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Abstract

The increasing penetration of electric vehicles (EVs) and renewable gen-
erators (RGs) in the power grid is an inevitable trend to combat air pollution
and reduce the usage of fossil fuels. This will challenge distribution networks,
which have constrained capacity. However, appropriate dispatch of electric
vehicles via vehicle-to-grid (V2G) operation in coordination with the dis-
tributed renewable generators can provide support for the grid, reduce the
reliance on traditional fossil-fuel generators and benefit EV users. This paper
develops a novel agent-based coordinated dispatch strategy for EVs and dis-
tributed renewable generators, taking into account both grid’s and EV users’
concerns and priorities. This optimal dispatch problem is formulated as a
distributed multi-objective constraint optimisation problem utilizing the An-
alytic Hierarchy Process and is solved using a dynamic-programming-based
algorithm. The proposed strategy is tested on a modified UK Generic Distri-
bution System (UKGDS). The electricity network model is simplified using
a virtual sub-node concept to alleviate the computation burden of a node’s
agent. Simulation results demonstrate the feasibility and stability of this
dispatch strategy.
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adj(v) nodes that are directly connected to node v via distri-
bution cables

bp electricity buying price
bpmax the top electricity buying price
bpmin the minimum electricity buying price
chi(v) children nodes of node v
evi ith EV
fij the power flow from node vi to vj
gi ith RG
hbp high electricity buying price
loadave the average of daily fixed load demand
loadcev EVs’ total charging load at a node
loaddev EVs’ total discharging power at a node
loadifix non-controllable load at node vi
loadh high fixed load threshold
loadl low fixed load threshold
loadmin minimum fixed load demand
loadmax maximum fixed load demand
loadtot the total load at a node
lsp low electricity selling price
pi power output of ith RG
pec(fîi) total penalty cost of the dispatch actions at node vi and

all its children that result in the power flow value fîi
sp electricity selling price
spmax the top electricity selling price
spmin the minimum electricity selling price
tij the distribution cable between node vi and vj
vi node i of the distribution network
v̂i node i of the distribution network
δi dispatch mode of the ith EV
Cep penalty cost of dispatching EVs in a costly way
Cij thermal capacity of the distribution cable between node

vi and vj
CRG penalty cost of wasting renewable power
CSOC penalty cost of insufficient SOC
Pmax
i maximum power output of ith RG
PRG the actual amount of renewable power that is used
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P̃RG maximum available renewable power
PCa the pairwise comparison matrix for the AHP model of

agents that have both EVs and RGs
PCb the pairwise comparison matrix for the AHP model of

agents that have only EVs
SOC the state of charge of an EV
PfPc a Power Flow and the associated Penalty Cost message
SOCn the SOC at the beginning of the next time interval
SOCp the expected SOC at the end of the current time interval
SOCpf the desired SOC of the EV battery before departure
Tp available preparation time before departure in multiples

of defined dispatch time interval
Toparenti→î an array of PfPc messages sent from node vi’s agent to

its parent agent
LinkToPfDstate Dispatch states at node vi and all its children that result

in the corresponding PfPc message formed at node vi
U utility function

1. Introduction

Renewable generators (RGs) are increasingly replacing traditional fossil
fuels to help meet the global requirement of air pollution alleviation and
carbon emission reduction[1]. However, without effective management, those
intermittent RGs could raise serious issues in the electricity network [2], such
as imbalance between supply and demand, network overload and waste of the
surplus renewable power.

As traffic results in about 26% of the worldwide CO2 emissions, electric
vehicles (EVs) will increasingly penetrate into the power grid to replace fuel-
driven vehicles and realize clean transport [1, 3, 4, 5]. The global EV market
is forecast to grow from 1.7 million units in 2012 to 5.3 million units in
2020 [6]. At this rate, the number of EVs is set to increase considerably.
This large-scale penetration of EVs will challenge the power system as an
additional load due to the substantial need for battery charging, but it could
help to increase the penetration of intermittent renewable energy sources by
absorbing the extra electricity generated from these sources and then feeding
it into the grid when needed [7, 8]. By applying an optimal coordinated
dispatch strategy of EVs with V2G operation and RGs, those issues that
they might cause can be addressed. Furthermore, they may be even capable
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of providing operational support to the power grid and decreasing the total
electric power production cost [9, 10].

Many papers have discussed strategies for dispatch of EV batteries when
they are connected to the grid. An algorithm was proposed in [11] for optimal
charging of EVs formulated as a stochastic dynamic programming problem
taking into account the intrinsic uncertainty of their travel pattern. A charg-
ing optimization approach was proposed in [12] to maximize the total electric
energy that all EVs absorb from the grid while avoiding violations of voltage
limits and components’ loading. Risk-aware day-ahead scheduling and real-
time dispatch algorithms were developed for EV charging by Yang et al. [13]
to minimize overall charging costs and the risk of EV load mismatch with the
scheduled demand. A rule-based EV battery dispatch strategy consisting of
three rule sets was demonstrated by Ma et al. [14], where the battery char-
acteristics, SOC and electricity buying/selling prices were considered when
determining the dispatch action (i.e. charge/discharge) and the rate of dis-
patch (i.e. charge/discharge current). The management of EV batteries has
also been discussed in the literature [15, 16, 17, 18, 19]. However, as demon-
strated in [20], in order to effectively reduce the CO2 emissions and reap
desired environmental benefits, RGs should provide at least a part of EVs’
charging energy.

A conceptual framework of wind-EV coordination is developed by Li et
al. [1], which includes three-level hierarchy, to minimize the total grid op-
erational cost including emission cost. However, this algorithm is used for
day-ahead scheduling rather than real-time dispatch and requires central-
ized management. An optimal scheduling of EV charging was discussed by
Zhang et al. [21] to minimize the mean waiting time of EVs at a renewable-
power-aided charging station under cost constraint. However, vehicle-to-grid
operation was not considered. Gao et al. [22] developed a hierarchical control
structure for the dispatch of V2G batteries in the presence of RGs, in order
to minimize operating cost. However, the proposed framework is applied to
day-ahead scheduling of EV charging and discharging power instead of real-
time operation. A control algorithm was proposed in [7] where wind power
is used to minimize the generation cost; EVs are dispatched to smooth out
fluctuations in wind power and improve the system’s frequency regulation.
However, the algorithm doesn’t take into account the geographical location of
the vehicle and associated local network constraints. The concept of virtual
power plant (VPP) is utilized in [23], where VPPs consist of wind genera-
tors and EVs, to maximize the profits of selling electricity in the market.
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However, this methodology is mainly based on day-ahead and off-line opti-
mization; it is not a real-time dispatch approach. Network constraints are
not taken into account either. Evangelos et al. [24] proposed a distributed
price-based algorithm so that EVs are coordinated with RGs and system’s
load levelling is achieved. However, network constraints are not considered
in the model. It is a day-ahead scheduling approach instead of real-time dis-
patch, and the algorithm is not fully decentralized as in this model an agent
requires the data from the whole network, e.g. total load demand, total DG
power and SOC of EV batteries etc.

Most of the publications mentioned above, as well as [25, 26, 27, 28], focus
on the centralized dispatch of a power network, which requires an awareness
of the whole network. That could be problematic when faced with a large
network with many renewable generators whose power outputs depend on
unpredictable nature elements like wind and sunlight that could change at
any time. Moreover, the number of constraints grow exponentially when the
network becomes large [29], therefore at the end it will be nearly impossible to
solve an optimal dispatch problem in a centralized way using available com-
puter. Using a decentralized approach to solve the dispatch problem address
the shortcomings of centralized dispatch, namely, the exponential growth of
the computational and information gathering effort which render centralized
dispatch to be unsuitable for real-time application. A decentralized approach
shares the computational and information gathering effort amongst several
agents, which solve the dispatch problem more efficiently. Such a system
also has the advantage over a centralized approach in terms of expandabil-
ity. It can be readily extended when the network expands or changes by
including additional agents leaving the rest of the agents largely unchanged.
Some researchers have developed partially decentralized dispatch approaches
[24, 30, 31, 32]. But they either neglected the capacity constraints or used
a recursive strategy where the number of recursion increases exponentially
with the increasing penetration of distributed generators. There is therefore
a clear gap in the research with regards to the application of decentralized
system to solving the coordinated dispatch of RGs and EV batteries, includ-
ing V2G.

Therefore, a comprehensive coordinated dispatch strategy for both EVs
and RGs is yet to be developed. Such a strategy needs to be decentralized and
consider both EV users interests and grid operational requirements. Focusing
on the different requirements of EV users and the grid will inevitably result in
different dispatch patterns of EV batteries and RGs. Thus, every requirement
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needs to be weighted according to its relative importance when determining
the dispatch mode of EV batteries and renewable generators.

In this work, a novel agent-based coordinated dispatch strategy for EVs
and RGs is developed for real-time application, which aims at satisfying the
concerns and requirements of both EV users and the grid, including 1. cost,
as saving charging cost is a very common request of EV users, which are taken
into account in many publications [13, 14, 18, 19]; 2. sufficient SOC for the
next journey, which is important because mobility is the basic function of
an EV, as considered in many researches [1, 11, 13, 19, 21]; 3. improved
utilization of renewable energy, because it is crucial for carbon emission re-
duction, as discussed earlier and in [1, 5, 7, 8]; 4. load levelling, which is one
of the main grid operational support that EV batteries can provide and is
also discussed in many papers [9, 15, 19, 24]. In this strategy, each node in
the network is represented by an software agent which is only aware of the
elements that are locally connected to it and manages the dispatch of EVs
and RGs connected to it, based on information received from the agents of
other nodes that are directly linked to it, so that the stability of the network
is ensured and all the objectives of dispatch are best achieved.

Being aware of a very large computational burden that could occur at
a node’s agent connecting with a great number of children nodes, a novel
concept of a virtual sub-node is proposed to simplify the electricity network
model in order to reduce this burden. Accordingly, the dispatch problem is
formulated as a distributed multi-objective constraint optimization problem
(DMOCOP) and then solved using a dynamic-programming-based algorithm
to derive an optimal set of dispatch actions for EVs and RGs within a distri-
bution network. The DMOCOP is developed from the distributed constraint
optimization problem (DCOP) that was proposed in [33], using an Analytic
Hierarchy Process (AHP) [34] to take several different objectives of dispatch,
as discussed above, into account at the same time.

The proposed dispatch strategy is tested on a modified UKGDS, which is
a radial distribution network, for its stability, feasibility and effectiveness at
satisfying the requirements of both EV users and the grid. In practice, the
aggregator or the distribution network operator (DNO) is supposed to be in
charge of this optimal dispatch problem.

The rest of this paper is organized as follows. In Section 2, the proposed
coordinated dispatch strategy of EVs and RGs is presented in detail. The
results of simulations using MATLAB to verify its feasibility and efficacy, are
presented and discussed in Section 3. Finally, the conclusions of the work
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are presented in Section 4.

2. Coordinated Dispatch Strategy of Electric Vehicles and Renew-
able generators

The aim of the strategy is to realize optimal coordinated dispatch of
EVs and RGs in the distribution network so that multiple objectives can be
achieved such as saving charging cost to EV users while ensuring sufficient
electricity remains in the batteries for the next journey, reducing waste of
energy generated by RGs and supporting grid’s operation like load levelling.
It is assumed that the dispatch actions are conducted every 30 minutes.

The independent variables include the vehicles’ driving patterns, which
are initially randomly assigned as commonly done in many studies [17, 35].
The other independent variables including renewable power fluctuation, price
of electricity and load pattern are determined based on historical data that
can be found in [36, 37]. The dependent variables include cost, degree of
utilization of RG, load levelling and SOC as discussed in Section 1.

2.1. General Description of the Electricity Network and Agents

Figure 1 shows a radial distribution network, which is derived from a UK
Generic Distribution System (UKGDS)[38]. It includes renewable generators
and EVs. The node v0 is the slack bus, which is connected to the rest of
power grid.

In more detail, the network contains a set of renewable generators, which
are denoted by G = {g1, . . . , gn} with each generator gi producing a certain
amount of renewable power pi ∈ RGi MW. RGi = {0, . . . , Pmax

i }, where
RGi is discretized into 1 MW steps to simplify the computational burden
and Pmax

i ∈ Z+ is the maximum power output of renewable generator gi
rounded to the nearest whole MW at a particular moment in time; Pmax

i will
vary depending on the environmental conditions (e.g. cloud cover or wind
speed variation). Let p = {p1, . . . , pn} denote a set of power output variables
for the renewable generators in G.

Moreover, the network provides the capability of connecting a great num-
ber of EVs, each of which can be either charged or discharged. EV represents
a set of EVs, where EV = {ev1, . . . , evm}. Each EV has 7 choices of dispatch
mode when it is parked and connected to the grid: charge (+) or discharge
(–) at high (3), medium (2) or low-level (1) current, OR idle (0). Thus, each
EV evi is dispatched in a certain mode δi ∈ DMi = {−3,−2,−1, 0, 1, 2, 3},
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where the sign indicates the dispatch action (i.e. charge/discharge), and the
absolute value represents the dispatch current level. Let δ = {δ1, . . . , δm}
denote a set of dispatch modes for EVs in EV.

V = {v1, . . . , vk} denotes the set of nodes within the network. A node
vi exchanges power with other nodes and contains a combination of fixed
loads, EVs and RGs. chi(vi) denotes a set of children nodes of vi, while
adj(vi) represents a set of adjacent nodes of vi, i.e., nodes that are directly
connected to vi via distribution cables, including its children nodes and its
parent node. loadifix represents the fixed load at vi, while EV(vi) and G(vi)
denote the sets of EVs and RGs connected at vi, respectively. Note that
EV(vi) = ∅ and G(vi) = ∅ respectively mean that vi contains no EV and
no RG.

The set of distribution cables in the network is denoted by T and tij refers
to the distribution cable between nodes i and j. The power flow along the
cable tij is denoted by fij, and cannot exceed the thermal capacity of the
cable, Cij.

Furthermore, the network is controlled by agents in a decentralized way.
Each node vi is represented by an agent, which is aware of the output power
domains of the local RGs, G(vi), and all possible dispatch modes of the con-
nected EVs, EV(vi), and has control over the dispatch of renewable power
output and EVs. Each agent has a utility function, carries out a part of
the computation required to achieve optimal and stable operation of the net-
work (i.e. utility computation) and communicates the computation results
with its adjacent agents that map to the adjacent nodes adj(vi) of its desig-
nated node vi. In this work, the utility function maps to the penalty cost at
the designated node, which takes into account multiple objectives, using the
Analytic Hierarchy Process (AHP), and measures how well these objectives
are achieved. Based on the above definitions, this optimal coordinated dis-
patch problem can be formulated as a distributed multi-objective constraint
optimisation problem (DMOCOP), which is developed from the distributed
constraint optimisation problem (DCOP) proposed in [33], after simplify-
ing the model using the virtual sub-node concept proposed in the following
section to relieve the computational burden of a certain agent.

2.2. Simplification of The Model Using Virtual Sub-Node Concept

As will be discussed in the following section, an agent of a node performs
computations based on the information received from its children and con-
ducts the communication with them and the parent node. In a large network
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a node vi may have a great number of children nodes, which increases the
computational and communication burden. In order to solve this issue, vi is
considered to consist of several virtual sub-nodes, each of which is connecting
some of vi’s children nodes and controlled by a sub-agent of the agent that
maps to vi. The sub-agents work simultaneously, with each sub-agent under-
taking a part of the computation dealing with the information sent from the
children of the corresponding virtual sub-node. A diagram of the distribu-
tion network with virtual sub-nodes is shown in Figure 2. In these figures,
v11, v21 and v31 are the three virtual sub-nodes of v1. The load connected to
v1, load

1
fix, is connected directly to the parent node. Furthermore, the dis-

tribution cable between v1 and v0 is divided into three virtual sub-cables,
whose thermal capacities are defined based on C01 and load1fix. As load1fix
is the fixed load at node v1 consisting of active load pload1fix and reactive
load qload1fix. The total complex power that can be transmitted via v1 to
its children is limited in both active (real) and reactive (imaginary) parts, as
follows:

Cpn01 =

∑
s∈chi(vn1 )

Cs1∑
d∈chi(v1)

Cd1

× (pload1fix ×
(C01 − |load1fix|)
|load1fix|

) (1)

Cqn01 =

∑
s∈chi(vn1 )

Cs1∑
d∈chi(v1)

Cd1

× (qload1fix ×
(C01 − |load1fix|)
|load1fix|

) (2)

where Cpn01 and Cqn01 are the capacities of the nth virtual sub-cable in terms of
active and reactive power flows, respectively. chi(vn1 ) is a set of child nodes of
the virtual sub-node vn1 , e.g. chi(v11) = [v2, v3] in Figure 2. Similarly, chi(v1)
is a set of v1’s children, i.e. [v2, v3, v5, v7, v9, v11, v12]. These 2 equations will
be easier to interpret using Figure 3. In Figure 3, the total capacity of the
virtual sub-cables should be x = C01−|load1fix|. The absolute vale of load1fix is
used to cater for both absorbing loads and generators. The apparent power
capacity of a virtual sub-cable Cn

01 is determined by multiplying x by the
ratio of the total capacity of the cables connecting vn1 to its children nodes,
which equals

∑
s∈chi(vn1 )

Cs1, to the total capacity of all the cables connecting the

original v1 node to its children nodes, i.e.,
∑

d∈chi(v1)
Cd1. Active and reactive
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power capacities are calculated by multiplying the apparent power capacity

of each virtual sub-cable by
pload1fix
|load1fix|

and
qload1fix
|load1fix|

, respectively.

The validity of the virtual sub-node approach has been verified via mathe-
matical analysis and simulation (Details are given in the Appendix A), which
demonstrate that it does not compromise the optimal dispatch results in this
work.

2.3. Formulation of Distributed Multi-Objective Constraint Optimisation Prob-
lem (DMOCOP)

The DMOCOP extends the DCOP procedure described in [33] to multi-
objective optimization problems. It contains three main elements:

1. Variables: a set of h variables X = {x1, . . . , xh}. In this work, xi can
be a renewable generator’s power output or an EV’s battery dispatch
mode. Thus, in this work X = {p, δ}.

2. Domains: a set of finite domains D = {d1, . . . , dh}, which include all
possible values of variables X. In this work, di can be represented as
follows:

di =


RGi

when xi is a
renewable
generator

DMi
when xi is an
EV battery

(3)

3. Utilities: a set of k utilities U = {U1, . . . , Uk}, each of which corre-
sponding to an agent. In this work, Ui maps to the penalty cost at
agent i, i.e., how unsatisfactory a combination of dispatch actions is
in terms of the objectives. They are formed by using the AHP, as
discussed in the following section.

The objectives include saving cost while leaving sufficient charge in an
EV’s battery, network load levelling and reduction of wasted renewable en-
ergy.

Objective 1 (RE): Reduce wasted renewable energy.
Assume that the weather forecast is accurate enough, and it is predicted

that a renewable generator’s power output P̃RG is available during the fol-
lowing time interval of 30 minutes. The penalty cost of wasting renewable
power CRG is measured as follows:
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CRG = (P̃RG − PRG)/P̃RG, (4)

where PRG is the actual amount of power that is injected by a RG into the
network.

Objective 2 (BS): Sufficient EV battery SOC.
Assuming that EVs’ travel patterns are available (either directly entered

by the user or estimated based on information in their diary or passed travel
history), then the expected SOC at the end of the current time interval SOCp

is estimated to be:

SOCp =



SOC
if EV has no

travel plan during
the next 2 hours

SOCpf−SOC

Tp
t+ SOC

if EV has travel
plan within 2 hours
and current SOC
is not enough for
its next journey

(t=1 time interval)

SOCpf

if EV has travel
plan within 2 hours

and has enough SOC
for its next journey

(5)

When the EV is expected to travel within the next 2 hours, a linear
interpolation is used to determine the value of SOCp as illustrated in Figure
4. Tp is the available preparation time before the next journey in multiples
of dispatch action time interval, i.e. multiples of 30 minutes. SOCpf is the
desired SOC of the EV battery before the next journey, which may be lower
than the current SOC value, in which case the EV will be able to participate
in V2G operations.

The aim is to keep the SOC at about 0.5. The penalty cost of insufficient
SOC CSOC is measured as follows:

1. If the EV has no travel plan during the next 2 hours and the battery
is more than half full at the end of this time interval OR if the EV will
be used in 2 hours and battery’s SOC is not less than SOCp at the end
of the time interval, then:

CSOC = 0. (6)
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2. If the EV has no travel plan during the next 2 hours and the battery
is less than half full at the end of this time interval, then:

CSOC =
0.5− SOCn

0.5− Smin

, (7)

where SOCn is the battery’s SOC after a time interval of charging/discharging.
In this work, the lower limit of SOC Smin is selected to be 0.4 to provide
a good margin above the absolute minimum of 0.3.

3. If the EV has travel plans within 2 hours and the battery’s SOCn is
lower than SOCp:

CSOC =
SOCp − SOCn

SOCp − Smin

. (8)

Objective 3 (CC): Save charging cost to EV users.
The penalty cost is sure to be low when an EV is charged at a low elec-

tricity buying price while discharged at a high selling price. And the penalty
cost Cep could vary depending on the how fast the EV is charged/discharged,
i.e., the charging/discharging current.

1. Charge at high current (i.e. 30 A):

Cep =

{ bp−bpmin

hbp−bpmin
bp < hbp

1 bp > hbp
. (9)

2. Charge at mid-level current (i.e. 10 A):

Cep =

{
|bp−(bpmin+hbp)/2|

(hbp−bpmin)/2
bp < hbp

1 bp > hbp
. (10)

3. Charge at low current (i.e. 2 A):

Cep =

{ hbp−bp
hbp−bpmin

bp < hbp

0 bp > hbp
, (11)

where bp is the electricity buying price. bpmax and bpmin are respectively
the top and bottom buying prices, while hbp is the high buying price
threshold defined as hbp = 0.9∗(bpmax−bpmin)+bpmin. Equations (9)–
(11) give progressively lower penalties as the charging current reduces.
Similarly, the penalty cost for selling is defined as follows:
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4. Discharge at high current (i.e. 30 A):

Cep =

{ spmax−sp
spmax−lsp sp > lsp

1 sp 6 lsp
. (12)

5. Discharge at mid-level current (i.e. 10 A):

Cep =

{
|sp−(spmax+lsp)/2|

(spmax−lsp)/2 sp > lsp

1 sp 6 lsp
. (13)

6. Discharge at low current (i.e. 2 A):

Cep =

{ sp−lsp
spmax−lsp sp > lsp

0 sp 6 lsp
. (14)

7. No dispatch (i.e. 0 A):

Cep =

{
0 sp 6 lsp&bp > hbp
1 otherwise

, (15)

where sp is the electricity selling price. spmax and spmin are respectively
the top and bottom selling prices, while lsp is the low selling price
threshold defined as lsp = 0.1 ∗ (spmax − spmin) + spmin. These price
data can be derived from historical data [36].

Objective 4 (LL): Load levelling in the distribution network.
The daily fixed (non-controllable) load demand is assumed to be available

for both peak and off-peak periods. With the integration of EVs and RGs,
the peak load could be pulled up further and might result in some spikes, or
high power could be generated in the network and transferred to the rest of
the grid through the slack bus during the off-peak period. Therefore, one of
the objectives of coordinated dispatch of EVs and RGs is peak shaving and
valley filling, i.e. load levelling. The penalty cost of failing to level the load
Cll is evaluated as follows:

Cll =



0 loadl 6 loadtot 6 loadh

loadtot−loadh
loadmax−loadh

loadh < loadtot < loadmax

loadl−loadtot
loadl−loadmin

loadmin < loadtot < loadl

loadmin

loadtot
0 < loadtot 6 loadmin

loadtot
loadmax

loadtot > loadmax

, (16)
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where loadmin and loadmax are respectively the minimum and maximum fixed
load demand during a day. loadh and loadl are the high and low fixed load
thresholds, respectively, and they are determined by:

loadh = (loadmax + loadave)/2, (17)

loadl = (loadmin + loadave)/2, (18)

where loadave is the average of daily fixed load demand. loadtot is the total
load at a node, which can be calculated by

loadtot = loadfix + loadcev − loaddev − PRG, (19)

where loadfix is the fixed load at a node, which is not controllable. loadcev
and loaddev are the EVs’ charging load and the EVs’ discharging power, re-
spectively. PRG is the RG’s output power.

2.4. The Analytic Hierarchy Process

In order to jointly consider these objectives and thus the corresponding
penalty costs in the optimization process, they should be weighted depending
on their relative importance in determining how EV batteries and renewable
generators should be dispatched in coordination.

The Analytic Hierarchy Process (AHP) is a multi-criteria decision-making
method developed by Saaty [34], which has been widely used in various areas
including power systems [39, 40, 41]. In this work, AHP is used to determine
the priorities of different objectives of dispatch (i.e. the different require-
ments of users and grid). The main steps of the AHP methodology can be
summarized as follows:

Step 1: A hierarchy model is established based on an analysis of the
problem.

Step 2: Pairwise comparison matrices are formed at each level of the
hierarchy model. Each element A(i, j) in the pairwise comparison matrix A
depicts the expert’s judgement of relative importance between the pair of ith
and jth factors using the ratio scale method [34, 41]. A(i, j) is the reciprocal
of A(j, i).

Step 3: For each pairwise comparison matrix, the maximum eigenvalue
and the corresponding eigenvector are calculated. The normalization of the
calculated eigenvector gives the normalized principle eigenvector with ele-
ments equal to the priority scales (weightings) of the factors.
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Step 4: The consistency of judgements is checked. The Consistency Index
(CI) and Consistency Ratio (CR) are measured for each pairwise comparison
matrix. The CI is defined as

CI =
λmax − n
n− 1

(20)

where λmax and n are the maximum eigenvalue and the dimension of the
corresponding pairwise comparison matrix, respectively. The CR is defined
as

CR =
CI

RI
(21)

where RI is a set of given average random consistency indices which can be
obtained using statistical calculations [40]. If CR is no larger than 10%, the
inconsistency of judgements is acceptable. Otherwise, the judgements need
to be revised.

Two different hierarchy models are respectively built up for the agents
that only involve EV battery variables and those that have both EV battery
and renewable generator variables, as shown in Figure 5.

The priorities of these agents’ objectives are determined by forming a
pairwise comparison matrix for each of the AHP hierarchy models shown in
Figure 5; the scale numbers in the matrices are determined by the aggrega-
tor in practice based on experience and common sense. The matrices PCa

(Figure 5(a)) and PCb (Figure 5(b)) are:

PCa =


RE BS CC LL

RE 1 1
2

2 2
BS 2 1 2 2
CC 1

2
1
2

1 1
LL 1

2
1
2

1 1

, (22)

PCb =


BS CC LL

BS 1 2 2
CC 1

2
1 1

LL 1
2

1 1

. (23)

By calculating the principle eigenvectors of PCa and PCb, the priorities of
RE, BS, CC and LL are found to be 27.81%, 39.52%, 16.34% and 16.34%,
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respectively for AHP model (a), and the priorities of BS, CC and LL are
respectively 50%, 25% and 25% for AHP model (b).

The utilities U of agents that involve both EV battery and RG variables
are then calculated as follows:

U = 27.81%× CRG + 39.52%× CSOC

+16.34%× Cep + 16.34%× CLL,
(24)

while the utilities U of agents that only involve EV battery variables are
calculated as follows:

U = 50%× CSOC + 25%× Cep + 25%× CLL. (25)

2.5. Constraints

For the stability of the electricity network and the better performance
of EVs and RGs, several constraints are applied. The goal of agents is to
find an assignment X∗ for the variables in X (i.e. a combination of dispatch
actions of EVs and RGs) that minimises the sum of penalty costs (i.e., the
sum of utilities):

arg min
X∗

k∑
i=0

Ui, (26)

subject to the following constraints:
Constraint 1: The sum of power flow into a node vi should be equal to

the sum of power flow out:∑
j∈adj(vi)

fij + loadfix + loadcev − loaddev − PRG = 0, (27)

where adj(vi) is the set of nodes that are connected to the node vi. fij is the
power flow from node i to j, and fij = −fji.

Constraint 2: The power flow along a distribution cable should not exceed
its capacity:

|fij| 6 Cij, (28)

where Cij is the thermal capacity of the distribution cable between nodes vi
and vj.

Constraint 3: The SOC of EV batteries should be within the range from
0 to 1:

0 6 SOC 6 1. (29)
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Constraint 4: When the EV is not going to be used within the next 2
hours and the battery is currently less than half full of electricity, the EV
has to be charged:

SOCn > SOC, if SOC < 0.5 (30)

Constraint 5: When the EV has a travel plan within the next 2 hours
and the battery’s SOC is currently less than desired at the end of the time
interval, the EV has to be charged:

SOCn > SOC, if SOC < SOCp . (31)

2.6. Dynamic Programming Decentralized Optimal Dispatch (DPDOD)

In DPDOD, the agent representing a particular node computes the utility
function corresponding to that node according to (24) or (25). A variable
can only be assigned to an agent subject to the rule that an agent controls
the EV battery and RG variables locally at its designated node.

Phase 1 — Value Calculation:
The calculation starts from leaf nodes (i.e., nodes that have no children)

and ends at the root node (i.e. the node that has no parent node). Only
after it receives all the computed results from its children does a node start
its own computation. After that it sends its computing results to its parent
node.

For each agent i (except agent 0 that controls v0), the penalty cost is
calculated for every possible combination of EV battery and RG dispatch
actions, as well as the resulting power transfer along the distribution cable
from the controlled node vi to its parent node v̂i. Hence, a Power Flow and
the associated Penalty Cost (PfPc) message is formed as:

PfPc =< fîi, pec(fîi) >, (32)

where fîi is the power flow from vi to v̂i. pec(fîi) is the total penalty cost
of the dispatch action combinations at vi and all its children that result in
the power flow value fîi. Every PfPc is checked and deleted if an alterna-
tive PfPc exists with the same fîi but smaller pec(fîi). Thus, the remain-
ing PfPc messages are those that record the minimum penalty cost that
can be achieved for the specific fîi’s, which are then formed into an array
Toparenti→î defined as:

Toparenti→î = [PfPc1, . . . , PfPcm]. (33)
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Furthermore, each PfPc in the Toparenti→î maps to a LinkToPfDstate,
which describes the dispatch actions of EV batteries and RGs at vi and the
PfPc messages of all its children that result in the total penalty cost de-
scribed in the corresponding PfPc message. Due to the different properties
of nodes, there is a slight difference between the ways of construction of their
PfPc messages and LinkToPfDstate, which is explained below.

As leaf nodes have no child nodes, they only need to consider their own EV
battery and RG dispatch actions when constructing their PfPc messages.
For each possible combination of dispatch actions at a leaf node vi, a PfPc
message is constructed with power flow fîi calculated as:

fîi = −loadtot = −loadfix − loadcev + loaddev + PRG. (34)

The corresponding penalty cost is then calculated by (24), if vi has connec-
tions to both EVs and RGs, or (25), if vi only has EVs connected to it.
As discussed earlier, some PfPc messages are filtered out due to alternative
PfPc messages available with the same fîi’s but lower penalty cost pec(fîi)’s.
Furthermore, each remaining PfPc message maps to a LinkToPfDstate
which records the corresponding EV battery and RG dispatch actions.

For a node vj that has at least one child node, all the Toparent arrays
that it receives from its children chi(vj) are considered along with its own
EV and RG dispatch actions to compute its own Toparentj→ĵ and construct
the corresponding LinkToPfDstate. For each possible combination of the
dispatch actions of the EV batteries and RGs at vi along with every possible
combination of the PfPc messages received from its children (with one from
each child’s Toparent array), the power flow fjĵ is calculated as:

fjĵ = −loadtot +
∑

c∈chi(vj)

fcj

= −loadfix − loadcev + loaddev + PRG +
∑

c∈chi(vj)

fcj,
(35)

where
∑

c∈chi(vj)
fcj is the sum of power flows recorded in the chosen PfPc

messages from each of vj’s children. For each resultant power flow fjĵ, the
minimum penalty cost that can realized is thus:

min
fjĵ

pec(fjĵ), (36)

18



where pec(fjĵ) is defined by:

pec(fjĵ) = Uj +
∑

c∈chi(vj)

pec(fcj), (37)

where
∑

c∈chi(vj)
pec(fcj) is the sum of penalty costs calculated in the chosen

PfPc messages from each of vj’s children. Uj is the penalty cost calculated
at vj for a chosen combination of EV battery and RG dispatch actions, by
using either (24) or (25) depending on whether EVs or RGs are connected
to vj. Each PfPc message maps to a LinkToPfDstate, which also records
the corresponding EV battery and RG dispatch actions at vj as well as the
associated combination of PfPc messages, one from each child.

Phase 2 — Value Propagation:
Once Phase 1 has been completed, and the root node has received the

Toparent arrays from all of its children, its agent starts to examine every
possible combination of the PfPc messages, one from each Toparent ar-
ray, in terms of whether the demand can be balanced with the supply and
which combination minimizes the total penalty cost. A combination is con-
sidered to be feasible if the required power output from the root node to
satisfy all the corresponding loads within the network is within its given fea-
sible domain. Therefore, the feasible combination that minimizes the total
penalty cost is selected as the optimum state of the network. Then, the
power flow values from each of its PfPc messages are sent to all of the root
node’s children, telling them which of their PfPc messages minimize the
total penalty cost. The child retrieves the correct PfPc message that has
the same power flow value as that received from the root node. Thus, its
corresponding LinkToPfDstate specifies the optimal way to dispatch the
EV batteries and RGs at this node, as well as the PfPc messages whose
power flow values need to be sent to the corresponding children of this node.
By iterating this procedure, the power flow values are propagated to the leaf
nodes at the end. Thus, all nodes in the network know in which way their
EV batteries and RGs should be dispatched to minimize the total penalty
cost and best satisfy the objectives.

The operating procedure of DPDOD are concretely illustrated, taking a
certain node’s agent as an example, in Figure 6.
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3. Simulations

The proposed coordinated dispatch strategy of EV batteries and RGs was
tested on the modified generic radial distribution network shown in Figure 1.
In this distribution network, four renewable generators are located at nodes
v3, v6, v11 and v12, respectively. Moreover, 33000 EVs are assumed to exist
in the network with each node, except v0 and v1, capable of connecting 3000
EVs to the grid at the same time. All the network data, including thermal
capacity of distribution cables, as shown in Table 1. The fixed load at each
node, in Table 2, are derived from UKGDS model [38]. The parameters of
EV batteries are obtained from [14]. The simulation is implemented on a
laptop with a Dual Core 2GHz CPU and 8GB RAM using MATLAB.

The total load demand and system selling/buying prices of electricity
during a day were taken from [36].The total load demand is scaled down so
that the peak demand during a day is 350 MW, which approximately repre-
sents the daily load demand in a typical UK regional distribution network, as
shown in Figure 7. Due to scarcity of information on the payments by/to EV
users when the EVs are charged/discharged, the system selling/buying prices
are adjusted based on domestic tariffs to represent EV users’ selling/buying
prices of electricity [14]. The adjusted system selling/buying price is derived
by adding the difference between the average tariff value and the average sys-
tem selling/buying price to the corresponding system selling/buying price,
as shown in Figure 8:

ASP (t) = SP (t) +


T∑
t=1

tariff(t)

T
−

T∑
t=1

SP (t)

T

 , (38)

where a day is divided into T time intervals. ASP (t) and SP (t) are the
adjusted system selling/buying price and system selling/buying price at time
interval t, respectively, while tariff(t) represents the domestic tariff value
at time interval t. Therefore, the ASSP (i.e. adjusted system selling price)
and ASBP (i.e. adjusted system buying price) in Figure 8 are respectively
used as the EV charging and discharging prices , namely the bp and sp in
Objective 3, respectively.

Furthermore, the renewable generators erected in this network are as-
sumed to be wind turbines, and the daily weather forecast is assumed to be
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accurate enough. The historical wind power data recorded in [37], as shown
in Figure 9, is used in the simulations.

As for the EVs’ travel patterns, they are randomly generated based on
the probability of parked cars during a weekday as shown in Figure 10. When
the EV is on the road, the battery electric energy is assumed to be consumed
at the nominal discharging current (20A) as assumed in [14]. Furthermore,
the initial SOC of EVs are randomly assigned with a normal probability
distribution (µ = 0.6, σ = 0.1). The time step is set to be 30 minutes. The
dispatch actions are determined by the dispatch strategy at the beginning
of every time interval and lasts for the entire time interval of 30 minutes, as
mentioned earlier.

The simulation was run several times, each time starting with a different
randomly assigned SOC, to determine the net costs to EV users (i.e. charging
costs–discharging payments) during a day, as shown in Table 3. In the table,
the average daily charging cost of 33000 EVs within the network is shown to
be £11835 in total (by simply summing up the average daily cost at every
node), thus the average daily cost of each EV is calculated to be only £0.36,
compared to a cost of £1.53 per day per vehicle when EV is charged in
an uncontrolled way (based on simulations assuming that EVs are charged
when their SOCs are less than 0.8 and renewable energy is utilized as much
as possible without overloading the cables). However, the EVs parked at
certain nodes tend to cost more than the EVs at the other nodes and the
amount of costs/payments within the same node also varies, depending on the
driving patterns of EVs and their initial SOCs. Furthermore, the simulations
confirmed that the dispatch strategy ensures that EVs can complete their
daily journeys without running out of electricity on the road and always
ensures that enough energy (over 31% of battery’s available capacity) remains
in their batteries, as demonstrated in Table 4. Figure 11 presents an EV’s
SOC variation during a day under the proposed dispatch strategy, which
includes 2 driving activities from 8:30 to 9:30 and from 14:00 to 14:30.

As for the renewable generators, one of the aims of this dispatch strategy
is to utilize as much of their energy as possible, i.e., wind energy in this work.
The simulation result shown in Figure 12 (Case 1, where the objectives’
priorities are given in (24)) demonstrates consistency with this aim, i.e., the
daily usage rate of wind power within the network is calculated to be 100%,
with no wind power wasted. Compared to Case 1, if the relative priority of
objective RE is lowered (i.e., Case 2 in Figure 12: priorities of RE, BS, CC,
LL are 14.04%, 33%, 19.96% and 33% for example), 1.4% of wind power
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cannot be directly absorbed and utilized by the network if no extra energy
storage device is located at the RG. This occurs because when the RE’s
priority is relatively low, the strategy will choose to save charging cost to
EV users and achieve valley filling at the expense of abandoning some of the
wind power and using less energy to charge EVs, as expected.

Moreover, the changes of network load demand due to the integration of
EVs and RGs are demonstrated in Figure 13, where positive values refer to
load decrease (peak shaving) while negative values imply load increase (valley
filling). It is shown in Figure 13, that a significant load levelling is fulfilled
by the coordinated dispatch strategy, given the relatively small EV storage,
in comparison with uncontrolled dispatch of EVs and RGs. From this figure,
it is clear to see that peak shaving and valley filling has been realized by the
coordinated integration of EVs and RGs for the distribution network’s daily
load demand, and the coordinated dispatch results in a better performance
than the uncontrolled one.

To verify the stability of the proposed coordinated dispatch strategy, the
simulation described above continues running to check EVs and RGs’ perfor-
mance for 7 days. The 7-day load curves of the network with the integration
of EVs and RGs are shown in Figure 14, from which it is obvious that load
levelling is well achieved and the load curves for the 7 days approximately
overlay each other, meaning that the dispatch system is very stable. The EV
SOCs at the end of a day are checked as well to see whether they remain in
a similar normal distribution curve from day to day with similar mean and
standard deviation values, as shown in Figure 15 and Table 5. Moreover,
when EVs start with different assignments of initial SOCs, they will stabilise
at a very similar normal distributions of their SOCs at the end of every day
(i.e. approximately µ = 0.57, σ = 0.22).

4. Conclusion

The feasibility and stability of the proposed agent-based control strategy
was verified by the simulation results. The performance of EVs and RGs
under the proposed coordinated dispatch strategy is stable. Furthermore,
the normal distribution of EVs’ daily final SOCs is very similar from day to
day, even when different initial SOCs are assigned, which also verifies the
stability of the proposed dispatch strategy. On average it costs £0.36 per
vehicle per day, and all journeys are completed leaving the battery with at
least 31% SOC. But individual vehicles connected at different nodes may
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have higher or lower costs due to their locations, travel patterns and initial
SOC. The cost/payment to an EV owner may vary from day to day due
to different initial SOC of the day. A 100% of the wind power generated
is absorbed by the network. EVs and RGs cooperate well to achieve load
levelling of the network’s load demand.

The saving per day of just over £1 per vehicle is small and it may be ar-
gued that this is not a sufficient incentive for drivers to participate in such a
scheme given the impact it may have on their vehicles’ battery life and avail-
ability. However, drivers will be well advised to consider the other important
and indirect benefits. If they don’t participate in such a coordinated charging
scheme they may find that they are not able to charge their batteries or even
have electricity in their homes due to the network reaching its peak capacity
as a result of uncoordinated charging. Participating in the scheme will ensure
that they will continue to enjoy uninterrupted supply of electricity. They will
also benefit from the increase of the utilization of renewable energy and the
corresponding reduction in fossil fuel emissions — they will basically have a
cleaner environment, fresh air and fewer worries about global warming and
other environmental concerns. If they don’t participate and the distribution
network operator (DNO) is forced to upgrade the system, the EV owners will
end up paying more for their electricity to cover the cost of the upgrade.

In the current market condition, there are obstacles to the implemen-
tation and realization of the full potential of the proposed optimal coordi-
nation methodology of EVs and RGs. For example, the financial benefits
to EV users may not be a sufficient incentive for participating in the V2G
scheme. EV users and RG owners may not wish to cooperate with DNOs.
Profit driven DNOs may prefer conventional solutions of network reinforce-
ment over the risky V2G. But the market will continue to evolve driven by
economic, political and social factors, which may improve the prospects for
V2G and coordinated RG and V2G dispatch. The proposed methodology
can be readily adjusted and evolved to accommodate new market conditions.

Appendix A. Proof of Virtual Sub-Node Concept

In order to verify that using the virtual sub-node concept to simplify the
model will not compromise the optimal dispatch results in this work, it needs
to be proved that the following two optimization problems are equivalent (i.e.,
result in the same optimal solutions):
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Problem 1:

min
∑

c∈chi(v1)

pec(fc1)

s.t.
∑

c∈chi(v1)

fc1 6 C01

(A.1)

Problem 2:

min
∑

c∈chi(vn1 )

pec(fc1)

s.t.
∑

c∈chi(vn1 )

fc1 6 Cn
01, n = 1, 2, 3.

3∑
n=1

Cn
01 + load1fix = C01

C1
01 : C2

01 : C3
01 =

∑
d∈chi(v11)

Cd1 :
∑

d∈chi(v21)

Cd1 :
∑

d∈chi(v31)

Cd1.

(A.2)

First of all, because the three virtual sub-nodes are independent, it is
clear that:

min
∑

c∈chi(v1)

pec(fc1) =
3∑

n=1

min
∑

c∈chi(vn1 )

pec(fc1)


s.t.

∑
c∈chi(v1)

fc1 6 C01,

(A.3)

which can be easily proved by contradiction. Then, the next step is to prove
that problem 2 shares the same optimal solution with the following problem:

min
∑

c∈chi(vn1 )

pec(fc1)

s.t.
∑

c∈chi(v1)

fc1 6 C01,
(A.4)

which is an equivalent substitute of problem 1 thus denoted as problem 1’.
As the proposed simplification process (i.e., problem 2) is adding more

constraints on the optimization problem compared to problems 1 and 1’,
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the optimum solved from problems 1 or 1’ might be cut out. Therefore, a
direct way is to prove that the global optimum stays within the constraints
of problem 2. By running the simulation to confirm that the optimal solution
of problem 2 is the same as that of the unconstrained optimization problem:

min
∑

c∈chi(vn1 )

pec(fc1), (A.5)

the global optimum is verified to meet the constraints of problem 2, that is,
the optimal solutions of problem 1, 1’ and 2 are all the same and equal to
the global optimum. In other words, as long as the capacities of the virtual
sub-cables are set such that they are in proportion to the total capacities
of the downstream cables, as defined in (1) and (2), this simplification pro-
cess realizes the equivalence in terms of deriving the same optimal dispatch
solution while reducing the computation burden of the agent.
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Figure 1: Diagram of a modified generic radial distribution network

Figure 2: The diagram of the radial distribution network with virtual sub-nodes

Figure 3: An illustration of how the virtual sub-cable capabilities are derived
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Figure 4: Illustration of the calculation of SOCp when EV has travel plan within 2 hours
and current SOC is not adequate

(a) Agents that have both EV battery and renewable
generator variables

(b) Agents that involve EV battery variables only

Figure 5: AHP Hierarchy Models of the Utilities of Two Types of Agents for the Coordi-
nated Dispatch of EVs and RGs
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Figure 6: The Operation of DPDOD at A Certain Node’s Agent

Figure 7: Total Fixed Load Demand During A Day
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Figure 8: Daily Electricity Price

Figure 9: Daily wind power generated in the network

Figure 10: Probability of cars that are parked during a weekday [14]
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Figure 11: The variation of SOC of an EV at node 2

Figure 12: The usage rate of wind power at each renewable generator (Case 1: Relatively
high priority is given to the objective RE, i.e. the case where priority settings are as
demonstrated in (22) and (23). Case 2: Relatively low priority is given to the objective
RE.)

Figure 13: The change of total network’s daily load demand that is caused by the in-
tegration of EVs and RGs in 2 different ways (i.e. uncontrolled and coordinated ways,
respectively)
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Figure 14: The load demand of the network within a week

Figure 15: EVs’ SOC distribution curves at the end of every day with their initial SOC
randomly assigned with a normal probability distribution (µ = 0.6, σ = 0.1)

Table 1: Thermal Capacity of Distribution Cables

Distribution Cable
Thermal Capacity

(MVA)

From Node To Node

v0 v1 500
v1 v2 52
v1 v3 154
v1 v5 102
v1 v7 76
v1 v9 76
v1 v11 54
v1 v12 154
v3 v4 81
v5 v6 110
v7 v8 46
v9 v10 51
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Table 2: Fixed Load at Each Node of the Distribution Network

Node
Fixed Active Load

(MW)
Fixed Reactive Load

(MVAR)

v1 38.48 11.28
v2 22.98 9.11
v3 56.05 3.63
v4 36.63 9.77
v5 25.32 5.55
v6 55.54 6.19
v7 17.70 0
v8 15.73 2.28
v9 13.14 0
v10 20.93 3.70
v11 99.05 21.09
v12 87.07 16.58

Table 3: Daily costs of EVs calculated from simulations starting with different initial SOC

Simulation
Run No.

Net Costs to EV users
(£)

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
1 1830 1302 -412 -580 -209 648 -845 772 241 2442 935
2 3596 2023 -511 745 930 -660 2133 286 156 2580 2171
3 2725 357 -148 1157 543 -392 1447 1506 1095 2525 3057
4 3131 1444 -883 -237 1605 348 1339 -1073 581 3080 2663
5 3063 890 152 1505 32 1682 1727 1090 1407 520 20
6 3212 783 185 1286 -328 1682 2100 1115 1377 1392 381
7 2760 934 -997 1364 225 1715 1866 1157 1373 266 524
8 2673 1057 -232 1286 -209 1716 1825 1115 1374 845 350
9 3092 769 218 1287 -195 1683 2040 1115 1407 1976 934
10 3114 888 -866 1287 -75 1683 1833 1149 1407 232 -329

Average 2920 1044 -349 910 232 1010 1547 823 1042 1586 1071

Table 4: minimum and maximum SOCs of EVs during a day

Node
Minimum

SOC
Maximum

SOC
Node

Minimum
SOC

Maximum
SOC

v2 0.37 1.00 v3 0.36 1.00
v4 0.40 1.00 v5 0.41 1.00
v6 0.43 1.00 v7 0.33 0.99
v8 0.33 1.00 v9 0.31 1.00
v10 0.33 0.99 v11 0.44 1.00
v12 0.42 0.99
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Table 5: Key factors of EVs’ SOC distribution at the end of every day tested with different
mean values of the random assignments of the initial SOC

Day
µ = 0.5 µ = 0.6 µ = 0.7

Mean
Standard
deviation

Mean
Standard
deviation

Mean
Standard
deviation

1 0.57 0.22 0.56 0.23 0.56 0.22
2 0.57 0.22 0.56 0.22 0.57 0.23
3 0.57 0.22 0.57 0.22 0.56 0.22
4 0.57 0.22 0.56 0.22 0.57 0.23
5 0.56 0.22 0.56 0.22 0.57 0.22
6 0.57 0.22 0.58 0.23 0.56 0.22
7 0.57 0.22 0.56 0.23 0.56 0.22

37


