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Abstract— Noise analysis using Monte Carlo method is 

conducted in this paper to correct the relationship between the 
frequency resolution, the Q-factor, Signal-to-Noise Ratio (SNR), 
and frequency step in the Brillouin distributed optical fibre 
sensors. The quantification of the Brillouin gain spectrum is 
important in distributed Brillouin sensors in order to improve the 
Brillouin frequency resolution and the corresponding strain and 
temperature resolutions. Two analytical expressions are derived 
in order to estimate the error in the determination of the Brillouin 
central frequency with or without second order polynomial 
fitting.   
 

Index Terms— Brillouin scattering, Monte Carlo, SNR, 
frequency resolution. 
 

I. INTRODUCTION 
ISTRIBUTED optical fibre sensors, based on Brillouin 

scattering, have attracted significant interest in the past 
few decades, as they can provide a convenient method for 
health and safety monitoring for large civil structures [1]–[3]. 
Brillouin scattering has been utilised to measure the distributed 
temperature and strain along the fibre by applying 
proportionality between the strain and temperature in the 
optical fibre and the Brillouin Frequency Shift (BFS) [4]. Based 
on this principle, Brillouin distributed optical fibre sensors, are 
widely used in civil engineering applications [1].  

The BFS is obtained by measuring the peak-power frequency 
of the Lorentz-shaped Brillouin gain spectrum along the optical 
fibre. The quantification of the Brillouin gain spectrum is 
important in Brillouin distributed optical fibre sensors in order 
to improve the Brillouin frequency resolution and the 
corresponding strain and temperature resolutions. 

The noise deteriorates system accuracy [5] and generates 
random spectral deviation of the measured BFS along the 
optical fibre. The analysis of the random process of this 
deviation is proposed and simulated based on the Monte Carlo 
method in this paper, which corresponds to the minimum 

 
This work was supported by the U.K. Engineering and Physical Sciences 

Research Council (EPSRC) (EP/K000314/1). The additional data will be 
accessible at https://www.repository.cam.ac.uk/handle/1810/254916. 
    Y. Yu, L. Luo and B. Li are with Engineering Department, University of 
Cambridge, Cambridge CB2 1PZ, U.K. (e-mail: yy347@cam.ac.uk; 
ll432@cam.ac.uk; bl350@cam.ac.uk). 

J. Yan is with Electronics and Computer Science, University of 
Southampton, Southampton SO17 1BJ, U.K. (e-mail: J.Yan@soton.ac.uk). 

K. Soga is with the Department of Civil and Environmental Engineering, 
University of California-Berkeley, Berkeley, CA 94720 USA, (e-mail: 
soga@berkeley.edu). 

detectable Brillouin frequency change and its dependence on 
the signal to noise ratio (SNR), quality factor (the Q-factor), 
and frequency step resolution.  

The minimum detectable change in the Brillouin distributed 
optical fibre sensor was first declared in [4], centred at a 
Brillouin frequency of vB shown as: 

1/4
e2( )

FWHM
SNR

σ =                              (1) 

where FWHM is the Full Width at Half Maximum (FWHM) 
and SNRe is the electrical signal to noise power ratio. However, 
a detailed justification and estimation procedure were lacking, 
including the fitting method and frequency step resolution. 
Recently, the BFS was analysed by using the propagation of 
errors on the parameters obtained from a least-square parabolic 
fitting, as stated and demonstrated in [6], estimated as: 
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where δ is the frequency step resolution and SNRa is defined as 
amplitude SNR (maximum gain to the noise). These two 
pioneering articles described the estimation of the potential 
error on the BFS for a given SNR, FWHM, and frequency step. 
The differences between these two equations are the 
exponential order of each variable and the numerical 
coefficient. However, there is an insufficient explanation about 
the difference between the two equations.  

In this work, the minimum Brillouin detectable change is 
studied numerically, by using the Monte Carlo simulation to 
determine the statistical variation of the Brillouin centre 
frequency with and without polynomial fitting, in which the 
random noise is added to the spectrum amplitude of the 
simulated signal. This work offers an opportunity to examine 
the difference between [4] and [6]. A densely sampled Brillouin 
gain spectrum can contribute to the minimum detectable 
change with and without polynomial fitting. The results show 
that the minimum detectable change is inversely proportional to 
the Q-factor and SNR without fitting and can be further reduced 
by fitting.   

II. MONTE CARLO METHOD AND FREQUENCY RESOLUTION  
Brillouin signal noise is caused by the cumulative noise 

added to the spectrum, including thermal and shot noise in the 
photodetector, laser relative intensity noise, and quantisation 
error [4][7]. The Monte Carlo method is a collection of 
computational algorithms which depend on repeated random 
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sampling in order to obtain numerical results [8]. These results 
can be utilised to determine the statistical variation of the 
peak-power frequency of a Lorentz-shaped Brillouin gain 
spectrum when a random noise is added to the signal. The SNR 
used in this study is defined as: 

signal

noise

P
SNR

P
=                                  (3) 

where the Psignal is the averaged signal power measured by its 
summed squared magnitude within FWHM, Pnoise is noise 
power (regarded as the variance of the noise distribution within 
FWHM). The Q-factor is defined as the ratio of the Brillouin 
central frequency vB to the FWHM shown as: 

BvQ
FWHM

=                                  (4) 

In order to evaluate the approximated governing equation for 
the standard deviation of the Brillouin central frequency, the 
Q-factor, SNR, and frequency step, the variables need to be 
investigated by assuming the Brillouin central frequency vB is 
constant. Based on observing the similarity between Eqn. (1) 
and (2), it is assumed that the error in the estimated Brillouin 
central frequency with respect to the frequency step resolution 
δ, SNR, FWHM, and numerical coefficient Z can be expressed 
as: 

A B CZ SNR FWHMσ δ= ⋅                       (5) 

   In the Monte Carlo simulation, the spectrum with random 
noise is generated repeatedly, while the peak-power frequency 
is obtained for each simulation, resulting in the Brillouin profile 
in the iteration process. The peak signal amplitude is assumed 
to be 1 and the noise is controlled by the value of SNR. The 
spectral location of the peak power from the Brillouin gain 
spectrum is marked for each iteration and then statistically 
analysed, in order to generate the standard deviation.  

 

 
Fig. 1. (A). Lorentz-shaped Brillouin spectrum with 20 dB SNR and 0.05 MHz 
frequency step and various Q-factors ranging from 5 to 20. (B). Results of 
Monte Carlo simulations for the standard deviation of Brillouin central 
frequency detection over different SNRs from 10 to 25 and Q-factors from 5 to 
20 with a fixed frequency step of 0.05 MHz.  
 
  The Lorentz-shaped Brillouin gain spectrum shown in Fig.1 
(A) has a white Gaussian noise added to the signal, with varied 
Q-factors from 5 to 20 and a fixed SNR of 20dB and a fixed 
frequency step of 0.05 MHz. Fig.1 (B) shows the standard 
deviation of the Brillouin peak-power frequency with varied 
SNRs from 10 to 25dB and varied Q-factors from 5 to 20 and a 
frequency step of 0.05 MHz. The noise simulation results 
reveal that a high value of the Q-factor and/or a high value of 
SNR can reduce the frequency resolution of the Brillouin 
distributed optical fibre sensors.  
   In terms of estimating the influence of the variable SNR, the 
other variables, including the Q-factor and frequency step, are 
set as constant at 10 and 0.05 MHz respectively. The value of 
SNR varies: 5, 10, 15, 20, 25, and 30. Then, the standard 
deviations of 10,000 Monte Carlo simulations versus the 
corresponding SNR are shown in Fig.2 (A). Similarly, by 
keeping the SNR fixed at 10 dB and the frequency step fixed at 
0.05 MHz and by varying the Q-factor from 3 to 20, the 
standard deviation versus the Q-factor is shown in Fig.2 (B). By 
maintaining the SNR and the Q-factor constant at 10 dB and 10, 
the frequency step changing from 0.001 to 0.3 MHz results in 
the plot shown in Fig.2 (C). The combination of the Q-factor 
and the Brillouin central frequency can be regarded as the 
FWHM as a single variable. The standard deviations for 10,000 
Monte Carlo simulations and the corresponding fitted line with 
the parametric analysis of SNR, the Q-factor, and frequency 
step can be plotted as:  
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Fig. 2. The parametric study of the standard deviation of the Brillouin central 
frequency without fitting, (a) the standard deviation versus various SNR with a 
fixed Q-factor (10) and frequency step (0.05 MHz), (b) the standard deviation 
versus various Q-factors with a fixed SNR (10dB) and Brillouin step (0.05 
MHz), (c) the standard deviation versus various frequency step with a fixed 
SNR (10dB) and the Q-factor (10). 
   The fitting coefficients A, B, and C for the variable SNR (in 
linear expression), the Q-factor, and frequency step resolution 
are -0.25, -1, and 0.05 respectively and the numerical 
coefficient is 1/8.5. The parametric investigation process are 
summarised in Table 1.  

TABLE 1 
PARAMETRIC INVESTIGATION WITHOUT FITTING 

SNR (dB) Q-Factor δ (MHz) Temporal Numerical 
Coefficient 

Exponential 
Coefficient 

5-30 10 0.05 5.05E+06 A = -0.25 

10 03-20 0.05 2.84E+07 B = -1 

10 10 0.001-0.3 1.65E+06 C = 0.05 

 
Therefore, the Monte Carlo simulation approximates the 
relationship between the SNR, Q-factor, frequency step, and 
the corresponding spectrum variation of the peak-power 
frequency in the Brillouin distributed optical fibre sensors, 
which reveals a dependence of the standard deviation (σ) on the 
BFS, Q-factor, frequency step, and SNR. The approximated 
governing equation is: 

                             
0.05

0.258.5
Bv
Q SNR

δσ ×
≈

× ×
                         (6) 

where the SNR is shown in linear units in the expression. This 
expression confirms the equation format of [4], about the same 
exponential coefficient of SNR. The exponential coefficient 
0.25 of SNR in [4] and Eqn. (6) is due to the direct error 
estimation of the BFS for a given SNR without applying any 
fitting process. The difference between the numerical 
coefficients (1/8.5 and 1/√2) is due to the influence of the 
frequency step involved in this study in refining the error 
estimation. This governing equation can be used to calculate 
the minimum detectable change of BFS without any fitting 
processing. 
  The polynomial fitting can be applied to the noisy spectrum in 
order to enhance the peak-power frequency detection. In the 
fitting processing, the second order polynomial fitting is 
applied to the simulated data above the FWHM. Fig. 3(A) 
shows the polynomial fitting result of the corresponding 
Brillouin spectrum with a SNR of 25dB, a Q-factor of 5, and 
frequency step of 0.05 MHz. Fig.3 (B) plots the standard 
deviation of the Brillouin central frequency measured with 
second order polynomial fitting. 
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Fig. 3.  (A). Lorentz-shaped Brillouin spectrum with a SNR of 25dB, a Q-factor 
of 5, and a 0.05 MHz frequency step and the corresponding second order 
polynomial fitting. (B). Results of the Monte Carlo simulations for the standard 
deviation of Brillouin central frequency detection with second order 
polynomial fitting over different SNRs from 10 to 25 and Q-factors from 5 to 
20, with a fixed frequency step of 0.05 MHz 

   It is helpful to follow the parametric investigation in the same 
way as in the previous section, by keeping all of the other 
variables constant and only varying a variable, as depicted in 
Table 2.  

TABLE 2 
PARAMETRIC INVESTIGATION WITH FITTING 

SNR (dB) Q-Factor δ (MHz) Temporal Numerical 
Coefficient 

Exponential 
Coefficient 

5-30 10 0.05 7.50E+05 A = -0.5 

10 03-20 0.05 7.49E+05 B = -0.5 

10 10 0.001-0.3 1060 C = 0.5 

By applying the fitting model (as in the previous section) the 
parameters A, B, and C for SNR, the Q-factor, and the 
frequency step are estimated as -0.5, -0.5, and 0.5 severally and 
the numerical coefficient is about 0.67. Therefore, by applying 
second order polynomial fitting, the approximated governing 
equation of the standard deviation of the Brillouin central 
frequency can be rewritten as: 

                            0.67 B
f

v
Q SNR
δσ ×

≈ ×
×

                         (7) 

where σf is the standard deviation of the resultant spectrum with 
second order polynomial fitting. The exponential coefficients 
of the frequency step and the FWHM have the same format as 
[6]; the differences compared with [6] are in the exponential 
coefficient of SNRs and the overall numerical coefficients, 
which are due to different SNR definitions and fittings. The 
SNR defined in [6] is the ratio of maximum gain to the standard 
deviation of the Gaussian noise, which is a single amplitude 
SNR. The SNR defined in this study is the averaged power to 

the variance of the noise within the FWHM, which can be 
regarded as the power SNR within the FWHM compared with 
[6]. The definitions of the SNRs applied in this work and [6] 
explain the different exponential coefficients, -0.5 and -1. The 
amplitude SNR is the square root of the power SNR. Moreover, 
the variance between the numerical coefficient 0.67 and �3/4 
is due to the influence of differently defined SNRs and fittings. 
As [6] mentioned, the numerical factor �3/4  can be 
reasonably made smaller for a different fitting method. This 
result indicates that the standard deviation of the peak-power 
frequency measurement error can be reduced by the reasonable 
fitting procedure, which is also confirmed by[9][10].  

III. CONCLUSION 
The Monte Carlo statistical simulation can characterise the 

frequency resolution of Brillouin distributed optical fibre 
sensors with varied Q-factors, SNRs, and frequency steps with 
and without second order polynomial fitting. This work 
examined the previously reported results in [4] and [6] and 
offered different coefficients in the resolution governing 
equations, which is caused by direct Brillouin central frequency 
detection and by the fitting approach. The second order 
polynomial fitting method can offer more accurate Brillouin 
central frequency measurement compared with direct detection 
without any fitting.  
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