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Abstract

The spinning drop tensiometry is used for measurements of surface tension coefficients, especially, when interfaces
are characterised by low and ultra-low interfacial stresses. A droplet of lighter liquid is introduced into a rotating
capillary that was initially saturated with another heavier liquid. The tube is subject to axial rotation that results in
droplet’s elongation along the tube’s axis. The equilibrium shape of the droplet is used to determine the surface tension
coefficient. In this work, the evolution of a slowly miscible droplet introduced into a spinning capillary is investigated.
This technique is frequently employed for studies of the dynamics of miscible systems, even despite the fact that a
strict equilibrium is never achieved in a mixture of fully miscible liquids. The numerical modelling of a miscible
droplet is fulfilled on the basis of the phase-field (Cahn-Hilliard) approach. The numerical results are compared
against the experimental data pursuing two objectives: (i) to verify the use of the phase-field approach as a consistent
physics-based approach capable of accurate tracking of the short- and long-term evolution of miscible systems, and
(ii) to estimate the values of the phenomenological parameters introduced within the phase-field approach, so making
this approach a practical tool for modelling of thermohydrodynamic changes in miscible systems within various
configurations.

Keywords: miscible interface, phase-field approach, Cahn-Hilliard-Navier-Stokes equations, spinning drop
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1. Introduction

In a tube with two closed ends filled with two immis-
cible liquids and then rotated about its axis, the centrifu-
gal force separates the liquids so that a lighter one tends
to occupy the inner part of the tube, while the heavier
liquid occupies the outer part. The surface tension as-
sociated with the liquid/liquid interface aims to restore
the spherical shape of the droplet. In a state of mechan-
ical equilibrium, the droplet has an ellipsoidal shape de-
fined by the balance of the centrifugal and surface ten-
sion forces. The equilibrium shape of the droplet is used
to determine the value of the surface tension coefficient
for the liquid/liquid interface.

Vonnegut [1] derived a simple formula to relate the
surface tension coefficient to the droplet’s dimensions.
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His formula assumes that the droplet is strongly elon-
gated so it can be roughly represented as a cylinder of
radius arR and length 2azR (here R is the tube’s radius,
and ar and az are the non-dimensional radial and ax-
ial dimensions of the droplet), with two hemispherical
ends. The surface tension coefficient is then given by,

σ =
1
4

(ρ1 − ρ2)Ω2(arR)3, (1)

where ρ1 and ρ2 are the densities of two liquids in a
mixture, and Ω is the angular velocity. Expression (1) is
valid for sufficiently elongated droplets, when az > 2ar,
which is generally true for higher speeds of the tube’s
rotation.

This idea was employed to build a number of spin-
ning drop apparatuses, see e.g [2, 3]. Further improve-
ments to the design of a spinning drop tensiometer were
suggested in a number of other studies. For instance,
the case of lower rotation speeds, when buoyancy ef-
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fects may become essential are examined in [4, 5, 6].
Inertial oscillations of the liquid/liquid interfaces were
studied in [5]. Criteria to avoid the adhesion of a droplet
to the tube walls were provided by Princen et al. [7],
and, on the contrary, the spinning droplet technique was
modified for measurements of the contact angles at the
liquid/liquid/solid contact in another work by Princen
and Vaidya [8]. In [9], a tube of square cross section
was used, which permitted interpretation of the experi-
mental data without knowledge of the refraction index
of a denser liquid (this was normally needed to take into
account the apparent magnification of the droplet).

The main advantages of the spinning drop method are
as follows, (i) the force that determines the droplet’s
shape, i.e. the centrifugal force, can be varied at will,
in contrast to the techniques based on the action of the
gravity force (pendant drop, sessile drop), (ii) the tech-
nique can be successfully employed for measurements
of ultra-small values of interfacial stress, and (iii) the
shape of the droplet is stable under ‘normal’ experimen-
tal conditions. There are several shortcomings as well.
The main difficulty was found to be a sensitivity of a
mechanical equilibrium of the droplet to e.g. alignment
of the spinning tube, warming up of the apparatus, etc.
For instance, Chan et al. [10] reported that the mea-
sured surface tension coefficient was a function of the
rotation rate in their experiments. The reason of such
dependence remained unexplained, with likely explana-
tion that the liquid/liquid system did not reach the equi-
librium state.

In the current work we deal with the surface tension
introduced for an interface between two miscible liquids
[11]. The surface tension stems from the difference in
intermolecular interactions in different liquids at differ-
ent sides of the interface. For a slowly miscible inter-
face, such a difference in intermolecular forces would
still exist for prolong time periods, resulting in e.g. a
spherical shape of a honey droplet that is immersed in
tea (despite the fact that honey and water are fully mis-
cible). The need to introduce the surface tension for
miscible interfaces was first pointed out by Korteweg
[12] and van der Waals [13], and later by Zeldovich
[14], Joseph [15] and others. The interfacial stresses for
miscible systems are low and the interfacial diffusion
makes the surface tension process-dependent. Never-
theless, the existence of the surface tension at miscible
interfaces was confirmed in a number of experiments
[16, 17, 18, 19, 20, 21]. Such measurements were pos-
sible, as the changes in the surface tension were slower
than the time needed for the measurements.

The use of the spinning drop tensiometry for mea-
surements of the surface tension between two miscible

liquids was first reported in [22, 23]. Later, similar mea-
surements were undertaken by Pojman’s group [19, 20],
who found that the Vonnegut formula holds for long
time periods after the liquids reach a thermal equilib-
rium. The time-changes in the surface tension upon dis-
solution of the droplet were reported. It was also found
that the surface tension was independent of the rotation
rate for the speeds over 6000 rpm, and it was indepen-
dent of the initial droplet volume. It was also observed,
that the droplet’s interface remains sharp for the entire
duration of the dissolution process.

A few numerical simulations of the droplet evolution
in a spinning drop tensiometer were carried out. Hu
and Joseph [24] studied the evolution of an immisci-
ble system using a finite element formulation to solve
the Navier-Stokes equations and a mixed Lagrangian
and Eulerian technique to describe the interface mo-
tion. They found that the rate of the droplet’s evolu-
tion depends on the surface tension, the viscosities of
both liquids, and on the final equilibrium radius of a
droplet. The evolution of a mixture of two miscible liq-
uids within the spinning tube was undertaken in [25],
whose work included the account of the interfacial ten-
sion, defined by the Korteweg stress. The interfacial dif-
fusion was however defined through the standard Fick’s
law, which made impossible to reproduce the long-term
evolution of the droplet.

The system of consistent equations for the thermo-
and hydrodynamic evolution of a two-phase mixture of
miscible liquids was derived by Lowengrub and Truski-
novsky [26]. This system takes into account the effect
of the Korteweg stresses in the momentum equation and
considers the mass flux as a linear function of the chem-
ical potential gradient instead of the concentration gra-
dient. The full system of equations is compressible (due
to dependence of mixture density on concentration) and
its direct numerical solution is hardly feasible. The
Boussinesq approximation of the Cahn-Hilliard-Navier-
Stokes equations was derived in [27]. The equations
in the Boussinesq approximation for a heterogeneous
mixture of miscible liquids are similar to the equations
previously used by e.g. Jacqmin [28] for modelling of
the evolution of immiscible interfaces. The difference
is in the barodiffusion term that appears in the expres-
sion for the chemical potential. The Boussinesq approx-
imation of the Cahn-Hilliard-Navier-Stokes equations is
used for the numerical simulations in the current work.

It should be also noted that the phase-field approach
introduces the new phenomenological parameters (e.g.
the capillary constant is used instead of the surface ten-
sion coefficient). The values of these parameters are
currently unknown. There are only some estimates of
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the capillary constant in e.g. [29, 30]. The lack of
knowledge of these new parameters hinders the wider
usage of the phase-field method. In order to estimate
the values of the introduced phenomenological parame-
ters, and so to make the phase-field approach a practical
tool for consideration of miscible multiphase systems
in other configurations, the numerical results to be ob-
tained in the current study are compared with the exis-
tent experimental data [22, 19, 20]. Instances when mix-
ing of two liquids is essential are ubiquitous in nature
and industry, including the processes of enhanced oil
recovery (miscible displacement), aquifer remediation,
chemical extraction of vegetable oils, etc. [31, 32, 11].
In general, mixing of liquid/liquid and gas/liquid chem-
icals is required prior to chemical reactions can oc-
cur, and hence accurate description of the mixing is
needed for modelling of almost every chemical engi-
neering process.

2. Problem statement

We consider the evolution of two liquids that satu-
rates a capillary tube with circular cross-section of ra-
dius R. The tube rotates around its axis with the angular
velocity Ω. We assume that the liquid/liquid mixture is
isothermal.

The density of the liquid/liquid mixture is a function
of concentration, which is defined by the following sim-
ple linearised relation,

ρ̄ = ρ1(1 + ϕC̄), ϕ ≡ ρ2 − ρ1

ρ2
. (2)

This expression is valid for small density contrasts, ϕ,
which is generally true for all liquid/liquid mixtures.
Concentration C̄ is defined as the mass fraction of one
of the components in the mixture.

Within the phase-field approach, one set of equations
is used to define the whole multiphase system (both liq-
uids and the interface). To derive the governing equa-
tions for the system evolution, the specific free energy
function, f , is defined as the function of concentration
and concentration gradient [33],

f = f0(C̄) +
ϵ

2

∣∣∣∇C̄
∣∣∣2 . (3)

The second term in the above expression (3) takes into
account the surface tension effects. The amplitude of
this term is defined by the capillary coefficient ϵ, which
is generally small so the capillary addition to the free
energy function is only important at the places of large
concentration gradients, i.e. at interfaces.

The classical part of the free energy, f0, defines the
possible states of the binary mixture. We wish to exam-
ine the dissolution of a liquid droplet in another liquid,
when an initially heterogeneous system transforms into
a homogeneous state. The simplest free energy func-
tion that permits such transition, is given by the Landau
expression [34]

f0 = a(C̄ −Ccr)2 + b(C̄ −Ccr)4, (4)

where Ccr is the concentration in the critical point, and
a and b are the phenomenological parameters. This ex-
pression defines the binary systems with the upper crit-
ical (consolute) point: a binary system is homogeneous
if the mixture temperature is above the critical point and
heterogeneous if the mixture temperature is below the
critical temperature. The Landau function was initially
written for the system near the thermodynamic critical
point. The first parameter a is proportional to (T − Tcr),
i.e. positive above the critical point, and negative be-
low the critical point. The second parameter b is always
positive.

For convenience, in the following expression the con-
centration and density fields are redefined as follows
(C̄ −Ccr)→ C and (ρ̄ − ρcr)→ ρ.

The governing equations for the mixture of two
incompressible liquids are called the Cahn-Hilliard-
Navier-Stokes equations. The Boussinesq approxima-
tion of the full equations written in the non-dimensional
form is [27],

∂u⃗
∂t
+ (u⃗ · ∇)u⃗ = −∇Π + 1

Re
∇2u⃗ −C∇µ

−2rGrCe⃗r, (5)
∂C
∂t
+ (u⃗ · ∇)C =

1
Pe
∇2µ, (6)

∇ · u⃗ = 0, (7)

µ = −Gr
2

r2 + µ0 −Ca∇2C, µ0 =
d f0
dC

. (8)

The conventional notations are used for the variables,
namely, u⃗, Π, and µ are the fields of velocity, pressure,
and chemical potential, respectively. The problem is
solved in cylindrical coordinates with the radial and ax-
ial coordinates denoted by r and z. In equation (5), the
centrifugal force is taken into account, while the gravity
and Coriolis forces are neglected, which is possible at
sufficiently high rotation rates (similar assumption were
made e.g. in [24, 25]).1 Here, e⃗r is the unit vector in the
radial direction.

1At lower rotation rates, the droplet is displaced away from the
axis due to combination of Coriolis and buoyancy forces (see e.g. [6]),
which is not studied in our work.
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To non-dimensionalize these equations the following
scales of length L∗, time τ∗, velocity v∗, pressure p∗, and
chemical potential µ∗ were chosen

L∗ = R, τ∗ =
R
v∗
, v∗ = b1/2, p∗ = ρ1b, µ∗ = b. (9)

Here, ρ1 is the density of liquid 1. The non-dimensional
parameters entering the governing equations include the
Peclet number

Pe =
ρ∗R
αb1/2 , (10)

where α is the mobility coefficient; the capillary num-
ber,2

Ca =
ϵ

bR2 ; (11)

the Reynolds number,

Re =
ρ∗b1/2R
η1

, (12)

with η1 being the viscosity of liquid 13; and the rota-
tional analogue of the Grashof number,

Gr = ϕ
(ΩR)2

b
. (13)

The thermodynamic state of the binary mixture is de-
fined by one parameter A = a/b.

We need to notice that we use the standard names for
some of the above non-dimensional parameters. In the
governing equations, these parameters would appear in
front of the corresponding terms, and hence, would de-
termine the similar effects. For instance, the Prandtl
number defines the role of diffusion, the Reynolds num-
ber determines the strength of the viscous force, and
the Grashof number is the strength of the centrifugal
force. These parameters are though introduced through
the phenomenological parameters of the phase-field ap-
proach.

The classical part of the chemical potential µ is de-
noted by µ0. For the Landau free energy, this part is

µ0 = 2AC + 4C3. (14)

2This parameter is sometimes called the Cahn number. We call
it the capillary number, since it is proportional to the capillary con-
stant, and defines the strength of the capillary effects. It should be
noted though that this parameter is different from the classical cap-
illary number, η1v∗/σ∗, introduced within a convectional Laplacian
approach.

3We assume that the viscosity coefficients of the liquids in the mix-
ture are different, but these difference is not large, and only the leading
term of the viscous force is needed in equation (5)[27].

In this work, a different expression for the numerical
simulations is however used, namely,

µ0 =
3
4

ln
(

1/2 +C
1/2 −C

)
− (3 − 2A)C. (15)

The latter formula coincides with the Landau expression
(14) near the critical point, C = 0. Formula (15) is more
convenient for description of the states far from the crit-
ical point, when |C| ≈ 1/2. It is known that the ex-
pression based on the Landau free energy function (14)
allows overshooting of the concentration levels 1/2 and
−1/2 (these two levels correspond to pure components
of the binary mixture). Such an overshooting is deemed
permissible, and it is present in all works that are based
on the phase-field approach, but still it is not desirable.
For modified function (15), the concentration field re-
mains bounded within the range −1/2..1/2.

If the speed of rotations is sufficiently high, all exper-
imental pictures [19, 20] possess the axial symmetry,
which is also assumed for the numerical simulations of
the current work. The droplet is located in the middle
of the tube. Both ends of the tube are equivalent. This
allows us to consider only the quarter of the droplet, lim-
iting the computational domain by the lines r = 0 and
r = 1, and z = 0 and z = H (see Fig. 1). It is assumed
that the droplet is considerably smaller than the length
of the tube, and the tube’s length 2H is taken sufficiently
high to exclude the influence of the tube’s ends on the
numerical results.

The boundary conditions imposed on the solutions of
the governing equations are as follows. At the tube’s
wall, the no-slip boundary condition is imposed for the
velocity field and no diffusive flux through the wall is
set for the field of chemical potential. In addition, we
need to specify the wetting conditions at the wall. For
simplicity (and because our current focus is not on the
droplet/wall interactions), we assume that the molecules
of both liquids interact with the wall equally, and hence,
the additional boundary condition can be written in a
simplistic form: zero normal component of the concen-
tration gradient at the wall, which signifies that the con-
tact line is orthogonal to the wall. Thus, at r = 1,

ur = 0, uz = 0,
∂µ

∂r
= 0,

∂C
∂r
= 0. (16)

At the centreline, r = 0, the symmetry boundary con-
ditions are imposed,

ur = 0,
∂uz

∂r
= 0,

∂µ

∂r
= 0,

∂C
∂r
= 0. (17)

We consider only a quarter of the droplet. At the bot-
tom of the computational domain, z = 0, the imposed
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boundary conditions are

∂ur

∂z
= 0, uz = 0,

∂µ

∂z
= 0,

∂C
∂z
= 0. (18)

At the upper side, z = H, we impose the free-stress
boundary conditions,

∂ur

∂z
= 0, uz = 0,

∂µ

∂z
= 0,

∂C
∂z
= 0. (19)

For numerical solution, the equations were re-written
in terms of the vorticity (ω) and streamfunction (ψ),
which are introduced by the following formulae,

ur = −
1
r
∂ψ

∂z
, uz =

1
r
∂ψ

∂r
, ω =

∂ur

∂z
− ∂uz

∂r
. (20)

Here ur and uz are the radial and axial components of
the velocity.

The numerical problem was solved by using the
method of finite differences. We used the uniform grid,
and the finite difference formulae of the second order.
The grid was sufficiently fine to include several points
within the interface (in analogy with [35, 36]).

It is known that the interface thickness is defined by
the parameters Ca and A. Thus, for a mixture with ther-
modynamics defined by the Landau expression (4), a
flat interface in the absence of the external fields is de-
fined by the following concentration profile,

C0(x) =

√
−A

2
tanh

(
x
δ0

)
, δ0 =

√
−Ca

A
, (21)

where x is the coordinate across the interface and δ0 is
the interface thickness. These formulae are needed to
adapt the size of the computational grid when Ca and A
are changed.

Within the phase-field approach, the surface tension
can be defined as

σCH = Ca

+∞∫
−∞

(
dC
dx

)2

dx. (22)

This gives the following expression for a flat interface,

σ0 =
2
3

A2
√
−ACa, (23)

i.e. the surface tension is proportional to
√

Ca, which
would be useful for the analysis of the numerical results.

Each simulation was initialised by assuming that a
‘fresh’ spherical droplet is introduced into a pure sol-
vent,

Cin(r, z) =
1
2

tanh
 √r2 + z2 − r0

δin

, (24)

where r0 is the initial radius of the droplet, and the con-
centrations ± 1

2 represent pure solute and solvent. The
initial interface thickness, δin, was taken to be equal 4
steps of the computational mesh.4 The tube’s rotations
are switched on at the start of the numerical run. The
half-length of the tube is H = 3 for all results presented
below. The parameter A is taken to be −0.5.

3. Numerical results

The time evolution of the droplet is shown in figure 1
through the set of snapshots. During the entire evolution
the interface remains sharp which agrees with the exper-
imental observations [22, 19, 20]. In the first instances,
the droplet elongates along the tube’s axis, reaching the
quasi-equilibrium state when the capillary and centrifu-
gal forces are nearly balanced. In contrast to an im-
miscible system, the complete equilibration cannot be
achieved. The droplet is slowly dissolving due to in-
terfacial mass transfer, and this process results in con-
stant changes of the quasi-equilibrium shape. At the end
of the dissolution, when the droplet becomes relatively
small, the role of the capillary force increases, and the
droplet becomes nearly spherical.

The evolution of the droplet is accompanied by
the hydrodynamic flow that is driven by the non-
homogeneities in the density field. The flow consists
of two vorticies (one vortex in the modelled part of the
domain, and another vortex is in the second, not-shown,
half of the tube).

Figure 1 also depicts the isolines of the chemical
potential. The intensity of the interfacial diffusion is
determined by the gradients of the chemical potential:
the diffusion should be stronger at the droplet’s ‘equa-
tor’, from where the molecules of the solute are trans-
ported by the flow along the droplet’s surface towards
the droplet’s ends, and then into the other parts of the
tube. These results, including appearance of the cloudy
regions near the droplet’s ends, are is in agreement with
the experimental pictures [22].

Figure 2 depicts the results of the numerical simu-
lations of the droplet’s time evolution obtained for the

4In [37, 38], the influence of the interface thickness on the stability
of a phase boundary has been studied. It has been found that if the
interface thickness is smaller than the thickness that corresponds to
the thermodynamic equilibrium value δ0 (21), then the thickness of
the transition zone quickly adjusts to the thermodynamic equilibrium
value, i.e. there is no disintegration of the phase boundary. If however
the interface thickness is greater than δ0, then the dynamics of the
interface is more complex. In the current work, we always assume
that at the initial point the interface thickness is nearly zero that should
correspond to the first contact of two liquids.

5



r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) t=0

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) t=48

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c) t=120

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(d) t=324

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(f) t=6600

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(g) t=0

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(h) t=48

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(j) t=120

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(k) t=324

r

z
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(e) t=1800

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(l) t=1800

r

z

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(m) t=6600

Figure 1: The snapshots of the fields of concentration, velocity, and chemical potential. The results are obtained for Re = 103, Pe = 5 · 105,
Ca = 2.5 · 10−5, A = −0.5, H = 3, Gr = 0.1 and r0 = 0.4. The upper row shows the fields of concentration and velocity and the lower row shows
the fields of chemical potential and velocity. The time moments are indicated in the figure.
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Figure 2: The droplet evolution at different Peclet numbers. The results are shown for A = −0.5, H = 3, r0 = 0.3, Gr = 0.1, Ca = 2.5 · 10−5,
Re = 103, and Pe = 105 (solid line), Pe = 5 · 105 (dash-dot line), Pe = 106 (dashed line). The dotted lines are obtained for the run with neglected
convective flows (for Pe = 106). (a) Volume vs. time; (b) droplet’s radius and length vs. time; (c) Kinetic energy averaged over the total volume
of the tube vs. time; (d) Average concentrations in the droplet and in the surrounding solvent; (e) Surface tension coefficients vs. time, the lines
marked by circles depict the curves of the surface tension calculated on the basis of the Vonnegut formula, σV, and the other curves show the
surface tension coefficients calculated on the basis of the phase-field formula, σCH; and (f) Interface thickness vs. time.
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Pe 5 · 104 105 5 · 105 106

t f 864 1602 6336 11354

Table 1: The time required for complete dissolution of the droplet, t f .

different Peclet numbers. Obviously, dissolution occurs
slower if the larger values of the Peclet numbers are
used. Namely, it was found that the dissolution rate,
dV/dt, and the time required for complete dissolution of
the droplet are proportional to the Peclet number (see
Table 1).

Figure 2 confirms that the time evolution can be split
into two stages. The initial short period is characterised
by a quick change in the droplet’s shape. This change is
also accompanied by the stronger hydrodynamic flows.
In the end of this stage, the droplet attains an elongated
shape that corresponds to a state of quasi-equilibrium.
The second stage of the droplet’s evolution is charac-
terised by much slower changes of the droplet’s shape,
and by weaker hydrodynamic motion. The induced hy-
drodynamic flow is more intensive for the lower values
of the Peclet numbers.

The diffusive and hydrodynamic transports are
equally important at both stages. The initial stage is
primarily driven by hydrodynamics, but the influence
of diffusion can be clearly seen from the decay of the
droplet’s volume. The second stage is primarily driven
by the interfacial diffusion, but the contribution of the
hydrodynamic flow to the overall mass transport cannot
be neglected. To prove the latter statement, a simulation
with neglected hydrodynamic terms (but with included
barodiffusion) was fulfilled. The run was initiated by an
intermediate state that was obtained on the basis of the
full program and that was taken within the second stage
of the dissolution. The results of the pure diffusive run
are depicted in figure 2 by dotted lines. The differences
between the run with and without diffusion are particu-
larly seen in terms of the total time needed for complete
dissolution. Thus, we conclude that the hydrodynamic
flow in the tube substantially increases the dissolution
rate.

The average concentration outside the droplet slowly
grows by accumulation of the droplet’s molecules. The
growth remains rather limited owing to small droplet’s
volume in comparison with the volume of the solute
phase. The average concentration in the droplet first ex-
periences a quick drop, approaching the value that cor-
responds to the thermodynamic equilibrium for the bi-
nary mixture (which is 0.388 for a flat interface separat-
ing two phases, and if, in addition, all external fields are
neglected, and A = −0.5). The time of the accommo-

dation of the in-droplet concentration level to the new
value is comparable with the time, that is needed for the
mechanical transformation of the droplet, that are forced
by the changes in the rotation rate (that is the duration
of the first stage of the dissolution process). Later, the
average concentration within the droplet remains almost
constant for the entire process of dissolution.

The values of the surface tension can be determined
in two independent ways. The surface tension can be
determined from the Vonnegut equation, that was estab-
lished for immiscible systems, i.e. presuming the bal-
ance of the capillary and centrifugal forces and the ab-
sence of interfacial diffusion and hydrodynamic flows.
In the non-dimensional form, the Vonnegut formula
reads,

σV =
1
4

Gr a3
r . (25)

We study the dynamics of miscible droplets, for which
only quasi-equilibrium can be established, so that some
weak (but non-zero) diffusive and convective mass
transfers would always persist. This, in particular, leads
to decrease of the droplet’s radius, ar, that is also seen in
decrease of the values of the surface tension σV (see fig-
ure 2e). At later moments, the droplet becomes nearly
spherical, which also makes the Vonnegut formula in-
applicable. Nevertheless, a period of slowly-changing
values of the surface tension, σV, can be noticed, es-
pecially, for higher values of the Peclet numbers. In
experimental measurements, this period is used for es-
timations of the surface tension coefficient for miscible
liquids.

Another approach is to calculate the value of the sur-
face tension from the structure of the transitional layer
that separates the phases (22). The so-calculated sur-
face tension, σCH, exhibits a different time-dependence:
at the very beginning, the surface tension quickly drops
to some value, and then it remains almost constant for
the entire duration of the dissolution process, until the
very end of the process, when, seemingly, the calcula-
tion of the surface tension becomes inaccurate as the
thickness of the phase boundary becomes comparable
with the size of the droplet itself.

The values σV and σCH are different. It may be ar-
gued that the Vonnegut formula can be used just approx-
imately, as no complete balance between the centrifugal
and capillary effects is achieved, and which is used to
derive the expression for σV. The Cahn-Hilliard’s sur-
face tension σCH is defined through the properties of
the solute/solvent interface that attains the local equi-
librium. It should however be also pointed out that at
higher Peclet numbers the difference between the val-
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ues of the surface tension coefficients becomes smaller.
Thus, at very high Peclet numbers, these two values
would be even closer.

Finally, the time dependence of the interface thick-
ness is shown in figure 2f. The interfacial thickness was
calculated as a ratio between the volume of the transi-
tional zone that separates phases and the droplet’s sur-
face area. The transitional zone in turn is defined as
the zone with the concentration levels within the range
|C| ≤ 1/4. One sees that the average value of the inter-
face thickness just slightly changes with time and this
value is independent of the Peclet number. There are
some oscillations about the average value that should be
explained by inaccuracies that appear due to low reso-
lution of this smallest length scale: there are about 4
points across the interface, and changes of the interface
shape results in slightly different values of the interface
thickness.

Figure 3 depicts the results obtained from the simula-
tions performed with different values of the Reynolds
number. At the lower Reynolds numbers, the initial
droplet’s transformations occur slightly slower. The
stronger effect is that the attained quasi-equilibrium
shapes are different, so the droplet’s shape is more elon-
gated at the lower Reynolds numbers. The flows at
the lower Reynolds numbers are obviously weaker, but
still if these flows are neglected even at the later stage,
when all initial transformations of the droplet’s shape
are completed, the droplet’s evolution would occur dif-
ferently, which is illustrated by the dotted lines.

Figure 4 shows the evolutions of the droplet under
different rotation rates (different Grashof numbers). Ob-
viously, an increase in the rate of rotation makes the
flows around the droplet more intensive, leading to
faster dissolution of the droplet. The coefficients of
the surface tension, both σV and σCH, and the interface
thickness are almost independent of the value of the
Grashof number. The rotation rate defines the quasi-
equilibrium shape of the droplet: at higher Grashof
numbers, the droplet is much stronger elongated, as it
should be expected.

Figure 5 depicts the results obtained for the droplets
with different initial sizes. It can be shown that the
dissolution rate is proportional to the surface area of
the droplet, dV/dt ∼ S . Initially, the droplet dissolves
faster, and when the droplet becomes smaller, the rate
of the change of its size slows down.

The quasi-equilibrium values of the droplet’s radius
are almost the same for the droplets of different sizes,
but the droplet’s length is larger for larger droplets. This
is obviously explained by the fact that the surface ten-
sion force, that makes the droplet more spherical, is

more important for smaller droplets. The values of the
surface tension coefficients are almost the same for the
droplets of different sizes.

It is useful also to notice that the period when the ra-
dius of the droplet remains almost constant (though the
length of the droplet is never constant) is much longer
for larger droplets. For such droplets, the measurements
of the surface tension performed on the basis of the Von-
negut formula would be more accurate.

Figure 6 depicts the results obtained for three differ-
ent capillary numbers. The values of the surface tension
coefficient calculated from the phase-field formula and
the values of the interface thicknesses are proportional
to
√

Ca, as expected. The surface tension coefficients
calculated from the Vonnegut formula do not change so
strongly with the change in the capillary number. There
is a capillary number when the values σCH and σV would
coincide. For our calculations, this would happen for
Ca ≈ 10−5. For very diffusive interfaces (at higher cap-
illary numbers), the stronger differences from the sim-
ple Vonnegut theory should be expected, which is con-
firmed by our simulations.

At greater capillary numbers (at Ca = 4 · 10−4 for the
droplet with initial size r0 = 0.3 and even at Ca = 10−4

for the droplet with initial size r0 = 0.4), during the first
stage, that initiated by the abrupt change of the rotation
rate, the droplet’s shape experiences oscillations with
a large amplitude, which are seen in figure 6. These
oscillations however die out after several periods.

4. Discussion

The time evolution of an immiscible droplet within a
spinning droplet tensiometer was numerically modelled
by Hu & Joseph [24], whose main result was the expres-
sion for the time changes of the droplet’s radius caused
by the change of the equilibrium conditions,

ar = ar,eq + (r0 − ar,eq)e−mt, (26)

m = m0
σRe
ar,eq

= m0

(
Gr
4

)1/3

σ2/3Re. (27)

Here ar,eq is the equilibrium radius of the droplet, and
m0 = 8.59 · 10−3. This formula fits the numerical data
obtained by Hu & Joseph [24], though they say that
comparison of the numerical data with the experimental
data was not possible because ‘in all of the experiments
only limited information was recorded’.

Formula (26) predicts the duration of the first stage of
the droplet’s evolution. For our typical run, m ∼ 10−2,
and the time of the initial droplet transformation should
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Figure 3: The droplet evolution at different Reynolds numbers. The results are shown for A = −0.5, H = 3, r0 = 0.3, Gr = 0.1, Ca = 2.5 · 10−5,
Pe = 5 · 105, and Re = 100 (dashed line), Re = 1000 (solid line), and Re = 2000 (dash-dot line). The dotted lines are obtained for the runs with
neglected convective flows. The order of the graphs is as in figure 2.
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be of several units of 1/m ∼ 100, which in general
agrees well with the presented data.

The dynamics of the miscible droplet was experimen-
tally studied by Heinrich and Wolf [22] and Pojman et
al. [19, 20] for the mixtures of isobutyric acid-water and
1-butanol-water, and different polymer solutions. Sim-
ilar to out observations, it was noted that diffusion was
never negligible, and, for instance, the droplet’s volume
decreases by half within 15 minutes. The non-negligible
diffusion makes the measurements of the surface tension
at least inaccurate, but, anyway, it was observed that the
droplet takes the elongated shape, and the shape can be
changed by the change in the speed of the tube’s rota-
tion. When the droplet becomes too small, it assumes
a nearly spherical shape. The cloudy zones are formed
near the droplet’s ends. All these experimental obser-
vations can be seen in the numerical results reported in
this work. Thus, at least, qualitatively, the phase-field
approach is capable of accurate reproduction of the dy-
namics exhibited by the mixtures of two slowly miscible
liquids.

The second objective of the current work is to es-
timate the parameters that are introduced within the
phase-field approach. These are the capillary constant,
ϵ, the scale for the chemical potential, µ∗, and the co-
efficient of mobility, α. Currently, the values of these
parameters are not known for any particular mixture of
liquids. Even their typical orders are not known. This
significantly hinders wider usage of the phase-field ap-
proach. The values of these parameters can though be
derived through the comparison of the numerical results
reported in this work with the experimental data avail-
able for the spinning droplet tensiometer.

In the experiments, the measurements of the surface
tension coefficients using the spinning drop tensiometer
are based on the Vonnegut’s formula (1). The interfacial
mass transfer is never negligible in the experiments and
in our results, which renders the measured values inac-
curate. Nevertheless, in the experiment [19], the typical
order of the surface tension coefficient for a pair of two
miscible liquids is given as σ ∼ 10−5N/m. From our
data one sees that the typical order of the surface ten-
sion coefficient is σV ∼ 10−4. Between these two quan-
tities, there is the following relationship, σ = ρ∗µ∗L∗σV

(ρ∗µ∗L∗ is the unit of the surface tension). Thus, if the
tensiometer’s tube has the radius, R = L∗ ∼ 10−3m, and
the mixing of liquids is characterised by the typical den-
sity, ρ∗ ∼ 103kg ·m−3, one obtains that the typical value
of the chemical potential is µ∗ ∼ 0.1 J · kg−1.

The surface tension coefficients, σV and σCH, are dif-
ferent in all calculations reported. The surface tension
coefficient, σCH, is determined by the value of the cap-

illary number, and at some capillary number, ∼ 10−5,
these two coefficients would have nearly same values
(as can be seen in figure 6).

The numeric value of the surface tension coefficient,
σCH, can be approximately calculated from the formula
for a flat interface σ0 =

√
Ca

6
√

2
∼ 10−1

√
ϵ

µ∗L2
∗
, which al-

lows us to conclude that the typical value of the capillary
constant is ϵ ∼ 10−13 m4 · s−2. Previously, the value of
the capillary constant was estimated as 10−18 m4 · s−2 for
a honey-water mixture [29] and (10−16 − 10−14) m4 · s−2

for a monomer/polymer solution [20, 30].5

Finally, in the experiments (e.g. [19]), the time pe-
riod needed for complete dissolution of the droplet with
the initial radius ∼ 0.5R is of the order of 104s. The
accepted time scale, τ = R

µ1/2
∗
∼ 10−3s, and thus the

typical non-dimensional time needed for dissolution of
the droplet is t f ∼ 107. From our calculations (us-
ing figures 2 and 4), one concludes that such a time
would characterise the numerical calculation done with
Pe ∼ 109. Using the definition of the Peclet number
(10), one concludes that the mobility coefficient is of
the order, α ∼ 10−9 kg · s · m−3.

Let us now use these values to determine the ‘right’
orders of the non-dimensional parameters. As already
mentioned, the ‘right’ value of the capillary number is
10−5. This, for instance, gives the typical thickness of
the phase boundary (as a good estimate, the formula
for a flat interface can be used, i.e. δ =

√
−Ca/A) as

10−6m. This estimate agrees with the experimental mea-
surements [20].

The Reynolds number is Re ∼ 103, and the Grashof
number is Gr ∼ 10−3. For the latter estimations, the
following typical viscosity, η∗ ∼ 10−3Pa · s, the density
contrast, ϕ ∼ 10−2, and the rotation rate ∼ 100rps were
used.

The results presented in this paper are given for the
lower values of the Peclet number, as the calculations
for the higher Peclet numbers become computationally
too demanding. Nevertheless, we found that both the
rate of dissolution and the total time needed for disso-
lution are proportional to the Peclet number. There are
also no qualitative changes in the droplet’s behaviour
upon increase of the Peclet number. These observations
permit us to draw the conclusions about the behaviour
of the real droplet from the obtained data. We have
also presented most of the data for the Grashof num-
ber Gr = 0.1, which is higher than the estimate 10−3

5In the referenced works [29, 20, 30], the capillary constant is
(ρ∗ϵ) and is measured in N. The reported values are re-calculated
in accordance with the definitions accepted in this work.
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(or 10−2 for the higher rates rotation). The higher value
was used to demonstrate the elongation of the droplet.
Most of the results are reported for the smaller droplet
than in the experiments (where it is typically, r0 ∼ 0.5),
and for larger droplet the droplet would be sufficiently
elongated for smaller values of the Grashof number.

We would like also to note that the estimations for
the values of the non-dimensional parameters agree with
the other numerical works, e.g. [25], where the ratio
δCL ≡ Ca/(16Gr) is set for the calculations. In [25], a
better agreement with the experimental data is achieved
at δCL ∼ 10−5 − 10−6, which would correspond to Ca ∼
10−5 − 10−6 and Gr ∼ 10−1 − 10−2.

5. Conclusions

In this work, it is shown that the phase-field approach
correctly describes the behaviour of two slowly miscible
liquids within the spinning droplet tensiometer, both at
the short and long time scales. The approach correctly
predicts the evolution of the shape of the droplet, pre-
dicting such experimentally-observed details of the pro-
cess as the existence of the sharp phase boundary for
the entire dissolution, non-negligible interfacial mass
transfer during any stage of the process including the
initial stage after the change the rotation speed when
the droplet quickly accommodates to the new shape,
the cloudy regions near the droplet’s ends, the indepen-
dence of interfacial stresses on the speed of the tube’s
rotation and the size of the immersed droplet, and some
others [22, 19, 20]. This also confirms our earlier phase-
field-based calculations fulfilled for the mixture of mis-
cible liquids within a different geometry [39].

Another achievement of the current work is the esti-
mation of the phenomenological parameters introduced
within the phase-field approach. The use of the non-
standard parameters is the significant drawback of the
approach, which significantly slows down the wider ac-
ceptance of the approach. It is still difficult to obtain
these parameters accurately, since the current computa-
tional capabilities do not allow us to run the simulations
for the realistic values of all parameters that would per-
mit the full correspondence between the experimental
pictures and the numerical results. Nevertheless, extrap-
olation of the computational results allows us to esti-
mate the ‘right’ values of the parameters for which such
a correspondence can be achieved. In particular, it is
found that the ‘right’ order of the scale for the chemical
potential is 0.1 J · kg−1, the ‘right’ order of the capillary
constant is 10−13 m4 · s−2, and the ‘right’ order of the mo-
bility coefficient is 10−9kg · s · m−3. The knowledge of
these parameters would permit meaningful calculations

to be fulfilled on the basis of the phase-field approach
for tracing the evolution of miscible liquids within other
geometries. This necessary step has never been done.
Only the capillary constant was previously estimated
[20, 30], and the previous estimations are close to the
value obtained in the current work.
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6. Appendix. Symbol list

C̄; Ccr;
C =

C̄ −Ccr

concentration; value of concentration at the
critical point; concentration with shifted ref-
erence point;

ρ̄; ρcr;
ρ =

ρ̄ − ρcr;

density; density at the critical point; density
with shifted reference point;

ρ1 and ρ2;
ϕ

densities of pure solvent and solute; density
contrast (2);

f ; f0 specific free energy; classical part of the spe-
cific free energy (3);

ϵ capillary constant (3);
µ; µ0 chemical potential; classical part of the

chemical potential;
a and b phenomenological parameters determining

the thermodynamic state of a mixture;
α mobility constant;
Ω angular velocity of the tube’s rotation;
R; H radius of the tube; half-length of the tube

scaled in unites of R;
ar; az; r0;
ar,eq

non-dimensional radial and axial dimen-
sions of the droplet (measured in units of
R); radius of an initial (spherical) droplet;
droplet’s radial dimension in the equilibrium
state (for an immiscible droplet)

C0; Cin equilibrium concentration profile for a flat
interface (21); initial concentration profile
(24);

δ; δ0; δin interface thickness; thickness of an equilib-
rium flat interface (21); initial thickness of
an interface;

r and z; e⃗r radial and axial coordinates; the unit vector
in the radial direction;

u⃗ =

(ur, uz)
vector of velocity;

Π pressure field;
ω and ψ vorticity and streamfunction (20);
L∗; τ∗; v∗;
p∗; µ∗

typical length and time, velocity, pressure
and chemical potential (9);

Pe; Ca;
Re; Gr

Peclet (10), capillary (11), Reynolds (12),
and Grashof (13) numbers;

A non-dimensional parameter determining the
thermodynamic state of a mixture

σ; σ0;
σV; σCH

surface tension coefficient; surface tension
coefficient for a flat interface (23); surface
tension coefficient calculated from the Von-
negut formula (25); surface tension coeffi-
cient calculated from the structure of the so-
lute/solvent interface (22);

m; m0 rate of change of the droplet’s radial dimen-
sion; a constant (26)
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