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This thesis describes investigations made into the nonlinear optical
processes of Stimulated Raman and Brillouin Scattering in simple gases

when they are performed in various guided configurations.

In oxder to make a detailed comparison between experiment and theory
a well defined pump beam is required. The development and operation of
a laser capable of producing such a beam, the pre-lase Q-switched, Nd:YAG
telescopic resonator, is described in the first part of this thesis, The
output from this laser, and the harmonics derived from it, were then used
to perform simple unguided SRS and SBS experiments to provide results
against which the performance of the guided configurations can be com-
pared. This also allowed a check to be made of the accuracy of the
theoretical predictions of SRS and SBS in gases, so that we could be

confident about extending the theory to the case of guided configurations.

The waveguiding properties of hollow, cylindrical, quartz capillaries
are then described, along with the associated problems of coupling
radiation into and out of them. Assuming next that a nonlinear medium is
contained within the hollow core, theoretical expressions are developed
for the SRS and SBS threshold powers for various configurations that
include single pass, resonator and oscillator-amplifier systems. In the
final part of the thesis these predictions are tested experimentally, in
each case good agreement being found. The main conclusion to be made,
finally, is that the use of waveguides substantially reduces the threshold

powers required for these nonlinear processes.
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1. INTRODUCT | ON

The widespread activity and progress in the development of tunable coherent
light sources in recent years is largely as a result of the possibilities

they offer in spectroscopy and chemical analysis. The advances that have

been made by these sources stem from their high power, spectral brightness,
directionality and, in some cases, their capability for short time-resolution.
To date, however, most of the tunable sources that have been developed operate
over only a limited range of the spectrum, and in general, the Sest sources
tend to be limited to the visible region. (dye lasers being the obvious
example) It is the mid-infrared region (1.5-20um), however, which is of
particular interest to the molecular spectroscopist since it is in this

region that many molecules display their most characteristic absorption bands.
Tunable sources in this region are therefore a very useful tool in the
detection and analysis of molecular species, one example of their use being
atmospheric pollution monitoring. Also, they allow the possibility of selective

excitation of chemical reactions or selec tive dissociation. A good example

of the use of the latter process is provided by the isotope separation by

photodissociation of uranium hexafluoride.

Various methods of generating tunable radiation in the 1.5-20um region have
therefore been investigated. Semiconductor diode lasers have been
discontinuously tuned over the range 4-30 um, and generate typically 10nh~(bh0
and 10W (pulsed) but they usually require low temperature operating

conditions and each diode has only a limited tuning range.



Optical Parametric Oscillation in various nonlinear crystals has been

used to down-convert fixed frequency laser radiation and produce a tunable
source over much of the region and can, indeed,produce powers of tens of
kilowatts in a linewidth of about 1 cm-1. Problems here, however, include
the small margin between threshold being reached for the process and damage

of the crystal.

More recently, however, interest has been shown in techniques where the
tunability of a well-established source in the visible,say+a dye laser, can
be shifted directly into the infrared by various nonlinear scattering
interactions. The most convenient method is by Stimulated Raman Scattering
(SRS). Interest was focussed in particular on Stimulated Electronic Raman
Scattering (SERS) in atomic vapours since the large shifts available (20,000~
30,000 cm_1) allowed the typical dye laser tunability to be shifted well

into the infrared. Unfortunately, however, serious limitations are imposed
by various competing processes. In any case, the heat pipes necessary to
maintain the atomic (metal) vapours prove to be somewhat inconvenient. There
are, however, two further approaches to the problem, both of which will be
considered in the work of this thesis. The first is to again use SRS of the
output from visible dye lasers, but this time in the well known simple
molecular gases such as H2, D2 and CHh‘ These gases have Raman Shifts
which, although not as large as the ~25,000 cm_1 available with atomic

metal vapours, are still quite large (e.g. 4155 e ! for H The mid-

2)‘
infrared region is covered, therefore, not just by the tunable 1st Stokes
shifted radiation, but by the multiple stokes shifted components. It is
necessary, therefore, that good efficiencies be obtained for conversion to

the higher order Stokes components. One method of ensuring this is to perform

the SRS process in a waveguide,



The second approach again involves SRS in simple molecular gases, but this
time using the tunable output of lasers already operating in the near-infrared
region of the spectrum. Such lasers, still only in the development stage,
include the so called "Vibronid'jasers (e.g. nickel or cobalt doped magnesium
fluoride; Alexandrite) and the new colour or F-centre lasers. Between them
these lasers have so fér been tuned over the range 0.8 - 3.5 um and so a
single shift in, say,H2 would cover the entire mid-infrared region of the
spectrum. The main problem with this approach, however, is expected to be
the difficulty in obtaining high enough output powers to reach SRS threshold
in the molecular gases, a problem which is aggravated by the unfavourable
wavelength dependence of the Raman gain. It is necessary, therefore, to
develop various techniques for lowering the threshold powers required, and

in particular, we will investigate the capability of waveguide configurations

to provide just this effect.

The work in this thesis was directed therefore, towards estabiishing the
performance, limitations and a general assessment of the advantages of
performing nonlinear optical interactions, particularly SRS, in waveguide
configurations. This work required as perhaps its most important element
a well-behaved and well-characterised pump beam. This enables one to make
careful comparisons between theory and experiment. The output of a carefully
designed Nd:YAG laser and its harmonics were used as the pump beams.
Although obviously not tunable,such pump beams should provide the best
possible results by which future experiments using tunable sources can be
judged. In chapter 2, therefore, the theory and operation of a ''telescopic
resonator'* Nd:YAG  laser provides an output beam which is TEM > SLM with
a smooth Gaussian temporal profile and has a reliable high energy and power

(Typically 100mJ in 25ns implying AMW).



In chapter 3 the general theory of SRS and the often competing process of
Stimulated Brillouin Scattering (SBS) is presented, with particular attention
being paid to deriving threshold expressions for practical unguided pumping
conditions using pump beams of the type derived from the telescopic resonator
of chapter 2. Briefly mentioned also are the extensions of this theory to
transient conditions and the possible use of an unguided Raman resonator.
Chapter L4 describes the experimental fest of the theoretical predictions of
chaptér 3 for the case of single-pass, tightly focussed, unguided SRS and SBS.
These measurements were made to provide a benchmark against which the
performance of guided wave processes will be judged, but also good agreement
was sought between theory and experiment to give confidence both in the values
of material parameters used and in the later extension of the theory to handle
the guided wave situations. This theory is presented in chapter 5, where
first the general properties of hollow dielectric wavequides are described.
The guided configurations then considered include single pass SRS and SBS,

SRS in waveguide resonators, single pass SRS using short pulses (but still
steady~-state) and finally SRS using synchronous pumping of a waveguide
resonator. All these cases were investigated experimentally as described in
chapter 6. Particular interest was shown in the threshold reductions obtained
when compared to the unguided results of chapter 4, and the good agreement that
is obtained between theory and experiment., This agreement allows successful
conclusions to be reported in chapter 7 and also allows confident predictions
to be made for future investigations, particularly when using dye lasers as

the tunable pump source.



2. THEORY AND OPERATION OF THE TELESCOPIC RESONATOR

In the first part of this chapter the basic theory of the telescopic
resonator and pre-lase Q-switching is presented. [t will be shown that the
output of a laser designed and built using this theory should have the
hecessary properties to permit an accurate, quantitative study of nonlinear
optical processes. This theory is put to the test in the second part of
the chapter where the results are presented of the design and operation of
telescopic resonators incorporating three different Nd:YAG rod sizes. All
three rods were operated fixed-Q, fast Q-switched and pre-lase Q-switched

with variable, though theoretically predictable,degrees of success.

2.1 High Power, Low Divergence Operation of Nd:YAG Lasers

The most desirable beam from a laser is the circulary symmetric TEMOO mode .
There are a number of reasons for this, perhaps the most important being
that such a beam has the diffraction1imited minimum divergence and hence can
be used to obtain a maximum intensity per unit solid angle - a quantity of
great importance in many applications. The TEMOO mode is also the easiest
to handle in an analysis of non-linear interactions. This is particularly
true when considering non-linear optics in waveguides since it is the TEMOO
mode which couples with 98% efficiency to the lowest order, lowest loss EH11
mode of the guide, as we shall see later. Ways must be found, therefore,

of ensuring that only a TEMoo mode is allowed to oscillate (since in general

a cavity can simultaneously support many modes) and that as much energy as

possible is contained within it.



The standard results for the spotsizes of the two end mirrors of an empty

resonator are well known (Kogelnic and Li, 1966);

2 g 3
™2 L -2—’117_—— 2.1
\ 91,2 17919,)
where
9 = 1 - L/R1’2 2.2

For solid-state lasers such as Nd:YAG, however, this empty cavity analysis
is insufficient because the rod itself acts as a variable positive lens under

typical flashlamp pumping conditions - the focal length depending on flashlamp

energy and repetition rate.

Assuming that the rod is near one mirror its focal length can be incorporated
into a new e%fective radius of curvature of that mirror. |If this operation
is performed and typical rod focal lengths of 5-10m are assumed, then for ~1m
lohg cavities the TEMOo spotsizes predicted by equations 2.1 and 2.2 are
rather small and one has no chance of getting a large energy from the rod

into a TEM__ output beam.
(e]e]



It has long been appreciated that the rod focal length can be compensated
for and hence an arbitrarily large WZ obtained. Equations 2.1 and 2.2

show that if R, is plane, g, = 1 and then if g,= 1 (say, by making R ~f

2= 'R’
the focal length of the rod, the rod being assumed close to mirror 2) then w2
tends to infinity. The problem with this approach is that w2 is then very

sensitive to slight variations in 9, caused by, amongst other things, shot to
shot variatons in flashlamp pulse energy and hence of rod focal length. This

is shown more clearly by differentiating equation 2.1 for w2 with respect to P

dw2 _ P (29192-1) 'dg2 .
Wy k (1=9,9,) 9y

Clearly, as 9,9, 1, W, becomes sensitively dependent on P If W, (the

2 2
spotsize within the rod) is varying, then varying amounts of energy will
appear in the TEM00 mode output of the laser, thus rendering it a rather
unsatisfactory device. It was Steffen, Lortscher and Herziger (1972) who
first pointed out this important effect, but they also pointed out the fact
that if g 9, =% then in the numerator of equation 2.3 we have (2g192-1):: 0

and the spotsize W, is now relatively insensitive to fluctuations in g, even

2
when it is made very large. They referred to resonators that could be designed
with this property incorporated at ”dynamic stable resonators'' and gave a

number of examples which they had tried and tested. These will not be gone

into here except to mention that they suggested incorporating a telescope

within a cavity. They appear not to have tried this experimentally and it

was left to Sarkies (1979) to report the first use of such a design. Although

he did not obtain TEMOO mode operation due to a none optimum choice of telescopic

magnification, he did obtain a good working compromise between the requirements

of low beam divergence and high power, damage free operation.



It is shown in the next section that a correct choice of telescope does
satisfy the 919, = L criterion of Steffen et al and should therefore result

in a stable, high energy, TEMoo mode output.

2.2 Theory of Telescopic Resonator

The theory of the telescopic resonator has been presented in great detail
elsewhere (Hanna, Sawyers, Yuratich (1981); Sawyers (1981); Berry (1982)) and
so a very brief summary will be given here. |t will be split into two parts.
The first part will cover the analysis of the TEMOO spotsizes formed within
the telescopic resconator cavity -and the second part will be concerned with

a theoretical analysis of how the TEMOO mode is selected in preference to any

other higher order transverse mode.

2.2.1 Analysis of the TEM _ Mode Spotsizes

The general telescopic resonator is shown in fig. 2.1. The mirrors at

either end are assumed curved and are then treated as lenses of focal length R
in front of plane mirrors. This allows treatment of the resonator analysis

in the normal way in terms of single~pass ray matrix elements. From fig. 2.1
it is clear that there are nine elements to be considered i.e. five lenses

and four spaces. The cavity could be analysed by multiplying together the
nine ray matrices to obtain the full single pass ray matrix and then applying
the theory outlined in Baues (1969) to obtain the spotsizes at either end.
fndeed, we have developed a computer programme that can do just this and which

can give the spotsize and radius of curvature at any element within the cavity.
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Figure 2.1 The general telescopic resonator..
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Figure 2,2t Equivalent resonator for the simplified telescopic
resonators,.
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This approach is obviously less useful than one which provides simple
equations which can be used to design the resonator. It does, however,
provide a good test of the accuracy of the predictions of any simplified

analysis. We now consider how such a simplified analysis can be developed.

To begin with certain simplifications are made which can be relaxed later.
These are that the rod is adjacent to mirror 2 (i.e. 11:: 0) and that it is
also in the focal plane of the telescope objective (12::f2 ). Simple but

exact expressions can then be derived for the spotsizes.

Hanna et al (1981) show that the ray matrix for the telescope comprising
the lens f,, the space d + §(where d = f, + fz) and the lens f, can be

written as a combination of four matrices;

Thus, instead of matrices for a lens, a space and a lens it now looks like

a space of length —f1, a "thin telescope', a lens of focal length fT’ where
we shall see that fT:: f22/6 , and another space of length -f2. Combining
this with the other elements from fig. 2.1 we have the equivalent resonator

shown in fig. 2.2,
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The sequence of elements is now; a lens of focal length Ry5 @ space L'

— L-f.; a thin telescope; a lens pair fT and fR separated by a space

1
12 - f2 =0 in our special case; and finally a lens of focal length R2‘
The last three elements can be combined into a single lens element of focal

length Rz' where;

1 1 1
— . = — + = + = 2.4
R% fr fr 2

So we are left with only four ray matrices for the single-pass resonator

and these can easily be multiplied together to give the single-pass matrix;

A B r‘c1 ML |
— 2.5
c D -(1-6,6,) 6,
ML! ]
where the new G-parameters are:
B ]
G1 = M 1 - %— 2.6
- T
6, = & . - MR 2.7
2 M S
— R _J
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We can now express the spotsizes w1, uz in the normal way as shown by
Baues (1969). |If these are expressed as w1' and wz', normalised with

respect to L', we obtain;

W= w12 : M2G 174
(R SN = | - 2 2.8
AL G, (T-G,G,) '

o wQ' 3 [ MzG 1/4
w2 = | n2 — i 2.9
aL! G221~G1GZ) :

W,! .
W,'—= — 2z 2.10

=
w P
=

These are plotted in fig. 2.3 when G, and M are kept fixed, G, being varied.

2
Varying G2 can represent changes in telescopic defocussing 8 via R2' or

changes in rod focal length fg, also via R2'. The most important point to

note is that the variation in w2' is least when GZ::”&G1, showing that the
telescopic resonator, when correctly designed, is indeed, a ''dynamic stable
resonator'. Since there is no advantage to be gained from having curved
mirrors (indeed making R1 plane allows us to use an uncoated resonant reflector
and so increase the power handling capability of the narrow beam end of the
resonator) the equations can be simplified by putting R1:: R2::w. They

become (also using equations 2.6 and 2.7), with Gy G,= 3, G,= M, G, = 1/2M
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I 1
W, — lL] 2 211
1 T
1 1
wo = A .ZMZ:I 2 2.12
2 L7

N]—

_Ja2xry ?
w3 = [ ﬂ] 2.13

These equations are the basic design equations for the telescopic resonators
used in the work for this thesis. As can be seen the small beam spotsize W1
really only depends on the spacing between end plane mirror and telescope.
After this has been fixed the spotsize w2 in the rod can be made any size

by choqsing a suitable magnification M, Thus, the TEMOO.mode can be made

to fill the rod completely,whilst at the same time beingg;ensitive to

fluctuations in G2. It is apparent, therefore, that the telescopic resonator

should be able to produce stable, high energy TEMOO mode outputs.

It must not be forgotten, however, that certain approximations were made
at the beginning of this analysis. |t is shown in Hanna, Sawyers, Yuratich
(1981), however, that relaxing these two approximations (that 1, :;F2 and
11 = 0) only results in very small changes in the definition of R2' as given

by equation 2.4,
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for fixed Gy and magnification M,
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Fiigure 2e4% Caleulated spotsizes versus telescope defocussing
using typical operating parameters for a 9.53mm rod
as indicated in table 2.2. Solid curve was obtained
using exaéﬁ.ray transfer matrices and the dashed
curve using the theory of section 2.2.1.
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In all practical cases, therefore, (especially when R2 is plane) these
changes can be ignored and the equations already presented can be used with
confidence. As proof of this, a comparison was made« between the spotsize
predictions of the theory presented above and a computer performed multi =
plication of all the individual elements in a typical telescopic resonator.
The two sets of curves are shown in fig.2.4, As can be seen the agreement

is excellent.

2.2.2 Theory of Transverse Mode Selection

We have so far developed a theory that predicts the TEMOo spotsizes within
the cavity. We now need to apply sufficient transverse mode selection to
ensure that this mode is the only one allowed to oscillate or at least is
the dominant mode. This is achieved using a circular aperture at one end
mirror (usually, for convenience, at the large beam end) which, over typical
numbers of round trips (say, at least, a few tens of round trips even for
fast Q-switched operation) provides sufficient discrimination against the
TEM01 and other higher order modes by introducing a large loss for these
modes whilst only introducing a small loss for the TEMOO mode. The round

trip losses for such an aperture, L and L for TEM and TEM
00 o 00 o

1 1
respectively, can be found exactly using the results of Li (1965). From
this work it is also worth noting that confocal resonators offer the best

discrimination between TEMOO and TEMO It is shown by Sawyers (1981) that

1
any ''dynamic stable resonator', such as the telescopic resonator, is

equivalent to an empty confocal resonator provided the aperture is at one

end mirror.
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Thus, the telescopic resonator has the maximum discrimination between the
desired TEMOO and any other mode. So the aperture selection procedure is

to pick one that barely truncates the TEMOO mode, and then check from the
work of Li that over typical numbers of round trips this size provides
adequate discrimination. |In practice, the relation 2a = 3W is satisfactory,
where a is the radius of the aperture. This condition is used in all our
resonators. We have now presented all the theory necessary to build a
stable, high energy, TEMOO mode laser. It will be shown in the next section
how such a resonator can produce a high power in a single longitudinal mode

when Q-switched in an appropriate way.

2.3 Theory of High Power and Narrow Linewidth Operation

It is well known that high powers in a single pulse can be obtained by
Q-switching, where Lasing is prevented by some intra-cavity loss until a
large population inversion and therefore gain has built up at the end of

the flashlamp pulse, at which point the jtra-cavity loss is suddenly reduced
thereby allowing the rapid build-up of a giant, high-power pulse in a time
corresponding to a few tens of cavity round trips. We refer to this
conventional form of Q-switching as ''fast' Q-switching. For the telescopic
resonator this number of round trips is sufficient to ensure selection of

the desired transverse mode, i.e. the TEMoo.mode, as described in the previous

sections.
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S0 ere is now in a pesition to build a stable, high energy, high power TEMOO output
laser. |t only remains to frequency narrow this output down to a single
longitudinal mode (SLM). The problem here is that frequency narrowing can

only be conveniently obtained from frequency selection elements that only

provide a small amount of discrimination between adjacent longtiduinal modes

per cavity round trip. In fast Q-switched operation there are only a few

tens of round trips available for this selection to occur, insufficient to
reliably narrow the output down to a single longitudinal mode on more than

just the odd shot. Clearly, what is needed is a very long intra-cavity

pulse build-up time, equivalent to hundreds of round trips. This can be

provided by the technique of pre-lase Q-switching. (Hanna et al, 1972 a, b).

2.3.1 Theory of Pre-Lase Q-Switching

In pre-lase Q-switching the cavity losses are arranged by adjustments of the
Pockels cell voltage to be only just less than the peak gain reached during

the flashlamp pulse. A small net gain is therefore reached at the peak of

the inversion and this results in a very long build-up time for the intra-
cavity radiation,analogous to the situation where a saturable absorber Q-switch
is used. During this build-up time there can be many hundreds of passes through
a frequency selective element, enough to narrow down the linewidth to a

single longitudinal mode.
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If the losses are set at the correct level the build-up starts towards
the end of the flashlamp pulse and the laser radiation then builds up to
a detectable level very near to the end of it. |f the losses are then
suddenly reduced we are left with a very large gain which results in the
rapid build up of a giant high power pulse in the same way as fast Q-switching.
The difference is that now, instead of starting from noise, the build-up is
from the single longitudinal mode already established within the cavity.
As a result the high power output is also SLM. To actually calculate the
amount of mode selection necessary we must consider the powers developed
in the various longitudinal modes. It can be shown (Sawyers 1981) that if
a mode n reaches threshold at time t and then continues to grow over a,
round trips each of time T the power Pn in that mode is given by;

9

9,
Pn(tn + an) ::Pno(R1nR2) exp [Zonl. pEJ N(tn + (qn-p)T ) 2.14

where PnO is the noise power in mode n, o, is the stimulated emission cross-
section for the n'th mode, 1 is the length of the lasing medium and N(t) is
the population inversion at a time t. R1n and R2 are the resonator mirror
reflectivities where R, is assumed the same for all modes and the effect of
the mode selective elements has been modelled by a mirror reflectivity R

n

which is dependent on the mode number n.
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For fast Q-switching the inversion can be assumed constant over the few

tens of round trips of build-up and so equation 2.14 reduces to;

9n
Pn(t):: Pno (R1nR2) exp {_chlN(ts)qH} 2.15

where tS is the time at which switching occurs. Comparing equation 2,15

with a similar expression for mode m it becomes clear that the terms in

the exponential describes the normal gain narrowing whereas the term (R1nR2)qn
accounts for an extra narrowing due to the frequency selection elements.
The importance of this second term is increased dramatically in pre-lase
Q-switching where q, is made much larger than it is in fast Q-switching.

In pre-lase Q-switching we aim to select a single longitudinal mode and so
we are primarily concerned with the ratio of powers for two adjacent cavity
modes. For two such modes the stimulated cross=sections are approximately
equal and so gain narrowing is relatively unimportant compared to the
narrowing introduced by the frequency selective elements. A further
complication is that we can no longer approximate the inversion to a

constant since we are dealing with long build-up times. We do, however, agsume

that it can be approximated by a linear relationship over the duration of the

build-up;
N(t) = Yt‘u 2.16

where Y = dN(t)/dt is the pumping rate.
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Using equation 2.16 in equation 2.14 it can be shown, after some manipulation,

that the power in two adjacent modes n and m is given by;

q
Pn(ts) R1n eff
ERCRI = 2.17
Pm ts R1
m
Where;
ne
q — 2
9 + In e € _ | In(Pn/Pno) - € 2.18
deff = ~ 2 =4 To@o) YT — |o®@o)yIT 5@o)yTT
Here we have assumed that mode n reaches threshold first, that o =~ Om = o(wo)

and that R1 /RT can be written in the form 1 + €, These last two equations
n m

are the basic results of the theory of pre-lase Q-switching. For SLM

operation we require a certain ratio of power between the main mode n and

an adjacent mode m. This sets the LHS of equation 2.17. The ratio R1 /R1
n o m

is determined by the mode selector chosen, as is Aot via the factor € in
equation 2.18, More importantly, however, the value of dorf depends on the
lasing medium itself, and particularly on the rate of change of popuiation

inversion X.

2.3.2 The Application of Mode Selection

It is well known that etalons and resonant reflectors have frequency

dependent transmissions and reflectivities respectively.



21i

It is shown in Sawyers (1981) that the frequency selectivity of either

device can be cast into the form of the frequency dependent reflectivities

R1n m used in the previous sections. The results are merely quoted here;
3
R:
TR = 1+e 2.19
(N

Where, for an etalon used in transmission;

2
€ = €. = TA _
T (_A ) (CE 1) 2.20

€=¢€ = %é 1c_ 2.21
E E

Here mode n has frequency(uo and is placed at the transmission or reflection
peak respectively. Mode m is at a frequency W where A==0%)i:03. AE is the
free spectral range of the etalon or resonant reflector and Cp is the contrast.
|f we could ensure that mode n was always at the centre of the transmission

or reflective peaks then equations 2.20 and 2.21 would complete the theory.
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Unfortunately, the resonator mode frequencies are generally moving around
randomly relative to these peaks, resulting in randomly varying degrees of
mode selection necessarily less than the amount predicted by equations 2.20
and 2.21. The general situation is depicted in fig. 2.5. At this point
it is necessary to agree on a definition for single-mode operation. The
most convenient is to define it as a certain power ratio between the two
highest power adjacent cavity modes (i.e. the two nearest the reflectivity

maximum as depicted in fig. 2.5).

P
Thus n - _n _ | 2.22

Where N is arbitrarily set at some agreed value. In our work SLM operation
is determined by checking to see that there is less than 1% beat modulation
on the temperal profile of a pre-lase Q-switched output pulse. |t can be
shown (Hanna et al, 1981) that for a ratio K of beating amplitude to mean

power without beating the ratio of powers in the two modes is given by

o

N 12 2.23

N

Thus, even for 1% beating (K= 0.01) we have N= 10°. Referring to
fig. 2.5, it is apparent that there is an upper limit on ALn beyond which
equation 2.23 will not be satisfied after the available number of cavity round

trips.
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Thus, if mode n is fluctuating randomly but symmetrically about the
reflectivity maximum we can work out an expression for the ratio of single-
mode shots defined by equation 2.23 to shok that contain an unacceptable

degree of mode beating. The ratio is (Hanna and Koo,1982)
r=¢€ eff
(]nN > 1 2.24

It is clear that unless we can completely stabilise the cavity modes then
this equation represents a fundamental limitation on the number of shots

that can be SLM. Even if the mode selectivity is very high there will always
be some occasions when two adjacent modes fall symmetrically about the

reflectivity maximum.

Further complications arise when the more practical problems of applying

mode selection are considered. Theoretically the intra-cavity etalon
provides the best approach to obtaining a large selectivity since €T can be
made arbitrarily large by increasing R. In practice, however, such an etalon
must be tilted by a significant amount to prevent lasing from its surfaces.
This tilt degrades the finesse and increases the insertion losses. One
solution to this problem is to place a >‘/l&-plate either side of the etalon

and place this whole assembly the other side of a polariser from the laser rod.
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The etalon can then be used at, or very near to, normal incidence. This
technique is described in Hanno koo, Pratt (1983). A simpler approach is

to use a thick resonant reflector to do the adjacent mode selection. The
advantage here is that a resonant reflector is used as the end mirror in the
narrow beam end of the telescopic resonator anyway because, being uncoated

it has the necessary high damage threshold. The problem with this approach

is that to get sufficient selection between two adjacent modes the resonant
reflector (RR) must be very thick (75mm in our case) and this thickness results
in a very small free spectral range. It is then possible to have lasing on
two cavity modes each of which are now near the reflection maxima of two
adjacent RR reflection maxima. Such two~mode operation could go un-noticed

if the sole diagnostic of SLM was the observation of modulation on the pulse
displayed on an oscilloscope since this high frequency beat would not be
detectable. The situation is depicted in fig. 2.6. Also shown on the diagram
is the transmission maximum of a low finesse etalon. Such an etalon can be
introduced to provide enough mode selection to discriminat between the two

RR reflection maxima. Thus, if we have two cavity modes n and n+p (where p
is an integer), n is at a frequency offset ® from RR maximum m and n+p is at

a frequency offset pAL - A,, = 8 from RR maximum n+p where AL is the cavity

RR
mode spacing and ARR is the FSR of the RR, then it can be shown (Berry, 1982)

that the overall discrimination between the two cavity modes is;

2
PAL -~ A, + B ™
R(m,n) - 1+FSin2[2m1t(ARR+A)} 2 1+( ARR > C_E
R2m+1, n+pi 5 ] RR 2
1+FSin E2ﬂntA 1+(6/5.) . 7
RR o

E



26

where the first term in brackets refers to the RR, the second to the
etalon and all the symbols have their normal meanings. .This equation,

in conjunction with equation 2.17, indicates whether there is adequate
discrimination between cavity modes in adjacent RR reflection maxima

as well as between adjacent modes in one RR reflection maximum. This also
completes the theory of modeselection necessary for its application to the

telescopic resonator.

2.4 Design and Operation of Fixed-Q and Fast Q-Switched Telescopic Resonators

As mentioned at the beginning of the chapter the theory of the previous
sections has been used to design telescopic resonators around three different
commercially available Nd:YAG rod sizes. The rods were all cylindrical with
parallel end faces and had the following dimensions; 9.53mm by 75mm, 6.35mm
by 75mm and 4.00mm by 75mm. The largest rod was pumped by twin flashlamps
each cpable of 50 Joule output at up to 20Hz. The two smaller rods were
pumped by only a single flashlamp (capable of up to 50 Joule output) and

therefore only half the energy input per puise of the big rod.

Basically there are only two design requirements. The first is to ensure

that that the TEMOO mode fills as much of the rod aperture as possible without
coming dangerously close to its edges. We therefore choose an aperture of
diameter d a millimetre or so less than the rod diameter. The aperture
diameters used were 7mm, 5.2mm and 3.5mm. for the three rod sizes respectively.
Having chosen these sizes the equation d = 3W, as discussed in section 2.2.2

on transverse mode selection, gives us the required TEMOO spotsizes wz.
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The second design requirement is to choose a contracted beam spotsize W1

that allows us to extract a high power output from the resonator. Experience
during development has shown that if the end mirror is an uncoated

resonant reflector then a spotsize of around 0.4mm can safely pass 100mJ

in 25ns (i.e. when fast Q-switching) at the same time as allowing a

convenient overall cavity length of around 1m.

These two requirements are related and fix the design of the resonator via

the two equations 2.11 and 2.12 which are repeated here;

. 1
w1=(>-‘-':—> 2.11
m

N

2.12

=
N
1
/\.
I>/
A
\/
N=
=
Nl

Fixing w1 determines the length L' = L + f1, and this length, when
substituted into equation 2.12, determines magnification M necessary to
give the required value for W,. Performing this operation for the three

rods in question we obtain the following tables of results:



Table 2.1
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Design parameters for the three rod sizes used

Rod diameter Aperture Wz(mmﬂ W1(mm) L' (cm)| M
(mm) (nm)

9.53 7.00 2.33 0.41 50.0 N

6.35 5.20 1.73 0.41 50.0 3

4.00 3.50 1.17 0.41 50.0 2

Obviously, the exact aperture sizes have also been chosen to allow

conveniently achievable magnifications to be used.

The general arrangement of all three resonators is the same as that of fig.2.1.

The actual parameters relevant to that diagram for the three rods are presented

in the table below:

Table 2.2

Experimental parameters for

the three rod sizes used

Rod diameter L(cm) f1(cm) fz(cm) Lz(cm) fR(m) L1(cm)
(mr)

9.53 46.66 | -3.33 | +13.33 (35 6 20

6.35 45,00 | ~5.00 +15,00 | 30 5 25

4,00 Lo.00 | -10.00 | +20.00 | 30 4 25

Note that all three cavities can easily be made the same

about 105 cm.

It was the parameters presented above for

overall length of

the 9.53mm rod that

were used to obtain the full matrix element, computer calaculated spotsize

results which were used as a test of the theory of section 2.2.1, the

parameters for the latter being taken from table 2.1,
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Figure 2.4 showed the excellent agreement between the two approaches and
so it now only remains to demonstrate that the theoretically calculated

spotsizes are obtained in practice.

A1l three rods were run fixed=Q M basically the same configuration as

shown in fig.2.1, but with a polariser and aperture in the large beam end

of the cavity. The telescope itself was first set in normal adjustment

during the initial alignment, and then optimised whilst the laser was

running to produce maximum energy output. When running fixed-Q the output
could be taken from either end of the cavity, the other end having the 100%
plane mirror. In all cases the far-field spatial profiles were found to be
TEM00 with spotsizes that corresponded to those expected from the theoretically
predicted waist-sizes at the output. mirrors of the laser. This behaviour

was revealed by diode array measurements and also by very clean circular

burn patterns on photographic paper. Typical results are shown in figs. 2.7
and 2.8, in this case for the 9.53mm rod taking:the output from the narrow

beam end. All the rods could give 100mJ outputs, the smallest giving ~200mJ
at the full 50Joule input and still remaining TEMOO. It is clear, therefore,
that fixed-Q operation performs in accordance with theory. The next step

is to operate the resonators fast Q-switched. This involves the addition

of a Pockels cell to the cavity which is used in conjunction with the polariser
already present. The high powers involved in fast Q-switching require that
mirror 1 at the narrow beam end be uncoated to avoid damage. As a result
this end is invariably the output end with an uncoated resonant reflector

serving as the cavity mirror.
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Figure 2,7 : Typical far—field burn patterns for ~100mJ fixed-Q
pulses taken from the contracted beam end of a cavity

employing a 9.53mm diameter rod.

Figure 2.8 : Diode array picture of the spatial profile of the

fixed-Q pulses shown in figure 2,7,
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All the rods could provide 100mJ, 20-25ns (FWHM) pulses in this

configurtion (only just for the 4mm rod, ASE being a problem for harder
pumping) with the Pockels cell and polariser placed either side of the

rod. A point worth mentioning here is that if Pockels cell hold-off is

a problem as a result of thermally induced birefringence in the rod then

it is better to place the Pockels cell and polariser between the rod and the
100% mirror, rather than at the other side of the rod. This is more likely
to be the case with the smaller, higher gain rods. The output beams were

all found to be TEMoo’ the photographic burn patterns and diode array

traces looking just the same as those of figs. 2.7 and 2.8. The power output
was only limited by damage to the narrow beam end mirror. As mentioned above,
an uncoated resonant reflector was used to maximise this value, but for our
0.41mm spotsize damage still occurs at power levels of about 150mJ in 20ns
(FWHM) fast Q-switched pulses. Everyday operation is therefore kept to
around 100mJ output. Some attempt has also been made to operate the telescopic
resonator Q-switched whilst taking the output from the large beam end. This
implies some form of 100% mirror at the narrow beam end of the cavity. A
normal multi-lTayer coated 100% mirror, however, could be damaged by the high
powers. Carr and Hanna (1982) have used an anti-resonant ring prism
arrangement as the 100% mirror in the hope that its damage threshold would

be high due to the fact that it uss no coated surfaces. Although it worked
well as a 100% mirror its damage threshold was only about twice that of a
coated mirror due to standing wave effects and therefore only allowed a
damage free output of around 150mJ from the large beam end. The output was,

however, the usual diffraction limited TEMOO mode in the far-field.
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It is clear, therefore, that the telescopic resonator theory of the previous
sections provides an excellent design procedure for the building and
operation of a stable energy, high power diffraction limited TEMOO mode
laser which is of a convenient length and easy to use. We now describe

the performance of this laser when operated in a single longitudinal mode.

2.5 Operation of the Telescopic Resonator using Pre-Lase Triggered Q-Switching

The pre-lase Q-switched operation of the telescope resonator was first
reported in Berry, Hanna,Sawyers (1981) and a copy of this paper is
reproduced in appendix 1. As can be seen in this paper, the pre-lase is
monitored by a PIN photodiode. This detects cavity radiation rejected by
the polariser either as a result of depolarisation in the rod (Appendix 1,
Fig.1), or better, as a result of the Pockels cell induced depolarisation
which would come off the polariser in the opposite direction than that
shown in the diagram. The latter is a much better approach since, when the
Pockels cell is fully opened, there is no depolarisation in this direction
and the PIN photodiode is protected from the full power of the Q-switched

pulse.

2.5.1 Calculation of the Degree of Mode Selection

If we require less than 1% beating on a smooth Gaussian temporal profile
q g P P »

5

then equation 2.23 tells us that we need at least a power ratio of 1.6 x 10

between our main mode and any other mode, particularly the adjacent modes.
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We therefore expect a ratio of SLM to multimode shots of; (from equation

2.24)

ro= e(qeff )._ 1
n(1.6 x 10°)

€ is given by equations 2.20 and 2.21 for an etalon and resonant reflector
respectively. S is given by equation 2.18 and depends on known quantities,
except for the parameterX, the rate of change of population inversion.

Ways must be found, therefore, of obtaining values for this quantity before
the necessary degree of mode selection can be calculated. |t must be
remembered here that the theory assumed a linear rate of change of population
inversion, an assumption that is clearly only an approximation since we are
operating near the maximum of a peaked inversion-against-time curve. In

Berry (1982) three methods are proposed for the evaluation of X, each one
having various problems and therefore possible errors associated with it,
these also being outlined. Nevertheless, it is a fact that the third of

these methods, which involves observing the time at which a Q-switched pulse
appears as a function of flashlamp energy, does give a reasonably accurate
value for ¥ , and indeed one which leads to good agreement between predictions
from the theory and experimental results. |In short, therefore, the

theory outlined above provides an adequate prescription for choosing the

necessary mode selection to observe SLM behaviour.
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2.5.2 Pre-Lase Triggered, Q-switched Operation

It is convenient to look at the three rod sizes separately and consider

the types of mode selection applied to each one.

a) The 9.53 mm Rod

The large rod had mode selection applied to it in the two ways depicted

in fig. 2.9, in both of which the output is taken from the narrow beam end.
In design (11) the intra-cavity etalon is typically 1 cm thick and has 65%
face reflectivities. Equation 2.20 predicts eT = 0.075. Our best estimate
of ¥ from the previous section is then used in equation 2.18 to predict Vi
465. These values then predict 66% of shots being SLM using equation 2.24,
The 1/4'" thick resonant reflector included in this configuration has two
features which contribute to the resonator design. First, it provides a high
damage threshold reflector of high output coupling (14% relectivity). It
also provides the necessary discrimination between transmission maxima of

the intra-cavity etalon.

In design (1) the adjacent mode discrimination is provided by a thick
resonant~-reflector output mirror. Equation 2.21 predicts €R>= 0.0833 which
by the same procedure as before also prédicts ~66% of shots being SLM.
Here, however, we need the additional, low finesse intra-cavity etalon to
discriminate between adjacent resonant reflector maxima, and these two
selective elements must be temperature stabilised to about 0.1°C.

Calculations using equation 2.25 reveal that a 1/4" thick, 20%/20% face

reflectivity etalon is adequate.



35

uoD32

7590959

ANAAMAN Y

NN

J
A

°poJ J918WeTP W GG Y} JI0J POSnN UOTLOSTOS opoll JO SPOU_W oM} BYL H°c oINoTq

44 7
e -

T |

UojD}2 .
255214 MOJ dd WG/

1

==




36

The two cavities were both operated successfully at the 100mJ, 30ns (FWHM)
level, When the Pockels cell opening was deliberately lengthened to a time

of order 75ns the SLM temporal pulse profiles were complely smooth as

shown in appendix |, fig. 3(a). For the two cavities the ratio of SLM

to multimode shots was indeed around 66% or somewhat better. A typical
performance was 1.5 minutes of SLM pulses at 12Hz, followed by some 30

seconds of beating. This performance allowed the traces of 250 consecutive
shots to be recorded on a storage scope. As shown in the appendix |, fig. 3(b)

the output energy is seen to be very stable under these SLM conditions.

b) The 6.53mm Rod

To date the 6.53 mm rod has only been operated using design (11) of fig. 2.9,
the same type of etalon and resonant reflector being used as for the 9.35mm
rod. 100mJ output is possible using very near to the full 50Joule input from
the single flashlamp, although normal everyday operation tends to be around
80mJ (lan Carr, private communication). Although no calculation of ¥ has
been made for this rod it is expected to be greater than for the 9.35mm rod
since the inversion density must be greater. This would result in a lower

value for g which in turn leads one to expect a somewhat smaller ratio of

eff

SLM to multimode shots. This is indeed seen to be the case.



c) The 4.00mm Rod

Work on the 4.00mm diameter rod was performed during a short visit to

J K Lasers Ltd and is therefore less extensive than work on the other two

rod sizes. The mode selection was again only applied as in design (11) of
fig. 2.9. With the Pockels cell and polariser between the rod and telescope
it was found to be impossible to prevent Amplified Spontaneous Emission (ASE)
pre=-lasing between the rod and 100% mirror when the flashlamp energy was
increased above 25 Joule. At this level, 80% of shots were SLM but only
contained 20mJ of energy. With the Pockels cell and polariser between the
rod and 100% mirror, 45mJ pulses could be obtained before ASE pre-lasing
occurs. This time we were troubled by spatial hole burning (see next section)
which could have been eliminated by placing A/ plates around the rod. Even
so, we are nowhere near the desired 100mJ output which was the limit when

operating fast Q-switched.

To sum up this section, therefore, we have shown that all three rods can be
operated in a single longitudinal mode though with certain predictable
limitations on the ratio of SLM to multimode shots, and, in the case of the
4,00mm rod, with some limiations on the energy output due to ASE. The next
section will deal with some further improvements that can be made to the general
operation of the telescopic resonator, and in particular, with refinements

that allow us to improve the SLM operation to such a point that 100% of

output pulses are single longitudinal mode,
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2.5.3 Further Refinements to SLM Operation and the Telescopic Resonator

In determining the operation of the three rod sizes when pre-lase Q-switched
it was not mentioned that there is a definite advantage to be gained by
keeping the rod itself close to the end mirror. The reason for this is

that it helps to minimise the effect of spatial hole burning. This effect

is a result of thé fact that when a resonator is oscillating on a single
longitudinal mode a standing wave €Xists within the cavity which has nodes
and antinodes within the rod. Consequently, the inversion will only be
depleted at the antinodes, leaving an appreciable amount of energy still in
the rod at the nodes. This inversion can be exploited by another standing
wave cavity mode whose antinodes happen to overlap with the undepleted

nodal regions. |f the rod is in the centre of the cavity it is the adjacent
cavity mode that can best exploit this remaining inversion and when the laser
is pre-lase Q-switched in this configuration, the output usually consists

of the main Q-switched pulse, closely followed by another pulse containing
about 30% of the output energy (Sawyers, 1981). This second pulse is
separated from the first by a time which varies from shot to shot, often being
close enough to partially overlap and beat with it. Placing the rod close
enough to the end mirror greatly reduces this effect but a second pulse is
usually still detectable.lt will be almost totally eliminated however,

by the placing of two quarter-wave plates around the rod (Evtuhov and Siegman,
1965). This results in the formation of a standing helical wave within the

rod which has no nodes.
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Consequently no inversion is left behind after the pulse due to the

dominant longitudinal mode has finished.

The most significant improvement, however, in the operation of the pre~lase
Q-switched telescope resonator is that SLM operation can now be achieved

oh 100% of output pulses. The pre-lase Q-switching technique already utilises
a PIN photodiode to monitor the slow build-up of radiation within the cavity.
If the signal from this photodiode is electronically monitored for the
presence of adjacent mode beating it should be possible to derive from it a
trigger to introduce some form of corrective measure if beating is present.
One such measure is to increase the cavity length by a quarter of a wavelength
by either moving a wedge across the cavity by an appropriate distance (Berry,
1982); by moving one of the end mirrors on a piezo- electric stack or by
applying a voltage to a Pockels cell with either its x or y axes coincident
with the polarisation in the cavity. All these processes work on the
principle that a h/% increase in cavity length moves the cavity modes

an optimum distance away from the case where two of them are approximately
symmetrical about the peak of the frequency selection's transmission or
reflection profile. One of the modes is always moved approximately to its
peak, the other to some distance away. Consequently if this adjustment is

made in time for the next shot, SLM operation will be assured.

Unfortunately, the output of the shot on which beating was detected still
has beating on it and so the output of the laser is still not single mode

every time.
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A signal from the electronics could, of course, be used to prevent the
Pockels cell from opening on the present shot as well as making the
necessary correction for the next shot. This would result, however, in a

number of output shots being completely missing.

During the course of investigating the various techniques just described,
however, it was noticed that if the voltage on the Pockells cell was
decreased a little below the optimum value for pre-lase Q-switching, and not
triggered off, then a train of four or five relaxation oscillations would be
obtained. One of these pulses would always be SLM. This can be explained
on the basis of the cavity length being swept anyway due to the heating within
the rod. |If, therefore, the electronic circuit monitors each pulse in turn,
it can trigger the Pockels cell open only upon detection of an SLM pulse
i.e. when beating is seen to be absent during the pre-lase. In this way,
therefore, every single output pulse from a pre-lase Q-switched telescopic
resonator can be obtained in an SLM mode. This technique has been used

successfully and is presented in more detail in Hanna and Koo (1982),
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3. THEORY OF STIMULATED RAMAN AND BRILLOUIN SCATTERING

As mentioned in chapter 1 there is much interest in producing laser sources,
particularly tunable ones, in the infra-red part of the spectrum. A
convenient way of achieving this is to take a laser operating in or around

the visible region and shift the wavelength of its output into the infrared
by the nonlinear optical process known as Stimulated Raman Scattering (SRS).
General analyses and applications of the SRS process have been presented by
many authors {see next subsection for references) and so we shall not develop
the theory in detail from first principles here, but quickly proceed to well
established results such as expressions for Raman gain for plane-wave pumping.
We also draw on results previously reported for Raman gain using focussed
Gaussian beams (Cotter et al, 1975). In addition, since Stimulated Brillouin
Scattering (SBS) can be an unwanted competing process, a similar analysis is
applied to it and expressions derived for its gain and threshold powers. This,
then, enables us to examine the conditions under which SRS or SBS is the
dominant process. Departures from the steady-state condition will be
considered, bearing in mind that under certain conditions the pump pulse
lengths can be comparable to the response times of the medium. All .this
leaves us in a position to make threshold predictions for certain simple,
single-pass Raman and Brillouin experiments. Details are given of these
numerical calculations, showing how the various parameters are either derived

or estimated.

One technique employed to lower the threshold powers is to form a resonator
for the generated Stokes radiation. |In this way the effective interaction
length is increased and thus a lower pump power is required. The chapter is

concluded by an extension of the theory to handle this situation.
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3.1 The Plane Wave Raman and Brillouin Gain Coefficients

Raman and Brillouin scattering are both examples of inelastic scattering
processes in which an incident photon of energy hwp is scattered into a

photon with a lower energy ﬁws. The difference in energy is always equal

to some excitation gquantum of the medium in which the scattering takes place.
In this work the molecules of hydrogen and methane gas are excited from the
ground state to the first vibrational state. Other examples of Raman
scattering include rotational Raman Scattering (e.g. Trutna and Byer, 1380),
where molecules are excited from the ground state to the next rotational state,
and electronic Raman Scattering (e.g. Hanna, Yuratich Cotter (1979), Chapter 5)
where the atom undergoes a transition to an excited electronic level. Both
Raman and Brillouin scattering are examples of interactions that are nonlinear
in the electric field E. The general theory has been presented by many

authors e.g. Armstrong et al (1962), Bloembergen (1965) and Butcher (1965).

The following brief outline is derived mainly from the work of Butcher.

Because the number of light photons involved is very large it is appropriate
to represent the radiation in the form of a classical electric field. It is
then possible to write the total electromagnetic field as a superposition of

mono-chromatic waves;

E(r,t) :‘j“m dwE (w) exp (-iwt) 3.1

(2]

The induced time-dependent polarisation in the nonlinear medium can be

written down generally as a power series;

P(t) = P (@) + P (1) _E(r)(t)+ ..... 3.2
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This is the constitutive relation where P(r)(t) is to the r'th power in
E(t). |In fact, using equation 3.1 each component in equation 3.2 can be

written in the form;

Where X(r) (

wi...wr) is the r'th order susceptibility, for which the general
result is a rather complex summation over contributing dipole moments which
depends, in particular, on the relative values of the frequencies W involved
and transition frequencies within the medium. The nonlinear susceptibilities
generally decrease rapidly in value as the order r increases. However, because
of the large E values obtainable from lasers and the large values of X(r)
which arise where particular frequencies coincide with transition frequencies

(l’) (t)

withinthe medium, large values of P can be obtained even for high orders.
Whenever there is a time varying polarisation in a medium it will radiate an
electromagnetic field, the form of which can be determined by solving

Maxwells equations. These yield the following wave equation;

(6%
N
o

Curl(CurlE) = - U
— o

3.6

[V
~+
N

Where;

L
D=¢E+P +P, 3.7

and where the nonlinear polarisation ENL has been kept separate from the
linear polarisation EF. We must now take account of the spatial characteristics

of E(t) and write it as E(r,t).



To derive the plane-wave coefficients we assume that Efijt) is a plane-

wave propagating alongthe z-axis and also that it is composed of a

superposition of running waves each of which is characterised by a wave-vector

t. 8
ik, z 3.

kw=Kwz ie) E(z,w) = E (z,w) e

A

where E (z,w) is a slowly varying envelope function which allows us to
ignore its second derivative. Under these plane-wave approximations equations

3.6 and 3.7 then give;

JE = pNL ) e 3.9

Where w is the frequency of the field E(z,w), n, is the refractive index
of the medium at this frequency, ¢ is the velocity of light and eo is the

permitivity of free space.

Equation 3.9 is the starting point for most plane-wave calculations in
nonlinear optics. |t represents an infinite set of coupled equations for

the E(z,w) since we have shown in the preceeding pages that PNL(z,w) is
nonlinear in these fields. Solutions are obtained by restricting interest

to just a few fields and assuming that these fields are monochromatic i.e.
E(z,w) becomes Ew(z), for example. Similarly, the time dependent polarisations
P(r)(t) can also be transformed into the frequency domain and written as the
sum of a few terms of the form PNL(z,w) which include the susceptibilities X(r)

(w1....wr).
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At this point we shall restrict our attention to just Raman and Brillouin
scattering instead of a completely general non-linear process considered so
far. Both are examples of a third order susceptibility, resulting in a
polarisation;

2
P(g) = %- 60 X(3) \ Ep\ \ Es\ 3.10

Interest is being restricted, therefore, to just two monochromatic waves at
frequencies wp and W, In addition to this we assume at this point that only
one nonlinear polarisation is relevant under any one set of experimental
conditions, all others being either non-existent or negligable by comparison.
With these assumptions, substituting equation 3.10 into equation 3.9 gives

us two coupled equations, one for Ep(z) and the other for Es(z). These can

be solved simultaneously to take account of pump depletion (e.g. Von der Linde,
Maier, Kaiser, 1969). Normally, however, we are interested in the small signal
gain UP tO the threshold condition where the wave at w3 is just detectable.

In this case pump depletion is negligable and we can make the approximation

Ep(z) = Ep(O) = Epo’ a constant. So equation 3.9 just gives us one

o
™
17}
—~
N
|
(W)
=
w
—~~
(WS)
N
N
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(59
N
>
m
™
w
—
N
~—



46

It only remains to integrate over an interaction length L. For SRS this

can be done in either direction depending on whether we are considering forwards
or backwards scattering. For SBS, however, it must be done for ES travelling

in the backwards direction since this direction has the maximum gain due to

the dispersion characteristics of acoustic phonons. The results, however,

are both the same for lossless media;

Jiw (3)
E.(L) = E.. exp S
S S0 i; EE;E?WT?T— X IpoL 3.12
o) SP
where ESO is starting noise at the beginning of the integration path and Ipo

is the pump intensity. Converting to intensities we get the final result;

IS(L) = ISO exp(glpoL) 3.13
3w "
where g = g . X(3) 3. 14
GOC nSnP
. . , . . 3y . N
g is the plane wave Raman or Brillouin gain coefficient. ¥ is the imaginary

part of the 3rd order nonlinear susceptibility. The real part (if there is one)
wouldbe respoonsible for a nonlinear change in the refractive index of the

medium.



47

Equation 3.13 shows that the Stokes wavesgrow exponentially up to the

threshold condition. Typically we require 15 to grow by a factor of exp(30)

0
]
to reach a detectable Tevel, and so if we khow x(3) we can predict the
threshold intensity IPO required.
(3)"

So numerical values for the ¥ of Raman and Brillouin scattering

must be derived. In principle this can be done by summing over dipole moment
matrix elements as mentioned earlier. This can be done for simple electronic
transitions in the case of Stimulated Electronic Raman Scattering in, say,
caesuim vapour (see, for example; Hanna, Yuratich, Cotter, 1979). In
hydrogen and Methane molecules, however, where the transition in question is
between vibrational levels and where there are a large number of intermediate
levels to consider this is a very complex calculation. So, for Raman
scattering a different approach is often taken. An alternative definition

is provided by (Hanna, Yuratich, Cotter, (1979));

N/6h EO

XR = fgg *+vg

SN L \ “R\z 3-15

Here, all the matrix elements and summations that are relevant are contained
in the polarisability Upe Qfg is the vibrational transition frequency and i
its half-width at half maximum. The polarisability can be shown to be

related to the easily measurable differential scattering cross-section do/dQ

by the relation (Hanna et al 1979);

o 2
3.16
(bneocz )2 R|
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Thus, combining equations 3.16, 3.15 and 3.14 we obtain, on resonance;

g, = '8112c2 E_‘ do 3.17
R ‘hnSnPwszwp n dg

This is our final expression for the plane-wave Raman gain coefficient.

The steady state Brillouin gain coefficient can be written as (Minck,

Hagenlocker, Rado, 1967; Kaiser and Maier, 1972)

wwgTy [2%€/3] ’ WSZTB [pbe/ap] ?
2\/2”262/3 C‘,3nV/D

gB:

Where V is the acoustic phonon velocity, /O the density, OE/dR is the

change in permittivity due to density fluctuations. TB is the phonon lifetime

and Wg the frequency of the phonon and therefore of the Brillouin shift.

Often V%ﬁD is written as the Bulk Modulus. It can be seen that gg @ Wp-
Now Wy = KaV where Ka is the wavevector of the phonon. In a Brillouin

scattering event momentum must be conserved. Since Wp R We it can be shown

that;

2 K Sin (8/7) = K 3.19

where KL is the pump photon wave=-vector and 6 is the angle between pump

and Stokes waves.
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Clearly K_ and thus wy and finally g5 are a maximum for 8 = 180° i.e.

B
backwards scattering. Also clear is that the gain is zero in the forwards
direction. (Note that for Raman scattering K(optical phonon) is almost
independent of frequency and in any case is very small. This results in

the gain being the same in all directions, forwards gain being slightly

favoured by linewidth considerations, as we shall see later).

We now have workable expressions for the plane-wave gain coefficients. In
sections 3.4 and 3.5 values will be found for the parameters appearing in
them. But first, in section 3.2, it is necessary to relax the plane-wave
approximation and develop expressions for the thresholds achievable in

typical experimental arrangements.

3.2 Typical Spatial Profiles, Focussing, Gain Focussing and Diffraction

The beam from the telescopic resonator Nd:YAG laser is in the form of a
circularly symmetric TEMOo mode. Typically the beam would be focussed into
the nonlinear medium since a high intensity is normally desirable. For an
analytical treatment of the nonlinear effects produced by such beams it is
necessary to go back to Maxwells equations and retain the xy dependence of
the electromagnetic fields. Much of what follows is a brief summary of the
theory presented in Cotter, Hanna, Wyatt (1975). The wave equation, equation

3.6, becomes

0 3.20
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Where G = ngO)VT2 is the transverse component of the Laplace operator Vz.

It is clear from our expressions for the plane-wave gain coefficients that a
radial variation in the pump intensity Ipo_wi]l result in a corresponding
variation in the Raman or Brillouin gains. For a TEMOO beam we should insert

a Gaussian intensity profile into equation 3.20 via our expressions for G.
Unfortunately, this results in an equation which can only be solved numerically.

Cotter et al show, however, that the approximation;

2,, 2 2,,2
G =G, exp (-2r /wp ) = Go(l 2r /wp ) 3.21

will give analytical results agreeing quite closely with the numerical
calculations. Wp is the TEMOO mode spotsize and r2'= x2 + y2. Beginning

with a beam for which Wp is assumed not to change over the whole interaction
length, Cotter et al employ Kogelnic's (1975) concept of a matched mode.

This is a generated Stokes mode whose beam parameters remain fixed throughout
the medium. Implicitly assumed in this approach is the idea that gain focussing
and diffraction counteract each other so as to produce a beam of constant
spotsize. Diffraction losses do still occur but the Stokes beam still

experiences a net gain (albeit a reduced one when compared to the plane-wave

case). The result obtained is as follows;

S(

3.22

KSWP

L) = | exp (Pp "2 Pp)L
SO 5
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Where Fp = GOKSWP2 is a dimensionless quantity proportional to the pump
power Pp as well as the plane-wave gain coefficient. Comparing this equation
with the plane-wave equivalent, equation 3.13, it is clear that the gain
focussing and diffraction introduced by confining the pump to a realistic
spatial profile has lowered the gain via the additional term —2¢[§;.

Clearly this will raise the threshold power required.

The theory is extended to take account of focussing of the pump by

introducing a z-dependent pump spotsize Wp(Z);

. - %
i.e. wp(z) = wpo (1+%) 3.23

I

where 3 2(z - ZF)/bp
bp is the confocal parameter of the beam and Ze is the position of the focus.

The matched mode theory must be extended in amore generalised way and only

the result is quoted here.

P -2/
IS(L) - ISO eXp p K\/_ « arctan (—t—v} 3.214
p

Where K = KS/Kp and the pump is focussed into the centre of a gain medium of

length L.
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Rearranging this equation gives us our final expression for the pump

power Ppth required to reach threshold in a single pass through a gain

medium using a focussed TEMOO mode beam;

-1 1= 2

Poeh = wcws[1+f[1+ (K/tan (L/bp)).]n(Ps(L)/Pso))A] ] 3.25
i A

2

2
2K% gu
p

As mentioned earlier, In(PS(L)/PSO) is usually set to~30 for typical
detector thresholds. |t must be remembered that this equation only applies
for steady-state Raman and Brillouin scattering where the pump pulise duration

is longer than the relevant response time of the medium.

3.3 Temporal Characteristics of Stimulated Raman and Brillouin Scattering

The dependence of the Raman and Brillouin gains on the temporal characteristics
of the pump beam has been considered by many authors elsewhere e.g.

Park and Byer (1979) (and references therein) but more recently by Berry and

Hanna (1983) in a paper presented in Appendix !l. Very simply, temporal
structure in the pump pulse cannot be shorter than rv1/aat, where AvL is the
linewidth of the laser. |If this structure is long in duration compared to

the characteristic response time of the medium (“‘1/NKUR B) then the medium
b

will be able to give the steady state response to any temporal variations

introduced by the pump.
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| f, on the other hand, the duration of the structure in the pump pulse
is much shorter than these response times the medium cannot respond fast

enough and a transient theory must be developed to predict the new reduced gains.

An interesting consequence of this pump linewidth dependence is the variation
in threshold for SRS in H2 between a single mode, a multimode and a two-mode
pump pulse, as described in the paper of appendix Il. The multimode pulse

has the same threshold as the single mode one because the temporal fluctuations
in the former are so short that the medium cannot respond to them and so only
sees the average intensity, which is the same as the single mode intensity for
a pulse of the same energy and duration. The two-mode pulse, on the other
hand, has variations that, as well as still being of long enough duration

to be steady state, are also of higher intensity than that of a single mode
pulse with the same energy. The Raman threshold energy for the two-mode pulse

is therefore reduced.

A more important consequence of this temporal dependence derives from the

fact that the medium response times for Brillouin and Raman scattering are
quite different and depend in different ways on adjustable parameters such as
the pressure. |t is possible, therefore, to favour one process over the other
by altering the pump pulse duration or linewidth. The best example of this

is to eliminate Brillouin scattering altogether in Methane by shortening the
pump pulses down to a few hundreds of picoseconds. Maintaining a fairly high

pressure also helps.
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Under these conditions it will be shown in future sections that Raman
scattering is still in the steady state regime whilst Brillouin scattering
is highly transient, and so the Brillouin gain is reduced drastically to

below that of the Raman gain. As a result only Raman scattering occurs.

There are many theoretical treatments of transient Raman and Brillouin
scattering in the literature e.g. Akhmanov et al (1971) and (1974). Most
treat pump. and stokes as step functions and consider only the case of large
gains. The results are usually expressed as a modified, transient gain

coefficient which can be written as;

3.26

Where t is the pump duration, T is the characteristic response of the medium

and G = gIPI. Again, we require G; % 30 for threshold.

3.4 Numerical Predictions from Theory:

Raman Scattering in Hydrogen and Methane

We are now in a position to make some predictions from theory of typical
Raman thresholds expected using typical experimental arrangements. We require
a value for the plane-wave Raman gain coefficient dR- This is given by

equation 3.20 and can be written as;

2W X i1
- SAR
9R = — 3.27
nsnpc eo



55

Where;
3 4
0 (21) "N,C € AN do
‘X - ——-———-w&—-— e 4 lsrw 3.28
R hoWwW 3% AwR dQ
NgWp¥s
A is now the full width at half maximum of the Raman transition. It is often

stated that gp © 1/>\S is the wavelength dependence of the Raman gain. This is
seen to be approximately true if we recall that do/dQ is to a first
approximation proportional to w

and Wp R W We must be more accurate, however,

S S’
and obtain as good an estimate as we possibly can for IR We must also consider
the pressure variation of some of the parameters. |In particular, we must

obtain values for AN, AwR and do/dQ. All the other terms are constants once

the medium and pump wavelengths have been fixed (we ignore slight pressure
variations in ny, and n. and set each to unity).

P S

3.4.1 Obtaining Values for AN, Aw, and do/dQ

Since the differential scattering cross-section is defined as though all

the molecules present are involved in the nonlinear interactions, AN is just
the number of molecules per unit volume. This is given, to less than 2% error
even at the highest pressures, by the Ideal Gas Law. We must also take into
account, however, the fact that all the molecules might not be in the relevant

ground state at room temperature. |In general, therefore, we can write;

AN = F x P/kT 3.29



Where for hydrgoen F = 0.66 is the fraction of molecules in the V = 0,
J = 1 ground state, and for methane, F = 1 since all ground state levels

are used. P is the pressure (Nm_z),T the temperature and k is Boltzmann's

constant.

The Raman linewidth Awp depends in a more complex way on the pressure.

For hydrogen the linewidth of the V=0, J=1toV=1,J =1 vibrational
transition is Doppler limited below about a few hundred torr. The linewidth
therefore depends on the thermal velocities of the molecules and on the
relative directions of pump and Stokes beams. The linewidth is given by

(e.g. Murray and Javan 1972)

Aw(FWHM) = 2K0f 2k;1n2 3.30

2 _ _ _ 2
where; ‘KOI = 2Ksz(' cosh) + (Kp K) 3.31

M is the mass of a molecule and 8 is the angle between pump and Stokes beams.
Note that there is a substantial difference between forward Stokesl&): KP - KS
and backwards KO = KP + Ke which is a factor of (wP + WS)/(WP - WS) times

bigger.
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For hydrogen, using a 1.064 um pump resulting in 1st Stokes at 1.907um, the

forwards Doppler linewidth is 0.036 cm_} and the backwards linewidth is 0.127cm .

The forwards Raman gain is therefore going to be much larger than the backwards
gain at these low pressures. As the pressure is increased, however, from a

few hundred torr to a few atmospheres the mean free path of the molecules
decreases until it becomes comparable to the wavelength of the emitted Stokes

radiation.

Under these conditions molecular collisions are happening so fast that the
Doppler effect can progressively see only the average velocity of the molecules,
which is zero. As a result the linewidth is dramatically narrowed. This
effect is known as Dicke or motional narrowing, fuller accounts of which are
given by Dicke (1953) and Galatry (1961). As the pressure is raised further,
however, the normal pressure broadening effect dominates. Neglecting the
pressure dependence at very low pressures the Raman linewidths in hydrogen

can be described by the equation (Murray and Javan, 1972);

2
DOKO

cnd

Aw (FWHM) =

+ ad 3.32

Where[)o is the self-diffusion coefficient found by the same authors to be
1.361/c cm2 Amagat, d is the density in Amagat units and a is the pressure
broadening coefficient given by Trutna and Byer (1980) as 1.267 x 10_3 cm“1
Amagat—1. The first term obviously corresponds to the Dicke narrowing effect,

the second the pressure broadening.

1
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Fig. 3.1 shows the linewidths derived from this equation, both forwards and

backwards.

For Methane, which is a heavier molecule, the Doppler widths are smaller,
Using the same pump, Aw(Forward) = 0.009 cm_1 and Aw(backwards) = 0.05cm_1.
The vibrational transition involved actually contains a number of different
rotational levels which, because of the narrow forwards Doppler width, can be
resolved at low pressures (May et al, 1978). However, pressure broadening
becomes significant at around 1 atmosphere before Dicke narrowing can have

any effect, and by about 3 atmospheres the rotational levels have all been
smeared out into a single, nearly symmetrical Lorentzian. At higher pressures
this continues to be broadened in the normal way. Taira et al (1982) have
measured the linewidth in the region 3-50 Atm. They obtain for the

forwards linewith;

bwp = 0.32 + 0.012.P cm” ! 3.33

where P is the pressure in atmospheres. The backwards linewidth is the
same as the forwards above about 10 Atm, below this residual Doppler effects

make it larger than the forwards one.

The differential scattering cross-sections do/dQ are calculated from

tabulated measurements taken at other wavelengths.
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These in turn are usually quoted as some factor times a standard measurement,
normally that of scattering in nitrogen. Fenner, Hyatt, Kellam and Porto

(1973) give values for do/dQ for H, and CHy, using 514nm radiation.

H, (all transitions) , do/dQ = 2.2 x 4.3 x 10731 cmz/sr

CH,, (all transitions) , do/d2 = 6.0 x 4.3 x 10-31 cmz/sr

We have seen that for H2 the factor of 0.66inAN ensures that we only consider
the V=0,J=1 to V=1,J=1 transistion. Schotter and Klockner (1979) describe
how these cross-sections are corrected for use at different pump wavelengths.

The relevant equation is;

2
b 1 1
do Mg () (sz W te v W )
T |l = —F - ' 1g p g S /Ap
P Mg (0 = 51hnm) . 1 2
P (Q] N IO ) _
g p lg S ) xp = Blhnm
do

dQ | Ap=51hnm 3.34

The first term is the normal wsh frequency dependence. The:second term takes

into account the dispersion due to the intermediate level. In hydrogen

this is at 2, x 90,000 em ).

cross~sections are measured. The estimated errors on the cross-sections

51knm is the most common wavelength at which

are about * 20%.Trutna and Byer (1980) give no indication of the possible
error on the pressure broadening coefficient a, but Murray and Javan (1972)
claim errors of less than 7% on similar measurements. Combining this with

the few percent error on the number density gives us a possible error of about
30% in the plane-wave gain coefficient. The analysis of Cotter et al (1975),
for predicting actual threshold values will introduce a further few percent

error and so the overall error is still around 30%.
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3.4.2

Calculated Threshold Powers

The predicted pump thresholds for a number of pump wavelengths will be
worked out for hydrogen gas at 30 atmospheres pressure. 30 atmospheres is
chosen because at this pressure the linewidth is well into the pressure
broadened regime resulting in maximum gain. In each case fairly tight
focussing of the pump beam is used, the actual value of L/bp used being
taken from experiments described in the next chapter. The population densgity
of equation 3.29, the linewidth from equation 3.32 and the differential
scattering cross section of equation 3.34 are all substituted into equations

3.27 and3.28 to give the plane-wave coefficients. These are then substituted

into equation 3 25 with the relevant focussing values, to give us our
predictions for the Raman threshold powers. The results are presented in

the table below.

Table 3.1 Predicted threshold powers for unguided SRS in H2

Pump Wavelengths (um) 1.650 | 1.064| 0.532 | 0.355 | 0.266
1st Stokes Wavelengths (um) 5.23 1.907 ) 0.683 | 0.416 | 0.299
Plane wave gain coeff. (cm/GW) 0.14 0.69 2.86 5.74 9.90
Focussing: L/bp 15 10 3 13 10
Threshold power (kW) 12778 1370 175 50 22
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The Raman shift in hydrogen is h155.2cm-1, the largest shift available

from a simple vibrational transition. The wavelengths chosen are the Nd:YAG
fundamental, its harmonics and 1.65um - a typical wavelength from a low
power F-centre or vibronic laser. Clearly, the threshold powers are rather
high for the longer wavelengths. This is one of the reasons for which the
wave-guide techniqyes described in this thesis were investigated. We shall

see that their use drastically reduces these predicted threshold powers.

For methane we anticipate the fact that for the longer wavelengths (532Am

and above) the Brillouin gain will be larger than the steady state plane-wave
Raman gain and so Raman scattering will not occur with our 30ns long pre-lase Q-
switched pulses. With pulse lengths that are 100-500ps long, however, it can

be shown using the arguments of the previous section that the Raman effect
remains in the steady-state regime whilst the Brillouin effect becomes transient,
resulting in much higher thresholds. Although a high power, short pulse,
multi-wavelength source was not available in the laboratory, the predicted
results are presented below for comparision with hydrogen, and also because

the gain coefficients will be needed in future chapters. The pressure was

kept at 30 Atm. for a direct comparison. The results were calculated in the

same way as the hydrogen results.
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Table 3.2 Predicted threshold powers for unguided SRS in CH&

Pump Wavelengths (um) 1.65 1.064 0.532 0.35 0.266
1st Stokes Wavelengths (um) 3.169 1.544 0.629 0.396| 0.288
Plane Wave gain Coeff (cm/GW) 0.068 0.185 0.555 0.936| 1.323
Focussing: L/bp 15 10 11.5 13 10
Threshold Power (kW) 22310 4958 781 303 162

The Raman shift in methane responsible for the 1st Stokes wavelengths
presented is 2916cm_1. It can be seen that the gain coefficients are
substantially lower than those for hydrogen, largely due to the bigger Raman

linewidths given by equation 3.33.

3.5 Numerical Predictions from Theory:

Brillouin Scattering in Hydrogen and Methane

To make predictions of the expected Brillouin scattering pump threshold
powers we again need a value for the plane-wave gain coefficient, this time

given by equation 3.18 as;

2 2
ug 75 [P 9€/y 0] 3.18
CBnV/O

QB:

Minck, Hagenlocker and Rado (1967) obtain numerical values for hydrogen at

various pressures, but at the low temperature of 77K.
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Lowering the temperature greatly increases the Brillouin gain coefficients.
At room temperature and typical pressures chosen for Raman scattering the
Brillouin gain is much less than the Raman gain in hydrogen and so Brillouin
scattering never occurs - certainly it has never been a problem in any
experiments performed in the work for this thesis. Methane, on the other
hand, has comparable experimental Raman and Brillouin gains at ordinary
temperatures and pressures, and so an attempt will be made to derive the

predicted Brillouin gain coefficient.

3.5.1 Obtaining Values for the Parameters in the Gain Coefficient

The frequency shift resulting from Brillouin scattering is given by wp = ZKLV.
Since the velocity of sound V is very small compared to the velocity of light c,
wB<<wp and So Wézwp in equation 3.19. Again the refractive index n is put

to unity. The quantities of interest are therefore the phonon lifetime Tk,

the coefficient of electrostriction {/C)bej’b/i], the acoustic phonon velocity V

and the density /3.

An expression for the phonon lifetime (Dr J G Hey, private communication)

can be written as,

, _
hie, 1]: n(T) + K(T) [CV(T) - CP(T)]}
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Where n(T) is the viscosity, K(T) the thermal conductivity and CP(T), CV(T)
the specific heats at constant pressure and volume respectively. All these

quantities can be obtained from standard tables.

An expression for[ﬂ,ée/ép__k can be obtained by differentiating the Clausius-
Mossotti equation for non-polar gases with respect to the density <.

The result at a fixed pressure P is;

pa_e_ oy (er - l)P 3-36
3P |o

E} - 1 can be obtained from tables. Note here that it is this quantity

which is responsible for the gB<xP2 dependence of the Brillouin gain. The
acoustic phonon velocity is just the speed of sound in methane and can also

be obtained from tables. The densgity can be calculated from the pressure
using the Tdeal Gas Law. This quantity is needed only for the phonon lifetime
values since it cancels out if equation 3.35 is substituted in equation 3.18.

The result of doing this can be written as (including equation 3.36);

2
€, - 1)

th(T)an(T) + K(T) |:~C\17‘I_‘Y - —C—I—ﬁﬂ} 3.57
p

93

This is our final expression for the steady-state Brillouin gain. Normally
this number would be evaluated and substituted into equation 3.25 to determine
the threshold pump power under realistic focussing conditions. We are assuming
here that the same matched mode analysis applies for Brillouin scattering as

for Raman scattering.
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Anticipating differences between predicted and experimentally measured
thresholds it is worth noting here that Trutna and Byer (1980) derive a
different expression from Cotter et al for the threshold powers using

focussed Gaussian beams (see next section). Their expression is;

22X . 1n(P./P..)
Pp,th = P _? S0 3.58
Lg tan (L/bp)

where again we have assumed that Apasks.

Another point worth anticipating is that when the numbers are put in equation
3.35 for the phonon lifetimes, it is found that they are comparable to

typical pump laser pulse lengths at high pressures, and so the transient

regime is being approached. To deal with this we need values for the transient
gain coefficients and these are given by equation 3.26. |t can be shown that
if equation 3.26 is incorporated into equation 3.25 for focussed Gaussian

beams, the new transient regime threshold power is given by;

mue[1 + {1 + (k/bt tan_1[L/b[]). (30 + t/T)Z}Vz]Z 3.59

2,2
2K™W
P 8

P, th

If equation 3.58 is used instead of equation 3.25 the result is;

Dp(T/bt) (30 + t/7)° 3.60
P = ‘

p,th hg tan-](L/bp)
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3.5.2 Calculated Threshold Powers

The plane-wave gain coefficients will be calculated at 1 Atm and then

the equation;

gB(P) = g, (1 Atm). P 3.61

can be used to predict the gain at any other pressure. A typical focussing
parameter of L/bp= 1.31 is used here as well as in the experimental
measurements, The values obtained from tables for the parameters in equations

3.55 and 3.57 are as follows (all at 1 Atm);

Table 3.3 Numerical parameters used in the calculation of the SBS gain

coefficient for CH)

Parameter Value Units

n, (at 293K) 1.087 x 1077 Ns /m?

V (at 273K) 4.3 x 10 m/s

€r -1 (at 273K) 8.54 x 107

c, (at 298.15K) 3.56 x 10 K o1 ™!

K (at 300K) 3.42 x 1072 g7ttt
R (Gas constant) 8.314 KT mor™!
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The results of interest are the phonon lifetime given by equation 3.35; the
factor TB/4 (30 + t/TB)2 necessary for the transient ,eﬁyations, (we assume here
that t = 30 ns, the typical pulse width from a pre-lase Q-switched telescopic
resonator); the steady state threshold powers predicted by either equation 3.25
or equation 3.58 (Trutna and Byer's theory) and finally the transient theory
threshold powers predicted by equation 3.59 and equation 3.60. The results

are calculated at various pressures using equation 3.61 and are presented in
table 3.4. All these thresholds are independent of pump wavelength insofar

as we have approximated wsﬁ;wp and assumed that 6} -1 is frequency independent

to a first approximation.

If we compare the gain coefficients of this table with those of table 3.2 for
Raman scattering in methane we can see that the Brillouin gain coefficients
are all much bigger. Only down at a few atmospheres pressure (where the

gain coefficients of table 3.2 must be approximately halved) do they become
comparable for 1.064 um pumping. This is consistent with the fact that
steady-state Raman scattering in methane gas using a 1.064 pm pump has not

been reported.

The relative merits of the four sets of predicted thresholds will be considered
in the next chapter where experimental results will also be presented to
compare with them. Suffice it to say that the transient results are likely

to be the more accurate ones since the steady-state condition AvL<31 AvR/G
(where the highly nonlineaf dependence of Stokes growth is also considered -
Ibison, 1982) gives, for a 30ns long,single mode pump pulse and an assumed
G=30 gain, Tp & Ins. From table 3.4 this is clearly not the case at all

pressures, especially the higher ones.
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The question then only remains of whether the Trutna and Byer expression

is a better descriPtion than that of Cotter et al. MNote also, however, that

a fast Q-switched telescopic resonator, having a linewidth of ~0-3 cm_1, will
have temporal structure of duration ~0.1 ns. Compared with the phonon
lifetimes of table 3.4 this is highly transient (especially with the extra

G factor) and yet Raman Scattering is still around the edge of the steady-state
regime. Jt is expected, therefore, that Raman scattering should occur before
Brillouin scattering for fast Q-switched pulses - especially at lower

pressures,

3.6 The Raman or Brillouin Oscillator

As mentioned in the introduction to this chapter, one method by which Raman

or Brillouin thresholds can be reduced is to form a resonator for the

generated Stokes radiation. This has the effect of greatly increasing the
interaction length for the process and thereby reducing the pump powers required

to produce the same overall net gain.

At first one might suppose that the focussed beam theory of Cotter et al
(1975) could be repeatedly applied for the many cavity transits the Stokes
radiation makes in the duration of the pump pulse, due account being taken of
the end mirror reflectivities. That this can not be done now is largely due
to the fact that there is a compromise between the tendency of gain focussing
to establish a particular matched Stokes mode size, and the tendency of the
resonator to establish a mode satisfying self-consistency (i.e. repeating on

each round trip).



71

A more appropriate treatment would therefore be to take into account the
amount by which the pump beam overlaps the Stokes modes of the oscillator.
I1f the pump beam is a TEMOO mode then we would expect that the best overlap
would be with the TEMOO mode of the resonator. Further, we would expect

the minimum threshold for some matching ondition where the two modes were of

the same order in size.

Boyd and Kleinman (1968) and then Boyd, Johnson and Kaminow (1969) perform
just such an analysis. The nonlinear susceptibilities and polarisations are
defined in just the same way as in the ear]y parts of this chapter, but they
then show, again by substitution of the polarisation in Maxwells equations,
that theincrement in Stokes power per transit in a particular mode TEMmn of

a resonator is given by;
AP -Im Vs *
S(myn) = i_—i- J ES(m,n) PS dxdydz 3.62

P¢ is the nonlinear polarisation given by (in the case of Raman and Brillouin

Scattering) equation 3,10, where we take only the imaginary part of X(3)~ We
can see from equation 3.62 that it contains an overlap integral as suggested
above, ES(; n) acting as a projection operator to pick out the contribution

?

that the polarisation makes to the Stokes field E A1l that we need to

S(m,n) "
do now is substitute in pump and Stokes fields with the appropriate spatial

profiles.
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We shall see in chapter 5 that this can be done for a capillary waveguide.
We concentrate here on an unguided resonator. Kogelnic and Li (1966) show
that stable resonators support Gaussian beams, and that for the TEM00 beam

in a symmetric resonator the waist size in the centre is given by;

o x o2y 1/h
WO_ oY (2Rd - d°)

3.63

Where R is the radius of curvature of the two mirrors and d is the distance

between them. Now the electric fields of focussed Gaussian beams can be

written as;

£ E 2
= o ex -r K 3.64
14+iT P b(1+1T) ‘

Where r = x2 + yz, K= 1/A, T=2z/b and b= waoz/x is the confocal
parameter, WO being given by equation 3.63. If the pump beam and Stokes
beam are both written in this form and substituted into equation 3.62 the

result is (forAPS/PS«U;
AP P (L)
5 _ 5 - -1 ( LB
TDE-— In [_T—YPS 5 ) = l-iPpg A tan (——2 j 3.65

2 2 2 27 -3
Where A = [xp {1 + (wso/wpo) } + *s {1 + (wpo/wso) U

1

and B 5 5
™ A{] + (Mg o/ }
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For a fixed Pp the maximum of this function occurs when (WSO/WPO)= IXS/AP,

the equation then reduces to;

Po (L) Lp
S - p9 -1 fL
‘”(F;YET) = o, o (’5‘) 366

Where bp is the confocal parameter of the pump. This is the result quoted
by Trutna and Byer (1980) which they then go on to use (erroneously we feel)

in a theory for their single-pass threshold measurements where In (PS(L)/PS(O»

is set to ~ 30.

Note that equation 3.65 contains the pump power PP. For steady-state single
pass experiments it was possible to approximate this value by the peak power
occurring in a typical pulse from a Q-switched laser. Now that the Stokes
is being resonated for the entire duration of the pump pulse, the temporal
profile of the latter must be taken into account. For a pre-lase Q-switched

pulse the profile is approximately a Gaussian and can be written as;

2 2
Pp(t) = PPO(O) exp (~2.773t°/17) 3.67

where T is the full width at half maximum power. |t is shown in appendix 111
that if a pump pulse of this form propagates in one direction only through a

Stokes resonator of length L and mirror reflectivities R, and R, for the

1 2

Stokes wave, the peak power PPO in the pump pulse that is required to reach

threshold is given by equation A7, and can be written as;
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(n-1)/.
= 30—(” /z)ln(RIRz) - 1n(1-R,)
lg A tan”! (18/2).6

3.68

Where S = [1 + 2b exp(- ath/T2)+ 2 exp(—a(ZtT)z/Tz)“akZ exp(—ai;%l.tT/f}z)]

Where C in equation A7 has been replaced by 4A tan—](LB/Z) from equation 3.65
and the linear Stokes losses  have been set to zero. ty is the cavity transit
time and a = 2.773. |If Pp given by equation 3.68 is evaluated for an
increasing number of cavity transits a minimum of PP0 will be found for a
certain number of transits. Beyond this the cavity losses start to have

more of an effect than the increased interaction length. The minimum PPO will

be the experimentally measured threshold power.

This is our final result for the unguided Raman or Brillouin oscillator.
Equation 3.68 is best evaluated on a computer where n can be varied until a
minimum of PP is obtained. A simple programme was therefore written for this
purpose. The theory was checked experimentally in a short experiment described
in the next chapter. The main interest in this theory, however, occurs when

it is extended to cover the case of a wavequide oscillator, as we shall see

in chapter 5.
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L, EXPERIMENTAL INVESTIGATIONS OF UNGUIDED RAMAN AND BRILLOUIN SCATTERING

In this chapter the theoretical predictions of chapter 3 for single-pass,
tightly focussed, unguided Raman and Brillouin thresholds are compared with
experimentally measured values. These measurements were made to provide a
benchmark against which the performance of guided wave processes could be
judged. Also, good agreement between theory and experiment was sought to give
confidence both in the value of the material parameters used and in the later

extension of the theory to handle guided wave situations,

In the single-pass experiments detailed below the theory was tested using
different pump wavelengths, different pump linewidths and also at different
hydrogen and methane gas pressures. Fairly tight focussing was used in each
case since equations 3.25 or 3.59 clearly show that the lowest threshold

is obtained with tight focussing. [t must be remembered, however, that for
the longer wavelengths, where the expected thresholds are going to be high,
a limitation on tightness of focussing is imposed by the occurrence of gas

breakdown. A typical intensity value for this is around 3 or 4 GW/cmz.

In addition to the single-pass experiments a hydrogen Raman oscillator was
briefly looked at as another, though much less successful, alternative to

guided configurations as a method for reducing the threshold powers.
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L The Basic Experimental Arrangement

The experimental arrangement used for both Raman and Brillouin Scattering

is shown in fig. 4.1, Very simply, the output of the telescopic resonator

is passed through a variable attenuator and then focussed into a cell
containing the hydrogen or methane gas. The focussing lens system is arranged
such that the focussed beam waist is at the centre of the nonlinear medium.
Alternatively, the output of the telescopic resonator can first be converted
to its 2nd or 3rd harmonics and these used instead as the pump wavelengths.

tn all three cases the light emerging from the gas cell in the forwards
direction is passed through a system of diagnostics where either the residual
pump beam is monitored, 1st Stokes detected and measured or both. Some

elements of the experiment, however, need further explanation.

1.1 The Telescopic Resonator

The telescopic resonator used in all the single-pass experiments comprised a
9.53 mm diameter rod with the appropriate cavity built around it, as detailed
in tables 2.1 and 2.2 of chapter 2. In all cases the output was taken from the
narrow beam end of the cavity which always consisted of an uncoated resonant
reflector capable of handling high powers. The theory of chapter 2 and also
computer performed ABCD matrix calculations predict a waist size of 0.41mm at

the resonant reflector. This value is needed for all beam matching calculations.
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When operating pre-lase Q-switched the mode selection was provided by a

7.5 cm long resonant reflector in conjunction with a émm thick, 20%
reflectivity per face intra-cavity etalon, as shown in fig. 2.9, design (1).

No attempt was made to temperature stabilise the mode selectors, nor was any
electronic monitoring of the pre-lase build-up performed. ~Consequently, the
output was SLM on about 80% of shots, the remaining 20% being two-mode shots

of various degrees of amplitude modulation. On some shots baseline modulation
was observed corresponding to beating between two modes of equal amplitude.

It is these shots that were used to measure two-mode thresholds. On single
mode shots, therefore, the linewidth is less than the cavity mode spacing i.e.
by < ‘/QJ_==0.oub5 en”'. In fact a recent measurement (I D Carr, private
communication) has revealed it to be Av = 0.001 cm_1. For two mode operation
by = 0.0045 . To deliberately achieve multimode operation, ideally all
mode selection should be removed and in addition fast Q-switching should be used.
This would result in a linewidth of ~ 0.3 cm_] due to gain narrowing alone
(Equation 2.15). In our case, however, we still keep a 6mm resonant reflector
as the output coupler to allow high power operation and this will result in
further mode selectivity. Calculations using the equations of section 2.3.1
reveal that the linewidth will be narrowed to around 0.06 cm-1 and not the
value of 0.3 cm-] quoted in appendix |1, The value of 0.06 cm_] is, however,

still sufficiently multimode for our purposes.

In all three cases the 100mJ output was obtained, pulse lengths being typically

around 25-30ns. Amplitude stability was better than about 5%.
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4,1.2 The Raman (Brillouin) Cell and Gas Handling System

Hydrogen and methane pressures up to about 50 atmospheres are of interest

and so a strong, well designed gas cell and gas handling system was needed
incorporating features such as over-pressure release valves and gas flushing
facility. The final design arrived at is shown in fig. 4.2. Most of it is
self~explanatory. The gas cell itself is constructed from standard 'Aminco'
stainless-steel end tees and pipe. VWhen the pressure is to be varied, as in
most of the measurements in this chapter, it is convenient to leave the cell
attached to the gas handling system. In these cases the tap and pressure gauge
attached to the cell are not necessary. Of critical importance are the two

end windows of the gas cell. To avoid any feedback effects the surfaces of
these windows must make a large angle with the direction of the pump beam.

To achieve minimum loss this angle would have to be Brewster's angle. Thus,
cylindrical Brewster windows were designed, as were special bolts to hold them.
These are shown in the diagram. The windows are held in place, against 0-rings,
by the gas pressure within the cell. The thickness of the windows (made at [COS
in Spectrosil B) was sufficient to provide a wide safety margin at 50
atmospheres pressure. They also provided a free aperture of 5mm, sufficient

to allow tight focussing at the wavelengths used in cells around 50 cm long.

4,1.3 The Beam Attenuator

A technique was needed to vary the pump pulse intensity whilst leaving the
pulse length and beam direction unaltered. An ability to handle a high

intensity was also necessary.
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The method employed here, and also in experiments with guided configurations,
made use of two glass flats which could be set accurately at any given angle
as shown in fig. 4.3, If the angle of incidence is the same for both flats,
and they are both unwedged and of equal thickness, then the main beam will

pass through undeviated. The plates act as a variable (polarisation dependent)
attenuator because the intensities reflected and refracted at an air/glass
interface depend on the angle of incidence. The larger the angle of incidence
(for the S-polarisation) the greater the reflection and the less is the
transmission. When all four surfaces are taken into account the total power

transmission is;

T — [Sin(Zi)Sin(Zr)

> 7 }l+ for p-polarisation L1
Sin“(i+r)cos” (i-r)

T :[sm(zns;n(
SinZ(i+r)

2r){“
] for s-polarisation 4.2
where i is the angle of incidence and r is the angle of refraction given

by r —sin! (Sini/n), n is the refractive index of the glass.

Fig. 4.3 also shows the rejected beams that must be dealt with safely, and
also extra reflected beams which must be blocked to ensure that only the
beam transmitted straight through without any reflections is the one that

reaches the rest of the experiment.
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The beam splitter is normally used such that the incident beam is s~polarised
since this results in a smoothly increasing loss as the angle of incidence is
increased i.e. there is no Brewster's angle for this polarisation. |In
addition, the losses are higher than the losses at the same angle for the
p-polarisation. In the s-polarisation orientation the attenuation varies

between 15% at i = 0° and 95% at 80°.

4,1.4 2nd and 3rd Harmonic Generation

The output of the telescopic resonator at 1.064um can be converted to its
second harmonic at 532nm using a frequency doubling crystal. |In our case

a 2.hcm long piece of type | phase-matched KD*P was used. It was cut for
critical phase matching (Sm:= 46.5°) and room temperature operation. The
divergence of the telescopic resonator is 0.83 mRad when the output is

taken from the narrow beam end (V%):: 0.41mm). This is comparable to the

0.67 mRad acceptance angle of the doubler (Koechner (1976)) and would result
in a reduced doubling efficiency. Thus, a collimating lens was placed just
before the doubler. In this case a 1m lens was used at a distance of 60cm
from the telescopic resonator. This produces a waist at the exit to the lens,
having a spotsize of 0.645mm. A waist makes the calculation of 2nd harmonic
spotsizes and subsequent beam matching mucheasier, i.e. wo(532nm)==-WO(1.064pm»Uf,

and it is still a waist.

The 2nd harmonic is separated from the fundamental using two prisms, (fig.4.h4).
Prisms have an advantage over filters in that they do not absorb energy, heat
up and distort the beam; and over mirrors in that they do not have a residual
transmission at the wavelength to be eliminated. The prisms can also be used

2 - . 3 a
at Brewsters angle if losses are an important consideration.



84

The 3rd harmonic is produced by including a KD*P mixing crystal immediately
after the doubler. This crystal addstogether a fundamental and a 2nd
harmonic photon to produce a photon at the 3rd harmonic i.e. 355nm. Again
a waist is desirable at the input, the resulting waist spotsize of the 3rd

harmonic being given by WO (355nm) = W (1.064um) / 3.

The polarisation of the 2nd harmonic from the type 1 doubler is at 90° to
the fundamental. The type Il mixing crystal resulted in a 3rd harmonic

polarisation in the same plane as the fundamental.

The pulse lengths are also shortened by the nonlinear process. The
relationships are analogous to the spot-size relations i.e. T(532nm)=
T(1.06b4um) /2 and T(355nm) = T(1.064um)/ J3. These relationships were

verified using a fast vacuum photodiode.

Typical output energies with 100mJ of pre~lase Q-switched 1.064 um radation were
= 10mJ at 532nm and 3mJ at 355nm. No attempt was made to maximise these
energies by operating with smaller waist-sizes since these energies were more
than sufficient to reach threshold in H

¢

k.2 Single-Pass Raman Scattering in Hydrogen

The first experiments performed used SLM pulses at the three wavelengths
1.064um, 532nm and 355nm which were tightly focussed into the centre of a

hydrogen gas filled cell equipped with Brewster windows.
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The temporal profiles of the pulses were smooth Gaussians with pulse

lengths consistent with the equations of the previous sections. In each

case the transmitted pump was monitored with a vacuum photodiode and a
transient digitiser, the overall rise time being about 0.5ns. In addition

to this, direct detection of the Stokes radiation was performed using a
pyroelectric energy meter (Laser Precision Corp. Model RKP 335) and appropriate
filtering to eliminate other wavelengths, especially the pump. With 1.064um
as the pump the vacuum photodiode must incorporate an S1 photocathode. This
is insensitive to the 1st Stokes at 1.907um and caﬁ be used without filters
to monitor pump depletion. The 1.907um can itself be detected and measured
using the pyroelectric energy meter and a germanium filter. This blocks

all radiation with a wavelength shorter than 1.8um. It transmits about 30%
at 1.907um. With 532nm or 355nm radiation as the pump the 1st Stokes
wavelengths are at 683nm and 416nm respectively. Both an S1 and an $20
photo-cathode will respond well to all four of these wavelengths, and so some
filtering is necessary. Perhaps the best wayis touse a prism and then some
aperture to separate off the required component, and this was the method

used here.

For each of the three pump wavelengths the Raman threshold was measured

at a hydrogen pressure of ~435 psi (~3QAtm) which is well into the pressure
broadened regime and hence gives the minimum threshold. Threshold was
measured by varying the transmission of the two-plate attenuator until either
(i) the smooth temporal profile of the transmitted pump had a tiny notch taken
out of it near the peak, or (ii) the pyroelectric energy meter just detected

1st Stokes on every shot (This corresponded to an energy of about 1uJ).



The pump threshold power was obtained by measuring the pulse energy just

before the cell, measuring the pulse length (FWHM) and substituting them

into the equation;

p __ 0.94 x E(thresh)

p,th — T (FWHM)

Where the factor 0.94 is a consequence of treating the time behaviour as

having a Gaussian shape.

The experimental results are presented in the table below alongside the

theoretically predicted results of the last chapter.
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4.3

As can be seen there

is agreement to within 10%. This suggests that our estimate of the errors

in the theoretical values are a little pessimistic.

Table 4.1 Experimental and Theoretical Thresholds for Unguided SRS in H2

Pump wavelength (nm)

1st Stokes wavelength (nm)
Focussing: L/bp
Theoretical threshold (kW)

Experimental threshold (kW)

1064
1904

9
1370

1340

532
683

3
175
155

355
h16
13
50
50
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A more searching test of the theory involved the case of 1.064um pump

pulses of various linewidths in hydrogen at various pressures. Multi-mode,
single mode and two-mode pulses were used and the pressure was varied between
~8Atm and 35 Atm. This experiment is described more fully in Berry and
Hanna(1983) which is reproduced in appendix ||, The graph of the results is
also presented here as fig. 4.5. As can be seen, the experimental values for
multi-mode and single-mode pulses are in excellent agreement with the theory
curve taken from chapter 3. The two~mode thresholds are lower as predicted,
although they do not decrease by the factor of two that would have been
expected if the medium showed a steady-state response even to the modulated
structure of the pump pulse. A more careful consideration of the nonlinear
growth of the Stokes wave (lbison, 1982) suggests that only at much higher

pressures would the steady-state response be fully achieved.

It is clear from these results that we have at our disposal a good understanding,
and usuable theory, of stimulated Raman scattering in hydrogen. For methane
the occurrence of SBS under conditions of single-pass pumping and single

mode operation precluded a study of SRS as achieved for H However,

9
experimental results for SRS in methane obtained under different circumstances
indicate also a good agreement with theory. We will go on in the next section

to describe experiments which test the theoretical predictions for SBS.

4.3 Single Pass Raman and Brillouin Scattering in Methane

Experiments were performed to investigate the response of methane gas at
various pressures to tightly focussed, SLM and multimode, 1.064um pump pulses

of about 30ns duration.
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The basic experimental arrangement is again as shown in fig. 4.1. Any
Brillouin scattered radiation will occur in the backwards direction and

so some explanation of the diagnostics is necessary. |t is also necessary

at this point to consider the polarisation of the pump beam and how the
threshold depends on it. Hitherto, linearly polarised light has been assumed
in the theory of chapter 3 and used experimentally so far in this chapter.
Now Brillouin scattered radiation, travelling in the backwards direction (and
also the phase conjugate of the pump beam) would re-enter the laser cavity
and thereby alter its performance, and also that of the Brillouin scattering
process itself, To prevent this effect the laser and Brillouin cell can be
isolated either by making the distance between them very large (i.e. with a
transit time greater than half the pulse width); by using a A/4-plate and
polariser as shown in the box in fig. 4.1, or by using the well known Faraday
rotator and polariser technique. Faraday rotators are bulky and expensive,
although they do result in the presentation of linearly polarised light to
the Brillouin cell. The A/4-plate and polariser combination is much more
convenient and compact and needs no bulky power supply. The only
disadvantage is that it presents circularly polarised light to the Brillouin
cell. fortunately, however, the experimentally measured Brillouin scattering
thresholds for circularly polarised light are the same as those for linearly
polarised light to within experimental error. The main disadvantage, therefore,
that the A/h-~plate has over the Faraday rotator is that a Brewster input window

cannot how be used on the Brillouin cell.

When measuring Brillouin Scattering thresholds with circularly polarised

pump radiation threshold could be detected either by monitoring the transmitted
pump and looking for slight depletion (not possible for multimode pump pulses)
or by detecting the Brillouin scattered radiation at 1.064um being rejected

by the polariser.
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This could be done with either a pyroelectric energy meter for quantitative
measurements above threshold, or a phosphor card for just threshold detection.
When using linearly polarised light straight from the laser, threshold could again
be detected by monitoring the pump,by monitoring the reflection off an angled
glass plate through which the input beam is passed, or alternatively, by
detecting the appearance of a small subsidiary pulse delayed from the peak of

the main transmitted pulse by the laser to Brillouin cell round-trip time.

Raman Scattering thresholds were detected in the same way as for hydrogen.
The Raman shift in methane is 2916(:m_1 resulting in a 1st Stokes wavelength
of 1.544um. Thus, a silicon filter can be used to discriminate between pump
and 1st Stokes, a Judson J12 or pyroelectric energy meter performing the

detection. Alternatively, 2nd antistokes at 656.6nm can be visually detected.

The experimental results, using focussing conditions of tan-](L/bp):: 1.31

in a cell L4hem long, are presented in table 4.2 below and also on the graph of
fig. 4.6. Results were taken using linearly polarised SLM and multimode
pulses, and also circularly polarised SLM pulses, as the methane pressure

was varied between 250 and 500 psi. In all cases the pulse lengths were ~30ns.
For the circularly polarised case the energy in the Brillouin Scattered beam
was also measured,allowing the reflectivity of the Brillouin cell to be
determined. This is simply the ratio of the energy in the Brillouin Scattered:
beam to that in the input pump beam. Thus, a fixed pump energy of 37.75md

was input at each methane pressure allowing the variation of reflectivity

with pressure to be demonstrated.
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Figure 4.6: Raman and Brillouin thresholds in methane gas at various
pressures.



In the case of the linearly polarised, multimode pump Raman scattering

threshold was reached before Brillouin scattering started for all but

the highest pressures.

92

For these measurements, therefore, the pump power

was increased above Raman threshold until Brillouin scattering was also

detected. Brillouin threshold was therefore also measured.
Table 4.2 Unguided, tight-focussing SRS and SBS thresholds for
1.064um Pumping in CH,

Pressure | Raman Th. (MW) Brill,Th(Mw) Brill.Th.(MW) Brill.,Th(MW) Reflectivity

(psi) multi,linear multi,linear| S.L.M,linear| S.L.M, (%) S.L.M,
circular circular

150 1.93

200 1.57 1.11 1.18 0

250 1.29 0.87 0.845 9.5

300 1.1 1.61 0.70 0.74 19

350 1.00 1.15 0.60

Loo 0.86 0.97 0.54 0.42 32

450 0.77 0.79 0.48

500 0.70 g.70 0.42 0.32 35

As can be seen the linearly and circularly polarised SLM results are

approximately the same at all the pressures measured.

Also, Raman scattering

does not occur, as expected, for these pulses due, of course, to the fact

that the Brillouin gain is always higher.
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Even if the pump intensity were increased way above Brillouin threshold

the Brillouin effect would deplete the pump and thereby still prevent

Raman threshold being reached. The Brillouin thresholds are higher for
multimode pulses than for single mode pulses, probably as a result of two
combined effects. Firstly, for forward Raman scattering, the increased
threshold that would result from the transient character of the pump
fluctuations is offset by the fact that a Stokes wave can travel with the

high intensity fluctuation. For backwards SRS and SBS the Stokes wave cannot
avail itself of the peak intensity over the entire interaction length,
Secondly, Raman threshold is reached first as a result of this, the pump

pulse is depleted by SRS and the Brillouin threshold is made even higher.

The multimode Raman thresholds are much lower than those predicted in chapter 3
for the steady-state for the reasons outlined in section 3.3 of that chapter.
Namely, the Raman response time of the medium is so fast that it is comparable
to the typical durations of the fluctuations within the multimode pulses.

Since these fluctuations have powers much higher than the average powers of
table 4.2 and fig. 4.6, and yet are still nearly steady-state, Raman threshold

is reached.

But how do the single-mode Brillouin thresholds measured compare with thése
predicted from the theory of chapter 37 Fig. 4.7 shows a graph of our
experimental results as compared with the theoretical values from table 3.4.
Three theoretical curves are plotted (i) the steady-state theory using the
focussing analysis of Cotter et al embodied in equation 3.25; (ii) the transient
theory using Cotter's analysis and (iii) the transient theory using Trutna

and Byer's treatment of focussed beams embodied in equation 3.60.
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Figure 4.7: Comparison between experimental and theoretical Brillouin
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As expected, the transient theory curves are much closer to the experimental
results. Notonly this, however, the transient theory of Trutna and Byer
coincides almost exactly with the experimental results whereas hitherto
Cotters focussing theory has been applied with remarkable success. In fact,
however, the possible errors in the theoretical threshold calculations are

likely to be worse than the ~30% estimated earlier for SRS.

We have here additional uncertainties connected with the transient analysis,
the derivation of [/3565/3/0] and also the phonon lifetimes. Errors as

large as a factor of 2 are therefore not unlikely and so the results of fig. 4.7
cannot be considered to give a definite demonstration of the validity of

Trutna and Byer's theory.

Either way, it seems as though we have an adequate understanding of Brillouin
scattering theory to make useful predictions from it. The main use of this
theory, as we shall see, is to be able to predict when the Raman gain is
higher than the Brillouin gain, thereby allowing us to generate wavelengths

further into the infrared.

4.4 Ramén Scattering in a Hydrogen Raman Oscillator

The oscillator theory of section 3.6 of the last chapter was checked briefly

for the case of Raman Scattering in hydrogen, Although many similar experiments
have been reported elsewhere (e.g. Avizonis and Heimlich, 1959 or McClung

and Close, 1969) none have used quite the same analysis as section 3.6 nor

had as well defined a pump pulse as provided by the pre-lase Q-switched

relescopic resonator.
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The experimental arrangement is shown in fig.4.8. For various reasons it

/W, )=

was difficult to satisfy the minimum threshold requirement of (WSO

1
(As/xp)* obtained from equation 3.65, and so a typical experiment had the

PO

following parameters. The gas cell was filled to 350 psi with hydrogen and
consisted of a gain medium of length Lg:: 32cm between Brewster windows.
Lenses 1 and 2 were both uncoated and had focal lengths of 30cm. Mirror 1

had a reflectivity at 1.907um of ~100%, and so when combined with the
uncoated lens gave a net reflectivity of R, = 0.84. Similarly mirror2 was 39%

reflective at 1.907um giving R 0.23. The lenses were placed fairly close

2:
to the mirrors and resulted in a cavity of overall length Le= 65.5 cm

(when the distance between the lenses was 57cm). Equation 3.63 predicts a

Stokes spotsize at the centre of the resonator of 199um. Using a 1m matching
lens, and lengths 11::1895mn, 1= Lhem, a pump waist size of 68um occurs

at the centre of the resonator. The pump pulse length on this occasion was

36ns. When using equation 3.68 to predict the threshold power one must be
careful not to confuse the gain medium length with the cavity length. The

latter must be used to calculate the cavity transit time, whereas the former

must be used in the tan—1(LB/2) term. Including all these values in equation
3.68 gives a theoretical threshold peak pump power of PP — 340kW, with threshold
reached after 21 cavity transits. This should result in a notch being taken

out of the transmitted pump profile ~21ns after the peak. Experimentally

the threshold was measured by varying the transmission of the beam attenuator
until just such a notch appeared (fig.4.9). |Its position is, indeed, ~ 20ns
after the peak. The measured threshold was (using equation 4.3}, Pp(exp):: 385kW
which represents a 13% error on the theoretical result, well within expected
possible errors. 1t would appear, therefore, that we have an adequate theory

for dealing with unguided resonator configurations.,
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Figure 4.8: Bagic Raman oscillator experiment.

Figure 4.9: Transmitted pump profile just on threshold. (10ns/div)





