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How learners’ interactions sustain engagement:
a MOOQOC case study

Ayse Saliha Sunar, Su White, Nor Aniza Abdullah, and Hugh C. Davis

Abstract

In 2015, 35 million learners participated online in 4,200 MOOCs organised by over 500 universities.
Learning designers orchestrate MOOC content to engage learners at scale and retain interest by carefully
mixing videos, lectures, readings, quizzes, and discussions. Universally, far fewer people actually participate
in MOOCs than originally sign up with a steady attrition as courses progress. Studies have correlated social
engagement to completion rates. The FutureLearn MOOC platform specifically provides opportunities to
share opinions and to reflect by posting comments, replying, or following discussion threads. This paper
investigates learners’ social behaviours in MOOCs and the impact of engagement on course completion. A
preliminary study suggested that dropout rates will be lower when learners engage in repeated and frequent
social interactions. We subsequently reviewed the literature of prediction models and applied social network
analysis techniques to characterise participants’ online interactions examining implications for participant
achievements. We analysed discussions in an eight week FutureLearn MOOC, with 9855 enrolled learners.
Findings indicate that if learners starts following some , the probability of their finishing the course is increased;
if learners also interact with those they follow, they are highly likely to complete, both important factors to add
to the prediction of completion model.

Index Terms

Social network analysis, MOOC, peer interactions, prediction model, learning at scale
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1 INTRODUCTION

DUCATIONAL technologists see the web as a gigantic information system that reveals learning
E resources to a growing world population for the purpose of creating richer learning experiences.
Widespread use of the web in teaching and learning has resulted in the emergence of new pedagogies and
learning paradigms in recent years. In 2005, for example, Siemens proposed a new “connectivist” learning
theory for the digital age [1].

Via connectivism, people learn by making meaningful connections amongst knowledge, information
resources and ideas during the learning process. Web and social technologies facilitate the acquisition
of useful knowledge and establish cognitive connections. Hailed as the first MOOC, Connectivism
and Connective Knowledge’'08 (CCK’08) was based on Siemens’ learning theory. It was launched in
Autumn 2008 with 2000 people showing initial interest. In order to stimulate communication during the
course, video lectures and tasks were regularly released, and group discussions are encouraged amongst
participants via popular social media platforms, wikis and blogs.

The title MOOC (Massive Open Online Course) is coined later [2]. Subsequently, numerous universities
and private institutions have launched their own MOOCs and in turn, thousands of learners now
participate in the courses!.

Not all MOOCs are crafted around connectivism. Rodriguez found that cognitive-behaviourist and
social constructivist approaches have also been adopted by MOOCs [3].
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Fig. 1. The FutureLearn platform, highlighting social affordances within discussion thread.

Two celebrity professors from the Stanford University, Sebastian Thrun and Peter Norvig, launched
their C5221 MOOC: Introduction to Artificial Intelligence (AI-Stanford) based on their classroom teaching,
it was taught online alongside face-to-face delivery during 2011. Shortly after, Thrun and Norvig launched
the MOOC platform, Udacity, that now offers many other free online courses mainly on technical subjects?.

Courses developed using Udacity, and other similarly featured MOOC platforms such as EdX
and Coursera are based on cognitive-behaviourist pedagogy with some small components from social
constructivism. These are more centralised than the distributed connectivist model pioneered by Siemens
[4]. In these later frameworks, the role of instructors is similar to face-to-face teaching and the lectures
are structured so that each week has a defined set of learning objectives [3]. Consequently, interactivity
amongst learners and instructors is limited. In cognitive behaviourist MOOC:s, social tools integrated for
communication via forums and linked Facebook groups when they are mostly used for asking questions
about course content and assessments rather than the co-creation and co-evolution of learning content of
connectivist MOOCs [3].

Researchers have discussed the most suitable pedagogy for MOOCs to enable learners to have the
best possible online learning experience (e.g. [5], [6], [7], [8]). FutureLearn, the UK-based MOOC platform
owned by The Open University, is seeking to develop a pedagogy that works at massive scale [8]. The
design team led by Professor Mike Sharples has implemented a social-constructivist learning theory based
on Laurillard’s conversational framework [9]. The FutureLearn platform is designed to promote successful
conversations providing participants with links between the visible repository of learning resources and a
set of integrated tools which enable commenting, responding and reflection (see Section 2) [8].

1.1 Participation in MOOCs and Online Discussions

Irrespective of differences in their pedagogies, all MOOCs appear to face the common problems of high
attrition rates. Large proportions of learners who enrol on courses never participate and many others leave
courses after their first visit. The 2012 study by Rodriguez identified a dropout rate of 85% in Stanford-
Al courses and 40% in connectivist MOOCs [3]. This trend of decreasing participation rates, associated
with low retention in MOOC:s, is described by Clow as the funnel of participation [10], and appears to
show similarities with the previously observed participation ratio in online discussion forums. Studies of

2. https:/ /www.udacity.com/us
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discussions have demonstrated that no matter how high their volume, interactions are usually dominated
by a small number of people, who post the largest amount of comments [11], [12]. Even in connectivist
MOOCs, it has been reported that the 78% of the collaborative content was created by only 21% of its
participants [10].

This is akin to the 90:9:1 Principle (van Mierlo’s 1% Rule) which observed inequity online systems
supporting behaviour change in that 90% of participants are passive Lurkers, 9% Contributors who
contribute sparingly, and 1% Superusers who create the vast majority of the content [13]. We propose
that identifying and encouraging lurkers in MOOCs to actively participate in their learning process might
be used to boost learners” engagement.

1.2 Completion in MOOCs

There is no standard metric for measuring the completion and participation in MOOCs, so it can be
challenging to compare different MOOCs. FutureLearn CEO, Simon Nelson, in a blog post®, used data
from FutureLearn alongside data shared by other MOOC providers. He reported completion rate of 8% at
Harvard and MIT compared to 12% in FutureLearn.

Although some MOOCs have slightly better rates, completion of the majority of the course content
remains low, prompting discussions around the possible reasons, impacts, and interpretations of this high
attrition rate in MOOC:ss [14], [15]. There is evidence that some MOOC learners join a course only to follow
one specific lecture or simply to have a MOOC experience. Koller et al. suggest, if learners leave the course
before it is finished, their leaving early should not be considered as a failure or a loss to the learner, as long
as their expectations have been met [15]. On the other hand, there is some evidence that many learners
leave courses even though they initially had an intention of completing [14]. In their study, Khalil and
Ebner investigate the reasons behind these high attrition rates, identifying some of the factors as follows:

o lack of time

o loss of motivation

o feelings of isolation

o lack of interactivity in MOOCs

 insufficient background knowledge and skills to cope with what is being taught in MOOCs.

Studies have shown that i) course completers are more interested in engaging with the course content and
ii) learners who engage in social discussion forums are less likely to leave the course [16], [17]. FutureLearn
takes a social constructivist approach in order to provide an environment that enables participants to easily
reflect their opinion and interact with others for better social engagement. To achieve this, the platform
inserts features facilitating social communication throughout the course adopting a Twitter-like follow
system to help track and sustain interactive communication. This paper presents a study which analyses
the use of the follow feature and its relation to the completion status of the people who use it.

Given the typically large numbers of MOOC participants, diagnostic analytic tools can be a particularly
valuable means to inform educators about their learners” progress. Among the strengths associated with
learning analytics and educational data mining, Papamitsion and Economides identified the ability to
reveal critical moments and patterns of learning and to gain insights into learning strategies and be-
haviours [18]. This information can then be applied to provide timely learning support and interventions.

In a preliminary study, we sought to understand how MOOC learners engage with the social discussion
forums by examining the Developing Your Research Project (DYRP) MOOC from different angles [19]. That
study examined learner interactions within and across its eight week duration. We found that i) learners
who contributed to online discussions do not usually have interactions with other participants, ii) if they
do, the interactions do not fall into any regular pattern, iii) those learners who frequently interacted
completed nearly all steps in each week.

To follow that preliminary study we analysed the follow interactions and completion status of socially
active learners who wrote at least one comment to discussion threads or who follow at least one learner
from the same course.

3. https:/ /about.futurelearn.com/blog/completion-rates /
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Fig. 2. FutureLearn MOOCs are structured around weeks and series of steps associated with weeks.

1.3 Objective of the Paper

Follow is one of the distinctive FutureLearn features that allows people to follow each other and directly
access the contributions of those they follow on discussion boards. Participants are specifically able to see
the comments posted by learners they have followed with a single click in the personal dashboard (see
Fig. 1). This study investigated:

o behaviours of learners who follow someone from their course (see Section 2)
o the pattern of follower learners’ participation in the discussion forum
o follower learners” completion of the course.

Since the follow feature is not commonly used in MOOC platforms, the analysis of followers” interactions
has not yet been deeply investigated. The paper aims to address the following questions:

o How frequently do learners follow someone during a course?

o Do learners who follow someone make a greater number of active contribution to discussion forum?

e Do learners who follow someone in a course complete the course?

o How can we characterise the differences between completion rates comparing follow and discus-
sion contribution behaviours?

Section 2 further identifies the social feature of FutureLearn platform and the available datasets we
have analysed. Section 3 presents findings to answer the research questions presented above. Section 4
presents a discussion of the state of the art in prediction models in MOOCs. Section 5 discusses the
conclusion and the findings, including implications for developing a predictive model based on learners’
social presence. It also identifies opportunities for possible future research directions.

2 SocCIAL FEATURES OF FUTURELEARN PLATFORM

Table 1 summarises the functionality and features investigated in this study.

FutureLearn MOOCs are structured in weeks and the series of steps associated with each week. The
recommended route for learners to study is a logical progression in steps, but it is not compulsory.
Learners manually mark each completed step as they progress. Additionally, FutureLearn has its own
design prompting online discussions [8]. Each step in a week has an associated discussion board, designed
as Twitter-like threads which enable the learners to scroll down and read sequentially through the set of
associated comments. A learner can like a comment and reply to any specific comment. Additionally,
learners are able to follow other participants in the platform by using the follow button. When they click on
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TABLE 1
Specific functionality and features in the FutureLearn MOOC platform

ROLES

educator: Course designers or mentors

learner: Participants not from the educator team
ACTIONS
follow: Action of following someone in order to be informed of comments posted by

that specific learner

post: Action of posting a comment to a thread
reply: Action of replying a comment in a thread
STATUS

follower: Follows other participants

followee: Is followed by a participant

poster: Posts to discussion threads

replier: Replies a comment

course (overall) completer: Completes at least half of the all steps of the final week of
the course. If not, classified as course non-completer. We chose 50% as reference since
FutureLearn describe fully participated learners as so (Test completion conditions are not
considered in this research).

week completer: Completes at least half of the steps in a week. If not, classified as
week non-completer.

a person’s name on the discussion board, the person’s profile is opened with the option of Follow. Learners
are able to check the comments only posted by the people they follow (Fig. 1).

We analysed the University of Southampton’s Developing Your Research Project MOOC, which ran from
the 15th September - 9th November 2014. The datasets provided by FutureLearn are a snapshot of the
participants” activities observed from the 15th September - 22nd November 2014. Anonymised data from
every learner is stored by FutureLearn. The source data which we analysed was a subset drawn from
the standard datasets: enrolments, end of course, step activity, and comments. FutureLearn also provided a
static followings dataset upon our request. This dataset contained follow interactions amongst participants
between the first day of FutureLearn and 2015-09-16 09:45:43 UTC), tracking around 1.2 million following
relationships in the platform. We examined those data associated with the instance of the DYRP course
selected for this study (2927 items). Table 2 summarises the types and attributions of the datasets. An
algorithm was developed and written in Python in order to analyse the data; Matlab, GLE, and Power
Point tools were utilised for the data visualisation.

3 ANALYSIS AND RESULTS
3.1 General Statistics on Followers

Fig. 3 summarises the funnel of participation in the DYRP course. After the course was announced, 9855
learners enrolled, 5086 (51.6%) participants actually visited the course pages after the course started. Of
these, 3852 (39%) completed at least one step and 2631 (26.7%) revisited the course and completed further
steps. In total 1867 (18.9%) of 5086 learners participated in online discussions by writing at least one
comment. Of these 789 participants followed discussions of one or more other course participants i.e.
approximately 8% of all enrolled learners or 16% of the learners who actually visited at least once.

Fig. 4 and Fig. 5 illustrate that the volume of follow interactions accompanies a decline in resources
accessed and weekly progress, occurring alongside the previously identified decline in discussion
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TABLE 2
List of FutureLearn Datasets and their Attributes

End of Course Stats

Overall participation rates in a MOOC i.e. number of those enrolled in the course and
those who left the course

Enrolments

Enrolment records of participant
Attributes: learner_id, enrolled_at, unenrolled_at

Step Activity

Number of steps completed by learners i.e. those checked the “completed” mark
Attributes: learner_id, step, week_number, step_number, first_visited_at, last_completed_at

Comments

Records on the forum activities. This dataset identifies who posted: whether it was a
reply, post timestamp, content and number of likes received.
Attributes: id, author_id, parent_id,step_ text, timestamp, likes

Followings

Records on follow relationships amongst participants
Attributes: followed_user_id, follower_user_role, follower_user_id, follower_user_role,
created_at

Number of people who follow someone in the
DYRP MOOC

= Before the course (395 follow relations)

# During the course (2491 follow relations)

#1n 2 weeks after the course finished (41 follow relations)

(1%) 395 (13%)

r

Fig. 6. Learners according to the time they start following somebody.

Followers in the course (total: 789)

# Learner = Educator
12 (2%)

Fig. 7. Learners and educators who initialised follow interaction.
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contributions [19]. Fig. 4 shows the number of activities initiated over the eight weeks. Fig. 5 illustrates the
number of people who initiated those activities. It shows a weekly breakdown of the follow interactions
of the 789 learners and educators whose distribution is shown in Fig. 7. The largest volume of follow
interactions occurred in Week 1, it had the largest number of i) participants who completed course
activities; and ii) comments posted to the discussion forums.

Fig. 6 shows the distribution of learners according to circumstances when they began following
someone (before the course, during or after the course concluded). Since some learners had previously
participated in a FutureLearn course(s), these learners may have already followed some individuals who
also went on to participate in the DYRP MOOC. Over a hundred of such participants already had a follow
relation when they enrolled in the DYRP MOOC.

It could be reasonable to assume that since these participants had already taken another MOOC
together and had then subsequently enrolled together on the DYRP MOOC, they might be more likely
to interact with each other. Nevertheless, our investigation shows that none of these prior experienced
FutureLearn MOOC participants ever interacted with each other during the DYRP course. Indeed,
interacting with each other in a previous MOOC, showing interest and enrolling in the same course
again does not guarantee that these learners would be interested in each other’s comments one more time.
Additionally, we observe a small number of learners who joined the course late, and started following
other learners shortly after the official end date of the course (Fig. 6).

Fig. 7 shows by role, the number and percentage of those participants who followed somebody. The
majority of followers are not course educators. Note that the term educator is used for referring to course
designers and mentors. Mentors are the experts from the ground i.e. PhD students are responsible for
monitoring discussions during a MOOC. Leon et al. examine how mentors intervene during discussions
on FutureLearn [20]. They observe that discussions often centre around a small number of people, most
often educators and course facilitators. However, the following relations initiated between a follower and a
followee are more widely distributed.

3.2 Involvement of Followers in Discussions

Fig. 8 to 10 examine the contributions to discussions in relation to whether the participants chose to follow
others. Fig. 8 provides an overview of the size of each individual’s network in discussion forums and the
number of people that they follow. The majority (70%) of those participants who followed at least one
other person contributed to the discussions. At the same time there was a small number of participants
who commented extensively but who did not follow any other participants, 70% of all forum contributions
were generated by those participants who followed no one.
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3.3 Completion Success of Followers

The next step in the analysis was to examine course completion success amongst the followers. The DYRP
MOOC is composed of 80 steps spread across eight separate weeks (Table 3). The number of weekly steps
varies. For example, while Week 8 has 13 steps, Week 4 has only 6 steps. In order to provide a consistent
representation, the proportion of steps in each week is analysed rather than the actual number of steps.
Learners who completed at least 50% of the steps in a week are considered as a completer of the week;
otherwise, the learner is named as a non-completer of the week.

TABLE 3
The number of steps in each week.

Weeks 1 2 3 4 5 6 7 8 Total
Steps 11 12 12 6 7 8§ 11 13 80

Fig. 11 shows the proportions of completer and non-completers by week, categorised according to
their social activities. Learners are allocated across five categories, which are: i) learners who follow (aka
follower), ii) followers who contribute to the discussions, iii) followers who do not contribute to discussions
(aka lurker), iv) learners who contribute to discussions by posting (aka poster), v) and posters who do not
follow.

One important observation is that every learner who posted to a discussion thread completed at least
one step in the course. As shown in Fig. 11, if a learner is socially passive, it is likely that they will
complete none of the steps, i.e. over 40% of socially passive followers did not complete any of the steps.
The proportion of course completers is high if learners are socially active. Moreover, a larger proportion of
course completers (41%) is observed amongst the learners who follow and post. The learners who either
post or follow make up a similar percentage, slightly over 30%.
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Fig. 12 plots the ratio of completed steps on a week-by-week basis for the learners. Learners are
categorised by three distinct behaviours: i) those followers who post to discussions, ii) those followers
who do not post to discussions, and iii) those posters who do not follow. We observe:

o Learners in each of the categories, regardless of whether or not they are an overall completer,
progressed through the individual weekly steps at different rates.

o Fairly high weekly completion rates [from 60% up to 95%] are observed for all learners in each
category throughout the course.

o The only exception is in the last week where the average fell to slightly over 30%.

o Followers who contributed to discussion threads completed the highest number of steps and
represent the largest proportion of overall completers (Fig. 11).

o Posters who did not follow anyone completed more of steps than the followers who were socially
passive in discussions.

These findings confirm those of our previous study which suggests that learners who repeatedly
interacted with their fellows and actively contributed to discussions completed nearly all the 80 steps [19].
Another finding of our previous study is that the average step completion in DYRP is 26 of 80 possible
steps (slightly over the 30% of the steps) [19]. However, followers who did not contribute to the discussion
forum also performed better than the course average in completed steps (Fig. 12), implying that follow
behaviours of learners could be used as an indicator for predicting their course completion.

Fig. 13 and Fig. 14 trace the activities on a week-by-week basis of every participant who was a follower
(789 learners). Possible activities include completing a week, following, contributing to discussions, or
combination of these activities (see Table 1).

These activities are shown with the aid of colour code, which has been chosen to remain readable
when rendered or printed in black and white. Yellow (code 7, lightest) represents no activity; learners
who neither participated in discussions nor followed anyone and did not complete more than 50% of the
steps. Orange (code 6) and lime green (code 5) show learners either contributed to discussions or followed
someone, but did not complete the week. Green (code 4) represents socially active non-completer learners.
Turquoise (code 3) shows socially passive completer learners. Light blue (code 2) shows the learners who
completed the week and were active in the discussions. Blue (code 1) represents learners who completed
the week and followed someone. And finally, dark blue (code 0, darkest) shows learners who initiated all
the possible activities. In a nutshell, the darker the colour, the more intense the learners’ participation.

Fig. 13 shows the activities of completing followers while Fig. 14 shows non-completing followers.
Although there are some similar behaviours amongst learners, the predominant activity profile for
completers and non-completers are distinctive.

Course Completers: The social activeness of the course completers were sustained until Week 6. After
Week 6, they showed limited activity. They hardly posted or followed other participants or completed the
week. Full participation based on three behaviours (post, follow, step completion) was most prevalent in
Week 1.

Course Non-completers: They have also been the most active in Week 1. Their level of activity and
weekly completion declined sharply in Weeks 2 and 3 i.e. this is much earlier than course completers.
Although no activity was observed in common especially after Week 3, it is still seen that a few of the
non-completers kept on following someone or contributing to the discussions or very rarely completing
the weeks. It appears that their behaviours are in accordance with the behaviours of lurkers in general
discussion forums [13]. This guides us to think that the learners who read the comments and followed
other participants or only concentrate on completing the steps become lurkers as the 90:9:1 principle
proposes.

4 RELATED WORK

One way in which the observed behaviours of learners in MOOCs discussed above might be used more
generally is as part of a predictive model. For example, learners’ social behaviours and completion rates
could be used as parameters to predict whether or not a learner will socially participate in a coming week
or complete the course at the end.
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Predictive models are commonly used for making decisions by forecasting outcomes with the aid of
statistical models and machine learning [21]. Predictive models are applied in various contexts ranging
from health and politics to business and education. In MOOCs, predicting future participations and
dropouts could be useful for detecting the need for educational interventions and the appropriate timing
of such interventions. A number of researchers have attempted to apply predictive models. Focus includes
anticipating learners” behaviours and identifying learners at risk. Tables 4 and 5 summarise available state-
of-the-art techniques considering their objectives and their prediction methods. Table 5 summarises the
dropout definitions identified in the literature and their notable findings.

There is no formal dropout definition, each study implements their own experiments using a variety
of definitions. Two most widely-used definitions for dropout are:

1) Not completed the final week: If a learner does not engage in the final week’s activities, they are
assumed that they dropped out of the course. A similar assumption, proposed by some researchers,
is that learners are marked as dropped out if they did not submit the final assignments.

2) No activity during the most recent week or No further activities in the following weeks:
This definition differs from the previous in terms of the timing of the dropout. For example, if
a learner’s last activity is recorded in the fourth week of a six-week-long MOOC, that student is
marked as “dropped out in the 4th week”.

Several kinds of data are used and collected throughout the duration of a MOOC in order to observe
learners” behaviour and develop prediction models. Typically four types of dataset are available: i) pre-
and post- course surveys, ii) clickstream, iii) the results of assignments, and iv) activities in discussion
forums. Some researchers use only clickstream data i.e. Amnueypornsakul et al. [30] and Kloft et al. [32],
others combine the use of clickstream data, assignments and forum data. The studies were examined and
selected to identify the strongest indicators that would have the most impact on prediction of dropouts.
Factors which suggest strong correlation to dropout are listed below.

o Learners who show even minimal interaction in the forum after Week 1 are unlikely to drop out [22].

o Learners who start a course earlier and contribute to discussion forums are less likely dropout than
others [23].

o Learners who lost their close peers are less likely to continue participating in the course forum [24].

o Learners who join later and participate in the least number of activities drop out [25].

o Assignment submissions are the most predictive [26].

o The length of forum posts is more strongly predictive than the number of posts and responses [26].

o Social integration in Week 1 is strongly correlated with course completion [29].

o Attrition rates and learners sentiment towards assignments and course materials are correlated [33].

o Learners’ self-statements about their intention are more strongly predictive than demographics [36].

As presented in Tables 4 and 5, many studies consider learners’ social participation as a factor for
predicting dropouts i.e. [23], [24], [26], [29], [33]. For example, Chaplot et al. [33] use learners” sentiments
extracted from the posts in the forum, while Jiang et al. [29] takes into consideration learners’ level of
activity in the forum in the first week.

We also consider building a prediction model using only social participation of learners. The analyses
presented in this paper indicate that learners’ follow behaviour along with their contribution to discussions
may have a potential to predict learners’ participation in a coming week.

5 DiScUSSION AND CONCLUSION

Researchers have combined different types of datasets, such as click-stream data, course surveys,
assignment performances, and discussion forum activities, to have greater insight into learners” behaviour
and success [37], [38]. They have analysed the relationships between learners” behaviours in MOOCs and
their course completion rates to

o identify possible reasons for low retention rates [14],
e provide necessary help to learners [39],
o predict learners’ future behaviours before they initiate [37].
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TABLE 4
State-of-the-art of techniques for predicting learners’ participation in MOOCs.
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TABLE 5

Milestones of dropout definitions used and remarkable findings of these studies.
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Since different MOOC platforms take different pedagogies and offer distinctive technological affor-
dances, researchers use a range of parameters of MOOC learners’ online behaviours to predict behaviours.
The FutureLearn platform, which is used in our study, takes a social-constructivist conversational frame-
work model for designing MOOCs as explained in Section 1 and 2. Having reviewed the literature, we
are proposing a new approach. To the best of our knowledge, no researchers are currently using learners’
forum interactions combined with their follow behaviours to predict possible dropouts. Therefore, we
focused our attention on the recurrent interactions of the learners and their followers on the platform in
order to estimate the possible dropouts.

Our previous study applied social network analysis techniques to investigate the correlation between
learners’ continuous interactions in discussions and their completion rates [19]. That study suggested that,
for a very small number of learners who have continuous friendship with their peers in discussions, their
completion rate is almost 95%.

In this study, we examined another distinct social feature of FutureLearn: the follow function. We
believe in the value of this feature because it could provide us with greater insight into social behaviours
of learners in their learning networks. Our research has focused on

o discerning the distinctive features of follow behaviours of MOOC learners,

« analysing follower learners’ completion rates,

o identifying the possible value of follow behaviours for predicting learners’ future participation in
MOOCs.

We therefore addressed the following research questions:

How frequently do learners follow someone during a course? According to our findings, only a small
fraction of learners attempt to use the follow feature provided by the platform. Not all forum participants
use the follow feature. 70% of forum participant do not follow anyone (Fig. 10). There could be several
reasons behind this.

1) Lack of awareness: Course providers usually advertise the follow feature in the introduction page
but do not promote it throughout the course. Therefore, some learners may possibly not be aware
of the follow function.

2) Usability of follow: After a learner starts following someone and interacts with them, the learner
must manually control updates. After our study was completed, FutureLearn introduced on-site
notifications in January 2016*, which may improve the use of the follow feature.

3) Confusion of learners: Learners may not be able to decide who to follow. Brinton and Chiang
suggest there is a problem of learners sometimes struggling to find a study partner resulting in a
lack of interaction in discussion forums [40]. Learners may need help in finding like-minded study
partners or conversations to initiate supportive interactions in MOOC:s. It is important, therefore,
to link learners to the right partners and to the right information in the discussion forums. In
order to improve learners’ participation and interactions, researchers have been implementing
personalised services [41]. A personalised support for finding the right person to follow could
help learners and improve the potential of a follow feature.

Further qualitative study is needed to investigate these possibilities.

Do learners who follow someone make a greater number of active contributions to discussion forum?
More than half of the followers actively joined the discussions by writing a comment or replying to
somebody else’s comment (Fig. 9). However, there is lack of evidence to say that following someone
causes rates for increased contribution to discussions and higher completion of the course.

We have also analysed peer interactions that were initiated by followers. When a learner follows
someone in a course by clicking on the follow button in their fellow learner’s profile, it may be fair to
assume that the learner has an intention to follow further updates from their fellow learner and maybe to
interact with them. However, only a small number of interactions occurred between followers and their
followee (Fig. 8). Possible reasons could be various, summarised below:

4. https:/ /about.futurelearn.com/blog/on-site-notifications
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o The followee (the learner who was followed) either was no longer active in discussions or left the
course. Therefore, the follower cannot interact with them.

o The follower could lurk, reading the comments but not commenting on them. In this case, it is
almost impossible to assess from data whether or not they benefit from their followee.

o The follower may drop out the course after they start following someone.

If these reasons can be identified from available datasets of learners” activities in a future study, then
it might be understood why learners stop interacting with their peers. Having already discussed learners’
struggles with finding peers to communicate with (and follow), a positive impact on participation in
discussions might be achieved by matching learners with appropriate peers and encouraging them to
follow more people.

Do learners who follow someone in a course complete the course? Over 30% of the followers completed
the course by completing at least half of the steps. Fig. 13 and Fig. 14 demonstrate activities of the
completers and non-completers throughout the MOOC. According to our findings, completers are usually
more active participants in course activities and use available features in the platform.

This finding corroborates suggestions of previous studies that, socially active learners are the biggest
portion of the course completers [16], [17], [19]. Indeed, some studies have used social behaviours of
learners for developing a prediction model of course completion (Tables 4 and 5). Our findings indicates
that learners’ social behaviours including their follow interactions could also be used for predicting
learners’ future participation.

How can we characterise the differences between completion rates comparing follow and discussion
contribution behaviours? We categorised active social participants as i) followers who contributed to
discussions, ii) followers who did not contribute and iii) posters who did not follow anyone. Fig. 12
compares the percentage of their completions rates. While the followers who contributed to discussions
completed over 80% of the steps in the course, the followers who did not contribute to discussions
remained lower (60%). The course completion rate of those who only post is slightly smaller than the
completion rates for followers who posted to discussions.

These findings also reiterate the relationship between presence in discussions and course completion.
Some researchers propose that applying a predictive model to a personalised service might be a
constructive means to boost learners” online participation. For example, Rose et al. [42] use learners’
participation in discussion forums to predict attrition by analysing learners and their cohort, who are at
similar place in the course. Given our findings future directions of MOOC research include

o developing personalised tools based on prediction models and social behaviours of learners,
o investigating the impact of those tools on participation in MOOCs and course completion.

Overall our research confirms previous findings that participation in course forums is a good indicator
of committed participation in a course, and that learners who fully participate are the most likely to
complete. Furthermore, it is clearly the case that if a learner follows another learner they are demonstrating
that they are actively participating in the course, even if their participation does not extend to making
original posts to the course forum. An original contribution of our work is to show that identifying such
lurkers provides us with another useful parameter to feed into the model for predicting likeliness to
complete.
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