279

each SBS caches one of the F FGs. 280

At the same time, the MUs have unbalanced preferences 281

with regard to the V VRs, i.e., some VRs are more popular 282

than others. For example, the majority of the MUs may tend 283

to access Youtube for video streaming. The preference distri- 284

bution among the VRs is denoted by q = [q1, q2, · · · , qV ], 285
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where qv , v = 1, · · · , V , represents the probability that the286

MUs prefer to download videos from Vv . The preference287

distribution q can also be modeled by the Zipf distribution.288

Hence, we have289

qv = 1/vγ

∑V
j=1 1/jγ

, ∀v, (5)290

where γ is a positive value, characterizing the preference of291

the VRs. A higher γ corresponds to a higher probability of292

accessing the most popular VRs.293

C. Video Placement and Download294

Next, we introduce the small-cell caching system with its295

detailed parameters. In the first stage, each VR purchases the296

N popular videos in F from the producers and publishes these297

videos on its web-site. In the second stage, upon obtaining298

these videos, the VRs negotiate with the NSP L for renting299

its SBSs. As L leases its SBSs to multiple VRs, we denote by300

τ = [τ1, τ2, · · · , τV ] the fraction vector, where τv represents301

the fraction of the SBSs that are assigned to Vv , ∀v. We assume302

that the SBSs rented by each VR are uniformly distributed.303

Hence, the SBSs that are allocated to Vv can be modeled as304

a “thinned” HPPP �v with intensity τvλ.305

The data placements of the second stage commence during306

network off-peak time after the VRs obtain access to the SBSs.307

During the placements, each SBS will be allocated with one of308

the F FGs. Generally, we assume that the VRs do not have the309

a priori information regarding the popularity distribution of F .310

This is because the popularity of videos is changing periodi-311

cally, and can only be obtained statistically after these videos312

quit the market. It is clear that each VR may have more or313

less some statistical information on the popularity distribution314

of videos based on the MUs’ downloading history. However,315

this information will be biased due to limited sampling. In this316

case, the VRs will uniformly assign the F FGs to the SBSs317

with equal probability of 1
F for simplicity. We are interested in318

investigating the uniform assignment of video files for drawing319

a bottom line of the system performance. As the FGs are320

randomly assigned, the SBSs in �v that cache the FG G f can321

be further modeled as a “more thinned” HPPP �v, f with an322

intensity of 1
F τvλ.323

In the third stage, the MUs start to download videos. When324

an MU M requires a video of G f from Vv , it searches the SBSs325

in �v, f and tries to connect to the nearest SBS that covers M .326

Provided that such an SBS exists, the MU M will obtain this327

video directly from this SBS, and we thereby define this event328

by Ev, f . By contrast, if such an SBS does not exist, M will329

be redirected to the central servers of Vv for downloading330

the requested file. Since the servers of Vv are located at the331

backbone network, this redirection of the demand will trigger332

a transmission via the back-haul channels of the NSP L, hence333

leading to an extra cost.334

III. PROFIT MODELING335

We now focus on modeling the profit of the NSP and336

the VRs obtained from the small-cell caching system. The337

average profit is developed based on stochastically geometrical338

distributions of the network nodes in terms of per unit area 339

times unit period (/U AP), e.g., /month · km2. 340

A. Average Profit of the NSP 341

For the NSP L, the revenue gained from the caching system 342

consists of two parts: 1) the income gleaned from leasing SBSs 343

to the VRs and 2) the cost reduction due to reduced usage of 344

the SBSs’ back-haul channels. First, the leasing income/U AP 345

of L can be calculated as 346

SRT =
V∑

j=1

τ jλs j , (6) 347

where s j is the price per unit period charged to V j for 348

renting an SBS. Then we formulate the saved cost/U AP 349

due to reduced back-haul channel transmissions. When an 350

MU demands a video in G f from Vv , we derive the probability 351

Pr(Ev, f ) as follows. 352

Theorem 1: The probability of the event Ev, f , ∀v, f , can 353

be expressed as 354

Pr(Ev, f ) = τv

C(δ, α)(F − τv) + A(δ, α)τv + τv
, (7) 355

where we have A(δ, α) � 2δ
α−2 2 F1

(
1, 1 − 2

α ; 2 − 2
α ; −δ
)

356

and C(δ, α) � 2
α δ

2
α B
( 2

α , 1 − 2
α

)
. Furthermore, 2 F1(·) in 357

the function A(δ, α) is the hypergeometric function, while 358

the Beta function in C(δ, α) is formulated as B(x, y) = 359∫ 1
0 t x−1(1 − t)y−1dt . 360

Proof: Please refer to Appendix A. � 361

Remark 1: From Theorem 1, it is interesting to observe that 362

the probability Pr(Ev, f ) is independent of both the transmit 363

power P and the intensity λ of the SBSs. Furthermore, since 364

Q is inversely proportional to F , we can enhance Pr(Ev, f ) by 365

increasing the storage size Q. 366

We assume that there are on average K video requests from 367

each MU within unit period, and that the average back-haul 368

cost for a video transmission is sbh . Based on Pr(Ev, f ) in 369

Eq. (7), we obtain the cost reduction/U AP for the back-haul 370

channels of L as 371

SB H =
F∑

j1=1

V∑

j2=1

p j1q j2ζ K Pr(E j2, j1)s
bh . (8) 372

By combining the above two items, the overall profit/U AP 373

for L can be expressed as 374

SN S P = SRT + SB H . (9) 375

B. Average Profit of the VRs 376

Note that the MUs can download the videos either from the 377

memories of the SBSs directly or from the servers of the VRs 378

at backbone networks via back-haul channels. In the first case, 379

the MUs will be levied by the VRs an extra amount of money 380

in addition to the videos’ prices because of the higher-rate 381

local streaming, namely, local downloading surcharge (LDS). 382

We assume that the LDS of each video is set as sld . Then the 383

revenue/U AP for a VR Vv gained from the LDS can be 384

calculated as 385

SL D
v =

F∑

j=1

p j qvζ K Pr(Ev, j )s
ld . (10) 386
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Additionally, Vv pays for renting the SBSs from L. The related387

cost/U AP can be written as388

SRT
v = τvλsv . (11)389

Upon combining the two items, the profit/U AP for Vv , ∀v,390

can be expressed as391

SV R
v = SL D

v − SRT
v . (12)392

IV. PROBLEM FORMULATION393

In this section, we first present the Stackelberg game for-394

mulation for our price-based SBS allocation scheme. Then the395

equilibrium of the proposed game is investigated.396

A. Stackelberg Game Formulation397

Again, Stackelberg game is a strategic game that consists of398

a leader and several followers competing with each other for399

certain resources [23]. The leader moves first and the followers400

move subsequently. In our small-cell caching system, we401

model the NSP L as the leader, and the V VRs as the followers.402

The NSP imposes a price vector s = [s1, s2, · · · , sV ] for403

the lease of its SBSs, where sv , ∀v, has been defined in the404

previous section as the price per unit period charged on Vv405

for renting an SBS. After the price vector s is set, the VRs406

update the fraction τv , ∀v, that they tend to rent from L.407

1) Optimization Formulation of the Leader: Observe from408

the above game model that the NSP’s objective is to maximize409

its profit SN S P formulated in Eq. (9). Note that for ∀v, the410

fraction τv is a function of the price sv under the Stackelberg411

game formulation. This means that the fraction of the SBSs412

that each VR is willing to rent depends on the specific price413

charged to them for renting an SBS. Consequently, the NSP414

has to find the optimal price vector s for maximizing its profit.415

This optimization problem can be summarized as follows.416

Problem 1: The optimization problem of maximizing L’s417

profit can be formulated as418

max
s	0

SN S P (s, τ ),419

s.t.
V∑

j=1

τ j ≤ 1. (13)420

2) Optimization Formulation of the Followers: The profit421

gained by the VR Vv in Eq. (12) can be further written as422

SV R
v (τv , sv ) =

F∑

j=1

p j qvζ K Pr(Ev, j )s
ld − τvλsv423

=
F∑

j=1

p j qvζ K sldτv

(A(δ, α) − C(δ, α) + 1)τv + C(δ, α)F
424

−λsv τv . (14)425

We can see from Eq. (14) that once the price sv is fixed, the426

profit of Vv depends on τv , i.e., the fraction of SBSs that427

are rented by Vv . If Vv increases the fraction τv , it will gain428

more revenue by levying surcharges from more MUs, while429

at the same time, Vv will have to pay for renting more SBSs.430

Therefore, τv has to be optimized for maximizing the profit 431

of Vv . This optimization can be formulated as follows. 432

Problem 2: The optimization problem of maximizing Vv ’s 433

profit can be written as 434

max
τv≥0

SV R
v (τv , sv ). (15) 435

Problem 1 and Problem 2 together form a Stackelberg 436

game. The objective of this game is to find the Stackelberg 437

Equilibrium (SE) points from which neither the leader (NSP) 438

nor the followers (VRs) have incentives to deviate. In the 439

following, we investigate the SE points for the proposed game. 440

B. Stackelberg Equilibrium 441

For our Stackelberg game, the SE is defined as follows. 442

Definition 1: Let s � [s
1, s

2, · · · , s
V ] be a solution for 443

Problem 1, and τ 
v be a solution for Problem 2, ∀v. Define 444

τ  � [τ 
1 , τ 

2 , · · · , τ 
V ]. Then the point (s, τ ) is an SE for 445

the proposed Stackelberg game if for any (s, τ ) with s 	 0 446

and τ 	 0, the following conditions are satisfied: 447

SN S P (s, τ ) ≥ SN S P (s, τ ), 448

SV R
v (s

v , τ

v ) ≥ SV R

v (s
v , τv ), ∀v. (16) 449

Generally speaking, the SE of a Stackelberg game can be 450

obtained by finding its perfect Nash Equilibrium (NE). In our 451

proposed game, we can see that the VRs strictly compete 452

in a non-cooperative fashion. Therefore, a non-cooperative 453

subgame on controlling the fractions of rented SBSs is for- 454

mulated at the VRs’ side. For a non-cooperative game, the 455

NE is defined as the operating points at which no players can 456

improve utility by changing its strategy unilaterally. At the 457

NSP’s side, since there is only one player, the best response 458

of the NSP is to solve Problem 1. To achieve this, we need to 459

first find the best response functions of the followers, based 460

on which, we solve the best response function for the leader. 461

Therefore, in our game, we first solve Problem 2 given a 462

price vector s. Then with the obtained best response function 463

τ  of the VRs, we solve Problem 1 for the optimal price s. In 464

the following, we will have an in-depth investigation on this 465

game theoretic optimization. 466

V. GAME THEORETIC OPTIMIZATION 467

In this section, we will solve the optimization problem in 468

our game under the non-uniform pricing scheme, where the 469

NSP L charges the VRs with different prices s1, · · · , sV for 470

renting an SBS. In this scheme, we first solve Problem 2 at 471

the VRs, and rewrite Eq. (14) as 472

SV R
v (τv , sv ) = �vsldτv

�τv + �
− λsv τv .0 (17) 473

where �v �
∑F

j=1 p j qvζ K , � � A(δ, α) − C(δ, α) + 1, and 474

� � C(δ, α)F . We observe that Eq. (17) is a concave function 475

over the variable τv . Thus, we can obtain the optimal solution 476

by solving the Karush-Kuhn-Tucker (KKT) conditions, and we 477

have the following lemma. 478
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Lemma 1: For a given price sv , the optimal solution of479

Problem 2 is480

τ 
v =
⎛

⎝

√
�v�sld

�2λ

√
1

sv
− �

�

⎞

⎠

+
, (18)481

where (·)+ � max(·, 0).482

Proof: The optimal solution τ 
v of Vv can be obtained by483

deriving SV R
v with respect to τv and solving dSV R

v
dτv

= 0 under484

the constraint that τv ≥ 0. �485

We can see from Lemma 1 that if the price sv is set too486

high, i.e., sv ≥ �v sld

�λ , the VR Vv will opt out for renting any487

SBS from L due the high price charged. Consequently, the488

VR Vv will not participate in the game.489

In the following derivations, we assume that the LDS on490

each video sld is set by the VRs to be the cost of a video trans-491

mission via back-haul channels sbh . The rational behind this492

assumption is as follows. Since a local downloading reduce a493

back-haul transmission, this saved back-haul transmission can494

be potentially utilized to provide extra services (equivalent to495

the value of sbh ) for the MUs. In addition, the MUs enjoy the496

benefit from faster local video transmissions. In light of this,497

it is reasonable to assume that the MUs are willing to accept498

the price sbh for a local video transmission.499

Substituting the optimal τ 
v of Eq. (18) into Eq. (9) and500

carry out some further manipulations, we arrive at501

SN S P =
V∑

j=1

λs j

⎛

⎝

√
� j �sbh

�2λ

√
1

s j
− �

�

⎞

⎠

+
502

+
∑F

i=1 pi q jζ K sbh

(√
� j�sbh

�2λ

√
1
s j

− �
�

)+

�

(√
� j�sbh

�2λ

√
1
s j

− �
�

)+
+ �

503

=
V∑

j=1

ξi

�

(

−�λs j +
(√

sbh − sbh

√
sbh

)
√

� j�λs j + � j s
bh
)

504

=
V∑

j=1

ξi

�

(
−�λs j + � j s

bh
)
, (19)505

where ξ j is the indicator function, with ξ j = 1 if s j <
� j sbh

�λ506

and ξ j = 0 otherwise. Upon defining the binary vector ξ �507

[ξ1, ξ2, · · · , ξV ], we can rewrite Problem 1 as follows.508

Problem 3: Given the optimal solutions τ 
v , ∀v, gleaned509

from the followers, we can rewrite Problem 1 as510

min
ξ , s	0

V∑

j=1

ξ j

(
�λs j − � j s

bh
)

,511

s.t.
V∑

j=1

ξ j

(√
� j �sbh

λs j
− �

)

≤ �. (20)512

Observe from Eq. (20) that Problem 3 is non-convex due513

to ξ . However, for a given ξ , this problem can be solved by514

satisfying the KKT conditions. In the following, we commence515

with the assumption that ξ = 1, i.e., ξv = 1, ∀v, and then we516

extend this result to the general case.517

A. Special Case: ξv = 1, ∀v 518

In this case, all the VRs are participating in the game, and 519

we have the following optimization problem. 520

Problem 4: Assuming ξv = 1, ∀v, we rewrite Problem 3 as 521

min
s	0

V∑

j=1

s j , 522

s.t.
V∑

j=1

√
� j

s j
≤ (V � + �)

√
λ

�sbh
. (21) 523

The optimal solution of Problem 4 is derived and given in 524

the following lemma. 525

Lemma 2: The optimal solution to Problem 4 can be 526

derived as ŝ � [ŝ1, · · · , ŝV ], where 527

ŝv =
�sbh
(∑V

j=1
3
√

� j

)2
3
√

�v

λ(V � + �)2 , ∀v. (22) 528

Proof: Please refer to Appendix B. � 529

Note that the solution given in Lemma 2 is found under 530

the assumption that ξv = 1, ∀v. That is, ŝv given in Eq. (22) 531

should ensure that τ 
v > 0, ∀v, in Eq. (18), i.e., 532

�sbh
(∑V

j=1
3
√

� j

)2
3
√

�v

λ(V � + �)2 <
�vsbh

�λ
. (23) 533

Given the definitions of �v , �, and �, it is interesting to find 534

that the inequality (23) can be finally converted to a constraint 535

on the storage size Q of each SBS, which is formulated as 536

Q > max

⎧
⎨

⎩

NC(δ, α)
(∑V

j=1
3
√

q j
qv

− V
)

A(δ, α) − C(δ, α) + 1
, ∀v

⎫
⎬

⎭
. (24) 537

The constraint imposed on Q can be expressed in a concise 538

manner in the following theorem. 539

Theorem 2: To make sure that ŝv in Eq. (22) does become 540

the optimal solution of Problem 4 when ξv = 1, ∀v, the 541

sufficient and necessary condition to be satisfied is 542

Q > Qmin �
NC(δ, α)

(∑V
j=1

3
√

q j
qV

− V
)

A(δ, α) − C(δ, α) + 1
, (25) 543

where qV is the minimum value in q according to Eq. (5). 544

Proof: Please refer to Appendix C. � 545

Remark 2: Observe from Eq. (25) that since
q j
qV

increases 546

exponentially with γ according to Eq. (5), the value of Qmin 547

ensuring ξv = 1, ∀v, will increase exponentially with γ /3. 548

Note that we have Q ≤ N . In the case that Qmin in Eq. (25) 549

is larger than N for a high VR popularity exponent γ , some 550

VRs with the least popularity will be excluded from the game. 551

B. Further Discussion on Q 552

We define a series of variables Uv , ∀v, as follows: 553

Uv �
NC(δ, α)

(∑v
j=1

3
√

q j
qv

− v
)

A(δ, α) − C(δ, α) + 1
, (26) 554

and formulate the following lemma. 555
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Lemma 3: Uv is a strictly monotonically-increasing func-556

tion of v, i.e., we have UV > UV −1 > · · · > U1.557

Proof: Please refer to Appendix D. �558

For the special case of the previous subsection, the optimal559

solution for ξv = 1, ∀v, is found under the condition that the560

storage size obeys Q > UV . In other words, Q should be561

large enough such that every VR can participate in the game.562

However, when Q reduces, some VRs have to leave the game563

as a result of the increased competition. Then we have the564

following lemma.565

Lemma 4: When Uv < Q ≤ Uv+1, the NSP can only retain566

at most the v VRs of V1, V2, · · · , Vv in the game for achieving567

its optimal solution.568

Proof: Please refer to Appendix E. �569

From Lemma 4, when we have Uv < Q ≤ Uv+1, and given570

that there are u VRs, u ≤ v, in the game, we can have an571

optimal solution for s.572

Problem 5: When Uv < Q ≤ Uv+1 is satisfied, and given573

that there are u, u ≤ v, VRs in the game, we can formulate574

the following optimization problem as575

min
s	0

u∑

j=1

s j ,576

s.t.
u∑

j=1

√
� j

s j
≤ (u� + �)

√
λ

�sbh
. (27)577

Similar to the solution of Problem 4, we arrive at578

the optimal solution for the above problem as ŝu �579

[ŝ1,u, · · · , ŝi,u , · · · , ŝV ,u], where580

ŝi,u =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑u

j=1
3
√

� j

)2
3
√

�i

λ(u� + �)2 , i = 1, · · · , u,

∞, i = u + 1, · · · , V .

581

(28)582

C. General Case583

Let us now focus our attention on the general solution of584

the original optimization problem, i.e., of Problem 3. Without585

loss of generality, we consider the case of Uv < Q ≤ Uv+1.586

Then Problem 3 is equivalent to the following problem.587

Problem 6: When Uv < Q ≤ Uv+1, there are at most v588

VRs in the game. Then Problem 3 can be converted to589

min
ξ , s	0

v∑

j=1

ξ j

(
�λs j − � j s

bh
)
,590

s.t.
v∑

j=1

ξ j

(√
� j �sbh

λs j
− �

)

≤ �. (29)591

The problem in Eq. (29) is again non-convex due to the592

uncertainty of ξu , u = 1, · · · , v. We have to consider the593

cases, where there are u, ∀u, most popular VRs in the594

game. We observe that for a given u, Problem 6 converts595

to Problem 5. Therefore, to solve Problem 6, we first solve596

Problem 5 with a given u and obtain ŝu according to Eq. (28).597

TABLE I

THE CENTRALIZED ALGORITHM AT THE NSP FOR
OBTAINING THE OPTIMAL SOLUTION S

Then we choose the optimal solution, denoted by s
v , among 598

ŝ1, · · · , ŝv as the solution to Problem 6, which is formulated as 599

s
v 600

= arg min
ŝu

⎧
⎨

⎩
min

⎛

⎝
u∑

j=1

(
�λs j − � j s

bh
)
⎞

⎠ , u = 1, · · · , v

⎫
⎬

⎭
. 601

(30) 602

Based on the above discussions, we can see that the optimal 603

solution s of Problem 3 is a piece-wise function of Q, i.e., 604

s = s
v when Uv < Q ≤ Uv+1. Now, we formulate the 605

solution s = [s
1, · · · , s

V ] to Problem 3 in a general manner 606

as follows. 607

s
v =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑û

j=1
3
√

� j

)2
3
√

�v

λ(û� + �)2 , v = 1, · · · , û,

∞, v = û + 1, · · · , V ,

608

(31) 609

where regarding û, we have 610

û = arg min
u

{Su : u = 1, 2, · · · , T }, (32) 611

with Su formulated as 612

Su =
u∑

j1=1

⎛

⎜
⎝

�2sbh
(∑u

j2=1
3
√

� j2

)2
3
√

� j1

(u� + �)2 − � j1sbh

⎞

⎟
⎠, 613

T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, U1 < Q ≤ U2,

· · · ,

v, Uv < Q ≤ Uv+1,

· · · ,

V , UV < Q.

(33) 614

To gain a better understanding of the optimal solution in 615

Eq. (31), we propose a centralized algorithm at L in Table I 616

for obtaining s. 617

Remark 3: The optimal solution s in Eq. (31), combined 618

with the solution of τ  given by Eq. (18) in Lemma 1, 619

constitutes the SE for the Stackelberg game. 620
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Furthermore, by substituting the optimal s into the expres-621

sion of SN S P in Eq. (19), we get622

SN S P (s, τ )623

= 1

�

û∑

j1=1

⎛

⎜
⎝� j1sbh −

�2sbh
(∑û

j2=1
3
√

� j2

)2
3
√

� j1

(û� + �)2

⎞

⎟
⎠.624

(34)625

Remark 4: Since we have �v ∝ qv , ∀v, and qv increases626

exponentially with the VR preference parameter γ according627

to Eq. (5), SN S P (s, τ ) also increases exponentially with γ .628

VI. DISCUSSIONS OF OTHER SCHEMES629

Let us now consider two other schemes, namely, an uniform630

pricing scheme and a global optimization scheme.631

A. Uniform Pricing Scheme632

In contrast to the non-uniform pricing scheme of the previ-633

ous section, the uniform pricing scheme deliberately imposes634

the same price on the VRs in the game. We denote the fixed635

price by s. In this case, similar to Lemma 1, Problem 2 can636

be solved by637

τ 
v =
⎛

⎝

√

�v�sbh

�2λ

√
1

s
− �

�

⎞

⎠

+
. (35)638

We first focus our attention on the special case of639

ξv = 1, ∀v. Then Problem 4 can be converted to that of640

minimizing s subject to the constraint
∑V

j=1

√
� j
s ≤ (V � +641

�)
√

λ
�sbh . We then obtain the optimal ŝ for this special case as642

ŝ =
�sbh
(∑V

j=1

√
� j

)2

λ(V � + �)2 . (36)643

To guarantee that all the VRs are capable of participating in644

the game, i.e., ξv = 1, ∀v, with the optimal price ŝ, we let645

ŝ < �v sbh

�λ . Then we have the following constraint on the646

storage Q as647

Q > Q′
min �

NC(δ, α)
(∑V

j=1

√
q j
qV

− V
)

A(δ, α) − C(δ, α) + 1
. (37)648

We can see that the we require a larger storage size Q649

in Eq. (37) than that in Eq. (25) under the non-uniform650

pricing scheme to accommodate all the VRs, since we have651
∑V

j=1

√
q j
qV

>
∑V

j=1
3
√

q j
qV

. Following Remark 2, we conclude652

that Q′
min of the uniform pricing scheme will increase expo-653

nentially with γ /2.654

Then based on this special case, the optimal s =655

[s
1, · · · , s

V ] in the uniform pricing scheme can be readily656

obtained by following a similar method to that in the previous657

section. That is,658

s
v =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑û

j=1

√
� j

)2

λ(û� + �)2 , v = 1, · · · , û,

∞, v = û + 1, · · · , V ,

(38)659

where regarding û, we have 660

û = arg min
u

{Su : u = 1, 2, · · · , T }, (39) 661

with 662

Su =
u�2sbh

(∑u
j=1

√
� j

)2

(u� + �)2 −
u∑

j=1

� j s
bh, 663

T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, Ū1 < Q ≤ Ū2,

· · · ,

v, Ūv < Q ≤ Ūv+1,

· · · ,

V , ŪV < Q.

(40) 664

Note that Ūv in Eq. (40) is defined as 665

Ūv �
NC(δ, α)

(∑v
j=1

√
q j
qv

− v
)

A(δ, α) − C(δ, α) + 1
. (41) 666

It is clear that the uniform pricing scheme is inferior to the 667

non-uniform pricing scheme in terms of maximizing SN S P . 668

However, we will show in the following problem that the uni- 669

form pricing scheme offers the optimal solution to maximizing 670

the back-haul cost reduction SB H at the NSP in conjunction 671

with τ 
v , ∀v, from the followers. 672

Problem 7: With the aid of the optimal solutions τ 
v , ∀v, 673

from the followers, the maximization on SB H is achieved by 674

solving the following problem: 675

min
ξ , s	0

V∑

j=1

ξ j

(√
sbh
√

� j �λ
√

s j − � j s
bh
)
, 676

s.t.
V∑

j=1

ξ j

(√
� j �sbh

λs j
− �

)

≤ �. (42) 677

The optimal solution to Problem 7 can be readily shown 678

to be s given in Eq. (38). This proof follows the similar 679

procedure of the optimization method presented in the pre- 680

vious section. Thus it is skipped for brevity. In this sense, 681

the uniform pricing scheme is superior to the non-uniform 682

scheme in terms of reducing more cost on back-haul channel 683

transmissions. 684

B. Global Optimization Scheme 685

In the global optimization scheme, we are interested in the 686

sum profit of the NSP and VRs, which can be expressed as 687

SG L B = SN S P +
V∑

j=1

SV R
j 688

=
V∑

j1=1

F∑

j2=1

2 p j2q j1ζ K sbhτ j1

(A(δ, α) − C(δ, α) + 1)τ j1 + C(δ, α)F
689

= 2SB H . (43) 690

Observe from Eq. (43), we can see that the sum profit SG L B is 691

twice the back-haul cost reduction SB H , where the vector τ is 692

the only variable of this maximization problem. 693
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Problem 8: The optimization of the sum profit SG L B can694

be formulated as695

max
τ	0

V∑

j1=1

τ j1
∑F

j2=1 p j2q j1ζ K sbh

(A(δ, α) − C(δ, α) + 1)τ j1 + C(δ, α)F
,696

s.t.
V∑

j=1

τ j ≤ 1. (44)697

Problem 8 is a typical water-filling optimization problem.698

By relying on the classic Lagrangian multiplier, we arrive at699

the optimal solution as700

τ̂v =
⎛

⎝

√
qv

η − C(δ, α)F

A(δ, α) − C(δ, α) + 1

⎞

⎠

+
, ∀v, (45)701

where we have η =
∑v̄

j=1
√

q j

v̄C(δ,α)F+A(δ,α)−C(δ,α)+1, and v̄ satisfies702

the constraint of τ̂v > 0.703

C. Comparisons704

Let us now compare the optimal SBS allocation variable τv705

in the context of the above two schemes. First, we investigate706

τ 
v in the uniform pricing scheme. By substituting Eq. (38)707

into Eq. (35), we have708

τ 
v =
⎛

⎝

√
�v�sbh

�2λ

√
1

s
v

− �

�

⎞

⎠

+
709

=

⎧
⎪⎨

⎪⎩

√
qv

η′ − C(δ, α)F

A(δ, α) − C(δ, α) + 1
, v = 1, · · · , û

0, v = û + 1, · · · , V ,

(46)710

where η′ =
∑û

j=1
√

q j

ûC(δ,α)F+A(δ,α)−C(δ,α)+1, and û ensures τ 
v > 0.711

Then, comparing τ 
v given in Eq. (46) to the optimal712

solution τ̂ of the global optimization scheme given by Eq. (45),713

we can see that these two solutions are the same. In other714

words, the uniform pricing scheme in fact represents the global715

optimization scheme in terms of maximizing the sum profit716

SG L B and maximizing the back-haul cost reduction SB H .717

VII. NUMERICAL RESULTS718

In this section, we provide both numerical as well as719

Monte-Carlo simulation results for evaluating the performance720

of the proposed schemes. The physical layer parameters of721

our simulations, such as the path-loss exponent α, transmit722

power P of the SBSs and the noise power σ 2 are similar to723

those of the 3GPP standards. The unit of noise power and724

transmit power is Watt, while the SBS and MU intensities are725

expressed in terms of the numbers of the nodes per square726

kilometer.727

Explicitly, we set the path-loss exponent to α = 4, the728

SBS transmit power to P = 2 Watt, the noise power to729

σ 2 = 10−10 Watt, and the pre-set SINR threshold to δ = 0.01.730

For the file caching system, we set the number of files in731

F to N = 500 and set the number of VRs to V = 15.732

For the network deployments, we set the intensity of the733

Fig. 2. Comparisons between the simulations and analytical results on
Pr(Ev, f ). We consider four kinds of storage size Q in each SBS, i.e.,
Q = 10, 50, 100, 500, and three kinds of SBS intensity, i.e., λ = 10, 20, 30.

MUs to ζ = 50/km2, and investigate three cases of the SBS 734

deployments as λ = 10/km2, 20/km2 and 30/km2. 735

For the pricing system, the profit/U AP is considered to 736

be the profit gained per month within an area of one square 737

kilometer, i.e., /month · km2. We note that the profits gained 738

by the NSP and by the VRs are proportional to the cost sbh of 739

back-haul channels for transmitting a video. Hence, without 740

loss of generality, we set sbh = 1 for simplicity. Additionally, 741

we set K = 10/month, which is the average number of video 742

requests from an MU per month. 743

We first verify our derivation of Pr(Ev, f ) by comparing the 744

analytical results of Theorem 1 to the Monte-Carlo simulation 745

results. Upon verifying Pr(Ev, f ), we will investigate the 746

optimization results within the framework of the proposed 747

Stackelberg game by providing numerical results. 748

A. Performance Evaluation on Pr (Ev, f ) 749

For the Monte-Carlo simulations of this subsection, all the 750

average performances are evaluated over a thousand network 751

scenarios, where the distributions of the SBSs and the MUs 752

change from case to case according the PPPs characterized by 753

� and � , respectively. 754

Note that Pr(Ev, f ) in Theorem 1 is the probability that an 755

MU can obtain its requested video directly from the memory 756

of an SBS rented by Vv . We can see from the expression of 757

Pr(Ev, f ) in Eq. (7) that it is a function of the fraction τv 758

of the SBSs that are rented by Vv . Although τv should be 759

optimized according to the price charged by the NSP, here 760

we investigate a variety of τv values, varying from 0 to 1, to 761

verify the derivation of Pr(Ev, f ). 762

Fig. 2 shows our comparisons between the simulations 763

and analytical results on Pr(Ev, f ). We consider four different 764

storage sizes Q in each SBS by setting Q = 10, 50, 100, 500. 765

Correspondingly, we have four values for the number of file 766

groups, i.e., F = 50, 10, 5, 1. Furthermore, we consider the 767

SBS intensities of λ = 10, 20, 30. From Fig. 2, we can 768
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Fig. 3. The minimum number of Q that allows all the VRs to participate
in the game under different preference parameter γ . In the case that the
minimum Q is larger than N , it means that some VRs will be inevitable
excluded from the game.

see that the simulations results closely match the analytical769

results derived in Theorem 1. Our simulations show that the770

intensity λ does not affect Pr(Ev, f ), which is consistent with771

our analytical results. Furthermore, a larger Q leads to a higher772

value of Pr(Ev, f ). Hence, enlarging the storage size is helpful773

for achieving a higher probability of direct downloading.774

B. Impact of the VR Preference Parameter γ775

The preference distribution q of the VRs defined in Eq. (5)776

is an important factor in predetermining the system perfor-777

mance. Indeed, we can see from Eq. (5) that this distribution778

depends on the parameter γ . Generally, we have 0 < γ ≤ 1,779

with a larger γ representing a more uneven popularity among780

the VRs. First, we find the minimum Q that can keep all781

the VRs in the game. This minimum Q for the non-uniform782

pricing scheme (NUPS) is given by Eq. (25), while the783

minimum Q for the uniform-pricing scheme (UPS) is given by784

Eq. (37). From the two equations, this minimum Q increases785

exponentially with γ /3 in the NUPS, while it also increases786

exponentially with a higher exponent of γ /2 in the UPS.787

Fig. 3 shows this minimum Q for different values of the788

VR preference parameter γ .789

We can see that the UPS needs a larger Q than the NUPS790

for keeping all the VRs. This gap increases rapidly with the791

growth of γ . For example, for γ = 0.3, the uniform pricing792

scheme requires almost 80 more storages, while for γ = 0.6,793

it needs 200 more. We can also observe in Fig. 3 that for794

γ > 0.66 in the UPS and for γ > 0.98 in the NUPS,795

the minimum Q becomes larger than the overall number of796

videos N . In both cases, since we have Q ≤ N (Q > N797

results in the same performance as Q = N), some unpopular798

VRs will be excluded from the game.799

Next, we study the number of VR participants that stay in800

the game for the two schemes upon increasing γ . We can see801

from Fig. 4 that the number of VR participants keeps going802

down upon increasing γ in the both schemes. The NUPS803

Fig. 4. Number of participants, i.e., the VRs that are in the game, vs.
the preference parameter γ , under the two schemes. We also consider four
different values of the storage size Q, i.e., 10, 50, 100, 500.

Fig. 5. Various revenues, including S N S P and SG L B , vs. the preference
parameter γ , under the two schemes.

always keeps more VRs in the game than the UPS under 804

the same γ . At the same time, by considering Q = 805

10, 50, 100, 500, it is shown that for a given γ , a higher Q 806

will keep more VRs in the game. 807

Fig. 5 shows two kinds of revenues gained by the two 808

schemes for a given storage of Q = 500, namely, the global 809

profit SG L B defined in Eq. (43) and the profit of the NSP 810

SN S P defined in Eq. (9). Recall that we have SG L B = 2SB H
811

according to Eq. (43). We can see that the revenues of both 812

schemes increase exponentially upon increasing γ , as stated 813

in Remark 4. As our analytical result shows, the profit SN S P
814

gained by the NUPS is optimal and thus it is higher than 815

that gained by the UPS, while the UPS maximizes both 816

SG L B and SB H . Fig. 5 verifies the accuracy of our derivations. 817

C. Impact of the Storage Size Q 818

Since γ is a network parameter that is relatively fixed, 819

the NSP can adapt the storage size Q for controlling 820
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Fig. 6. Number of participants vs. the storage size Q, under the two schemes.
We also consider two different values of γ , i.e., γ = 0.3, 1.

Fig. 7. Various revenues, including S N S P and SG L B , vs. the storage size Q,
under the two schemes.

its performance. In this subsection, we investigate the per-821

formance as a function of Q. Fig. 6 shows the number of822

participants in the game versus Q, where γ = 0.3 and 1 are823

considered. It is shown that for a larger Q, more VRs are able824

to participate in the game. Again, the NUPS outperforms the825

UPS owing to its capability of accommodating more VRs for826

a given Q. By comparing the scenarios of γ = 0.3 and 1, we827

find that for γ = 0.3, a given increase of Q can accommodate828

more VRs in the game than γ = 1.829

Fig. 7 shows both SN S P and SG L B versus Q for the two830

schemes for a given γ = 1. We can see that the revenues of831

both schemes increase with the growth of Q. It is shown that832

the profit SN S P gained by the NUPS is higher than the one833

gained by the UPS, while the UPS outperforms the NUPS in834

terms of both SG L B and SB H .835

D. Individual VR Performance836

In this subsection, we investigate the performance of each837

individual VR, including the price charged to them for renting838

Fig. 8. Price charged on each VR for renting an SBS per month.

Fig. 9. The fraction of SBSs that are rented by each VR.

an SBS per month, and the fractions of the SBSs they rent 839

from the NSP. We fix γ = 0.5 and choose a large storage size 840

of Q = 500 for ensuring that all the VRs can be included. 841

Fig. 8 shows the price charged to each VR for renting an 842

SBS. The VRs are arranged according to their popularity 843

order, ranging from V1 to V15, with V1 having the highest 844

popularity and V15 the lowest one. We can see from the figure 845

that in the NUPS, the price for renting an SBS is higher for 846

the VRs having a higher popularity than those with a lower 847

popularity. By contrast, in the UPS, this price is fixed for all 848

the VRs. Fig. 9 shows the specific fraction of the rented SBSs 849

at each VR. In both schemes, the VRs associated with a high 850

popularity tend to rent more SBSs. The UPS in fact represents 851

an instance of the water-filling algorithm. Furthermore, the 852

UPS seems more aggressive than the NUPS, since the less 853

popular VRs of the UPS are more difficult to rent an SBS, 854

and thus these VRs are likely to be excluded from the game 855

with a higher probability. 856

VIII. CONCLUSIONS 857

In this paper, we considered a commercial small-cell 858

caching system consisting of an NSP and multiple VRs, where 859
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the NSP leases its SBSs to the VRs for gaining profits and for860

reducing the costs of back-haul channel transmissions, while861

the VRs, after storing popular videos to the rented SBSs, can862

provide faster transmissions to the MUs, hence gaining more863

profits. We proposed a Stackelberg game theoretic framework864

by viewing the SBSs as a type of resources. We first modeled865

the MUs and SBSs using two independent PPPs with the aid of866

stochastic geometry, and developed the probability expression867

of direct downloading. Then, based on the probability derived,868

we formulated a Stackelberg game for maximizing the average869

profit of the NSP as well as individual VRs. Next, we investi-870

gate the Stackelberg equilibrium by solving the associated non-871

convex optimization problem. We considered a non-uniform872

pricing scheme and an uniform pricing scheme. In the former873

scheme, the prices charged to each VR for renting an SBS874

are different, while the latter imposes the same price for875

each VR. We proved that the non-uniform pricing scheme876

can effectively maximize the profit of the NSP, while the877

uniform one maximizes the sum profit of the NSP and the VRs.878

Furthermore, we derived a relationship between the optimal879

pricing of renting an SBS, the fraction of SBSs rented by each880

VR, the storage size of each SBS and the popularity of the881

VRs. We verified by Monte-Carlo simulations that the direct882

downloading probability under our PPP model is consistent883

with our derived results. Then we provided several numerical884

results for showing that the proposed schemes are effective in885

both pricing and SBSs allocation.886

APPENDIX A887

PROOF OF THEOREM 1888

Recall that the SBSs allocated to the VR Vv and cache G f889

are modeled as a “thinned” HPPP �v, f having the intensity890

of 1
F τvλ. We consider a typical MU M who wishes to connect891

to the nearest SBS B in �v, f . The event Ev, f represents that892

this SBS can support M with an SINR no lower than δ, and893

thus M can obtain the desired file from the cache of B.894

We carry out the analysis on Pr(Ev, f ) for the typical MU895

M located at the origin. Since the network is interference896

dominant, we neglect the noise in the following. We denote by897

z the distance between M and B, by xZ the location of B, and898

by ρ(xZ ) the received SINR at M from B. Then the average899

probability that M can download the desired video from B is900

Pr(ρ(xZ ) ≥ δ)901

=
∫ ∞

0
Pr

⎛

⎜
⎝

hxZ z−α

∑

x∈�\{xZ }
hx ‖x‖−α ≥ δ

∣
∣
∣
∣
∣
∣
∣

z

⎞

⎟
⎠ fZ (z) dz902

=
∫ ∞

0
Pr

⎛

⎜
⎜
⎜
⎜
⎝

hxZ ≥
δ

(
∑

x∈�\{xZ }
hx ‖x‖−α

)

z−α

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

z

⎞

⎟
⎟
⎟
⎟
⎠

903

2π
1

F
τvλz exp

(

−π
1

F
τvλz2
)

dz904

=
∫ ∞

0
EI
(
exp
(−zαδ I

))
2π

1

F
τvλz exp

(

−π
1

F
τvλz2
)

dz,905

(47)906

where we have I �
∑

x∈�\{xZ }
hx ‖x‖−α , and the PDF of z, i.e., 907

fZ (z), is derived by the null probability of the HPPP �v, f 908

with the intensity of 1
F τvλ. More specifically in �v, f , since 909

the number of the SBSs k in an area of A follows the Poisson 910

distribution, the probability of the event that there is no SBS 911

in the area with the radius of z can be calculated as [17] 912

Pr(k = 0 | A = πz2) = e−A 1
F τvλ (A 1

F τvλ)k

k! = e−πz2 1
F τvλ. 913

(48) 914

By using the above expression, we arrive at fZ (z) = 915

2π 1
F τvλz exp

(−π 1
F τvλz2

)
. Note that the interference I con- 916

sists of I1 and I2, where I1 emanates from the SBSs in � 917

excluding �v, f , while I2 is from the SBSs in �v, f excluding 918

B. The SBSs contributing to I1, denoted by �v, f , have the 919

intensity of
(
1 − 1

F τv

)
λ, while those contributing to I2 have 920

the intensity of 1
F τvλ. 921

Correspondingly, the calculation of EI (exp (−zαδ I )) will 922

be split into the product of two expectations over I1 and I2. 923

The expectation over I1 is calculated as 924

EI1

(
exp
(−zαδ I1

))
925

(a)= E�v, f

⎛

⎝
∏

x∈�v

∫ ∞

0
exp
(−zαδhx ‖x‖−α

)
exp(−hx)dhx

⎞

⎠ 926

(b)= exp

(

−
(

1 − 1

F
τv

)

λ

∫

R2

(

1 − 1

1 + zαδ ‖xk‖−α

)

dxk

)

927

= exp

(

−2π

(

1 − 1

F
τv

)

λ
1

α
z2δ

2
α B

(
2

α
, 1 − 2

α

))

, 928

= exp

(

−π

(

1 − 1

F
τv

)

λC(δ, α)z2
)

, (49) 929

where (a) is based on the independence of chan- 930

nel fading, while (b) follows from E

(
∏

x
u (x)

)

= 931

exp
(−λ
∫
R2 (1 − u (x)) dx

)
, where x ∈ � and � is an PPP in 932

R
2 with the intensity λ [24], and C(δ, α) has been defined as 933

2
α δ

2
α B
( 2

α , 1 − 2
α

)
. 934

The expectation over I2 has to take into account z as the 935

distance from the nearest interfering SBS. Then we have 936

EI2

(
exp(−zαδ I2)

)
937

= exp

(

− 1

F
τvλ2π

∫ ∞

z

(

1 − 1

1 + zαδr−α

)

rdr

)

938

(a)= exp

(

− 1

F
τvλπδ

2
α z2 2

α

∫ ∞

δ−1

κ
2
α −1

1 + κ
dx

)

939

(b)= exp

(

− 1

F
τvλπδz2 2

α − 2
2 F1

(

1, 1 − 2

α
; 2 − 2

α
; −δ

))

, 940

(50) 941

where (a) defines κ � δ−1z−αrα , and 2 F1(·) 942

in (b) is the hypergeometric function. As we 943

defined A(δ, α) = 2δ
α−2 2 F1

(
1, 1 − 2

α ; 2 − 2
α ; −δ
)
, by 944
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substituting (49) and (50) into (47), we have945

Pr(ρ(xZ ) ≥ δ)946

=
∫ ∞

0
exp

(

−π

(

1 − 1

F
τv

)

λC(δ, α)z2
)

947

exp

(

−π
1

F
τvλz2A(δ, α)

)

2π
1

F
τvλz exp

(

−π
1

F
τvλz2
)

dz948

=
1
F τv

C(δ, α)(1 − 1
F τv) + A(δ, α) 1

F τv + 1
F τv

. (51)949

This completes the proof. �950

APPENDIX B951

PROOF OF LEMMA 2952

By applying Lagrangian multipliers to the objective func-953

tion, we have954

L(s, μ, ν)955

=
V∑

j=1

s j + μ

⎛

⎝
V∑

j=1

√
� j

s j
− (V � + �)

√
λ

�sbh

⎞

⎠−
V∑

j=1

ν j s j ,956

(52)957

where μ and ν j are non-negative multipliers associated with958

the constraints
∑V

j=1

√
� j
s j

−(V �+�)
√

λ
�sbh ≤ 0 and s j ≥ 0,959

respectively. Then the KKT conditions can be written as960

∂L(s, μ, ν)

∂s j
= 0, ∀ j = 1, · · · , V ,961

μ

⎛

⎝
V∑

j=1

√
� j

s j
−(V �+�)

√
λ

�sbh

⎞

⎠ = 0, and ν j s j = 0, ∀ j.962

(53)963

From the first line of Eq. (53), we have964

s j = 3

√
μ2� j

4(1 − ν j )2 . (54)965

Obviously, we have s j = 0, ∀ j , otherwise the constraint966

∑V
j=1

√
� j
s j

− (V � + �)
√

λ
�sbh ≤ 0 cannot be satisfied.967

Thus, we have ν j = 0, ∀ j . Furthermore, we have μ = 0968

according to Eq. (54) since s j is non-zero. This means that969

∑V
j=1

√
� j
s j

− (V � + �)
√

λ
�sbh = 0.970

By substituting Eq. (54) into this constraint, we have971

3
√

μ =
√

�sbh
∑V

j=1
3
√

2� j√
λ(V � + �)

. (55)972

Then it follows that973

s j =
�sbh
(∑V

v=1
3
√

�v

)2
3
√

� j

λ(V � + �)2 . (56)974

This completes the proof. �975

APPENDIX C 976

PROOF OF THEOREM 2 977

As discussed in Eq. (23) and Eq. (24), we have proved that 978

Q >
NC(δ,α)

(∑V
j=1

3
√ q j

qV
−V
)

A(δ,α)−C(δ,α)+1 is a sufficient condition for the 979

optimal solution in Eq. (22). In other words, as long as Q is 980

satisfied, we have the conclusion that the solution in Eq. (22) 981

is optimal and ξv = 1, ∀v. 982

Next, we prove the necessary aspect. Without loss of 983

generality, we assume that 984

NC(δ, α)
(∑V −1

j=1
3
√

q j
qV −1

− V + 1
)

A(δ, α) − C(δ, α) + 1
< Q 985

≤
NC(δ, α)

(∑V
j=1

3
√

q j
qV

− V
)

A(δ, α) − C(δ, α) + 1
. (57) 986

This leads to sV ≥ �v sbh

�λ , and the VR VV will be excluded 987

from the game. In this case, we have ξ j = 1, j = 1, · · · , V −1, 988

and Problem 4 will be rewritten as follows. 989

Problem 9: We rewrite Problem 4 as 990

min
s	0

V −1∑

j=1

s j , 991

s.t.
V −1∑

j=1

√
� j

s j
≤ ((V − 1)� + �)

√
λ

�sbh
. (58) 992

Similar to the proof of Lemma 2, and combined with the 993

constraint of Q in Eq. (57), the optimal solution of Problem 9 994

is given by 995

ŝv =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑V −1

j=1
3
√

� j

)2
3
√

�v

λ((V − 1)� + �)2 , v = 1, · · · , V − 1,

∞, v = V .

996

(59) 997

We can see that the optimal solution given in Eq. (59) 998

contradicts to the optimal solution of Problem 4 given in 999

Eq. (22). Hence, Q >
NC(δ,α)

(∑V
j=1

3
√ q j

qV
−V
)

A(δ,α)−C(δ,α)+1 is a necessary 1000

condition for finding the optimal solution in Eq. (22). This 1001

completes the proof. � 1002

APPENDIX D 1003

PROOF OF LEMMA 3 1004

Consider v1, v2 = 1, · · · , V and v1 = v2 + 1. Then we 1005

prove that Uv1 > Uv2 . We have 1006

Uv1 =
NC(δ, α)

(∑v1
j=1

3
√

q j
qv1

− v1

)

A(δ, α) − C(δ, α) + 1
1007

=
NC(δ, α)

(∑v2
j=1

3
√

q j
qv1

−v2+∑v1
j=v2+1

3
√

q j
qv1

−(v1−v2)
)

A(δ, α) − C(δ, α) + 1
1008

=
NC(δ, α)

(∑v2
j=1

3
√

q j
qv1

−v2

)

A(δ, α) − C(δ, α) + 1
1009

(a)
>

NC(δ, α)
(∑v2

j=1
3
√

q j
qv2

− v2

)

A(δ, α) − C(δ, α) + 1
= Uv2, (60) 1010
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where (a) comes from the fact that qv1 < qv2 . This completes1011

the proof. �1012

APPENDIX E1013

PROOF OF LEMMA 41014

It is plausible that if L can only keep at most v VRs, it has1015

to retain the v most popular VRs to maximize its profit. Let1016

us now prove that if L keeps (v +w) VRs, w = 1, · · · , V −v,1017

in the game, it cannot achieve the optimal solution for1018

Uv < Q ≤ Uv+1.1019

Problem 10: In the case that L keeps (v+w) VRs, we have1020

the optimization problem of1021

min
s	0

v+w∑

j=1

s j ,1022

s.t.
v+w∑

j=1

√
� j

s j
≤ ((v + w)� + �)

√
λ

�sbh
. (61)1023

Similar to the proof of Theorem 2, we obtain that Q >1024

NC(δ,α)
(∑v+w

j=1
3
√ q j

qv+w
−(v+w)

)

A(δ,α)−C(δ,α)+1 = Uv+w is the necessary con-1025

dition for the (v + w) VRs to participate in the game. This1026

contradicts to the premise Uv < Q ≤ Uv+1, since we have1027

Q > Uv+1 according to Lemma 3. Let us now consider1028

the cases of w′ = 0,−1, · · · , 1 − v. To ensure there are1029

(v + w′) VRs in the game, Q has to satisfy the condition1030

that Q > Uv+w′ . Since Q > Uv ≥ Uv+w′ , this implies that1031

given (v + w′) VRs in the game, the NSP can achieve an1032

optimal solution. This completes the proof. �1033
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Abstract— Evidence indicates that downloading on-demandAQ:1 1

videos accounts for a dramatic increase in data traffic over2

cellular networks. Caching popular videos in the storage of small-3

cell base stations (SBS), namely, small-cell caching, is an efficient4

technology for reducing the transmission latency while mitigating5

the redundant transmissions of popular videos over back-haul6

channels. In this paper, we consider a commercialized small-cell7

caching system consisting of a network service provider (NSP),8

several video retailers (VRs), and mobile users (MUs). The9

NSP leases its SBSs to the VRs for the purpose of making10

profits, and the VRs, after storing popular videos in the rented11

SBSs, can provide faster local video transmissions to the MUs,12

thereby gaining more profits. We conceive this system within the13

framework of Stackelberg game by treating the SBSs as specific14

types of resources. We first model the MUs and SBSs as two15

independent Poisson point processes, and develop, via stochastic16

geometry theory, the probability of the specific event that an17

MU obtains the video of its choice directly from the memory of18

an SBS. Then, based on the probability derived, we formulate a19

Stackelberg game to jointly maximize the average profit of both20

the NSP and the VRs. In addition, we investigate the Stackelberg21

equilibrium by solving a non-convex optimization problem. With22

the aid of this game theoretic framework, we shed light on23

the relationship between four important factors: the optimal24

pricing of leasing an SBS, the SBSs allocation among the VRs,25

the storage size of the SBSs, and the popularity distribution26

of the VRs. Monte Carlo simulations show that our stochastic27

geometry-based analytical results closely match the empirical28

ones. Numerical results are also provided for quantifying the29

proposed game-theoretic framework by showing its efficiency on30

pricing and resource allocation.
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Index Terms— Small-cell caching, cellular networks, stochastic 32

geometry, Stackelberg game. 33

I. INTRODUCTION 34

W IRELESS data traffic is expected to increase exponen- 35

tially in the next few years driven by a staggering 36

proliferation of mobile users (MU) and their bandwidth- 37

hungry mobile applications. There is evidence that streaming 38

of on-demand videos by the MUs is the major reason for 39

boosting the tele-traffic over cellular networks [1]. According 40

to the prediction of mobile data traffic by Cisco, mobile video 41

streaming will account for 72% of the overall mobile data 42

traffic by 2019. The on-demand video downloading involves 43

repeated wireless transmission of videos that are requested 44

multiple times by different users in a completely asynchronous 45

manner, which is different from the transmission style of live 46

video streaming. 47

Often, there are numerous repetitive requests of popular 48

videos from the MUs, such as online blockbusters, leading 49

to redundant video transmissions. The redundancy of data 50

transmissions can be reduced by locally storing popular videos, 51

known as caching, into the storage of intermediate network 52

nodes, effectively forming a local caching system [1], [2]. 53

The local caching brings video content closer to the MUs 54

and alleviates redundant data transmissions via redirecting the 55

downloading requests to the intermediate nodes. 56

Generally, wireless data caching consists of two stages: 57

data placement and data delivery [3]. In the data placement 58

stage, popular videos are cached into local storages during 59

off-peak periods, while during the data delivery stage, videos 60

requested are delivered from the local caching system to 61

the MUs. Recent works advanced the caching solutions of 62

both device-to-device (D2D) networks and wireless sensor 63

networks [4]–[6]. Specifically, in [4] a caching scheme was 64

proposed for a D2D based cellular network relaying on 65

the MUs’ caching of popular video content. In this scheme, the 66

D2D cluster size was optimized for reducing the downloading 67

delay. In [5] and [6], the authors proposed novel caching 68

schemes for wireless sensor networks, where the protocol 69

model of [7] was adopted. 70

Since small-cell embedded architectures will dominate 71

in future cellular networks, known as heterogeneous net- 72

works (HetNet) [8]–[13], caching relying on small-cell base 73

stations (SBS), namely, small-cell caching, constitutes a 74

promising solution for HetNets. The advantages brought about 75

by small-cell caching are threefold. Firstly, popular videos are 76

placed closer to the MUs when they are cached in SBSs, hence 77

0733-8716 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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reducing the transmission latency. Secondly, redundant trans-78

missions over SBSs’ back-haul channels, which are usually79

expensive [14], can be mitigated. Thirdly, the majority of video80

traffic is offloaded from macro-cell base stations to SBSs.81

In [15], a small-cell caching scheme, named82

‘Femtocaching’, is proposed for a cellular network having83

embedded SBSs, where the data placement at the SBSs is84

optimized in a centralized manner for the sake of reducing85

the transmission delay imposed. However, [15] considers an86

idealized system, where neither the interference nor the impact87

of wireless channels is taken into account. The associations88

between the MUs and the SBSs are pre-determined without89

considering the specific channel conditions encountered.90

In [16], small-cell caching is investigated in the context of91

stochastic networks. The average performance is quantified92

with the aid of stochastic geometry [17], [18], where the93

distribution of network nodes is modeled by Poisson point94

process (PPP). However, the caching strategy of [16] assumes95

that the SBSs cache the same content, hence leading to a96

sub-optimal solution.97

As detailed above, current research on wireless caching98

mainly considers the data placement issue optimized for reduc-99

ing the downloading delay. However, the entire caching system100

design involves numerous issues apart from data placement.101

From a commercial perspective, it will be more interesting102

to consider the topics of pricing for video streaming, the103

rental of local storage, and so on. A commercialized caching104

system may consist of video retailers (VR), network service105

providers (NSP) and MUs. The VRs, e.g., Youtube, purchase106

copyrights from video producers and publish the videos on107

their web-sites. The NSPs are typically operators of cellular108

networks, who are in charge of network facilities, such as109

macro-cell base stations and SBSs.110

In such a commercial small-cell caching system, the VRs’111

revenue is acquired from providing video streaming for112

the MUs. As the central servers of the VRs, which store113

the popular videos, are usually located in the backbone net-114

works and far away from the MUs, an efficient solution is115

to locally cache these videos, thereby gaining more profits116

from providing faster local transmissions. In turn, these local117

caching demands raised by the VRs offer the NSPs prof-118

itable opportunities from leasing their SBSs. Additionally, the119

NSPs can save considerable costs due to reduced redundant120

video transmissions over SBSs’ back-haul channels. In this121

sense, both the VRs and NSPs are the beneficiaries of the122

local caching system. However, each entity is selfish and123

wishes to maximize its own benefit, raising a competition124

and optimization problem among these entities, which can be125

effectively solved within the framework of game theory.126

We note that game theory has been successfully applied127

to wireless communications for solving resource allocation128

problems. In [19], the authors propose a dynamic spectrum129

leasing mechanism via power control games. In [20],130

a price-based power allocation scheme is proposed for spec-131

trum sharing in Femto-cell networks based on Stackelberg132

game. Game theoretical power control strategies for maxi-133

mizing the utility in spectrum sharing networks are studied134

in [21] and [22].135

In this paper, we propose a commercial small-cell caching 136

system consisting of an NSP, multiple VRs and MUs. We opti- 137

mize such a system within the framework of Stackelberg game 138

by viewing the SBSs as a specific type of resources for the 139

purpose of video caching. Generally speaking, Stackelberg 140

game is a strategic game that consists of a leader and several 141

followers competing with each other for certain resources [23]. 142

The leader moves first and the followers move subsequently. 143

Correspondingly, in our game theoretic caching system, we 144

consider the NSP to be the leader and the VRs as the followers. 145

The NSP sets the price of leasing an SBS, while the VRs 146

compete with each other for renting a fraction of the SBSs. 147

To the best of the authors’ knowledge, our work is the first 148

of its kind that optimizes a caching system with the aid of 149

game theory. Compared to many other game theory based 150

resource allocation schemes, where the power, bandwidth 151

and time slots are treated as the resources, our work has 152

a totally different profit model, established based on our 153

coverage derivations. In particular, our contributions are as 154

follows. 155

1) By following the stochastic geometry framework 156

of [17] and [18], we model the MUs and SBSs in 157

the network as two different ties of a Poisson point 158

process (PPP) [24]. Under this network model, we define 159

the concept of a successful video downloading event 160

when an MU obtains the requested video directly from 161

the storage of an SBS. Then we quantify the probability 162

of this event based on stochastic geometry theory. 163

2) Based on the probability derived, we develop a profit 164

model of our caching system and formulate the profits 165

gained by the NSP and the VRs from SBSs leasing and 166

renting. 167

3) A Stackelberg game is proposed for jointly maximizing 168

the average profit of the NSP and the VRs. Given this 169

game theoretic framework, we investigate a non-uniform 170

pricing scheme, where the price charged to different VRs 171

varies. 172

4) Then we investigate the Stackelberg equilibrium of this 173

scheme via solving a non-convex optimization problem. 174

It is interesting to observe that the optimal solution is 175

related both to the storage size of each SBS and to the 176

popularity distribution of the VRs. 177

5) Furthermore, we consider an uniform pricing scheme. 178

We find that although the uniform pricing scheme is 179

inferior to the non-uniform one in terms of maximizing 180

the NSP’s profit, it is capable of reducing more back- 181

haul costs compared with the latter and achieves the 182

maximum sum profit of the NSP and the VRs. 183

The rest of this paper is organized as follows. We describe 184

the system model in Section II and establish the related profit 185

model in Section III. We then formulate Stackelberg game for 186

our small-cell caching system in Section IV. In Section V, 187

we investigate Stackelberg equilibrium for the non-uniform 188

pricing scheme by solving a non-convex optimization prob- 189

lem, while in Section VI, we further consider the uniform 190

pricing scheme. Our simulations and numerical results are 191

detailed in Section VII, while our conclusions are provided 192

in Section VIII. 193
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Fig. 1. An example of the small-cell caching system with four VRs.

II. SYSTEM MODEL194

We consider a commercial small-cell caching system con-

AQ:3

195

sisting of an NSP, V VRs, and a number of MUs. Let us196

denote by L the NSP, by V = {V1, V2, · · · , VV } the set of the197

VRs, and by M one of the MUs. Fig. 1 shows an example of198

our caching system relying on four VRs. In such a system, the199

VRs wish to rent the SBSs from L for placing their videos.200

Both the NSP and each VR aim for maximizing their profits.201

There are three stages in our system. In the first stage, the202

VRs purchase the copyrights of popular videos from video203

producers and publish them on their web-sites. In the second204

stage, the VRs negotiate with the NSP on the rent of SBSs205

for caching these popular videos. In the third stage, the MUs206

connect to the SBSs for downloading the desired videos.207

We will particulary focus our attention on the second and third208

stages within this game theoretic framework.209

A. Network Model210

Let us consider a small-cell based caching network com-211

posed of the MUs and the SBSs owned by L, where each212

SBS is deployed with a fixed transmit power P and the storage213

of Q video files. Let us assume that the SBSs transmit over214

the channels that are orthogonal to those of the macro-cell215

base stations, and thus there is no interference incurred by the216

macro-cell base stations. Also, assume that these SBSs are217

spatially distributed according to a homogeneous PPP (HPPP)218

� of intensity λ. Here, the intensity λ represents the number of219

the SBSs per unit area. Furthermore, we model the distribution220

of the MUs as an independent HPPP � of intensity ζ .221

The wireless down-link channels spanning from the SBSs222

to the MUs are independent and identically distributed (i.i.d.),223

and modeled as the combination of path-loss and Rayleigh224

fading. Without loss of generality, we carry out our analysis225

for a typical MU located at the origin. The path-loss between226

an SBS located at x and the typical MU is denoted by ‖x‖−α ,227

where α is the path-loss exponent. The channel power of228

the Rayleigh fading between them is denoted by hx , where229

hx ∼ exp(1). The noise at an MU is Gaussian distributed230

with a variance σ 2.231

We consider the steady-state of a saturated network, where232

all the SBSs keep on transmitting data in the entire frequency233

band allocated. This modeling approach for saturated networks234

characterizes the worst-case scenario of the real systems,235

which has been adopted by numerous studies on PPP analysis,236

such as [18]. Hence, the received signal-to-interference-plus- 237

noise ratio (SINR) at the typical MU from an SBS located at 238

x can be expressed as 239

ρ(x) = Phx‖x‖−α

∑
x ′∈�\x Phx ′ ‖x ′‖−α + σ 2 . (1) 240

The typical MU is considered to be “covered” by an 241

SBS located at x as long as ρ(x) is no lower than a pre-set 242

SINR threshold δ, i.e., 243

ρ(x) ≥ δ. (2) 244

Generally, an MU can be covered by multiple SBSs. Note that 245

the SINR threshold δ defines the highest delay of downloading 246

a video file. Since the quality and code rate of a video clip 247

have been specified within the video file, the download delay 248

will be the major factor predetermining the QoS perceived by 249

the mobile users. Therefore, we focus our attention on the 250

coverage and SINR in the following derivations. 251

B. Popularity and Preferences 252

We now model the popularity distribution, i.e., the distri- 253

bution of request probabilities, among the popular videos to 254

be cached. Let us denote by F = {F1, F2, · · · , FN } the file 255

set consisting of N video files, where each video file contains 256

an individual movie or video clip that is frequently requested 257

by MUs. The popularity distribution of F is represented by a 258

vector t = [t1, t2, · · · , tN ]. That is, the MUs make independent 259

requests of the n-th video Fn , n = 1, · · · , N , with the 260

probability of tn . Generally, t can be modeled by the Zipf 261

distribution [25] as 262

tn = 1/nβ

∑N
j=1 1/jβ

, ∀n, (3) 263

where the exponent β is a positive value, characterizing the 264

video popularity. A higher β corresponds to a higher content 265

reuse, where the most popular files account for the majority 266

of download requests. From Eq. (3), the file with a smaller n 267

corresponds to a higher popularity. 268

Note that each SBS can cache at most Q video files, and 269

usually Q is no higher than the number of videos in F , i.e., 270

we have Q ≤ N . Without loss of generality, we assume that 271

N/Q is an integer. The N files in F are divided into F = N/Q 272

file groups (FG), with each FG containing Q video files. The 273

n-th video, ∀n ∈ {( f − 1)Q + 1, · · · , f Q}, is included in the 274

f -th FG, f = 1, · · · , F . Denote by G f the f -th FG, and by 275

p f the probability of the MUs’ requesting a file in G f , and 276

we have 277

p f =
f Q∑

n=( f −1)Q+1

tn, ∀ f. (4) 278

File caching is then carried out on the basis of FGs, where 279

each SBS caches one of the F FGs. 280

At the same time, the MUs have unbalanced preferences 281

with regard to the V VRs, i.e., some VRs are more popular 282

than others. For example, the majority of the MUs may tend 283

to access Youtube for video streaming. The preference distri- 284

bution among the VRs is denoted by q = [q1, q2, · · · , qV ], 285
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where qv , v = 1, · · · , V , represents the probability that the286

MUs prefer to download videos from Vv . The preference287

distribution q can also be modeled by the Zipf distribution.288

Hence, we have289

qv = 1/vγ

∑V
j=1 1/jγ

, ∀v, (5)290

where γ is a positive value, characterizing the preference of291

the VRs. A higher γ corresponds to a higher probability of292

accessing the most popular VRs.293

C. Video Placement and Download294

Next, we introduce the small-cell caching system with its295

detailed parameters. In the first stage, each VR purchases the296

N popular videos in F from the producers and publishes these297

videos on its web-site. In the second stage, upon obtaining298

these videos, the VRs negotiate with the NSP L for renting299

its SBSs. As L leases its SBSs to multiple VRs, we denote by300

τ = [τ1, τ2, · · · , τV ] the fraction vector, where τv represents301

the fraction of the SBSs that are assigned to Vv , ∀v. We assume302

that the SBSs rented by each VR are uniformly distributed.303

Hence, the SBSs that are allocated to Vv can be modeled as304

a “thinned” HPPP �v with intensity τvλ.305

The data placements of the second stage commence during306

network off-peak time after the VRs obtain access to the SBSs.307

During the placements, each SBS will be allocated with one of308

the F FGs. Generally, we assume that the VRs do not have the309

a priori information regarding the popularity distribution of F .310

This is because the popularity of videos is changing periodi-311

cally, and can only be obtained statistically after these videos312

quit the market. It is clear that each VR may have more or313

less some statistical information on the popularity distribution314

of videos based on the MUs’ downloading history. However,315

this information will be biased due to limited sampling. In this316

case, the VRs will uniformly assign the F FGs to the SBSs317

with equal probability of 1
F for simplicity. We are interested in318

investigating the uniform assignment of video files for drawing319

a bottom line of the system performance. As the FGs are320

randomly assigned, the SBSs in �v that cache the FG G f can321

be further modeled as a “more thinned” HPPP �v, f with an322

intensity of 1
F τvλ.323

In the third stage, the MUs start to download videos. When324

an MU M requires a video of G f from Vv , it searches the SBSs325

in �v, f and tries to connect to the nearest SBS that covers M .326

Provided that such an SBS exists, the MU M will obtain this327

video directly from this SBS, and we thereby define this event328

by Ev, f . By contrast, if such an SBS does not exist, M will329

be redirected to the central servers of Vv for downloading330

the requested file. Since the servers of Vv are located at the331

backbone network, this redirection of the demand will trigger332

a transmission via the back-haul channels of the NSP L, hence333

leading to an extra cost.334

III. PROFIT MODELING335

We now focus on modeling the profit of the NSP and336

the VRs obtained from the small-cell caching system. The337

average profit is developed based on stochastically geometrical338

distributions of the network nodes in terms of per unit area 339

times unit period (/U AP), e.g., /month · km2. 340

A. Average Profit of the NSP 341

For the NSP L, the revenue gained from the caching system 342

consists of two parts: 1) the income gleaned from leasing SBSs 343

to the VRs and 2) the cost reduction due to reduced usage of 344

the SBSs’ back-haul channels. First, the leasing income/U AP 345

of L can be calculated as 346

SRT =
V∑

j=1

τ jλs j , (6) 347

where s j is the price per unit period charged to V j for 348

renting an SBS. Then we formulate the saved cost/U AP 349

due to reduced back-haul channel transmissions. When an 350

MU demands a video in G f from Vv , we derive the probability 351

Pr(Ev, f ) as follows. 352

Theorem 1: The probability of the event Ev, f , ∀v, f , can 353

be expressed as 354

Pr(Ev, f ) = τv

C(δ, α)(F − τv) + A(δ, α)τv + τv
, (7) 355

where we have A(δ, α) � 2δ
α−2 2 F1

(
1, 1 − 2

α ; 2 − 2
α ; −δ
)

356

and C(δ, α) � 2
α δ

2
α B
( 2

α , 1 − 2
α

)
. Furthermore, 2 F1(·) in 357

the function A(δ, α) is the hypergeometric function, while 358

the Beta function in C(δ, α) is formulated as B(x, y) = 359∫ 1
0 t x−1(1 − t)y−1dt . 360

Proof: Please refer to Appendix A. � 361

Remark 1: From Theorem 1, it is interesting to observe that 362

the probability Pr(Ev, f ) is independent of both the transmit 363

power P and the intensity λ of the SBSs. Furthermore, since 364

Q is inversely proportional to F , we can enhance Pr(Ev, f ) by 365

increasing the storage size Q. 366

We assume that there are on average K video requests from 367

each MU within unit period, and that the average back-haul 368

cost for a video transmission is sbh . Based on Pr(Ev, f ) in 369

Eq. (7), we obtain the cost reduction/U AP for the back-haul 370

channels of L as 371

SB H =
F∑

j1=1

V∑

j2=1

p j1q j2ζ K Pr(E j2, j1)s
bh . (8) 372

By combining the above two items, the overall profit/U AP 373

for L can be expressed as 374

SN S P = SRT + SB H . (9) 375

B. Average Profit of the VRs 376

Note that the MUs can download the videos either from the 377

memories of the SBSs directly or from the servers of the VRs 378

at backbone networks via back-haul channels. In the first case, 379

the MUs will be levied by the VRs an extra amount of money 380

in addition to the videos’ prices because of the higher-rate 381

local streaming, namely, local downloading surcharge (LDS). 382

We assume that the LDS of each video is set as sld . Then the 383

revenue/U AP for a VR Vv gained from the LDS can be 384

calculated as 385

SL D
v =

F∑

j=1

p j qvζ K Pr(Ev, j )s
ld . (10) 386
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Additionally, Vv pays for renting the SBSs from L. The related387

cost/U AP can be written as388

SRT
v = τvλsv . (11)389

Upon combining the two items, the profit/U AP for Vv , ∀v,390

can be expressed as391

SV R
v = SL D

v − SRT
v . (12)392

IV. PROBLEM FORMULATION393

In this section, we first present the Stackelberg game for-394

mulation for our price-based SBS allocation scheme. Then the395

equilibrium of the proposed game is investigated.396

A. Stackelberg Game Formulation397

Again, Stackelberg game is a strategic game that consists of398

a leader and several followers competing with each other for399

certain resources [23]. The leader moves first and the followers400

move subsequently. In our small-cell caching system, we401

model the NSP L as the leader, and the V VRs as the followers.402

The NSP imposes a price vector s = [s1, s2, · · · , sV ] for403

the lease of its SBSs, where sv , ∀v, has been defined in the404

previous section as the price per unit period charged on Vv405

for renting an SBS. After the price vector s is set, the VRs406

update the fraction τv , ∀v, that they tend to rent from L.407

1) Optimization Formulation of the Leader: Observe from408

the above game model that the NSP’s objective is to maximize409

its profit SN S P formulated in Eq. (9). Note that for ∀v, the410

fraction τv is a function of the price sv under the Stackelberg411

game formulation. This means that the fraction of the SBSs412

that each VR is willing to rent depends on the specific price413

charged to them for renting an SBS. Consequently, the NSP414

has to find the optimal price vector s for maximizing its profit.415

This optimization problem can be summarized as follows.416

Problem 1: The optimization problem of maximizing L’s417

profit can be formulated as418

max
s	0

SN S P (s, τ ),419

s.t.
V∑

j=1

τ j ≤ 1. (13)420

2) Optimization Formulation of the Followers: The profit421

gained by the VR Vv in Eq. (12) can be further written as422

SV R
v (τv , sv ) =

F∑

j=1

p j qvζ K Pr(Ev, j )s
ld − τvλsv423

=
F∑

j=1

p j qvζ K sldτv

(A(δ, α) − C(δ, α) + 1)τv + C(δ, α)F
424

−λsv τv . (14)425

We can see from Eq. (14) that once the price sv is fixed, the426

profit of Vv depends on τv , i.e., the fraction of SBSs that427

are rented by Vv . If Vv increases the fraction τv , it will gain428

more revenue by levying surcharges from more MUs, while429

at the same time, Vv will have to pay for renting more SBSs.430

Therefore, τv has to be optimized for maximizing the profit 431

of Vv . This optimization can be formulated as follows. 432

Problem 2: The optimization problem of maximizing Vv ’s 433

profit can be written as 434

max
τv≥0

SV R
v (τv , sv ). (15) 435

Problem 1 and Problem 2 together form a Stackelberg 436

game. The objective of this game is to find the Stackelberg 437

Equilibrium (SE) points from which neither the leader (NSP) 438

nor the followers (VRs) have incentives to deviate. In the 439

following, we investigate the SE points for the proposed game. 440

B. Stackelberg Equilibrium 441

For our Stackelberg game, the SE is defined as follows. 442

Definition 1: Let s � [s
1, s

2, · · · , s
V ] be a solution for 443

Problem 1, and τ 
v be a solution for Problem 2, ∀v. Define 444

τ  � [τ 
1 , τ 

2 , · · · , τ 
V ]. Then the point (s, τ ) is an SE for 445

the proposed Stackelberg game if for any (s, τ ) with s 	 0 446

and τ 	 0, the following conditions are satisfied: 447

SN S P (s, τ ) ≥ SN S P (s, τ ), 448

SV R
v (s

v , τ

v ) ≥ SV R

v (s
v , τv ), ∀v. (16) 449

Generally speaking, the SE of a Stackelberg game can be 450

obtained by finding its perfect Nash Equilibrium (NE). In our 451

proposed game, we can see that the VRs strictly compete 452

in a non-cooperative fashion. Therefore, a non-cooperative 453

subgame on controlling the fractions of rented SBSs is for- 454

mulated at the VRs’ side. For a non-cooperative game, the 455

NE is defined as the operating points at which no players can 456

improve utility by changing its strategy unilaterally. At the 457

NSP’s side, since there is only one player, the best response 458

of the NSP is to solve Problem 1. To achieve this, we need to 459

first find the best response functions of the followers, based 460

on which, we solve the best response function for the leader. 461

Therefore, in our game, we first solve Problem 2 given a 462

price vector s. Then with the obtained best response function 463

τ  of the VRs, we solve Problem 1 for the optimal price s. In 464

the following, we will have an in-depth investigation on this 465

game theoretic optimization. 466

V. GAME THEORETIC OPTIMIZATION 467

In this section, we will solve the optimization problem in 468

our game under the non-uniform pricing scheme, where the 469

NSP L charges the VRs with different prices s1, · · · , sV for 470

renting an SBS. In this scheme, we first solve Problem 2 at 471

the VRs, and rewrite Eq. (14) as 472

SV R
v (τv , sv ) = �vsldτv

�τv + �
− λsv τv .0 (17) 473

where �v �
∑F

j=1 p j qvζ K , � � A(δ, α) − C(δ, α) + 1, and 474

� � C(δ, α)F . We observe that Eq. (17) is a concave function 475

over the variable τv . Thus, we can obtain the optimal solution 476

by solving the Karush-Kuhn-Tucker (KKT) conditions, and we 477

have the following lemma. 478
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Lemma 1: For a given price sv , the optimal solution of479

Problem 2 is480

τ 
v =
⎛

⎝

√
�v�sld

�2λ

√
1

sv
− �

�

⎞

⎠

+
, (18)481

where (·)+ � max(·, 0).482

Proof: The optimal solution τ 
v of Vv can be obtained by483

deriving SV R
v with respect to τv and solving dSV R

v
dτv

= 0 under484

the constraint that τv ≥ 0. �485

We can see from Lemma 1 that if the price sv is set too486

high, i.e., sv ≥ �v sld

�λ , the VR Vv will opt out for renting any487

SBS from L due the high price charged. Consequently, the488

VR Vv will not participate in the game.489

In the following derivations, we assume that the LDS on490

each video sld is set by the VRs to be the cost of a video trans-491

mission via back-haul channels sbh . The rational behind this492

assumption is as follows. Since a local downloading reduce a493

back-haul transmission, this saved back-haul transmission can494

be potentially utilized to provide extra services (equivalent to495

the value of sbh ) for the MUs. In addition, the MUs enjoy the496

benefit from faster local video transmissions. In light of this,497

it is reasonable to assume that the MUs are willing to accept498

the price sbh for a local video transmission.499

Substituting the optimal τ 
v of Eq. (18) into Eq. (9) and500

carry out some further manipulations, we arrive at501

SN S P =
V∑

j=1

λs j

⎛

⎝

√
� j �sbh

�2λ

√
1

s j
− �

�

⎞

⎠

+
502

+
∑F

i=1 pi q jζ K sbh

(√
� j�sbh

�2λ

√
1
s j

− �
�

)+

�

(√
� j�sbh

�2λ

√
1
s j

− �
�

)+
+ �

503

=
V∑

j=1

ξi

�

(

−�λs j +
(√

sbh − sbh

√
sbh

)
√

� j�λs j + � j s
bh
)

504

=
V∑

j=1

ξi

�

(
−�λs j + � j s

bh
)
, (19)505

where ξ j is the indicator function, with ξ j = 1 if s j <
� j sbh

�λ506

and ξ j = 0 otherwise. Upon defining the binary vector ξ �507

[ξ1, ξ2, · · · , ξV ], we can rewrite Problem 1 as follows.508

Problem 3: Given the optimal solutions τ 
v , ∀v, gleaned509

from the followers, we can rewrite Problem 1 as510

min
ξ , s	0

V∑

j=1

ξ j

(
�λs j − � j s

bh
)

,511

s.t.
V∑

j=1

ξ j

(√
� j �sbh

λs j
− �

)

≤ �. (20)512

Observe from Eq. (20) that Problem 3 is non-convex due513

to ξ . However, for a given ξ , this problem can be solved by514

satisfying the KKT conditions. In the following, we commence515

with the assumption that ξ = 1, i.e., ξv = 1, ∀v, and then we516

extend this result to the general case.517

A. Special Case: ξv = 1, ∀v 518

In this case, all the VRs are participating in the game, and 519

we have the following optimization problem. 520

Problem 4: Assuming ξv = 1, ∀v, we rewrite Problem 3 as 521

min
s	0

V∑

j=1

s j , 522

s.t.
V∑

j=1

√
� j

s j
≤ (V � + �)

√
λ

�sbh
. (21) 523

The optimal solution of Problem 4 is derived and given in 524

the following lemma. 525

Lemma 2: The optimal solution to Problem 4 can be 526

derived as ŝ � [ŝ1, · · · , ŝV ], where 527

ŝv =
�sbh
(∑V

j=1
3
√

� j

)2
3
√

�v

λ(V � + �)2 , ∀v. (22) 528

Proof: Please refer to Appendix B. � 529

Note that the solution given in Lemma 2 is found under 530

the assumption that ξv = 1, ∀v. That is, ŝv given in Eq. (22) 531

should ensure that τ 
v > 0, ∀v, in Eq. (18), i.e., 532

�sbh
(∑V

j=1
3
√

� j

)2
3
√

�v

λ(V � + �)2 <
�vsbh

�λ
. (23) 533

Given the definitions of �v , �, and �, it is interesting to find 534

that the inequality (23) can be finally converted to a constraint 535

on the storage size Q of each SBS, which is formulated as 536

Q > max

⎧
⎨

⎩

NC(δ, α)
(∑V

j=1
3
√

q j
qv

− V
)

A(δ, α) − C(δ, α) + 1
, ∀v

⎫
⎬

⎭
. (24) 537

The constraint imposed on Q can be expressed in a concise 538

manner in the following theorem. 539

Theorem 2: To make sure that ŝv in Eq. (22) does become 540

the optimal solution of Problem 4 when ξv = 1, ∀v, the 541

sufficient and necessary condition to be satisfied is 542

Q > Qmin �
NC(δ, α)

(∑V
j=1

3
√

q j
qV

− V
)

A(δ, α) − C(δ, α) + 1
, (25) 543

where qV is the minimum value in q according to Eq. (5). 544

Proof: Please refer to Appendix C. � 545

Remark 2: Observe from Eq. (25) that since
q j
qV

increases 546

exponentially with γ according to Eq. (5), the value of Qmin 547

ensuring ξv = 1, ∀v, will increase exponentially with γ /3. 548

Note that we have Q ≤ N . In the case that Qmin in Eq. (25) 549

is larger than N for a high VR popularity exponent γ , some 550

VRs with the least popularity will be excluded from the game. 551

B. Further Discussion on Q 552

We define a series of variables Uv , ∀v, as follows: 553

Uv �
NC(δ, α)

(∑v
j=1

3
√

q j
qv

− v
)

A(δ, α) − C(δ, α) + 1
, (26) 554

and formulate the following lemma. 555
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Lemma 3: Uv is a strictly monotonically-increasing func-556

tion of v, i.e., we have UV > UV −1 > · · · > U1.557

Proof: Please refer to Appendix D. �558

For the special case of the previous subsection, the optimal559

solution for ξv = 1, ∀v, is found under the condition that the560

storage size obeys Q > UV . In other words, Q should be561

large enough such that every VR can participate in the game.562

However, when Q reduces, some VRs have to leave the game563

as a result of the increased competition. Then we have the564

following lemma.565

Lemma 4: When Uv < Q ≤ Uv+1, the NSP can only retain566

at most the v VRs of V1, V2, · · · , Vv in the game for achieving567

its optimal solution.568

Proof: Please refer to Appendix E. �569

From Lemma 4, when we have Uv < Q ≤ Uv+1, and given570

that there are u VRs, u ≤ v, in the game, we can have an571

optimal solution for s.572

Problem 5: When Uv < Q ≤ Uv+1 is satisfied, and given573

that there are u, u ≤ v, VRs in the game, we can formulate574

the following optimization problem as575

min
s	0

u∑

j=1

s j ,576

s.t.
u∑

j=1

√
� j

s j
≤ (u� + �)

√
λ

�sbh
. (27)577

Similar to the solution of Problem 4, we arrive at578

the optimal solution for the above problem as ŝu �579

[ŝ1,u, · · · , ŝi,u , · · · , ŝV ,u], where580

ŝi,u =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑u

j=1
3
√

� j

)2
3
√

�i

λ(u� + �)2 , i = 1, · · · , u,

∞, i = u + 1, · · · , V .

581

(28)582

C. General Case583

Let us now focus our attention on the general solution of584

the original optimization problem, i.e., of Problem 3. Without585

loss of generality, we consider the case of Uv < Q ≤ Uv+1.586

Then Problem 3 is equivalent to the following problem.587

Problem 6: When Uv < Q ≤ Uv+1, there are at most v588

VRs in the game. Then Problem 3 can be converted to589

min
ξ , s	0

v∑

j=1

ξ j

(
�λs j − � j s

bh
)
,590

s.t.
v∑

j=1

ξ j

(√
� j �sbh

λs j
− �

)

≤ �. (29)591

The problem in Eq. (29) is again non-convex due to the592

uncertainty of ξu , u = 1, · · · , v. We have to consider the593

cases, where there are u, ∀u, most popular VRs in the594

game. We observe that for a given u, Problem 6 converts595

to Problem 5. Therefore, to solve Problem 6, we first solve596

Problem 5 with a given u and obtain ŝu according to Eq. (28).597

TABLE I

THE CENTRALIZED ALGORITHM AT THE NSP FOR
OBTAINING THE OPTIMAL SOLUTION S

Then we choose the optimal solution, denoted by s
v , among 598

ŝ1, · · · , ŝv as the solution to Problem 6, which is formulated as 599

s
v 600

= arg min
ŝu

⎧
⎨

⎩
min

⎛

⎝
u∑

j=1

(
�λs j − � j s

bh
)
⎞

⎠ , u = 1, · · · , v

⎫
⎬

⎭
. 601

(30) 602

Based on the above discussions, we can see that the optimal 603

solution s of Problem 3 is a piece-wise function of Q, i.e., 604

s = s
v when Uv < Q ≤ Uv+1. Now, we formulate the 605

solution s = [s
1, · · · , s

V ] to Problem 3 in a general manner 606

as follows. 607

s
v =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑û

j=1
3
√

� j

)2
3
√

�v

λ(û� + �)2 , v = 1, · · · , û,

∞, v = û + 1, · · · , V ,

608

(31) 609

where regarding û, we have 610

û = arg min
u

{Su : u = 1, 2, · · · , T }, (32) 611

with Su formulated as 612

Su =
u∑

j1=1

⎛

⎜
⎝

�2sbh
(∑u

j2=1
3
√

� j2

)2
3
√

� j1

(u� + �)2 − � j1sbh

⎞

⎟
⎠, 613

T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, U1 < Q ≤ U2,

· · · ,

v, Uv < Q ≤ Uv+1,

· · · ,

V , UV < Q.

(33) 614

To gain a better understanding of the optimal solution in 615

Eq. (31), we propose a centralized algorithm at L in Table I 616

for obtaining s. 617

Remark 3: The optimal solution s in Eq. (31), combined 618

with the solution of τ  given by Eq. (18) in Lemma 1, 619

constitutes the SE for the Stackelberg game. 620
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Furthermore, by substituting the optimal s into the expres-621

sion of SN S P in Eq. (19), we get622

SN S P (s, τ )623

= 1

�

û∑

j1=1

⎛

⎜
⎝� j1sbh −

�2sbh
(∑û

j2=1
3
√

� j2

)2
3
√

� j1

(û� + �)2

⎞

⎟
⎠.624

(34)625

Remark 4: Since we have �v ∝ qv , ∀v, and qv increases626

exponentially with the VR preference parameter γ according627

to Eq. (5), SN S P (s, τ ) also increases exponentially with γ .628

VI. DISCUSSIONS OF OTHER SCHEMES629

Let us now consider two other schemes, namely, an uniform630

pricing scheme and a global optimization scheme.631

A. Uniform Pricing Scheme632

In contrast to the non-uniform pricing scheme of the previ-633

ous section, the uniform pricing scheme deliberately imposes634

the same price on the VRs in the game. We denote the fixed635

price by s. In this case, similar to Lemma 1, Problem 2 can636

be solved by637

τ 
v =
⎛

⎝

√

�v�sbh

�2λ

√
1

s
− �

�

⎞

⎠

+
. (35)638

We first focus our attention on the special case of639

ξv = 1, ∀v. Then Problem 4 can be converted to that of640

minimizing s subject to the constraint
∑V

j=1

√
� j
s ≤ (V � +641

�)
√

λ
�sbh . We then obtain the optimal ŝ for this special case as642

ŝ =
�sbh
(∑V

j=1

√
� j

)2

λ(V � + �)2 . (36)643

To guarantee that all the VRs are capable of participating in644

the game, i.e., ξv = 1, ∀v, with the optimal price ŝ, we let645

ŝ < �v sbh

�λ . Then we have the following constraint on the646

storage Q as647

Q > Q′
min �

NC(δ, α)
(∑V

j=1

√
q j
qV

− V
)

A(δ, α) − C(δ, α) + 1
. (37)648

We can see that the we require a larger storage size Q649

in Eq. (37) than that in Eq. (25) under the non-uniform650

pricing scheme to accommodate all the VRs, since we have651
∑V

j=1

√
q j
qV

>
∑V

j=1
3
√

q j
qV

. Following Remark 2, we conclude652

that Q′
min of the uniform pricing scheme will increase expo-653

nentially with γ /2.654

Then based on this special case, the optimal s =655

[s
1, · · · , s

V ] in the uniform pricing scheme can be readily656

obtained by following a similar method to that in the previous657

section. That is,658

s
v =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑û

j=1

√
� j

)2

λ(û� + �)2 , v = 1, · · · , û,

∞, v = û + 1, · · · , V ,

(38)659

where regarding û, we have 660

û = arg min
u

{Su : u = 1, 2, · · · , T }, (39) 661

with 662

Su =
u�2sbh

(∑u
j=1

√
� j

)2

(u� + �)2 −
u∑

j=1

� j s
bh, 663

T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, Ū1 < Q ≤ Ū2,

· · · ,

v, Ūv < Q ≤ Ūv+1,

· · · ,

V , ŪV < Q.

(40) 664

Note that Ūv in Eq. (40) is defined as 665

Ūv �
NC(δ, α)

(∑v
j=1

√
q j
qv

− v
)

A(δ, α) − C(δ, α) + 1
. (41) 666

It is clear that the uniform pricing scheme is inferior to the 667

non-uniform pricing scheme in terms of maximizing SN S P . 668

However, we will show in the following problem that the uni- 669

form pricing scheme offers the optimal solution to maximizing 670

the back-haul cost reduction SB H at the NSP in conjunction 671

with τ 
v , ∀v, from the followers. 672

Problem 7: With the aid of the optimal solutions τ 
v , ∀v, 673

from the followers, the maximization on SB H is achieved by 674

solving the following problem: 675

min
ξ , s	0

V∑

j=1

ξ j

(√
sbh
√

� j �λ
√

s j − � j s
bh
)
, 676

s.t.
V∑

j=1

ξ j

(√
� j �sbh

λs j
− �

)

≤ �. (42) 677

The optimal solution to Problem 7 can be readily shown 678

to be s given in Eq. (38). This proof follows the similar 679

procedure of the optimization method presented in the pre- 680

vious section. Thus it is skipped for brevity. In this sense, 681

the uniform pricing scheme is superior to the non-uniform 682

scheme in terms of reducing more cost on back-haul channel 683

transmissions. 684

B. Global Optimization Scheme 685

In the global optimization scheme, we are interested in the 686

sum profit of the NSP and VRs, which can be expressed as 687

SG L B = SN S P +
V∑

j=1

SV R
j 688

=
V∑

j1=1

F∑

j2=1

2 p j2q j1ζ K sbhτ j1

(A(δ, α) − C(δ, α) + 1)τ j1 + C(δ, α)F
689

= 2SB H . (43) 690

Observe from Eq. (43), we can see that the sum profit SG L B is 691

twice the back-haul cost reduction SB H , where the vector τ is 692

the only variable of this maximization problem. 693
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Problem 8: The optimization of the sum profit SG L B can694

be formulated as695

max
τ	0

V∑

j1=1

τ j1
∑F

j2=1 p j2q j1ζ K sbh

(A(δ, α) − C(δ, α) + 1)τ j1 + C(δ, α)F
,696

s.t.
V∑

j=1

τ j ≤ 1. (44)697

Problem 8 is a typical water-filling optimization problem.698

By relying on the classic Lagrangian multiplier, we arrive at699

the optimal solution as700

τ̂v =
⎛

⎝

√
qv

η − C(δ, α)F

A(δ, α) − C(δ, α) + 1

⎞

⎠

+
, ∀v, (45)701

where we have η =
∑v̄

j=1
√

q j

v̄C(δ,α)F+A(δ,α)−C(δ,α)+1, and v̄ satisfies702

the constraint of τ̂v > 0.703

C. Comparisons704

Let us now compare the optimal SBS allocation variable τv705

in the context of the above two schemes. First, we investigate706

τ 
v in the uniform pricing scheme. By substituting Eq. (38)707

into Eq. (35), we have708

τ 
v =
⎛

⎝

√
�v�sbh

�2λ

√
1

s
v

− �

�

⎞

⎠

+
709

=

⎧
⎪⎨

⎪⎩

√
qv

η′ − C(δ, α)F

A(δ, α) − C(δ, α) + 1
, v = 1, · · · , û

0, v = û + 1, · · · , V ,

(46)710

where η′ =
∑û

j=1
√

q j

ûC(δ,α)F+A(δ,α)−C(δ,α)+1, and û ensures τ 
v > 0.711

Then, comparing τ 
v given in Eq. (46) to the optimal712

solution τ̂ of the global optimization scheme given by Eq. (45),713

we can see that these two solutions are the same. In other714

words, the uniform pricing scheme in fact represents the global715

optimization scheme in terms of maximizing the sum profit716

SG L B and maximizing the back-haul cost reduction SB H .717

VII. NUMERICAL RESULTS718

In this section, we provide both numerical as well as719

Monte-Carlo simulation results for evaluating the performance720

of the proposed schemes. The physical layer parameters of721

our simulations, such as the path-loss exponent α, transmit722

power P of the SBSs and the noise power σ 2 are similar to723

those of the 3GPP standards. The unit of noise power and724

transmit power is Watt, while the SBS and MU intensities are725

expressed in terms of the numbers of the nodes per square726

kilometer.727

Explicitly, we set the path-loss exponent to α = 4, the728

SBS transmit power to P = 2 Watt, the noise power to729

σ 2 = 10−10 Watt, and the pre-set SINR threshold to δ = 0.01.730

For the file caching system, we set the number of files in731

F to N = 500 and set the number of VRs to V = 15.732

For the network deployments, we set the intensity of the733

Fig. 2. Comparisons between the simulations and analytical results on
Pr(Ev, f ). We consider four kinds of storage size Q in each SBS, i.e.,
Q = 10, 50, 100, 500, and three kinds of SBS intensity, i.e., λ = 10, 20, 30.

MUs to ζ = 50/km2, and investigate three cases of the SBS 734

deployments as λ = 10/km2, 20/km2 and 30/km2. 735

For the pricing system, the profit/U AP is considered to 736

be the profit gained per month within an area of one square 737

kilometer, i.e., /month · km2. We note that the profits gained 738

by the NSP and by the VRs are proportional to the cost sbh of 739

back-haul channels for transmitting a video. Hence, without 740

loss of generality, we set sbh = 1 for simplicity. Additionally, 741

we set K = 10/month, which is the average number of video 742

requests from an MU per month. 743

We first verify our derivation of Pr(Ev, f ) by comparing the 744

analytical results of Theorem 1 to the Monte-Carlo simulation 745

results. Upon verifying Pr(Ev, f ), we will investigate the 746

optimization results within the framework of the proposed 747

Stackelberg game by providing numerical results. 748

A. Performance Evaluation on Pr (Ev, f ) 749

For the Monte-Carlo simulations of this subsection, all the 750

average performances are evaluated over a thousand network 751

scenarios, where the distributions of the SBSs and the MUs 752

change from case to case according the PPPs characterized by 753

� and � , respectively. 754

Note that Pr(Ev, f ) in Theorem 1 is the probability that an 755

MU can obtain its requested video directly from the memory 756

of an SBS rented by Vv . We can see from the expression of 757

Pr(Ev, f ) in Eq. (7) that it is a function of the fraction τv 758

of the SBSs that are rented by Vv . Although τv should be 759

optimized according to the price charged by the NSP, here 760

we investigate a variety of τv values, varying from 0 to 1, to 761

verify the derivation of Pr(Ev, f ). 762

Fig. 2 shows our comparisons between the simulations 763

and analytical results on Pr(Ev, f ). We consider four different 764

storage sizes Q in each SBS by setting Q = 10, 50, 100, 500. 765

Correspondingly, we have four values for the number of file 766

groups, i.e., F = 50, 10, 5, 1. Furthermore, we consider the 767

SBS intensities of λ = 10, 20, 30. From Fig. 2, we can 768
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Fig. 3. The minimum number of Q that allows all the VRs to participate
in the game under different preference parameter γ . In the case that the
minimum Q is larger than N , it means that some VRs will be inevitable
excluded from the game.

see that the simulations results closely match the analytical769

results derived in Theorem 1. Our simulations show that the770

intensity λ does not affect Pr(Ev, f ), which is consistent with771

our analytical results. Furthermore, a larger Q leads to a higher772

value of Pr(Ev, f ). Hence, enlarging the storage size is helpful773

for achieving a higher probability of direct downloading.774

B. Impact of the VR Preference Parameter γ775

The preference distribution q of the VRs defined in Eq. (5)776

is an important factor in predetermining the system perfor-777

mance. Indeed, we can see from Eq. (5) that this distribution778

depends on the parameter γ . Generally, we have 0 < γ ≤ 1,779

with a larger γ representing a more uneven popularity among780

the VRs. First, we find the minimum Q that can keep all781

the VRs in the game. This minimum Q for the non-uniform782

pricing scheme (NUPS) is given by Eq. (25), while the783

minimum Q for the uniform-pricing scheme (UPS) is given by784

Eq. (37). From the two equations, this minimum Q increases785

exponentially with γ /3 in the NUPS, while it also increases786

exponentially with a higher exponent of γ /2 in the UPS.787

Fig. 3 shows this minimum Q for different values of the788

VR preference parameter γ .789

We can see that the UPS needs a larger Q than the NUPS790

for keeping all the VRs. This gap increases rapidly with the791

growth of γ . For example, for γ = 0.3, the uniform pricing792

scheme requires almost 80 more storages, while for γ = 0.6,793

it needs 200 more. We can also observe in Fig. 3 that for794

γ > 0.66 in the UPS and for γ > 0.98 in the NUPS,795

the minimum Q becomes larger than the overall number of796

videos N . In both cases, since we have Q ≤ N (Q > N797

results in the same performance as Q = N), some unpopular798

VRs will be excluded from the game.799

Next, we study the number of VR participants that stay in800

the game for the two schemes upon increasing γ . We can see801

from Fig. 4 that the number of VR participants keeps going802

down upon increasing γ in the both schemes. The NUPS803

Fig. 4. Number of participants, i.e., the VRs that are in the game, vs.
the preference parameter γ , under the two schemes. We also consider four
different values of the storage size Q, i.e., 10, 50, 100, 500.

Fig. 5. Various revenues, including S N S P and SG L B , vs. the preference
parameter γ , under the two schemes.

always keeps more VRs in the game than the UPS under 804

the same γ . At the same time, by considering Q = 805

10, 50, 100, 500, it is shown that for a given γ , a higher Q 806

will keep more VRs in the game. 807

Fig. 5 shows two kinds of revenues gained by the two 808

schemes for a given storage of Q = 500, namely, the global 809

profit SG L B defined in Eq. (43) and the profit of the NSP 810

SN S P defined in Eq. (9). Recall that we have SG L B = 2SB H
811

according to Eq. (43). We can see that the revenues of both 812

schemes increase exponentially upon increasing γ , as stated 813

in Remark 4. As our analytical result shows, the profit SN S P
814

gained by the NUPS is optimal and thus it is higher than 815

that gained by the UPS, while the UPS maximizes both 816

SG L B and SB H . Fig. 5 verifies the accuracy of our derivations. 817

C. Impact of the Storage Size Q 818

Since γ is a network parameter that is relatively fixed, 819

the NSP can adapt the storage size Q for controlling 820
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Fig. 6. Number of participants vs. the storage size Q, under the two schemes.
We also consider two different values of γ , i.e., γ = 0.3, 1.

Fig. 7. Various revenues, including S N S P and SG L B , vs. the storage size Q,
under the two schemes.

its performance. In this subsection, we investigate the per-821

formance as a function of Q. Fig. 6 shows the number of822

participants in the game versus Q, where γ = 0.3 and 1 are823

considered. It is shown that for a larger Q, more VRs are able824

to participate in the game. Again, the NUPS outperforms the825

UPS owing to its capability of accommodating more VRs for826

a given Q. By comparing the scenarios of γ = 0.3 and 1, we827

find that for γ = 0.3, a given increase of Q can accommodate828

more VRs in the game than γ = 1.829

Fig. 7 shows both SN S P and SG L B versus Q for the two830

schemes for a given γ = 1. We can see that the revenues of831

both schemes increase with the growth of Q. It is shown that832

the profit SN S P gained by the NUPS is higher than the one833

gained by the UPS, while the UPS outperforms the NUPS in834

terms of both SG L B and SB H .835

D. Individual VR Performance836

In this subsection, we investigate the performance of each837

individual VR, including the price charged to them for renting838

Fig. 8. Price charged on each VR for renting an SBS per month.

Fig. 9. The fraction of SBSs that are rented by each VR.

an SBS per month, and the fractions of the SBSs they rent 839

from the NSP. We fix γ = 0.5 and choose a large storage size 840

of Q = 500 for ensuring that all the VRs can be included. 841

Fig. 8 shows the price charged to each VR for renting an 842

SBS. The VRs are arranged according to their popularity 843

order, ranging from V1 to V15, with V1 having the highest 844

popularity and V15 the lowest one. We can see from the figure 845

that in the NUPS, the price for renting an SBS is higher for 846

the VRs having a higher popularity than those with a lower 847

popularity. By contrast, in the UPS, this price is fixed for all 848

the VRs. Fig. 9 shows the specific fraction of the rented SBSs 849

at each VR. In both schemes, the VRs associated with a high 850

popularity tend to rent more SBSs. The UPS in fact represents 851

an instance of the water-filling algorithm. Furthermore, the 852

UPS seems more aggressive than the NUPS, since the less 853

popular VRs of the UPS are more difficult to rent an SBS, 854

and thus these VRs are likely to be excluded from the game 855

with a higher probability. 856

VIII. CONCLUSIONS 857

In this paper, we considered a commercial small-cell 858

caching system consisting of an NSP and multiple VRs, where 859
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the NSP leases its SBSs to the VRs for gaining profits and for860

reducing the costs of back-haul channel transmissions, while861

the VRs, after storing popular videos to the rented SBSs, can862

provide faster transmissions to the MUs, hence gaining more863

profits. We proposed a Stackelberg game theoretic framework864

by viewing the SBSs as a type of resources. We first modeled865

the MUs and SBSs using two independent PPPs with the aid of866

stochastic geometry, and developed the probability expression867

of direct downloading. Then, based on the probability derived,868

we formulated a Stackelberg game for maximizing the average869

profit of the NSP as well as individual VRs. Next, we investi-870

gate the Stackelberg equilibrium by solving the associated non-871

convex optimization problem. We considered a non-uniform872

pricing scheme and an uniform pricing scheme. In the former873

scheme, the prices charged to each VR for renting an SBS874

are different, while the latter imposes the same price for875

each VR. We proved that the non-uniform pricing scheme876

can effectively maximize the profit of the NSP, while the877

uniform one maximizes the sum profit of the NSP and the VRs.878

Furthermore, we derived a relationship between the optimal879

pricing of renting an SBS, the fraction of SBSs rented by each880

VR, the storage size of each SBS and the popularity of the881

VRs. We verified by Monte-Carlo simulations that the direct882

downloading probability under our PPP model is consistent883

with our derived results. Then we provided several numerical884

results for showing that the proposed schemes are effective in885

both pricing and SBSs allocation.886

APPENDIX A887

PROOF OF THEOREM 1888

Recall that the SBSs allocated to the VR Vv and cache G f889

are modeled as a “thinned” HPPP �v, f having the intensity890

of 1
F τvλ. We consider a typical MU M who wishes to connect891

to the nearest SBS B in �v, f . The event Ev, f represents that892

this SBS can support M with an SINR no lower than δ, and893

thus M can obtain the desired file from the cache of B.894

We carry out the analysis on Pr(Ev, f ) for the typical MU895

M located at the origin. Since the network is interference896

dominant, we neglect the noise in the following. We denote by897

z the distance between M and B, by xZ the location of B, and898

by ρ(xZ ) the received SINR at M from B. Then the average899

probability that M can download the desired video from B is900

Pr(ρ(xZ ) ≥ δ)901

=
∫ ∞

0
Pr

⎛

⎜
⎝

hxZ z−α

∑

x∈�\{xZ }
hx ‖x‖−α ≥ δ

∣
∣
∣
∣
∣
∣
∣

z

⎞

⎟
⎠ fZ (z) dz902

=
∫ ∞

0
Pr

⎛

⎜
⎜
⎜
⎜
⎝

hxZ ≥
δ

(
∑

x∈�\{xZ }
hx ‖x‖−α

)

z−α

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

z

⎞

⎟
⎟
⎟
⎟
⎠

903

2π
1

F
τvλz exp

(

−π
1

F
τvλz2
)

dz904

=
∫ ∞

0
EI
(
exp
(−zαδ I

))
2π

1

F
τvλz exp

(

−π
1

F
τvλz2
)

dz,905

(47)906

where we have I �
∑

x∈�\{xZ }
hx ‖x‖−α , and the PDF of z, i.e., 907

fZ (z), is derived by the null probability of the HPPP �v, f 908

with the intensity of 1
F τvλ. More specifically in �v, f , since 909

the number of the SBSs k in an area of A follows the Poisson 910

distribution, the probability of the event that there is no SBS 911

in the area with the radius of z can be calculated as [17] 912

Pr(k = 0 | A = πz2) = e−A 1
F τvλ (A 1

F τvλ)k

k! = e−πz2 1
F τvλ. 913

(48) 914

By using the above expression, we arrive at fZ (z) = 915

2π 1
F τvλz exp

(−π 1
F τvλz2

)
. Note that the interference I con- 916

sists of I1 and I2, where I1 emanates from the SBSs in � 917

excluding �v, f , while I2 is from the SBSs in �v, f excluding 918

B. The SBSs contributing to I1, denoted by �v, f , have the 919

intensity of
(
1 − 1

F τv

)
λ, while those contributing to I2 have 920

the intensity of 1
F τvλ. 921

Correspondingly, the calculation of EI (exp (−zαδ I )) will 922

be split into the product of two expectations over I1 and I2. 923

The expectation over I1 is calculated as 924

EI1

(
exp
(−zαδ I1

))
925

(a)= E�v, f

⎛

⎝
∏

x∈�v

∫ ∞

0
exp
(−zαδhx ‖x‖−α

)
exp(−hx)dhx

⎞

⎠ 926

(b)= exp

(

−
(

1 − 1

F
τv

)

λ

∫

R2

(

1 − 1

1 + zαδ ‖xk‖−α

)

dxk

)

927

= exp

(

−2π

(

1 − 1

F
τv

)

λ
1

α
z2δ

2
α B

(
2

α
, 1 − 2

α

))

, 928

= exp

(

−π

(

1 − 1

F
τv

)

λC(δ, α)z2
)

, (49) 929

where (a) is based on the independence of chan- 930

nel fading, while (b) follows from E

(
∏

x
u (x)

)

= 931

exp
(−λ
∫
R2 (1 − u (x)) dx

)
, where x ∈ � and � is an PPP in 932

R
2 with the intensity λ [24], and C(δ, α) has been defined as 933

2
α δ

2
α B
( 2

α , 1 − 2
α

)
. 934

The expectation over I2 has to take into account z as the 935

distance from the nearest interfering SBS. Then we have 936

EI2

(
exp(−zαδ I2)

)
937

= exp

(

− 1

F
τvλ2π

∫ ∞

z

(

1 − 1

1 + zαδr−α

)

rdr

)

938

(a)= exp

(

− 1

F
τvλπδ

2
α z2 2

α

∫ ∞

δ−1

κ
2
α −1

1 + κ
dx

)

939

(b)= exp

(

− 1

F
τvλπδz2 2

α − 2
2 F1

(

1, 1 − 2

α
; 2 − 2

α
; −δ

))

, 940

(50) 941

where (a) defines κ � δ−1z−αrα , and 2 F1(·) 942

in (b) is the hypergeometric function. As we 943

defined A(δ, α) = 2δ
α−2 2 F1

(
1, 1 − 2

α ; 2 − 2
α ; −δ
)
, by 944
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substituting (49) and (50) into (47), we have945

Pr(ρ(xZ ) ≥ δ)946

=
∫ ∞

0
exp

(

−π

(

1 − 1

F
τv

)

λC(δ, α)z2
)

947

exp

(

−π
1

F
τvλz2A(δ, α)

)

2π
1

F
τvλz exp

(

−π
1

F
τvλz2
)

dz948

=
1
F τv

C(δ, α)(1 − 1
F τv) + A(δ, α) 1

F τv + 1
F τv

. (51)949

This completes the proof. �950

APPENDIX B951

PROOF OF LEMMA 2952

By applying Lagrangian multipliers to the objective func-953

tion, we have954

L(s, μ, ν)955

=
V∑

j=1

s j + μ

⎛

⎝
V∑

j=1

√
� j

s j
− (V � + �)

√
λ

�sbh

⎞

⎠−
V∑

j=1

ν j s j ,956

(52)957

where μ and ν j are non-negative multipliers associated with958

the constraints
∑V

j=1

√
� j
s j

−(V �+�)
√

λ
�sbh ≤ 0 and s j ≥ 0,959

respectively. Then the KKT conditions can be written as960

∂L(s, μ, ν)

∂s j
= 0, ∀ j = 1, · · · , V ,961

μ

⎛

⎝
V∑

j=1

√
� j

s j
−(V �+�)

√
λ

�sbh

⎞

⎠ = 0, and ν j s j = 0, ∀ j.962

(53)963

From the first line of Eq. (53), we have964

s j = 3

√
μ2� j

4(1 − ν j )2 . (54)965

Obviously, we have s j = 0, ∀ j , otherwise the constraint966

∑V
j=1

√
� j
s j

− (V � + �)
√

λ
�sbh ≤ 0 cannot be satisfied.967

Thus, we have ν j = 0, ∀ j . Furthermore, we have μ = 0968

according to Eq. (54) since s j is non-zero. This means that969

∑V
j=1

√
� j
s j

− (V � + �)
√

λ
�sbh = 0.970

By substituting Eq. (54) into this constraint, we have971

3
√

μ =
√

�sbh
∑V

j=1
3
√

2� j√
λ(V � + �)

. (55)972

Then it follows that973

s j =
�sbh
(∑V

v=1
3
√

�v

)2
3
√

� j

λ(V � + �)2 . (56)974

This completes the proof. �975

APPENDIX C 976

PROOF OF THEOREM 2 977

As discussed in Eq. (23) and Eq. (24), we have proved that 978

Q >
NC(δ,α)

(∑V
j=1

3
√ q j

qV
−V
)

A(δ,α)−C(δ,α)+1 is a sufficient condition for the 979

optimal solution in Eq. (22). In other words, as long as Q is 980

satisfied, we have the conclusion that the solution in Eq. (22) 981

is optimal and ξv = 1, ∀v. 982

Next, we prove the necessary aspect. Without loss of 983

generality, we assume that 984

NC(δ, α)
(∑V −1

j=1
3
√

q j
qV −1

− V + 1
)

A(δ, α) − C(δ, α) + 1
< Q 985

≤
NC(δ, α)

(∑V
j=1

3
√

q j
qV

− V
)

A(δ, α) − C(δ, α) + 1
. (57) 986

This leads to sV ≥ �v sbh

�λ , and the VR VV will be excluded 987

from the game. In this case, we have ξ j = 1, j = 1, · · · , V −1, 988

and Problem 4 will be rewritten as follows. 989

Problem 9: We rewrite Problem 4 as 990

min
s	0

V −1∑

j=1

s j , 991

s.t.
V −1∑

j=1

√
� j

s j
≤ ((V − 1)� + �)

√
λ

�sbh
. (58) 992

Similar to the proof of Lemma 2, and combined with the 993

constraint of Q in Eq. (57), the optimal solution of Problem 9 994

is given by 995

ŝv =

⎧
⎪⎪⎨

⎪⎪⎩

�sbh
(∑V −1

j=1
3
√

� j

)2
3
√

�v

λ((V − 1)� + �)2 , v = 1, · · · , V − 1,

∞, v = V .

996

(59) 997

We can see that the optimal solution given in Eq. (59) 998

contradicts to the optimal solution of Problem 4 given in 999

Eq. (22). Hence, Q >
NC(δ,α)

(∑V
j=1

3
√ q j

qV
−V
)

A(δ,α)−C(δ,α)+1 is a necessary 1000

condition for finding the optimal solution in Eq. (22). This 1001

completes the proof. � 1002

APPENDIX D 1003

PROOF OF LEMMA 3 1004

Consider v1, v2 = 1, · · · , V and v1 = v2 + 1. Then we 1005

prove that Uv1 > Uv2 . We have 1006

Uv1 =
NC(δ, α)

(∑v1
j=1

3
√

q j
qv1

− v1

)

A(δ, α) − C(δ, α) + 1
1007

=
NC(δ, α)

(∑v2
j=1

3
√

q j
qv1

−v2+∑v1
j=v2+1

3
√

q j
qv1

−(v1−v2)
)

A(δ, α) − C(δ, α) + 1
1008

=
NC(δ, α)

(∑v2
j=1

3
√

q j
qv1

−v2

)

A(δ, α) − C(δ, α) + 1
1009

(a)
>

NC(δ, α)
(∑v2

j=1
3
√

q j
qv2

− v2

)

A(δ, α) − C(δ, α) + 1
= Uv2, (60) 1010
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where (a) comes from the fact that qv1 < qv2 . This completes1011

the proof. �1012

APPENDIX E1013

PROOF OF LEMMA 41014

It is plausible that if L can only keep at most v VRs, it has1015

to retain the v most popular VRs to maximize its profit. Let1016

us now prove that if L keeps (v +w) VRs, w = 1, · · · , V −v,1017

in the game, it cannot achieve the optimal solution for1018

Uv < Q ≤ Uv+1.1019

Problem 10: In the case that L keeps (v+w) VRs, we have1020

the optimization problem of1021

min
s	0

v+w∑

j=1

s j ,1022

s.t.
v+w∑

j=1

√
� j

s j
≤ ((v + w)� + �)

√
λ

�sbh
. (61)1023

Similar to the proof of Theorem 2, we obtain that Q >1024

NC(δ,α)
(∑v+w

j=1
3
√ q j

qv+w
−(v+w)

)

A(δ,α)−C(δ,α)+1 = Uv+w is the necessary con-1025

dition for the (v + w) VRs to participate in the game. This1026

contradicts to the premise Uv < Q ≤ Uv+1, since we have1027

Q > Uv+1 according to Lemma 3. Let us now consider1028

the cases of w′ = 0,−1, · · · , 1 − v. To ensure there are1029

(v + w′) VRs in the game, Q has to satisfy the condition1030

that Q > Uv+w′ . Since Q > Uv ≥ Uv+w′ , this implies that1031

given (v + w′) VRs in the game, the NSP can achieve an1032

optimal solution. This completes the proof. �1033
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