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Abstract—We report a highly sensitive prototype 
micromechanical electrometer that employs the phenomena of 
mode-localization and curve veering for monitoring minute 
charge fluctuations across an input capacitor. The device 
consists of a pair of weakly coupled, nearly identical single 
crystal silicon, double-ended tuning fork (DETF) resonators. An 
addition of charge across an input capacitor on one of the 
coupled resonators induces a differential axial strain on that 
resonator relative to the other consequently perturbing the 
structural symmetry of the nearly periodic system. The resulting 
shifts in the eigenstates for the same magnitudes of charge input 
are theoretically and experimentally demonstrated to be nearly 
three orders of magnitude greater than corresponding resonant 
frequency variations. The topology chosen may also be adapted 
for force or strain monitoring thereby widening the relevance of 
the results reported here to precision inertial sensing as well. 

I. INTRODUCTION 
Electrometers, devices that are used to measure precise 

quantities of charge, have been a focus of research for over a 
hundred years. A wide variety of concepts have been proposed 
and demonstrated for accurately monitoring charge 
fluctuations across an input capacitor [1 – 5]. At present, 
however, the cryogenically cooled single electron transistor 
(SET) electrometers that utilize the phenomenon of quantum 
tunneling for charge detection, are seen as the benchmark for 
high sensitivity charge sensing, with demonstrated resolutions 
down to Hze510−  [2]. While these solid-state 
electrometers offer excellent charge resolutions, they suffer 
from the inherent disadvantages of limited operational 
bandwidth and their need for operation at sub-Kelvin 
temperatures (in order to reduce thermal noise effects [2]). 

 More recently, the mechanical detection of charge using 
micro- and nano-mechanical resonators has also been 
proposed as a highly sensitive approach for charge sensing [3, 
6]. The output of these resonant mechanical electrometers 
relies on tracking relative shifts in the resonant frequency of a 
micro- / nano-mechanical structure for induced variations in 
charge across an input gate capacitor. They offer the twin 
benefits of high charge resolution and large dynamic range 

making them attractive alternative platforms for charge 
sensing applications [3]. Resolution in the sub-electron regime 
has been experimentally demonstrated using nanometer scale 
mechanical resonators at relatively larger temperatures (of 
about 4.2 K) [3]. In what follows, we propose the use of an 
alternate mechanism of charge sensing in such micro- and 
nanomechanical resonators by using the phenomenon of 
vibration mode-localization and the associated curve veering 
effect. Besides the higher sensitivity, such mode-localized 
mechanical electrometers also offer the added advantage of 
intrinsic common mode rejection making them less 
susceptible to false positive outputs arising from ambient 
environmental fluctuations. Furthermore, the topology chosen 
in this work may also be adapted for force or strain monitoring 
thereby widening the relevance of the results reported here to 
precision inertial sensing as well. Sensitivities that are orders 
of magnitude greater than the more conventionally used 
resonant frequency shift approach are experimentally 
demonstrated.  

II. MODE LOCALIZATION AND CURVE VEERING 
It is well known that in an array of weakly coupled, nearly 

identical resonators, the presence of very small periodicity-
breaking structural irregularities inhibits the long-range 
propagation of vibration, leading to a confinement of vibration 
energy to small geometric regions. The extent of this vibration 
energy confinement depends not only on the magnitude of the 
induced disorder, but also on the strength of internal coupling 
between the resonators with weaker coupling resulting in 
stronger localization of the vibration modes [7].  It is also 
known that weakly coupled, nearly identical resonators exhibit 
an abrupt divergence of the loci of their eigenvalues when 
these are plotted against a parameter representing the 
symmetry-breaking disorder in the system [8, 9]. This 
phenomenon, often referred to as ‘eigenvalue curve veering’ 
or simply ‘curve veering’, was first observed by Leissa in a 
pioneer paper [10]. The eigenfunctions associated with the 
eigenvalues on each locus swap trajectories during veering, 
resulting in strong mode localization under conditions of weak 
internal coupling between the resonators [8 – 10]. It has been 
shown that the existence of close eigenvalues in a coupled 
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vibratory system is likely to cause the occurrence of both 
curve veering and mode localization suggesting that they are 
both manifestations of the same drastic phenomenon [8, 11 – 
13].  

In order to understand the underlying physics behind the 
phenomena, consider two resonators coupled through a weak 
coupling spring (kc) as represented in the discretized model 
shown in fig. 1. 

 
Figure 1: Lumped element model of a coupled two degree-of-freedom spring 
mass system. 

 
In Fig. 1, ‘ m ’ represents the mass of resonators 1 and 2 

( mmm == 21 ); 1k  and ( )kkk Δ+= 12  represent their 
respective stiffnesses; ck - the internal coupling spring 
constant; 21 , xx - their displacements. The two important 
parameters that we pay special attention to are the non-
dimensionalized coupling factor ( )1kkc=κ  between the two 
oscillators and the non-dimensionalized stiffness disorder on 
resonator 2 relative to resonator 1 ( 1kkΔ=δ ). The 
eigenvalue problem for undamped free vibration may be 
expressed as– 
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When the disorder in the stiffness of resonator 2 is zero, i.e., 
when ( )21;0 ββδ == , the system is tuned or ordered and the 
eigenvalues and the corresponding eigenvectors of the system 
may be expressed as –  
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Under conditions of weak internal coupling ( 1<<κ ), plotting 
the loci of the two eigenvalues of the system ( λ ) versus the 
disorder in the stiffness of resonator 2 (δ  ) yields Fig. 2. It 
may be observed that the loci of the two eigenvalues do not 
cross but rather veer abruptly with high local curvatures as 
the two eigenvalues approach each other. The point of 
divergence corresponds to the point at which the system is 
symmetric ( )21 ββ = as illustrated in Fig. 2 and represented 

in (4). At values where ( ) ( )22
21 4κββ >>− , however, the 

modes localize as seen from (3) and (2) and illustrated in Fig. 
2. The relative shifts in the magnitudes of the normalized 
eigenvectors (eigenstates) due to small perturbations in 
stiffness of one of the resonators may then be expressed as [7] 
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where un and u0n represent the perturbed and unperturbed 
normalized two-component eigenvectors (or eigenstates) that 
are deduced from the amplitudes of vibration of each of the 
coupled resonators at the two fundamental modes (n denotes 
the fundamental mode of vibration). 
 

 
Figure 2: Loci of the dimensionless eigenvalues of the two coupled 
oscillators in terms of δ. 
 
Comparing this with the relative shift in the resonant 
frequency for the same induced perturbation in stiffness –   
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it can be noticed that for any value of kc < k/2, the relative 
shifts in the eigenstates are greater than those in frequency. It 
is to be noted that in (2),  f0  and  f  represent the frequency 
before and after inducing a stiffness perturbation and k 
represents the unperturbed stiffness of the resonator platform 
(k = k1). Sensitivity enhancements exceeding three orders of 
magnitude relative to the more conventionally used resonant 
frequency shift approach have been reported using this sensing 
paradigm by exploiting this critical dependence of the 
eigenstate variations on the strength of internal coupling [7]. 
In this paper, unlike previous attempts, we incorporate this 
paradigm of mechanical sensing for monitoring minute charge 
fluctuations across an input capacitor. We also utilize the 
electrical spring softening effect to electrically tune the system 
to symmetry by plotting the eigenvalue loci of the system until 
they veer. We then use the point of veering to experimentally 
deduce the scaled coupling spring constant and utilize the 
value thus deduced, to accurately predict the relative shifts in 
the eigenstates due to induced charge variations.  

III. MODE-LOCALIZED CHARGE SENSING 
The concept is demonstrated using a pair of mechanically 

coupled nearly identical double ended tuning fork (DETF) 
resonators subjected to differential strain modulation. We 
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utilize this particular topology as the topology may be 
directly adapted for force or strain monitoring thereby 
widening the relevance of the results reported here to 
precision inertial sensing applications as well.  A schematic 
of the device is shown in Fig. 3.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 
Figure 3: Schematic of mode-localized micromechanical electrometer 
 

The charge sensing element consists of two DETF 
resonators coupled mechanically through the base. The 
resonators are actuated in the out-of-phase mode of vibration 
(as illustrated in the inset of Fig. 3) as this mode is associated 
with higher quality factor (Q) of resonance. One of the 
coupled tuning forks is anchored at both ends (resonator 1 in 
Fig. 3). The other resonator (resonator 2) however, has one 
end anchored with the other connected to a freely suspended 
frame constrained to move in the horizontal axis (y axis) as 
illustrated in Fig. 3. A charge actuation electrode is located 
adjacent to the suspended frame and forms the input of the 
electrometer. An introduction of charge (q) through the 
charge input electrode causes an electrostatic force given by: 

capA
qF
0

2
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where capA represents the area of the charge actuation 
capacitor. This electrostatic force in turn induces an axial 
strain on that resonator connected to the suspended frame 
while the other resonator undergoes no strain modulation, 
consequently breaking the initial periodicity of the system 

and inducing a localization of the vibration modes. 

The spring constant of a doubly clamped beam of length 
L, subjected to an axial force F may be written as [6]: 
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where E represents the Young’s modulus of the elasticity and 
I, the second moment of area of the beam for in-plane lateral 
deflections. From equation (8), the shift in spring constant 
caused by the electrostatic force represented in equation (7) 
may be written as [6]:   
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In the case of a double ended tuning fork that comprises of 
two doubly-clamped beams in parallel, the axial load gets 
distributed evenly between the beams and hence, the change 
in the stiffness of the DETF resonator subjected to strain 
modulation may be re-expressed from equations (9) and (7) 
as: 
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Substituting equation (10) in equations (5) and (6) enables the 
evaluation of the relative shift in the eigenstates and those in 
resonant frequency for an induced charge addition of q on the 
charge input electrode: 
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Comparing equations (11) and (12), it is clear that by 
simply weakening the strength of internal coupling between 
the two resonators, the relative shifts in the eigenstates may 
be as made greater than corresponding resonant frequency 
variations for the same charge input of q across the charge 
input port. This implies that by simply reducing the strength 
of internal coupling, charge sensitivity enhancements as high 
as orders of magnitude greater than conventional resonant 
mechanical electrometers may be obtained.  

It is to be noted that further enhancements in sensitivity 
may also be attained through the incorporation of force 
leverage mechanisms that are capable of amplifying the input 
electrostatic force before being communicated on to one of 
the coupled resonators. Such mechanical force leverage 
mechanisms have traditionally been employed in resonant 
inertial sensor systems [14] and have demonstrated force 
amplification factors as high as 80 [15]. 
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A. Device description and characterization 
The device reported here was fabricated in a commercial 

foundry process using the silicon-on-insulator 
microelectromechanical systems (SOI-MEMS) process 
through MEMSCAP Inc., USA. Each of the tines in both 
tuning forks was designed to be 25 μm thick, 300 μm long 
and 6 μm wide with a gap of 6μm between the tines. Each of 
the resonators was driven and sensed using capacitive 
transduction. Actuation was achieved using parallel plates of 
equal dimensions, attached to either side as shown in the 
optical micrograph in Fig. 4.  

 
Figure 4: Optical micrograph of weakly coupled DETF resonators subjected 
to differential strain modulation. 

 
A summary of the dimensions and design parameters is 

given in Table 1.  

TABLE I.  DEVICE DIMENSIONS 

Device dimensions and design parameters 
Quantity Symbol Value 

Device thickness H 25 μm 

Tine length L 300 μm 

Tine width W 6 μm 

Electrode length l 260 μm 

Transduction gap G 2 μm 

Input charge electrode width w 34 μm 

Input charge actuation gap  g 2 μm 

Scaled coupling factor κ 3.52 e-3 

 
The fabricated devices were tested under vacuum 

(≈50mTorr) in a custom vacuum chamber. A schematic of 
the measurement setup is shown in Fig. 5. It may be observed 
from Fig. 5 that any disparity between the DC voltage on the 
charge input port and that on resonator 2 should result in a 
variation of the static component of the electrostatic attractive 
force in the charge actuation capacitor consequently inducing 
a differential axial strain within the nearly periodic system. 
This should in turn cause a localization of the vibration 

modes resulting in drastic variations in the modal dynamics. 
The resulting shifts in eigenstates deduced from the relative 
amplitudes of vibration of each of the coupled resonators at 
the eigenvalues (measured from their respective sense 
electrodes) yield the output of the electrometer.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 5: Schematic of experimental setup. 
 

B. Device calibration 
Initially, in order to deduce the unperturbed response of 

the system, the effective charge input (through the charge 
input port in Fig. 4) was maintained at 0 C whilst driving both 
the resonators through the drive port. Equal magnitudes of 
DC voltages were applied on both the resonators to induce 
capacitive actuation and at the same time, avoid any 
periodicity breaking irregularity between the two coupled 
structures due to differential electrical spring softening within 
the system [7]. The eigenstates of the coupled responses were 
then deduced by simply measuring the relative S21 
transmission responses arising from the motional currents at 
sense electrodes 1 and 2 respectively. The measured 
transmission frequency responses are illustrated in Fig. 6. 

 

 

 

 

 

 

 

 

 
Figure 6: Unperturbed transmission responses of resonators 1 and 2 
measured from their respective sense electrodes. 

 
The measured responses reveal the presence of two 

resonant modes that are close in frequency indicating the 
existence of a weak elastic coupling element between the 
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resonators. Before proceeding with illustrating the 
functionality of the device as a charge sensor, it becomes 
mandatory to experimentally quantify the strength of internal 
coupling between the tuning forks. This becomes especially 
important in mode-localized sensing as any enhancements in 
the sensitivity in such sensors, depend critically on the ability 
to predict the strength of the internal coupling spring constant 
as may be observed from (11). Hence, in order to obtain an 
experimental measure of the coupling spring constant, the 
loci of the eigenvalues of the vibratory system are plotted as a 
function of induced stiffness variations on one of the coupled 
resonators. This is achieved by first applying a DC bias 
voltage of 10V on the drive electrode (refer Fig. 5) in 
addition to providing an AC input from the Vector network 
analyzer (VNA) corresponding to -20 dBm. The DC voltage 
on the sense electrodes of each of the resonators are initially 
maintained at 0 V. The DC bias voltage on sense electrode 2 
is then tuned to alter the stiffness of resonator 2 maintaining 
that of resonator 1 constant. Plotting the variations in 
frequencies of the two modes as a function of the induced 
stiffness disorder on resonator 2 results in Fig. 7. 

 

 

 

 

 

 

 

 

 

 
Figure 7: Veering of the loci of the  eigenvalues observed when electrically 
varying the stiffness of resonator 2. 

 
It may be observed that as the loci of the two eigenvalues 

approach each other, the eigenvalues do not converge but 
rather veer away abruptly as predicted by (2).  The 
eigenfunctions at this point of veering hence correspond to 
those represented in (4) and may be used to directly deduce 
the scaled coupling factor of the system. The value of 

1kkc=κ was thus estimated to be equalto 310*52.3 − . 

 

C. Experiment: Charge sensing 
After estimating the value of κ , different voltages were 

applied to the input charge actuation capacitor in order to 
illustrate the functionality of the device as a mode-localized 
mechanical charge sensor. Since the capacitance of the charge 
input port is known, an equivalent input charge may be 
directly related to an applied voltage. Both the tuning forks 
were actuated using a DC bias of 7V and a source power of 

20−  dBm from the VNA. The S21 parameter response 
functions of each of the resonators were then measured before 
and after charge addition and the relative shifts in the 
eigenstates and those in the eigenvalues were compared at the 
first mode of vibration. The observed transmission responses 
measured from the two coupled resonators for different 
magnitudes of induced charge at the first mode of vibration 
are represented in Figs. 8 (a) and 8 (b) respectively. 

 
 

 

 

 

 

 

 

 

 

 
 
Figure 8: Experimentally observed relative S21 transmission responses 
measured from ports 1 and 2 for different magnitudes of induced charge at 
the first fundamental mode of vibration. 

 

From Fig. 8, it may be observed that while the resonant 
frequency increases with increasing magnitudes of charge 
input due to the increase in the loaded axial strain in the tines 
of the tuning fork, the relative amplitudes of vibration at 
resonance between the resonators also change indicating a 
localization of the vibration energy within the system. 
Comparing the relative shifts in the eigenstates with those in 
the resonant frequency (refer Table 2), it is clear that for the 
same induced charge addition, the relative shifts in the 
eigenstates of the system are as high as three orders of 
magnitude greater than those in resonant frequency as 
predicted by (11). It is to be noted here that the induced charge 
may also be translated into an equivalent force / strain as 
represented in Table 2 thereby widening the relevance of the 
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results reported here to force detection, strain monitoring and 
precision inertial sensing applications as well. Fig. 9 compares 
the measured eigenstate variations in response to induced 
charge addition with those predicted using (11).  

TABLE II.  EXPERIMENTALLY OBSERVED VARIATIONS IN EIGENSTATES 
FOR DIFFERENT MAGNITUDES OF INDUCED CHARGE INPUT  

Variation in modal dynamics with charge input 

Charge input (fC) 0 188 263 413 489 

Equivalent force input (μN) 0 2.3 4.6 11 16 

Equivalent strain input (nε) 0 47 92 228 420 

Shift in eigenstate (%) - 0.34 0.51 1.26 1.8 

Relative shift in  
resonant frequency (%) - 0.0011 0.0019 0.0044 0.0060 

 

 
Figure 9: Measured and theoretical variations in the eigenstates for induced 
charge addition. 

 

IV. CONCLUSION 
In conclusion, this paper presents a novel prototype 

micromechanical electrometer that utilizes the phenomena of 
mode localization and curve veering for precise monitoring of 
charge fluctuations across an input capacitor. Variations in 
eigenstates that are nearly three orders of magnitude greater 
than corresponding shifts in the resonant frequency are 
experimentally demonstrated using a pair of weakly coupled, 
nearly identical single crystal silicon, double-ended tuning 
fork (DETF) resonators subjected to differential strain 
modulation. It is envisaged that further optimization of the 
device geometry and the incorporation of force leverage 

mechanisms should also help improve the charge sensitivity of 
such mode-localized sensors further consequently paving the 
way for a new class of ultrasensitive mechanical charge 
sensors.  
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